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ABSTRACT 

In the last decade, selecting suitable web services based on users’ requirements has 

become one of the major subjects in the web service domain. Many research works have been 

done – either based on functional requirements, or focusing more on Quality of Service (QoS)-

based selection. We believe that searching is not the only way to implement the selection. 

Selection could also be done by browsing, or by a combination of searching and browsing. In 

this thesis, we propose a browsing method based on the Scatter/Gather model, which helps users 

gain a better understanding of the QoS value distribution of the web services and locate their 

desired services. Because the Scatter/Gather model uses cluster analysis techniques and web 

service QoS data is best represented as a vector of intervals, or more generically a vector of 

symbolic data, we apply a symbolic clustering algorithm and implement different variations of 

the Scatter/Gather model. Through our experiments on both synthetic and real datasets, we 

identify the most efficient (based on the processing time) and effective implementations.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

In recent years, Service Oriented Architecture (SOA) has made an influence which 

changes the way the enterprise software is developed and deployed, and become an opportunity 

for enterprises to more easily keep up with the rapidly changing market conditions, and conduct 

transactions with their business partners. SOA offers some major benefits in scalability, 

reusability, loose coupling, and platform independence. It allows enterprises to focus more on 

business processes as well as the application itself instead of the pure software development. 

Web service architecture is one special implementation of SOA. Web service is described as a 

self-contained software system which could be loosely coupled with other services to assemble a 

complex business application [1, 2]. 

Web services as a new standard technology consist of three main components: service 

descriptions which contain interface definitions, mechanisms to access or consume services by 

invoking their interfaces, and the implementations of the services which are the code behind 

the interfaces. A set of standards and protocols are widely used for web services, which enables 

them to communicate across different platforms and different languages, namely: Web Service 

Description Language (WSDL); Universal Description, Definition, and Integration (UDDI); and 

Simple Object Access Protocol (SOAP) [1]. 
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According to the said protocols, the typical architecture of web services is constructed 

based on three entities: service provider, service requester, and service registry, and they interact 

with each other in the “publish, find, and bind” process. In this process, a service provider 

provides access to a web service by creating and publishing it in a registry such as a UDDI 

registry, which is responsible for maintaining the functional description of web services [3, 4, 5]. 

Later, a service requester searches through the registry to find the desired web service which 

meets the requirements, and then continues to bind with the selected service through the defined 

interface (Figure 1).  

  

 

 

 

 

 

 

 

From the above discussion, we could see that the service discovery and selection 

component in a service registry is a key element of the architecture which leads service 

requesters to find and integrate the desired services offered by providers [6]. In this thesis, we 

study how to improve this selection process. 

Figure 1- Web Service Architecture [1, 3, 4] 
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1.2 Motivation and Objectives 

Generally speaking, in order to describe or understand a service, there are two key 

components, referred to as its functional, and its non-functional properties. Usually, the former 

can be inferred from the name and documentation of the service, the input/output parameters and 

other behaviour information, whereas the latter mainly includes the quality properties such as 

performance or security related ones, as well as other properties such as the cost, reputation, etc. 

In this thesis, to simplify the discussion, we use the term Quality of Service (QoS) to represent 

all non-functional properties [7, 8].  

When more and more services are published online, there could be multiple services 

implementing the same function, therefore, the non-functional properties will be crucial to 

differentiate those services. However, the current UDDI registry was not designed to support 

non-functional attributes of web services, and hence, it limits the service selection to only 

functional requirements [5].  

Considering that the QoS data are collected from the Service Level Agreements (SLA) or 

real-time monitoring engines, there could be multiple invocation instances and multiple versions 

of SLAs on the same service, which result in a large amount of QoS data. There could be a big 

challenge about how to organize, browse, search or analyze the QoS data of web services. There 

have been many research works on how to expand the current architecture model to support the 

QoS aware service selection. However, few of them considered the problem of organizing and 

navigating the QoS data. Therefore, the above-mentioned described the motivation of our 

research. 
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There are situations where QoS browsing is very helpful. First, it could give service 

requesters some idea about the QoS value distribution of the available services. Oftentimes, in 

order to search a service, requesters need to formulate a QoS query and submit it to a service 

selection system. If the query is not accurate, the returning results may not be accurate. For 

instance, a service requester wants to find a service with a high reliability level, and thus the 

request is stated as "reliability > 99%"; however, none of the services in the registry achieves this 

level, and the maximum reliability is 97%. In this case, no matching result could be returned 

although the requester can accept a service with reliability 97% as long as it is the highest 

available one [7]. The problem here is an inappropriate selection of QoS values in the query. If 

the requester could browse the QoS data before submitting the query, the problem could be 

solved.  

Secondly, browsing could help service providers understand the actual demand from 

requesters. For instance, a service provider wants to publish a newly developed service, and in 

order to attract more users, the guaranteed quality level specified in the service description is 

very high based on the assumption that the higher quality level is always preferred. Although it 

does attract some users, the volume of invocation is not high enough to balance the investment 

on resources for hosting and delivering high quality services. The problem here is that the 

provider does not understand the real requirement from the users. For this particular service, 

maybe most of the requesters do not have a demand for a high quality level. Instead, the lower 

cost is always preferred. If the provider could browse the actual QoS data of services with 

similar functionality, the decision on service quality levels could be adjusted accordingly.  
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The purpose of this thesis is to investigate some effective ways of browsing the service 

QoS data. The knowledge gained from the browsing process could help the search and analysis 

process.  

Scatter/Gather [9] is a well-known and well-studied browsing model on large document 

collections. The main idea is that the system scatters the given set of documents into a small 

number of clusters and presents summaries to users; based on their interests, the users choose 

one or more clusters, then the system gathers documents from the chosen clusters and scatters 

them into a few clusters again, and the whole process gets iterated, starting from the complete 

initial collection, and gradually narrowing down to user-desired documents. The process mainly 

uses the clustering algorithms for its implementation. We believe that this model can also be 

used to browse the QoS data. It could help users (either providers or requestors) to have a clear 

view of the QoS distribution of the service set. The number of iterations is decided by the users' 

granularity requirements.  

There are a few main differences between the document collection and the set of services. 

Firstly, both the document and the service QoS data can be represented as a vector. The size of 

the document vector is usually the number of terms in the whole vocabulary, whereas the size of 

the QoS vector is the number of QoS attributes that the system can support. The former value is 

usually much bigger than the latter value. Secondly, the size of the service set under study is 

usually much smaller than the size of the document collection because the number of online 

documents is far more than that of the published services. This situation will probably remain the 

same even in the foreseen future, due to the higher complexity of developing services and the 

higher cost of hosting, delivering, or using services. Thirdly, for a QoS vector, each dimension 

has a different meaning because it represents different QoS attributes, a different data type [10] 
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(e.g. single numerical, interval, Boolean, categorical, etc.) and a different value range (e.g. 

reliability is from 0 to 100%, the authentication is either 0 or 1, the response time is from 0 to 2 

seconds, etc.), whereas the dimension in a document vector has the same meaning, same data 

type and same value range which usually represents the term-frequency-decided weight. 

Fourthly, similarity-based measurements are more commonly used for document clustering and 

it is also believed to have a better performance [11]. However, for QoS clustering, since it is 

more appropriate to represent QoS data as symbolic data, the distance-based measurements are 

more common. Because of all these differences, it is necessary to re-study the Scatter/Gather 

model in this new context [7].  

In this thesis, based on the features of the QoS data, we propose to use the Scatter/Gather 

as our browsing model, and a symbolic data clustering algorithm as its clustering component. We 

have four different implementations of the browsing model based on two originals, and two 

improved algorithms. The original algorithms consist of the original Scatter/Gather and the 

iterative Symbolic Dynamic Clustering Algorithm (SCLUST) [12]; furthermore, our improved 

algorithms include the improved SCLUST and the Hk-means (NLA) algorithm [13], which is 

implemented based on the improvement on the LAIR2 algorithm [14]. For the improved 

techniques, we intended to increase the accuracy, as well as the efficiency (based on the 

processing time) of our clustering results. Therefore, their performances are tested and compared 

using some synthetic QoS datasets. Based on our experimental results, the Scatter/Gather model 

is very effective on QoS browsing, and different implementations achieve different levels of 

performance. To the best of our knowledge, applying the Scatter/Gather model to QoS browsing 

and searching is a novel idea, and using this model to browse the symbolic data set is also a new 

idea.  
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1.3 Thesis Structure 

The rest of the thesis is structured as follows:  

In Chapter 2, the background information and related works are discussed. Firstly, we 

describe different QoS properties of web services, including classification and taxonomy of QoS 

properties in different perspectives. Secondly, we review research works related to QoS-aware 

web service discovery and selection, with different frameworks. Thirdly, cluster analysis 

techniques are described by reviewing partitioning and hierarchical data clustering methods and 

symbolic data clustering. Finally, the Scatter/Gather framework, which is the backbone of our 

research, is reviewed.  

In Chapter 3, all features of the Scatter/Gather model, which were proposed using 

different algorithms, are described. Subsequently, after discussing different distance functions, 

which are used to calculate distances between two vectors of intervals (which represent QoS 

attributes of web services), we describe the concept of the cluster homogeneity, and our proposed 

framework consisting of four techniques (the original Scatter/Gather, the iterative dynamic 

symbolic clustering and its improved version, and the improved LAIR2 algorithm).  

In Chapter 4, we explain our experimental design, the features of the datasets we used in 

our experiments. We also present the results of executing our framework on 10 different 

synthetic datasets and a real dataset. We then continue with results analysis, comparison of 

different approaches, and further discussion on the implications from these results.  

Finally, in Chapter 5, we summarize our work and the conclusions we draw from the 

experiments. Furthermore, we describe the future works that can be done on QoS-aware web 

service selection.  
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CHAPTER 2 

LITERATURE REVIEW 

 

The scope of this chapter is to give more detailed information on: i) different QoS 

properties, ii) different QoS-based service discovery and selection models, iii) overview of data 

clustering algorithms, different data types such as interval data or symbolic data and symbolic 

clustering algorithms, iv) the Scatter/Gather model.  

2.1 Non-Functional Properties and Quality of Services 

As previously mentioned in the Chapter 1, web service requirements are categorized into 

two types: functional requirements, and non-functional requirements. Functional requirements of 

services describe the functionality and behaviour of the service which can be described as tasks, 

activities, users’ goals, and in general what the system is expected to do. On the other hand, non-

functional requirements contain qualities and characteristics of services, which can affect the 

users’ satisfaction level with a specific web service. We use the term “QoS” to represent all non-

functional properties [15, 16]. 

Generally, QoS attributes can be classified into different groups based on different 

perspectives. For example, in [17], QoS is categorized into metrics (which describe quantifiable 

parameters) and policies. Metrics are further divided into performance specifications, security 

levels, and relative importance levels. Moreover, policies are divided into management policies, 

and level of service. In [18], QoS is classified into technical qualities and managerial qualities.  
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There are some general and common attributes (such as price) which are independent of 

the domain the specific web service belongs to. The domain-independent attributes can also be 

categorized into different groups. For example, in [8] these attributes have been categorized into 

four groups as follows: 

- Performance: Processing Time/Execution Time, Latency, Throughput, and Response 

Time; 

- Dependability: Availability, Accessibility, Accuracy, Reliability, Capacity, Integrity, 

Stability/Exception Handling, Robustness/Flexibility, Regulatory/Interoperability, 

and Scalability; 

- Security: Authentication, Authorization, Non-Repudiation, Integrity, Encryption, 

Traceability/Auditability, and Confidentiality/Privacy; 

- Application-specific metrics. 

In the above taxonomy, cost is not considered as a metric or a QoS attribute. However, 

some of papers do include it as a QoS metric. For example, the QoS attributes of web services 

are classified into the following groups in [5]:  

- Runtime Related attributes such as: scalability, capacity, reliability, 

robustness/flexibility, exception handling, accuracy, and performance (which can be 

sub-classified into response time, latency, throughput, execution time, and transaction 

time); 

- Transaction Support Related attributes such as: integrity, isolation, durability, 

atomicity, and consistency; 
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- Configuration Management and Cost Related attributes such as: regulatory, cost, 

reputation, completeness, supported standard, stability/change, and guaranteed 

messaging requirements; 

- Security Related attributes such as: authentication, authorization, traceability/audit-

ability, confidentiality, accountability, data encryption, and non-repudiation. 

Network Related QoS is added to the above classification in [19], which includes 

network delay, delay variation, and packet loss, to name a few.  

The reason of applying different taxonomies and classifications on quality aspects of web 

services on different researches is to make QoS metrics well organized and have a simpler view 

for further analysis, so as to be able to use them in different scenarios such as web service 

selection [8]. 

2.2 QoS-Based Web Service Selection 

Current web service technology based on the UDDI model limits the service discovery 

and selection to functional requirements only, which causes the problem of selecting services 

with same functionalities but different qualities [20, 7]. In this regard, QoS-aware methods 

considering non-functional attributes of web services have been proposed to resolve the 

weaknesses found in the UDDI keyword-based search [21]. The examples of such solutions 

include: (1) extending UDDI with the consideration of QoS information embedded into the 

tModel, (2) defining a QoS repository as a QoS broker to maintain and interact with QoS 

information [5, 16, 22, 23].  
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Furthermore, in order to monitor or extract the QoS data from different sources such as 

SLAs or users’ feedbacks, third parties such as different agents can be involved [24, 25]. For 

instance, in [26], QoS negotiation and web service selection are implemented with a multi-agent 

computational paradigm; here, the implemented agents by service provider can negotiate with 

the agent implemented by the requester for the SLA configuration in the service selection 

process. In this regard, several languages which use abstract syntaxes or HTML language have 

been proposed to express QoS information of web services such as Quality of Service Modeling 

Language (QML) [27], Web Service Management Language (WSML) [28], Web Service Level 

Agreement Language (WSLA) [29], and Web Service Offer Language (WSOL) [30]. 

In the following, we study different proposed frameworks or publish and selection 

models which tried to overcome the above mentioned issues by taking into account the QoS 

requirements of web services.  

In [5] a new regulated model for web service discovery, based on current publish-find-

bind model (Figure. 1) is proposed. In order to overcome the inability of supporting the QoS 

requirements from the UDDI registry, and to improve web service selection based on users’ 

preferences, the authors employed QoS attributes of web services as constraints in the search 

process. Therefore, the proposed model which can co-exist with the current UDDI registry 

includes both functional description and non-functional information of web services in the 

repository. During the publication process, the QoS information is checked and validated by a 

certifier, thus stored in the certifier’s repository after the approval is granted. The UDDI registry 

needs to check the registered certification with the certifier before it can be stored in the 

repository.  
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In [10], a multiple criteria decision making technique – called Analytic Hierarchy Process 

(AHP) – has been proposed to rank the services based on their QoS values. Furthermore, QoS 

ontology – WS-QoSOnto, is proposed to semantically describe the QoS information of web 

services. The technique is based on the following four phases: 1) formulate AHP by putting 

every QoS attribute and candidate web services together, in order to construct a hierarchy, 2) 

compute the normalized weight vector of QoS attributes in each QoS group which are used in the 

next phase, 3) define the relative ranking of each web service by computing the Eigenvector [31] 

of each attribute, 4) aggregate the web service rankings for all QoS groups by building the 

ranking matrix. 

In [32], another QoS-based web service discovery model which uses ontology to describe 

QoS information is presented. The approach combines constraint programming with semantic 

matchmaking method, in order to select web services with different QoS levels. In the proposed 

framework, the entire process of service discovery and selection consists of three layers: 

semantic matchmaking layer, constraint programming layer, and QoS selection layer. In the first 

layer the description logic (DL) reasoning is applied to check if the QoS attributes of the 

candidate services are semantically matched with the request (i.e. price & cost). The second layer 

which deals with QoS values converts every requested QoS condition into a set of constraints by 

adopting Constraint Programming (CP) method. In the third layer, an optimizing algorithm is 

applied to sort the candidate web services based on the total values computed by quantifying the 

semantic description of their QoS parameters and multiplication of each value with its related 

weight. 

Liu et al. [33] presented a new dynamic and extensible QoS-driven model for web service 

discovery and selection based on users’ or requesters’ feedback, depending on the characteristics 
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of QoS criteria. The model contains a QoS registry in charge of evaluating the advertized web 

services based on their QoS information. This evaluation is done by: (a) generating a matrix 

based on web services and their QoS criteria, (b) normalizing the matrix with the purposes of 

enabling the uniform measurement of quality attributes independently, and (c) providing uniform 

indices for QoS criteria, grouping them, and setting a threshold for each group. This proposed 

framework is an extensible model, and any new QoS criteria (generic or domain specific) can be 

easily added to the system. It is preference-based, and it has a fair and open QoS computation 

mechanism. 

Skoutas et al. [34] presented a multiple criteria matching algorithm which retrieves the k 

most dominant web services, and then ranked them based on their degree of matching. The 

model used three ranking criteria to match web service descriptions with the requests, using 

multiple similarity measurements. Based on these criteria, three algorithms are presented in the 

paper, including ranking by dominated score, ranking by dominating score, and ranking by 

dominance score. The concept of top-k dominant web service selection problem is formalized in 

the paper, and the computation of k most dominant web services is presented. 

In [23], a QoS-aware web service discovery approach which employs matching and 

ranking algorithms based on user’s preferences for both functional and non-functional 

information of web services is proposed. The model presents a new UDDI tModel with an 

external file that can be hosted by the service provider or other third party, to store the QoS 

information of web services. QoS requirements from service consumers are divided into optional 

and compulsory requirements including different features such as attribute name, attribute type, 

attribute value, attribute unit, constraints, direction, weight, and relationship, etc. Subsequently, a 

matching algorithm is applied to locate a set of web services which satisfy the consumers’ QoS 
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requirements. Finally, a ranking algorithm is employed to find the most matched services with all 

the desired preferences.  

In [35], a two-way matchmaking framework is proposed in order to overcome the 

problem of checking consistency between offers and requests. In order to automate the process 

of service selection, with consideration of two-way matchmaking context, all requests and offers 

should be mapped to constraint satisfaction problems. This would be carried out by mapping 

each parameter to a variable, and mapping every condition to the related constraints. After 

checking consistency of both sides, the pessimistic conformance – which is based on when all 

possible values satisfy the requirements – is evaluated. Finally, the best offer is selected by 

choosing an optimal offer which is the one with the maximum value of the calculated minimum 

values of all conformant offers. 

2.3. Cluster Analysis 

Data clustering can be described as an unsupervised classification of pattern or data items 

into some groups. In other words, grouping similar data objects into the same clusters based on 

their similarities is referred to as cluster analysis. Cluster analysis is well studied in many 

different disciplines such as statistics, machine learning, neural networks, data visualization, high 

performance computing, as well as databases and data warehouses, etc. It is believed that data 

clustering algorithms can extract interesting patterns from a large amount of data by dividing it 

into different groups based on certain similarity measures. Therefore, one of the most important 

subjects in cluster analysis is to understand the spatial relationships between data objects in each 

cluster, such as dense or sparse regions in a dataset [36]. 
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2.3.1 Data Clustering Techniques 

Clustering methods could be organized into different categories such as: partitioning 

methods, hierarchical methods, density based methods, grid-based methods, model-based 

methods, methods for high-dimensional data (such as frequent pattern-based methods), and 

constraint-based clustering [37]. The focus of our work is on partitioning methods and 

hierarchical clustering methods. 

The most well-known partitioning method is the k-means algorithm, which groups data 

into a number of clusters, based on their similarities. It starts with k random initial prototypes, 

keeps assigning data objects to their closest prototypes based on their similarities or distances, 

and re-calculates cluster’s mean which is considered as the prototypes of clusters in any iteration, 

until the square error criterion function converges. This criterion is based on minimizing the total 

sum of dissimilarities between each data object and the correspondent cluster’s prototype [12, 

37, 38]. The main issues with k-means algorithm are its sensibility to outliers, and its lack of 

knowledge of the number of initial clusters (k). 

Hierarchical methods which are classified into two different types: agglomerative and 

divisive methods. These methods group data objects into a tree of clusters. For instance, the 

agglomerative (bottom-up type) algorithm starts with placing every data object in their own 

cluster, and iterates by joining most similar pair of clusters based on some criteria. This process 

ends when every data object is placed in one single cluster or when the desired number of 

clusters is obtained. On the other hand, the divisive or top-down type algorithm does the reverse, 

it starts with all objects in one single cluster, and splits the clusters into smaller pieces until each 

object is placed in its own cluster [37, 39].  
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The splitting and merging of pairs of clusters depend on the linkage methods, which can 

be categorized as single linkage, complete linkage, and average linkage methods. In single-

linkage clustering method, the shortest distance between each cluster’s individual and any 

member of the other cluster, which is defined as the highest similarity between them, is 

considered. In contrast, in complete-linkage method, the largest distance from any data object in 

one cluster and any object in the other cluster is considered. Average-linkage clustering method 

considers the average distance between any member of one cluster and any data object in the 

other cluster. Each of these methods has its own characteristics, for example complete-linkage 

algorithm generates the compact clusters, single-linkage method is sensitive to chaining 

individuals, thus suffers from this effect, but overall, single-linkage method is more adaptable 

than the other linkage methods [39]. 

2.3.2. Data Clustering for Interval or Symbolic Data 

 The traditional data clustering can be extended to deal with symbolic type of data such as 

set of intervals, lists, structured variables, categories, and so on, which are described as a unified 

and continuous set of values by means of relationship. Many approaches have been proposed in 

order to define the similarity between the symbolic data and perform the clustering tasks on the 

symbolic dataset [11, 40, 41]. Since the interval data is the most common symbolic data type, our 

review will focus on interval clustering algorithms although most of them can be generalized to 

more generic symbolic data. 

 In [42], an adaptive dynamic clustering method for interval data is proposed. This method 

uses Euclidean metric to calculate the distance between individuals and their correspondent 

cluster’s representatives, and aims to minimize the adequacy criterion that measures the fitting 
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between the clusters and their representatives. There are two steps involved. In the representation 

step, first the partition of k clusters and the vector of weights are fixed, the clusters’ 

representatives which minimize the criterion function are updated, and then the partition of k 

clusters and their representatives are fixed, and the vectors of weights which minimize the 

criterion are updated. In the allocation step, both vectors of weights and cluster representatives 

are fixed, and the clusters which minimize the adequacy criterion are updated. 

 In [41], two adaptive dynamic data clustering methods for symbolic data which are 

presented by vector of intervals, based on city-block distance are introduced. The adaptive 

dynamic clustering algorithm, apart from the initialization step (which is the step that the 

partitions are chosen by randomly selecting k distinct objects as the initial prototypes), has two 

main steps: the allocation step and the representation step. The allocation step, similar to the 

standard dynamic clustering algorithm, attempts to assign data objects to the correspondent 

classes based on their class prototypes. In the representation step, class prototypes are computed 

based on the individuals’ assignments in the previous step. The process is iterated until the 

converging of the criterion function is achieved.  

In any iteration of the above mentioned process, an adaptive distance is defined for each 

cluster depending on its structure; therefore, the adequacy criterion is locally optimized based on 

the fitting between the clusters and their prototypes. The adaptive distance function used in this 

method is based on two different types of distance functions: one-component adaptive city-block 

distance, and two-component adaptive city-block distance. The difference between these two 

functions is that in the two-component adaptive function, the lower bound and the upper bound 

of the intervals are managed independently, whereas in the one-component function, both are 

considered mutually. 
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 In [43], an iterative dynamical clustering algorithm using the Hausdorff distance 

measurement is presented. This method again has two steps. In the representation step which is 

followed by the initialization phase (choosing k distinct data objects), each cluster’s prototype is 

computed, which minimizes the criterion function based on the Hausdorff distance metric. Then, 

in allocation step each individual is assigned to their correspondent class prototype which is the 

closest cluster’s representative to the individual. The algorithm is iterated until the adequacy 

criterion is converged to the minimum value. 

 In several other papers, similar distance measurements such as Euclidean, City-Block 

(Manhattan), and Hausdorff are employed to deal with the clustering of interval data or the 

vectors of intervals. In [12], two dynamic clustering methods are presented. In first method 

vectors of intervals are compared in order to minimize the adequacy criterion based on Hausdorff 

distance metric. The second method employs the weight function, and uses two-component 

dissimilarity based on Hausdorff distance to compare different vectors of intervals.  

In [40], a hierarchical symbolic clustering algorithm using generalized Minkowski 

measurement for symbolic data is presented. The algorithm which works based on single linkage 

method, and uses both similarity and dissimilarity values, is applicable to mixed types of 

symbolic data including quantitative data such as ratio, absolute, and interval values, and 

qualitative data consisting of nominal, ordinal, and combinational values. In [44], a fuzzy 

clustering algorithm which uses a non-adaptive Euclidean distance for interval data is presented. 

The method which is a non-hierarchical clustering method, aims at providing a fuzzy partition of 

clusters with different dynamic distances assigned to each cluster in order to be compared with 

their prototypes iteratively. 
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2.4. Scatter/Gather Model 

 In 1992, Cutting et al. [9] presented a cluster based approach to browse large document 

collections. They proposed a browsing model called Scatter/Gather which uses document 

clustering as the main operation. In any iteration of the approach, the system scatters the dataset 

into some groups of data and shows their summary to the user. When the user selects a cluster or 

a number of clusters, system re-clusters the selected data, and again shows their summary of 

newly clustered data to the user.  

The Scatter/Gather model consists of two phases: offline and online phases. In the offline 

phase, which uses Fractionation technique, in any iteration of clustering process a dataset is 

divided into a specific number of buckets. Then, by using hierarchical clustering method for each 

bucket, data objects are agglomerated into a specified number of clusters. Considering each 

generated cluster in each bucket as new individuals, the algorithm iterates with new number of 

data objects, until required clusters’ centres are obtained. Later, every data object is assigned to 

each centre to build desired clusters. Finally, by applying the Split/Join refinement method and 

repeating the process several times, the offline phase will terminate.  

The online phase uses the Buckshot technique due to its fast processing time. In this 

phase,     number of data objects is randomly selected to agglomerate, where k denotes the 

number of clusters and n is the number of data in a dataset. After achieving the required clusters’ 

centres, every individual is assigned to these centres, and then, the Split/Join refinement 

algorithm is applied to improve the quality of the clustering result [9]. 
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2.5. Chapter Summary 

 In this chapter, we reviewed a few aspects of the related works, including QoS 

taxonomies from different perspectives, various QoS-aware service selection algorithms and 

frameworks, data clustering techniques and interval clustering algorithms, and Scatter/Gather as 

a cluster-based browsing model.  

In the last section of the chapter, in order to have an introduction to the basis of our 

research, the Scatter/Gather model was studied. Although the original model is for document 

clustering, potentially, the model is extensible and can be applied to different areas such as 

browsing QoS data of web services as presented in this thesis. Due to the different context of our 

application, it is necessary to make some changes to the original model, such as using symbolic 

clustering instead of normal clustering algorithms in both online and offline phases.   
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CHAPTER 3 

SCATTER/GATHER MODEL FOR QOS BROWSING 

 

In this chapter we present our framework inspired by the Scatter/Gather browsing model. 

The proposed framework aims to organize the QoS data and help users browse through it in 

order to understand the QoS value distribution of available web services, then locate and select 

the desired services. Its main building block is the clustering component. And the web service 

QoS data are mainly considered as the interval data, or more generic symbolic data.  

3.1. Scatter/Gather: A Cluster-Based Browsing system 

As mentioned in Chapter 2, the Scatter/Gather approach was first presented by Cutting et 

al. [9] in 1992, and was aimed to browse a large number of documents. This method uses data 

clustering to separate documents into different groups based on their topics, and shows their 

summary to the user. Each time the user selects one or more clusters based on his/her interest, 

the system gathers the documents from the chosen clusters, scatters them by re-clustering them 

into the required number of clusters, and then shows the summary of the newly generated 

clusters to the user again. This narrowing down process is repeated until the user’s satisfaction is 

met, and the desired data categories are achieved. Figure 2 indicates the process of scattering and 

gathering documents from the collection of New York Times news stories.  
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In any iteration, the user selects one or more clusters based on summaries of clustered 

documents presented as their topics, and asks for new clustered information based on the latest 

selected data. As in the above example, in the first iteration three topics “Iraq”, “Oil”, and 

“Germany” are selected, and the system scatters the new dataset by clustering data into another 

eight clusters on the second level. Next, the user chooses two clusters “Pakistan” and “Africa”, 

and demands a clustering of the chosen data. In the next iteration, eight clusters are generated 

again and are presented to the user [9, 45, 46]. 

Figure 2- The Example of Scatter/Gather [45, 46] 
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The Scatter/Gather model has two phases: the offline and online phases. In both phases, 

the agglomerative hierarchical clustering is first employed to cluster data into the desired number 

of clusters as the initial centres. In the offline phase which has a more accurate but slower 

mechanism than the online phase, the system uses an algorithm called Fractionation for finding 

the initial centres. It breaks the dataset into a number of buckets, in order to find k centres. The 

single-linkage similarity measurement is used to merge data objects in each bucket into a certain 

number of clusters, which are considered as the new data objects for the next iteration of the 

Fractionation process. After achieving the desired number of centres, the Assign-to-Nearest 

algorithm is used to assign each data object to the closest cluster’s centre, and this step will be 

repeated three times. Finally, another algorithm referred to as the Split/Join refinement algorithm 

is applied to improve the accuracy of the result.  

In the online phase, which is based on user interactions, the system uses another 

algorithm called Buckshot to find the initial centres, re-clusters data, and then shows their 

summary to the user. In this algorithm, the system randomly selects     number of data objects 

from the dataset, and then agglomerates them into the desired number of clusters, where k 

denotes the required number of clusters, and n represents the total number of data objects in the 

dataset. After having k cluster centres, the Assign-to-Nearest algorithm is used to assign data 

objects to their closest cluster’s centre, which is repeated three times. Finally, the Split/Join 

refinement is applied.  

The Split/Join refinement is a process of merging and splitting clusters based on their 

similarities. First, each cluster is divided into two sub-clusters using the Buckshot algorithm 

(without the refinement part) with k = 2. In this way, the data objects with the lowest similarities 

are placed in different clusters. Second, each pair of clusters with the highest similarity is joined 
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(agglomerated) together by calculating the distance between two clusters using the single-linkage 

clustering method, to make one single cluster. This process improves the clustering result, and 

generates more accurate clusters. 

The algorithm of the Scatter/Gather could be improved by making changes in both offline 

and online phases to make the whole process more efficient [14, 47, 48]. In 2007, Liu, Mostafa, 

and Ke [48] proposed an improved Scatter/Gather model. This improved model constructs a 

hierarchy of documents using a hierarchical clustering technique (agglomerative or divisive) 

during the offline phase and the information of all levels of the hierarchy is maintained in a 

specific table. The previous knowledge from the first phase is used to find the required clusters 

in the second phase, instead of gathering and re-clustering the selected documents from scratch. 

When the required number of clusters is k and the number of clusters selected by the user is k’ 

 (k < k’), the system scans the hierarchy table from bottom to top (or the hierarchy from top to 

bottom), until the first cluster pairs which contain all data points selected by the user are found. 

Then, the cluster pairs are split by removing the entry from the table and adding its two sub-

clusters’ entries. This process is iterated until k clusters are obtained [47, 48].  

In order to further reduce the computational time, and increase the efficiency of the first 

phase clustering, another algorithm, referred to as LAIR2 [14], has been proposed which uses k-

means to split each cluster. In the first phase (offline phase) of this algorithm, a hierarchy using 

bisecting k-means (k = 2) is constructed, instead of the agglomerative hierarchical clustering. 

This means that in every iteration, each cluster is split into two sub-clusters using the k-means 

algorithm; instead of using linkage methods (in hierarchical clustering) to divide clusters based 

on the similarity between pairs of data objects. With this modification, the result that was 
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obtained is several hundred times faster than the previous versions. The second phase which is 

the online phase works similarly to the previous version of LAIR2 algorithm as explained above.  

3.2. QoS Data Representation 

In most of the researches the QoS values are represented as single numeric values such as 

the following example [7]: 

 

 

 

 

 

 

As it is indicated in Figure 3, the response time value for the specified web service has 

been defined as 0.05. However, it may not be the true representation of the actual values and we 

may have an information loss. Because the response time for a web service might be different in 

different invocations, depending on the network speed and other factors, it would be more 

accurate if it could be defined as a value range with an upper bound and a lower bound, which is 

also more reasonable for providers. Even for this value, an interval such as [0, 0.05] will be more 

accurate than the single numeric value. It is also similar for other QoS attributes, e.g. availability 

can be represented as [99.99, 100]. For attributes with single numeric values, they can also be 

easily converted to interval data, e.g. authentication: (1, 1).  

Figure 3 – Sample of a tModel [7] 
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We believe that this observation is true for many different QoS attributes. Therefore, the 

interval data would be a more appropriate type to represent the QoS values. As pointed out by 

[10, 32], QoS values could also be Boolean or enumeration or other types. So the symbolic data 

is the most appropriate type to represent the QoS attribute. In the rest of the thesis, we will 

mainly focus on the interval data representation of the QoS values. Any discussion on interval 

data can be expanded to the more generic symbolic data. 

3.3. Symbolic Dynamic Clustering Algorithm (SCLUST) 

The main component of the Scatter/Gather model is the clustering algorithm. Since the 

original application of the model is on the document collection, the data object of the clustering 

algorithm is a document, which is usually represented as a vector of numerical values. As 

pointed out in the previous section it would be more appropriate to represent QoS data of a 

service as a vector of symbolic values. Therefore, those popular clustering algorithms which 

work most effectively for document collections may not work equally well for the symbolic 

dataset. In order to apply the Scatter/Gather model effectively to the QoS data browsing, it is 

necessary to choose clustering algorithms which work best for the symbolic data. 

Both partitioning and hierarchical algorithms have been used for the symbolic data 

clustering. Among these algorithms, the most commonly used and well studied one is the 

Symbolic Dynamic Clustering Algorithm (SCLUST) [12, 43, 49]. The main idea and the steps of 

the algorithm are similar to those of the k-means algorithm; however, it is catered for symbolic 

data. Below, we will use our QoS dataset as an example to show the steps of the algorithm. 

Let QS = {Q1, Q2, …, Qn} be a set of n QoS vectors and each QoS vector includes values 

of p attributes. Each QoS vector Qi (i = 1, 2, …, n) is represented as 
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 and     

 
 (j = 1, 2, …, p) represent respectively the 

lower and upper bounds of interval values for the j 
th

 QoS attribute of this vector [7]. 

The algorithm can be divided into three steps consisting of the initialization step, 

representation step, and the allocation step. In the initialization step, k distinct vectors 

             which are the initial prototypes of the partition             , are randomly 

selected. Then, all remaining QoS vectors are assigned to their clusters according to their 

proximities to the cluster prototypes, based on a certain distance function which will be defined 

later, to build the initial partitions. In the representation step, the prototypes 
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 is the median of      

 
          ,              are 

computed. In the third step, which is the allocation step, every QoS vector is assigned to the 

closest prototypes to build the new clusters. Finally, the last two steps (the representation and the 

allocation steps) are iterated until the criterion function converges, and a satisfactory result is 

achieved [7, 11, 12]. The adequacy criterion is defined as below, 

 

 

where  (CQi, Gi) is a dissimilarity or distance measure between a QoS vector CQi   Ci and the 

cluster prototype Gi of Ci. There have been many distance functions which have been defined in 

the past. In this thesis, we mainly use three of them. Their definitions are given in the following 

paragraphs. 
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The first one is the Euclidean distance measurement [37, 42, 44] and its formula is given 

by: 

 

 The second one is Manhattan or city block distance metric [37, 41], obtained as: 

 

 

The third one is the Hausdorff distance metric [12, 43, 49]. Basically, the Hausdorff 

distance between two sets A, B   ℜ is computed as follows:  

 

where:  

 

Therefore, the distance between two QoS attribute interval values can be calculated using 

the following function, where               and              : 

 

 

By considering    and    as vectors of p intervals     
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Hausdorff distance between these two vectors is calculated as: 
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3.4. A Browsing Model for QoS-Aware Web Service Selection 

 In this section, we present a framework consisting of different implementations of the 

Scatter/Gather model, based on the clustering of the QoS attributes of the web services which are 

represented by the vector of intervals. By using a browsing system, the user can interact with the 

system, learn about the actual value ranges of the QoS attributes of available services, narrow 

down to a few attributes or a few value ranges, and eventually locate the desired services, or 

sometimes be prepared with enough knowledge to switch to a searching process.  

In this model, in order to ease the process of browsing, the QoS data are clustered in the 

offline phase and the summary of the results is shown to the user. Therefore, the user can select 

one or more clusters depending on their needs, and ask the system to repeat the process based on 

the user’s selected clusters in the online phase of the algorithm. This process gets iterated until 

satisfactory results based on the user’s preferences are achieved. 

In the above-mentioned process, each cluster has the following representative 

information included in its summary: the size of the cluster (i.e. how many services), the range of 

QoS values (i.e. the minimum value within the cluster and the maximum value), the prototype, 

the service with QoS values closest to the prototype (prototype is the calculated centre of the 

cluster, not the real vector), and the homogeneity [12] of the cluster. The homogeneity criterion 

is used to measure the density and quality of the cluster. Its calculation is discussed later. 

The framework is implemented based on the following techniques: (1) the original 

Scatter/Gather model with normal clustering algorithms being replaced by the interval clustering 

algorithms, (2) the iterative SCLUST, (3) the improved iterative SCLUST, and (4) the improved 

LAIR2 algorithm (Hk-Means). 
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3.4.1. The Original Scatter/Gather Implementation for QoS Browsing 

 The model works based on the original Scatter/Gather algorithm, with the difference that 

the input parameters consist of the QoS attributes of the web services. Each of these attributes is 

represented as an interval, which is a range of real numbers, and thus, each service is represented 

as a vector of intervals in the system.  

 Similar to the original Scatter/Gather model, the algorithm consists of offline phase and 

online phase. In offline phase, the QoS vectors of the web services are clustered into the 

specified (k) number of clusters and their summaries are shown to the user. In this phase, the 

Fractionation algorithm is applied to break the dataset (n data objects) into b buckets of the size 

m > k, in each iteration. The initial value of m is defined as    
 

   
      and b is calculated as 

k / m.  

By considering p (here we choose p = 2) as the number of desired clusters in each bucket, 

and the value of reduction in the dataset as k / p, the data objects are agglomerated into p clusters 

in each bucket separately. The process is iterated by calculating the new values for m, b, and the 

reduction value, and considering each generated cluster as a new individual in the object space, 

until the required number of clusters is generated. In this step, after defining all generated 

clusters’ centres, the Assign-to-Nearest algorithm is applied to assign every data object into their 

closest centres. The distance between each data object and the correspondent cluster’s centre is 

calculated using one of the previously mentioned distance functions. This process is repeated 

three times, and then the Split/Join refinement is applied, to improve the accuracy of the 

clustering result.  
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In the online phase, the Buckshot algorithm is used to group the dataset into k clusters. In 

this regard,      data objects are randomly selected, and agglomerated into the desired number 

of clusters. At this time, after calculating the centre for each cluster, the Assign-to-Nearest 

algorithm is used three times to assign data objects to the closest centre based on their distances. 

Finally, the Split/Join refinement algorithm is applied to improve the accuracy of the result. 

In the split and join refinement part, all data clusters are split into two sub-clusters using 

the Buckshot algorithm with k = 2. In this step,      objects are selected, and then agglomerated 

into the two separate clusters using the hierarchical interval clustering algorithm. With two 

cluster centres, the system then keeps assigning all individuals to their correspondent clusters 

based on their distances. In the join part, the clusters with the highest similarity are merged into a 

single cluster, using one of the mentioned linkage methods. 

3.4.2. Iterative SCLUST  

 The iterative SCLUST algorithm is a variation of the Scatter/Gather model, in which the 

initial centre finding and the Split/Join refinement parts have been removed, and replaced with 

the calculation of the adequacy criterion. Because the initial centre finding algorithm such as 

Fractionation or Buckshot takes extra processing time, the efficiency of the system will be 

affected. We would like to check whether the accuracy of the system will be largely affected 

when it is removed.  

In this model, the same clustering process is done in both phases. However, in order to 

increase the processing speed (due to having a large number of data at the beginning), we still 

separate the process into the non-interaction phase (or offline phase) and the user interaction 

phase (or online phase). In both phases, the QoS dataset is clustered into a certain number of 
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clusters, and the summary of each cluster is shown to the user. Then, the user can select one or 

more clusters and ask the system to repeat the process based on newly selected data.  

Each time a dataset is introduced as an input to the system, k objects (vectors) as the 

clusters’ representatives are randomly selected from the dataset, and all remaining objects are 

iteratively assigned to the closest cluster’s representative based on their distances. The new 

clusters’ representatives are defined by calculating the centroids of the clusters, which are the 

mean vectors of all data objects’ values in each cluster. Each time after all individuals are 

assigned to their corresponding clusters, the criterion function is computed, and the result is 

compared to its previous saved value in the last iteration. If they were identical, it means that the 

criterion function converges to a certain value and the algorithm stops.  

The adequacy criterion is computed based on criterion (8), which is the value of the sum 

of all square distances (in this formula) between every data object and its corresponding cluster’s 

representative [7, 11, 12].  

 

 

3.4.3. The Improved Iterative SCLUST  

 One of the most important issues which may cause a decrease in the accuracy of the 

clustering result based on the SCLUST algorithm is that, most of the time, the adequacy criterion 

function may converge to a local optimum, due to the random selection of the initial clusters’ 

representatives. In this regard, in order to reduce the chance of convergence of the criterion 

function to a local optimum, we use an initial centre finding algorithm to predict the closest 

(8) 
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initial prototypes to the real centres of each cluster, instead of randomly selecting the initial 

clusters’ representative (Figure 4). To avoid the long processing time of the Fractionation 

algorithm in the original Scatter/Gather model, we use the Buckshot algorithm in both phases. 

 

 

 

 

 

 

The Buckshot algorithm is employed to select     number of QoS vectors from the 

dataset, and agglomerate them into the required number of clusters, using the agglomerative 

hierarchical interval clustering method, based on the single-linkage similarity measurement. 

Then, by having the initial centres for k clusters, the algorithm does the same as the SCLUST 

algorithm, and keeps assigning every object to the closest centres, based on one of the introduced 

distance functions. Finally, after the convergence of the criterion function, the Split/Join process 

(without Assign-to-Nearest part) is applied to improve the accuracy of the result.  

3.4.4. The Improved LAIR2 Algorithm  

 Because the LAIR2 algorithm has been proved to be much more efficient than the 

original Scatter/Gather algorithm, and the efficiency is really an important factor for an 

interactive application, in this thesis, we will also implement LAIR2 for our QoS browsing 

1- Random selection 2- Buckshot selection 

Figure 4- Selection of Initial Representatives 
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system. The online phase of LAIR2 is mainly based on the pre-built hierarchy, and therefore the 

accuracy of the system may not be as good as the original model. Thus, we would like to 

investigate the possible ways to improve the accuracy of the LAIR2 algorithm while keeping a 

similar level of efficiency. 

One of the most important subjects in cluster analysis is to understand the spatial 

relationships between data objects in each cluster, such as dense or sparse regions in a dataset 

[50]. It becomes a problem, when some clustering algorithms do not obey these relationships and 

distributions. For example, when a clustering algorithm creates a cluster with uniformly 

distributed data, it would be advisable to stop splitting that cluster. Or if it is a cluster with some 

sparse regions, then it should be split into a few sub-clusters. When we calculate their 

homogeneity or quality values, the latter one has a lower value than the former one. So we may 

say that the cluster with the lowest quality or homogeneity should be split first. It would be very 

desirable to use this principle to control the splitting process for our clustering algorithms. In this 

section, we propose a new approach to using the homogeneity and the quality of partitions to 

control the clustering process, and consequently to improve the accuracy of the LAIR2 

algorithm. 

The proposed algorithm is divided into offline and online phases. In the offline phase, the 

algorithm begins with placing every data object in one single cluster, and then divides the cluster 

into smaller clusters using the improved SCLUST algorithm with k = 2 to construct a hierarchy, 

with a specific index for each generated cluster. In any iteration, we use the Split/Join refinement 

to improve the accuracy of the generated clusters. The process iterates until each object forms its 

own cluster, or satisfies a certain termination condition. The mentioned steps of the algorithm for 

the offline phase are as follows:  
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1. Use buckshot algorithm to select      number of prototypes; 

2. Agglomerate the selected prototypes until 2 cluster centres are achieved; 

3. Assign every data objects to the closest initial representatives ; 

4. Calculate new cluster’s centre for each cluster; 

5. Assign all objects to the correspondent clusters; 

6. Calculate the criterion function; 

7. Repeat last three steps (4, 5, and 6) until the criterion function converges; 

8. Use Split/Join refinement to achieve a better result; 

9. Give the generated clusters corresponding indices, specify the relationship between 

parent clusters and their children, and repeat the algorithm for all existing clusters 

(starting from step 1); 

10. Stop the process when all data objects are placed in their own clusters or satisfy a 

certain termination condition. 

The second phase of the algorithm, i.e. the online phase, works based on the user’s 

interaction. It searches the hierarchy which was structured in the offline phase to find the desired 

number of clusters chosen by the user. Here, the problem appears when the system searches for 

the desired number of clusters through the hierarchy. For instance, as shown in Figure 5 (1), the 

desired number of clusters is chosen as three. Hence, in level 2 of the hierarchy, once the first 

two clusters are found, the system is unable to select which cluster should be split first, and to 

which sub-cluster it should move (to return the three desired clusters), in order to have the most 

accurate results [13]. 

To solve this problem, we calculate the quality or homogeneity of the cluster in the 

search process, and sort the available clusters in ascending order based on their homogeneities. 
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As a result, the cluster with the lowest quality is placed on the top of our cluster list. At each 

iteration, in order to select the sub-clusters related to the parent cluster containing the data 

chosen by the user, we sort out all available clusters based on their homogeneities, and the 

cluster with the lowest homogeneity is selected as shown in Figure 5 (2).  

 

 

 

 

 

 

 

 

The mentioned steps of the algorithm for the second phase, after choosing one or more 

clusters by user, are as follows: 

1. Calculate the selected clusters’ homogeneities, and sort them in ascending order; 

2. Search through the hierarchy for the first cluster in the list; 

3. Replace the cluster with 2 leaf sub-clusters; 

4. Repeat the process until the desired number of clusters is achieved. 

1 2 

2 3 

3 4 

1  

2 

(1) 

(2) 

Figure 5- How to Select Clusters along the Hierarchy [13] 
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Hence, in contrast to the LAIR2 algorithm, in which the search moves to the next level of 

hierarchy after all clusters in previous levels are split, our proposed system is able to choose any 

sub-cluster in any levels, and moves down in a single branch as deep as necessary to find the 

cluster with the lowest homogeneity [13]. 

Another problem with the LAIR2 algorithm is that, every time, when the user selects a 

cluster to be scattered, the search process restarts from the first level of the hierarchy, and this 

drastically slows down the processing time especially for a large dataset. However, in our 

proposed approach, the search always begins from the minimum index of the clusters selected by 

the user (which was specified for each cluster in the previous phase) in the hierarchy. Thus, the 

duration of the search process would be almost the same at any iteration, even for a dataset with 

a large amount of data [13]. 

In order to calculate the homogeneity of clusters, we use a generalized criterion proposed 

in [51], which decomposes the total inertia into between-cluster and within-cluster inertia. The 

adequacy between a partition P and a vector L of k prototypes is measured by (9), which is 

defined as the sum on k clusters and on every object      of dissimilarities          [12].  

 

 

 

If we use the Hausdorff distance measurement as our distance metric, we have the 

following adequacy criteria. 

 

 

 

 

(9) 

(10) 
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Therefore, the homogeneity or the quality of each cluster is calculated as: 

 

 

 

where    denotes the prototype of the cluster    ;    is the mean of n vectors of QoS attributes. 

3.5. Chapter Summary  

 In this chapter, we described: (1) the original document-based Scatter/Gather model, (2) 

the LAIR2 model which is based on an improvement on the Scatter/Gather algorithm, (3) 

different distance functions based on interval data used in our methods and the SCLUST 

algorithm, and (4) our proposed framework consisting of four different implementations of the 

Scatter/Gather model. The first method only changes the original Scatter/Gather on its clustering 

component, with all clustering algorithms changed for symbolic data. In the second method, the 

SCLUST algorithm is adopted to cluster QoS data in the offline phase, and does the same, in 

order to deal with user interaction in the online phase. The third model improves the second 

model by adding Buckshot as the initial centre finding algorithm. And finally, in the forth model 

which is an improved version of the LAIR2 algorithm, a hierarchy is constructed using the 

bisecting SCLUST algorithm, and in the online phase the homogeneity of the cluster is used to 

sort the selected clusters based on their homogeneity in ascending order, so as to improve the 

accuracy of the clustering results. 

(11) 

(12) 
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

 

In this Chapter, different types of datasets are used to check the flexibility of our 

techniques, and compare them to each other based on some of the clustering requirements which 

were described in [37] such as: – Scalability, – Ability to deal with different types of attributes, – 

Discovery of clusters with arbitrary shape, – Minimal requirements for domain to determine 

input parameters, – Ability to deal with noisy data, – insensitivity to the order of input records, – 

High dimensionality,– Constraint-based clustering, and – Interpretability and usability. 

Furthermore, the results of the experiments for all algorithms of our framework are illustrated 

and discussed. 

4.1. Framework and Testing Environment 

The framework has been implemented as a windows-based application, using C# 

language, in Microsoft Visual Studio 2008 environment with .Net framework 3.5, to help users 

select their desired web services, based on the combination of the preferred QoS parameters.  

Furthermore, the experiments were done with a machine configured as an Intel dual Core 

CPU 6300 with speed of 1.86 GHz, 1 GB RAM, with Microsoft Windows XP Professional 2002 

as the platform. 
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4.2. Experiment Design 

Generally, all the experiments which are described in the next sections are based on the 

following test scenarios:  

1) Test the algorithms to find out which distance metric, and the linkage method (for 

hierarchical interval clustering) is more suitable to be used for our QoS dataset; 

2) Compare four algorithms based on the following testing conditions, with different 

datasets: 

1.1) Synthetic datasets (distinct or overlapped) with similar distribution but 

different sizes (when the number of data is increased); 

1.2) Synthetic datasets with similar distribution but different numbers of 

attributes (when the number of attributes is increased); 

1.3) Similar datasets but different number of required clusters (when the 

number of clusters is increased); 

3) Conduct the experiment on a real QoS dataset.  

4.3. Evaluation of the Results 

The following describes the three measurements we used to evaluate our algorithms and 

their clustering results: (1) Runtime Duration shows the processing time from when the 

algorithm’s function is called, to when it is finished and back to the next line of the calling 

function. (2) Cluster’s Homogeneity or quality which was described in 3.4.4 is to measure the 

density of a cluster, with the value range between 0 and 1 (the higher the value, the better the 

quality). (3) Rand Index, which is discussed in the next section, is a concept for defining the 

accuracy of the clustering result, in compared to a predefined clustered dataset. 
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4.3.1. Rand Index Calculation 

Rand index is one of the most common ways to measure the accuracy of the clustering 

result, based on the calculation of different possibilities (or decisions), and the assignment errors 

which happened during the process, such as assigning a data object which does not belong to a 

specific cluster. These possibilities, which are based on testing each pair of data objects in all 

existing clusters, are divided into four action types: – true positive (TP) is when two similar data 

objects are assigned to the same cluster, – true negative (TN) is a situation in which two 

dissimilar data objects are assigned to different clusters, – false positive (FP) happens when two 

dissimilar objects are assigned to the same cluster, and finally – false negative (FN) is when two 

similar objects are assigned to different clusters. Based on this, Rand Index (RI) is defined as 

follows. 

Given a set              of n elements,              and              are two 

partitions of S. Rand Index is calculated by the following formula, 

 

 

where a denotes the number of pairs of objects in S, that are placed in the same cluster in U and 

V, b is the number of pair of objects which are placed in the same cluster in U, but in different 

cluster in V, c is the number of pairs of objects which are placed in different cluster in U but the 

same cluster in V, d is the number of pairs of objects which are placed in the different cluster in 

U and V [46, 52]. 

 

(13)           
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4.4. Data Generation 

As previously mentioned, in order to illustrate the differences between the four 

algorithms, we used different datasets with different sizes and distributions, generated by 

MATLAB. In this regard, 9 datasets with their data points which follow the multivariate normal 

distribution pattern using different mean vectors μ and specified covariance values σ, were 

employed. As an example, we have chosen three synthetic datasets to demonstrate their overall 

data distributions based on specific mean vectors and covariance values. The rest of the datasets 

and their input parameters could be found in Appendix A. 

The first simulated dataset including randomly generated 3,000 data follows a 

multivariate normal distribution, in which the data has been considered as a vector of three 

intervals, consisting of Cost ($), Response time (ms), and Reliability (%) respectively (Table 1). 

Nine main data vectors have been chosen as the initial mean vectors for data generations to 

create nine distinct clusters using their own covariance values. At the end, based on what was 

mentioned, three distinct clusters (each consisting of 1,000 data vectors), in which each cluster 

contains three sub-clusters containing 330, 330, 340 data vectors respectively, were generated. 

 

 

 

 

 

 
Cost ($) 

Response 

Time (ms) 

Reliability 

(%) 

µ σ µ σ µ σ 

Cluster 1 

(1000) 

(330,330,340) 

55 2.0 100 2.0 10 1.0 

80 2.0 140 1.8 13 1.2 

125 2.0 170 3.0 17 0.9 

Cluster 2 

(1000) 

(330,330,340) 

310 3.0 400 3.0 42 0.8 

360 3.6 450 2.4 45 1.3 

420 4.0 510 4.0 47 0.6 

Cluster 3 

(1000) 

(330,330,340) 

660 2.5 760 3.6 82 1.2 

700 3.9 800 3.0 85 1.0 

740 2.0 830 2.0 88 0.9 

 

Table 1 – Input Parameters for Dataset-2 Containing Distinct Clusters and Distinct Sub-Clusters 
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 In the second dataset, nine initial mean vectors containing 3,000 randomly generated data 

vectors based on multivariate normal distribution, have been chosen to create three distinct 

clusters, which include three indistinct or overlapped sub-clusters, all having closer mean vectors 

and larger covariance values (Table 2). Therefore, each predefined distinct cluster contains 1,000 

data objects which are subdivided into three overlapped sub-clusters consisting of 330, 330, 340 

data vectors respectively. 

 

 

 

 

 

 

 

In the third dataset, generated with the same characteristics of the previous examples, 

there are 3,000 data objects, represented as the vectors of six interval data which have the six 

QoS attributes including: Cost ($), Response time (ms), Reliability (%), Availability (%), 

Accessibility (%), and Security (%) respectively (Table 3). In this regard, three initial mean 

vectors of six interval values were defined to generate three predefined distinct clusters, in which 

each cluster contains three sub-clusters and some of the elements of data vectors in one cluster 

are overlapped with some elements of data vectors in other two clusters. It means that, we may 

have different data vectors with the same similarity between their attributes, placed in different 

 
Cost ($) 

Response 

Time (ms) 

Reliability 

(%) 

µ σ µ 

Cluster 1 

(1000) 

(330,330,340) 

150 10 100 4 50 2 

170 9 110 5 55 3 

200 12 120 6 57 3 

Cluster 2 

(1000) 

(330,330,340) 

410 10 250 4 66 2 

430 20 260 6 69 2.5 

460 15 275 7 73 3 

Cluster 3 

(1000) 

(330,330,340) 

700 12 370 8 80 3 

730 11 385 10 85 2 

750 8 400 10 88 3 

 

Table 2 – Input Parameters for Dataset-5 Containing Distinct Clusters 

with Indistinct Sub-Clusters 
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clusters. The idea of using this type of dataset is to check the accuracy of the vector clustering 

when there exists redundant data placed in different clusters. 

 

 

 

 

 

 

 

 

 

 

 

4.5. Experiment-1: Choosing Appropriate Distance Functions and Linkage 

Methods 

To shorten the names of the algorithms, we use the following abbreviations for the 

presented techniques: S/G for the original Scatter/Gather technique, ISC for the iterative 

 
Cost ($) 

Response 

Time (ms) 

Reliability 

(%) 

µ σ µ 

Cluster 1 

(1000) 

(330,330,340) 

150 2 100 3 45 2 

170 2 100 3 50 1.5 

200 2.5 120 2 55 1 

Cluster 2 

(1000) 

(330,330,340) 

310 2 250 3 64 1.2 

325 3 275 2 69 1 

350 3.5 275 2.5 76 1.2 

Cluster 3 

(1000) 

(330,330,340) 

420 2 100 4 83 1 

435 3 160 3 89 0.5 

460 =3 275 3 95 1 

 Availability 

(%) 

Accessibility 

(%) 

Security (%) 

µ σ µ 

Cluster 1 

(1000) 

(330,330,340) 

 

82 1.5 100 0 48 2 

89 1.8 92 3 54 3 

95 1 95 1 60 3 

Cluster 2 

(1000) 

(330,330,340) 

62 1.8 58 2 72 2 

77 1 65 2 77 1.8 

70 1.5 50 1.8 83 2 

Cluster 3 

(1000) 

(330,330,340) 

52 1.2 75 1.2 88 1.1 

45 1.2 80 0.8 96 1 

40 1.5 85 1.2 54 3 

 

Table 3 – Input Parameters for Dataset-8 Containing Distinct Clusters with Redundancy 
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SCLUST algorithm, ISC2 for the improved ISC algorithm, and NLA (New LAIR2) for the 

improved LAIR2 algorithm based on interval data. This notation will be used in the rest of the 

thesis. 

The application is able to execute each method based on three different distance metrics 

for the interval data including: Euclidean (EU), City-block (CB), and Hausdorff (HD). 

Furthermore, it can be run based on three different linkage methods for hierarchical interval 

clustering algorithm used in the original Scatter/Gather, including single linkage, average 

linkage, and complete linkage methods. Therefore, in order to choose the most appropriate 

methods, we tested our algorithms based on different distance metrics and linkage methods 

separately (Table 4). We have used a few datasets with different distribution patterns to conduct 

this experiment. Below is an example dataset (Dataset 4), containing three distinct clusters with 

three overlapped sub-clusters which is illustrated as below (Figure 6). 

 

 

 

 

 

 

 

 
Figure 6 – The Distribution of Data in Dataset 4 
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When we compare different distance functions, the lowest duration is consistently from 

the Hausdorff distance measurement for these four algorithms. Accuracy-wise, there is no 

obvious winner. Hausdorff usually performs well regarding its rand index values. Based on our 

literature review, Hausdorff was advocated as the most commonly used distance function among 

the three. Therefore, we will use it in our experiment later. Comparing different linkage methods 

for Scatter/Gather algorithm, single linkage method consistently performs the best. According to 

these results, we are going to use the following setting in the rest of the experiments: 

- Distance metric: Hausdorff. 

- Linkage method for Hierarchical clustering: Single-linkage method, as it was briefly 

mentioned in section 2.3.1, about the more adaptability of the single-linkage in 

comparison to other linkage methods [39]. 

 

S/G 

Single    Average    Complete   

  EU CB  HD EU CB  HD EU CB  HD 

Duration 0.2.752 0.2.755 0.2.738 0.3.881 0.3.856 0.3.867 0.2.797 0.2.805 0.2.803 

Homogeneity 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 0.989 

Rand Index 1 1 1 1 1 1 1 1 1 

 
ISC2 ISC NLA 

  EU CB  HD EU CB  HD EU CB  HD 

Duration 0.0.277 0.0.280 0.0.277 0.0.228 0.0.209 0.0.184 0.7.897 0.7.886 0.7.866 

Homogeneity 0.989 0.963 0.989 0.94 0.941 0.989 0.989 0.989 0.989 

Rand Index 1 0.963 1 0.934 0.934 1 1 1 1 

 

Table 4 – Results for Dataset-4 Using All Distance Functions and Linkage Methods 
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- Number of runs: 10 for the datasets with 300 data objects, and 5 for the datasets with 

more than 1000 data points, and 2 for the datasets with 30,000 data objects. 

4.6. Experiment-2: Different Datasets, Attributes, and Number of Clusters 

Altogether there are 9 datasets. With the different datasets, we could test the performance 

change in different scenarios. We have defined three groups of testing scenarios: changing the 

size of the dataset, changing the number of QoS attributes, and changing the number of clusters 

(e.g. k value).  

In this section, the results from different testing scenarios are presented and discussed. In 

most cases, we did our experiments for two levels of browsing (2 iterations) – initial level and 

one level after user selection. In the first level or initial level, we repeated each clustering 

algorithm for a number of times, and calculate the average values of the clustering results. In 

second level, by choosing the clustering result from the previous level, we execute the 

application for a few times and get the average value for results.  

Test1: Similar Distributed Datasets with Different Sizes  

The following datasets contain 300, 3000, and 30000 QoS vectors respectively, and each 

vector includes three QoS attributes. There are three distinct clusters on the first level, and each 

cluster consists of three distinct sub-clusters on the second level. Below Table 5-7 show the 

values of three measurements – duration, homogeneity and rand index in the first and second 

iteration, when identifying the first level and second level sub-clusters. 
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Table 5 – Results for Dataset-1 with 300 Data 

Run: 10 Dataset-1 

Data 300 100 

Iteration 1 2 

 
Duration Homogeneity 

Rand 

Index 
Duration Homogeneity 

Rand 

Index 

S/G 0.2.667 0.98 1 0.0.261 0.999 1 

ISC 0.0.164 0.917 0.898 0.0.061 0.997 1 

ISC2 0.0.242 0.98 1 0.0.091 0.999 1 

NLA 0.6.519 0.955 0.984 0.0.016 0.999 1 

 

 

Table 6 – Results for on Dataset-2 with 3,000 Data 

Run: 5 Dataset-2 

Data 3000 1000 

Iteration 1 2 

 
Duration Homogeneity 

Rand 

Index 
Duration Homogeneity 

Rand 

Index 

S/G 0.45.605 0.998 1 0.2.717 0.996 1 

ISC 0.1.891 0.998 1 0.0.775 0.916 0.89 

ISC2 0.2.641 0.998 1 0.0.875 0.996 1 

NLA 1.34.520 0.998 1 0.0.121 0.996 1 

 
 

Table 7 – Results for Dataset-3 with 30,000 Data 

Run: 2 Dataset-3 

Data 30000 10000 

Iteration 1 2 

 
Duration Homogeneity 

Rand 

Index 
Duration Homogeneity 

Rand 

Index 

S/G 84.48.501 0.811 0.891 2.0.921 0.999 1 

ISC 0.22.078 0.77 0.864 0.9.159 0.975 0.898 

ISC2 0.32.547 0.98 1 0.9.937 0.999 1 

NLA 28.57.766 0.917 0.962 0.0.875 0.992 0.996 
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From these tables, it can be observed that both S/G and NLA take much longer 

processing time on the first level than ISC and ISC2, whereas the time difference on the second 

level is much smaller and within an acceptable range. The processing time for NLA is higher 

than that for S/G in the smaller datasets with 300 and 3000 vectors, however by increasing the 

size of the dataset, the duration time for S/G drastically increases to almost two times higher than 

NLA for the dataset with 30000 vectors due to more iterations in the refinement part, which uses 

the hierarchical clustering method.  

The clustering time on the second level from NLA is always the smallest among all four 

methods. Since for the interactive browsing, the offline processing time is not very important, 

whereas the online clustering time is really crucial to attract users to use the browsing system. 

From this perspective, NLA – our improved version of LAIR2 algorithm, is the most efficient 

implementation of Scatter/Gather model for the QoS interval dataset. It reconfirms the 

conclusion from [13, 14]. 

When we check the homogeneity and rand index, ISC usually gets one of the worst 

results due to its weakness (the convergence of the criterion function to a local optimum). Since 

all the other three methods use certain ways to find initial centres which are closer to the real 

centres, whereas ISC just randomly chooses the initial centres, it indicates the effectiveness of 

adding the initial centre finder component in the clustering algorithm. ISC sometimes suffers 

from getting stuck in a local optimum. 

Duration of ISC2 on both levels is always longer than that of ISC, which is mainly due to 

the additional time used for identifying the initial centres. But they get very close to each other 

when the size of the dataset is increased. The main reason is that in ISC by choosing imperfect 
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initial prototypes (e.g. choosing k similar objects which belong to the same cluster as the initial 

cluster representatives), the process iterates several times more to find the optimum centroids, 

whereas in ISC2, by choosing the most optimum initial cluster representatives at the beginning 

of the process, much faster iterations can be achieved to reach the final clustering result. Both 

homogeneity and rand index of ISC2 are better than those of ISC, which indicates that although 

the processing time of ISC2 is longer, its accuracy is also higher. When the system requires a 

high clustering accuracy, ISC2 would be preferred than ISC. 

The best homogeneity and rand index results on both levels are from ISC2. S/G also 

performs very well in the first two datasets, and it is slightly worse on the first level results for 

the third dataset. NLA could always achieve a reasonable quality result which is usually not too 

much worse than the best result. Due to its bisecting splitting behaviour (based on k = 2 instead 

of 3), it may have some small errors in the clustering result which are usually negligible. ISC 

performs consistently the worst on the two accuracy metrics. 

In conclusion, for these three datasets, if we want to choose an implementation which is 

best efficiency-wise, it is NLA, and if we want to choose one with the best accuracy, it is ISC2. 

Overall speaking, NLA is most preferred for online interactive browsing because of its shortest 

online clustering time and a high level of accuracy (although not the best). 

Figure 7 below shows the comparison of four methods when the size of the dataset 

increases. It is based on dataset 1, 2 and 3. 
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From this figure, it is observed` that if we look at the clustering time for level 1, which 

basically measures the efficiency of the offline clustering phase, both ISC and ISC2 are better 

than the other two algorithms. However, if we look at the time for level 2, which measures the 

online phase efficiency, NLA is the best whereas S/G is the worst. When the size of the dataset 

increases, the time increases almost linearly for all algorithms.   

If we compare the homogeneity and rand index results on datasets with increasing sizes 

based on Table 5-7, this kind of linear relationship may not hold. The lower value of 

homogeneity on dataset 3 is mainly due to the existence of three sub-clusters within each cluster. 

And the value of rand index is usually controlled by the data distribution pattern. When there is 

more overlapping between clusters, the rand index value is generally lower. 

Figure 7 – Comparing Clustering Time on Two Levels for Dataset 1, 2, and 3 
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Tables 8-10 show the experimental results of similar tests. The difference is that in these 

datasets, although the first level clusters are distinct, the second level sub-clusters are overlapped 

or indistinct. Our aim was to test our techniques for different distribution patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 – Results for Dataset-4 with 300 Data 

Run: 10 Dataset-4 

Data 300 100 

Iteration 1 2 

 
Duration Homogeneity 

Rand 

Index 
Duration Homogeneity 

Rand 

Index 

S/G 0.2.666 0.989 1 0.0.261 0.998 0.775 

ISC 0.0.188 0.94 0.934 0.0.102 0.998 0.836 

ISC2 0.0.261 0.989 1 0.0.116 0.998 0.917 

NLA 0.6.616 0.989 1 0.0.016 0.998 0.954 

 

Table 9 – Results for Dataset-5 with 3,000 Data 

Run: 5 Dataset-5 

Data 3000 1000 

Iteration 1 2 

 
Duration Homogeneity 

Rand 

Index 
Duration Homogeneity 

Rand 

Index 

S/G 0.45.262 0.989 1 0.2.749 0.998 0.693 

ISC 0.1.479 0.989 1 0.1.072 0.998 0.784 

ISC2 0.2.038 0.989 1 0.1.182 0.999 0.813 

NLA 1.34.776 0.989 1 0.0.141 0.999 0.81 

 

Table 10 – Results for Dataset-6 with 30,000 Data 

Run: 2 Dataset-6 

Data 30000 10000 

Iteration 1 2 

 
Duration Homogeneity 

Rand 

Index 
Duration Homogeneity 

Rand 

Index 

S/G 79.40.562 0.989 1 1.53.531 0.978 0.899 

ISC 0.48.984 0.741 0.898 0.14.958 0.983 0.914 

ISC2 0.59.343 0.989 1 0.13.781 0.998 0.968 

NLA 29.26.219 0.989 1 0.0.903 0.998 0.942 

 



53 
 

We could almost get the same conclusion as the previous set of experiments. Efficiency-

wise, ISC achieves the best performance on the first level and NLA achieves the best 

performance on the second level. Accuracy-wise, ISC2 again has the highest rand index and 

homogeneity values on both levels, NLA is the second best, and S/G also has a pretty good 

performance. There is an obvious drop on the rand index value for all the datasets on the second 

level from all four methods, which is mainly due to the higher level of overlapping between 

those sub-clusters. Generally speaking, ISC2 and NLA could achieve a better rand index value 

on the second level than S/G and ISC. The homogeneity values are still high despite the 

overlapping between the sub-clusters. Figure 8 below shows the comparison of four methods 

when the size of the dataset increases for dataset 4, 5 and 6. 

 

 

 

 

 

 

 

Again, there is a close-to-linear relationship between the duration and the size of the 

dataset. On the first level, the lowest duration belongs to ISC and the duration from ISC2 is very 

close to it. Also, the processing time for the original Scatter/Gather starts with a value which is 

Figure 8 – Comparing Clustering Time on Two Levels for Dataset 4, 5, and 6 
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lower than NLA, but in 30,000 dataset it increases more than NLA. As for the second level, NLA 

consistently performs the best and S/G the worst. 

Test2: Same Datasets with Different Number of Attributes  

Table 11 shows the results of the experiment for a dataset with 3000 vectors of six QoS 

attributes (Dataset 8). As previously mentioned, the purpose of this test is to check how the 

performance is changed when the number of attributes is increased. The dataset has three distinct 

predefined clusters and three distinct sub-clusters for each. 

Table 11 – Results for Dataset-8 with 3,000 Data 

Run: 5 Dataset-8 

Data 3000 1000 

Iteration 1 2 

 
Duration Homogeneity 

Rand 

Index 
Duration Homogeneity 

Rand 

Index 

S/G 1.18.646 0.812 0.819 0.4.078 0.999 1 

ISC 0.2.016 0.838 0.889 0.0.617 0.999 1 

ISC2 0.3.076 0.875 0.908 0.0.971 0.999 1 

NLA 2.1.052 0.893 1 0.0.161 0.999 1 

 

In this test, the most accurate clustering results in both iterations belong to NLA with the 

rand index of 1. The next most accurate clustering algorithm is ISC2. The lowest processing time 

is from ISC in the first iteration and NLA in the second iteration. The change does not have a big 

effect on homogeneity and rand index values on both levels. Regarding the duration, it is higher 

in the first iteration for all four methods, whereas in the second iteration, S/G and NLA get a 

longer duration time, but ISC and ISC2 are not largely affected by the change.  
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In the following figure (Figure 9), the clustering results of all methods are illustrated by 

3D figures. We could see that every method would generate different clustering result. When 

comparing the original data distribution with the result, intuitively, ISC2 and NLA give the best 

result, and results from both ISC and S/G are not so good. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

(4) S/G 

Figure 9 – Results for experiments on dataset-8 (Level 1) 

(1) ISC2 

(3) ISC 

(2) NLA 
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The next experiment is based on a dataset (Dataset 9) with 3000 vectors of nine QoS 

attributes, consisting of three distinct clusters and three distinct sub-clusters for each cluster. The 

aim of this experiment is again to check how the performance is changed when the number of 

attributes is increased.  The results are shown in Table 12. 

Table 12 – Results for Dataset-9 with 3,000 Data  

Run: 5 Dataset-9 

Data 3000 1000 

Iteration 1 2 

 
Duration Homogeneity 

Rand 

Index 
Duration Homogeneity 

Rand 

Index 

S/G 1.48.615 0.959 1 0.5.083 0.998 0.878 

ISC 0.2.026 0.956 1 0.0.708 0.998 0.808 

ISC2 0.3.589 0.956 1 0.1.125 0.999 1 

NLA 2.19.792 0.956 1 0.0.208 0.999 1 

 

Above table clearly indicates that in first level, the efficiency of ISC is higher than the 

rest of the algorithms in the order of ISC2, S/G, and NLA. However, in the second level, NLA is 

the fastest one in comparison to other techniques, followed by ISC and ISC2 which are not very 

different in their processing time. The original Scatter/Gather in this level is the slowest one 

mainly due to its three times of repeating the Assign-to-Nearest process. Regarding to their 

accuracy levels, both ISC2 and NLA are equally well. Overall speaking, NLA is the best one 

considering its fastest online processing time and high accuracy of the clustering results.  

Figure 10 below shows the relationship between the number of attributes and the 

duration. We could see that in the first level of browsing, the most efficient algorithm is ISC 

followed by ISC2, S/G, and NLA and their durations increase almost linearly with the increasing 

of the number of attributes. However, in the second level the most efficient one is NLA, and the 
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next efficient algorithms respectively are listed as: ISC, ISC2, and S/G. In the second level, for 

ISC and ISC2, the changes of the duration from dataset-8 with 6 attributes to dataset-9 with 9 

attributes are small compared to those from 3 attributes to 6 attributes. For S/G and NLA, the 

change is almost linear. 

 

 

 

 

 

 

 

 

Again, if we compare the homogeneity and rand index values for dataset 2, 8 and 9 

(Table 6, 11, 12), the change is not linear, and it is mainly controlled by the data distribution 

patterns. 

Test3: Same Size Datasets with Different Numbers of Clusters  

The aim of the next experiment is to test how each one of our proposed algorithms deals 

with the different number of clusters (k values). We use Dataset 1 for the test. In our previous 

result (Table 5), three clusters are generated in the first level, and three sub-clusters are generated 

Figure 10 – Comparing Clustering Time on Two Levels for Dataset 2, 8, and 9 
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for each cluster in the second level. Now we change the k value to 9 for both levels to compare 

their performances. Table 13 shows the results. 

Table 13 – Results for Dataset-1 with 9 Clusters 

Run: 5 Dataset-1 

Data 300 300 

Iteration 1 2 

 
Duration Homogeneity 

Rand 

Index 
Duration Homogeneity 

Rand 

Index 

S/G 0.3.057 0.997 0.891 0.0.276 0.998 0.952 

ISC 0.0.266 0.988 0.885 0.0.078 0.997 0.927 

ISC2 0.0.365 0.999 1 0.0.132 0.999 0.982 

NLA 0.7.703 0.999 0.912 0.0.031 0.998 0.961 

 

Again, we could get similar conclusions as before. NLA is the most efficient one for 

online clustering and ISC2 is the most accurate one for both levels. Figure 11 below shows the 

comparison of the processing time for dataset-1 when the number of clusters is 3 and 9. 

 

 

 

 

 

 

 
Figure 11 – Comparing Clustering Time on Two Levels for Dataset 1 with 3 

Clusters and 9 Clusters 
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We could see that when the number of clusters is changed from 3 to 9, its processing time 

is also increased for both levels. The degree of increase in the first level is very obvious, and we 

could see a considerable jump (but not that big) in all techniques. The increase in the second 

level is not that obvious.  

Test4: Same Size Datasets with Different Distributions  

Our next experiment is based on a dataset (dataset 7) including three predefined indistinct 

clusters. The dataset contains 3000 data vectors with four QoS attributes. Only one level 

clustering is done on this dataset. The purpose of this test is to check how the accuracy is 

affected when the overlapping degree is higher, and we also want to compare the accuracy of 

each technique for this kind of distribution pattern. The results are shown in Table 14.  

 

 

 

 

 

 

Above table (Table 14) shows how these algorithms deal with a dataset with a high 

overlapping degree between clusters. Compared with the results from Dataset 2 and 5 (as shown 

in Table 6 and 9), which also contain 3000 QoS vectors, the homogeneity and rand index values 

are much lower, and the duration for ISC and ISC2 is also slightly higher. We believe that the 

high overlapping is the main contributing factor to the lower accuracy level, and the longer 

Table 14 – Results for Dataset-7 with 3,000 Data  

Run: 5 Dataset-7 

Data 3000 

Iteration 1 

 
Duration Homogeneity 

Rand 

Index 

S/G 0.56.854 0.383 0.547 

ISC 0.3.375 0.578 0.741 

ISC2 0.4.594 0.589 0.772 

NLA 1.54.786 0.581 0.774 
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duration time is due to the larger number of elements of the QoS vectors (four attributes for this 

dataset). Regarding the comparison between four algorithms, as it is clearly indicated in the 

table, the techniques with the most accurate clustering results are sorted as follows: NLA, ISC2, 

ISC, and S/G. However, the lowest duration belongs to the ISC and the highest is for the NLA.  

 Figure 12 depicts the comparison of the accuracy of dataset 2 and 7, based on their total 

clusters homogeneity and rand index for the first level. We could see that when the degree of 

overlapping between clusters is increased, both homogeneity and rand index values are lower.  

 

 

 

 

 

 

 

 

4.7. Experiment-3: A Real QoS Dataset  

Our last experiment is based on a real dataset (QWS dataset) which consists of 2,507 web 

services and their QoS measurements. The data was obtained in 2008 [53, 54, 55]. Since our 

Figure 12 – Comparing the Accuracy for Dataset 2 and 7 
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browsing system is mainly for services with similar functionalities, we manually assign 

keywords to all the services, and sort the services based on their functionalities.  

After checking the functional keywords which contain a good number of services, we 

chose the topic “bioinformatics” with its 281 services for our testing. We chose three QoS 

attributes, namely: Reliability, Successability, and Throughput. 

Table 15 shows the results of the experiments for four methods to be compared based on 

their processing time and their total clusters homogeneities. Due to the lack of any predefined 

clusters related to this dataset, we couldn’t calculate their Rand Index values. 

 

 

 

 

 

 

Above table (Table 15) indicates that ISC2 and NLA generated the clusters with the 

highest homogeneities in compare to other two algorithms, and similar to the previous 

experiments ISC has the lowest duration in level 1 and NLA has the lowest duration in level 2. 

The clustering results are displayed in the following 3D figures (Figure 13). 

 

Table 15 – Results for Dataset-10 (Real World Dataset) with 281 Data  

Run: 10 Dataset-10 

Data 281 60 

Iteration 1 2 

 
Duration Homogeneity Duration Homogeneity 

S/G 0.1.512 0.599 0.0.350 0.9972 

ISC 0.0.156 0.623 0.0.053 0.9984 

ISC2 0.0.298 0.673 0.0.156 0.9987 

NLA 0.5.811 0.673 0.0.016 0.9989 
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From Figure 13, it is observed that ISC2 and NLA get the similar results. However, their 

results are quite different from those from the other two algorithms. By looking at the actual data 

(1) ISC2 (2) NLA 

(3) ISC (4) S/G 

Figure 13 – Results for Experiments on Dataset-10 
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distribution as shown in the 3D figure, the result from ISC2 and NLA is more accurate to reflect 

the spatial relationship between those data objects. 

4.8. Implementation of the Cluster-Based Browsing Model 

In this section, we describe the implemented browsing system, and discuss about its 

capabilities by showing some snapshots from the user interface. 

As mentioned in the previous chapter, the application which is a cluster-based browsing 

system has the potential to help users select their preferred web services based on the 

combination of their QoS attributes. The system groups the available services to the desired 

number of clusters, based on the user selected algorithm, the distance metric, as well as the 

linkage method (if the related algorithm is selected as S/G). Afterwards, the summary of each 

cluster is shown to the user. User can select one or more clusters which are considered as the 

new input data to be clustered in the next iteration. This process is continued until the user 

satisfaction is achieved. Additionally, user can change the number of clusters in each level of 

browsing, or get back to the previous level by clicking on the related buttons. 

The user interface consists of eight sections: Set Data, Algorithms, Distance Metrics, 

Linkage Methods, Summaries, Parent clusters, Generated Clusters, and Cluster Details. Set Data 

section contains the following three parts: Browse, Number of Clusters, and Order of Input Data. 

When start, user can select the specific file containing the QoS vectors of the available web 

services, by pressing the browsing button (Figure 14).  
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When saving the data, the interval’s lower bound and upper bound are separated by 

commas “,”, intervals of different QoS attributes are separated with semicolons “;”, and each 

vector is placed on a new line (Figure 15). 

 

 

 

 

 

 

 

By choosing the specific dataset, the users can define their required number of clusters by 

typing it in the related text box. Furthermore, the order of data can be changed to random if the 

algorithm is sensitive to the order of input data. 

In the next section, the preferred algorithm is chosen from the list, as well as the specific 

distance metric which is needed to be used in the clustering process (Figure 16). 

Figure 14 – Set Data Section 

Figure 15 – Sample Dataset 
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Depending on the selected technique (whether S/G or the others), the linkage methods 

used in the original Scatter/Gather technique is chosen from the related panel, which are disabled 

when other techniques are selected. 

The other part is the execution button, containing Scatter/Gather command button, Back 

button, Run and Export, Reset, Rand Index, and Export Buttons (Figure 17). 

 

 

 

 

After defining the address of the specific dataset, the required number of clusters, 

distance metric, and linkage method, the input data is scattered into different clusters, and their 

summaries are shown to the user in the related sections, by pressing the Scatter/Gather button, as 

illustrated in Figure 18. Later, we can clear the results from the user interface and the 

application’s memory by clicking the Reset button.  

 

Figure 16 – Algorithms, Distance Metrics, and the Linkage Methods Sections 

Figure 17 – Command Button Part 
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By pressing the Rand Index button, the system could calculate the rand index value so 

that it could help us measure the accuracy of the clustering result. When pressing this button 

another window is opened to get the address of the predefined clustered dataset from user to be 

compared with the result of the generated clusters by the application (Figure 19). The result 

which is a real number between 0 and 1 is shown in the summaries section. 

Figure 18 – The Clustering Result of the First Level of Browsing 
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The other two buttons (Run and Export, Export) are responsible for exporting the 

generated clusters to external text files, containing all clustering information such as cluster 

ranges, cluster representatives, three closest individuals to each centre, cluster homogeneity, 

processing time, size, and some other information such as name of the technique, distance 

metric, etc. 

The difference between Run and Export, and the Export button is that the former one runs 

the algorithm a number of times, then exports the average values for all clustering results as well 

as different text files containing each cluster’s data, whereas the latter one only exports those 

files without executing the program. 

By clicking each cluster’s summary in the Generated Clusters section, the detailed 

information is shown in the Clusters Details section. Furthermore, we can see the data of each 

cluster by double clicking on each of those clusters in the Generated Clusters list (Figure 20). 

In order to continue the browsing of the web service information, we can simply select 

the specific cluster by clicking on the checkboxes beside each cluster’s information in the 

Generated Clusters lists, and press the Scatter/Gather button. Then, the application returns new 

clustering result based on the latest selection. Each time the user can return to the previous level 

by clicking on Back button, and repeat the browsing process. 

Figure 19 – Rand Index Calculation 
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Finally, the user can click on the export button, after finding the most preferred web 

services which are close to the user’s need. The specific files are stored in the location which its 

address is defined in the Set Data section. 

4.9. Chapter Summary 

In this chapter, we tested our algorithms based on 9 synthetic datasets with different 

distribution of data, and one real dataset containing the QoS information of the real web services, 

in two levels of browsing. The datasets were based on randomly generated vectors of interval 

data which followed a multivariate normal distribution, and contained three predefined clusters 

Figure 20 – Showing Cluster Information 
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in which each cluster included three sub-clusters. The difference between datasets were in their 

cluster distances (whether distinct or indistinct), their sizes, complexities, and the number of 

elements of each data vectors. 

We tested our algorithms based on the above mentioned datasets, measured the accuracy 

of each technique by calculating the cluster homogeneities and their rand indices, computed the 

processing time and the duration for each algorithm, and compared them to each other. We 

showed the results on separated tables and plotted some charts trying to find the relationship 

between the processing time and a few different changes on the dataset. Furthermore, the 

application is explained by showing the flow of the user interfaces. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORKS 

 

5.1 Conclusion  

In this thesis, we presented a cluster-based browsing framework for the QoS-aware web 

service selection consisting of the following algorithms: (1) Original Scatter/Gather (S/G), (2) 

Iterative SCLUST (ISC), (3) Improved Iterative SCLUST (ISC2), and (4) Improved LAIR2 (NLA). 

The proposed framework, which is based on the Scatter/Gather browsing model, uses the above 

mentioned techniques to cluster the vectors of interval data, in which each interval represents a QoS 

attribute of a web service. In order to compare the proposed methods to one another, we used various 

datasets which were generated based on different scenarios but all following a multivariate normal 

distribution. Depending on the scenario, each dataset contains three distinct or indistinct clusters, 

in which each cluster consists of three other distinct or indistinct sub-clusters. Furthermore, by 

executing the application a number of times on each dataset, and further calculating the averages 

of the generated values of the clustering results, such as process duration, cluster homogeneity, 

and rand index for each technique, certain results were achieved and shown in different tables for 

comparison.  

We compared the accuracy and the efficiency of the clustering results for each technique 

when dealing with different types and sizes of datasets. The results of the testing based on the 

original Scatter/Gather showed that the algorithm (S/G) is more suitable for datasets with some 

distinct clusters, rather than the overlapped datasets. Moreover, by increasing the size of datasets 
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the processing duration of the algorithm is drastically increased, especially in the first level of 

browsing or offline phase (which uses the Fractionation method). ISC is the fastest algorithm 

among our four techniques in the offline phase, but it suffers from getting stuck in a local 

optimum, which is caused by the convergence of the adequacy criterion; therefore, it generates 

poor clusters in some of the executions of the technique (or the iterations of the clustering). 

Hence, in order to increase the accuracy of the ISC algorithm, we applied some modifications on 

the technique, which include choosing more than k initial prototypes and agglomerating them to 

k centroids, and adding a refinement part at the end of the clustering process. The improved ISC 

algorithm (ISC2) is more accurate and stable than the other techniques (ISC and the original 

Scatter/Gather), but its processing time is approximately one and a half times more than the ISC. 

The problem with all those techniques appears in large datasets and in the online phase, when the 

number of data in the selected clusters is not small. By comparing the improved LAIR2 

algorithm (NLA) which used the modified version of ISC to build the hierarchy, to other 

algorithms in the first level of browsing (offline phase), it was observed that the results are 

almost similar to the improved ISC, but the duration is higher than that both in the improved and 

the original ISC, and lower than that of the original Scatter/Gather. In contrast, this algorithm 

(NLA) is more efficient (e.g. with the processing time of less than a second for 10,000 data) and 

more accurate than other techniques in the second phase. 

5.2 Future Works  

For future work, we intend to continue our research in the following three directions:  

(1) Employ Fuzzy C-Means Clustering (FCM), as an extension of the ISC algorithm, to 

discover soft clusters, especially in the first level of browsing (offline phase). By choosing fuzzy 
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clustering for the dataset containing vectors of intervals, we can overcome the issue with the 

datasets consisting of the overlapped clusters, due to their symbolic (interval) nature of data. 

Having similar performance to the popular SCLUST algorithm, we can obtain fuzzy output 

which can be more sensible for the user to deal with.  

(2) Predict the number of initial prototypes which presents the number of clusters in 

different datasets, depending on the distribution of data. Determining the number of clusters is 

one of the main issues in different clustering algorithms. In this regard, many techniques have 

been proposed to overcome this issue, such as grid-based and density-based clustering methods, 

or even by the calculation of the within-cluster qualities or homogeneities. Therefore, in order to 

make the application simpler for the user, we can let the program decide how many clusters are 

more suitable for the specific type of dataset.  

(3) Increase the ability of the system to support various value types of QoS properties of 

the web services, by moving beyond the interval data to more generic symbolic data. As a matter 

of fact, web services contain different QoS attributes with various value types such as: fuzzy 

value type, multiple value type (consisting of list, set, range, and vector), and single value type 

(enumeration, string, numeric, ordinal, nominal, and Boolean). Therefore, in order to make our 

framework more flexible for dealing with different value types of QoS attributes, in the future, 

we will provide new techniques to support different types of data. 
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APPENDIX A: PARAMETERS FOR DATA 

GENERATION 

 

 

 
Cost ($) 

Response Time 

(ms) 
Reliability (%) 

µ σ µ σ µ σ 

Cluster 1 (100) 

(33,33,34) 

55 2.0 100 2.0 10 1.0 

80 2.0 140 1.8 17 1.2 

125 2.0 170 3.0 23 0.9 

Cluster 2 (100) 

(33,33,34) 

310 3.0 400 3.0 42 0.8 

360 3.6 450 2.4 49 1.3 

420 4.0 510 4.0 56 0.6 

Cluster 3 (100) 

(33,33,34) 

660 2.5 760 3.6 77 1.2 

700 3.9 800 3.0 83 1.0 

740 2.0 830 2.0 89 0.9 

 

 

 

 
Cost ($) 

Response Time 

(ms) 
Reliability (%) 

µ σ µ σ µ σ 

Cluster 1 (10000) 

(3300,3300,3400) 

55 2.0 100 2.0 10 1.0 

80 4 140 1.8 17 1.2 

125 4 170 3.0 23 0.9 

Cluster 2 (10000) 

(3300,3300,3400) 

310 3.0 400 3.0 42 0.8 

360 3.6 450 2.4 49 1.3 

420 4.0 510 4.0 56 0.6 

Cluster 3 (10000) 

(3300,3300,3400) 

660 2.5 760 3.6 77 1.2 

700 3.8 800 3.0 83 1.0 

740 2.0 830 2.0 89 0.9 

Table 16 – Dataset-1, 300 three attribute QoS vectors, containing three distinct clusters 

with three distinct sub-clusters  

Table 17 – Dataset-3, 30,000 three attribute QoS vectors, containing three distinct 

clusters with three distinct sub-clusters 
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Cost ($) 

Response Time 

(ms) 
Reliability (%) 

µ σ µ σ µ σ 

Cluster 1 (100) 

(33,33,34) 

55 2.0 100 2.0 10 1.0 

80 2.0 140 1.8 17 1.2 

125 2.0 170 3.0 23 0.9 

Cluster 2 (100) 

(33,33,34) 

310 3.0 400 3.0 42 0.8 

360 3.6 450 2.4 49 1.3 

420 4.0 510 4.0 56 0.6 

Cluster 3 (100) 

(33,33,34) 

660 2.5 760 3.6 77 1.2 

700 3.9 800 3.0 83 1.0 

740 2.0 830 2.0 89 0.9 

 

 

 
Cost ($) 

Response Time 

(ms) 
Reliability (%) 

µ σ µ σ µ σ 

Cluster 1 (10000) 

(3300,3300,3400) 

150 10 100 4 50 2 

170 9 110 5 55 3 

200 12 120 6 57 3 

Cluster 2 (10000) 

(3300,3300,3400) 

410 10 250 4 66 2 

430 15 260 4 69 2.5 

460 20 275 7 73 3 

Cluster 3 (10000) 

(3300,3300,3400) 

700 12 370 8 80 3 

730 11 385 10 85 2 

750 8 400 10 88 3 

 

 

 
Cost ($) 

Response Time 

(ms) 
Reliability (%) 

Availability 

(%) 

µ σ µ σ µ σ µ σ 

Cluster 1 (3000) 

(1000,1000, 1000) 

50 20 120 30 78 10 80 5 

100 35 150 20 85 7 85 5 

75 28 180 20 90 3 88 3 

Table 18 – Dataset-4, 300 three attribute QoS vectors, containing three distinct clusters 

with three indistinct sub-clusters 

Table 19 – Dataset-6, 30,000 three attribute QoS vectors, containing three distinct 

clusters with three indistinct sub-clusters 

Table 20 – Dataset-7, 3000 four attribute QoS vectors, containing three overlapped clusters  
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Cost ($) 

Response Time 

(ms) 
Reliability (%) 

µ σ µ σ µ σ 

Cluster 1 

(10000) 

(3300,3300,3400) 

70 1.8 15 1.8 45  2 

95 1.5 30 1.5 50 1.5 

115 1.5 50 2 55 1 

Cluster 2 

(10000) 

(3300,3300,3400) 

250 2 250 2 64 1.2 

270 1.5 275 1.8 9 1 

285 1.8 288 2 76 1.2 

Cluster 3  

(10000) 

(3300,3300,3400) 

340 1.8 100 2 83 1 

365 2 120 1.5 89 0.5 

380 2 140 2 95 1 

 

Availability 

(%) 

Accessibility 

(%) 
Security (%) 

µ σ µ σ µ σ 

Cluster 4  

(10000) 

(3300,3300,3400) 

45 1.2 46 1.8 45 2 

52 1 51 1.5 50 1.5 

57 1 57 1 55 1 

Cluster 5  

(10000) 

(3300,3300,3400) 

66 1.3 67 1.5 64 1.2 

71 1 74 1.2 69 1 

77 1.2 79 1 76 1.2 

Cluster 6  

(10000) 

(3300,3300,3400) 

84 1.5 87 1.2 83 1 

90 1 92 1 89 0.5 

96 0.8 97 1 95 1 

 

Compliance 

(%) 
Latency (ms) 

Documentation 

(%) 

µ σ µ σ µ σ 

Cluster 7  

(10000) 

(3300,3300,3400) 

82 1.2 4 0.5 40 1.5 

89 1.2 10 1.5 46 1.5 

95 1 18 2 52 1.5 

Cluster 8  

(10000) 

(3300,3300,3400) 

60 1.4 40 1.5 62 1 

66 1 46 1 69 1 

71 1.5 52 1.2 75 1.2 

Cluster 9  

(10000) 

(3300,3300,3400) 

52 1.2 75 1.2 84 1.1 

45 1 80 0.8 90 1.3 

40 1.3 85 1.2 97 1 

 

Table 21 – Dataset-9, 3000 nine attribute QoS vectors, containing three distinct clusters 

with three distinct sub-clusters 
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