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Abstfact

One of the most important areas of biomedical engineering is medical imaging. Fully
automated schemes are currently being explored as Computer-Aided Diagnosis (CAD) sys-
tems to provide a second opinion to medical professionals; of these systems, abnormal region
detector in medical images is one of the most critical CAD systems in development. The pri-
mary motivation in using these systems is due to the fact that reading an enormous number
of images is a time-consuming task for the radiologist. This task can be sped up by using
a CAD system which highlights abnormal regions of interest. Low false positive rates and
high sensitivity are essential requirement of such a system.

The initial requirement of processing any organ is an accurate segmentation of the target
of interest in the images. A segmentation method based on the wavelet transformation is
proposed which accurately extracts lung regions in the thoracic CT images. After this step,
an Artificial Intelligence system, known as Least Squares Support Vector Machine (LS-SVM),
is employed to classify nodules within the regions of interest. It is a well known fact that
the lung nodules, except the pleural nodules, are mostly spherical structures whereas other
structures including blood vessels are shaped as other structures such as tubular. Therefore,
an enhancement filter is developed in which spherical structures are accentuated. Processing
three different real databases revealed that the proposed system has reached the objective
of a CAD system to provide reliable opinion for the doctors in the diagnosis fashion.
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Chapter 1

Introduction

Nowadays, advancements in technology have had great impact on medical sciences. En-
gineering and applied sciences are leading medical sciences in examination, diagnosis and
treatment of various of diseases toward faster and more accurate processes. Biomedical engi-
neering is a broad field that connects medicine with engineering based sciences. Biomedical
Engineering is a developing field that not only aims for improving the health system but also
assists doctors by providing reliable data and facilitating their tasks. To satisfy these needs,
Biomedical engineering has formed as integration of engineering sciences with biomedical
sciences and clinical practices.

One of the most important areas of biomedical engineering is medical imaging. Over the
past few years at the Annual Meeting of the Radiological Society of North America (RSNA)
in Chicago, one of the major meetings in the field of diagnostic radioldgy, the number of
papers presented on subjects related to CAD (Computer-Aided Diagnosis) has increased by
approximately 50% per year, from 55 in 2000 to 86 in 2001, 134 in 2002, and 191 in 2003
[2]. The number of publications decreased after 2003 and was reported as 161 in 2004 and
163 in 2005. The majority of these presentations were concerned with three organs (chest,
breast, and colon) but other organs such as brain, liver, and skeletal and vascular systems
were also subjected to the CAD research. This is while the RSNA’s general annual report
in 2006 states that a sustaining the growth in abstract submissions has seen in recent years,

RSNA received a record 10,227 abstracts for presentation consideration at RSNA 2006, 712
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more than were submitted for RSNA 2005. Included were 6,838 scientific paper or poster

abstracts. With the advance of computer technology, medical imaging and its automated
analysis are increasingly received interest of physicians in diagnosis, treatment, and research.
Fully automated schemes are currently being explored by researchers as CAD systems to pro-
vide second opinions for doctors. Many different types of CAD schemes are being developed
for detection and/or characterization of various lesions in medical imaging, including conven-
tional projection radiography, Computed Tomography (CT), Magnetic Resonance Imaging
(MRI) and Ultrasound. Organs currently being targeted by CAD research include lung,

breast, chest, colon, brain, liver, kidney, and the vascular and skeletal systems.

1.1 Computer Tomography

Computer Tomography is a noninvasive, painless medical procedure that utilizes special X-
ray equipment to produce multiple images of the inside body and produce cross-sectional
views of the area being studied. CT imaging is one of the best tools for study of the
pulmonary and abdomen area because it provides detailed, cross-sectional views of all types
of tissue. In fact CT scan reconstruct gathered data on its rotating detector to generate
sequential layers of region of interest with specific axial thickness. Series of these axial
layers represents a 3D view of the region or examined organ in the body. This 3D view is
advantage of CT scan in comparison to traditional X-ray imaging methods on superimposing
the structures due to projection of 3D structures into 2D images.

Conventional CT scanners contained a X-ray tube and a detector that rotated around the
patient’s body. The patient was required to suspend respiration of each scan. Then it was
requisite to wait for realignment before the next scan. In recent years, advanced technology
led to continues imaging and movement of the X-ray tube against the body. This system
is known as helical CT. Traditional imaging devices were not even capable of scanning the
region of interest since they could not move over the patient body; hence the technician
should have move the patient axially in about the slice thickness and align him with center

of the image. Moreover each study might have taken a tremendous amount of time to get
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completed. Recently imaging techniques have been advanced much further and reached to

the point where dynamic CT scanner can generate each series of images within 100ms to
200ms. This technique brings medical imaging to the point that radiologist can investigate
the organ of interest over a period of time. For instance, Dynamic CT brings possibility of
lung examination over several respiration cycles for a doctor.

Each material attenuates the emitted X-ray from the tube for a specific amount based on
its molecular structure. The CT scanner contracts the images based on the X-ray it receives
upon the detector’s rotation. The Hounsfield scale is a quantitative scale for describing
radiodensity which express pixel intensities in a CT image. This scale performs a linear
transformation from original attenuation coefficients into a space where water is assigned to
zero and air is assigned a value of -1000. Due to this mapping, Hounsfield Unit (HU) can
represent ratio of air to aerated lung issue at any coordinate inside the lung in pulmonary
CT images. For example, -600HU represents 60% air and 40% aerated lung tissue. Since HU
spreads over quite a large range (air as average of -1000HU and bones as average of 1000HU)
and usually a partial of this range receives interest, the pixel intensities are linearly windowed
for visualization purposes. This window defines by its level and width. For example the lung

window has width of 1500HU and level of -600HU.

1.2 Computer-Aided Diagnosis

The interpretation of medical images is still almost exclusively the work of humans. How-
ever, this is expected to change within the next decade due to tremendous impact of com-
puter technology advances on medical imaging. Having computers as interpreters is called
Computer-Aided Diagnosis (CAD). Although some investigators distinguish between the
concepts of computer-aided detection and CAD, others have interpreted CAD broadly as
encompassing both the detection task and the classification task [3]. Automatic segmenta-
tion and quantification are closely related to the CAD systems. Segmentation is needed to
determine which parts of the image the computer needs to analyze and in mar;y cases the

accurate delineation of objects already yields clinically valuable information. Quantification
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is often the ultimate goal of radiological examinations, once the diagnosis has been made the

physician needs to determine the extent and progression of a disease. For example, exami-
nation of Acute Respiratory Distress Syndrome (ARDS) is an application of segmentation

and quantification features of a CAD system.

1.3 Automated Lung Nodule Detection

According to the World Health Organizations (WHO), lung cancer death rate is higher than
other kinds of cancers around the world since it manifests itself at an advance stage. Not
smoking is considered the most effective way to reduce the incidence of lung cancer in most
countries, while detection of suspicious lesions in the early stages of cancer can be considered
the most effective way to improve survival [4]. Nodule detection is one of the most challenging
tasks in medical image processing. Radiologists and doctors may easily miss to pick lung
nodules in their early stages due to low contrast, small size, or location of the nodule within
an area of complicated anatomy such as the hilum. Therefore, developing a CAD system
capable of monitoring the lung and detection of its nodules seems necessary to save many
lives. Pulmonary lung nodules detection has received tremendous amount of attention from
researches in field of biomedical imaging and image processing in the past few years. The
main goal of this system is to reliably detect nodules in patient’s lung with low False Positive
(FP) rate. Nevertheless, the blood vessels are often mislabeled by automated systems. A
large number of false positives limits the potential usage of a detection system as an assistant
to radiologists. In addition to the CAD’s accuracy, multislice protocols may generate 300-600
high-resolution axial images while imaging protocol of a single detector scanners typically
generates about 40 images in a pulmonary study. The large data volume is impractical to
get reviewed within a proper time in a radiology practice. Therefore, efficient methods of
image interpretation such as computer-assisted nodule detection are essential to detect the

nodules and manage the tremendous number of studies.



1.3.1 Lung Nodules

In 1984, the Fleischner Society published a glossary of terms for thoracic radiology [5], in

which a lung nodule was defined as

“any pulmonary or pleural lesion represented in a radiograph by a sharply defined,

discrete, nearly circular opacity 230mm in diameter.”

Twelve years later, the Fleischner Society published a glossary of terms specifically for tho-

racic CT [6] in which a lung nodule was defined as a

“round opacity, at least moderately well marginated and no greater than 3cm in

maximum diameter.”

The Fleischner Societys pathologic definition of a nodule as a “small, approximately spheri-
cal, circumscribed focus of abnormal tissue” [6] which reflects the three-dimensional nature
of the physical lesion manifested radiologically as a nodule on CT scans [3]. Although these
statements can be considered as well developed nodule definitions, natural complexities of
biological system makes it difficult to classify a focal abnormality as nodule or other ab-
normalities such as scars. Therefore, providing a utilitarian definition of a nodule may not
be straightforward, since the notion of a nodule may not represent a single entity capable
of verbal definition. The National Cancer Institute launched a cooperative effort known as
the Lung Image Database Consortium (LIDC) to develop an image database that will serve
as an international research resource for the development, training, and evaluation of CAD
methods in the detection of lung nodules on CT scans [3).

The appearance of pulmonary lung nodules in CT images can be described as cox'npa.cf
lesions with attenuation near water (~ 0HU). Radiologists define classes of pulmonary

nodules as follows [7]:

1. Well-circumscribed: The nodule is located centrally in the lung, without significant

connections to vasculature.



(d)

(a)

Figure 1.1: A typical lung nodule for each class is shown: (a) a well-circumscribed nodule. (b) a
juxta-vascular nodule. (c) a nodule with a pleural tail (d) a juxta-pleural nodule [1].

2. Vascularized: The nodule is located centrally in the lung, but has significant vascular-

ization (connections to neighboring vessels).

3. Pleural tail: The nodule is near the pleural surface, connected by a thin structure

(“pleural tail”).

4. Juxtapleural: A significant proportion of the nodule periphery is connected to the

pleural surface.

Some examples of lung nodules are illustrated in figure 1.1. From the image processing
perspective point of view, several steps should be taken to identify each class of nodule
within pulmonary CT images. Several approaches have been introduced to extract each
class. However, most of the proposed methods are dependent on some assumptions over
the shape and appearance of lung nodules in the pulmonary CT images. For example
circularity or sphericalness has been considered as one of the most important features of
a well-circumscribed nodule (a brief review on proposed methods in this fashion is provided

in the next chapter).

1.4 Contributions

The major contributions of the author in this thesis are as follows:
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Proposing a fast segmentation method based on wavelet transformation in extraction

of lung in the pulmonary CT images regardless of evaluated study slice thickness (axial
resolution). An algorithm for airway tree extraction is also proposed to be taken in

prior to the lung.segmentation in order to enhance the segmentation accuracy.

A nodule enhancement filter is proposed as a tool to eliminate the tubular structures
(vessels) in the 3D CT data. This selective filter is capable of distinguishing between
spherical shape objects and tubular 3D objects (blood vessels). This filter can reduce
the computation expenses of the CAD system by elimination of blood vessels in prior

to the classifier module.

A Support Vector Machine classifier is employed to extract nodules from other opacities
in the lung area. This system tends to provide fairly high sensitivity in nodule detection
as well as very low number of false positives per slice in compare to other proposed

methods.

Lung nodule detector CAD system is developed whose performance lies in an acceptable

range to be employed in practical applications.



Chapter 2

Background and literature review

2.1 Lung Nodule Detection

Identification of potential nodule candidate in a series of images is a primary step in any
nodule detection CAD system. Nevertheless, reducing number of false positive objects and
pointing out the suspicious points in each slice is the most critical part of this task. Therefore
emphasizing on low number of false positives and robust identification of nodule candidates
are the main focuses of this chapter.

In literatures researchers utilized different methods to detect nodules in CT images. Pro-

posed schemes for a CAD lung nodule detection are categorized into three major categories:
1. Statistical or mathematical based
2. Rule based
3. Artificial intelligence based

Not only some of the introduced methods could not detect nodules with sensitivity of
higher than 70% but also the number of false positives are reported to be as high as 14 FPs per
slice. Takizawa at el. [8] is introduced a 3D Markov random field to recognize pathological
shadow areas inside the lung. Although Takizawa claimed that his proposed method tent to
extract all the nodules with no false positive, his proposed method was studied over a small

test dataset consist of 10 CT images. Unfortunately neither information on nodule types
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and sizes nor its performance evaluation on a bigger database was provided. Antonelli et al.

[9) proposed a method based on anatomical knowledge of pulmonary region. Basically the
utilized CAD system tends to extract different structures within the CT images based on the
volume, X-ray attenuation, and position with respect to structures already recognized. After
recognition the objects inside the body, a C-Means Fuzzy algorithm was applied to classify
the lung voxels into 2 clusters nodules/vessels and air. Then a neural network system came
to the picture to classify nodules from this pool of ROIs. Antonelli’s study lead to more than
82% sensitivity with 1.4 FPs per slice. However, it had not pointed out whether if there was
any over lap between the data that neural network was trained with and the tested patients.

A small number of knowledge-based schemes are under development to automate lung
nodule detection on CT [10, 11, 12, 13, 14, 15]. The major difficulty that must be tackled by
these systems is distinguishing nodules from normal bronchovascular details. Bronchovascu-
lar anatomy and lung nodules have similar X-ray attenuation and appearance in individual
cross-sectional CT images. Therefore, these systems do not rely solely on conventional gray
level-based image processing tools. They often introduce anatomical and imaging knowledge
via heuristics or rules relating to the expected attenuation, size, shape, and/or location of
nodules in respect to the lung boarders as well as lung anatomy [16]. A feature-based clas-
sification approach to nodule detection has shown promising results in preliminary studies
(12, 13, 14, 15]. A segmentation algorithm is applied to generate candidate nodules, then
features are calculated and used to classify each candidate as nodule or nonnodule (usually
a bronchovascular structure). Most features relate to size and shape on the premise that
nodules are of greater diameter and tend to be spherical, while vessels are tubular. Lin et
al. [17] processed series of images by techniques including thersholding, morphology closing,
and labeling to segment the lung area and obtain the ROIs. Then, three main features,
circularity, size of area, and mean brightness, are extracted from ROIs and the nodules are
identified with diagnosis rules that are obtained by the neural fuzzy model. Although Lin
et al. provided sensitivity of 89% with FP rate as low as 0.3 per image, the deveioped CAD

missed to detect nodules bigger than 5mm or smaller than 1mm in the database with a great
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rate. Giger et al. [12] have used multiple gray-level thresholds to extract candidates, then

calculated 2-D geometric features such as perimeter, compactness and circularity for each
candidate at each threshold. A rule-based approach was used to assign a confidence rating,
in the range 1-5, to each 2-D candidate, with 1 being definite vessel and 5 being definitely
nodule. Confidence ratings were modified based on ratings of the nodule in adjacent slices.
94% per-nodule sensitivity was achieved with 1.25 false positives (FPs) per patient. Armato
et al. [13, 18] applied multilevel thresholding and a rolling ball algorithm towards the de-
tection of the lung nodules. Some 3-D features such as sphericity, and gray-level features
including mean and standard deviation, to classify nodules using a linear discriminant analy-
sis were included. The algorithm achieved 70% per-nodule sensitivity with 1.5 FPs per axial
section. Kanazawa et al. [14] segmented candidates by using fuzzy clustering to partition
the histogram of pixels within the lung fields into two classes: “air part” and “blood vessels
and tumors.” They then used similar features in a heuristic, rule-based approach to classify
nodules and vessels. These systems have been tested on limited numbers of cases with a
sensitivity close to 90%, and about 20 FPs per case.

Erberich et al. [19] applied the Hough transform (HT) for both 2-D circles and 3-D
spheres using a rule-based classifier and achieved 30%-40% per-nodule sensitivity with a
“large amount of false positive nodules.” Several approaches to colonic polyp CAD in CT
colonography have also been proposed. Vining et al. [20]developed a method that measures
abnormal wall thicknesses using heuristics. They reported 73% per-polyp sensitivity with
a range of 9-90 FPs per patient. Other approaches have analyzed the morphology of the
mucosal surface. Summers et al. [21, 22] have developed a method that uses size, attenuation,
and curvature calculated with convolution-based partial derivatives to find polyps. They
achieved 64% per-lesion sensitivity with 3.5 FPs per patient. Yoshida et al. [23, 24, 25)
use shape index and curvedness (computed with partial derivatives), directional gradient
concentration, and quadratic discriminant analysis. Using both prone and supine datasets,
they achieve 100% per-patient sensitivity with 2.0 FPs per patient (per-polyp sensitivity not
stated). Kiss et al. [26] combined surface normal and sphere fitting methods to achieve 100%
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per-polyp sensitivity with 8.2 FPs per patient. In addition, secondary CAD algorithms that

are designed to reduce the FP rate of primary CAD algorithms have been proposed. Gokturk
et al. [27] applied support vector machines to shape and attenuation features to reduce FPs
and reported a 50% increase in specificity at a constant sensitivity level. Acar et al. [28] have
applied edge displacement fields to reduce FPs and reported a 23% increase in specificity at
a constant sensitivity level. Both of these FP reduction methods were evaluated using initial
versions [29] of the work presented in this paper. ‘

Brown et al. {16] have presented an algorithm for both detection and surveillance of lung
nodules in CT. Region-growing and morphological operators were used to create candidate
locations. Attenuation, location, volume, and shape features were matched to model ob-
jects in a semantic net with fuzzy membership that serves as a generic a priori anatomic
model. In the initial detection task, 86% per-nodule sensitivity was achieved with 11 FPs
per patient. Lee et al. [30] used both genetic algorithm-based and semicircular template
matching to identify initial candidates and attenuation, shape, and gradient feature rules
to reduce FPs. They achieved 72% per-nodule sensitivity with 31 FPs per patient. Lee
considered 13 features to reduce the false positives detected by template matching including
Mean, Standard Deviation, Area, Circularity, Irregularity, Contrast, Max CT Value, Direc-
tional Variance, Directional Cross-Correlation of the Pixel Gradient, and Inverse Difference
Moment. Lee’s method still has difficulty to detect low-contrast nodules and those in the
apex and basis pulmonis effectively. Dehmeshki et al. [31] significantly improved the per-
formance of GA nodule detection CAD system by combining local shape feature calculation
into global cross-correlation framework for Genetic Algorithm Template Matching. Nodules
can still be missed if there are no spherical local elements or the size of the elements is not
matching to any of the templates. Feature extraction is one of the most important steps in
machine learning-based FP reduction, as features must have sufficient discriminatory power
to distinguish nodules from nonnodules. Boroczky et al. [32] proposed a feature subset
selection method using Genetic Algorithms (GAs) to automatically determine the optimal

size of the feature subset, and also choose the most relevant features from the feature pool.
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The optimal feature subset is used to train a classifier based on SVMs that classifies detected

structures into true and false nodules. The proposed method tent to reduce the false nodule
rate up to 50% while retaining the same sensitivity. Diccioti et al. [33] proposed a semi-
automatic method for 3D segmentation of lung nodules in CT images for subsequent volume
assessment. The distinguishing features of his algorithm were 1) the user interaction process
which allows the introduction of the knowledge of the expert in a simple and reproducible
manner. 2) the adoption of the geodesic distance in a multi-threshold image representation.
It allows the definition of a fusion-segregation process based on both gray-level similarity
and shape. The algorithm was validated on low-dose CT scans of small nodule phantoms
(mean diameter 5.3-11mm) and in-vivo lung nodules (mean diameter 5-9.8 mm) detected in
the Italung-CT screening program for lung cancer. The main weakness of Diccioti method
over many other proposed methods is its dependency on user interaction on its process since
the overall reported performance is in the range of other fully automated methods. There
are many problems in which the traditional rule based approaches can not provide satisfac-
tory result. Image p.roc&ssing applications in which the object is changed temporally and
computationally expensive cases are examples of this class of problems. Scientists arise an
alternative strategy for these types of situation in which the computer struggles to learn the
input and output relationships from the examples. The approach of synthesizing a model
based on provided examples is known as learning. In a more advanced fashion the examples
are formed as pairs of input and output, also known as supervised learning. This learning
concept is derived from human learning pattern in which the individual tries to generalize

his understanding over a specific concept such as classification by looking at some examples.

2.2 Artificial intelligence and lung nodule detection

A Considerable number of studies on lung nodule detection have been employed artificial
intelligence including neural networks 34, 35, 9], LDA [36], and SVM to detect lung nodules
or reduce the number of false positives. It has been reported in many literatures that

Support Vector-Machine (SVM) outperforms other artificial intelligence systems including
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neural networks when it comes to the lung nodule classification in the thorax CT images.

Support Vector Machine (SVM) initially was proposed as classifier for the binary cases. A
binary case is a problem in which the test data gets separated into two major groups. For in-
stance as interest of this thesis, each voxel in a series of CT images taken from each individual
can be classified as focal abnormality/nodule or non-nodule voxels. While most engineers
are aware of weaknesses and strengths of many of the existing methods including neural
network, fuzzy logic, time series and stochastic models, the introduction of an innovative
learning machine by Vapnik [37] brought a new solution to some of the others shortcomings
in various applications. Support Vector Machine came into sight of researchers as combina-
tion of statistical learning theory and structural risk minimization principle. Structural risk
minimization offers a structured foundation to avoid over fitting due to complexity of the
model while statistical learning causes generalization of the SVM scheme.

Advantages of support vector machine over other artificial intelligence schemes such as
neural networks have been reported by many literatures. Indeed, SVM was employed for
isolated handwritten digit recognition, object recognition, speaker identification, face de-
tection in images, text recognition, etc. It has received an increasing attention for pattern
recognition. For example, traditional neural network approaches have faced difficulties with
finding a general model to fit any data. This difficulty is removed when the problem is solved
using SVM PI. Nevertheless, the performance of support vector machine is highly dependent
on the choice of the mapping function and feature selection suitable to the problem in hand.
Therefore, a SVM algorithm designed for a specific problem may not offer acceptable result
to other problems. Malone et al. [38] proposed a method to classify a CT image's pixel
into 4 group of body, normal, fibrosis and Emphysema regions. Malone achieved accuracy
of 92% as a result of processing 102 images in their study. Mousa and Khan [39] attempted
to classify the lung nodules by utilizing SVM as the classifier. Although Mousa and Khan
reached to 87.5% sensitivity in their study, a small cropped partial of pulmonary images was
presented to the learner algorithm; hence the learner just dealt with close up image of nod-

ule or non-nodule objects in this study. However, Mousa and Khan outperformed previously
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reported studies based on neural networks such as the study done by Penedo et al. [40] in

which 90 real nodules and 288 simulated nodules were used for the training, and then the

system was tent to provide 89% - 96% sensitivity.



Chapter 3

Support Vector Machine schemes

The main aspect of SVM is mapping the data space into a higher dimensional space in order
to construct a hyperplane as the decision surface such that the separation margin between the
classes is maximized. For example in separable classification cases, SVM tries to transform
the input data space into a space where classes are separated by hyperplanes. Based on this,
SVM is categorized under supervised learning artificial intelligence group. SVM attempts to
transform the input space by an estimated function into a higher dimensional space where
the relationship between input and output is as linear as possible. This involves solving
a Quadratic Problem (QP) with a unique global minima, while gradient based training
methods of neural network architectures suffer from existence of many local minima.

The learning schemes also are categorized into two major groups based on their capability
on utilizing the presented training data. The first type is batch learners in which all the
training data would be presented to the learner when the learning process commences. The
second group is known as online learners who are capable of learning gradually and updat-
ing their parameters over the time. Online learning schemes are showing their advantages
in the cases where the training data comes continually over the time or in nonstationary
environments. SVM and LS-SVM (Least Square Support Vector Machine) are categorized
under online learning models. This property of support vector machines is suitable for the
lung nodule detection applications since the classifier can be updated at any time with new

nodules or false positive examples as needed: Furthermore using learning machines in such

15
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an application offers a general implementation; hence the developed software does not need

to be modified based on the input images acquired conditions such as X-ray dose.

As pointed out earlier support vector machines are powerful schemes on pattern recog-
nition and classification problems. Due to SVM capability and high sensitivity of SVM
structure in these kinds of problems, researchers attempt to modify and expand this theory
to suite it to their problems. Least Squares Support Vector Machines (LS-SVM) are sim-
plified version of SVMs since LS-SVM considers equality constraints for the classification
problem directly from solving a set of linear equations, instead of quadratic programming
[41]. Therefore, SVM is described in prior to the LS-SVM classifier. The ability of algo-
rithm to accurately perform the transformation and classify any data outside of the training
data is known as generalization. Generalization property shall be optimized based on the
application and nature of processed data.

Having advantages of support vector machines in mind and considering nature of the
tackled problem in this thesis, support vector machine model is chosen as the classifier
to exploit the task on detection of a pulmonary focal abnormalities subcategory known as

nodule.

3.1 Support Vector Machines

Support Vector Machines can be categorized into 2 major groups as linear and nonlinear
classifiers. In practical problems, the input classes are unlikely to be linearly separable, so
non-linear SVM models are usually utilized in the real life problems. Therefore, non-lipear
support vector machines are described and linear SVMs are not included in the outline of
this thesis. Non-linear SVM models are inspired by Cover theory which states that a linearly
non-separable pattern space can be transformed into a new feature space where patterns are
linearly separable with a high probability. Based on this theory, not only the transformation
should be non-linear but also the feature space dimension should be high enough to provide
the linear separation between the classes. SVM employs a hypothesis space of linear function

in a high dimensional feature space; trained with learning algorithm. The learning algorithm
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is derived from optimization theory and implements a learning bias derived from statistical

learning theory.
To put this into a mathematical format, lets assume a training set of input and output
patterns consist of N points is given. Then the decision surface is defined as a hyperplane

formulated as

N
S uine¥(z,z;) +B8=0 (3.1)

j=1
where 7 € R™ is the k-th input pattern, yx € R is the k-th output pattern, {u‘,-};-"=l are
positive real constants denoting a set of linear weights and f is a real number known as
bias. ¥(z,z;) typically is chosen as z;z for linear SVM; (:z:fx + 1)¢ for polynomial SVM of
degree d; e~!1=-%ill3/o* for Redial Basis Function SVM; tanh[k z7z + 6] for MLP SVM. This

equation can be rewritten as
N
Y uy¥(z,z;) =0 (3.2)
i=0

where ¥(z,z) = B and po = 1. The classifier is constructed as

yi(wp(z;) +6) >0, j=1,...N (3.3)

where ¢(.) is a nonlinear mapping function between input and higher dimensional feature
space defined as ¢(z)To(zx) = VU(z,zx). In case where a separating hyperplane in the
feature space does not exist, the problem of finding weights w would be reformed to risk
minimization problem by formulating the optimization problem:

{ Tt M) = "+ T & 349

Therefore the Lagrangian is constructed as follows:
N N
L(w, B, & i, vk) = Mw, &) = 3 pe{unlwe(ze) + 8] + &} — D vid (3.5)
k=1 k=1
where pr > 0, vk > 0 (k = 1,...,N) are Lagrange multipliers. The solution to con-
strained optimization problem is determined by the saddle point of the Lagrange function

L(w, B, &; 1k, Vi), which has to be minimized with respect to w and 3. It also has to be
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maximized with respect to-u.

max min L(w’ ﬂ1 ﬁk; Hiky 'U[;) (36)

HieVke w,8,6k

which leads to this set of equations

g—% =0 - w=YN, myxpe(ze)
F)

=0 ko1 ey =0 (3.7)
%:0 —_ OSkaC, k=1,...,N

which leads to solving a quadratic programming problem

1 N N
max Q(ue; p(zx)) = =5 3 vewnep(ze) Pl + 3 (3.8)
or
1 N N
max Q(px; ¥ (zx, 7)) = ~3 > v (T T)pem + Y px (3.9)
He k=1 k=1
such that
Tl ey =0 :
{OS.uksc, k=1,...,N (3.10)

Since the matrix associated with this quadratic problem is not indefinite, the solution to

equation 3.9 is global [42].

3.2 Least Squares Support Vector Machine scheme

One of the main applications of nonlinear SVMs is solving the nonlinear classification problem
by means of convex quadratic programs. Recently, the Vapnic formulation has been modified
in order to be transformed into a set of linear equations instead. It makes it much easier to be
used in the practical fashions. The original aspects of this idea were introduced by Suykens
[43]. The Vapnik formulation was modified at two points. First, Suykens changed inequality
constraints with qualities. This modification changes the constrain from a threshold value
to a target value. Upon introducing a target value misclassifications are allowed to be

tolerated in case of overlapping distributions. Second, a new squared loss function can be
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defined based on the constraint error variable. These two modifications simplify solving

the nonlinear classification problems in addition to classifier parameters determination. To
introduce Least Squares version of Support Vector Machine classifiers equation 3.4 should

be rewritten as

: — 1 T 1 al 2
g}é{:)\(w,b,e) = Fww +72,-—§_:1€j (3.11)
wlwTe(z)+68) = 1—¢, j=1,...,N (3.12)
N
L(w,B,&p) = Mw,be) =Y ui{ylwie(z;) +B] —1+e5} (3.13)
=1

The conditions for optimality

-0 — w= N myep(zk)
=0 — Tiimuy=0
9 k=1
%= - wm=7er, k=1,...,N (3.14)
b%,;:O — ylwp(zr) + 0] -1+e =0, k=1,...,N
which can be written in a matrix form of:
i 0 0]|-27 w 0
0 0 0l|l-YT b 0
0 0 7; -1 e =10 (3.15)
ZY I| 0 m 1

Where Z = [¢(z1)Ty1;- - - 50(@n)Tyn], Y = [y1,. ., UN), T = [1;...;1), e=[er;...;en),

g = [m;...;pn]. Following linear Karush-Kuhn-Tucker system leads to elimination of w

and e [42, 44): 0o . .
e[

Where = ZTZ; hence the classifier dual space takes the form of

y(z) = sign f: oy K(z,zK) + b] (3.17)
=1

It should be noted that the solution can be expressed in terms of the error variable e by
elimination of a instead of e from the equation 3.14. Also chosen kernel function, K (z, zx),

must be positive definite and Mercer condition, [45]:

[ [ Kz vg@g)dzdy 2 0 (318)
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Selection of a positive definite kernel of K(.,.) guarantees that the matrix introduced

in the QP is positive definite (all eigenvalues are strictly positive) [42]. Hence, K(z,y) can
be expressed as the auto-inner product of a function, ¢(z)T@(y). The dual of LS-SVM is
obtained by solving the equation 3.16 which is a square system with an unique answer if the
matrix has full rank.

Redial Bases Function (RBF) kernel, K(z,z;) = ezp(—||z — zx||?/0?), is chosen as the
kernel function in this thesis due to its nonlinear characteristic and reported performance
on nonlinear classification problems. Although solution of the linear system (3.16) results
only on determination of & and b, there are several ways to determine the kernel parameters
including 0. One of the simplest and the most time-consuming ways is to work on a training,
validation and test set, by evaluation of the possible combinations of o and A. Then pick the
values that give the best performance on the validation set. However, the outcome might
be too sensitive to the chosen sets. Therefore, it is statistically better to chose N-folded
cross-validation sets regardless of its heavier computational order. Other alternatives are
determination of hyperplane parameters by Bayesian inference and bootstrap techniques.
In order to reduce the computational expense and increase the speed of the CAD system,

Baysian inference method is employed to determine the optimal parameters of the classifier.



Chapter 4

Lung Segmentation and Lung Nodule
Enhancement Filter

4.1 Lung Segmentation

Image segmentation is concerned with the partition of pixels into regions of uniform prop-
erties. In the simplest case, it means to distinguish objects from the backgrounds. In other
words, segmentation subdivides an image into its constituent regions or objects [46]. The
first step in examining any organ in a study is segmentation/extraction of particular organ
in series of images. Segmentation accuracy highly affects CAD system performance since
any segmentation error may lead to misdiagnosis. Several methods have been utilized to
segment the lung in pulmonary CT images such as thresholding [47], watershed [48], snakes
[49], and region growing [50]. A segmentation technique is proposed that outperforms the

above-mentioned techniques.

4.1.1 Thresholding

Thresholding is the most popular lung segmentation method due to its simplicity in method-
ology and computation. This methodology based on an assumption that the most lung tissue
will appear in the range of -910HU to -500HU in the CT images, while the chest wall, blood,
and bone will be much more denser (well above -500HU). The main goal of this methodol-
ogy is focused on finding a threshold value that separates the pixels corresponding to the

lung tissue from the pixels corresponding to its surrounding tissues. Conventional methods
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attempt to find a fix global threshold value. On the other hand more recent methods tend to

look for local or optimal threshold value(s) in each image rather than dealing with globally
defined value(s) . Optimal thresholding is an automatic threshold selection method that
allows accommodation of small variations in tissue density expected across a population of
subjects. Optimal thresholding utilizes sequence of iterations in order to find the optimal
value in an image. It categorizes each pixel as body and non-body (lung) pixels. Usually
this method updates its threshold value as the soft tissues and the lung average intensi-
ties. Although thresholding holds a relatively simple idea behind, a lot of post processing
steps, including Connectivity and Topological Analysis, Segmentation of the Large Airways,
and smoothing ,are required to eliminate the misregistration of the extracted lung area in
a pulmonary CT image [47]. Despite all these efforts, thresholding has many short comings
in segmenting of the lung in CT images. It has faulty segmentation result such as missing
boundaries between 2 regions when the gray-level of boundary’s intensity do not differ sig-
nificantly. For example, this method merges the left and right lung or artifacts caused by
airways. In addition, CT lung density is influenced by factors such as subject tissue volume,
air volume, image acquisition protocol, physical material properties of the lung parenchyma,
and degree of inspiration. These factors make the selection of a single gray-level segmenta-
tion threshold value challenging and also several threshold values are likely to be required

to extract different objects.

4.1.2 Region growing and Active Contour schemes

Snakes or active contour models are curves defined within an image domain that can reform
under influence of the curves by themselves and the image features. Impact of curve para-
meters on Snakes evolution is defined as internal energy whereas impact of image features
such as edges is deﬁnec} as external energy. This model utilizes a closed contour to approach
object boundary by iteratively minimizing its energy function, which lead to its conformation
to the object boundary or other desire features within the image. Snakes are widely used

in many application including edge detection, shape modeling, segmentation, and motion
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tracking in the medical imaging field.

Region growing scheme is well-known for providing a good estimation of object shape
and boundaries. The basic idea of this method is to initiate from a given starting point
(seed) and grow as a region where its pixels satisfy an homogeneity criterion. The criterion
for homogeneity is usually based on image intensity. Obviously, with this intensity-based
region growing, it is very difficult to segment connected structures with similar intensities.

One of the drawbacks of traditional snake model is that the construction of initial contour
often requires human interaction and the segmentation results may be heavily sensitive to
initial contour conditions. It is laborious for users to draw a contour near the object bound-
ary. However, if the initial contour is far from true object boundary, the result will not be
accurate. In automated systems, a challenging issue is to choose robust seed points/region
without user interaction. An important issue for dependent CAD system to region growing
is how to choose the seed without the interaction of users. This issue led researchers in
deploying parametric and non-parametric algorithms. There are two key difficulties with
parametric active contour algorithms. First, the initial contour must, in general, be close to
the true boundary or else it will likely converge to the wrong result. Several methods have
been proposed to address this problem including multiresolution methods, pressure forces,
and distance potentials. The basic idea is to increase the capture range of the external force
fields and to guide the contour toward the desired boundary. The second problem is that
active contours have difficulties progressing into boundary concavities. There is no satisfac-
tory solution to this problem, although pressure forces, control points, domain-adaptivity,
directional attractions, and the use of solenoidal fields have been proposed. However, most of
the methods proposed to address these problems solve only one problem while creating new
difficulties. For example, multiresolution methods have addressed the issue of capture range,
but specifying how the snake should move across different resolutions remains problematic.
Another example is pressure forces, which can push an active contour into boundary concav-
ities. However, these forces can not be too strong otherwise weak edges will be overwhelmed

[51]. Pressure forces must also be initialized to push out or push in, a condition that man-
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dates careful initialization. Several proposed studies utilized pre-processing algorithms such

as evaluating threshold value(s) [49] or Gradient Vector Flow (GFV) [50] to obtain some
proper seeds inside the lung. Although GVF is less sensitive in initial contour conditions, it
still needs manual drawing and can not process multiple objects simultaneously. Gradient
Vector Flow is a new class of external forces used for active contour models that addresses
both problems listed above. These fields are dense vector fields derived from images by
minimizing a certain energy function in a variational framework. However, GVF does not
provide acceptable performance when it comes to segmentation of unhealthy lung such as a
lung affected by ARDS.

4.1.3 Watershed Transformation

Watershed algorithm is a powerful region-based method that can be used to segment images
without initial contours and user interaction. Researchers use this method due to nature of
pulmonary CT images that most part of the lung has intensity of lower than -500HU whereas
body tissues are represented well above -500HU in the images. Watershed picks the same
aspect in order to partition the image into segments in a sense that it uses the gray-level
difference between the segments in order to create a continuous border between them by
morphological operators. The concept of watershed is based on visualizing the image as a
topological structure, in which the gray levels are considered as height. This method is based
on the phenomenon observed in geography that when the water is flooding up in an area
with hills and valleys, the water floods up from the lowest valleys. When the water in the
neighboring two valleys merge, the borders between the valleys can be detected. Vincent and
Soille proposed a modified version of the watershed method to speed up the computation
[52]. The input pixel values are first sorted so that pixels in the same gray level can be
accessed more efficiently. The flooding step is processed and different regions are labeled.
The image is then segmented into many small regions and finally a region merging step is
proceeded to acquire meaningful objects out of enormously small segments. Furthermore Yu

and Chiang [48] proceed to the pixel-labeling procedure based on anatomical homogeneity
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(a)

Figure 4.1: (a) Original Thoracic CT image (b) Gradient edge detector (c) Sobel edge detector.

precisely for pulmonary CT images.

Watershed tend to have relatively low computational cost. However, over-segmentation
is a well-known drawback of watershed transformation. Utilizing marker-based watershed
transformation is suggested to overcome over-segmentation in processing of medical images.
Additionally, the result of watershed transformation in pulmonary CT images segmentation

should be post-processed to include some dense structures such as hilar vessels.

4.1.4 Edge Detection by Wavelet Transformation

Edge information in images is an important characteristic of images content. Conventional
edge detection algorithms, such as the Sobel, Prewitt, and Roberts operators, are typically
based on differential operators. Traditional differential operators work well with edge detec-
tion of noiseless images. Nevertheless, they may miss the edges or detect false edges in the
presence of noise due to their high level of sensitivity to the noise and existence of tiny in-
tensity discontinuities in the medical images. Results of gradient and Sobel of edge detectors
are illustrated in figure 4.1; edge detectors do not perform well on this image even though
the noise is relatively low.

Witkin[53] introduced theory of using the scale space correlation of the subband decom-
positions of a signal to filter noise from the signal. His algorithm was developed to track

major edges in a signal from coarse scales to fine scales in the subband decompositions and



was able to distinguish major edges from noise background at finer scales. Mallat et al. [524? i
introduced a complete signal representation by wavelet transform as special case of subband
decompositions. They distinguish edge maxima from noise maxima by analyzing the singu- R
larity properties of wavelet transform domain maxima across the various scales [55). Several
studies examined de-noising of the MRI images based on a same methodology. Xu et al.
[56] performed wavelet transformation domain filter to de-noise MR head images with 12dB
SNR. Their approach to filtering of the noise from a signal also relies on the variations in
scale of the wavelet transform data of the signal, but rather than detecting edges directly
on the wavelet transform data with a complicated algorithm, such as those introduced in
(53] and [55], they use the direct multiplication of wavelet transform data at adjacent scales
to distinguish important edges from noise and accomplish the task of removing noise from
signals. Karras and Mertzios [57] proposed edge detection in MRI images as combination
of wavelet transform and neural network (k-level 2D wavelet transform applied to sliding

windows raster scanning the original image as well as on Vector Quantizing Self-organizing
Feature Maps (SOFW and SVD analysis)).

4.2 Wavelet Edge Detectors

Points of sharp variations are often among the most important features for analyzing the
properties of transient signals or images. They are generally located at the boundaries of
important image structures. Conventional edge detection algorithms are typically based
on differential operators, such as the Sobel, Prewitt, and Roberts operators. Traditional
differential operators work well with edge detection of noiseless images. But in the presence
of noise they may miss the edges or detect false edges due to their high level of sensitivity to
noise and existing of tiny intensity discontinuities in medical ; Images. As addressed in [56] and
(58], wavelet expansion in higher scales suppress effect of noise on edge detection process.
Due to this advantage, several algorithms addressed the edge detection of noisy signal or
images [56, 58, 59, 54, 60]. Medical images are noisy in nature due to limitations of imaging

techniques, device noise and-health constraints (such as giving minimal possible radiation
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doses to patients). De-noising as preprocessing step is recommended in CAD systems even

though de-noising may suppress some important image edge details. Therefore, algorithms
with low sensitivity to noise tend to give higher performance in medical images processing
problems. Wavelet transformation can be developed in a way that it preserves the significant
singularities along the scales and vanishing other singularities by moving through the scales
as described in details at [59, 54, 60].

Aerated lung pixels have extremely different intensity compared to other surrounding
body tissues. Therefore, lung borders would be illustrated as significant discontinuities. In
other words, the significant discontinuities in a thoracic images occur along lung and body
borders because of large difference in HU values between two border sides (one side is soft
tissue with well above -500HU whereas other side has lower CT values with a mean intensity
close to air, -1000HU). A wavelet-based method that can overcome these issues and extract

actual lung edges in a pulmonary CT image is proposed.

4.2.1 Wavelet Transformation

Wavelet transformation represents a signal or an image in multi-scale details by applying a
basis function, also known as mother wavelet, to the signal. Wavelet transformation on 1D
space is described in this section without loosing any generality, and then it is expanded to
. higher dimensions. Wavelets are families of functions A, (z) generated from a single mother

wavelet, A(z), by dilations and translations

Male) = —=A(ESS, (@)

Visl

where s is the dilation (scale) parameter, and ¢ is the translation parameter. Mother Wavelet
must have a mean of zero, and the useful ones have localized support in both spatial and
Fourier domains. Wavelet transformation of a signal, f(z), is defined as convolution of

mother wavelet with the signal.

Wi = A(z) * f(z) (4.2)

where,
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Based on the definition of wavelet transformation (equation 4.2), the wavelet transform
is capable of pr0vidingw£}‘1e spatia.lénd frequency information simultaneously. Since designed
wavelet transformation must detect the edges in an image which is one the main goals of
this thesis, A(z) is chosen as derivative of a smoothing function 4(z). Having exploited A(z)

as such a function turns equation 4.2 into
0
;S - (2
Wi = (500)» f(a) (43)
0
= 5-06)+ 1(z)

where 6(z) * f(z) smooths the signal and suppresses the noise in prior to applying the
derivative operator. Consequently, detected false edges in conventional derivative based
method, as shown in figure 4.1, would be eliminated automatically. Smoothing function
is any function 6(z) whose integral is equal to 1 and that converges to 0 at infinity. In
the particular case where 6(z) is a Gaussian, the zero-crossing detection is equivalent to a
Marr-Hildreth [61] edge detector, whereas the extrema detection corresponds to a-Canny
[62] edge detector. Choosing a proper smoothing function that represents a low pass filter in
Fourier domain when the scale s is large enough, the convolution with 6,(z) removes small
signal fluctuations; therefore only sharp variations of large structures are detected. Figure
4.2 shows a horizontal profile taken from an original CT thoracic image. In this experiment
the smoothing function is taken as Gaussian function. The significant discontinuities in this
profile occur at the edges, while the small spikes in its horizontal profile represent image
noise and slight changes in body tissues or small ob jects in the image including small vessels
or bronchi. As illustrated the significant edge (lung border) are preserved through the scales
while low inflections fade away when scale increases. Figure 4.2 shows a horizontal profile
taken from a row of an original CT thorax image. The significant discontinuities in this
profile occur at the edges, while the small spikes in its horizontal profile represent image
noise and slight changes in body tissues or small objects in the image including small vessels

or bronchi.
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Figure 4.2: Horizontal profile (shifted by 1024HU) of lung in a CT image at the top along with
its wavelet transformations in dyadic sequence below
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The term 2D smoothing function is used to describe any function 6(z,y) whose integral

over T and y is equal to 1 and converges to 0 at infinity. An image f(z,y) is smoothed
at different scales 's’ due to getting convoluted with O(x,.y). When fhe scale ’s’ is high
enough, the convolution with 6,(z,y) removes small signal fluctuations; therefore only the
sharp variations will become maxima of wavelet transformation. Image edges are defined as
points (o, ¥o) where the modulus of the gradient vector is maximum in the direction towards
which the gradient vector points in the image plane. In other words, edge points are inflection
points of the surface V(f *6,)(z,y). The direction of the gradient vector, V(f * 6,)(z,y), at
a point (Zo, ¥o) indicates the direction in the image plane (z,y) along which the directional
derivative of f(z,y) has the largest absolute value. Two wavelet functions Al(z,y) and |
A2(z,y) were defined such that

0,z
Niey) = 242D
Al(z,y) = ———60‘(%"”) (4.4)

The wavelet transform of f(z,y) at scale ‘s’ has two components, W} f and W2f, defined as

W)f(z,y) = fxAlz,y)
Wif(z,y) = f*Alz,y) - (4.5)

Then absolute magnitude and angle of wavelet transformation at each point is defines as

W, f(z,9)| = Wif(z,y)?+W2f(z,y)? (4.6)

2
(Wf(zy) = tan~ %—f—g—zi (47)

Usually, the wavelet model is not required to keep a continuous scale parameter 's’.
To allow fast numerical implementations, Mallat and Zhong|[60], imposed that the scale can
only vary along the dyadic sequence (27)cz. Noise filtration and elimination of low inflection
points in the transformed image upon applying the wavelet is performed based on the fact

that sharp edges have large amplitude over the dyadic scales (27,5 = 0,1,2,...), and noise
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dies out swiftly while s’ increases. The wavelet transform content at several adjacent scales

was used to accurately detect the location of edges and some other fine details.

4.2.2 Proposed Wavelet Transformation

As described in section 4.2.1, many researchers tend to utilize a mother wavelet as first
derivative of a smoothing function, usually a Gaussian function. On the other hand, second
derivative of a smoothing function can be chosen as the mother wavelet. In this case,
wavelet transformation will represent smoothed Laplasian image; hence zero crossings of
the transformation can be considered as the edge locations. Despite lower computational
expenses, depending on zero crossing offers many false edges since any inflection point of
smoothed image can generate a zero crossing in the Laplasian image. Therefore, information
about zero crossing should be post processed in order to eliminate those false alarms. A
wavelet transformation is proposed as combination of first and second derivative of a proper
smoothing function for pulmonary CT images. Since the proposed wavelet transformation
combines first and second derivative of smoothed images, it provides faster and more accurate
result than other methods. Furthermore, the computational expenses can be reduced by

implementation of fast wavelet transformation proposed by Mallat et al [60).

4.3 Central Airway Extraction

In some slices the distance between bronchi and lung wall is 2 pixels; for instance right before
bronchi enters the lung area (figure 4.3). Such a close distance between bronchi and lung
wall will affect edge detection procedure since the tissue between them has quite the same
profile as vessels or further bronchi generations. Therefore, trachea and main bronchi have
been extracted prior to performing the edge detection on series of CT images.

A 3D region growing method is proposed in order to segment trachea in CT image. This
method is based on the fact that the air trapped inside the trachea appears with mean density
of -1000HU while the trachea wall intensity is in range of body soft tissues. Therefore, a

3D region growing method would be able to start from a seeding point inside the trachea
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Figure 4.3: Trachea is located within 3 pixels of lung border.

and grow inside it to the end of primary bronchi where the bronchi tree has entered into
the lungs. The CT images studied in this thesis are acquired from children in age of 5
to 15 with slice thickness of 5mm. These thick slices cause the tree to look disconnected
from an image to the consequent one due to large displabement of bronchia tree from a slice
to adjunct slices. Therefore, conventional region growing methodology should be modified.
" Especially close to second branchia branches where these displacements are increased to
such an extend that air way tree in consecutive slices may not overlap at all. In case of
occurrence of this phenomenon, the proposed region growing scheme will find the initial seed
in the next slice by searching the extracted region neighborhood area in 150% size of bronchi
in the current slice. Then each region of interest will be verified based on its profile and éize.
The remaining part is to automatically find a seeding point inside the trachea. For locating
the first seeding points, trachea extracted from the highest slice by wavelet edge detection
described in section 4.2.1 is used. Then center of trachea would be used as the seed point for
the next slice till algorithm reaches bifurcation. For the slices lower than bifurcation, overlap
between locations of currently extracted bronchi and low HU values would be considered as

candidates of bronchi regions. Result of this process on a series of CT images is shown in
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figure 4.5.

4.4 Lung Segmentation in Pulmonary CT images

In CT images, air will appear with a mean intensity of approximately -1000 Hounsfield units
(HU), most lung tissue will be in the range of -910 HU to -500 HU, while the chest wall,
blood, and bone will be higher (well above -500 HU) [47]. Histogram of a thorax CT image
is shown in figure 4.6. Each pulmonary CT pixel can in general be generally divided into
2 major types of voxels!, 1) voxels within the body soft tissues including the chest wall
structures, vessels, muscles and 2) low-density voxels in the lungs, the airway tree or outside
the body. Because of significant differences in intensity between the soft tissues and air
trapped inside the lung, the lung border is considered as high inflection points of the image;
hence applying the wavelet transformation is described in section 4.2 will point out these
singularities in the images.

Image intensities vary in different studies due to inconsistency in the dose of radiation
or variation in imaging devices. Therefore, each image is enhanced to purge these variations
between different images acquired in different studies. In addition, a global transforma-
tion, shown in figure 4.4 is applied to each image pixel values in order to not only increase
the contrast difference between body and lung, but also between the body tissue and the
connective tissue fibers, interstitum, that is attached to the lung border or diaphragm; to
introduce higher singularity on the edges of interest. This transformation decreases the
wavelet edge detection sensitivity in the areas outside of the lung, so those artifacts related
to contrast difference between the body objects are eliminated and no post-processing step
is required to distinguich between the lung edges and other discontinuities inside the body
voxels. Moreover pixel values higher than average body pixels were trimmed to avoid detec-
tion of discontinuities between the bones, which are dense structures represented by average
intensity of 1000HU, and other soft tissues. After above mentioned enhancements the image

is transformed into the wavelet domain, as illustrated in figure 4.8.

1A voxel is a unit of graphic information that defines a point in three-dimensional sﬁace.



Figure 4.4: Original CT study.
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Figure 4.4: Original CT study. (cont)

Once the mask is obtained using the method described above, lungs are extracted in
each CT image. One of the advantages of proposed method is that each CT image can be
processed independently of the other images in the studies. This illustrates great advantages
of the proposed method. One of these advantages is that the error in segmentation of one
slice would not propagate to any other processed slices. The error propagation is the common
disadvantage of other methods including region growing and active contours in which the
initial seed points or contour of evolution has to be chosen from the previously processed
image. However, proposed method could proceed further after. the segmentation process
in 3D space in order to generate continuously smooth borders. This process potentially
can point out attached nodules to the lung wall as will be described later on. A selected
series of CT images taken from a patient along with corresponding segmentation results are
illustrated in figures 4.9 and 4.10.

The second advantage of processing each image individually is that a particular number
of images can be processed regardless of other consecutive images and the number of taken
images in the study. This not only provides flexibility to process each individual image
but also outperforms the other dependence method in the processing speed. Each study
can generate hundreds of images from the pulmonary region when the slice thickness in

the acquired series becomes small; hence a enormous number of images may require to be
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Figure 4.5: Extracted bronchi tree in a CT study.
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Figure 4.5: Extracted bronchi tree in a CT study. (cont)
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Figure 4.5: Extracted bronchi tree in a CT study. (cont)

Figure 4.6: Original thoracic CT image and its histogram.
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Figure 4.7: (a) Original thoracic image that interstitum pointed on with an arrow
(b)transformation function for enhancing the contrast between interstitum and actual lung bor-
ders.
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processed prior to processing of the slices taken from region of interest. For example an

experiment showed that for processing the 48th slice in a series of images a region growing
method necessitates 112 seconds whereas the proposed method extracts the lung in about 107
seconds on a computer with 1.73GHz L2 processor and 512MB RAM. After segmenting the
lung in the pulmonary images, the extracted regions could be passed to the next processing

stage depending on the application that the CAD system has been inclined to be developed

for.
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(a) )

(e)

Figure 4.8: (a) 2D wavelet transformation, shows the high scales (b) edge map image (c) obtained
edge mask from high scales. (d) wavelet transformation in the first scale (e) Final mask.



Figure 4.9: A series of DICOM CT images from one patient.



Figure 4.9: A series of DICOM CT images from one patient. (cont)



Figure 4.9: A series of DICOM CT images from one patient. (cont)



Figure 4.9: A series of DICOM CT images from one patient. (cont)
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Figure 4.10: Extracted lung from the series of DICOM CT images illustrated in figure 4.9. Black
blocks represent that nothing was extracted as lung.
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Figure 4.10: Extracted lung from the series of DICOM CT images illustrated in figure 4.9. Black
blocks represent that nothing was extracted as lung. (cont)
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Figure 4.10: Extracted lung from the series of DICOM CT images illustrated in figure 4.9. Black
blocks represent that nothing was extracted as lung. (cont)




Figure 4.10: Extracted lung from the series of DICOM CT ima
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4.5 Selective Enhancement Filter for Nodules o
Vessels, airways, aerated lung and possibly abnormalities can be found inside the lung in
each pulmonary CT image. Among those, airways and aerated lung appear as dark objects
whereas vessels and other focal abnormalities including nodules are seen as a bright object
due to their X-ray attenuation level. Therefore, low intensity pixels can be eliminated when
there is a problem of nodule detection. Thresholding may be considered to segment the
nodule in the images but thresholding of the original CT images may confront to the following

issues:

1. Some nodules have very low HU and low contrast which makes the proper selection of
the threshold value very difficult. Eventually choosing a low threshold value dramati-

cally increases the false positives.

2. Many nodules have intensities similar to those of the vessels and bronchia walls which
bring difficulties into the picture during the extraction of nodules with low false posi-

tives.

3. Juxta-vascular and pleural nodules are required to be detached from the connected

normal anatomical structure.

Vessels and nodules usually appear with quite the same intensity (~ OHU) in the CT images.
Despite holding the similar intensity, vessels are formed as tubular structures while nodules
are shaped as spherical structures, except for pleural nodules. Extraction of spherical struc-
tures within the images reduces the number of false positives substantially; hence utilization
of a 3-D enhancement filter which ignores tubular structures while enhancing spherical ones
is considered as a pre-processing step to the nodule classifier module.

A selective enhancement filter sensitive to the shape and intensity is proposed as a pre-
processing step and as one of the inputs to the nodule classifier. This filter is based on
eigenvalues of matrices formed from wavelet transformations of the pulmonary CT images.

A typical well-circumscribed nodule profile is illustrated in figure 4.11. This profile can



X-Ray sttanuation (HU)

Figure 4.11: (a) 3D rendered thoracic CT image. (b) 2-D profile of the nodule in the left lung
lube.

be accurately approximated by a discrete Gaussian shape function [30, 31]. It is known
that the wavelet transformation would provide its best performance if the mother wavelet is
defined as similar as possible to the information of interest in the image; hence spline and its
derivatives are chosen as wavelet bases of employed wavelet transformations. Upon applying
derivative of spline function (figure 4.12) to an image, smoothed derivatives of the original
image are determined, equation (4.4).

Lung nodules are usually denser at the center so their 2D X-ray attenuation, HU, profile at
each axial slice has a maxima around the center and then gradually decreases upon reaching
the borders. Due to this well-defined characteristic, nodules are considered as Gaussian
shaped structures in many studies 30, 29, 63, 64]. Lung nodules smaller than lcm are the
spotlight of this thesis. These types of nodules occupy a few pixels within each slice so
their intensity profile can be approximated by a Gaussian function. The pulmonary nodules,
except for pleural nodules, are assumed to be defined as Gaussian shaped structures in order

to design the enhancement filter. Assuming that the intensity of a nodule is defined as

2 2 2
flay,2) = eop(- =L (43)



53

2 T T Y T T T Y T T
*
Eo-..’..‘...Q.'..“‘....’.“"' @ ® 0 0.0 0 5 60000 0.9 0 0 000 06000000 0 o4
.
1 1 1 1 \ 1 1 L 1
as 2 15 1 Q5 0 05 1 15 2 25
1 T Y T T T T T T T
e
gob'..'...’.'......".'....". .'...‘."."...........""-
® .
1 1 1 1 1 1 1 L ]
55 2 1.8 ] a5 [1] 05 1 15 2 25
05 T T T T T T T T T
L Y
L]
Eo-oo'voo-‘o.o‘o'o.o-o.oov" ¢ e ® 2 0060000 e e e o]
. *
P
1 1 1 1 1 1 1 1 1
035 2 -t -1 05 0 05 1 15 2 25
02
T T T .I...' T T T T T
.' L4
aohotooootoco'ooo.OO". °. PR R R R I IC A TSP APAR B
* '..
.
) L 1 1 1 MY ] 1 1
9
28 2 -15 -1 05 [} as 1 15 2 28
01 T T JL I T T T T Y
o * -
00'0"‘.'. .'.
30"”’ .., .."'......—
- .. ..‘.’.
.
o 1 1 L 1 1 Pttty ] ]
-5.5 2 -1.5 - a5 0 s 1 15 2 25

Figure 4.12: Wavelet transformation function over each scale.

Where o represents the scale of the nodule. Hessian matrix corresponding to each voxel over

the thoracic series of images is defined as

f:n: fzu fzz
H=\|fu= fu fu (4.9)
fzx fzy fu

Where fop = 83_:)(: f. For this idealized shaped nodule defined by equation 4.8, all six mixed
second derivatives fzy, foy, fzes fyzs f2zy and fyz are zero in the center while f., f,,, and f;,
are equal to -;‘;. Therefore, eigenvalues of the hessian matrix ();, A, and )3) are equal to
—-%. Suppose eigenvalues are indexed such that |A;| > |Az] > |As].

L= ’-:\\—‘l‘-} is considered as likelihood ratio of existence of a spherical object over a lin-
ear/tubular structure. L assigns a value of 1 to a spherical object, defined in equation 4.8,
while offering a lower value to other possible objects. For example L offer a value close to

zero to a tubular structures since A3, minimum directional second derivative value, is very
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close to zero for this class of objects. The simple likelihood ratio between eigenvalues does

not provide high level of specificity. A reason for this is that the filter is completely sensitive
to the basis function wavelets and also small eigenvalues produced by an arbitrary object
can still lead to a significant response. Therefore, the likelihood ratio is multiplied by a
function, M, more sensitive to the pixel intensity to overcome lack of adequate discrimi-
natory power for distinguishing nodules from other objects. To determine this function, it
should be considered that magnitude of ); is receiving high attention in this manner since
its magnitude automatically indicates existence of a bright object in a dark background as of
a nodule. Moreover M should provide relatively much higher response to a spherical shaped
rather than tubular shape objects in the images. This brings a better separation between
vessels and nodules. One of the simplest and suitable functions for this manner is M = M.
Since nodules are bright objects in the dark background, it should be also brought to the
consideration that the eigenvalues of H are negative numbers. Consequently the filter output
is defined as:

EF(z,y,2) = |’\_3E .o A3, A2, 0 <0 (4.10)

Where- o, is scale of the mother wavelets and is multiplied to the function for the nor-
malization purposes. A number of researches have employed enhancement filters mostly to
distinguish lines in images [65, 66]. It should be noted that the filters employed in these
studies are likely to produce a large response for a nodule-like object whereas the introduced
filter has good sense of specificity over picking nodules and rejection of the other objects.
Sato et al. [67, 68, 69) developed a blob enhancement filter in which a empirically unknown
parameter should be determined. Although this parameter brings more flexibility, it may
be difficult to make an appropriate choice of this parameter depending on the application.
Moreover, theoretically Sato’s blob filter will produce the same outputs for these two differ-
ent objects when the diameter of a circle (nodule-like object) is equal to the long axis of an
ellipse regardless of its short axis-elongated (if the short axis is small).

The proposed filter potentially suffers from lack of accuracy due to anisotropic voxels in

3D CT images. The enhancement filter is known to provide the highest level of enhancement
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performance for 3D images with isotropic voxels (uniform voxel spacing). Two solution come

to the picture at this point. 1) Trilinear, sinc or B-spline interpolation technique can be
employed to make the voxel size equal in the all three dimensions. Interpolation is not
only computational expensive but also can potentially affect the filter’s response. 2) It is
also possible to construct enhancement filters that can be applied directly to images with
anisotropic voxels without explicit interpolation. This type of filters are highly dependent
on the voxel spacing and should be adjusted upon changing the voxel size in each dimension.

To reduce the computational expense and complexity and to avoid insertion of any ad-
ditional information to the series of images, combination of some consecutive slices with a
simple technique, known as Maximum Intensity Projection (MIP), is employed. Basically
MIP utilizes the maximum function to generate a 2D image from a number of CT slices.
The CT slices within 5mm axial distance of the slice of interest are combined to generate
the MIP image. An example of MIP image is shown in figure 4.13. It has been proven that
support vector machines are capable of extracting the lung nodules in the image produced
by this technique.

The introduced enhancement filter can be modified for a 2D image in order to detect a
circle in a 2D image as follows. In maximum intensity projection image a nodule is presented
as a circle defined by a gaussian function as shown below

2 2
f(z,9,2) = eap(~ T ) (411)

Where o represents the scale of the nodule. Because of the similarity between 2D and
3D cases, the 2D enhancement filter is introduced based on the 3D filter formulation by

modifying equations 4.9 and 4.10:

H = f,y ﬁ:] | (4.12)
EF(z = Dol
¥ 2) = VIR A2, A1 <0 (4.13)

It should be noted that what has been discussed for a 3D enhancement filter applies to the
above-defined 2D filter also. Output of this filter is shown in figure 4.14 as an example of

its performance.



Figure 4.13: (a) Original thoracic CT image (b) corresponding maximum intensity projection
image.

Output of this filter is presented to the SVM nodule classifier to provide sense of circu-
larity/sphericality to the artificial intelligence detector.

This system considers the circularity and the profile of an object in order to classify
the certain object as an abnormality or a nodule. Usually pleural nodules are not appear
in shape of a circle in the CT images and they are attached to the lung wall; hence the
introduced enhancement filter fails to detect those nodules and present them to the SVM
classifier. To overcome this issue, another set of data consist of the objects within 1.5cm
to the lung border intensity and size is presented to another SVM classifier to detect the
pleural nodules. Generally an object bigger than lcm is a focal abnormality in that area.
This system tends to detect nodules close to the lung border since the vessels are branched are
much smaller than the nodules in that area. For the juxtapleural nodules, the segmentation
mask is smoothed by a rolling ball. The smoothing step causes this type of nodules to be
included in the segmentation and gets count as the lung area, so they would be presented to

the classifier.
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Figure 4.14: (a) MIP image chosen arbitrary from a CT study (b) fzz (¢) fry (d) fiy- (e) the
enhancement filter response.



Chapter 5

Experiments

Experimental result of the discussed methodologies through the first four chapters is provided
in this section. To present all the acquired results, this chapter is divided into subsections
where each subsection corresponds to one of the methodologies discussed in previous chap-

ters.

5.1 Nodule Detection
5.1.1 Dataset

Not having a unique dataset as a gold standard consists of various pulmonary CT studies
is a significant short come to compare the different methods. Sometimes this flaw goes too
far to the point that some researchers evaluated the performance of their approaches on a
set of synthetic nodules. Although this can be considered as an initial step to design and
evaluation of the system, it can never be considered as an assessment on a real CT data.
The data acquired from a real subject can be far more challenging for the CAD system. In
other words, a CAD system may provide a poor appraise on a real data while it can offer a
considerable performance on a synthetic data.

The database composition may have a momentous impact on the system performance.
In this research, three different databases are processed to evaluate the system on the CT

studies acquired within a spacious_variety of nodules in size and distribution.
1. CT studies acquired from child patients with the average age of 12 in The Hospital
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for Sick Children, Toronto, Canada. This dataset was reconstructed as slices of 512

by 512 pixels and slice thickness of 5mm. The CT examinations were performed on
a GE Medical System CT scanner with a protocol of 120mA to 160mA and 120kVp.
Dealing with this dataset presents a challenge due to its slice thickness. Processing
of this dataset can be challenging for many nodules detection methodologies due to
its large slice thickness (axial resolution). This low axial resolution may lead to the
loss of some small nodules by the CAD which are appear in only one slice or may
have been left between the slices. Many of the proposed methods got size as a criteria
on their decision making process, therefore they can easily miss this kind of nodules.
As described earlier, the proposed enhancement filter in this thesis is sensitive to the
resolution difference between the dimensions. In this dataset the average resolutions
in the X and Y directions are calculated as 0.7mm while the average resolution in the
Z direction is 5mm. The proposed CAD tends to provide an acceptable performance
in processing of this database even though the axial resolution is about 7 times lower

than the other ones.

2. CT studies acquired from child patients with the average age of 10 in The Hospital
for Sick Children, Toronto, Canada. The CT examinations were performed on a GE
Medical System CT scanner with a protocol of 120mA and 120kVp.This dataset was

reconstructed as slices of 512 by 512 pixels and slice thickness of 2.5mm.

3. A database is endowed by collaboration of International Early Lung Cancer Action
and Cornell University research groups to be used for the performance evaluation of
different computer aided detection systems. The database consists of an image set of
low-dose documented whole-lung CT scans. The CT scans were obtained in a single
breath hold with a 1.25mm slice thickness. Each study in this study contains over 200

pulmonary CT images.

It should be advised that these databases contain a broad assortment of nodules of

different sizes and types. The tiny nodules smaller than the area of a 2mm circle are discarded
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Patients | slice thickness | Average number of slices Sensitivity | TNs/case Fﬁ/case

Children Smm 50 88% 1 6

Children 2.5mm 62 87% 1.1 7
Adult 1.25mm 230 85% 0.8 3

Table 5.1: Performance of the proposed methodology on the databases.

since they are not the scope of this thesis while area of 3mm circle or larger is considered as
the minimum nodule size criterion by some researches [14, 17, 34, 70, 71, 3).

To appraise the performance of the proposed method performance on extraction of pul-
monary lung nodules in the CT images, 12 patients from each database are presented to
the trained system. For each database the system is trained from a patient (13 nodules on
average) and 2 healthy slices. Table 5.1 reveals the obtained performance of the proposed
method for each database. The result came out as 6FPs, 1 True Negative (TN ) per case (av-
erage of 50 slices per study) on the database taken from children with 5mm slice thickness;
7FPs, 1TN per case (average of 62 slices per study) on the database taken from children
with 2.5mm slice thickness; and 3FPs, 0.8TN per case (average of 230 slices per study) on
the database taken from adults with 1.25mm slice thickness.

Some of above mentioned FPs are nodules with size between 2mm and 3mm circles (usually
about 4mm in diameter) or the vessels moving in axial direction for more than 6mm. Tiny
nodules are usually seen with low intensity in the images due to partial volume effect of
the scanners. The CAD system missed this type of nodules mostly due to its low intensity
profile. An example of this nodule is illustrated in figure 5.1.

The obtained results are compared with previously reported studies by Computer Vision
and Image Processing group of Ryerson University [72, 73] as of table 5.2. The comparison
has been done by these two studies since all these studies have processed a common dataset,

the dataset with 5mm slice thickness.
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Figure 5.1: A tiny nodule, pointed by an arrow, on the interior part of the right lung.

Researcher Sensitivity | FP/case

Dajnowiec 1% 160

Memarian 2% 120
Current research 85% 6

Table 5.2: Comparison of performance results with previous works.

5.2 Segmentation Results

There was a very close correlation between the actual lung borders and automatically iden-
tified borders by computer. Moreover, comparison between the segmentation results and
manual segmentation of an experienced radiologist, showed that the proposed algorithm is
capable of segmenting lung in pulmonary CT images within high accuracy. The borders
were matched except in the cases where the lung border had fuzzy edges; even in these cases
the difference was less than 3 pixels. The algorithm may prove its advantage in applications
where the number of images to be processed is high and processing time is important be-
cause of its computational inexpensive nature in comparison to other existing segmentation

methods. This method does not involve any iterative steps unlike other methods such as
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Methodology Wavelet | 3D region growing | Watershed
Process time 107Sec 112Sec 144Sec
Accuracy ranking 1 3 2

Table 5.3: Comparison between wavelet, watershed and-3D region growing based methods in
terms of their segmentation speed and accuracy for one patient and the series shown in figure 4.9.

snakes, or traditional watershed transform. Results obtained from these methods have to
be modified after each iteration till they meet their termination criteria(s). A comparison
between 3D region growing [74], marker-based watershed [75], and our proposed method in
terms of speed and accuracy (comparison between the segmentation results and radiologists’
manual segmentation) is illustrated in table 5.3 for one patient and the series shown in figure
4.9. It should be noted that the processing times has been calculated upon running MAT-
LAB software on a computer with 1.7GHz processing speed with 512MB RAM. For further
computation cost reduction, the transformation can be computed with lower computation
order upon the numerical implementation of fast wavelet transform algorithms [60]. More-
over, the segmentation accuracy of the proposed method is quite high. Comparison between
obtained results and Dajnowiec et al. [74] (Dajnowiec combined multilevel thresholding with
3D region growing to obtain better performance) results on the same series of DICOM im-
ages has shown that the proposed method outperformed the algorithm in case of speed and
accuracy. An example of this comparison is illustrated in figures 5.3(a). Since the proposed
method uses edge information to segment the lung in CT images, the method may introduce
an error if the slices get processed independently and a large portion of patient’s lung was
filled with ‘la‘rge opacities in a way that the opacity connects cross borders of lung together
as shown in figure 5.2(a) and (b). However, 3D rendering of lung or anatomical knowledge
can be used to overcome drawback of processing slices independent of each others.

Most segmentation algorithms tend to have segmentation error where trachea or bronchi
gets too close to the lung border. Distance between lung and airway tree can become to
be only a few pixels and the soft tissue between airway and lung has indistinguishable
profile as small vessels. Because of de-noising characteristic of wavelet transformation in

its expansions, these tiny borders may be considered as noise and consequently ignored by
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(b)

Figure 5.2: (a) An original thorax image(b) its segmentation result.

(b) ()

Figure 5.3: (a) An example of 3D segmentation result (the original thorax image shown in figure
5.4) (b) and (c) Bowel gas segmentation as result of watershed (slice forty eighth in the series).
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algorithm. Therefore, trachea and main bronchi were extracted through the series and their

edges ignored in the lung segmentation steps. Figure 5.4 shows a thoracic CT image with

and without precursor trachea and main bronchia ,segrnentation.

5.3 Automated Density Analysis in Dynamic CT

Dynamic Computed Tomography involves repeatedly imaging the organ of interest over time.
It can generate a tremendous number of CT images for analysis with a single experiment.
Manual segmentation of each image to be studied is very time consuming. Fast automatic
segmentation of the lung and subsequent evaluation of its respective density is a prerequisite
for any clinical application of this technique. Several studies have examined dynamic CT
images of thoracic organs such as the heart {76, 77, 78] and solitary pulmonary nodules [79).

Acute Respiratory Distress Syndrome is a form of acute lung injury of multiple etiolo-
gies including pneumonia, sepsis, severe trauma and blood transfusions. Pathologically it is
characterized by diffuse alveolar damage with epithelial and endothelial damage, pulmonary
edema, inflammatory exudates and cellular proliferation. The typical CT appearance of
ARDS is of bilateral ground-glass opacification with a gravity-dependent gradient and at-
electasis/consolidation most commonly in the middle and basal parts of the lungs. The
affected parts of 'the;lung have increased attenuation compared to normal lung. An example
of normal lung and lung affected by ARDS is illustrated in figure 5.5.

‘Dynamic CT with a cine loop technique was performed on a rabbit model with ARDS
induced by repeated saline lavage. Dynamic CT was performed on an 8 detector multislice
CT scanner (GE Lightspeed, GE Medical Systems, Milwaukee,WI). Imaging consisted of
simultaneous acquisition of 4 slices (one volume) every 0.2 seconds. Images were acquired
for just under 10 seconds producing 192 images per scan. The tube voltage was 120 kV and
the tube current was 120 mA. A 512 x 512 matrix was used and the slice thickness was 5mm.
The display field of view was 16cm. The voxel size was 0.3125x 0.3125 x 5mm with an average
slice volume of 128cm?®. Use of between 4 and 6 volumes of 4 slices each enabled imaging of

the whole chest throughout the respiratory cycle. Therefore, each animal generated a dataset
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() (d)

Figure 5.4: (a) Thorax CT image. (b) Segmentation result after airway extraction. (c) Segmenta-
tion result without precursor trachea and main bronchia extraction. (d) Extracted lung illustrated
on black background.
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Figure 5.5: (a) Healthy lung (b) affected lung with ARDS.

of between 768 (192 x 4) and 1152 (192 x 6) images. Images were reconstructed using a bone
detail algorithm for lung visualization. A series of selected images over a respiratory cycle
are shown in figure 5.6.

The automatically segmented images were compared with manually segmented images
obtained by an experienced radiologist to verify the accuracy of the proposed method. A
close correlation was found between the segmentation results. The volume between these
segmentations was calculated as the system error. The average segmentation error was
calculated as 1mmS3 in a respiratory cycle. For comparison purposes, the same CT slice was
segmented using the wavelet transform software and an established image processing software
developed for the MacIntosh computer (Osirix) (figure 5.8). The Osirix software performs
segmentation using a 2D growing region algorithm. This requires user-defined upper and
lower Hounsfield unit thresholds and placement of initial seed points within the lung. Where
the two lungs are separated by the mediastinum, two seed points must be placed one for each
lung. We found in lungs with ARDS, multiple different thresholds must be trailed to segment
the lung effectively and différent thresholds are needed depending on the distribution and
severity of the ARDS. This means that using this software becomes time-consuming and
labour-intensive and can only be described as semi-automatic. In contrast, our software is
able to automatically segment the lung affected with ARDS with a high degree of accuracy
even when the lung is densely consolidated.

A further processing step allowed calculation of the volumes occupied by ventilated lung
(-900 to -500 HU) and -atelectatic lung (-300 to 200 HU) over each respiratory cycle. An
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Peak inspiration

Expiration

Figure 5.6: The same thoracic level over a single respiratory cycle along with extracted lung
consist of a series of 8 scans separated temporally by 0.4Sec.
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Figure 5.7: Calculation of the volumes occupied by ventilated lung and atelectatic lung over each
respiratory cycle at each thoracic level (a, b, and c) and for the whole lung (d).
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Figure 5.8: (a) Original thoracic image (b) Segmented by Osirix (c) segmented by the proposed
method. .
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example of this analysis is illustrated in figure 5.7. This shows how the amount of atelectatic

lung increases as expected towards expiration with a corresponding decrease in the amount
of ventilated lung. In addition, with our technique the lung can be separated into user
definable regions such as posterior and anterior subdivisions. Division of the lung into these
subdivisions was made using the thoracic bones as anatomical landmarks. As a result of this
regional dissection, the distribution of lung densities can be temporally evaluated in each
subdivision. This demonstrates how temporal changes are more marked in the posterior
subdivision of the lung.

Finally, lung density analysis was performed by calculating the number of voxels within
each range of HUs multiplied by the volume of each voxel in the series. Selected results of

density analysis at different thoracic levels are shown in figure 5.9.
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Chapter 6 -

Conclusion and Future Work

6.1 Conclusion

The objective of the current research was to develope an automated computerized system to
facilitate the diagnosis process for thoracic radiologists. The two main requirements for such
a system are: the system has to provide low number of false positives per case and the system
" must have high sensitivity. To reach this goal, a collaboration between the Department of
Electrical Engineering of Ryerson University and the Medical Imaging Department of the
Toronto Hospital for Sick Children is established. A computer-aided diagnosis system is
developed to detect the pulmonary lung nodules in CT images. The CAD system tends
to outperform previously introduced methods in number of false positives and sensitivity
measures. Nevertheless, the system may be modified to offer better performance in detection
of pleural nodules in its later extensions in order to reduce the number of false positives.

A nodule enhancement filter is designed in order to eliminate the vessels before offering
the data to the classifier module. The filter not only enhances the nodules in the series but
also suppresses other structures including the blood vessels. This valuable step considerably
reduces computational expenses, processing time, and the number of false positives in the
CAD system. Basically the enhancement filter highlights region of interests for the classifier
module and then the classifier module decides whether the emphasized region is an abnormal
area or a normal one.

The initial step in processing an organ is segmenting the organ-of interest in medical

72
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images. A fast and reliable segmentation method is proposed through this thesis. Accuracy

assessment of the segmentation method was done by comparing the segmentation result
with manual segmentations of experienced radiologists. In addition to this the segmentation
results of 220 CT images by this method is verified by a thoracic radiologist in prior to
utilizing the proposed segmentation method in the CAD system. Achieving the objective of
this research is fully depended on the accuracy of this step since any faulty segmentation
may lead to missing a focal abnormality.

The pulmonary nodules, except pleural nodules, are seen as spherical objects while the
vessels are tubular structures. An enhancement filter is introduced to emphasize on the
spherical shaped objects inside the lung. This filter is based on the wavelet transformation
and eigenvalues of the Hessian matrix at each point. Most false positives are reported to
be the vessels. Employing this filter reduces the number of false positives dramatically.
Basically, the filter avoids presenting the tubular structures (vessels) to the classifier. The
classifier is responsible for classifying of the nodules from other region of interests in each
thorax image. Various types of classifiers including neural network and LDA have been
employed by researchers to perform a classification task. However, a least-squares support
vector machine scheme is utilized in this research to perform such a classification task.
Support vector machines are reported to provide better results in classification problems,
especially when the problems are nonlinear such as the nodule detection problem. Least-
squared support vector machine is preferred over the conventional SVM due to its simplicity
and providing unique optimized values for each training set. Since the performance of LS-
SVM is highly dependent on the provided training set, an assortment dataset of nodules
are presented to the classifier. Upon employing this scheme it turns out that it is able to
detect the nodules within an acceptable number of false positives per case as defined for a

commercial CAD system used in a hospital with high level of sensitivity.



6.2 Future Works “
A lung nodule detector CAD system was implemented through the course of this study.
However, the current system can be improved to provide lower number of faise positives
and a higher true negative rate. The proposed system can be developed both in detecting
region of interest, by improving the nodule enhancement filter to bring more sensitivity to
unusual abnormalities cases, and the nodule classifier module. Nevertheless, gfowth of the
gold standard dataset in number and variety provides better training set to the intelligence
system and leads to robustness augmentation of the CAD system. The gold standard dataset
must be acquired under a unique settings (scanner, does, axial resolution and etc.) to provide
a better understanding of the nodules for the SVM classifier. Furthermore, a higher CT
images quality can be achieved by imposing the requirements of the scanner, the radiation
dose, the acquisition setup, reconstruction protocol and utilization of state-of-art scanners.

The proposed enhancement filter is downgraded from a 3D filter to a 2D filter due to
the low axial resolution in the studied datasets acquired from children. This dimensional
reduction decreases the filter sensitivity to some nodules which are entrapped between two
adjunct blood vessels in two cases. This happens because of reduction in information as
an effect of projection of 3D data into a 2D space by MIP. Proéessing datasets in which
the axial resolution is close to the other direction’s, provides an opportunity to employ the
enhancement filter in its 3D form.

Combination of the proposed enhancement filter with another filter which enhances
pleural tail nodules in the images, increases the performance of the system. The proposed
enhancement filter is computationally expensive in a sense that it is based on eigenvalues of
the Hessian matrix. Having employed a mother wavelet that discards the eigenvalue calcu-
lation of the matrices modestly reduced the computational expenses of the proposed CAD
system.

Although all the pleural nodules were detected through this study, most of the FPs are
introduced by soft tissues, including the connecting tissue of each lung lobes. Therefore, up-

grading the methodology to detect the pleural nodules in this study may noticeably decrease
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the number of FPs in each case study.

Quantitative CAD systems and Dynamic CT have many potential applications. As al-
ready discussed, it may be used to assess changes in lung attenuation with time which occur
in ARDS and to assess the effect of different therapeutic interventions in this condition.
Changes in lung attenuation may also be used to assess diseases in which air trapping is an
important feature such as emphysema and asthma [80]. Similarly, in foreign body aspira-
tion it may be used to infer the location of the foreign body by identifying a region of lung
which does not change in volume with respiration. Dynamic CT can also be used to look at
patterns of contrast enhancement with time. This may be useful in the characterization of
solitary pulmonary nodules (benign vs malignant) {81] and has also been shown to enable the
characterization of different types of pulmonary edema [82]. A further potential application
of dynamic CT is the assessment of diaphragmatic movement which may be abnormal in
both neurological disorders and respiratory disease. Finally, dynamic ventilation imaging
with four-dimensional pulmonary CT has recently been proposed as a way of examining

regional ventilation and as an aid to radiotherapy planning for lung cancer [83).
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