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ABSTRACT

A Numerical Study of Free Convective Heat Transfer within
Domed Skylight Cavities

AmirAbbas Sartipi, M.A.Sc., 2007
Department of Mechanical and Industrial Engineering, Ryerson University
Domed skylights are important architectural design elements to deliver daylight and

solar heat into buildings and connect buildings’ occupants to outdoors. To increase the
energy efficiency of skylighted buildings, domed skylights employ a number of glazing
layers forming enclosed spaces. The latter are subject to complex buoyancy-induced
convection heat transfer. Currently, existing fenestration design computer tools and
building energy simulation programs do not, however, cover such skylights to quantify
their energy performance when installed in buildings. This work presents a numerical
study on natural laminar convection within concentric and vertically eccentric domed
cavities. The edges of domed cavities are assumed adiabatic and the temperature of the
interior and exterior surfaces are uniform and constant. The concentric and vertically
eccentric domed cavities were studied when heated from inside and heated from outside,
respectively. A commercial CFD package employing the control volume approach is used
to solve the laminar convective heat transfer within the cavity. The obtained results
showed steady flow for small Grashof numbers. For moderate and large Grashof numbers,
depending on the gap ratio and the cases of heating from inside or outside, the flow may
be steady or transient periodic with a single vortex-cell or multi vortex-cells. The Nusselt
number for the case of heated from inside is greater than the case of heated from outside.
The numerical results show that the changes in the gap ratio have smaller effect on Nusselt

number in high profile domed skylights than lower profile domed skylights.
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NOMENCLATURE

Symbol Description

A : surface area of the control volume face e

A, : surface area of the control volume face n

A : surface area of the control volume face s

Ay : surface area of the control volume face w

A : surface area of the interior dome wall

A, : surface area of the exterior dome wall

¢ d : correlation coefficient and exponent for Nusselt number, equation
(26)

Cp : specific heat at constant pressure

Gr : Grashof Number, Gr = gB(T) - Ti)L3 N

g : gravitational acceleration (9.81m/52)

h. : convection film coefficient of the domed enclosure

K : fluid thermal conductivity

L : local gap spacing between the dome layers (R, — R;)

Limax : maximum gap spacing between the dome layers

L* max : dimensionless maximum gap spacing between the dome layers

(L* max=Lmax/Lmax=1)
Lmin : minimum gap spacing between the dome layers

L* pin : dimensionless maximum gap spacing between the dome layers
(L* min=Lmin/Lmax)

Nuy; : Nusselt number at the inner dome wall

XViii



Nu, : Nusselt number at the outer dome wall

P : pressure

| ¢ : pressure defect (P’=P-P.)

p* : dimensionless pressure

P, : hydraulic pressure

Pr : Prandtl number, Pr = v/a

i Conv : convection heat transfer flux at the interior dome wall
Jeond : heat transfer flux by pure conduction through the domed enclosure
Jo Conv : convection heat transfer flux at the exterior dome wall
r : position radius

r* : dimensionless position radius (r*=r*/L;;.x)

R; : interior dome radius

R*; : dimensionless radius of interior dome surface

R, : exterior dome radius

R*, : dimensionless radius of exterior dome surface

Ra : Rayleigh number (Ra = Gr-Pr)

Ra’ : modified Rayleigh number, equation (3.7)

T : temperature

T; : temperature of the inner dome wall

T, : temperature of the outer dome wall

T* : dimensionless temperature T* = (T - T,)/ (T; — T,)

t : time

u; : velocity components in the R direction
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Up : velocity components in the 0 direction

U, : dimensionless velocity components in the r direction
Ug : dimensionless velocity components in the 8 direction
Vv : fluid velocity

Greek Symbols Description

B : fluid thermal expansion coefficient

€ : distance between the center of the interior and exterior surfaces
(eccentricity)

) : dimensionless gap spacing between dome layers (6 = L/R;)

o : dimensionless gap spacing between dome layers (&’ = L/R,)

18 : dynamic viscosity

% : fluid kinematic viscosity

0 : position angle

0o : dome truncation angle

p : fluid density

T : dimensionless time

Ty : shear stress
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CHAPTER 1

LITERATURE REVIEW

1.1 Introduction

Domed skylights are perhaps the most important architectural design elements to
deliver daylight and solar heat into buildings and connect the occupants to the outdoor
environment. Using renewable energy sources such as daylight and solar heat is one of
the requirements for sustainable building design, which aims to minimize building energy
use and environmental impact, and improves the quality of the built environment for
occupants. Domed skylights suit almost any type of building, with small size domes
found in residential buildings, houses and retail stores, and large size domes found in
industrial buildings and shopping malls. If properly designed, domed skylights may
reduce building energy usage for lighting, cooling and heating. In addition, bringing
daylight indoors and connecting occupants to the outdoors may have positive effects on
occupant mood, health and well being. Despite their widespread use, the thermal
performance of domed skylights has not been well understood. Current design tools,
such as building energy simulation software and fenestration design computer tools do

not cover such types of skylights.



Domed skylights are made in different sizes, from low profiles to full
hemispheres. The gap spacing between double glazed domed skylights may be uniform

or non-uniform. The gap is typically filled with air.

1.2 Overview

This overview addresses convection heat transfer in domed skylights cavities with
uniform/non-uniform cavity gap spacing. The first chapter presents basic background on
natural convection heat transfer and heat transfer within and around skylight surfaces and
the second chapter presents the mathematical modeling of natural convection in spherical
coordinate systems and the boundary conditions of the problem at hand. In addition,
Chapter 1 covers dimensionless governing equations and boundary conditions of natural
convection within domed skylight cavities. The third chapter explains numerical
modeling and numerical accuracy, as well as the validation of the numerical model. The
fourth chapter presents numerical results, including streamlines, isotherms and Nusselt
number for natural convection within domed skylight cavities with uniform/non-uniform
gap spacing. The fifth chapter discusses the results and gives recommendation for future

studies.

1.3 Natural Convection Flow

In natural convection, fluid motion is due to a fluid density gradient and body

forces. The body force is gravitational, and the density gradient is due to a temperature



gradient. The presence of a fluid density gradient in the gravitational field is the source
of buoyancy-induced natural convection. Natural convection flow is a combination of
fluid dynamics and heat transfer phenomena and coupling between these two phenomena
make natural convection flow a complex subject to study. Often natural convection heat

transfer equations are given dimensionless form for general application.

1.4 Dimensionless Numbers

The dimensionless variables involved in natural and forced convection include the
Reynolds number (Re), Grashof number (Gr), Prandtl number (Pr), Rayleigh number

(Ra) and Nusselt number (Nu).

The Reynolds number is defined as the ratio of inertia to viscous forces in the
velocity boundary layer. The Reynolds number is an important dimensionless variable in

analyzing flow type when there is a substantial velocity gradient. It is defined as:

Re=—— (1.1)
v

where V is the fluid velocity, L is the characteristic length and v is the kinematic viscosity

(Wp). The effect of Reynolds number is important in forced convection.



The Grashof number characterizes the ratio of the buoyancy force to the viscous
force acting on the fluid. The Grashof number in natural convection plays the same role

as the Reynolds number in forced convection. It is defined as follows:

Gr= < (1.2)

where B is the volumetric thermal expansion coefficient, g is the gravity acceleration, T},

and T, are the hot and cold boundary temperatures, L is the characteristic length, and v is

the kinematic viscosity.

The Prandtl number is a dimensionless fluid property and is defined as the ratio of

momentum diffusivity (v) to thermal diffusivity (o):

(1.3)

where thermal diffusivity of the fluid is o=k;/pC,

The Rayleigh number is the product of the Grashof number and the Prandtl

number. It is defined as follows:



T -T)O
Ra=GrPr= s fT,~1.) (1.4)
vx

The Nusselt number characterizes the ratio of heat transfer by convection to the

heat transfer by pure conduction and it is defined as follows:

Nu — qCI}I’lV —

(1.5)
qcrmd kf

where q,,,, =k, AT, ~T.)/L and gq,,, =hA(T, —T,). ke s the fluid thermal

conductivity at the mean temperature 7,,=(7,+7.)/2, A is the surface area for heat

transfer, and h is the convective heat transfer coefficient.

1.5 Previous Work

Heat transfer in double-glazed domed skylights is a complex subject to study. The
heat transfer depends on the skylight’s profile, gap thickness and boundary conditions.
Previous studies are grouped into three different categories that are reviewed separately,

as follows:

e Laminar natural convection within domed cavities

e Natural convection from the interior surface of domed skylights



e Forced and natural convection from the exterior surface of domed skylights

1.5.1 Natural Laminar Convection within Domed Cavities

Although a few researchers have investigated heat transfer within concentric or
vertically eccentric spheres and circular cylinders, there is very limited information
available on heat transfer within domed cavities. Recently, Laouadi and Atif (2001) used
the control volume method to address this and found the critical gap spacing that
maximizes the heat transfer for different truncation angles in concentric domes when
heated from outside under steady state conditions. They found that, for a small gap
spacing ratios (gap spacing to radius ratio 6< 0.1), convective heat transfer in hemisphere
domes (truncation angle of 90°) is about 13% higher than in low profile domes
(truncation angle of 30°). They also developed the heat transfer correlations for uniform
gap thickness in domed skylights as a function of dome profile, gap spacing, inner radius
and Rayleigh number. The results apply when the interior surface is at a temperature

lower than the exterior surface.

McGowan et al. (1998) used a numerical approach and found the Nusselt number
for natural convection within pyramid and barrel vault (concentric half-circle cylinder)
skylight cavities. McGowan et al. (1998) also used the thin boundary layer assumption to
find the Nusselt number for natural convection from the interior surface of barrel vaults
to the indoor environment. For natural laminar convection flow, they calculated the

Nusselt number as follows:



2.8
In| 1+ 2.8
Nup,,

where Nu,, =0.464Ra'*

Nulam =

(1.6)

For natural convection turbulent flow McGowan et al. (1998) derived the Nusselt number

as follows:

Nu,, =0.122 Ra""”? (1.7)

turb

McGowan et al. (1998) used the following equation to combine laminar and

turbulent Nusselt numbers:

Nu = (N, )" + (N, )] (1.8)

Bishop et al. (1964) set up experimental testing to study the flow patterns in
concentric spheres for diameter ratios (Doy/Di,) of 1.19, 1.72 and 3.14 when heated from
inside. In their experiment, the temperature difference between the inner and outer
spheres was 5°, 15°, 30° and 60° F. They visualized three different flow patterns,
depending on the gap size and temperature differences. The first flow pattern, named the
“crescent-eddy” type, occurred at a small temperature difference, at the largest diameter

ratio (outer diameter to inner diameter ratio of D,/ D, =3.14) and at the smallest



diameter ratio (D, /D, =1.19), while, for the intermediate diameter ratio (D, /D, =1.72),

it happens for all temperature differences (5°F < AT <30°F ). They found a thin layer
of high speed fluid near the spheres and slow moving fluid at the central crescent-eddy.
The second flow pattern, named the “kidney-shaped-eddy” type, occurred at the large
diameter ratio at a moderate to large temperature difference. The third flow pattern,
named the “falling-vortices” type, occurred at a small diameter ratio and at moderate to
high temperature differences. This is an unsteady flow characterized by the formation and
shedding of vortex cells. These vortices appear in the upper region near the symmetric
axis in counter-rotating pairs. Upon the formation of the second pair of counter-rotating
cells, they merged together. Bishop et al. (1966) extended the previous experiment and
established the convective heat transfer correlation in concentric spheres for diameter

ratios from 1.19 to 3.14 when the Grashof number varied from 2x10* to 3.6x10°.

Yin et al. (1973) studied the heat transfer within concentric spherical cavities with
the diameter ratio (D,/D;) in the range of 1.09 to 2.17 for Grashof numbers in the range of
1.7x10° to 1.5x10”. Yin et al. (1973) defined the transition Grashof number as the value
of the Grashof number at which any unsteadiness can be observed in the flow field. They
found that the transition Grashof number is dependent on the diameter ratio. They also
found the transition Grashof number for different inverse relative gap thickness (Dy/L).
Their experiments showed that the transition Grashof number decreases as the inverse

relative gap thickness increases.



Caltagirone et al. (1980) studied heat transfer and flow patterns between
concentric spheres numerically using a two-dimensional axisymmetric stream function.
Their study was limited to small Rayleigh numbers from 3x10” to 5x10*. They found
mono-cellular flow, for relatively small Rayleigh numbers and for high Rayleigh
numbers, depending on the initial conditions, and the solution might converge to
mono-cellular or bi-cellular flow. Their solution converged to bi-cellular flow when a

negative velocity is imposed at the top of the cavity.

Chiu and Chen (1996) investigated transient convection heat transfer between
concentric and vertically eccentric spheres. They used a numerical model to study the
case of heating from inside when the radius ratio is two, with air filling the cavity. They
used three different setups; concentric, outer sphere’s center below the inner sphere’s
center and outer sphere’s center above the inner sphere’s center to investigate the
convective heat transfer. The numerical results showed that the heat transfer and flow
patterns depend on the Rayleigh number and eccentricity. For concentric spheres and for
vertically eccentric with the outer sphere’s center above the inner sphere’s center, they
found only one steady vortex-cell flow for Rayleigh numbers up to 10°, but for the outer
sphere’s center below the inner sphere’s center they found multi-cellular flow, which
start to form at a critical Rayleigh number Ra = 10°. At first, a vortex cell formed on top
of the main cell, then as time passes, another cell appears in the bottom part of the cavity.

They also found that heat transfer is greater if the inner sphere’s center is lower than the

outer sphere.



1.5.2 Natural Convection from Interior Surface of Dome

Although there are some experimental and analytical studies available on natural
convection for different geometries, such as long cylinders and spheres, there is very little
information available on natural convection from concave surfaces. Chen and Cheng
(2002) designed an experimental investigation for flow visualization to validate their
numerical model of heat transfer and flow in an inclined arc-shape enclosure. They

assumed that the curved surface is hotter than the flat surface. They found that the

Nusselt number is appreciable for Grashof numbers larger than10*, and with increasing
Grashof number, the overall Nusselt number will increase. Analyzing the flow pattern
for the inclination angles of 0° and 180°, they found two symmetric cells when 10* <Gr
<1()7, but when the inclination angle is 180°, there is thermal stratification and symmetric
vortices are relatively weaker than the case when the inclination angle is 0°. For other
angles, they visualized a one-cell pattern and a thermal boundary forming along the flat
wall. From the numerical results, they suggested the correlation between Nusselt number

and Grashof number as:

Nu=a(0)Gr"?  for Pr=0.7 and 10* <Gr<10’ (1.9)

where

a(6) !

T 05155-0.02776

(1.10)

b(6)= 0.1539-0.04716
1-0.27296 - 0.006816>

10



Yovanovich (1987) and Chow and Yovanovich (1982) suggested VA asa

characteristic length to define the Nusselt number where A is the surface area of heat

transfer. When there is almost no motion ( Nu,,,, ), heat transfers just by conduction.
They performed different experiments and found Nu,,, for a wide range of geometries.

They found that the quantity of Nu(,,,, is highly insensitive to the body shape and only

varies from 3.391 to 3.609 over a very wide range of shapes, including cubes, lenses, and

ellipsoids. Yovanovich (1987) defined the Nusselt number for natural convection as:

(174)

Nu ;= Nucoyp +cRa (1.11)

where+/A is the characteristic length. The constants ¢ and Nu.,,, can be found from the

tables of Yovanovich et al. (1987).

Raithby and Hollands (1975) used a thin boundary layer approach to find a
general correlation for the Nusselt number. They categorized flow over a surface in to

two different types; attached flow or detached flow. Attached flow happens when the

surface angle is 90’ < ¢ <180 and detached flow happens when 0” < ¢ <90°.
Figure 1.1, shows the surface angle, attached-flow and detached-flow. The surface

angle is the angle between band A, where b is the unit vector in the direction of the

buoyancy force and 7 is the outward unit normal vector of the surface. Attached flow

11



occurs in the case of a hot concave surface or a cold convex surface, and detached flow

happens for the case of a cold concave surface or a hot convex surface.
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Figure 1.1: Definition of surface angle ¢ for heated and cooled surface. For

90’ < ¢ <180” the flow remains attached, while it may detach if 0” < ¢ <90”
(Raithby. and Hollands, 1998)

Although their equation gives a rough estimate for natural convection, in reality
there is no thin boundary layer for natural convection. Therefore, this correlation should
be corrected to account for the thick boundary layer. Hassani and Hollands (1989)

suggest the following correction for the thin boundary layer axisymmetric laminar natural

convection:

Nu,,, = Nuyy, + Nu™ (1.12)
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And for long horizontal isothermal circular cylinders, they suggested the following

correction to the thin boundary layer assumption:

Nulam = Cl
ln(l-*- Nu;hill j
(1.13)
where  C, =—2~P75L— , L=2R, P = Perimeter

i

These equations are valid for laminar flow. For the case of fully turbulent natural
convection, they found that the local Nusselt number is independent of how far the point

is from the leading edge and that it is only a function of the local surface angle ¢ and

Rayleigh number, and it can be integrated over the surface area to find the average

Nusselt number. The average Nusselt number is:

Nitwr = C1()Ra (1.14)

where E, () is defined as follows:

1+0.0107 Pr 0.13 Pr’*
C.({)=|C/|cos¢ 0], ,C) sin"? , CU =014 ———— | C' =
-l lent O s, o LA, gy
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When there is a mixture of natural laminar and turbulent natural convection, the
Nusselt number can be found from blending the laminar and turbulent Nusselt number

using the following equation:

Nu= [(Nu,m f" +(Nu,, )" }y (1.15)

The value of ‘m’ depends on shape and is found from curve-fitting to
experimental results. Fore some shapes, the value of ‘m’ can be found from Raithby and

Hollands (1998).

1.5.3 Forced and Natural Convection from Exterior Surface of Dome

In the outdoor environment, usually the wind element is an important factor and
has significant effect on heat transfer. Thus, heat transfer around the exterior surface of
domed skylight is usually by forced convection. In the absence of wind, heat transfer
occurs by natural convection. Previous studies on forced and natural convection will be
reviewed separately. For natural convection, same as the natural convection from interior
surface of dome, two different cases of natural laminar and turbulent convection should
be considered. Studies of forced convection heat transfer from a curved surface to its
adjacent environment were very scarce, covering only flows over simple shapes such as

spheres, cylinders, cubes, etc.
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Ziskind et al. (2001) setup an experimental investigation on heat transfer from a
heated small sphere in a horizontal flow. The flow velocity was in the range of 0-0.1 m/s
“low Reynolds number”. Ziskind et al. (2001) considered free convection, forced
convection, and a combination of both. In the case of mixed convection, it is common to
study three basic conditions: (1) “assisting” regime, where the direction of the forced
flow coincides with that of the free flow; (2) “opposing” regime, where the direction of
the forced flow is opposite to that of the free flow; and (3) “crossing” regime, where the
direction of the forced flow is normal to that of the free flow. Any other setting can be
deduced based on the results for the above-mentioned three scenarios. It is evident that, in
the mixed cross flow regime, as the velocity decreases, the free convection dominates,
and that, as the velocity increases, the forced convection dominates the free convection.
Their results match well with the following equations for pure forced and free convection

respectively suggested by Bird et al. (1960):

Nu=2+0.6Re”* Pr’*  (Forced convection) (1.16)

Nu=2+0.6 Gr% Pr% (Free convection) (1.17)

They used the ratio of the Grashof number to the square of the Reynolds number,
Gr/Re?, in order to compare the effects of forced and free convection. They found that

free convection is negligible when Gr/Re” < 0.02-0.03.
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Melissari and Argyropoulos (2005) used a mathematical model of the melting
sphere and solved it numerically to find the correlation of heat transfer in forced
convection over a sphere. They suggested the following correlation to find the Nusselt

number for a wide range of Prandtl numbers (0.003 < Pr < 10):

Nu=2+0.47 Re% Pro%

for (1.18)
3x107 <Pr<10 and 10°> <Re<2x10*

Previously, Melissari and Argyroulos (2004) had concluded that, for values of the
buoyancy parameter lower than the range of Gr /Re” =0.5-1, the total melting time is

not affected by natural convection. They compared their computational results with
different experimental results with a wide range of Prandtl numbers (liquid metal to
water). The comparison showed good agreement between predictions from the derived

correlation and experimental results.

Pop and Yan (1998) performed an analytical study on forced convection over a
circular cylinder and a sphere for large Peclet numbers. They assumed steady state heat
transfer from the circular cylinder and sphere, which they maintained at constant
temperature. Most of the researchers report the average heat transfer over a circular
cylinder and sphere. Pop and Yan, however, used an analytical approach to find the local
and average Nusselt number for both the sphere and the cylinder. Their equations match

very well with the experimental and numerical results by other researchers. They studied

16



heat transfer around the circular cylinder for steady state forced convection when both
cylinder and ambient temperature are constant, and the ambient temperature is lower than

cylinder’s temperature. Their results are summarized as:

(1.19)

Nu
1

=0.71825
Peé

where the Peclet number is defined as Pe =Re Pr and 6 = 0° is the horizontal flow

direction. They followed the same steps and found local and average Nusselt numbers for
steady state forced convection heat transfer from a hot isothermal sphere. The ambient

temperature is assumed constant. Their results are summarized as:

Nu , 3 1-7n
= where = cos 6
pe s 27 (2-p)~ "
(1.20)
Nu___ 0 79788
PeA

Alassar (2005) used the stream function approach to solve the time-dependent
Navier-Stokes and energy equations for small Reynolds numbers in flow over spheroid
bodies to find the average Nusselt number. He investigated the problem for hot spheroid

bodies for axis ratios between 0.55 and 0.99 at three Reynolds numbers: 10, 40 and 100.
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To study the effect of Reynolds number, he considered a wide range of Reynolds
numbers (from 10 to 500) for the axis ratio of 0.75. He observed about a 12% increase in
the average Nusselt number by changing the geometry from a sphere to a spheroid with

an axis ratio of 0.55 at all Reynolds numbers considered.

Hilpert (2002) suggested the following empirical equation to find the average

Nusselt number over a cylinder with different cross sections.

Nu, =CRe” Pr'”? (1.21)

where Re, is Reynolds number based on a characteristic length, D, which can be

calculated from the following equation:

D
Re, =2 DU-
u
(1.22)
D= Perimiter
T

The characteristic length D is the equivalent circular diameter and the values of
the constants C and m are found from curve fitting to the experimental data. The values

of C and m for different shapes can be found from Jacob (1949).
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1.6 Conclusion

Natural convection heat transfer for spheres and cylinders was studied experimentally
and numerically. Laouadi and Atif (2001) derived the correlation of the Nusselt number
for natural convection within domed skylight cavities with uniform gap spacing when
heated from outside. To the knowledge of the author, there is no study in domed skylights
with uniform gap spacing when heated from inside and domed skylights with non-
uniform gap spacing. Therefore, this research will study laminar natural convection heat
transfer within domed skylights with uniform gap spacing when heated from inside and

domed skylights with non-uniform gap spacing when heated from outside.

1.7 Scope of Research

This work is a part of the research collaboration between National Research
Council of Canada (NRC) and Ryerson University to improve the capabilities of NRC
software regarding prediction of thermal performance of skylights. The study addresses
convection heat transfer in the domed cavities. This information is needed to compute
the thermal performance (e.g., U-value) of domed skylights. The specific objectives are:
e To investigate the flow pattern and thermal field in domed cavities with

uniform/non-uniform gaps.
e To develop correlations for Nusselt number as a function of the dome shape

parameters and Grashof number.
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The results of this study will be implemented into NRC software: SkyVision
(2007) and Daylight 1-2-3 (2007). SkyVision is a freeware specialized computer
program to calculate the overall optical, thermal and daylighting performance of
fenestration systems (windows, shadings, skylights). Daylight 1-2-3 is freeware non-
expert daylighting/energy analysis software to support design professionals and
architectural students in dealing with daylighting-related design decisions in side-lit or
top-lit commercial buildings during the initial design and design development stages.
Daylight 1-2-3 integrates three computer programs — Radiance (for illuminance
calculations), SkyVision (for optical and thermal calculation of fenestration systems) and
ESP-r (for whole building energy calculation) - to calculate building requirements for

lighting, heating and cooling energy.

1.8 Approach

This study will use numerical modelling and CFD computer simulation software
to find the Nusselt number in domed skylights for different types of geometry. For each
type of geometry, a power function will curve-fit for the Nusselt number. Subsequently,
another equation, which is a function of domed skylight gap spacing, will curve-fit for
each coefficient of the power functions to develop a correlation for the Nusselt number as

a function of Rayleigh number and gap spacing.
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CHAPTER 2

MATHEMATICAL FORMULATION

2.1 Introduction

In order to determine the effect of domed skylights on cooling and heating loads
of the building, the heat transfer and fluid flow in domed skylight cavities have been
studied parametrically for a wide range of geometries and thermo-physical conditions.
The general governing equations of continuity, Navier-Stokes and energy were simplified

for the geometry of the problem at hand.

2.2 Modeling The Geometry

A double glazed domed skylight with uniform and non-uniform gap spacing is the
subject of interest. Figure 2.1 shows a section of a spherical cap with non-uniform gap
spacing. The Y-axis is the rotation axis. The dome cavity is characterized by its interior
and exterior radii (R, R,), minimum and maximum gap thicknesses (Lpin, Lmax),
truncation angle (8y) and eccentricity (€). The center of the exterior surface is on the
origin of the coordinate system and the center of the interior surface (A) is at distance of
€ on the Y-axis below the origin. The inner radius is always greater than or equal to the
outer radius and € may take negative or zero values. The edge of the dome (BC) is along

the outer radius (R,). The truncation angle (6,) is the angle between the Y-axis and OC.
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The maximum gap spacing (Lmax) is measured at the top of the cavity and the minimum

gap spacing (Luyin) is measured at the edge of dome.

.
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Figure 2.1: Section view of a spherical cap

Different geometries may be generated by varying the truncation angle, inner
radius, outer radius, eccentricity, minimum gap thickness and maximum gap thickness.
However, these variables are not all independent. The maximum gap thickness is
assumed to be constant and assigned a unit length. Each geometry is defined by the

truncation angle, the inner radius or the outer radius and the ratio of maximum to
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minimum gap thicknesses. Knowing the outer radius, the inner radius can be determind

from the other parameters. From Figure 2.1 it can be concluded that:

OD=0OE-DE=R, -L__

OD=AD-DO=R, -¢ &b
Finding € from these two equations:

e=R -(R -L_.) (2.2)

In triangle AOB, from the vector algebra, the distance ‘AB’ is the sum of

distances ‘AO’ and ‘OB’:

AOB: R*=(R,-L,, )+ -2&(R,~L,, )cos(r—8,) (2.3)
Defining a and b as follows:

R -L, =a, R —-L_ =b (2.4)
then, substituting Equation 2.2 and 2.4 into Equation 2.3 gives:

R*=a’+(R —b) +2 (R —b)a cosb, (2.5)
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After simplification of Equation 2.5, one finds R;:

_a’+b*-2a b cosb,

. 2.6
' 2(h—acos8,) (26)
Substituting the original value of a and b into Equation 2.6, one obtains:
R-L,)V+(R,~-L,)V-2R -L, )R —L
R. — ( 0 'min ) ( 0 max ) ( 0 ‘min )( 0 'max ) cos 00 (27)

I 2((Rn - Lmax )_ (Ru - Lmin )COS HO)

It is useful to use the dimensionless ratio R/R, in Equation 2.7 to get a general

solution. To this end, the dimensionless gap thicknesses may be defined as follows:

(2.8)

Dividing Equation 2.7 by R, and substituting Equation 2.8 into it gives the following

relation:

l _ 5'max )2 — 2(1 — 5'min )(1 - 5‘[1](1)( ) Cos 00 —
2((1 - 5' )_ <1 - 5’"1in )COS 60)

max

d (2.9)
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Note that if € =0 then, L,,qx = Lyin = L and & puux = ' pin = 0. In this case,

Equation 2.9 will simplify to:

—L=1-9 (2.10)

2.3 Assumptions

The general governing equations should be simplified for the geometry of the
problem and physical properties. Typical assumptions that are made to simplify the
problem at hand are: Newtonian fluid, constant physical properties, Boussinesq
approximation, incompressible flow, axisymmetric flow or two-dimensional flow. Each
assumption will be discussed in more detail in this chapter. There are also some ideal

conditions assumed for the boundary conditions.

2.3.1 Newtonian Fluid
The fluid inside the cavity is assumed to be Newtonian, where the stress tensor,
and hence the shear-stress tensor, is linearly related to the deformation-rate tensor.

Almost all gases are Newtonian fluids. The following Equation 2.11 defines a Newtonian

fluid.

=T = S 2.11
T.xv\ T).r Iu[ ay + ax J ( )
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where u is the dynamic viscosity of fluid.

2.3.2 Physical Properties and Boundary Conditions

All physical properties of the fluid are assumed constant (i.e., dC,/dT = du /dT =
dk / dT= 0) in the range of the temperature differences under consideration. Due to the
small temperature differences that are encountered in skylight applications, the
assumption of constant thermal properties is a good approximation. The edges of the
dome skylight are assumed adiabatic. The latter assumption is based on the assumption
that heat transfer from the edges can be neglected with respect to the heat transfer from
the dome surfaces. The temperature of the outer and inner surface of the cavity is

assumed uniform and constant.

2.3.3 Boussinesq Approximation and Incompressible Flow

The fluid is assumed to be incompressible, which holds well for gases at low
velocity. The incompressible flow assumption results in the density being constant. But
the changes in density due to thermal expansion are the driving force in natural
convection and cannot be neglected. To solve this issue, the Boussinesq assumption
considers changes in density only in the gravitational body-force term of the momentum
equations. The changes in density in other terms are assumed to be small and are
neglected. The temperature difference is assumed to be small enough to have a negligible
effect on fluid properties. Therefore, constant fluid properties at a mean fluid temperature

are considered constant for the problem.
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The Boussinesq approximation is valid when the temperature difference between

hot and cold surfaces is very small. This criteria is defined as:
BT, -T,)<<1 (2.12)

where T, and T, are hot and cold surface temperatures respectively and £ is the

volumetric thermal expansion coefficient, defined as follows:

. _L(a_pj (2.13)
,D,ef a T P=const

With the Boussinesq approximation, density changes linearly with temperature.
Detailed steps on the simplification of the momentum equations using the Boussinesq
approximation can be found in Oosthuizen and Naylor (1999). The Boussinesq

approximation can be expressed as:
p_pref z_prL)‘ﬂ(Yw—]Tre/) (214)

Gray and Giorgini (1975) found that the Boussinesq approximation is valid for a

Newtonian fluid when (7, —7,)< 28.6°C .
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2.3.4 Axisymmetric Two-Dimensional Flow

The flow in domed skylight cavities can be classified into two-dimensional or
axisymmetric flow. The flow is axisymmetric when the flow is laminar and takes place
near the bodies that are generated by revolving a two-dimensional shape around a vertical
(parallel to gravity) line. The flow is two dimensional when the flow is along a body that

has an invariant cross section along the horizontal axis.

2.4 Governing Equations

The governing equations are cast in the spherical coordinate system. Figure 2.2
shows a section of a spherical cap with a truncation angle of 6, and maximum gap

thickness Lx-

(7]
~

Figure 2.2: Spherical coordinates system for a domed cavity.
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2.4.1 Fluid Flow in Domed Cavities
Using the foregoing assumptions, the governing equations for continuity,

momentum, and energy are cast as follows (Bird et al. 2001):

Continuity:

9 (1, sin@)=0 (2.15)

r-momentum:

|:8 u, ou, wu, du, u’ | oP
ok — = — —pg, +
.

ot r 00 r i or 2.16)
1 9’ ) 1 o (. ,du, 1 .
U= > (r u,)+ —— — | siné@
r°or r-sin@ 06 26 |
0-momentum:
aug_}_urauﬁ,_*__ui aungu,u‘9 ﬂ:_ 1dP Cp g+
Jt dr r 086 ro roé 2.17)
19 ( 29u,) 1 9 (1 o, . 2 ou, | '
U — r t— = | = —(L1951n0) +— |
r a r ar r 89 Sm9 89 r aej
energy:
oT oT u, OT | 1 9 ( 20T
p + +—2 | =k| 5 — -
Ploot Jdr r 096 ] r-or or
(2.18)
19 [ oT ]1
> —| sinf—
r “sing 90 96 )|
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To apply the Boussinesq approximation in the previous equations, we define a
pressure defect p” as a difference between the local pressure (p) resulting from fluid

motion and the hydrostatic pressure (p.) at the same level at the mean enclosure

temperature (T,).

p'=p-p.=p-p, grcosd (2.19)
Finding pressure (p) from Equation 2.19 and then calculating pressure gradient in the r

direction, one obtains:

ap ap' a(p.grsinﬁ) ap'
— ¢ —-— —t’ 2.20
or Odr or or <8 ( )

where g, =g cos@ . Substituting Equation 2.14 and 2.20 into the r-momentum Equation

(2.16) and simplifying the result, one gets:

I}— %—f+pﬁg,(T—Ti)+
i

I L o (. ou )l
U= 5 (r Ltr)+ —— — | sin@
r-a r r-sin@ 06 6 )|

~+u, ——+
ot or r 00

2
ou du, u, du,  uy
.

(2.21)

Following the same steps as above for the 8-momentum equation reads as follows:
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L T-T
a3y T e r|J e tPPeT-T)+

1 (20w Lo (10 ), 2 0]
ey dr ) 7?00 \sin6 06" ° r’ 06|

[8u6+” 8u9+u_9§_u_9+uru9-| 10P

(2.22)

2.4.2 Boundary Conditions
The foregoing Equations (2.15), (2.18), (2.21) and (2.22) are subject to the
following boundary conditions:
e The inner and outer surfaces of the cavity are assumed isothermal and
constant.
e The edges of the cavity are assumed sealed and adiabatic.
e The flow is axis-symmetric at the Y axis. In this regard, the fluid velocity
normal to the line of symmetry is zero.

e Non slip condition at the interior and exterior surfaces as well as all the

edges.

In reality, the temperature varies along the surface, especially near the edges of
the domed skylight (frame effect), but it is almost constant at the center. Curcija and Goss
(1993) analyzed the effect of the edges on fenestration temperature surfaces and found
that the temperature varies in a band of 63.5 mm around the fenestration edges and it is
almost constant at the center. In the problem at hand, this band around the frame is very
small compared to the size of the dome surface; and as a result, its effect can be

neglected. Therefore, the isothermal assumption is a reasonable engineering
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approximation. In addition, the no-slip boundary condition is assumed at the boundary

surfaces and at the edge of the cavity.

These boundary conditions are translated into the following mathematical

conditions:

Edges: adiabatic and no-slip conditions

at 6=6,, (R,—L, )<r<R,: u,=u, =0, %:o (2.23)

Interior surface: isotherm and no-slip conditions (L is the local gap thickness at 0)

at r=R,—L, 0<0<6,: uy=u, =0, T=T (2.24)

r 1

Exterior surface: Isotherm and no-slip conditions

at r=R,, 0<0<6,: u,=u, =0, T=T, (2.25)

[

Symmetric line:

ou, oT
t 6=0 R —e<r<R, :u,=0, —/=—=0 2.26
a for R, r<R, : u, YT ( )
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2.5 Dimensionless Governing Equations

To obtain a general solution of the problem for any similar geometry, the

governing equations are non-dimensionalized using the following dimensionless

variables:
e r r= t , Ur: u, , ng U, ,
Lmax Lfnax v —v
v Lmax Lmax
, (2.27)
P p T T-T,

Substituting the dimensionless variables, Equation (2.27), into the governing

Equations (2.15), (2.18), (2.21) and (2.22), the dimensionless governing equations read as

follows:

continuity:
1 o 2 1 d
— — U, |+ — — (U, sinf@)=0 2.28
r or (r ) sin@ 89( ¢ ) ( )

r-momentum:

8U,+Ur8_U:_+Qf_8U,_ U 1_or
o7 or r 00 r

2 |
17 J . (r*zUr)+ 2] i[siné’aU’J
o rsing 00 ]

(2.29)
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6-momentum:

+U, — ¢ + =—— —— +GrT sinf+
or or r 0286 ro r 06"

|:1 0 [uan
2 * r *
r* ar ar

{aUg U, , U, U, uu,l 1 9P

(2.30)

U smﬁ)J 2 aU’—|

0
296 [smB 06 2 00 |

energy:

oT" oT" U, T ] 1 9 ( »ar 1 9 oT
P U — 0L _ | (231
r[aﬁ TR ar*(r ar*}’, in @ ae(sm ae) @30

_ (2.32)

Defining L, /R, = 0" L./R =0, and L /R =0', where “L” is the

min 'max 0 max

local gap thickness at an angle 6, the dimensionless form of the boundary conditions are:

Edges: adiabatic and no-slip condition

*

Uu,=U, =0, ai:o at 0=6, , L—ﬁ<r*< ! (2.33)
a 0 5’“‘]21)( J'max §'max
Interior surface: isotherm and no-slip conditions
* * 1 5‘
UHZUrZO, T =0 at r :5'——5'—,0<9<90 (234)
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c.  Exterior surface: isotherm and no-slip conditions

U,=U,=0, T=1 at r*:%,0<9<90 (2.35)

max

d.  Symmetric line,

U, =0, W, 9T _ a9=0, - 1<, <!
26 06 5 5

max max

(2.36)

2.6 Evaluation of Heat Transfer

Laminar natural convection within domed cavities is characterized by the Nusselt
number. Nusselt number is defined as the ratio of the convective heat transfers to
conductive heat transfer. The Nusselt number for the inner surface and outer surface are

defined as follows:

Nu, = Ny =—tonm (2.37)

anmI qumd

where qiconv and goconv are the convection heat transfer from the inner surface and outer

surface of domed cavity.

When the buoyancy force is very weak, heat transfers only by conduction. As a

result, The Nusselt number in Equation 2.37 becomes unity. Under steady state
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conditions, the Nusselt numbers of the inner surface and outer surface are equal. In order
to find the Nusselt number, conduction heat transfer and convection heat transfer are
evaluated in the geometry of the problem in hand. Two types of geometry considered in
this study including uniform gap thickness and non-uniform gap thickness. In this study
the Nusselt number was calculated from the convection from the outer surface (qocony)-
The convection heat transfer from the outer surface in Equation 2.37 is found from
numerical procedures and the conduction heat transfer for uniform and non-uniform gap

thicknesses were calculated in this section.

2.6.1 Cavities with Uniform Gap Thickness
Conduction heat transfer within a domed cavity in a spherical coordinate system

is one dimensional and is defined as:

Geoma = —kA Ar _ —k[27[ r*(1-cos 9)]d—T (2.38)
dr dr

The differential Equation (2.38) can be solved easily. Therefore, conduction heat

transfer i1s defined as follows:

—27(1-cos@)k (T, -T,)
= e 2.39
q(,mu/ l/Rl —l/R” ( )
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The Nusselt number is found from rewriting the Equation 2.39 with the
dimensionless variables and substituting it in the Equation 2.37. The Nusselt number

takes the form:

N _ q* (Rl* —R:)
u = * * * *
" 27 (I-cosO)RRK(T, ~T))

(2.40)

where ¢ is the convection heat transfer from outer surface and will be calculated from

numerical analysis.

Equation 2.40 is simplified by substituting the value of the dimensionless

variables as follows:

*

Nu = cl 2.41)

" 2r (1-cosO)R' (R -1)

In this study the Nusselt number for uniform gap thickness is calculated from

Equation 2.41.

Convection heat transfer for the problem in hand from the outer surface is:

sin6@dé (2.42)

r=R,

6
q,=-2mRk J—al
o or
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Substituting Equation (2.39) and (2.42) into (2.37) and simplify the equation gives:

RX(1/R,—1/R.) %0T
Nu, = —
(—cos)T, -1,) 3 or] _,

sin@dé (2.43)

To be consistent with the previous work of Laouadi and Atif (2001), the gap ratio is

defined as:

el 2.4
o=— (2.44)

From the dimensionless variables (Equation 2.27), one obtains:

or = (1, -1, 01"
. (2.45)
or=Lor
Substituting Equation 2.44 and 2.45 into Equation 2.43 gives:
6
Nu, = —1*9 | aT* sin@d6 (2.46)
(1-cos®@) Jor cirs
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It is practical to calculate the convection film in the steady-state condition, where
the overall thermal conductance of the domed skylight can be calculated. The convection

heat transfer from the inner surface to the outer surface is defined as:
g=AtA) gy (2.47)

where A, and A; are outer surface and inner surface respectively. Note that the surface

area of the spherical cap is A=27r°(1-cos0).

The Nusselt number takes the following form:

< (2.48)

(2.49)
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2.6.2 Cavities with Non-Uniform Gap Thickness

The conduction heat transfer in non-uniform gap thickness domed cavities is no
longer one-dimensional. To simplify the equations, the conduction heat transfer in
non-uniform gap thickness cavity is estimated by uniform gap thickness domed cavity
with the same truncation angle and outer radius. The equivalent gap thickness and inner

radius are defined as:

[ =—mx __mn R =R —L (2.50)

With the above assumption, the conduction heat transfer can be calculated from

Equation 2.39. From dimensionless variables (Equation 2.27), one obtains:

or=L_ r* (2.51)

With the above assumptions and following the same steps as uniform gap

thickness, the Nusselt number is thus given by:

I-d
" 6 *
Y jaT* sin0do (2.52)
(1-cos®) ; or .

where d can be found from Equation 2.9.
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The convective heat transfer from the outer surface should be calculated using the

numerical procedure (q*) of the subsequent section.

2.7 Transient Heat Transfer

In some cases, for small gap to radius ratio the flow is transient periodic.
Consequently, the Nusselt number in such cases is periodic. Therefore, the Nusselt
number was averaged over three or more oscillation periods. Figure 2.3 illustrates two

periods of function F(t) with time step size of At.

? e
0 1At 24t 3At 4At nht =

Figure 2.3: Oscillation of function F(t) in time period when the time step is At.
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The time average of function F(t) in a time period is defined as follows:

nAt

[F(e)ar "02‘” +§a,At+a"§t S
0

F(r)=-2 - I N P 2.53
() nAr—0 nAt n 2n ( )

From Figure 2.3 it can be concluded that a,=a,, since a, and a, are the values for a

period. As a result, Equation 2.53 is simplified as

n-1

a;

F(r)= On (2.54)

Equation 2.54 shows that the time averaged Nusselt number within three periods can

be calculated by averaging the Nusselt number over those time periods.

2.8 Table of Governing Parameters

The dimensionless governing equations show that the free convective heat
transfer in domed cavities is governed by several dimensionless parameters, including Gr,
Pr, 05, Omin and dmax. In this study, a wide range of parameter values are considered,
except for Prandtl number.

Table 2.1 shows the values of the parameters. The gap to the inner radius ratio ()

is used for the case of cavities with uniform gap thickness (€ = 0 & Lyax/Lmin =1) and the
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gap to outer radius (9) is used for the case of cavity with non-uniform gap thickness

(e # 0 & Liax/Lmin =2).

Table 2.1: The value of the parameters

Parameter Value
Pr= 0.72
Lmax/Lanin = 1,2
8, (°C) = 90, 45, 30
8 (LUR) = 1,0.8,0.5,0.4,0.3, 0.2, 0.1, 0.01
&' (Lmax/Ro) (6,=90°C) = 0.5, 0.4, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.025, 0.015, 0.01, 0.008
&' (Lmax/Ro) (6,=45°C) = 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.025, 0.015, 0.01, 0.009
&' (Lmax/Ro) (0,=30°C) = 0.2, 0.15, 0.1, 0.05, 0.025, 0.015, 0.01, 0.010
Gre 1x10°, 2.5x10°%, 5x10°, 7.5x10°, 1x10*, 2.5x10%, 5x10*, 7.5x10°,

1x10°, 2.5x10°, 5x10°, 7.5x10°, 1x10°, 2.5x10°, 5x10°, 7.5x10°, 107
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CHAPTER 3

NUMERICAL APPROACH

3.1 Introduction

It is usually very complicated and often impossible to find an analytical solution
for convective heat transfer phenomenon. As a result, many numerical methods were
developed to find a solution for a mathematical model. A numerical procedure for solving
an equation will introduce uncertainty and truncation error to the results. Therefore, any
study using a numerical approach to solve a problem must address truncation errors and
other inaccuracies. Celik (1993) and Roache et al. (1986) hypothesized that the following
conditions have a strong effect on accuracy:

1. Numerical method

2. Order of accuracy of discretized governing equations
3. Grid density

4. Grid topology

5. Convergence criteria

In the following sections, the above conditions are discussed and numerical
results calculated from the present study are compared with available results to validate

the numerical model.
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3.2 Numerical Method, Parameters and Order of Accuracy

In this study, a commercial computational fluid dynamics package, Fluent
Version 6.2., employing the control volume approach was used to solve the laminar
convective heat transfer within the cavity. The computational domain is divided into
small volumes and the governing equations are numerically integrated over each control
volume. Therefore, the governing equations are approximated by algebraic equations that
could be solved iteratively. In order to increase the accuracy, the double-precision version
of Fluent was used in analysis. For all simulations the axisymmetric option of FLUENT
was selected. The segregated solver along with implicit formulation, which provides
better stability than explicit method Anderson (1995), was used to linearize the governing

equations.

As per the discussion in the previous chapter, the dimensionless governing
equations should be used to find the general solution of heat transfer in domed skylights.
Since the FLUENT software solves dimensional governing equations, the following steps
describe how to setup the dimensionless governing equations in FLUENT. FLUENT
solves the governing equation 2.27 to 2.30 over the computational domain using the
control volume method. By comparing the dimensionless governing equations (Equation
2.28 to 2.31) with dimensional governing equations (Equation 2.15, 2.18, 2.21 and 2.22),
it is concluded that they are identical and only the coefficients of the equations are
different. Therefore, it can be concluded that:

C

p=k,=u=p=1, g=Gr, c,=Pr, T, =1 T, =0 (3.1)
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As aresult, for each type of geometry, if the fluid properties in FLUENT are set
up using Equation 3.1, the general dimensionless result may be found. Gravity in the
numerical model represents the Grashof number in dimensionless equations. Therefore,
only the gravity value in the numerical solver is changed to vary the Rayleigh number.
The geometry is non-dimensionalized by dividing all dimensions by L;,.x which is used as

the characteristic length. Therefore, it can be concluded that:

L — Lmax :1’ L = Lmin , R :_‘ R = R” (32)
L L

It is useful to characterize the domed geometries to generalize the solution.

Therefore, the following gap-to-radius ratios are defined:

L
5 — Tmax , 5' — max 33
R — (3.3)

= |

Since the flow is assumed to be laminar, the laminar flow option was used in
FLUENT. The SIMPLEC algorithm was selected for the solution control. The SIMPLEC
algorithm uses a relationship between velocity and pressure correction to enforce the
mass conservation (Fluent 6.2 Documentation). More details on the SIMPLEC algorithm
can be found in Versteeg and Malalasekera (1995). For pressure discretization the
PRESTO! scheme was used. This scheme is described in detail in Versteeg and

Malalasekera (1995). The PRESTO! scheme is recommended for natural convection flow
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with high Rayleigh numbers in the FLUENT 6.2 documentation. The second order
upwind discretization scheme is used in the momentum and energy equations to increase
the accuracy of the results. Although a first order discretization scheme yields better
convergence than second order scheme, nevertheless the first order can increase the

numerical truncation error (FLUENT 6.2 documentation).

The under-relaxation factors for the density, body forces and energy were usually
set to the value of one, while the under-relaxation factor for pressure and momentum
were set to 0.3 and 0.7 respectively. However, in this study for geometries with a small
gap-to-radius ratio and high Rayleigh number, the values of the under-relaxation factor

were decreased to achieve numerical convergence.

The steady-state solver was used to solve the problems with large gap-to-radius
ratio cavities. In the small gap-to-radius ratio cavities, the results show that the flow is
unsteady. Therefore, for the small gap cavities the unsteady-state option was selected
along with a unit time step size. Also, a smaller time step size was used as a check, to

make sure that the time step is small enough to capture the periodic behaviour of the flow

and heat transfer.

3.3 Boundary and Initial Conditions

For the problem in hand, which is natural convection heat transfer in a closed

cavity, the interior and exterior surfaces of the cavity have Dirichlet boundary conditions.
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This means that the interior and exterior surfaces of the domed skylight cavity have
constant and uniform temperature. It is assumed that the edge of domed cavity is
adiabatic, which is a Neumann boundary condition. For the initial condition, the fluid is
assumed quiescent, therefore the fluid velocity is zero and there is no heat transfer by
convection at the initial condition. The temperature at the initial condition is set to the
value of one, which is equal to the temperature of the hot boundary surface. These initial
conditions were used for all simulations, although the initial conditions were not required

for steady-state solutions.

3.4 Grid Topology and Grid Density

The quality of grid has a significant effect on the accuracy and stability of the
numerical results. The quality of grid consists of the grid topology and grid density. The
grid topology plays an important role in truncation error (numerical diffusion). Numerical
diffusion can be reduced by choosing a proper grid topology, which is aligned with the
fluid flow. For natural convection in domed cavities, when the gap thickness is small
relative to the domed radius, the flow is mainly along the boundary surfaces. Therefore, a
quadrilateral grid type should be aligned with the fluid flow in order to reduce numerical
diffusion. Grid density is the other important factor in numerical accuracy. A finer grid
should be used where there is a high thermal gradient or high velocity gradient in the

computational domain.

48



For the problem in hand, the thermal and velocity gradients are high near the
interior and exterior surfaces. As a result, a finer grid was used near the exterior and
interior surfaces to increase numerical accuracy. This study covers a wide range of
domed skylight geometries. Therefore, for each geometry, the results with different mesh

sizes were compared to find the proper mesh size that gave grid independent results.

Figure 3.1 shows a partial section of a quadrilateral grid in a concentric spherical
cap cavity when the truncation angle is 30° degree and gap-to-radius ratio is equal to the
value of 0.1 (8 = 0.1). Note that the grid density increases near the interior and exterior

surfaces.

Axisymmetric

Figure 3.1: Section of a quadrilateral grid for 6 =30°, € =0 and & =0.1
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Table 3.1 shows the comparison between Nusselt number with four different grid

sizes in a concentric spherical cavity with the truncation angle of 30° degree and

gap-to-radius ratio of § = 0.1. Results are shown for a Rayleigh number of 7.5x10°,

5x10* and 5x10°. The Nusselt numbers are calculated for the condition when the interior

surface is hotter than the exterior one. The percentage change in Table 3.1 is calculated

from the following equation:

% Difference =

Nuold - NM

new

Nu

new

%100

(3.4)

Table 3.1: Comparison of Nusselt number with different grid density. (6,=30°, T,<T;,

6=0.1and & =0)
Ra = 7.5x10’ Ra = 5x10* Ra = 5x10°
Grid Nu % Change Nu % Change Nu % Change
40x30 | 2.0622 3.5125 5.9458
50x40 | 2.0675 0.256% 3.5357 0.66% 6.0816 2.23%
60x50 | 2.0657 0.087% 3.5459 0.29% 5.7584 5.61%
70x60 | 2.0639 0.085% 3.5467 0.02% 5.7530 0.09%

It can be concluded from Table 3.1 that for a relatively small Rayleigh numbers,

there is a small effect on Nusselt number due to increasing the grid density. Therefore,

the results with a relatively coarse grid might be accurate for small Rayleigh numbers.

However, when the Rayleigh number is high, the grid density has a significant effect on
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Nusselt numbers. Therefore, in order to obtain grid independent results, the numerical
results for high Rayleigh number with different mesh sizes should be compared to find
the proper mesh size for each geometry. In this study, the grid density was increased,
until the percentage difference between the Nusselt numbers, calculated with the last two

grids, was less than 0.1% for the Rayleigh numbers of 7.5x10°, 5x10* and 5x10°.

3.5 Accuracy and Convergence Criteria

In a numerical study, it is difficult to separate the numerical errors from modeling
errors. The first effort in any numerical study is having an accurate mathematical model
and then trying to solve this model numerically. There are a few methods to examine
numerical accuracy and convergence. But, unfortunately there is no universal method to
determine numerical convergence. Depending on the problem, there are different criteria
that play a main role in numerical convergence and accuracy. Generally, the residuals for
continuity, x and y momentum and energy equations are considered as convergence
criteria. In this study, in addition to those criteria, the heat transfer from the exterior
surface was monitored as well. The convergence criteria were set to 10~ for the residuals
of continuity, x and y momentum and energy, and include changes in heat transfer from
the exterior surface (Equation 3.5) less than 10™. The change in heat transfer rate is

defined as follows:

*(i=1) *(1)
q —

1 4 <10° (3.5)
q
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where (i) is the iteration level.

For small gap-to-radius ratios (6 < 0.2 or 8’ < 0.15), the flow might become
unsteady. Therefore, the simulation was run in the unsteady state mode. In these cases, at
each time step the convergence criteria should be satisfied. The same convergence

criteria were considered for each time step in the unsteady flow.

3.6 Flow Stability and Critical Rayleigh Number

When the Rayleigh number is increased in natural convection in spherical
cavities, at some point the flow will become transient or turbulent. Therefore, laminar
flow could under-predict the heat transfer rate. In such cases, the flow is unstable and the
dimensionless velocity is too high to satisfy the convergence criteria. As a result, the
convergence criteria was changed to 10", This will be discussed in more detail in the

next chapter.

There is some information available about the fluid flow and the critical Rayleigh
number in spherical cavities. But, to the knowledge of the author, there is no information
available regarding the critical Rayleigh number when the flow is in transition to the
turbulent regime in spherical cap cavities. The Rayleigh numbers that cause unstable flow

are reported in the next chapter.

52



3.7 Numerical Model Validation

To the knowledge of author, there are no experimental or numerical results
available for heat transfer within spherical cap cavities, except the one by Laouadi and
Atif (2001). However, there are many studies available for other related geometries such
concentric spheres (6,=180°). The latter studies on heat transfer in concentric spheres are
used to validate present model. In addition, the numerical results for heat transfer in dome

cavities from present mode are compared with the one from Laouadi and Atif (2001).

For concentric sphere cavities, Raithby and Hollands (1975) employed a thin
boundary layer approximation to study natural laminar convection within spherical
cavities which are heated from inside. They suggested the following equation to find the
Nusselt number within two concentric spheres when the interior sphere is hotter than the

exterior one.
Nu = max {1, c(rRa")" } (3.6)

where c is a coefficient, which is calculated from the experimental data, and Ra* is a
modified Rayleigh number. The coefficient ¢ and modified Rayleigh number (Ra*) are

defined as follows:
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R — Ra (6/2)
{(1 +0)7" +(1+5)4’5}5 ’

P 1/4
c=074| ———
0.861+Pr

(3.7)

The results from Equation 3.6 match the experimental data within 13%. Table 3.2
shows the Nusselt number calculated for concentric spheres, when heated from inside,
using Equation 3.6 and the present model. In Table 3.2 the Nusselt numbers were
calculated for concentric sphere cavities with =1 when air filled the gap (Pr = 0.7). From
Table 3.2 it can be concluded that the present model over predicts the results by a

maximum error of 13%, which is within the reported error of Equation (3.6).

Table 3.2: Nusselt number comparison between present model and Raithby and
Hollands (1975) in spherical cavities (£ =0, 0,=180°, =1 and T.<T})

Ra Pres‘(*l‘\}fg"de' l};l(l)tllll:lildf % Difference
(Nuy)
1000 11000 1.0000 9.09%
3000 1.4180 12610 11.07%
6300 17346 1.5180 12.49%
10500 1.9800 17248 12.89%
14000 2.1283 1.8534 12.92%
21000 23511 20511 12.76%
42000 27707 2.4392 11.96%
91000 3.3030 2.9594 10.42%
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Grag (1991) and Laouadi and Atif (2001) calculated the Nusselt number for
concentric spheres. They all used numerical approaches to find the Nusselt number when
the interior surface is hotter than exterior one and the gap is equal to the inner radius
(6=1). The Nusselt number calculated from their numerical models and present the model

are shown in Table 3.3 and Table 3.4 respectively.

From Table 3.3 and 3.4, it can be concluded that the Nusselt number calculated
from the present model shows a good agreement with the results from Grag (1991) and
Laouadi and Atif (2001). The maximum percentage difference is less than 1% in both

cases.

Table 3.3: Nusselt number comparison between present model and Grag (1991) in
spherical cavities (g€ =0, 0,=180°, d=1 and T.<T;)

Ra Pres?;:llz/j[odel ((;l:f) % Difference
1000 1.1000 1.1006 0.06%
3000 1.4180 1.4213 0.24%
6300 1.7346 1.7393 0.27%
10500 1.9800 1.9848 0.24%
14000 2.1283 2.1331 0.23%
21000 2.3511 2.3560 0.21%
42000 2.7707 2.7761 0.19%
91000 3.3030 3.3110 0.23%
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Table 3.4: Nusselt number comparison between present model and Laouadi (2001) in
spherical cavities (€ =0, 0,=180°, 6=1 and T,<T;)

Ra Pres‘(’;:g"del Laou?g(i)gf)d M % Difference
(Nuy)
1000 1.1000 1.100 0.00%
3000 1.4180 1.420 0.14%
6300 1.7346 1.737 0.14%
10500 1.9800 1.980 0.00%
14000 2.1283 2.127 0.06%
21000 2.3511 2.345 0.26%
42000 2.7707 2.760 0.39%
91000 3.3030 3.283 0.62%

Laouadi and Atif (2001) studied natural laminar convection within concentric
spherical cap cavities with the truncation angles of 30°, 45° and 90° when heated from
outside (T,>T;) with an air filled the gap (Pr = 0.7). They suggested the following

equations to find the Nusselt number:
x\d /4
Nu =max {1, ¢ (Ra")""* | (3.8)
where ¢ and d are coefficients that were found from curve fitting the numerical results.

The coefficients are defined as follows:

56



For 6,=90°;

d=1

(3.9
¢=0.7943-0.24615+0.11296> —0.01626*

For 6,=45°;

_ 1-3.03466 +4.15426°
1-2.50716+2.276% +8.34965°

(3.10)

e 0.8439+0.83756 —17.70745° + 49.7365°
1+2.41858 —24.13286% +58.21176"°

For 6,=30°;

_ 1.0178-7.155256 +18.69795>
1-5.58266+9.31326” +123.45°

(3.11)

oo 0.8367-9.88360 +50.1335
1-9.5985 +39.64265° +26.01835"

The Nusselt numbers calculated from the present model are compared with the
Nusselt numbers calculated from Equation 3.8. Table 3.5 and 3.6 shows the comparison
between the two Nusselt numbers for a truncation angle (6,) of 45° with gap-to-radius

ratio (8) of 0.5 and for the truncation angle of 90° with gap-to-radius ratio (8) of 0.2.
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Table 3.5: Nusselt number comparison between present model and Equation 3.8
(€ =0, 0,=45°, 6=0.5 and T,>T))

Laouadi and

Gr Prese(‘l‘\}ul\f"del Atif (2001) % Difference
(Nu)
1.0E+03 1.0205 1.0042 1.59%
2.5E+03 1.0718 1.0965 2.30%
5.0E+03 1.1445 1.1720 2.40%
7.5E+03 1.1981 12185 1.70%
1.OE+04 1.2394 1.2526 1.07%
2 5E+04 1.3789 13678 0.81%
5.0E+04 1.4872 1.4619 1.70%
7.5E+04 1.5512 1.5199 2.02%
1.0E+05 1.5972 1.5625 2.17%
2.5E+405 17457 17061 2.27%
5.0E+05 1.8606 1.8235 2.00%
7.5E405 1.9289 1.8959 1.71%
1.0E+06 1.9779 1.9489 1.46%

Table 3.5 shows that the Nusselt numbers calculated from the present model
matches within 3% with the Nusselt numbers calculated from Equation 3.8. The Nusselt
numbers for the same truncation angle with some other gap-to-radius ratios (8) and

different Rayleigh numbers were compared as well. The percentage differences in all of

the compared values are less than 5%.
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Table 3.6: Nusselt number comparison between present model and Equation 3.8
(€ =0, 6,=90°, 6=0.2 and T,>T})

Laouadi and

Gr Prese('l‘\}ul\)“del Atif (2001) % Difference
(Nw)
1.0E+03 1.0280 1.0000 2.73%
2.5E+03 11205 1.1168 0.33%
5.0E+03 12844 13281 3.40%
7.5E+03 14252 1.4698 3.13%
1.0E+04 1.5424 1.5794 2.40%
2.5E+04 1.9905 1.9860 0.22%
5.0E+04 2.4009 23617 1.63%
7.5E+04 2.6629 2.6137 1.85%
1.0E+05 2.8594 2.8086 1.78%
2.5E+05 3.5769 3.5316 1.27%
5.0E+05 42385 4.1998 0.91%
7.5E+05 4.6815 4.6479 0.72%
1.0E+06 5.0240 4.9945 0.59%
2.5E+06 6.2946 6.2802 0.23%
5.0E+06 7.4673 7.4685 0.02%
7.5E+06 8.2562 8.2653 0.11%
1.0E+07 8.8729 8.8816 0.10%

The comparison between the Nusselt numbers calculated from two different
models for a truncation angle of 90° shows that the maximum percentage difference is
3.4%. For the same truncation angle, some other Nusselt numbers for different
gap-to-radius ratio (8) and Rayleigh numbers were compared and the overall percentage

difference was less than 5%.
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3.8 Summary

By selecting the proper options and methods for the numerical procedure, which
was discussed in Section 3.1, and the proper grid type and grid size, the numerical errors
can be reduced. The comparison between the results from the present model and the
results from other researchers confirms that the numerical model is valid and has been set

up properly. In the following chapter, the numerical results from the present model will

be discussed.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the numerical results for two different types of geometries
of domed cavities: concentric and eccentric geometries. Given the parameter ranges

within Table 2.1, a total of 1400 cases were simulated.

4.2 Results for Domed Concentric Cavities

The results for the laminar natural convection in domed concentric cavities with
uniform gap spacing (€ = 0 or Ly / Linin = 1) are presented for the case where the interior

surface temperature is greater than the exterior one (T; > T,). The results cover truncation

angles of 90°, 45° and 30° with varying cavity gap thickness.

4.2.1 Concentric Cavities with Truncation Angle (6,) of 90°
At large gap-to-radius ratios (0.5 < 6 <1), the numerical results reached steady

state conditions for all Grashof numbers in the range of this study. The results for large
gap cavities showed that the flow is made of a single vortex-cell. Streamlines and

Isotherms are shown in Figures 4.1 to 4.3 for 6=0.8 while the Grashof number is 1x10°

’
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5x10* and 5x10°. From Figure 4.1 to 4.3, it can be concluded that increasing the Grashof

number causes the vortex-cell to become bigger.
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Figure 4.1: Streamlines and isotherms for Grashof Number of 1x10°
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Figure 4.2: Streamlines and isotherms for Grashof Number of 5x10*

(0,=90°, £=0 and 5=0.8)

(6,=90°, e=0 and 8=0.8)
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Figure 4.3: Streamlines and isotherms for Grashof Number of 5x10°
(6,=90°, =0 and 6=0.8)

Figure 4.3 shows that a small vortex-cell forms inside the main vortex-cell in the
bottom region. This behavior was found for all large gap cavities at high Grashof
numbers, except for 3=1. In addition to a small vortex-cell, weak changes in flow were
observed inside the big vortex-cell, which caused a very small oscillation in the Nusselt
number. These changes in flow increased the residuals and prevented the numerical
results from reaching the convergence criteria. Therefore, the under-relaxation factors for
density, body forces and energy were reduced from the value of 1 to 0.9 to satisfy

convergence criteria.

For moderate gap-to-radius ratio cavities (0.2 < d < 0.5), numerical results show
that the flow is in the steady state region, with a single-vortex-cell or multi-vortex-cells.
Figures 4.4 to 4.6 present the streamlines and isotherms for §=0.3 at three Grashof

numbers of 1x10°, 5x10* and 5x10°.
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Figure 4.4: Streamlines and isotherms for Grashof Number of 1x10°
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Figure 4.5: Streamlines and isotherms for Grashof Number of 5x10*

(8,=90°, £=0 and 8=0.3)

(8,=90°, £=0 and 8=0.3)
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Figure 4.6: Streamlines and isotherms for Grashof Number of 5x10°
(6,=90°, =0 and 6=0.3)

0.00e+00

When the Grashof number is greater than 10°, small vortex-cells form inside the
main vortex-cell. These vortex-cells move inside the main vortex-cell, which causes
small oscillations in heat transfer, and consequently in the Nusselt number. Figure 4.6

shows these small vortex-cells inside the main vortex-cell.

In some cases, it was found that the numerical results could converge to two
different flow types. A steady state flow with one big vortex-cell might be found in most
of the cases at moderate Grashof numbers by step-increasing the Grashof number.
However, the numerical results could converge to a steady state flow with two main

vortex-cells, if the results were calculated by step-decreasing Grashof number. The

Navier-Stokes equations are nonlinear and nonlinear equations can have multiple

solutions. One or more may be non-physical and experiments are needed to determine

this.
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The heat transfer rate with two vortex-cells is higher than the one with one
vortex-cell. For instance, when the Grashof number is 5x10* and 8=0.5, the Nusselt
number calculated by step-decreasing the Grashof number (two-vortex-cells) is 6.16%
higher then the Nusselt number calculated by step-increasing the Grashof number
(one-vortex-cell). In this study, the Nusselt numbers were calculated by step-increasing
the Grashof number. Figure 4.7 shows two different types of steady flows that were

found by step-increasing and step-decreasing the Grashof number.
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Figure 4.7: Streamlines for Grashof Number of 5x10* (8,=90°, e=0 and §=0.5)
a) Step-increasing Grashof number b) Step-decreasing Grashof Number

For small gap-to-radius ratios (§ < 0.2), steady state flows were observed for

Grashof numbers smaller than 5x10°. In this range of Grashof numbers, the fluid flow is

made of a single vortex-cell. Unsteady flows with multi-vortex-cells were found for
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Grashof numbers in the range of 5x10° < Gr <5x10". In this range of Grashof numbers,
small vortex-cells formed at the top of the cavity, along with a bigger vortex-cell at the
bottom. Small vortex-cells, which were formed on top of the cavity, were pushed down
by the newly formed vortex-cells and then merge with the big main vortex-cell. This
behavior resulted in an oscillation in the Nusselt number. The numerical results showed
unsteady flow. Nevertheless, the changes in flow were repeated periodically, which
caused a periodic change in the Nusselt number. The Nusselt numbers for such cases
were calculated by averaging the Nusselt number over three or more oscillation periods

in time. Figure 4.8 shows such an oscillation in the Nusselt number for a Grashof number

of 7.5x10° when 8=0.2.
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Figure 4.8: Changes in Nusselt number in time (Time Step =0.5s) when Gr=7.5x10°
(0,=90°, =0 and 6=0.2)
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Figures 4.9 to 4.11 show the streamline and isotherms for =0.1 while the Grashof

number is 1x10°, 5x10* and 5x10°.
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Figure 4.9: Isotherms and streamlines for §=0.1 when Gr=1x10’
(6,=90°, €=0)
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Figure 4.10: Isotherms and streamlines for §=0.1 when Gr=5x10*
(6,=90°, €=0)
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Figure 4.11: Isotherms and streamlines for §=0.1 when Gr=5x10°
(6,=90°, €=0)

At high Grashof numbers (Gr >5x10*), the numerical results may reach steady
state or unsteady flow conditions with multi-vortex-cells. As the Grashof number
increased, the vortex-cells on top of the main vortex-cell tended to merge with the main
vortex-cell at the bottom. The heat transfer within the cavity is related to the number of
the vortex-cells and the flow speed. Therefore, the Nusselt number is increased by a
relatively smaller amount with a step-increasing Grashof number when the vortex-cells
merged together and the number of vortex-cells decreased. This is shown at point (A) in

Figure 4.12 for 6=0.2.

At 8=0.2, when the Grashof number reached a value of 7.5x10°, the numerical
results converged to the unsteady state again, and new vortex-cells formed in the top

region of the cavity. The newly formed vortex-cells caused an additional increase in the
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Nusselt number as the Grashof number was increased. The effect of the increase in the

number of vortex-cells on Nusselt number is shown in Figure 4.12 at point (B).
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—&— Numerical results
—— Curve-Fitting

N (A) Gr = 5x10*

0 10 20 30 40 50 60

14
Ra

Figure 4.12: Changes in the Nusselt versus Rayleigh number to the power of (1/4)
(6,=90°, €=0 and 6=0.2)

For the smallest gap-to-radius ratio (6=0.01), all simulations were run in the
unsteady mode, because oscillations in heat transfer from the exterior surface were
observed at most Grashof numbers. Since the radius is relatively big compared to the gap
spacing when 6=0.01, the number of control-volume-cells in the meshed geometry was
increased significantly. Consequently, increasing the number of control-volume-cells
caused an increase in the number of numerical calculations per iteration. Therefore, the

numerical process was slowed down significantly. The numerical results showed that the
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changes in the Nusselt number were periodic and the time period was relatively large. As
a result, running the simulation for each mesh size took more than a week. The
under-relaxation factor’s values were reduced from the original value (pressure=0.25,

density, body forces and energy=0.8 and momentum=0.6).

Comparing the numerical results with different mesh sizes showed that the
numerical results were oscillating around a constant value and the amplitude of the
oscillation was reduced by increasing the mesh size. Therefore, among the mesh sizes,

the ones which had less than 5% change in the Nusselt number were considered.

As discussed previously, the unsteady flow might be periodic. Figure 4.13 shows
the oscillation in Nusselt number for a Grashof number of 5x10°. In Figure 4.13, point
(A) is the point that the time step was changed from the value of 1.0 to the value of 0.1 in
the numerical analysis. In the numerical procedure different time step sizes were
considered to make sure that the results were independent of time step size. Figure 4.13
shows a comparison between Nusselt number for time step sizes equal to 1 and 0.1. It is
concluded that changing the time step size has no effect on the average Nusselt number if
the Nusselt number is calculated by averaging within a time period much bigger than the

oscillation period.
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Figure 4.13: Oscillation in Nusselt number with the time step= 1 and 0.1
(Gr =5x10°, 8,=90°, € =0 and §=0.01)

4.2.1.1 Correlations for Heat Transfer

The average Nusselt number calculated from the present model for a truncation
angle of 90° and for different values of 9, is presented in Appendix-A, Table A.1. The
main objective of this study is to find a simplified correlation similar to Equation 3.6.
Therefore, the power Equation 4.1 was curve-fitted to the numerical results for each

value of d.

<
Il

o o 4.1)
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By comparing Equations 4.1 and 3.6, it can be concluded that x represents Ra*'"*
and y represents Nusselt number. The constants ¢ and d in the Equation 4.1 were
calculated for each o. The constants ¢ and d for each & found from curve-fitting are

shown in Table 4.1.

Table 4.1: The constant ¢ and d for 6,=90°

) c d
1 0.7801 0.9914
0.8 0.7721 1.0068
0.5 0.7622 1.0258
0.4 0.7610 1.0293
0.3 0.7402 1.0513
0.2 0.8164 1.0339
0.1 0.8994 1.0097
0.01 0.8430 0.9869

The Nusselt number calculated from the present model are compared with the

Nusselt number calculated from curve-fitting Equation 4.1. Figure 4.14 shows a sample
of curve-fitting of Equation 4.1 to the numerical results when 6=0.4. Figure 4.14 shows

the best-fit curve of the numerical results with +4% error bars.
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Figure 4.14: Numerically predicted Nusselt number (with £4% error bars) and power
function curve-fitted to the numerical results when 8=0.4.

Table 4.2 compares the numerical results and the results from Equation 4.1 for
8=0.4 (¢=0.761 and d=1.0293). From the results in Table 4.2, it can be concluded the

power function that was curve-fitted to the numerical results predicts the Nusselt number
with less than 4% error, except at a Grashof number of 2.5x10°, where the percentage

error is about 7%.
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Table 4.2: Nusselt number calculated from present model and power function
curve-fitting for 8=0.4

Nu

Gr Ra* (Numerical ( Curv:::‘i tting) % Error
Results)

1.00E+03 1.3493 1.0532 1.0359 -1.65%
2.50E+03 1.6967 1.2307 1.3113 6.55%
5.00E+03 2.0177 1.5087 1.5674 3.89%
7.50E+03 2.2330 1.7134 1.7398 1.54%
1.00E+04 2.3995 1.8717 1.8734 0.10%
2.50E+04 3.0172 2.4434 2.3716 -2.94%
5.00E+04 3.5881 2.9415 2.8347 -3.63%
7.50E+04 3.9708 3.2563 3.1464 -3.38%
1.00E+05 4.2669 3.4936 3.3882 -3.02%
2.50E+05 5.3654 4.3664 4.2891 -1.77%
5.00E+05 6.3806 5.1791 5.1266 -1.02%
7.50E+05 7.0613 5.7268 5.6903 -0.64%
1.00E+06 7.5878 6.1510 6.1276 -0.38%
2.50E+06 9.5412 7.7319 7.7569 0.32%
5.00E+06 11.3464 9.0960 9.2715 1.93%
7.50E+06 12.5569 10.0676 10.2911 2.22%
1.00E+07 13.4933 10.8183 11.0819 2.44%

The constants ¢ and d are a function of 8. It would be useful to define a general
correlation for the constants ¢ and d as a function of 8. TableCurve version 1.10 software
was used to find the best correlation that could be fitted to the constants ¢ and d.
TableCurve software uses a least squares method to find the constants of different
functions and fit them to the input values. Equations 4.2 and 4.3 were found from

curve-fitting using TableCurve.
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Figures 4.15 and 4.16 show the Equations 4.2 and 4.3 that curve-fitted to the
value of constant ¢ and d respectively.
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Figure 4.15: The curve-fitted (Equation 4.2) to the constant ¢
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Figure 4.16: The curve-fitted (Equation 4.3) to the constant d

Table 4.3 compares the values of ¢ and d, which were calculated from
curve-fitting Equation 4.1 to the numerical results (Table 4.1) and Equations 4.2 and 4.3.
From Table 4.3, it can be concluded that Equations 4.2 and 4.3 could predict the values of

¢ and d with less than 1.5% error.

Table 4.3: constant ¢ and d for 6,=90°

o c (qu 4.2) % Error d (eq.l 4.3) % Error

1 0.7801 0.7792 0.11% 0.9914 0.9944 0.31%
0.8 0.7721 0.7745 0.31% 1.0068 1.0011 0.56%
0.5 0.7622 0.7611 0.14% 1.0258 1.0245 0.13%
0.4 0.7610 0.7537 0.96% 1.0293 1.0376 0.80%
0.3 0.7402 0.7493 1.23% 1.0513 1.0464 0.47%
0.2 0.8164 0.8151 0.16% 1.0339 1.0359 0.19%
0.1 0.8994 0.9002 0.09% 1.0097 1.0094 0.03%
0.01 0.8430 0.8430 0.00% 0.9869 0.9869 0.00%
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Therefore, the Nusselt number which was calculated from the present model can

be estimated with the following equation:

Nu = max {1, C(Ra*)d/4 } (4.4)

where the constants ¢ and d can be calculated from Equations 4.2 and 4.3 respectively.

The average percentage difference between the Nusselt number which is

calculated from present model and Equation 4.4 for each § is less than 5%. The average

percentage error is defined as:

n

Averaged % Error = Z

1 n

%Error]
- 4.5)

Table 4.4 shows a comparison between the Nusselt number found from the
numerical model and the Nusselt number calculated from Equation 4.4. Table 4.4 shows
that the maximum percentage error for 8=0.4 is about 6% at the Grashof number of
2.5x10°. Maximum percentage error for truncation angle of 90°, considering all

gap-to-radius ratios, is less then 12% which is found for §=0.1 at Gr=5x10".
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Table 4.4: The Nusselt number comparison between the present numerical model and
Equation 4.4 for 6,=90° 6=0.4.

Nu

Gr Ra* 4 (Numerical (Equas:n. 4.4) % Error
Results)
1.00E+03 1.3493 1.0532 1.0284 2.36%
2.50E+03 1.6967 1.2307 1.3044 5.98%
5.00E+03 2.0177 1.5087 1.5613 3.49%
7.50E+03 2.2330 1.7134 1.7345 1.23%
1.00E+04 2.3995 1.8717 1.8688 0.15%
2.50E+04 3.0172 2.4434 2.3703 2.99%
5.00E+04 3.5881 2.9415 2.8371 -.55%
7.50E+04 3.9708 3.2563 3.1518 321%
1.00E+05 4.2669 3.4936 3.3960 2.79%
2.50E+05 5.3654 4.3664 4.3071 1.36%
5.00E+05 6.3806 5.1791 5.1555 0.46%
7.50E+05 7.0613 5.7268 9:7273 0.01%
1.00E+06 7.5878 6.1510 6.1710 0.33%
2.50E+06 9.5412 7.7319 7.8267 1.23%
5.00E+06 11.3464 9.0960 9.3684 2.99%
7.50E+06 12.5569 10.0676 10.4074 3.37%
1.00E+07 13.4933 10.8183 11.2137 3.65%

Table 4.5 shows the average percentage error for 8,=90° calculated from
Equation 4.5 for different values of . Table 4.5 shows that the average percentage error

for a truncation angle of 90° which is less than 5%.
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Table 4.5: The average percentage error in Nusselt number calculated
from Equation 4.4 and present model for 6,=90°.

5 ;&verage

% Error
1 1.73%
0.8 1.63%
0.5 1.98%
0.4 2.30%
0.3 2.06%
0.2 4.56%
0.1 4.39%
0.01 1.30%

Figure 4.17 shows all numerical results for the Nusselt number, as well as

calculated values based on Equation 4.4 for a truncation angle of 90°.
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Figure 4.17: Nusselt number correlation with £10% error bar and numerical results
for 6,=90°.
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4.2.2 Concentric Cavities with Truncation Angle of (6, = 45°)

Numerical results for domed cavities with a truncation angle of 45° showed that,
for large gap-to-radius ratios( 0.5 < & < 1), the flow may reach the steady state condition
with one vortex-cell for the studied range of Grashof numbers. For small Grashof
numbers, a flow type similar to that for a truncation angle of 90° was observed. Figures
4.18 and 4.19 show the isotherms and streamlines for 8=0.8 at Grashof numbers of 5x10*
and 5x10°, respectively. For very large Grashof numbers, small unstable vortex-cells

appeared inside the main vortex-cell. The unstable vortex-cells caused small oscillations

in the Nusselt number at high Grashof numbers.
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Figure 4.18: Streamlines and isotherms for 8=0.8 and Gr=5x10*
(6,=45° and €=0)
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Figure 4.19: Streamlines and isotherms for =0.8 and Gr=5x10°
(6,=45° and €=0)

Numerical results for moderate gap-to-radius ratios (0.5 < & < 0.2) showed that the
flow may reach the steady state condition. For these geometries, the fluid flow was
comprised of a single vortex-cell for relatively small Grashof numbers. However, it was
observed that, for moderate Grashof numbers, the flow structure might be multi-cellular
in nature. In most cases at high Grashof numbers, most of the cavity was occupied with
one big vortex-cell. But for 8=0.3, two small vortex-cells were observed at the top of the
cavity along with small unstable vortex-cells inside the main vortex-cell. For small
Grashof numbers, the same flow types were observed. Figures 4.20 and 4.21 show the

streamlines and isotherms for =0.3 at Grashof numbers of 5x10* and 5x10°.
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Figure 4.20: Streamlines and isotherms for 8=0.3 and Gr=5x10*
(6,=45° and €=0)
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Figure 4.21: Streamlines and isotherms for §=0.3 and Gr=5x10°
(6,=45° and €=0)

The numerical cases for small gap-to-radius cavities (& < 0.2) converged very

slowly. A single-vortex-cell was observed for small Grashof numbers. The fluid flow was

unsteady with multi-vortex-cells for moderate and high Grashof numbers. Figures 4.22
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and 4.23 show the isotherms and streamlines for =0.1 at Grashof numbers equal to

5x10* and 5x10°.

1.00e+00
9.23e-01
B8.46e-01
7.60e-01

692e-01
6.15¢-01
638e-01
4.62e-01
386e-01
3.08e-01
231e-01
154e-01
7.60e-02
0.00e+00

1.00e+00

933e-01

8.67e-01
" 8.00e-01

| 733e-01
6.67e-01
6.00e-01
533e-01
4.67e-01
4.00e-01
333e-01
267e-01
2.00e-01
1.33e-01
6.67e-02
0.00e+00

Figure 4.22: Streamlines and isotherms for 8=0.1 and Gr=5x10*
(6,=45° and €=0)

Figure 4.23: Streamlines and isotherms for 8=0.1 and Gr=5x10°
(8,=45° and €=0)
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4.2.2.1 Correlations for Heat Transfer

Similar to the results for a truncation angle of 90°, periodic behavior in the
Nusselt number was observed. The Nusselt number data, which were calculated from the
present model for a truncation angle of 45°, are presented in Appendix-A Table A.2.

A power function (Equation 4.1) was curve-fitted to the Nusselt numbers for each
value of 6 and the constants ¢ and d were calculated. Table 4.6 shows the constants ¢ and

d that were found from least-squares curve-fitting.

Table 4.6: The constant ¢ and d for 8,=45°

) c d

1 0.6992 1.0435
0.8 0.7436 1.0373
0.5 0.8337 1.0233
0.4 0.8229 1.0447
0.3 0.9049 1.0239
0.2 2.1270 0.9809
0.1 1.1404 1.0233
0.01 0.9335 0.9683

Figure 4.24 shows the Nusselt number calculated from the present model with

+4% error bars for 6=0.5 and the power function curve-fitted to it.
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Figure 4.24: Nusselt number from numerical result (4% error bar) and power function
fitted to the numerical results for =0.5

Table 4.7 compares the Nusselt number calculated from the present model and the

Nusselt number found from Equation 4.1 for 8=0.5.
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Table 4.7: Nusselt number calculated from present model and power function
curve-fitting in 6=0.5

Nu Nu

Br Ra* 1 (Present Model) (Equation 4.1) % Error
1.00E+03 1.3930 1.0528 1.1000 4.49%
2.50E+03 1.7516 1.3405 1.4795 10.37%
5.00E+03 2.0830 1.7396 1.7665 1.55%
7.50E+03 2.3052 1.9885 1.9596 -1.46%
1.00E+04 24771 2.1684 2.1093 -2.73%
2.50E+04 3.1148 2.7785 2.6664 -4.03%
5.00E+04 3.7041 3.3015 3.1838 -3.56%
7.50E+04 4.0993 3.6403 3.5318 -2.98%
1.00E+05 4.4049 3.8981 3.8015 -2.48%
2.50E+05 5.5389 4.8400 4.8057 -0.71%
5.00E+05 6.5869 5.7168 5.7381 0.37%
7.50E+05 7.2896 6.3106 6.3653 0.87%

1.00E+06 7.8332 6.7758 6.8514 1.12%
2.50E+06 9.8498 8.5590 8.6613 1.20%
5.00E+06 11.7134 10.2328 10.3417 1.06%
7.50E+06 12.9630 11.3537 11.4721 1.04%
1.00E+07 13.9297 12.2158 12.3482 1.08%

Equations 4.6 and 4.7 can be found by following the same steps that were taken

for a truncation angle of 90° using TableCurve software.

1
1.15362 —49.659005° +163.151035°

c={ (4.6)
0.92002/._0.39951/ ,0.05837/ :r 03< <
0.11441+ /5 /5” /5_, if 03<5<1

if 0<6<0.3

L
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09718 if 0<6<03
d= 4.7
1.030 if 0.3<6<1

Figures 4.25 and 4.26 present the value of ¢ along with the equation 4.6, which is
the curve-fit for the constant c¢. The results from Table 4.6 show that the constant d

changes only slightly over the range of 5 considered.
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Figure 4.25: The curve-fitted (equation 4.6) to the constant ¢
where 0 <6 <0.3
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Figure 4.26: The curve-fitted (Equation 4.2) to the constant ¢
wherel <6 <0.3

Table 4.8 shows the comparison between the values of ¢ and d with the Equations
4.6 and 4.7. Table 4.8 shows that the maximum percentage error is about 7%, which

happens for 6=0.1.

Table 4.8: constant ¢ and d for 6,=45°

) c (Eq.c 4.6) % Error d (Eq‘.l 47) % Error

1 0.6992 0.6933 0.85% 1.0435 1.0300 1.29%
0.8 0.7436 0.7542 -1.43% 1.0373 1.0300 0.70%
0.5 0.8337 0.8234 1.24% 1.0233 1.0300 -0.65%
0.4 0.8229 0.8295 -0.81% 1.0447 1.0300 1.41%
0.3 0.9049 0.9039 0.11% 1.0239 1.0300 -0.60%
0.2 2.1270 2.1165 0.49% 0.9809 0.9718 0.93%
0.1 1.1404 1.2192 -6.91% 1.0233 0.9718 5.03%
0.01 0.9335 0.8705 6.75% 0.9683 0.9718 -0.36%
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The comparison between the Nusselt number from the present model and
Equation 4.4 shows that Equation 4.4 over predicts the Nusselt number for small Grashof
numbers. At some gap-to-radius ratios this error is greater than 20%. The comparison
between Equation 4.4 and the present model for all gap cavities could be found in
Appendix A. Table 4.9 presents a sample comparison between Equation 4.4 and the

present model for 6=0.3.

Table 4.9: The Nusselt number comparison between present model and Equation 4.4
for 6,=45° 8=0.3

Gr Ra* (Prese?tuModel) (quf'i“ % Kaxor
1.0E+03 1.2847 1.0423 1.1835 -13.55%
2.5E+03 1.6154 1.2602 1.4985 -18.90%
5.0E+03 1.9211 1.7559 1.7913 -2.01%
7.5E+03 2.1260 2.0467 1.9884 2.85%
1.0E+04 2.2846 2.2479 2.1413 4.74%
2.5E+04 2.8727 2.9125 27111 6.92%
5.0E+04 3.4162 3.4787 3.2409 6.84%
7.5E+04 3.7807 3.8410 3.5975 6.34%
1.OE+05 4.0626 4.1121 3.8741 5.79%
2.5E+05 5.1084 5.0449 4.9051 2.77%
5.0E+05 6.0750 5.6078 5.8636 -4.56%
7.5E+05 67231 6.1987 6.5089 -5.00%
1.0E+06 7.2244 6.6655 7.0093 -5.16%
2.5E+06 9.0842 8.4066 8.8745 -5.57%
5.0E+06 10.8030 99787 10.6087 -6.31%
7.5E+06 11.9555 11.0876 11.7762 -6.21%
1.0E+07 12.8470 11.9219 12.6817 -6.37%
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The average percentage errors for 6,=45° in all gap cavities are presented in
Table 4.10. It can be concluded that the average percentage error between the correlation

equation and the numerical data is less than 9%.

Table 4.10: The average percentage error in Nusselt number calculated
from Equation 4.4 and present model for 6,=45°

) Ave Error

1 3.43%
0.8 1.86%
0.5 2.92%
0.4 3.36%
0.3 6.46%
0.2 5.96%
0.1 8.52%
0.01 5.45%

Figure 4.27 shows a graphical comparison between the Nusselt number calculated

from the present model and Equation 4.4 with +10% error bars for Equation 4.4.
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Figure 4.27: Nusselt number correlation with +10% error bars and numerical results
for 6,=45°.

4.2.3 Concentric cavities with Truncation Angle of (6, = 30°)

Figures 4.28 to 4.33 compare the streamlines and isotherms in the cavity for a
truncation angle of 30°. The numerical results converged to the steady state for large and
moderate gap-to-radius ratios over the full range of Grashof numbers considered in this
study. The numerical results show that the fluid flow is made of a single vortex-cell. This
vortex-cell becomes larger as the Grashof number increases. Figures 4.28 and 4.29 show
the isotherms and streamlines for cavities with large gap ratios and Figures 4.30 and 4.31
show the isotherms and streamlines for moderate gap ratios at Grashof numbers of 5x10*

and 5x10°, respectively.
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Figure 4.28: Streamlines and isotherms for 8=0.8 and Gr=5x10*
(6,=30° and €=0)
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Figure 4.29: Streamlines and isotherms for §=0.8 and Gr=5x10°
(6,=30° and €=0)
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Figure 4.30: Streamlines and isotherms for §=0.3 and Gr=5x10*
(6,=30° and €=0)
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Figure 4.31: Streamlines and isotherms for §=0.3 and Gr=5x10°
(6,=30° and €=0)
Figures 4.32 and 4.33 present the streamlines and isotherms in cavities with small
gap ratios. At small Grashof numbers, the numerical results converged to a steady state
condition, with a single vortex-cell. At moderate and high Grashof numbers, multiple

vortex-cells were observed. The fluid flow converged to steady state conditions for all
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Grashof numbers, except at the smallest gap ratio (8=0.01). For the gap ratio of 0.01

similar to the moderate gap ratios, oscillation in the Nusselt number was observed.
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Figure 4.32: Streamlines and isotherms for 8=0.1 and Gr=5x10*
(6,=30° and €=0)

Figure 4.33: Streamlines and isotherms for 8=0.1 and Gr=5x10°
(6,=30° and €=0)
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At some Grashof numbers, periodic behavior was not observed. For instance,
Figure 4.34 shows the oscillation in Nusselt number in the gap cavity 8=0.01 for a

Grashof number of 5x10°.
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Figure 4.34: Oscillation in Nusselt number when Time Step = 0.01, 8=0.01 and
Gr=5x10° (8,=30° and €=0)
4.2.3.1 Correlations for Heat Transfer
The same steps were followed as for the other truncation angles, and the constants
¢ and d were found from curve fitting Equation 4.1 to the numerical results. The values of

¢ and d are presented in Table 4.11.
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Table 4.11: The constant ¢ and d for 6,=30°

) c d

1 0.5173 1.1585
0.8 0.5956 1.1174
0.5 0.7650 1.0526
0.4 0.8465 1.0271
0.3 0.8815 1.0373
0.2 1.1275 0.9511
0.1 1.3497 0.9166
0.01 1.4710 0.8279

Figure 4.35 shows a graphical comparison between the Equation 4.1 (with £4%

error bars) and the numerical results for 6=0.2.
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Figure 4.35: Nusselt number from numerical result (+4% error bar) and power function
fitted to the numerical results for §=0.2
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Table 4.12 compares these values. From Table 4.12, it can be concluded that, for
small Grashof numbers, Equation 4.1 over predicts the Nusselt number by more than
29%. Except for the first two Nusselt number at very low Grashof numbers, Equation 4.1

agrees well with the Nusselt number found from the present model.

Table 4.12: Nusselt number calculated from present model and power function
curve-fitting for 6=0.2

Nu Nu#*

Gr Ra* ' (Present Model) (Curve Fitting) % Error
1.00E+03 1.1851 1.0239 1.3251 29.42%
2.50E+03 1.4901 1.2270 1.6477 34.28%
5.00E+03 1.7721 1.7521 1.9429 10.89%
7.50E+03 1.9611 2.0509 2.1395 4.32%
1.00E+04 2.1074 2.2552 2.2910 1.59%
2.50E+04 2.6499 2.9249 2.8487 -2.60%
5.00E+04 3.1512 3.4948 3.3591 -3.88%
7.50E+04 3.4874 3.8593 3.6991 -4.15%
1.00E+05 3.7475 4.1302 3.9610 -4.10%
2.50E+05 47122 4.7537 4.9252 3.61%
5.00E+05 5.6038 5.6294 5.8076 3.17%
7.50E+05 6.2016 6.2193 6.3954 2.83%
1.00E+06 6.6641 6.6801 6.8482 2.52%
2.50E+06 8.3796 8.4509 8.5152 0.76%
5.00E+06 9.9651 10.1070 10.0409 -0.65%
7.50E+06 11.0282 11.1953 11.0571 -1.23%
1.00E+07 11.8506 12.0257 11.8399 -1.54%

TableCurve software was used to curve-fit an equation to the constants ¢ and d.
Equations 4.8 and 4.9 were found from curve-fitting to the values of ¢ and d from

Table 4.11.
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¢ = 0.68665—-0.767325 +16.73474 6° — 46.54738 6°
+52.44906 6* — 20.62163 6°

4.8)

d=0.81649+1.1580276 — 2.346815° +2.417946> —0.886715* 4.9)

The Equation 4.8 and 4.9 curve-fitted to the value of ¢ and d are shown in Figures

4.36 and 4.37, respectively.
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Figure 4.36: The curve-fitted (Equation 4.8) to the constant ¢
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Figure 4.37: The curve-fitted (Equation 4.9) to the constant d

Table 4.13 compares the values of ¢ and d from Table 4.11 and Equations 4.8 and
4.9. Table 4.13 shows that Equations 4.8 and 4.9 predict the values of ¢ and d with less

than 5% error.

Table 4.13: constant ¢ and d for 6,=30°

c d

o c (Eq 4.8) % Error d (Eq 4.9) % Error

1 0.5173 0.5170 0.05% 1.1585 1.1589 -0.04%
0.8 0.5956 0.5964 -0.14% 1.1174 1.1157 0.15%
0.5 0.7650 0.7681 -0.41% 1.0526 1.0556 -0.29%
04 0.8465 0.8266 2.35% 1.0271 1.0363 -0.89%
0.3 0.8815 0.9255 -4.99% 1.0373 1.0108 2.56%
0.2 1.1275 1.1019 2.27% 09511 0.9721 2.21%
0.1 1.3497 1.3591 -0.70% 0.9166 09112 0.59%
0.01 1.4710 1.4693 0.12% 0.8279 0.8278 0.01%
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Therefore, the Nusselt number calculated from the present model can be estimated
with Equation 4.4, where the constants ¢ and d are calculated from Equations 4.8 and 4.9,
respectively. Table 4.14 shows a comparison between the Nusselt number calculated
from the present model and the Nusselt number calculated from Equation 4.4 for a gap
ratio equal to 0.3. Table 4.14 shows that Equation 4.4 can not predict the Nusselt number

closely for Grashof numbers less than 2.5x10°.

Table 4.14: The Nusselt number comparison between present model and Equation 4.4
for 8,=30° 6=0.3

Nu Nu

A Ra* (Present Model)  (Eq.4.4) % s
1.0E+03 1.1851 1.0239 1.2997 -26.93%
2.5E+03 1.4901 1.2270 1.6238 -32.34%
5.0E+03 1.7721 1:7521 1.9218 -9.68%
7.5E+03 1.9611 2.0509 2.1208 -3.41%
1.0E+04 2.1074 2.2552 2.2744 -0.85%
2.5E+04 2.6499 2.9249 2.8417 2.84%
5.0E+04 3.1512 3.4948 3.3631 3.77%
7.5E+04 3.4874 3.8593 3.7114 3.83%
1.0E+05 3.7475 4.1302 3.9802 3.63%
2.5E+05 47122 47537 4.9730 4.61%
5.0E+05 5.6038 5.6294 5.8854 -4.55%
7.5E+05 6.2016 6.2193 6.4949 -4.43%
1.0E+06 6.6641 6.6801 6.9653 -4.27%
2.5E+06 8.3796 8.4509 8.7027 -2.98%
5.0E+06 9.9651 10.1070 10.2995 -1.90%
7.5E+06 11.0282 11.1953 11.3661 -1.53%
1.0E+07 11.8506 12.0257 12.1893 -1.36%
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The average error in Nusselt number, over all Grashof numbers considered, is
calculated using Equation 4.4 for each gap ratio is presented in Table 4.15. It can be
concluded that the average percentage error increases for small gap ratios, and the

maximum error happens for a gap ratio equal to 0.01.

Table 4.15: The average percentage error in Nusselt number calculated
from Equation 4.4 and the present model for 6,=30°

5 Average

% Error
1 1.68%
0.8 1.60%
0.5 3.07%
0.4 3.44%
0.3 3.37%
0.2 6.64%
0.1 8.14%
0.01 10.69%

4.2.4 Discussion

The fluid flow in domed concentric cavities with a uniform gap thickness was
found to be steady for large gap ratios. The flow could be steady or unsteady for
moderate gap ratios. Fluid flow in cavities with moderate and large gap-to-radius ratios
(6 <0.5) might contain a single-vortex-cell or multiple-vortex-cells. The fluid flow in
small gap cavities was found to be unsteady. At a truncation angle of 30°, for Grashof
numbers larger than 10, in some cases, the numerical results showed unsteady flow in

the cavity.

Figures 4.38 to 4.40 compare the effect of gap cavity on Nusselt number for three

truncation angles of 90°, 45° and 30°. It can be concluded that, for a truncation angle of
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90°, changes in gap cavity have a small effect on Nusselt number, but at smaller

truncation angles, the Nusselt number increases as the gap ratio decreases.
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Figure 4.38: Profile of the time averaged Nusselt number as a function of Ra*'"* for a
truncation angle of 90°
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Figure 4.39: Profile of the time averaged Nusselt number as a function of Ra*"* for a
truncation angle of 45°
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Figure 4.40: Profile of the time average Nusselt number as a function of Ra*'* for a
truncation angle of 30°

Figure 4.41 compares the Nusselt numbers for truncation angles of 90°, 45° and
30°. The Nusselt number for each truncation angle is presented for Grashof numbers
equal to 5x10*, 5x10° and 5x10°. From Figure 4.47, it can be concluded that the Nusselt
number has a maximum value at a truncation angle of 45° and 6=0.2. At each truncation
angle, the Nusselt number increases with increasing Grashof number. For large gap
cavities, the Nusselt number is almost the same at all truncation angles for each Grashof

number.
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Figure 4.41: Nusselt number as a function of &

4.3 Results for Eccentric Dome Cavities

Domed eccentric cavities with non-uniform gap spacing were studied when
heated from the outside surface. The numerical results show that the flow is stable. The
numerical results reached steady-state with a single vortex-cell for small and moderate
Grashof numbers, independently of the truncation angle. For large Grashof numbers
(larger than 10°), small unstable vortex-cells formed inside the big vortex-cell. The
unstable vortex-cells caused small oscillations in Nusselt number. In such cases, the

Nusselt number was calculated from the time average over two or three time periods. The
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numerical results for different truncation angles and gap ratios are presented in

Appendix B. In the non-uniform gap cavities when heated from outside, the flow is made
of a single vortex-cell for truncation angles of 90°, 45° and 30°. Since the streamline and
isotherms are almost the same as those for non-uniform gap spacing, only, streamline and
isotherms for truncation angles of 90° and 45° for moderate and high Grashof numbers
are presented. Figure 4.42 shows streamlines and isotherms for non-uniform-gap spacing
for small Grashof numbers and Figure 4.43 shows the streamline and Isotherms for high
Grashof numbers. Figure 4.43 shows a small unstable vortex-cell inside the big vortex

cell.
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Figure 4.42: Streamline and isotherms for 8,=45° and 90° when Gr =5x10*
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Figure 4.43: Streamline and isotherms for 8,=45° and 90° when Gr =5x1 0°

Since the procedure for curve-fitting the best-fit equation to the numerical results
is the same as the procedure that was followed for uniform-gap thickness, only the final
correlations are presented in this chapter. As for the uniform-gap thickness, the Nusselt
number is defined with Equation 4.4. The coefficients ¢ and d for the non-uniform gap

thickness are found as follows:
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For truncation angle of 90°:

0.036124 +1.7382775"
1+10.3759736'+2.3399765"

d=2303048-1.3436495" 0.023004

For truncation angle of 45°:

c = 0.043487 +0.979839 5'+1.499226 5" - 61.6936415"
+330.63495" —437.48683 5"

d =1.056547 +0.754604 5'-41.676863 5 +406.43125 5"
—-1965.2146 5" +4220.9736 5 -3268.1435"

For truncation angle of 30°

0.052475+0.6055765'+12.4406025"° -37.39666 15"

0.5328 —15.5555'+160.465" -381.656"
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when 6'< 0.1

when 8'> 0.1

(4.10)

4.11)

(4.12)

(4.13)

(4.14)



[ 1.044507+2.6515475"
1+1.8845865'+63.3770475"
d = (4.15)
0.610486—1.1018625"
| 1-13.3299555'+102.91135"

when §'< 0.1

when 5'> 0.1

Equation 4.4 predicts the numerical results with less than 10% error except for the
truncation angle of 30° and 8°=0.2, where the error is 22.8% when the Grashof number is
10". Table 4.16 shows the maximum absolute error for different truncation angles except

for the Grashof number of 10’ when 0,=30° and &’=0.2.

Table 4.16: The maximum absolute error in Equation 4.4
related the Numerical results

Maximum Absolute

% Error
30 8.32%
45 8.84%
90 9.75%

4.3.1 Discussion

The fluid flow in a double glazed domed skylight with a non-uniform gap
thickness for all truncation angles was found to be steady with a single vortex-cell for
small and moderate Grashof numbers. Small unstable vortex-cells were found inside the
main vortex-cell that filled the gap cavity for high Grashof numbers (larger than 10%). As

for the uniform gap cases, changes in gap ratio have a smaller effect on Nusselt number
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for a truncation angle of 90° compared to the other truncation angles. This effect is shown

in Figures 4.42 and 4.43.
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Figure 4.44: Profile of the time averaged Nusselt number as a function of Ra*"* for a
truncation angle of 90°
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Figure 4.45: Profile of the time average Nusselt number as a function of Ra*'"* for a
truncation angle of 45°

Figure 4.44 shows the changes in Nusselt number as a function of gap ratio for
Grashof number equal to 5x10*, 5x10° and 5x10°. The Nusselt number is maximum when

&’ is about 0.4, 0.1 and 0.05 for the truncation angles of 90°, 45° and 30°, respectively.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Laminar natural convection heat transfer within spherical double-glazed domed
skylights was studied using a numerical method. A wide range of geometries and
dimensionless parameters was considered. The numerical results were used to obtain
general correlations for the Nusselt number in domed cavities. The main conclusions are

as follows:

e Concentric domed cavities when heated from the interior surface:
» The flow within a domed cavity for small and moderate Grashof numbers
(Gr < 10°) might reach steady state conditions with a single vortex-cell or
multi-vortex-cells, depending on the truncation angle and gap ratio. For high
Grashof numbers (Gr > 10°) and a small gap ratio, the flow might be unsteady. In
most of the cases the unsteady flow is periodic and oscillations in Nusselt number

were observed.

> The numerical results show that changes in the time-averaged Nusselt number as

a function of Ra*"* depend on the non-dimensional gap spacing & for each
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truncation angle. For truncation angles of 45° and 30°, this dependence is more

significant.

> In small gap cavities (8 < 0.2 ) minor oscillations in the time-averaged Nusselt
number are also observed. These oscillations are caused by the changes in the

flow pattern (Figure 4.12).

> For a given cavity shape, there exists a critical gap spacing for which the Nusselt
number reaches its maximum value and then decreases to settle at an asymptotic
value with increasing gap spacing. The critical gap spacing was found to vary

between 8 = 0.1 and 0.3, depending on the cavity shape.

» Two different numerical solutions were found in some cases for moderate
gap-to-radius ratio cavities (0.5 < <0.2) . Both solutions reach steady state
conditions, one with a single-vortex-cell and the other with a bi-vortex-cell. The

Nusselt number was found to be lower by ~6% for the single-vortex-cell solution.

e Eccentric domed cavities when heated from the outsider-surface:

» The numerical results reached steady state conditions with a single vortex-cell for

small and moderate Grashof numbers (Gr <10°). For high Grashof numbers

(Gr > 10°), small unstable vortex-cells formed inside the big vortex cell. The

unstable vortex-cells caused small oscillations in the Nusselt number.
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» The vortex cells become stronger and bigger as the Grashof number increases.
Depending on the truncation angle and gap thickness, at a Grashof number around
7.5x10°, the flow might be unstable and gets into the transition condition,

approaching the turbulent regime.

> Similar to concentric domed cavities, changes in the gap ratio have a small effect
on the Nusselt number for a truncation angle of 90°. However, the gap ratio has a

significant effect on the Nusselt number for truncation angles of 45° and 30°.

> The Nusselt number is highest for a truncation angle of 90° and increases with
dimensionless gap thickness to an asymptotic value. For truncation angles of 45°
and 30°, the Nusselt number increases with the dimensionless gap thickness,
reaching a maximum value and then decreasing. The critical gap thickness that
maximizes the Nusselt number varies with the truncation angle and Grashof

number.

5.2 Recommendations

The following recommendations are made for future studies:

» Future studies should focus on heat transfer for the gap ratios of §=0.35, 0.25, 0.015,

0.008 and 0.005, which need to be studied for the case of cavities heated from inside.
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Increasing the number of points will result in better a curve-fit and more accurate

correlation.

Since there is no experimental result available for domed skylights, some experiments
need to be conducted to validate the numerical results. These experiments should
include flow visualization, in order to validate both the flow structures and the

transition to unsteady flow.

In this study, in some cases, the numerical results converged to two different flow

types. More scrutiny is therefore needed to study this flow bifurcation by numerical i

modelling and laboratory experiments.
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APPENDIX-A
UNIFORM GAP THICKNESS DOMED

SKYLIGHT HEATED FROM INSIDE

A.1 Average Nusselt Number

Table A.1: Average Nusselt number when 6,=90°

Gr 6=1 6=0.38 6=0.5 6=04
1.00E+03 1.0907 1.0840 1.0634 1.0532
2.50E+03 1.3677 1.3480 1.2718 1.2307
5.00E+03 1.6915 1.6764 1.5748 1.5087
7.50E+03 1.8997 1.8916 1.7881 1.7134
1.00E+04 2.0548 2.0524 1.9506 1.8717
2.50E+04 2.5990 2.6184 2.5306 2.4434
5.00E+04 3.0681 3.1054 3.0320 2.9415
7.50E+04 3.3676 3.4152 3.3500 3.2563
1.00E+05 3.5943 3.6495 3.5900 3.4936
2.50E+05 4.4365 4.5185 4.4755 4.3664
5.00E+05 5.2421 5.3441 5.3046 5.1791
7.50E+05 5.7926 5.9061 5.8632 5.7268
1.00E+06 6.2214 6.3430 6.2953 6.1510
2.50E+06 7.8194 7.9737 7.9162 7.7319
5.00E+06 9.3032 9.4965 9.4353 9.0960
7.50E+06 10.2966 10.5161 10.2969 10.0676

1.00E+07 11.0627 11.3017 11.0658 10.8183
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Table A.1: Continued

Gr 6=0.3 6=0.2 6=0.1 6=10.01
1.00E+03 1.0416 1.0281 1.0140 1.0008
2.50E+03 1.1812 1.1228 1.0606 1.0042
5.00E+03 1.4205 1.4324 1.2326 1.0119
7.50E+03 1.6093 1.6897 1.4671 1.0199
1.00E+04 1.7584 1.8765 1.6825 1.0281
2.50E+04 2.3072 2.4720 2.3021 1.0907
5.00E+04 2.7926 2.5515 2.6784 1.2990
7.50E+04 3.1023 2.8464 2.7610 1.4553
1.00E+05 3.3322 3.0649 2.9469 1.5472
2.50E+05 4.1702 3.8401 3.7840 1.8637
5.00E+05 4.9530 4.5572 4.4808 2.2288
7.50E+05 5.4832 5.7545 4.9562 2.4723
1.00E+06 5.8799 6.1575 54214 2.6673
2.50E+06 7.5507 7.1514 6.4688 3.4020
5.00E+06 8.9363 8.9392 7.5623 4.0847
7.50E+06 9.8733 9.8676 8.2999 4.4699
1.00E+07 10.5877 10.5154 8.9080 4.7901
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Table A.2: Average Nusselt number when 0,=45°

Gr 6=1 6=0.8 8=0.5 6=04
1.00E+03 1.0303 1.0438 1.0528 1.0494
2.50E+03 1.2425 1.3074 1.3405 1.3106
5.00E+03 1.5704 1.6700 1.7396 1.7022
7.50E+03 1.7833 1.8980 1.9885 1.9548
1.00E+04 1.9380 2.0627 2.1684 2.1379
2.50E+04 2.4641 2.6212 2.7785 2.7582
5.00E+04 2.9326 3.1058 3.3015 3.2867
7.50E+04 3.2301 3.4243 3.6403 3.6272
1.00E+05 3.4665 3.6694 3.8981 3.8856
2.50E+05 4.3540 4.5826 4.8400 4.8313
5.00E+05 5.1962 5.4426 5.7168 5.7075
7.50E+05 5.7715 6.0282 6.3106 6.2995
1.00E+06 6.2211 6.4869 6.7758 6.7745
2.50E+06 7.9392 8.2573 8.5590 8.5620
5.00E+06 9.5458 9.8950 10.2328 10.2049
7.50E+06 10.6143 10.9851 11.3537 11.2950
1.00E+07 11.4369 11.8246 12.2158 12.1297
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Table A.2: Continued

Gr §=0.3 §=0.2 8=01 Gr 8=0.01
1.00E+03 1.0423 1.0327 1.0184 1.00E+03 1.0009
2.50E+03 1.2602 2.4727 1.0989 2.50E+03 1.0051
7.50E+03 2.0467 4.2577 2.0105 7.50E+03 1.0313
1.00E+04 2.2479 4.6940 2.2348 8.50E+03 1.0371
5.00E+04 3.4787 7.1885 3.5024 2.00E+04 1.1010
7.50E+04 3.8410 7.5849 3.8749 3.00E+04 1.1688
2.50E+05 5.0449 10.0052 5.0352 5.00E+04 1.3497
5.00E+05 5.6078 11.7752 5.9081 6.00E+04 1.4648
1.00E+06 6.6655 13.8508 6.8635 8.00E+04 1.6828
2.50E+06 8.4066 16.7966 8.3413 9.00E+04 1.7429
7.50E+06 11.0876 21.3264 10.4874 2.00E+05 2.0603
1.00E+07 11.9219 22.8584 11.1000 4.00E+05 2.2946

6.00E+05 2.6203
8.00E+05 2.8233
2.00E+06 3.4734
4.00E+06 4.0711
6.00E+06 4.5132
8.00E+06 4.7299
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Table A.3: Average Nusselt number when 6,=30°

Gr 6=1 5=0.8 6=0.5 6=04
1.00E+03 1.0024 1.0065 1.0235 1.0286
2.50E+03 1.0328 1.0924 1.2574 1.2880
5.00E+03 1.2096 L3773 1.6558 1.7087
7.50E+03 1.4005 1.5988 1.9055 1.9669
1.00E+04 L:5553 1.7629 2.0816 2.1495
2.50E+04 2.1005 2.3077 2.6637 2.7557
5.00E+04 2.5686 2.7720 3.1614 3.2736
7.50E+04 2.8752 3.0801 3.4876 3.6116
1.00E+05 3.1117 3.3199 3.7381 3.8697
2.50E+05 4.0039 4.2343 4.6712 4.8176
5.00E+05 4.8677 5.1196 5.5513 5.6966
7.50E+05 5.4668 5.7300 6.1511 6.2925
1.00E+06 5.9378 6.2095 6.6194 6.7552
2.50E+06 7.7161 8.0101 8.3747 8.4803
5.00E+06 9.3742 9.6795 10.0223 10.0768
7.50E+06 10.4014 10.7981 11.1456 11.1577
1.00E+07 11.2455 11.6586 12.0204 12.0075
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Table A.3: Continued

Gr 8=03 8=0.2 8=0.1 8=0.01
1.00E+03 1.0286 1.0239 1.0147 1.0011
2.50E+03 1.2693 1.2270 1.1159 1.0070
5.00E+03 1.6949 1.7521 1.7585 1.0237
7.50E+03 1.9597 2.0509 2.0934 1.0419
1.00E+04 2.1473 2.2552 2.3057 1.0990
2.50E+04 2.7714 2.9249 2.9720 1.8632
5.00E+04 3.3038 3.4948 3.5516 2.3307
7.50E+04 3.6499 3.8593 3.9204 2.5536
1.00E+05 3.9139 4.1302 4.1919 2.7082
2.50E+05 4.8779 4.7537 4.9496 3.1316
5.00E+05 5.7554 5.6294 5.7530 3.5821
7.50E+05 6.3416 6.2193 6.2345 3.7389
1.00E+06 6.7974 6.6801 6.6123 3.9949
2.50E+06 8.5318 8.4509 8.1011 4.6222
5.00E+06 10.1968 10.1070 9.4403 5.2407
7.50E+06 11.3254 11.1953 10.2779 5.5655
1.00E+07 12.2021 12.0257 10.9885 5.8540
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A.2  Curve-Fitting to Coefficient ¢ and d

Table A.4: Coefficient ¢ and d for 6,=90°

c % d %
o ¢ CREh Difference . oo Difference
Fitting) Fitting)

1 0.7801 0.7792 0.11% 0.9914 0.9944 -0.31%
0.8 0.7721 0.7745 -0.31% 1.0068 1.0011 0.56%
0.5 0.7622 0.7611 0.14% 1.0258 1.0245 0.13%
0.4 0.7610 0.7537 0.96% 1.0293 1.0376 -0.80%
0.3 0.7402 0.7493 -1.23% 1.0513 1.0464 0.47%
0.2 0.8164 0.8151 0.16% 1.0339 1.0359 -0.19%
0.1 0.8994 0.9002 -0.09% 1.0097 1.0094 0.03%

0.01 0.8430 0.8430 0.00% 0.9869 0.9869 0.00%
Table A.5: Coefficient ¢ and d for 6,=45°
c d
8 ¢ {Larve Diffz‘)ence 4 tCurye DiffZ:'Jence
Fitting) Fitting)

1 0.6992 0.6933 0.85% 1.0435 1.0300 1.29%
0.8 0.7436 0.7542 -1.43% 1.0373 1.0300 0.70%
0.5 0.8337 0.8234 1.24% 1.0233 1.0300 -0.65%
0.4 0.8229 0.8295 -0.81% 1.0447 1.0300 1.41%
0.3 0.9049 0.9179 -1.44% 1.0239 1.0300 -0.60%
0.2 2.1270 2.1165 0.49% 0.9809 0.9718 0.93%
0.1 1.1404 1.2192 -6.91% 1.0233 0.9718 5.03%
0.01 0.9335 0.8705 6.75% 0.9683 0.9718 -0.36%
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Table A.6: Coefficient ¢ and d for 6,=30°

¢ % g %
# ¢ (.lerve Difference X ((.Zu.rve Difference
Fitting) Fitting)

1 0.5173 0.5170 0.05% 1.1585 1.1589 -0.04%
0.8 0.5956 0.5964 -0.14% 1.1174 1.1157 0.15%
0.5 0.7650 0.7681 -0.41% 1.0526 1.0556 -0.29%
0.4 0.8465 0.8266 2.35% 1.0271 1.0363 -0.89%
0.3 0.8815 0.9255 -4.99% 1.0373 1.0108 2.56%
0.2 1.1275 1.1019 2.27% 0.9511 0.9721 2.21%
0.1 1.3497 1.3591 -0.70% 0.9166 09112 0.59%

0.01 1.4710 1.4693 0.12% 0.8279 0.8278 0.01%
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A.3 Curve-Fitting to The Nusselt Number

14
00=90& &5 =1
121 y = 0.7801x%™
R? = 0.9992
10 -
8 .
-
Z
6 )
4 - —=— Numerical Results
- — Curve-Fitting
O 1 T | T I T 1
0 2 4 6 8 10 12 14

Figure A.1: Curve-fitting to the numerical results for 6,=90° and &=1
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Figure A.2: Curve-fitting to the numerical results for 6,=90° and §=0.8
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Figure A.3: Curve-fitting to the numerical results for 6,=90° and §=0.5
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Figure A.4: Curve-fitting to the numerical results for 6,=90° and §=0.4
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Figure A.5: Curve-fitting to the numerical results for 6,=90° and §=0.3
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Figure A.6: Curve-fitting to the numerical results for 6,=90° and $=0.2
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Figure A.7: Curve-fitting to the numerical results for 6,=90° and &=0.1
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Figure A.8: Curve-fitting to the numerical results for 6,=90° and =0.01
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