Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2008
Computer simulation of developing erosion
profiles including interference effects

Nastaran Shafiei
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Shafiei, Nastaran, "Computer simulation of developing erosion profiles including interference effects” (2008). Theses and dissertations.
Paper 186.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/186?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

TEYRS
RO
o5 g

COMPUTER SIMULATION OF
DEVELOPING EROSION PROFILES
INCLUDING INTERFERENCE EFFECTS

Nastaran Shafiei, BSc, Amirkabir University of Technology,
Tehran, 2004

A thesis
presented to Ryerson University
in partial fulfillment of the requirement for the degree of
Master of Applied Science
in the Program of Electrical and Computer Engineering.
Toronto, Ontario, Canada, 2008

© Nastaran Shafiei, 2008

PROPERTY OF)
RYERSON UNIVERSITY LIBRARY

Author’s Declaration

I hereby declare that I am the sole author of this thesis.
I authorize Ryerson University to lend this thesis to other institutions or individuals for the
purpose of scholarly research.

Signature

I further authorize Ryerson University to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose
of scholarly research.

Signature

i

Instructions on Borrowers

Ryerson University requires the signatures of all persons using or photocopying this thesis.
Please sign below, and give address and date.

il

Computer Simulation of Developing Erosion Profiles Including
Interference effects, Nastaran Shafiei, MASc, Electrical and
Computer Engineering, Ryerson University, Toronto, 2008

Abstract |

A computer simulation was developed to predict the evolution of abrasive jet machined
surfaces in unmasked substrates. Interference effects were included in the model by tracking
individual particles and their collisions. The model was capable of investigating the effect
of various parameters such as launch frequency, abrasive particle size and material and
substrate material on the shape and size of the erosion profile, as a function of time. The
model is also able to examine the effect of these parameters and the instantaneous shape of
the profile on the particle interference patterns. The model was verified, for the case of a flat
non eroding surface, against an existing computer simulation of particle interference effects.
The predictions of the simulation were also tested against experimentally measured erosion
profiles, with good agreement.

v

Acknowledgments

I would like to thank Dr. M. Papini for his valuable support and advice during the last
two years. Without his assistance and patience this work was impossible. I also wish to
thank Dr. A. Sadeghian, for his valuable support, and insights. Special thanks are also
extended to my parents for their never-ending love and support.

Contents

1

Introduction ,

1.1 Motivations o o e e e e e e e
1.2 Objectives
1.3 Outline of the thesis

Background
2.1 ETOSION . . . v o e e e e e e e
2.2 Surface Advancement Algorithms
2.2.1 String Algorithm
2.2.2 Ray-Tracing Algorithm
2.2.3 Level Set Algorithm e e e e e e e e e e e
2.2.4 Cellular Algorithm

Methodology

3.1 General Description and Assumptions
3.2 Particle Spatial and Velocity Distribution Across Jet
3.3 Particle Scattering for Inter-Particle Collisions
3.4 Particle Scattering for Particle-Surface Collisions
3.5 Criteria for Removing Surface Cells.
3.6 Calculation of the Normal to the Surface.
3.7 General Description of the Algorithm
3.8 Implementing the Event Queue
3.9 Inter-particle Collision Detection e e e e e e e ae e

3.9.1 Optimal Cell Size I
3.10 Modeling the Surface Advancement

3.10.1 Octree Data Structure o

3.10.2 Surface Advancement Algorithm '

3.11 Particle-Surface Collision Detection
3.11.1 Sphere-Cube Collision Detection Algorithm
3.11.2 Particle-Surface Collision Detection Algorithm

3.12 Graphical User Interface oo

vi

4 Results and Discussion 58
4.1 Performance of the Simulation 58
4.2 Surfacecell size 60
4.3 Basic Model Verification R 62

4.3.1 Verification of Algorithm to Launch Particles in Weibull Distribution 62
4.3.2 Comparison with Previous Computer Simulation for Non Eroding Flat

Surface 64

4.4 Experimental Verification 0L 65

4.41 Glass Targets 66

442 PMMA surfaces 79

4.5 Parametric Studyo s i e . 82

4.5.1 TFriction Coefficient o oo 82

4.5.2 Coefficient of Restitution for Particle-surface Collisions &3

4.5.3 Coefficient of Restitution for Inter-particle Collisions 86

4.6 Limitations e e e 88

5 Conclusions and Recommendations 91
5.1 Summary e e 91
5.2 Future Worko 92

A Computer Simulation Source Code 93

Vil

List of Figures

1.1
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14
3.15

Abrasive Jet Machining Concept

Unmasked profile
Trajectory of a particle o
The nozzle exit plane and the launching angle.
Finite size nozzle e
Diagram of the two spherical rigid body collision showing the dimensions and
coordinates e
Diagram of spherical rigid body impact on the flat surface showing the di-
mensions and coordinates [22]o
Directions of velocity components, and resulting impulse ratios, p;, in tan-
gential directions t and £
The stack of cells having surface area, A;, and height, h, impacted by a
particle with velocity, vy, at the angle; 0, to the surface normal, 7
A particle with velocity, vy, impacting the side area, A, of a cell at the
angle, 0, to the side surface normal, 7.
The first pattern searched by the algorithm to estimate the surface plane, P,
when a particle strikes the edge e at a velocity v,.
The second pattern searched by the algorithm to estimate the surface plane,
P, when a particle strikes the edge e at a velocity v,.
The third pattern searched by the algorithm to estimate the surface plane,
P, when a particle strikes the edge e at a velocity v,.
The fourth pattern searched by the algorithm to estimate the surface plane,
P, when a particle strikes the edge e at a velocity v,.
Flow chart of the general event-driven algorithm
Three different examples are demonstrated which compare the inter-particle
collision detection approach used in the present simulation with the one pro-
posed in [26]. According to the Alder and Wainwright model, to predict the
next collision of the black particle, collision times between this particle and
particles whose centers are within the gray cells are calculated [26]. According

“to the present model, to predict the next collision of the black particle, col-

lision times between this particle and particles whose centers are within the
dotted region are calculated Lo

3.16

3.17

3.18

3.19
3.20

3.21
3.22

4.1
4.2

4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10

Execution times for different environment cell sizes using f,, = 1000000, with
all other parameters at the values given in Table 3.1
Optimal cell sizes for different launch frequencies using the input parameters
from Table 3.1 and the fitted line.
(a) A three dimensional object, (b) its octree block decomposition, (c) its
tree representation L Lo Lo
Labeling convention of octants in a cellular octree.
(a) A black leaf node, (b) its corresponding cube. (c) The tree representation
of the node after the collision, (d) its block decomposition.
The graphical user interface used to enter the input parameters
The angle o by which the nozzle is rotated in a counterclockwise direction
about the x axis, in the y-z plane.

Execution times needed to simulate each time interval of 0.5 seconds.
Comparison of predicted cross-sections using cells of edge 14 pm and 10 um,
with all other parameters at the values given in Table 4.5.
Effects of different surface cell sizes on the volume of material removed.
Verification of simulation launching algorithm for case of 0.76 mm round
nozzle having # = 15, with a stand-off-distance of 20 mm, and powder mass
flow rate of 2.83 g/min. The solid line demonstrates theoretical results, and
the circles demonstrate simulated results. o000
Comparison between the present model and Ciampini et al.’s model [29] using
25 pum diameter aluminum oxide particles, and a point source round nozzle
having 6 = 15 with a stand-off-distance of d = 20 mm. No surface erosion is
included, so that the surface remains flat. Horizontal lines: results from the
present model; circles: results from Ciampini et al.’s model
Comparison of present model with that of Ciampini et al. [29] using 25 um
diameter aluminum oxide particles, and a point source round nozzle having
[= 15 with a stand-off-distance of d = 10 mm. No surface erosion is included,
so that the surface remains flat. Horizontal lines: results from the present
model; circles: results from Ciampini et al.’s model
The predicted erosion profile of the borosilicate glass channel after eight
passes on a surface of size 7.98 x 11.9 mm? using the parameters given in
Table 4.2. e
Cross-section of unmasked channel in borosilicate glass after eight passes of
the nozzle [23].
The comparison of predicted cross sections of borosilicate glass channels
against the measured data, at low flux, using the input parameters from Ta-
ble 4.2. Solid lines indicate predictions of the present model, and symbols
represent experimental values. Lo

The predicted erosion profile of the borosilicate glass hole after 30 s on a

surface of size 7.952 x 7.952 mm? using the parameters given in Table 4.3.

X

63

64

65

67

68

69

71

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

Comparison of predicted hole cross sections against the measured data for
the borosilicate glass target at low flux using the inputs given in Table 4.3.
Solid lines indicate predictions of the present model, and symbols represent
experimental values. e e e e L T e e
The predicted erosion profile of the borosilicate glass hole created by a nozzle
held at 45 degrees to the surface, after 25 s, on a surface of size 7.504 x 11.2
mm? using the parameters given in Table 4.4.
Comparison of predicted hole cross sections against the measured data on
borosilicate glass at low flux. Nozzle held at 45 degrees to the surface, and
the model inputs are from Table 4.4. Solid lines indicate predictions of the
present model, and symbols represent experimental values.
Comparison of predicted hole cross sections with the nozzle centerline normal
to the surface and the ones using the nozzle held oblique with the inputs from
Tables 4.3 and 4.4, respectively.
Comparison of predicted cross sections of holes against the measured data
for a borosilicate glass target at intermediate flux using the inputs given in
Table 4.5. Solid lines indicate predictions of the present model, and symbols
represent experimental values.o oo
Comparison of predicted cross sections of holes against the measured data for
the borosilicate glass target at high flux using the inputs given in Table 4.6.
Solid lines indicate predictions of the present model, and symbols represent
experimental values. L T
Comparison of predicted cross sections of PMMA channels against the mea-
sured data at low flux using the inputs given in Table 4.7. Solid lines indicate
predictions of the present model, and symbols represent experimental values.
The comparison of predicted cross-sections using f = 0 and f = 0.5, with all
other parameters at the values given in Table 4.5.
Comparison of the number of inter-particle collisions for e,s = 0.2 and e,s = 1,
with all other parameters at the values given in Table 4.5. Triangles: results
for a run conducted with e,; = 0.2; squares: results for a run conducted with
Eps = L o o
Comparison of the number of particle-surface collisions for e,; = 0.2 and
eps = 1, with all other parameters at the values given in Table 4.5. Triangles:
results for a run conducted with e,s = 0.2; squares: results for a run conducted
with eps =1 . . 0 0 oL
Comparison of predicted cross-sections using e,s = 0.5 and ey, = 0, with all
other parameters at the values given in Table 4.5.
Comparison of the number of inter-particle collisions for e, = 0.2 and e,, = 1,
with all other parameters at the values given in Table 4.5. Triangles: results
for a run conducted with e,, = 0.2; squares: results for a run conducted with

72

73

74

75

77

79

81

83

85

4.23 Comparison of the number of particle-surface collisions for e,, = 0.2 and
epp = 1, with all other parameters at the values given in Table 4.5. Triangles:
results for a run conducted with e,, = 0.2; squares: results for a run conducted

withep =1 87
4.24 Comparison of predicted cross-sections using e,, = 1 and e,, = 0.2, with all
other parameters at the values given in Table 4.5. 88

pal

List of Tables

3.1
3.2

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8

The inputs to the simulation used to estimate an optimal environment cell size.
The descriptions of the input text fields implemented in GUI

The inputs to the simulation
The inputs to the simulation for the case of glass channels at low flux.
The inputs to the simulation for the case of glass holes at low flux.
The inputs to the simulation for the case of glass holes at low flux using
oblique stationary nozzle. Lo
The inputs to the simulation for the case of glass holes at intermediate flux.
The inputs to the simulation for the case of glass holes at high flux.
The inputs to the simulation for the case of PMMA channels at low flux. . .
The errors associated with each case. L

X1i

56

99
68
70

74
76
78
80

Nomenclature

Pnf)tf)t'

Tn

Nozzle stand-off-distance

Depth of the Substrate

Constant related to properties of target material and erosive powder
Erosion rate

Coefficient of restitution for particle-particle collisions -

Coefficient of restitution for particle-surface collisions

Friction coefficient

Launch frequency

Function that describes the impact angle dependence of erosion rate
Particle moment of inertia

Velocity exponent of the erosion rate

Edge length of environment cells

Edge length of surface cells

Particle mass

Impulse in n, ¢, and ¢ directions

The radial distance on the target surface from the nozzle centerline
Nozzle radius

Particle radius

Cutoft radius

Rebound particle velocities in the n, t, and ¢ directions

xiii

Un Ut ’Ut/
Vmaff

UTLOZ

Ht fby

He

Hte Ky ¢
Q, O Qp
Wy, Wi Wy
Pp

Ps

Incident particle velocities in the n, ¢, and ¢t directions
Maximum particle velocity

Nozzle velocity

Nozzle orientation angle

The focus coefficient

Impulse ratio for particle-surface collisions

Impulse ratio for ¢t and t directions

Critical impulse ratio for particle-surface collisions

Critical Impulse ratio for ¢ and ¢ directions

Rebound particle angular velocities in the n, ¢, and t directions
Incident particle angular velocities i'n the n, t, and t directions
Density of abrasive material

Density of target material

Xiv

Chapter 1

Introduction

Abrasive jet machining (AJM) is the process of eroding a target surface material due to the
impact of a stream of fine-grained abrasive particles at high velocities. The particles are
mixed with a compressed carrier gas, usually air, the gas/particle mixture is passed through
a nozzle and the resulting particle jet is directed onto a target surface. The target material
removal occurs due to mechanical processes such as cutting, ploughing, or fracture. This

“process is illustrated in Figure 1.1.

Compressed Gas — Abrasive Particles

Mixing Tube
Nozzle

Figure 1.1: Abrasive Jet Machining Concept

2
AJM has been found to be highly suited for etching, polishing and cutting operations,

and has a wide variety of industrial applications. One of AJM’s most important applications
is the powder blasting of glass and Si components for fabrication of device features (mi-
crochannels, microholes, etc) ﬁsed in the microelectronic, microfluidic, and optoelectronic
industries. It also has applications for deburring; i.e. the process of removing surface burrs
and protuberances created during manufacturing processes. Finally, abrasive jets have also
found use in dental operations, where their use instead of dental drills may make local anes-
thesia unnecessary due to their ability to cut small and shallow holes without significantly

raising the temperature of the tooth.

1.1 Motivations

In most applications of AJM, the depth and shape of the machined surface are of im-
portance. Highly accurate AJM process can be performed by controlling various parameters
such as the distance between the nozzle tip and surface, called stand-off distance, particle
size, particle velocity, nozzle diameter, etc. Many researchers have experimentally investi-
gated the effects of these different machining parameters on the shape and size of the erosion
profile in the AJM process [1, 2, 3].

Verma and Lal [1] conducted an experimental study of the AJM brocess. Their ex-
perimental results show the effects of stand-off distance, particle size, mixture ratio and
carrier fluid pressure on material removal rate (MRR), erosion depth and the diameter of
eroded holes. Venkatesh et al. [2] studied the abrasive jet machining process under different
conditions and reported that the eroded surface has an elliptical bell mouthed shape. For
deburring applications, Balasubramaniam et al. [3] reported the significant effects of stand-
off distance on the deburred edge radius. They also investigated the effects of the nozzle
diameter on the diameter of the hole generated by the jet.

Some analytical models have also been proposed for the shape and size of eroded features
resulting from AJM [4, 5, 6, 7] Slikkerveer et al. [4] proposed an analytical model for the

development of powder-blasted structures in brittle materials that are locally covered with a

. 3
pattern of erosion resistant masks, having openings defining where the micro-features should

‘be machined. In these models, the interactions between the particles and the mask edges,
and any inter-particle collisions are ignored, and the mask is considered to be infinitely thin.
According to the model, for deeper features, the particles rebounding from the side of the
hole provide extra erosion in the center of the profile, which is called a ”second strike” effect.
However, using this model, the predicted machined profile is different from the experimental
resﬁlts, and the difference increases for the deeper prqﬁles.

Balasubramaniam et al. [5] also proposed an analytical model to predict the shape of an
abrasive jet machined surface. This model also ignores the collisions between reflected and
- incoming particles. In addition, the model also ignores the effect of angle of impact on the
erosion, and therefore the surface slopek is predicted fco not affect the material removal rvate‘
(MRR). This is inconsistenf with a large body of expeﬁmenta,l measurements which show
that materials have a strong dependence of erosion rate on the incident angle. The model,
however, does show the effects of changes in particle size, stand-off distance and jet center
line and peripheral velocity on both the shape of the eroded profile and the MRR.

Ten Thije Boonkkamp and Jansen [6] studied the erosion of a glass piate which is covered
locally by‘ an erosion resistant mask, and proposed a mathematical model for the time de-
pendent development of hole and channel profiles made using AJM. The model ignores the
effects of rebounding particles from the sides of the holes and channels, and also ignores in-
terferenée effects between incoming and rebounding particles. Moreover, the shadow effect of
the mask is only treated in a semi-empirical manner; i.e. the decrease in the particle flux near
the edges of the mask is assumed to be linear, Whén in reality it depends on the kinematics
of the particles as they rebound from the mask edge. The computed profile, while predicting
.the general shape of the'proﬁles reasonably, unfortunately does not match experiments well.
In particular, the model predicts unrealistically sharp transitions betweeﬁ the channel center
and the channel walls, and the depth of the profile does not match experiments.

Achtsnick et al. [7] have also proposed an analytical model for AJM, and implemented

it for two different nozzle configurations. In their analytical model, each impingement of

. 4
a particle with the surface is considered to be perpendicular to the surface, so that the

continually changing slope of the surface cannot change the material removal rate. The
model also ignores inter-particle Collisions, and particle rotations. Their study does, however,
demonstrate that the nozzle configuration can affect the erosion and thus the resulting blasted

surface profile.

1.2 Objectives

The objective of this research is to cbnstruct a computer simulation which is capable
of predicting the time dependent erosion profile resulting from AJM, under a wide variety
of conditions. The simulation will track the movement of individual particles as they are
launched from the nozzle, impact the surface, and rebound. It will thus address the short-
comings of previous models by including a number of commonly neglected factors such as
particle scattering from feature edges, and the interference effects due to collisions between
incoming and rebounding particles. The simulation will begi.n with an initially flat surface of
a pérticulair material, which is exposed to a jet of incident particles. The target surface can

-be one that erodes in either a ‘brittle’ or *ductile’ fashion (see Section 2.1). The formation
of the eroded surface profile will then be predicted as a function of exposure time. The
parameters that will be included in the model as inputs to the simulation can be listed as

follows,
e Nozzle radius

Nozzle stand-off distance

Nozzle velocity

Launch frequency

Particle size

Particle initial velocity

Particle density

Particle-Particle coefficient of restitution

Particle-surface coefficient of restitution

Surface density

Friction coefficient in particle-surface collisions

1.3 Qutline of the thesis

The rest of the thesis is organized as follows: Chapter 1 presents proposed mechanisms lead-
ing to erosion of a surface due to the impact of solid particles, and the different approaches to
- model these mechanisms. In Chapter 3 the assumptions of the model, collisions mechanics,
| and the criteria used to remove the target material are described. This chapter also presents
all the algorithms used to develpp the simulation. Chapter 4 discusses the performance of the
simulation and presents methods used to verify the simulation.v This chapter also includes a
comparison between simulated results and experimentally obtained results and limitations
of the model. Finally chapter 5 presents the conclusions and discusses the possible future

work.

Chapter 2

Background

This chapter will present existing literature related to the mechanisms leading to erosion of
a surface by an incident jet of particles, and the different surface advancement algorithms

needed for modeling these mechanisms.

2.1 Erosion

The repetitive impacts of solid particles on a surface results in material‘removal. The be-
havior of an eroding material under solid particle impact can be classified into two main
categories: ductile and brittle efosion. In ductile erosive systems, significant plastic defor-
mation occurs surround the particle impact sites, as the target material is removed. On the
other hand, the target material in brittle erosive systems experience little deformation be-
fore fracture. Several mechanisms of material removal due to the impact of abrasive particles
have been proposed. For example, Finnie [8] has reported that for ductile erosive systems,
the material removal is due to the cutting or ploughing action of erosive particles, while for
brittle erosive systems the material removal is due to the intersection of cracks which radiate
out from the contact point.

A description of the solid particle erosion mechanisms was first proposed by Bitter [9]
According to his analysis, if, during the collision, the yield strength of material is exceeded,
plastic deformation occurs at the region near the impact point. Due to the multiple ilﬁpacts,

a plastically deformed surface layer is formed. The yield strength at the surface of the

7
material increases with the degree of plastic deformation, due to work hardening effects.

Once the yield strength becomes equal to the strength of the material, no further plastic
deformation occurs. At this point, the surface becomes hard and brittle, and parts of it éan
be removed by subsequent impacts.

For erosion of ductile materials impacted obliquely by spherical particlés, Hutchings and
Winter [10] assumed that shearing of the surface layers results in lips forming around the
impact crater. According to their theory, these lips can be removed from the surface in
subsequent impacts by advancing the ruptures at the base of the lips. They suggested that,
for the cases in which the leading face of an angular particlé makes a small angle with the
target surface, this same spheriéal pa:fticlé mechanism applies. They found that in work- |
hardened metal the deformation energy is intensely focused in the surface layers and fragile -
lips are created, while in annealed metal, the deformation energy extends over a large volume
of the material. As a re.sult, the target material is more easily removed in work-hardened
metals.

" The erosion of the surface 'depeﬁds on many factors such as the impact angle, velocity,
shape and size of the incident particles, the number of particles hitting the surface, and fhe
mechanical properties of the target material and the particles [8]. Regardless of the material
removal mechanism, the material removal for a given target, particle and jet combination is
usually expressed as a measured erosion rate, E. F is defined as the ratio of the_ removed

mass of the target material to the mass of the particles impacting the target: -

_ peVy

FE
PpVo

(2.1)

where p; is the density of target material, V" is the volume of target material removed, p, is
the density of particles, and V}, is the volume of particles hitting the surface in the time in
which the target material is removed. E is usually measured in terms of a particle incident

velocity, vp, and the impact angle @ with respect to a surface normal [4].

E = Dujf(0) | | | (2.2)

where f (6) is an experimentally determined function that describes the impact angle de-
pendence of erosion rate, and both D and k are experimentally measured constants for a
~ particular combination of target, particle and jet parameters; they depend on particle size,
shape and material properties, as well as target material properties. In the ductile erosive
system, the maximum material removal rate usually occurs at an impact angle between
20° — 30° [11]. For brittle erosive systems, it has been demonstrated that the erosion rate
is dependent only on the normal component of incident velocity. Such erosive systems thus

exhibit a maximum erosion rate at normal impact [11, 12].

2.2 Surface Advancement Algorithms

* Anuinber of different algorithis-have been proposed to model surface advancement problems
[13, 14, 15, 16]. The aim of these algorithrﬁs is to detérmine the surface or profile of the
material as a function of the time of exposure of the surface to a damaging medium (e.g.
acid etches). This section will thus briefly describe the most widely used methods to model

surface advancement: string, ray-tracing, level set, and cellular methods.

2.2.1 String Algorithm

The string algorithm is based on the string model proposed by Jewett et al. [13] for modeling
cross-sectional profiles of lines in lithographié fabrication. This approach uses a string of
points connected together by line segments to approximate the surface. The line segments
are roughly equal in length to gain a good resolution and avoid computational difficulties.
The surface propagates by moving each point along vectors perpendicular to the local surface.
Since this algorithm only monitors the etched area instead of the whole volume of material,
it is faster than an algorithm based on cell removal. However, a significant problem that

exists with this algorithm is the forming of loops in the string of points. [17]. Loops must be

: 9
removed before they expand and intersect, otherwise, the computational time and memory

- usage are highly increased. A forming loop can also result in the incorrect calculation of the
normal to the surface which determines the direction of etching. This algorithm can thus
be used, but with the computational expense of implementing a mechanism to remove the

loops every few time steps.

2.2.2 Ray-Tracing Algorithm

The ray-tracing algorithm is based on the Hagouel’s ray model [14] for X-ray lithography
fabrication. In this algorithm, an etch ray is defined as a vector perpendicular to the border
of developed and undeveloped region. The etch rays are revfracted'at. the boundaries of regions
with different etch rates. The algorithm starts with a set of points oh the surface which are
propagated along rays. Initially the rays for each point are perpendicular to the surface.
After each step, the ray vectors are recomputed using the differential ray equation (Eq.(1)
in [17]). The advantage of the ray algorithm is that calculating ray vectors is independent
of the local etched surface, so it is not influenced by incorrect surfaces. The weakness of
this algorithm is that it only traces points and does not keep track of cbnnections between

points. Thus, when the surface advances and end points of the rays become separated in

space, the etched area cannot be easily determined.

2.2.3 Level Set Algorithm

Level set methods have been proposed by Osher and Sethian [15] for a Wide variety of surface
evolution problems. Thése numerical algorithms are based on a Hamilton-Jacobi equation
for a propagating level set function. The main idea behind the method is the formulation
of equations of motion for propagating ffonts which are moving with a curvature dépendent
speed. Given an initial position for an interface I', the propagating interface is set as the

zero level set of a higher dimensional function ¢ [18].

‘ 10
where d is the distance from a point z € R" to I', and takes positive values inside the closed

region restricted by I', negative values outside of this region, and zero in the boundary of
the region. This region is thus the set of points in the plane for which the level set method
¢ is positive or zero. The general form of the level set method representing a hypersurface

I" can be described as,
r(t) = {zlé(z,t) =0} (2.4)

For the zero-level set moving with speed V' in the same direction as its normal, an evolution

equation can be represented by a Hamilton-Jacobi equation as,
g =V[Vg| (2.5)

One of the most important advantage of these methods is that they are able to precisely
determine the geometric properties of the surface. The disadvantage of the level set tech-
niques is that setting appropriate velocities for advancing the level set function can be very

complicated.

2.2.4 Cellular Algorithm

Cellular algorithms are based on the cell-removal model originally proposed by Dill [16] for
the exposure and devélopment of a photoresist. The model is based on dividing the material
to be etched into small cells. Each cell is distinguished as etched or unetched, and the
surface is determined by the boundary between the etched and unetched cells. In Dill’s
algorithm [16], the etching starts frkom the top layer which is in contact with the developer.
The developer removes cells based on a givén etch rate and the number of sides of the cell
exposed to the developer. After removing a given cell, new cells are exposed to the developer
‘and begin etching.

To reduce the memory requirement, in the cellular algorithm proposed by Scheckler et al.

11
[19], the cell information is dynamically allocated. The cells are stored in a three dimensional

array, and each cell includes information indicating if it is full or empty. The cells nearest
to the surface are allocated more information: the average.etch rate, the percentage of the
cell volume removed so far, and the pointer to the cell. After removing each cell, the newly
uncovered cells are allocated new information.

Strasser et al. [20] proposed a cellular algorithm which uses a different method to prop-
- agate the surface. This model is proposed for surface evolution in topography simulation
and is based on two basic morphological operations, Minkowsk:. subtraction and Minkowsk:
addition. These operations, Which are derived from image processing techniques, change the
image with respect to a given geometric shape called a structuring element. The spatial
dimensions of the structuring element determine the manner in which the surface advances.
The local etch or deposition rate is used to calculate the spatial dimensions of the structuring
element. The surface advances by moving the structuring element along the surface boﬁnd—
ary. Depending on the type of the simulation, etch or deposition, material cells contained
inside the strﬁctﬁring element can be removed or added. Cells are stored in an array and are '
characterized as etched or unetched. This algorithm also implements a dynamic allocation
of information; a link list is used to dynamically store array addresses and etch or deposition
rate information of the surface cells. |

Cellular algorithms are robust and relatively easy to implement. They can also easily
deal with arbitrary structures and inherently avoid the iooping p’roblvem which occurs in some
of the other surface advancement methods [13]. The disadvantage of cellular algorithms is
that they require significant amounts of physical memory and computational time. These
algorithms are also subject to the lack of accuracy in representing curved suffaces by a series
of rectangular cells. The accuracy can be increased by using smaller cells, but this increases
the memory usage and computational time. |

In the present model a cellular algorithm was used to model the surface advancement. As
there is a trade-off between efficiency and accuracy, to provide an accurate model, a number

of different techniques were used to improve the run time and memory requirements. The

: 12
algorithm uses an efficient hierarchical data structure to store the volume of the material,

and surface cells are dynamically created (see Section 3.10). Also to improve the accuracy

in representing the surface, cells can be represented by their partially eroded depth.

Chapter 3

Methodology

This chapter will presents the assumptions used in the simulation, the details of the colli-
sions mechanics, and the criteria used to remove the material. It will also describe all the
algorithms used in the model. The algorithms are implemented in the Java programming

language and the source code can be found in Appendix A.

- 3.1 General Description and Assumptions

The model is meant to simulate the developing erosion profile due to t.he impact of a jet of
small spherical abrasive particles. The nozzle of radius, 7,, placed at a stand-off distance,
d, can move in a line at a constant velocity, vp,,, and launches a jet of partides at a launch

frequéncy, fn- The launched particles have a radius, r,, a density, p,, and a velocity, v,, and
| impact an initially flat target having a density, ps, depth, ds. Target material removal by
mechanical erosion is agssumed to occur as a result of the impact of the.particle jet (Figure

3.1).

Particles are assumed spherical, and all of the same size and density. The effects of any
external forces, such as drag and gravitational effects, are neglected,; therefore, particles are
assumed to be moving on straight paths from the nozzle to the surface. The nozzle launciles
the particles, one at a time, at an angle having a spatial distribution which is a combination
of the Weibull and uniform distributions, with a velocity that decreases linearly across the

jet, from the nozzle centerline (see Section 3.2). The model also neglects particle fractufe; ie.

13

14

Nozzle

rn »>Vnoz ’f;l

- Figure 3.1: Unmasked profile

the possibility that the particles break during and after impacts. Collisions between any two
particles at one time are allowed, so that changes ir‘l_iﬂux to the surface due to inter-particle
collisions are considered. Inter—partiéle, and particle 'to surface collisions are treated using a
coefficient of restitution approach [21] (see Section 3.3). The effect of frictioh is included in
particle-surface collisions, but is neglected in inter-particle collisions, an assumption used in

previous simulations of particle interference effects, with good success [22].

3.2 Particle Spatial and Velocity Distribution Across
Jet L

Measurements [23] at a low incident particle flux (i.e. so that inter-particle collisions have
no effect on the distﬁbution) show that, for a typical abrasive jet micromachining setup, the
probability of a particle arriving to the flat surface at a distance between r and r + dr from

the nozzle centerline is

2 2 272)
P(r)dr = —dg—re_ﬂ 4 dr - (3.1)

15
where d is the nozzle to surface stand off distance (Figure 3.2), and § is an experimentally de-

termined dimensionless constant which depends on the nozzle configuration, particle shape,
size, velocity, etc. The 3 is commonly called the 'focus coefficient’, and for more focused

streams , its value increases. Using simple geometry, r can be expressed as,

r = d tan(6) | (3.2)
where 6 is the angle between the nozzle centerline and a particle trajectory (Figure 3.2).
The derivative of Eq. (3.2) with respect to 0 is, |

dr 9 '
ar_ 6 .
7 dsec”(0) | (3.3)

Since particles are assumed to travel in straight paths from the nozzle to the surface,

P(r)dr = P(0)d0 (3.4)

Substituting Egs. (3.2) and (3.3) into Eq. (3.4) gives,

282%sin(0)

—thanz(e)de 0
cos®(0) re

P(0)do =

(A
S
IN

(3.5)

OSEES

which is the probability that a particle is launched from the nozzle on a trajectory between
0 and 6 + df. Since the jet of particles is symmetrical with respect to the nozzle centerline,
the probability that a particle is launched at any direction around the nozzle centerline is

the same for all directions,

16

Nozzle

Particle

Surface

Figure 3.2: Trajectory of a particle

with angle ® defined in Figure 3.3.

nozzle exit plane

Figure 3.3: The nozzle exit plane and the launching angle.

The distribution function given in Eq. (3.5) assumes a nozzle that launches particles
from a point source. To av01d problems when the surface is relatively close to the nozzle, or
when the nozzle is relatively large, a method was developed to approximate the point source
nozzle by one of a finite size. To be able to launch particles from a finite size nozzle and
still have the particles arrive to the surféce at a radial location, r, described by the Weibull

distribution, Eq. (3.1), a cutoff radius , 7, at which it is highly unlikely any particle arrives,

: o 17
must be set. From the cumulative Weibull distribution, the probability that particles arrive

to the surface at a distance r which r < r. is given as,

& | (3.7)

Assuming that D(r.) = 0.99999 (i.e. that 99.999% of the particles are launched within the

cutoff radius r.),

dy/—4in(1 — 0.99999)
_ 5

Te

(3.8)

The position on the nozzle exit plane from which particles are launched, r;, is proportional
to the radial position at which they must arrive to the surface, r, in order to satisfy the
Weibull distribution (Eq. 3.1). In this scheme, particles arriving to the surface at the radial
~ position, 7., are assumed to have been launched at the outermost portion of the nozzle cross

section, i.e. at r,. This can be generalized as:

_n B 3.9
= (3.9)

From Figure 3.4, the angle at which particles are launched is,

r—7T

6 = tan™*() - (3.10)

This approach thus slightly changes the positions from which particles are launched.
According to the measurements for a 0.76 mm nozzle launching 25 micron diameter par—
ticles, the velocity distribution as a function of radial distance, 7, from nozzle centerline to

the surface is [23],

18

V(r) = Vipaa(1 — 4.92%) o (311)

where V42 is & maximum particle velocity which is observed on the nozzle centerline (r=20).

Figure 3.4: Finite size nozzle

3.3 Particle Scattering for Inter-Particle Collisions

The present model assumes that inter-particle collisions occur between only twopartiéles at
a time - i.e. three or more particles Simultaneously impacting at the same location is not
allowed. In the rare occurrences where three or more particles are found to collide at the
same point and time, a sequence of collisions involﬁing two particles is used instead. The
analysis of the inter-particle collisions used in the present work is based on the coeflicient of
restitution approach first proposed by Brach [21].

The velocity of the colliding particles can be decomposed into the normal component
which is parallel to the line joiniﬁg the centers of the two colliding particles, and tangential
‘component which is perpendicular to this line (see Figure 3.5). As mentioned in section

3.1, the effect of friction between particles is neglected. Hence, the impulse of the colliding

19

Figure 3.5: Diagram of the two spherical rigid body collision showing the dimensions and
coordinates

particles is normal to the surface of collision, and the tangential components of the particle

velocity do not change during the collision. By applying the law of conservation of momen-

tum,

M1Un1 + MoUnz = M1 Va1 + maVie (3.12)

where v,; and v, are the normal components of the incident velocities, and V,; and V5
are the normal components of the final velocities. By the definition of the coefficient of
restitution, epy,

V;zZ - an

Cpp = ——— (3.13
 — (3.13)

Solving Egs. (3.12) and (3.13), gives the normal components of the final velocities, as follows:

M [Un2 + €pp(Una — Un1) | + 1010n1
mi + Moy ‘

V= M1 [Un1 — €pp(Una — Un1) | + mavpg (3.15)
mi + Mo

(3.14)

3.4 Particle Scattering for Particle-Surface Collisioms?O
The frictional impact of a pafticle against the target surface is also assumed to follow the
coefficient of restitution approach first prqposed by Brach [21]. The development here is
similar to that presented by Ciampini et al. [22] and follows the two-dimensional impact
model proposed by Brach [24]. Figure 3.6 shows a sphere colliding with a ﬁét plane. The n
axis is normal to the plane, and the t and ¢ directions are tangential to the plané. b, P
and P, are the components of impulse in the three directions, n, t, and ¢, respectively. The
impulse is regarded as the change in momentum of an object to which a resisting force is

applied during the collision.

...................
......
o

v, o
......
L. ceneh™?

paLLELETTICHPRRS SRRseri R

t P

n

Figure 3.6: Diagram of spherical rigid body impact on the flat surface showing the dimensions
and coordinates [22] ’ .

Brach [24] discusses three different cases for a rigid body impact on a flat massive sur-
face: sliding exists during the whole of the contact, sliding stops at the rebound, and sliding
stops prior to the rebound. In the latter case, after sliding, rolling begins. The appropriate

equations of motion for the case of sliding during the whole of the contact period are,

Vo= —€psUn (316)

21

WiV — Vi = vy, — vy (3.17)

w Vo —Vy = ppom — vy | (3.18)
mrV; + IQy = mro, + Twy ~ (3.19)
—mrVy + I = —mruy + Tw, | (3.20)

where V,, 'Vt and V, are the components of the rebound velocity, and vy, v; andv vy are the
components of the incident velocity. eps is the coeflicient of restitution for particle-surface
collisions. p and p, are the kinetic coefficients or impulse ratios. {2, and € are the com-
ponents of the’rebound angular velocity, and w; and wy éLre the components of the incident
angular velocity. m, r, and I are the sphere mass, radius and mass moment of inertia, re-
spectively. Eq. (3.16) is simply the definition of the coefficient of restitution, and Eq. (3.17)
and Eq. (3.18) are derived from the definitions of kinetic coefficients; i.e. the ratio of the

tangential impulse components to the normal impulse components.

P Vi — vy
= = ‘ 3.21
Mt‘ P, V. —o, ()
‘Ptl %/—Ut/
;] = _ — .2
lu’t Pn an,"_vn (32)

Egs. (3.19) and Eq. (3.20) express the conservation of angular momentum about the contact
point. Solving the Egs. (3.17)-(3.20) for the rebound velocity components for the case of
sliding during the whole of the contact, |

Vi = —epstn (3.23)
Vi = —1vn (1 + eps) + v (3.24)
Vi = —pyvn (1 + eps) + vy (3.25)

)
Qt = Wi — é‘;utl’l)n(l -+ €p5) (326)

5 22
Qt, = th/ — ‘27/,Ltvn(1 + eps) (327)

For the cases in which sliding ends at or prior to the rebound, Egs. (3.17) and (3.18) must
be replaced with Eqgs. (3.28) and (3.29):

Vi—rQ1=10 ' (3.28)

V,—rQ=0 (3.29)

Solving the Egs. (3.16), (3.28), (3.29), (3.19) and (3.20) for the rebound velocity components

for the case that sliding ends at or prior to the separation and sticking occurs,

Vo = —€pstn _ (3.30)
V= Zu+ _i_%, | - (3.31)
v, = gvy _ %mt o (3.32)

Q= —% yt iwt (333
Y=oty ‘K (3.34)

Brach [24] shows that there is a limiting or critical value of impulse ratios which maxi-
mizes the energy loss. The critical condition occurs at a point that sliding ends and sticking
and rollihg begins. At this point, the solution equations for sliding and rolling are the same.
The critical impulse ratios can be obtained byv equating the Egs. (3.24) and (3.31), and
Eqs. (3.25) and (3.32). |

2 [vy — Joe —rwy] /]
= — 3.35
Ha 7w (14 eps) ()
2 vy '
o= 2L el (3.36)

Tv,(1+ eps)

' : 23
It should be noted that with y; = p. and py = py., the set of sliding FEgs. (3.16)-(3.20)

gives the same equations as the rolling equations, Egs. (3.30)-(3.34). Thus, only the set of
Eqgs. (3.16)-(3.20) are sufficient for all the cases, as long as the critical impulse ratios are
used for the kinematic coefficients when sticking occurs.

It is assumed that all collisions occur with a mechanism of tangential impulsé which is
due to simple dry-friction. In this case, the impulse ratios are not independent [21] and can

be expressed as,

prr = pcos(n) » - (3.37)

py = psin(n) | | (3.38)
and the resultant impulse ratio, p is

=13+ 1 (3.39)

In the case of dry—friction,' the impulse direction is parallel to the motion direction and acting

in the direction opposing that of the motion (Figure 3.7) [22]. Accordingly, the resultant

Figure 3.7: Directions of velocity components, and resulting impulse ratios, y;, in tangential
directions ¢ and ¢

24
critical impulse ratio is

He = 4/ /'l'%c + M?’c ' | : (340)

In reference [24], to interpret the impact data, the friction coefficient, f, is éompared to the
critical impulse 'ratio, and two cases arise. The first one is when f < |ptel- ‘In this case,
the sphere slides during the whole of the impact, and Eqgs. (3.16)-(3.20) are solved with
1y = feos(n) and py = fsin(n). The second case is when f > |u.|. In this case, sliding ends
at or prior to the rebound, and Egs. (3.16)-(3.20) are solved with py = pee and gy = py,. In

both cases pe and i, have the same signs as fi. and py,, respectively (Figure 3.7).

3.5 Criteria for Removing Surface Cells

As described in Section 2.1, Eq. (2.1) is used to define the erosion rate. Assuming that a
unit area, A, of the target material is exposed to thé incoming particles for a time period

of At, Eq. (2.1) can be written as,

B = PtAt Al

3.41

- (3.4)
where Al is a depth to which the area, A;, is eroded, and m, is the mass of particles im-
pacting the area, A;, in the time period of At. By equating Eq. (3.41) to (2.2), the depth to

which the area, A, is eroded in time At can be expressed as,

_ Dok f(6)m,

CAl
peAi

(3.42)

If in the At time period, the area, A;, is impacted by n particles, each with its own v, and

97
Bl = 7Sl S0 | (3.43)

i=1

. 25
My, Up, and 6;, respectively, are the mass, incident velocity and impact angle of the ith

impacting particle. As explained in Section 2.2, the surface will be represented by a series of
interconnected volumetric cells. To predict the number of cells removed, N., in time period of

At, it is assumed that A is the exposed area of one cell having the height of h (see Figure 3.8).

Al = N,h (3.44)

N
- M

]

Figure.3.8: The stack of cells having surface area, A;, and height, h, impacted by a particle
with velocity, 0p, at the angle, §, to the surface normal, 7 '

Therefore, using Eqgs. (3.43) and (3.44), the number of cells removed in a given time
period when n particles are launched is: |
N, = —2 S ek £(6)) (3.45)
hPtAt i 7P

=1

Eq. (3.45) can be applied for the cases that particles impact the top surfaces of cells only.
However, in general,both the top and the side of cells can be impacted by particlés. Follow-
ing the same approach, for the cases that particles hit the side surfaces of cells, the number

of cells removed from the side can be obtained as follows

26

D & ~ '
N, = oF 16, 3.46
SptAs ;[mpzvpz ()] ()

where s is the width of the side surface of a cell, A, is the side Yafea of the cell exposed to the
incoming particles, and 6; is the angle between the velocity of the ith particle and the normal

to the side surface of a cell (see Figure 3.9). To apply a single equation for impingement on

P
e
h A nl
S S S

Figure 3.9: A particle with velocity, vps, impacting the side area, A, of a cell at the angle,
0, to the side surface normal, 7.

any face of the cell, h and A; in Eq. (3.45), and both s and A, in Eq. (3.46) can be replaced

by the volume of a cubic cell, V..

_ D & k .‘
Ne= 22 Yl f(00) | G

1=1

To establish a criteria for a given cell being removed, Eq. (3.47) is set equal 1. Thus, a cell

is removed when,

D & | |
oV Smp vk f0)] =1 (3.48)

=1

Since in brittle erosive systems, the erosion rate is dependent only on the normal component

27
of incident velocity, in such systems, v, and f(6;) in Eq. (3.48), are replaced by the normal

component of the incident velocity [12], so that

3

(vp,c08(6;))%] > 1 (3.49)

For ductile erosive systems, Eq. (3.48) can be written as, [25]

D n
% Z[mpivgicos(&)”l(l + Hou(1 — cos(6;)))™] > 1 (3.50)
PtVe ;7)

where n; and nq are experimentally determined constants, and Hv(GPa) is the hardness ‘of
the material.
For the cases that particles hit the edges or vertices of a cell, the normal to the surface

is estimated using the methods described in Section 3.6.

3.6 Calculation of the Normal to the Surface

A significant problem with the cellular model which is used to implement the surface is facet
formation. The surface consists of many small faces at 90 degree angles to one another. The
“two dimensional view of the surface which appears as a series of straight lines can be seen

in Figure 3.6. Particles can, in general, hit either the vertical or horizontal faces, or the

corners which join the surface cells. Since the amount of material removed from the surface

: 28
highly depends on the impact angle of the abrasive particles, estimating the accurate normal

to the surface is of great importance.

To obtain realistic results, the edges joining cells are treated as being part of a plane.
For simplicity, collisions on the vertices (i.e. Where three surfaces join) of cells are also
assumed to be on a plane as well. Finding this plane requires knowledge of how the cells
are connected to each other. To obtain this, the neighbors of the cells must be traced.‘ To
save computational time, instead of tracing the hierarchical data structure used to store cells
(Section 3.10.2), the model uses a two dimensional array which stores the depth location bf
the surface cells. After estimating the surface plane, to assign damaging incident energy to
the cell with the hit edge, the material removed from the cell is calculated; depending on the
erosive system type either Eq. (3.49) or Eq. (3.50) is used by taking 0; as an’angle between
the velocity of the 7, particle and a normal to the estimated surface plane. |

To estimate a plane, the algorithm searches for four different patterns. The first pattern
is demonstrated in Figure 3.10, where it is assumed that an incoming particle has struck the
edge e. The algorithm starts searching in a direction, u, which is outward an?d perpendicular
to the side face containing the impacted edge. It should be noted that the cell adjacent to
the impacted cell in the direction u has been removed; otherwise the particle would not hit
- the edge e. If the second cell in this direction has not been removed yet, it is 1ikely that the
surface is globally flat, and the edge is treated as a surface parallel to the top face of thebcell.

Vp

P

Figure 3.10: The first pattern searched by the algorithm to estimate the surface plane, P,
when a particle strikes the edge e at a velocity v,.

29
If the first pattern is not recognized, the algorithm looks for a second pattern, depicted

in Figure 3.11. In this case, the algorithm checks for the cell, ¢, below the cell adjacent the
impacted edge in the direction u. If such a cell exists, the algorithm starts tracing from c
in the direction u. The tracing stops when the algorithm reaches a reimoved cell or the cell
that has a neighbor on top of -it. The surface plane is parallel to both the line connecting
the centers of the impacted cell and the last traced cell, and‘ an edge of the impaéted cell

which is normal to this line (Figure 3.11).

\F\

u

Figure 3.11: The second pattern searched by the algorithm to estimate the surface plane, P,
when a particle strikes the edge e at a velocity v,.

If none of the previous patterns are recognized, the algorithm looks for two other patterns,
shown in Figures 3.12 and 3.13. In both of these cases, the algorithm starts tracing from the
impacted cell in the downward direction. The tracing stops when the algorithm reaches a
removed cell or a cell that has a neighbor, ¢, in the direction u. For the case that a removed
cell has been found at the end of the trace, the third pattern is recognized, and the impact
is treated as an impact on the face of the cell in the ‘direct'ion u, as shown in Figure 3.12.
For the case that the algorithm found the neighbor c, the fourth pattern is recognized, and.

| the surface plane is the one parallel to both the line connecting the centers of the impacted

cell and ¢, and an edge of the impacted cell which is normal to this line (Figure 3.13).

30

T

Figure 3.12: The third pattern searched by the algorithm to estimate the surface plane, P,
when a particle strikes the edge e at a velocity vp.

Vp

Figure 3.13: The fourth pattern searched by the algorithm to estimate the surface plane, P,
when a particle strikes the edge e at a velocity vy,. -

3.7 General Description of the Algorithm .
In general, events can be described as any occurrences of interest which cause a change in
the state of the system. Events handled by the present simulation include the launching
of a new particle, the collision between two particles, the collision between a particlé and
the surface, etc. One way to simulate such a system is using a time-step approach. In this
approach, the system advances over the fixed time interval, At. At the end of each step, the
system is examined to detect the events that have occurred during the step. For example,
to detect the inter-particle collisions, one can check if the distance between the center of any
two particles is less than or equal to the sum of their radii. This is also called exhaustive
simulation since the system is examined at every time-step, regardless of whether any event
occurred during the time-step. Omne problem with this approach is that it is possible to
miss the events that occur during the time interval but leave no evidence at the end of it.
For example, if two particles fully pass through each other over a time step, their collision
‘can not be detected by this approach. Decreasing the time step reduces the probability of
missing events, but increases the computational time. Another problem with a time-step
approach is how to handle the parficles that overlap with each other, or the target surface.
To overcome this, one could move back the whole system to the maximum time at which
there is not any overlapping, but this significantly increases the computational time.

A different approach t‘o‘simﬁlate the system is an event-driven one. In this approach,
instead of fixed time intervals, the system advances from event to event. At the end of each
step, the system is explored, and the upcoming event with the nearest time to the current
is detected. The system thenA»advances to the time of the predicted event, and thé event is
handled and executed. This approach has the advantages that no events are missed, and it
‘also avoids the problem of overlapping particles. However, the disadvantage of this approach
is that it requires a large memory usage, in order to store all the events. Also, the scheduling
overhead makes the propagation of the system slow; i.e. it requires traversing the hst of
possible future events to find the one with the smallest time.

The present simulation is based on the event-driven approach. All the particles in the

32
system are given initial velocities and positions and travel in a straight line; therefore, their

future behavior is predictable. There are four events that are handled by the model: Launch-
ing a new particle, a collision between two particles, a collision between a partiéle and the
surface, and transfer; i.e. the space holding all the particleé is divided into smaller space,
when a particle enters a new space (see Section 3.9). For each type of event, a class is
implemented which provides all the methods needed to predict and handle the event.

The Nozzle class is used to predict and handle particle launching events. The EventPP-
Collision and EventPSCollision clésses are used to predict and handle the collisions between
two particles and the collisions between a particle and the surface, respectively. The Event-
Transfer is used to predict and handle transfers. The information of predicted events are
stored in a queue called the event queue. The event queue contains one element for each par-
ticle in the system, called the particle node, and one element for storing the time of launching
the next particle, called the launch node. At the beginning of the simulation, there are no
particles in the system and the event queue has only one element which is the launch node.

The general schematic representation of the algorithm can be seen from the flowchart of

Figure 3.14. The simulation develops by pelfforming the following steps:
S1. Select the next event in the event queue.
S2. Advance the time of the systerﬁ.
S3. Handle the event.
S4. Update the event queue.
S5. Return toi step S1.

To perform step S1, the algorithm searches the event queue and finds the earliest event. Step
S2 consists of changing the time of the simulation to the time associated with the event. The
time of the event is always greater than or equal to the time of the system. The equality is

for handling the exactly simultaneous events which are very unlikely.

33
In step S3, depending on the type of the event, the appropriate handler is invoked and

updates the state of the system. If the event is the launch of a new particle, a particle is
created by instantiating from the Particle class and is given an initial position and velocity
in the nozzle. If the event is a collision between two particles, their velocities are updated
using the method described in Section 3.3. If the event is a collision between a particle and
the surface, the velocity of the particle is changed, using the method described in Section
3.4. If it is necessary, the algorithm also removes a cell from the substrate, using the method
explained in Section 3.5, and updates the shape of the surface (Section 3.10.2). Handling of
the transfer requires changing the space containing the particle (Section 3.9).

After performing the step S3, as.a result of the updating of the system to reflect the
earlier event, the event queue might contain some events that will not occur. In step S4,
the algorithm identifies the elements containing such invalid events and updates their in-
formation. For example, particles involved in an inter-particle or a particle-surface collision
are given new trajectories, therefore their information stored in the event queue is not valid
any more. For these events, step $4 consists of predicting the next events of these particles
and updating their associated elen’ients in the event queue. For the particles impacting the
surface, the algorithm also determines the particles that have such particles as a partner for
their next inter-particle collision, and updatbes their next inter-particle collision. If the event
that was just handled is the launch of a new particle, in step S4, the event queue needs to
be extended. In this case, the algorithm predicts the next events of the new particle, saves
them in a new particle node associated with the particle, and adds the element to the event
queue. Also, the algorithm computes the time of launching the next particle, and the launch
- node has its data updated. Updating the event queue after handliﬁg the transfer is explained

in Section 3.9.

34

= particle-particle = particle-surface _ |
collision 'Fc)ollisio : = fransfer

Figure 3.14: Flow chart of the general event-driven algorithm

3.8 Implementing the Event Queue .
A heap is a complete binary tree in which every element has a key value. Depending on the
“ordering of the keys, a heap can be called either a max-heap or a min-heap. The present

simulation uses a min—hedp data structure to save the list of the computed times of particles
events in the event queue. In a min-heap, a key of each element is smaller than any of its
descendants if they exist, and thus the element with the smallest key is the root of the heap.

The event queue is implemented in the EveﬁtHeap class. This class provides methods
to perform the heap operations, such as inserting a new element, deleting an elemeht, and
updating the position of an element. The nodes of the event queue, the particle nodes and the
launch node, are instantiated from the EventNode class. For n particles inside the system,
the event queue has exactly n + 1 nodes. The key value of a parﬁcle node is the time of its
earliest event, and the key value of the launch node is the launch time of the next particle.
EventNode has a field of type Event which is instantiated for the particle nodes and is set
to the null for the launch node. The Fwvent class is used to store the information of the
‘particle’s next events. It has three inner classes: PPC'ole'sz'onStomge, PSCollisionStorage,
and tmnsfefStomge. The PPCollisionStorage class is used to store the information of the
next inter-particle collision of the particle. The PSCollisionStorage class is used to store the
information of the next particle-surface collision of the particle. Finally, the transferStorage
class is used to store the information of the ‘next transfer of the particle. For each particle
entering the system, the algorithm computés the times of its next particle-particle collision
event, particle-surface collision event, and transfer event, and initializes the instances of
PPCollisionStorage, PSCollz'sz'onSt'omge, and TransferStorage.

The smallest computed time is used to adjust the key value of the particle node, then the
particle node is added to the event queue. For the n particles inside the system, the cost of
inserting an element into the event queue is O(log(n)). For each particle leaving the system,
its particle node is removed from the event queue. The cost of deleting an element from
heap is O(log(n)). To find the next event, the algorithm simply selects the root of the event

queue which costs O(1). When the key value of an element in the event queue is changed,

36
its position in the event heap is updated costing O(log(n)).

3.9 Inter-particle Collision Detection

The inter-particle collision detection algorithm used in the model is based on that proposed
by Alder and Wainwright [26] and developed and analyzed by Sigurgeirsson et al. [27]. As
described in Section 3.1, particles are assumed to be spherical and move in straight paths in
the absence of collisions. Consider two particles P1 and P2. Their positions at time ¢ can

be described as,

z1(t) = zo1 + 01t » (3.51)

Qfg(t) = Zpg + Ugt - (352) '

where zo; and zge € R® are the positions of P1 and P2 at time 0, and vl and vy, € R3
are their velocities. If the distance between the center of the two spherical particles is less
than or equal to the sum of their radii, then a collision has occurred. If P1 and P2 are not

overlapping at time 0, the following condition must be applied for them to collide at time ¢.

lz1(t) — 22(2)| = R (3.53)

where R is sum of their radii. Squ.aring the both sides of the Eq. (3.53),

| Av|* #2 + 2(Av.Az)t + || Az|* = R? ' (3.54)

If the solution of Eq. (3.54) for time, t, has only one positive solution, the solution is the
time of the next collision, and if it has two positive solutions the smaller one is the time of

the next collision. If it does not have any positive solution, then the two particles will not

collide.

37
At any time, a finite number of particles, n, are inside the system. One way to detect

the next particle-particle collision in the system is to compute the time of the next collision
between any two particles, using Eq. (3.54), and select the nearest time. In this way n(n+1)/2
collision tests must be performed, and particle-particle detection requires ©(n?) calculations.
Alder and Wainwright [26] indicate that storing the calculated collision times causes a great
saving in computational time. In this manner, since after each collision the trajectories of
only two particles are changed, the inter-particle collision test must be performed only on
pairs including one or two of the particles involved. in the collision. Theréfore, the number
of tests reduces to (2n — 3). However, computing the very first collision time still requires
the tests on every pair. The issue of how to store the list of computed times is addressed
by Sigurgeirsson et al. [27]. They suggest using a heap data structure, the method which
is used in the current simulation as well. The implementation of the heap is explained in
Section 3.8. ‘

Alder and Wainwright [26] noted that distant particles are very likely to change their
direction before théy collide. They suggest dividing up the cubic space holding all parti-
cles into smaller cubes, called cells [27], and detecting collisions only between particles in
neighboring cells. Implementing this idea requires detecting and handling transfers between
cells. The present simulation uses a three dimensional array to implement the environment
containing all the particles, as suggested by Sigurgeirsson et al. [27]. Each element of the
array represents a cell of a grid, and is instantiatéd from the Cell class. The Cell class has a
list of particles, called members, which are assigned to it. In the algorithm proposed by Alder
and Wainwright [26], each particle is assigned to a unique cell which contains the center of
the particle, while in the implemented algorithm, each particle can be assigned to more than
one cell. The particles are assigned to thé cells that contain them. Also, particles are added
to the members of cells in which they are about to enter. Particles that are assigned to the
same cells are called neighbours. |

To predict the next collision time for a particle, instead of calculating the collision times

between the particle and all the particles in the neighboring cells, only the collision times -

38
between the particle and its neighbors are calculated. Using this method the algorithm

looks for inter-particle collisions in smaller spaces, speeding up the particle-particle detection
procedure (see Figures 3.15(a)-3.15(c)). However, this increase in speed is at the expense of

implementing a mechanism to monitor the cells in which particles are about to enter.

Ol | b) (©

Figure 3.15: Three different examples are demonstrated which compare the inter-particle
collision detection approach used in the present simulation with the one proposed in [26].
According to the Alder and Wainwright model, to predict the next collision of the black
particle, collision times between this particle and particles whose centers are within the gray
cells are calculated [26]. According to the present model, to predict the next collision of the
black particle, collision times between this particle and particles whose centers are within
the dotted region are calculated

- For each detected inter-particle collision, the two involved particles are referred to as
partners of each other. For each neighbor, a computed time is compared to both the smallest
computed time so far and the collision time between the neighbor and its current partner,
if any, and is accepted if it is smaller than both. After computing all collision times, if a
particle finds a partner, their next collision times are adjusted. If the new partner has an
old partner, its next collision time is invalid, and the algorithm finds the next collision time

between this particle and all of its neighbors, except for its old partner. For each particle-

; : 39
particle collision detection, the algorithm stops when a particle cannot find any partner, or

the new partner does not have an old partner.

To predict the next transfer for particles, the algorithm computes the intersection of
the trajectory of a particle and the faces of a cube and selects the éarliest one. To handle
the transfer, the algorithm moves the particle to the closest position at which its surface
is tangent to the faée of the new cells. Then the particle is removed from the members of
~old cells that do not contain it anymore, and added to the members of new cells; i.e. this .
ensures that before the particle enters any cell its inter-particle collision within that cell is
detected. The algorithm then detects the next inter-particle collision of the particle and
updates its element in the event queue. For the cases where there is no cell adjacent to the
exit faée, the particle is leaving the boundary of the system. In this case, the algorithm
removes the particle from the members of its old cells and removes its associated element
from the event queue. After each transfer, the next collision for the particle’s old partner, if
any, is invalid and‘must be updated. For a particle that is still in the system after handling
the transfer event, since its trajectory has not been changed, there is no need to update its
particle-surface collision. |

As material is removed from the initially flat surface, ‘the space holding particles extends.
To allow partiéles to flow into the newly eroded areas and allow collisions to occur within
these areas, the cells which are adjacent to the surfacé are not cubic. Instead they are
cuboids with the same width and height as the other cells but their depth goes all the way
down to the end of thé substrate.

3.9.1 Optimal Cell Size

As the size of the environment cells decreases, the number of transfers increases, and a
smaller number of particles needs to be examined in order to detect inter-particle collisions
at each event. On the other hand, increasing the cell size decreases the number of transfers
and requires more pairs of particles examined at each event. Since the cell size affects the

performance of the simulation, it is important to find an optimal cell size.

40
To see how the choice of cell size affects the performance of the simulation, different values

of launched frequency were set, from 200,000 to 2,000,000 in increments of 200,000. For each
value of launch frequency , the simulation runs were conducted with a varying environment
cell size, while holding all the parameters at the values given in Table 3.1. Figure 3.16 shows
bhoW the run time of the> simulation with a launch frequency of 1,000,000 particles/s changes
with the environment vcell size. ‘As can be seen, for f,, = 100000, the environment cells with
an edge length around 0.8 mm give the best performance. A similar approach was used to
determine the optimal cell size for other launch frequencies. The linear regression on optimal

values gives the optimal edge length, [, in terms of launch frequency, fx, as,

le = —3.266666 X 1077]‘}1 +1.15 - (3.55)

Figure 3.17 shows the optimal edge lengths at each launch frequency and the fitted line.

input | value input | value
Unoz | 0.0 mm/s | ry, 0.38 mm
r 0 1L 14 um

d 20 mm 0 15

Tp 25 um Pp 4000 kg/m?
Vinas | 162 m/s | ps 2200 kg/m?

K 1.43 D 6.3 x 107°
Epp 1 €ps 0.5
f 0.0

Table 3.1: The inputs to the simulation used to estimate an optimal environment cell size.

41

Execution Time.in Secorids

o] 02 04 0.6 0.8 kS 1.2

Edge Length:of Environment Cells-(rm)

Figure 3.16: Execution times for different environment cell sizes using f, = 1000000, with
all other parameters at the values given in Table 3.1 v

Edgé Langth of Envirchment Cells (mm)

500000 1000000 1500000 2000000

Latrich Frequency

Figure 3.17: Optimal cell sizes for different launch frequencies using the input paranieters
from Table 3.1 and the fitted line. '

3.10 Modeling the Surface Advancement .

As mentioned in Section 2.2.4, the present model uses a cell-removal algorithm to model the
surface advancement. For the cellular algorithms implemented in the present simulation,
a substrate was represented by a cube which was divided into very small cubes of equal
size, henceforth referred to as cells. Collision detection between a spherical particle and
the cellular surface requires a large number of geometrical intersection tests; i.e. checking
whether the sphere will touch any of the polygons used to model the surface. The algorithni
‘ cénnot stop ormce it detects a single collision; it has to find all possible collisions and choose the
nearest one. To reduce the number of tests, a hierarchical representation of the substrate
is generated. The present simulation uses a hierarchical data structure, called a cellular

octree(section 3.10.2), which is based on the region octree data structure [28].

3.10.1 Octree Data Structure

The term octree [28] refers to a class of hierarchical data structures which are based on a
recursive subdivision of a space. The simplest' octree is called a region octree which is based
on the successive subdivision of a bounded volume into eight octants of equal size [28]. To
fepresent an object by a region octree, the object is defined by a three-dimensional array of
1’s and 0’s, a 1 indicating the unit cube is contained in the object, and a 0 indicating the unit
cube is outside the object; i.e. a 1 represents the presence of the object and a 0 represents.
the absence of the object. The subdivision process is represented by a tree in which non-leaf
nodes have exactly eight children and a root node represents the enﬁre object. In general, a
node needs only to be subdivided into octants if it does not consist entirely of 1’s or entirely
of 0’s. The subdivision pfocess starts from the entire array and continues until cubes ére
gained that either contain only 1’s or only 0’s; these cubes represent the leaf nodes of the
tree, and are fully within o outside the object. The leaf nodes representing cubes within the
object are called black, the leaf nodes representing cubes outéide the objéct are called white,
and non-leaf nodes are called gray. Figures 3.18(a)-(c) show a three-dimensional object, its

octree block decomposition, and its tree representation, respectively [28].

43

L1 L1 L]
10 11 12 13 14 15 16 17

(c)

Figure 3.18: (a) A three dimensional object, (b) its octree.block decomposition, (c) its tree
representation

3.10.2, Surface Advancement Algorithm

The cellular octree is defined based on the region octree, and it is used to model the target
substrate. The model implements the tree representation of the cellular octree using a top-
down approach. The root of the tree represents the entire substrate. The leaf nodes are called
White, black, or unit, and they do not need further subdivision. White nodes correspond to
the cubes that are fully outside the substré,te; i.e. they are no longer part .of the substrate.

- Black nodes correspond to the cubes that are fully within the substrate and have not been

44
hit by any particle; i.e. they represent the presence of the substrate. Unit nodes correspond

to the cubes that are fully inside the substrate, are the same size as surface cells, and have
been hit by at least one particle. The corresponding cubes of unit nodes are referred as unit
cubes and they represent the cells of the surface. A maximum level of subdivision of the
cellular octree is determined by the size of the surface cells which is fixed beforehand (i.e. as
an input to the simulation). The non-leaf nodes are called gray or cellular. The gray nodes
correspond to the cube that are partially inside the substrate. The cellular nodes correspond
to the cube that are fully within the substrate, have been hit by at least one particle, and
are larger than the surface cells. | 4 |
All the nodes of the tree are instantiated from the OctNode class. This class is used to
store the information of the corresponding cubes of nodes, such as position, index which
determines the label of the node with respect to the parent (see Figure 3.19), along with
references to its octants. The OctNode class has an array of eight elements, called bhz’ld,
which is used to store the references to the octants, and for the leaf nodes, since they do
not need further subdivision, it is set to null. There is also a field in OctNode class called
loss. This field is only used for unit nodes, and depending on the type of the erosivé system,
brittle or ductile, it stores the ‘value obtained by Egs. (3.49) or (3.50). The unit nodes whose

- loss value is equal or greater than 1 must be removed.

o /4

Figure 3.19: Labeling convention of octants in a cellular octree

, . 45
Constructing the substrate by creating all of its cells is a costly process in terms of time

and memory. On the other hand, the spatial distribution of particles within the jet (Eq. 3.5),
implies that thére are many more particles near the nbzzle centerline than at the periphery of
the jet. Thus, in realify, it is likely that there are parts of the surface on the periphery of the
jef of colliding particles that are rarely hit by any particles. To avoid creating unnecessary
cells in these areas, the algorithm allows for the decomposition to océur only on parts of the
surface that are actually hit by particles.

For simplicity, it is assumed that an initially cubic substrate with a flat surface is exposed
to the particle jet. At thé start of the Siﬁlulation, the tree has only a root which is black and
represents the entire substrate. In general, after each particle-surface collision, the algorithm
determines the leaf node, and if the leaf node is not white, it decomposes the corresponding
cube of the leaf node until the unit cube containing the collision point is obtained. Then the
collision is handled. Once the leaf node containing the collision point is determined, threé'
possible cases arise. The first case is when the leaf node is unit. In this case, there is no
"need for further subdivision and the collision is handled. The second case is when the leaf
node is black. In this case, the status of the node is changed to unit or cellular depending
on whether its corresponding cube is the same size as the unit cubes or larger, respectively.
If the node has been changed to a unit node, no further subdivision is necessary and the
collision is handled. If the node has been changed to a cellular node, the algorithm divides
the cube into octants, and sets the status of the octants to black. Then the algorithm repeats
the decomposition process frém the octant containing the collision point until it reaches the
unit cube contairing the collision point, and then the collision is handled. The third case is |
when the leaf node is white. In this case, the target cell has been removed (due to impacts
from some other particles) sometime after the particle-surface collision was detected for this
particle. These types of events are called unsuccessful collisions. Unsuccessful collisions are
not handled and just simply ignored by the algorichm.

As an example, consider Figure 3.20. Figures 3.20(a) and (b), respectively, show a black

leaf node and its corresponding cube which will be hit by a particle at the point shown by -

46
the red cross. After the collision, the black leaf node turns to a cellular node whose tree

representation and corresponding cube are shown in Figures 3.20(c) and 3.20(d).

(c) (d)

Figure 3.20: (a) A black leaf node, (b) its 'correspond_ing cube. (c¢) The tree representation
of the node after the collision, (d) its block decomposition. '

To handle the collision, the velocity of the particle involved in the collision is changéd,
the value of the loss variable of the unit cell containing the éollision point is updated and the
cell is removed if one of the conditions given by Eq. (3.49) or (3.50), depending on the erosive
system, is satisfied. Removing a cell is performed by changing the status of the corresponding

unit node to white. Once the unit cube is removed, the status of its corresponding node is

47
changed to white, and the statuses of all of its ancestors are changed to gray. '

When a cell is removed, there may still be some particles that have the cell as the target for
their next particle-surface collision. So their detected particle-surface collisions are not valid
anymore. Finding these particles requires checking the target cells for all particles colliding
with the surface at each cell removal, which is a costly process. To avoid going through this
process, when a cell is removed, the algorithm does not try to find such particles. Before
handling each particle-surface collision, the algorithm checks for the target cube containing
the collision point and if its status is Whiter, a unsuccessful collision occurred and it will
thus not be handled. Since these particles may go on to hit another cell later, in the step
of updating the event queue, the algorithm predicts their next particle-surface collisions.
Because they are not given the new trajectories, there is no need to update their transfers
and inter-particle collisions.

The size of the cellular octree is reduced by merging groups of eight siblings of the white
color. To perform the merging process, the eight siblings are removed, the status of their
parent is set to white, and its child array is set to null. Once a unit cell is removed, the
algorithm performs a check for a possible merge. If a merge occurs, it checks for another
possible merge in a higher level of the tree. [28]

The pseudo-code of the surface advancement algorithm is presented below.

Notations:

e SurfaceAdvancement(particle, collisionPoint): obtains the unit cube that contain the

collisionPoint and then handles the collision between the particle and the unit cube.

Status(node): returns the status of a node.

LeafNode(point): returns the leaf node whose corresponding cube contains point. -

CubeSize(Node): returns the size of the corresponding cube of the Node.

decompose(Node): creates eight octants of the Node; the decomposition of a node is

' 48
performed by eight times instantiating from OctNode class and setting the elements of

the child array of the node to these instances.

o Octant(i,node): returns the 5" octant of a node.

49

Algorithm 1 Surface Advancement Algorithm

procedure SurfaceAdvancement(particle, collisionPoint)

1.

O T T - T S Sy S G T G S S S T e
I e e T = L o

ORI
NS Gt

N
©w

© e N oW

leafNode « Leaf Node(collisionPoint)
foundUnitNode «— false
while (foundUnitNode=false)

case Status{leafNode) of
Unit:
foundUnitNode « true .
handleCollision(particle,leaf Node)
Black: o
if CubeSize(leafNode) = unitSize then
leaf Node.setStatus(Unit)
foundUnit Node +— true
handleCollision(particle, leaf Node)
else
leaf Node.setStatus(Cellular)
decompose(leaf-Node)
1+ 0
~while (i < 8)
if Octant(i, node).contains(collisionPoint) then
leaf Node — Octant(i, node)
exit loop
1+—1+1
end while
end if
White:
foundUnitNode « false
exit |
end case

end while

3.11 Particle-Surface Collision Detection !
The particles that are far from the surface are likely to change their direction before they hit
the surface. To avoid detecting particle-surface collisions for these particles, the algorithm -
detects particle-surface collisions only for the particles that are contained in the environment
cells adjacent to the surface. The collision detection algorithm used in the model, fequires
intersection tests between trajectories of particles and corresponding cubes of the cellular
octree. A particle is represented by a sphere having a certain radius, and whose center
is located by cartesian coordinates. A correspoding cube of a node of the cellular octree
is represented by a cube having a certain edge, and whose center is located by cartesian
coordinates. Before describing the general algorithm, the approach used to detect collisions

between a sphere and a cube will be presented.

3.11.1 Sphere-Cube C()llision Detection Algorithm

Detecting collisions of objects with a sphere is relatively easy to calculate because of its
symmetry. All the points on the surface of a sphere are the same distance from its center,
S0 it is easy to determine whether or not an object Wﬂl intersect with it. Therefore, for
each cube, a bounding sphere is defined as a sphere whose surface contains all the vertices
of the cube. The algorithm performs the intersection test between the sphere representing

the particle, and the bounding sphere of the cube by calculating the following equation,

llwpl|® £ + 2(v,. Azt + || Az||* = R? (3.56)

where v, is the particle velocity, Az is difference between the spheres centers, and R is sum
of their radii. If the equation has no positive solution, the sphere will not collide with the
cube, and the algorithm does not go through the further calculation to detect the sphere-
cube collision. Otherwise, if the equation has at least one solution there is a possibility that
a collision occurs, and the algorithm checks for a collisioﬁ between the cube and the sphere.

A cube is bounded by six square faces. The collision detection algorithm checks the sphere

51
against the faces of the cube. Depending on the position of the sphere with respect to the

cube, at most three faces are examined by the algorithm (i.e. if the sphere is on the left side
of the cube, the collision with the right face is impossible). The problem now is reduced to
finding the collision between the sphere and one of the square planes. When a collision is
detected, the position where the sphere hits the cube and the time of the collision are needed

to handle the collision. Three different cases are examined for each collision detection:
e The sphere collides inside the square plane.
e The sphere collides with one of the vertices of the square plane.
e The sphere éollides with one of the edges of the square plane.

The case of the collision inside the square plane is checked first, and if such a collision is
detected the algorithm skips the tests for edges and vertices. If the sphere does not collide
with the inside of the square, collisions with the vertices and the edges are detected, and the

earliest one is selected.

3.11.2 Particle-Surface Collision Detection Algorithm

The particle-surface collision detection is achieved by traversing the cellular octree in a top-
down fashion applying a set of rules. The white nodes are ignored, as they represent the
absence of the substrate. For each non-white node, the algorithm searches .for the collision
between the particle and the corresponding cube of the node, using the approach explained
in section 3.11.1. If there are no collisions, the particle will not collide with the substrate
bounded inside the cube, and the algorithm does not search for collision in the further
subdivisions of the cube. If the particle is going to collide with the cube, two cases can arise.
The first is when the node is black, cellular-or unit. Since the collision point is contained
inside the substrate, the collision is detected. The other case is when the node is gray. In
this case, the collision may be invalid, depending on which area of the cube contains the’
collision point. To determine whether the collision is valid or not, the algorithm obtains the

leaf node, whose corresponding cube contains the collision point. If the leaf node is black or

52
unit, the point is contained inside the substrate, and the collision is detected. If the node

is white, the collision is not acceptable and the traversal of the cellular octree proceeds; i.e.
the algorithm goes through the octants of the node, finds the collision against each octant,
using the same process, and accepts the earliest one, if any.

The pseudo-code of the collision detection algorithm is presented below.
Notations:
o Status(node): returns the status of a node.

e Octant(i,node): returns the i octant of a node.

o DetectCubeCollision(node, particle): checks for a collision between a particle and the
corresponding cube of a node and returns a variable that has two parts: collision which
is true if the collision is detected, contactPoint at where the particle collides with the

cube.

e LeafNode(point): returns the leaf node whose corresponding cube contains point.

03

Algorithm 2 Particle surface collision detection algorithm

procedure DetectCollision(node, particle)

—

W = T S
>~ W =9

—
ot

[T N T e e
- o © 0 N o

© 0 N o g e D

if Status(node) # White then
(collz'éz’on, contactPoint) « DetectCubeCollision(node, particle)
if collision = true then
case Status(node) of
Black: foundCollision «+ true
Unit: foundCollision < true
Cellular: foundCollision + true
Gray: | _
leaf < Leaf Node(contact Point)
if Status(leaf) # White then
foundCollision « true
else
e
while (i < 8)
DetectCollision(Octant(, nodé), particle)
1—1+1
end while
end if
“end case
end if
end if

3.12 Graphical User Interface .
This section presents the graphical user interface (GUI) constructed for the simulation. Thé
GUI enables the user to enter the input parameters and monitor the progress;and the actﬁal
time of the simulation. The GUI hds been implemented as a collection of buttons, labeled
text ihput fields, and a progress bar. Figure 3.21 shows the GUI which includes four panels.
The first panel, the Nozzle Specification, includes the input fields used to implément the
nozzle which launches the particles. The second panel, the Particles Specification, includes
input fields accepting the properties of the abrasive particle material. The third panel,
Surface Specification, includes input fields accepting the propérties of the target surface.
The last panel, the Environment Specification, includes an input field used to determine the
size of the environment. The bottom part of the GUI includes a text field accepting the time
duration of the simulation which is used as a criteria to stop the simulatibn. It also includes
an input field which determines the interval for creating the results of the simulation. At
~each specified interval, two Microsoft Excel files are created: CrossSection and 3DProfile.
CrossSection includes the partially eroded depth of the surface cells at the mid cross-section
of the surface. 3DProfile includes the partially eroded depth of all the surface cells which
provides the three-dimensional view of the erosion profile. Table 3.2 gives a brief summary
of the input parameters. The GUI has a progress bar implemented to convey the progress
of the simulation .in terms of time. By clicking on the button run, the simulation starts
and a file containing the values of inputs is created. The user can stop the simulation at
anytime by clicking on the exit button, and which time previously mentioned Excel files are

also generated.

Figure 3.21: The graphical user interface used to enter the input parameters

_ 06

Nozzle Specification Panel
Radius '
Stand off distacne
Velocity

PassDistance

Distribution of Initial Veloci-
ties of Particles -

Starting Position

Launch Frequency

Particle M az Velocity

Weibull Beta
Orientation Angle

the radius of the nozzle in mm

the stand-off-distance of the nozzle in mm

the velocity of the nozzle in mm/s

the distance scanned by the non-stationary nozzle to
create channel in mm

the distribution of particles velocities at the nozzle exit
plane o

the initial position of the nozzle in mm

the number of particles launched from the nozzle per
second '

the velocity of particles moving along the nozzle cen-
terline '
the focus coeflicient

the angle by which the nozzle is rotated in counter-
clockwise direction about axis x (Figure 3.22)

Particles Speciﬁcationﬁmel

Radius

Density

P — P Coefficient of Restitution
P— S Coefficient of Restitution

the radius of particles in um

“the density of abrasive material in kg/m®

the coefficient of restitution for inter-particle collisions
the coefficient of restitution for particle-surface colli-
sions :

Surface Specification Panel

Density

Substrate Depth
Cell Size

Friction Coef ficient
Erosive System

ny and ng

Hv .
Constant D and Constant K

the density of the substrate material in kg/m?

the depth of the substrate in mm

the edge of the surface cells in um

the friction coefficient of the target surface

the type of the eroding material

the constants used in the cell removal criteria for duc-
tile erosive systems

the hardness of the eroding material in GPa

the constants used for erosion rate

Environment Specification Panel

Width/Height

the width and height of the environment in mm.

Time Duration
Printing Time

System Clock

the duration of the simulation in s
the time interval at which the results of the simulation
are created in s

the current time of the simulation in s

Table 3.2: The descriptions of the input text fields implemented in GUI

o7

Figure 3.22: The angle o by which the nozzle is rotated in a counterclockwise direction about
the x axis, in the y-z plane.

Chapter 4

Results and Discussion

4.1 Performance of the Simulation

The execution time of the simulation depends on the input parameters. One parameter
that significantly affects the execution time is the edge length of the surface cells. To give
an idea of the execution time, a simulation run was conducted with the input parameters
given in Table 4.1. The environment holding all the particles was initially of size 8 x 8 x 20
mm?. Simulating 0.1 seconds took 24 seconds of execution time on an Intel 2.4 GHz quad
processor s.ystem with 2030 MB of RAM. It should be noted that the simulation run does not
“necessarily run at this pace for the whole execution; it often slows down due to the increase in
the number of cellular octree nodes, as more cells are removed from the substrate. This slows -
down the parﬁcle—surface collision detection, since a larger number of collision tests between
particles and cubes associated with the nodes of the cellular octree must be performed.
Moreover, as the surface erodes, the area holding the particles extends and more particles
flow into the boundary of the system. Finally an increase in dynamically allocated memory
increases the time associated with the Java ‘garbage collection.

To give an idea of how much the simulation is slowed down, a run was conducted for a
simulation time duration of 30 seconds. The execution times needed to simulate each time
interval of 0.5 seconds were calculated, and are depicted in Figure 4.1. It is clearly evident

that the simulation time for each interval increases as the simulation progresses.

28

input | value input | value

Unoz | 0.0 mm/s | ry 0.38 mm

£ |1.2x10° |a 0

d 0mm |3 15

Tp 25 um Oy 4000 kg/m3
Vinaze | 162 m/s | ps 2200 kg/m?
K | 143 D |6.3x10°
Epp 1 Eps 0.5

f 0.0 L |14um

Table 4.1: The inputs to the simulation

Execution Time in Seconds

Figure 4.1: Execution times needed to simulate each time interval of 0.5 seconds.

10

15

20 23

Simudation Time:in Secands

30

35

99

4.2 Surface cell size v

In cellular models, a more accurate shape of the surface can be obtained by decreasing the
size of the surface cells. This is due to the facet formation problem of cellular algorithms
described in Section 2.2.4. For example, in the simulation of the ma.chini_ng of a hole, the
cellular simulation results in a hole opening which is polygonal, rather than circular. If
smaller cells are used, the shape would of course be closer to circular, but, on the other
hand, the use of small cells presents two problems. The first is the computational cost,
and the second is that using small cells sometimes does not allow particles to do as much
damage as they should because each impacting partic;Ie can only damage one cell. Thus,
the maximum volume of material that can be removed by a particle impacting the surface is
equal to the volumelof a surface cell. For very small surface cells, it is possible that a particle
transfers more energy than it is needed‘to remove the small taiget cell. In this case, sorﬁe of
its energy is wasted be_cause‘ the simulation does not provide any mechanism to transfer the
remaining impact enérgy to the other cells. Since using too small of a cell size can result in
an incorrect shape and depth of erosion profiles, the cell size should be chosen with caution.

To improve the quality of the plotted surface, the simulation does not plot only undam-
aged surface cells. Instead, the partially eroded depth of the damaged surface cells is used
to plot the profile. This depth can be calculated as‘, |

_dp:d+(N><.L) (4

where d is the depth (i.e. the distance below the initial uneroded surface) of the cell, N
is the value Caléulated by Egs. (3.49) or (3.50) for the particular surface cell in question,
and L is the edge length of the ceil. Using this technique, to some extent, avoids the facet
formation problem and gives a more accurate shape for the erosion profile.

Figure 4.2 compares the predicted cross-sections of runs conducted with two different

surface cell sizes, cells of edge 14 pm and 10 um. As described earlier, the shallower profile

, 61
for the smaller cells is due to the fact that some of the energy of particles impacting the

surface is wasted and is not transferred to the substrate.

-4 3 8 =1) 0 1 4

Hole Depth (mm)

Hale Diameter {irifh)

wgebs - coll gdgesTépm 108~ coll edgesidym e=i5s-celledge=idum

smsis < ool edgestOpm w15 - coll adge=T0Mm ~15s-icell edge=10Hm

Figure 4.2: Comparison of predicted cross-sections using cells of edge 14 pum and 10 um,
with all other parameters at the values given in Table 4.5.

To select é reasonable value for surface cell size, simulation runs were conducted by
varying the value of the cell edge length and holding all the others parameters at the values
given in Table 4.3. At each run, the volumes Qf the target material, V,,, associated with
the total wasted impact energy after 1 second were calculated. Figure 4.3 demonstrates the
effect of cell size on the value of V. Values between 13 and 15 um are considered reasonable,

since they are the smallest values that do not cause considerable effects on the volume of

material removed.

62

0018

s

pou

0017

Volume of Materiel Associated with Wasted Energy(mmA3)

0002

Z 3 it 13 15 17 8

Edge Lengthof Gell (mm}

Figure 4.3: Effects of different surface cell sizes on the volume of material removed.

4.3 Basic Model Verification

This section describes two methods used to verify the computer model. To perform these

verifications, the simulation was run with a surface that does not erode and thus stays flat.

4.3.1 Verification of Algorithm to Launch Particles in Weibull Dis-
tribution '

As explained in Section 3.2, measurements [23] show that the probability of a particle im-- |
pacting the flat surface at a radial distance between r and r + dr follows the probability
distribution function given in Eq. 3.1. To prove that the simulation produces the same prob-
ability distribution; the radial locations for 1000000 particle impacts on the flat surface were
computed. Then 100 equal radial intervals of size 0.06 mm were determined. To obtain the

. probability of the simulation generating an impact within each interval, the number of radial

- . 63
distances within the interval was divided by the total number of observations. These proba-

bilities were compafed to the ones calculated by Eq. 3.1 over each interval with § = 15 and

= 20 mm. As can be seen in Figure 4.6, the comparison shows that the simulated results
are highly matched with those obtained by the use of Eq. 3.1. It can thus be concluded that
the present model is capable of properly launching particles aécording to realistic measured

particle spatial distributions.

0.045

0.03 +
0:026
o3

0.015 +

Probability of Impact at Given Radius

0.0

0.005

o) 1 2 3 4. 5 6 7

Radius at Which Particle Hits the Target Surface (mmj)

Figure 4.4: Verification of simulation launching algorithm for case of 0.76 mm round nozzle
having 8 = 15, with a stand-off-distance of 20 mm, and powder mass flow rate of 2.83 g/min.
The solid line demonstrates theoretical results, and the circles demonstrate simulated results.

64
4.3.2 Comparlson with Previous Computer Simulation for Non

Eroding Flat Surface

Ciampini et al.’s model [29] implements a computer simulation for a non eroding surface
which is capable of predicting interference-effects under a wide variety of input conditions.
For different values of launch frequency, the percentages of particles arriving to the surface
without experiencing any particle-particle collision were obtained for the presentv simulation,
and compared against Clampini et al.’s simulation. The simulations were run with different
launch frequencies in the range of 500000 to 5000000 for a 0.1 second time périod. The
results were compared for two different nozzle stand-off-distances: 20 mm and 10 mm. This
comparison can be seen in Figures 4.5 and 4.6, which show good agreement“ between the
two models. It can thué be concluded that the particle kinematics and collision detection

algorithms implemented in the present simulation match those used by Ciampini et al.

Percentage of Particies Arriving to the Surtace Before Coiliding

1000006 2000000 3606000 4000000 5000000

Laynch Freéguentey

Figure 4.5: Comparison between the present model and Ciampini et al.’s model [29] using
25 wm diameter aluminum oxide particles, and a point source round nozzle having 6 =15
with a stand-off-distance of d = 20 mm. No surface erosion is included, so that the surface
remains flat. Horizontal lines: results from the present model; circles: results from Ciampini
et al.’s model -

65

Percentage of Particles Ariving to'the Surface Befare Colliding

o 1000000 2060000, 3000009 408000 500600,

Launch Freguericy

Figure 4.6: Comparison of present model with that of Ciampini et al. [29] using 25 pum
diameter aluminum oxide particles, and a point source round nozzle having 8 = 15 with a
stand-off-distance of d = 10 mm. No surface erosion is included, so that the surface remains
flat. Horizontal lines: results from the present model; circles: results from Ciampini et al.’s
model -

4.4 Experimental Verification

This section presents a comparison between simulated results Aand experimentally obtained
results. To test the model for a brittle erosive system, a borosilicate glass target (5 mm
thick, Borofloat, Schott North America Inc., Elmsford, NY, USA) was used, and for a
ductile erosive system, a polymethylmethacrylate (PMMA) target material was used. The
experimental setup used to machine the holes and channels is exactly as that described in
Ref. [23]. Holes Were created by keeping the nozzle stationary, and straight channels were
created by scanning the nozzle with a constant velocity for a different number of passes over
the surface. In all experiments, surfaces were machined by blasting granular 25 pm nominal
diameter aluminum oxide. A constant blasting pressure of 200 kPa was used. Experiments
were performed using a round microabrasive nozzle of radius 0.38 mm. Chénnels and holes

were cross-sectioned, and then were photographed and measured to obtain the cross sectional

. 66
profiles.

In all cases, the simulation was run under identical conditions to those used in the ex-
periments.. It should be noted that the experimental uncertainty for particle flow rates in a
giveﬁ experiment is estimated to be on the order of +/-5% [23]. For experiments on multiple
days, this may be even higher, as much as 20% [30]. The launch frequencies used in sim-
ulation runs were adjusted within this range to improve the agreement between simulated
and experimental results. However, in the case of the channel, since the nozzle is moving,
more uncertainties can be expected, and in some cases; the mass flow rate is taken to be of

slightly more deviation.

4.4.1 Glass Targets

It has been shown that the coefficient of restitution for inter-particle collisions, epp, has an
extremely small effect on the predicted results (Section 4.5.3). Thus inter-particle collisions
were assumed perfectly elastic and e,, was chosen as 1. Slikkerveer et al. [4] measured
the coefficient of restitution between aluminum oxide particles and glass as a value between
0.2 and 0.5. For the borosilicate glass targets, a coefficient of restitution of 0.5 was chosen
for particle-surface collisions. The friction coeflicient, f, Was taken as zero because surface

friction has little effect on interference [22].
Low Flux

The results for the glass channel at low flux were compared with the measured data reported
by Ghobeity et al. [23]. The nozzle was scanned with a constant velocity of 1 mm/s for
eight passes over the channel. The nozzle was placed at a 20 mm distance from the glass
plate with the centerline perpendicular to the surface. Particles were launched with the mass
flow rate of 2.83 g/min. To test the model against the experiments in this case, the input
parameters given in Table 4.2 were used. The constants k£ and D, which are related to the
erosive characteristics of the target material, were previously calculated from measurements
of erosion rate using 25 micron aluminum oxide on Borofloat glass at the mass flow rate

of 2.83 g/min [23]. The model was run for 56 seconds to simulate eight passes of length

67
7 mm. This 7 mm is approximately 1 mm larger than the ’spot size’ diameter at which

99.9999% of the particles hit the surface, so that the full jet of particles can assume to have
passed a given cross section. The three-dimensional view of the predicted erosion proﬁie after
simulating eight passes can be seen in Figure 4.7. Figure 4.8 (taken from [23]) demonstrates
the photograph of the cross-section of the actual surface after eight passes. Figure 4.9 shows
‘the comparison of the measured and predicted cross-sections; a good agreement between the

simulated and experimental results is demonstrated.

Figure 4.7: The predicted erosion profile of the borosilicate glass channel after eight passes
on a surface of size 7.98 x 11.9 mm? using the parameters given in Table 4.2.

Figure 4.8: Cross-section of unmasked channel in borosilicate glass after eight passes

nozzle [23].

input | value input | value

Unoz | L mm/s |, 0.38 mm

fn 1.23 x 10° | « 0

d 20 mm 16 15

Tp 25 pum Pp 4000 kg/m?
Vinae | 162 m/s | ps 2200 kg/m?
K 1.43 D 6.3 x 1076
Epp 1 €ps 0.5

f 0.0 L 14 um

68

of the

Table 4.2: The inputs to the simulation for the caée of glass channels at low flux.

0.000 0.500 1.000 1.500 2000 2500 3,000
000 + e -

0:05

“0.10

0.20

025

Depth {mm)

-0.30
0,35 -

~0.40-1

045

Channel Width (mm)

B Exprpasst & Exp pass2 O Exp.pass3 ¢ Expopassd
X Exp passh U Exp.passé. A Exp pass? O Exp. passs
ot (1215571 i SAEED. wepasEd i SOSSA,
e ASSE. s ASSH s AT o GESEE

Figure 4.9: The comparison of predicted cross sections of borosilicate glass channels against
the measured data, at low flux, using the input parameters from Table 4.2. Solid lines
indicate predictions of the present model, and symbols represent experimental values.

For the case of glass holes machined at low flux, the predicted cross sections were com-
pared with the experimental data reported by Ghobeity et al. [31]. The nozzle stand-off
distance was set to 20 Tﬁm, and the nozzle centerline was perpendicular to the surface. 25
pm aluminum oxide was launched at a mass flow rate of 2.83 g/min. The input parameters
to the compﬁter model used to simulate this case can be seen in Table 4.3. The three-
dimensional view of the predicted erosion profile after 30 s is demonstrated in Figure 4.10.
Figure 4.11 compares the cross sections of the predicted and the measured erosion profiles of

glass holes at low flux, and shows a reasonably good agreement. It should be noted that the

70
inconsistent material removal per unit time at the center of the hole, indicates significant

~experimental scatter. Such repeatability problems arise because it is difficult to actually
measure the developing profile as a function of time.. Therefore, the experimental profiles
shown in Figure 4.8 are actually for 6 different holes, each sectioned separately to obtain the
profile. Moreover, sectioning of a hole cross section relies on the ability of the experimenter
to section perfectly in the center of the hole to obtain the deepest profile. This is often dif-
ficult to do. Thué, experimental scatter likely accounts for most of the discrepancy between

model and experiment. Repeatability problems of this type are discussed in detail in Ref.

[30].

input | value input | value

Unoz | 0.0 mm/s rn, | 0.38 mm

fri 1.4973 x 10° | « 0

d 20 mm I6) 15

Tp 25 um pp | 4000 kg/m?
Vinaz | 162 m/s ps | 2200 kg/m?
K 1.43 D 6.3x10°°
epp 1 Eps 0.5

f 0.0 L 14 um

Table 4.3: The inputs to the simulation for the case of glass holes at low flux.

71

e o - .
.. .
o . . . o %yg&%,gg% o

R

o
-

-

e -
e

B~0.3-01

B08-07

- Figure 4.10: The predicted erosion profile of the borosilicate glass hole after 30 s on a surface
of size 7.952 x 7.952 mm? using the parameters given in Table 4.3.

72

Hole Depth (mm)

Hole Diameter (mmm)

e — i 08 [T e 305 -1

S Exp.2s & Exp. Bs & Exp. 10s % Exp 165 * Exp 30s a Exp 453

Figure 4.11: Comparison of predicted hole cross sections against the measured data for the
borosilicate- glass target at low flux using the inputs given in Table 4.3. Solid lines indicate
predictions of the present model, and symbols represent experimental values.

Experimehts using a nozzle held oblique to the surface such that the nozzle centerline
was at an angle of 45° to the surface, were also performed. The nozzle stand-off-distance
was set to 20 mm along the nozzle centerline resulting in a vertical nozzle exit plane to
targét surface distance of 14.14 mm. The abrasive was launched at a mass flow rate of 2.83
~g/min. The simulation run was conducted using the input parameters given in Table 4.4.
Figure 4.12 demonstrates the non axi-symmetric three-dimensional view of the predicted
erosion profile after 25 s. Figure 4.13 shows the comparison between the predicted results
and measured results; the simulation results are in very good agreement With experimental

ones. When the nozzle is inclined, the abrasive jet is spread out over a larger surface area

, 73
than when it is held normal to the surface. As expected, the run conducted with a nozzle

held oblique gives shallower holes which have a wider opening. This can be seen from Figure
4.14 which compares the cross-sections of glass holes created by keeping the nozzle oblique

with the cross-sections created by a nozzle with the centerline perpendicular to the surface.

00159005 ED25-015
B-0455085° B-055-045
W0.75-0.65

Figure 4.12: The predicted erosion profile of the borosilicate glass hole created by a nozzle
held at 45 degrees to the surface, after 25 s, on a surface of size 7.504 x 11.2 mm? using the
parameters given in Table 4.4. '

74

input | value input | value

Unoz | 0.0 mm/s |7, 0.38 mm
f | 1.462 x 10° | o 45°

d 14.14 mm | S 15

Tp 25 pm Pp 4000 kg/m?
Vinae | 162 m/s ps | 2200 kg/m?
K 1.43 D 6.3 x 1076
Epp 1 €ps 0.5 '

f 0.0 L 14 pum

Table 4.4: The inputs to the simulation for the case of glass holes at low flux using oblique
stationary nozzle.

~4,00E+00 43;005*450 -2.00E¥00 -1.00E+D0 B:00E+00 1.00E+00" 2/0DE+00 3.00E+00 4.00E+00
0:00E+00 v ;

6, 00802
A4,.Q0E-01
A50E:0%
2.00E-01

-2:50E-01

Hole Depth {mm)

~3.00E-0%

-3:50E-01

-4,00B-01

«4.50E-01

Hole Diameter (mm)

& Exp.ss A Exp.oiOs o Exp.15s o Exp.20s x Exp.25s

| s B8 st 108 sssmsese 158 wsee 208 s I

Figure 4.13: Comparison of predicted hole cross sections against the measured data on
borosilicate glass at low flux. Nozzle held at 45 degrees to the surface, and the model
inputs are from Table 4.4. Solid lines indicate predictions of the present model, and symbols
represent experimental values. '

75

Hole Depth {mih)

Hole Diameter (mm)

w5 wnormal e 158 « iOrMal s 58 oML

~o—355 - obigue 15 - ObliGus —g— 255~ obliquie

Figure 4.14: Comparison of predicted hole cross sections with the nozzle centerline normal
to the surface and the ones using the nozzle held oblique with the 1nputs from Tables 4.3
and 4.4, respectively.

Intermediate and High Flux

The high incident particle flux cases represent a very important test for the present simulation
because it can account for inter—particie collisions, which are expected to be significant only
at high flux. High fluxes are also expected to raise the mass loading in the jet, and thus lower
the particle velocity [32]. Unfortunately, it was not possible to ‘measure the particle velocity
at sﬁch high fluxes using presently available equipment. Thus, the input parameter, V4.,
the velocity on the nozzle centerline, was estimated by comparing the predicted cross-sections

using different values of Vinaz-

76

To create glass holes at intermediate flux, the experimental mass flow rate was increased
to 9.31 g/min. The nozzle was placed at 20 mm stand—dff distance with the centerline
-Iperpendicular to the surface. In this case, V4, was taken as 140 m/s. Inputs to the model
used to simulate this case are given in Table 45 Figure 4.16 demonstrates that the choice
of the 140 m/s max velocity gave results which were in good agreement with experimentally
measured profiles. The model predicted that approximately 85% of the particles arrived to
the surface without undergoing-an inter-particle collision. As expeéted, this Value is less
than that seen for the low flux case (i.e 95%), indicating a moderate particle interference
effect.

Compared to the input pafameters of the glass hole at low flux given in Table 4.3, in this
case, the f, increased by a factor of 3.169 and V,,,, decreased by a factor of 1.157. Comparing
the depth of the predicted profiles in Figure 4.16 with Figure 4.11 indicates that increase in
dep‘th of the profiles does not follow the same proportion (i.e. for example comparing the
hole depth after 15 s, the depth increased by a factor of 2.33 rather than %gg (= 2.738).
This non proportionality is caused by the changes in interference effects due to the increase

.in launch frequency.

input | value input | value

| Yoz | 0.0 mm/s |r, 0.38 mm
In 4.745 x 10° | o 0
d 20 mm I5; 15
Tp 25 pum Pp 4000 kg/m?
Vinaz | 140 m/s s 2200 kg/m3
K |143 D |63x10°
epp 1 €ps 0.5
f 0.0 L 14 pm

Table 4.5: The inputs to the simulation for the case of glass holes at intermediate flux.

Hole Depth (mm)

" Hole Diameter (mm)

e XD, B - EXp 08 B EXp, 15s.

s e 05 st B

Figure 4.15: Comparison of predicted cross sections of holes against the measured data for a
borosilicate glass target at intermediate flux using the inputs given in Table 4.5. Solid lines
indicate predictions of the present model, and symbols represent experimental values.

To create glass ho]es at a very high flux, the mass flow rate was increased to 16.7 g/min.
The nozzle was placed at 20 mm stand-off distance with the centerline perpendicular to the
surface. To model this ‘case, Vimaz Was chosen as 120 m/s, a linear interpolation based on the
velocities for the low (162 m/s, 2.8 g/min) and intermediate fluxes (140 m/s, 9.31 g/min).
The other inputs were set to the values given in Table 4.6. The comparison between the
cross-sections of the predicted and measured erosion pfoﬁles can bé seen from Figure 4.16
which is satisfactory, but not as good as the results observed for the lower fluxes.

The model predicted that approximately 77% of the particles arrived at the surface

without undergoing an inter-particle collision. As expected, this value is more than that

: ‘ 78
seen for the intermediate and low flux cases, indicating a significant interference effect.

It is likely that the discrepancy between experiment and simulation is due to the esti-
mate of particle velocity used. To understand this further, ‘the particle velocity needs to be
measured properly and used as an input in the model.

_ Coﬁlparing the depth of the predicted proﬁles in Figure 4.16 with the ones in Figure 4.11
indicates that the depth of the profile in the high flux case did ﬂot change with the same
proportion that f,, increased and Vinax decreased. This implies that increases in the launch
frequency produce different interference patterns. In the cases with higher launch frequency,

a higher proportion of incoming particles are blocked by the rebounding particles.

input | value input | value

Unoz | 0.0 mm/s |7, 0.38 mm

£, 8414 %108 | @ 0

d 20 mm I54 15

Tp 25 um Pp 4000 kg/m?
| Vinae | 120 m/s Ps -2200 kg/m?>-

‘K 1.43 ' D 6.3 x 1076
| enp 1 €ps 0.5

f 0.0 L 13 um

Table 4.6: The inputs to the simulation for the case of glass holes at high flux.

Hole Depth (mm)’

Hole Diameter {(mm)

| —o—Exp.ds —a—Exp.2s —B-Exp3s —eBpubs —e—Expi0s

M15 o) s 3 . 1) po—

Figure 4.16: Comparison of predicted cross sections of holes against the measured data for
the borosilicate glass target at high flux using the inputs given in Table 4.6. Solid lines
indicate predictions of the present model, and symbols represent experimental values.

4.4.2 PMMA surfaces

For the PMMA targets, the coefficient of restitution for inter—particlé collisions, ep,, was also
chosen as 1 since this has an extremely small effect on the predicted results (Section 4.5.3).
The coefficient of restitution for particle-surface collisions, e,s, was-chosen as 0.5. Because
surface friction has little effect on interference [22], it was taken as 0. To create channels in
PMMA targets, the same experimental setup that was used with the glass channels (Section
4.3.1) was used, and the nozzle was scanned with the constant velocity of 0.25 min/s for
" seven passes over the surface. The nozzle was placed at 20 mm distance to the PMMA plate

with a centerline perpendicular to the target. Particles were launched with a mass flow rate

, 80
of 2.83 g/min. The inputs to the simulation for the case of the PMMA channels can be seen

from Table 4.7. The simulation was run for 196 seconds for seven passes of length 7 mm.
Figure 4.17 shows thé comparison of the measured and predicted cross-sections which are in
a good agreement. |

Comparing to fhe glass channel at low flux, the erosion rate for the PMMA material is
éigniﬁcantly slower. In the PMMA target, machining each pass took 28 s, while for glass
channels at low flux , having a similar depth, each pass took 7 s. As expected, since a
plastically deformed surface layer is formed later in ductile erosive systems, the material

-removal rate is slower than of the brittle erosive systems.

input | value input | value
Unoz | 0.25 mm/s | m, 0.38 mm
7. | 1426%x108 |0 |0
d 20 mm 15} 15
Tp 25 um Pp 4000 kg/m?
Vinaz | 162 m/s s 1190 kg/m?
2 |\ D 5.731 x 1078
e |1 eps |05
0.0 Hv 0.25 GPa
1 1.27 o 15.5
L 14 um

Table 4.7: The inputs to the simulation for the case of PMMA channels at low flux.

81

Hole Depth (mm)

Hole Radius (mm)

~6—Exp. passt —#%—EXp. pass3 b~ Exp, 5EsS5 =&—Exp. pass?

i DASEE s DASES : s GOSEE: s NASST

Figure 4.17: Comparison of predicted cross sections of PMMA channels against the measured
data at low flux using the inputs given in Table 4.7. Solid lines indicate predictions of the
present model, and symbols represent experimental values.

The Table 4.8 shows the percentages of errors associated with each case. The data for
this table were measured for the deepest points in channels and holes. Usually the largest
errors between predicted cross-sections and experimentally measured data occur at these

points.

82

target | Unos flux o | error

glass 1 mm/s low 90° | 5.06%
glass 0 low 90° | 7.33%
glass |0 - | low 45° | 3.2%
glass 0o intermediate | 90° | 9.41%
glass 0 high 90° | 9.14%
PMMA | 0.25 mm/s | low 90° | 3.65%

Table 4.8: The errors associated with each case.

4.5 Parametric Study

This section presents the effects of different parameters on the depth and shape of predicted
erosion profiles, using the present model for glass holes at an intermediate flux. Simula-
tion runs were conducted by varying the value of one parameter and holding all the others

parameters at the values from Table 4.5.

4.5.1 Friction Coefficient

Figure 4.18 compares the predicted cross-sections for different values of friction coefficient,
f =0and f = 0.5. There is little difference in the volume of removed material as f is -
- varied; slightly more cells are removed for the frictionless case. In a real applicaﬁon, an
increase in the friction results in more energy being wasted transforming the incident linear
velocity into a rotational one (for cases where the pafticles stick), rather than damaging.
In the present case, however, the model only considers the energy loss for particle rebound
kinematics purposes. When a pénrticle impacts a surface with friction, it loses some of its
energy and the tangential velocity components reduce. This slow moving rebounding part;icle
(i.e. slower than if there was no friction) has a greater chance of beirig hit by an incoming
particle than if there were no friction. Moreover, if it is hit by an incoming particle and does
strike the surface again, it will be at a lower velocity than if there were no friction. Since

particles that arrive at the surface with a particular initial velocity do the same amount of

83
damage regardless of friction, the difference between the results is likely mostly caused by

the loss in energy due to incident particles hitting the slow moving rebounding particles.

Hole Depth (mm)

Hole Diamete{(mm)

B8 00 i 108-TE00 —6—1B8- =00’

B SFEOE e {08 fE05 e (B8 FE05

Figure 4.18: The comparison of predicted cross-sections using f = 0 and f = 0.5, with all
other parameters at the values given in Table 4.5.

4.5.2 Coefficient of Restitution for Particle-surface Collisions

The kinetic energy lost by a particle impacting the surface can be expressed in terms of
eps- Lhe smaller the value of ey, the lower will be the rebounding velocities of the particles.
Similar to the case of an increase in friction, a decreése in eps will cause a lower incident energy
for particles that hit the surface more than once. The slower mOVing. particles rebounding

from the surface also stay for a longer time in the path of the incoming particles, thus

, 84
increasing the frequency of inter-particle collisions, and increasing the probability that the

rebounding particles hit the surface multiple times. Figures 4.19 and 4.20 compare the total
numbef of inter-particle collisions and particle-surface collisions for simulation runs with
eps = 0.2 and ey, = 1, respectively; the system with lower e, experienced more inter-particle
and particle-surface collisions, as expecteci. The corresponding predicted cross-sections are
compared in Figure 4.21. A decrease in ey, resulted in more cells being removed from the
target substrate. This is due to the increase in the number of particles striking the surface

multiple times.

85

12,000,000

16,000,000

8,000,000

6,000,000

4,000,000 -

Numiber of Infer-Particle Collisions.

2,060,000

] L2 4 6 ‘ g 10 12 14 16
Time {s)

Figure 4.19: Comparison of the number of inter-particle collisions for ey, = 0.2 and e,; = 1,
- with all other parameters at the values given in Table 4.5. Triangles: results for a run
conducted with e,; = 0.2; squares: results for a run conducted with e,s =1

120,000,008

“100,000;000
80,000,000 -
60,000,000

40,000,000

Number.of Patticle-Surface Collisions.

20,000,600,

0 3 4 [8 i0 12 14 5
Time (s) -

Figure 4.20: Comparison of the number of particle-surface collisions for eps = 0.2 and e, = 1,
with all other parameters at the values given in Table 4.5. Triangles: results for a run
conducted with e,; = 0.2; squares: results for a run conducted with ey = 1

4 43] “3 g 1 2 3 4

Hole Depth (mm)

Hole Diameter {mm)

s B BRSO w08 op8a02 e 1BE - 0pE=2 0

e BSLBpsET e 108 - BPSET . —B-158 - 8ps=2.0.

F1gure 4.21: Comparison of predicted cross—sectlons using eps = 0.5 and ep; = 0, with all
‘other parameters at the values given in Table 4.5.

'4.5.3 Coefficient of Restitution for Inter-particle Collisions

Figures 4.22 and 4.23 lcompare the total number of inter-particle collisions and particle-
surface collisions for simulation runs with ey, = 0.2 and e, = 1, respectively. In the run
conducted with ey, = 0.2, particles rebounding from inter-particle collisions lose some of
their kinetic energy. This results in a decrease in their velocity, and it thus takes more
time for them to leave the system. Similar to what was found previously for varying f and
eps, these slower particles tend to undergo more inter-particle collisions, which can result
in more particle-surface collisions. However, the differences are extremely small, and this is

reflected in Figure 4.24, which compares the predicted cross-sections for the two values of

87
epp- As expected, the depths are essentially independent of e, since the number of sulfface

- collisions is not greatly changed (Figure 4.23).
12,000,000
16,000,000
8,000,000
6,000,000 -

4,000,000

Numbsr of Inter-Particie-Gollisioris.

2,000,000

bs! 2 3 6 8 L+ o2 14 16
' Time(s) '

Figure 4.22: Comparison of the number of inter-particle collisions for ey, = 0.2 and ey, = 1,
with all other parameters at the values given in Table 4.5. Triangles: results for a run
conducted with ey, = 0.2; squares: results for a run conducted with e, =1

100,000,600
ab,ooo,auo
80,000,000
76,000,000
60,000,600
50,000,000
40,000,000

30,000,600

Numbeér of Parficle-Surface Collisions

20,000,000

10,000,000

o

o 3 S & 8 10 12 14 1
Time (s)

Figure 4.23: Comparison of the number of particle-surface collisions for epp = 0.2 and ey, = 1,
with all other parameters at the values given in Table 4.5. Triangles: results for a run
conducted with e, = 0.2; squares: results for a run conducted with ey, =1

Hole Depth (i)

Hole Diameter (mm)

O Bswgpp=1 - & 10s~epp=t o 15s-epp=1 .

o 535 @PPEO2 {05 @PPEQ.R s 1535 - 0pp=0.2

Figure 4.24: Comparison of predicted cross-sections using ey, = 1 and ey, = 0.2, with all
other parameters at the values given in Table 4.5. ’ :

4.6 Limitations

A number of factors may affect the reliability of the simulated results. These are briefly

outlined as follows:

1. The model ignores fluid effects. Ignoring the fluid effects implies that the particles
are moving on straight paths. However, in reality, the gas flow can affect the particle
rebound velocity [4]. To avoid such effects, the stand-off-distance should be large

enough to have a negligible effect of gas on rebound velocities. Appropriate guidelines

can be found in Ref. [4]. »
2. The model ignores gravitational effects. Gravity causes the slow moving particles to
deviate from the linear trajectories more than the faster moving particles. The €rror
agssociated with this assumption increases for the cases that incident stream velocity is
low or e,s and e, are close to zero and a large amount of energy loss occurs. However,
since the particle velocities in realistic abrasive jets are so high, and the standoff

distances so small, it is unlikely that gravity has a significant effect on the results.

3. The model assumes that particles are spherical. Since real powders are more angu-’
lar, the assumption of spherical particles affects the particle collision kinematics. Two
typical behaviors were observéd experimentally by Hutchings [33] during the impact
of square particles. The same behaviors were observed during the impact of dialhond—
shape particles in the experiments performéd by Dhar et al. [34]. Particles either
rotate forward or backward, and in most cases mukltiplye impacts were observed. Dhar
et al. [34] have reported that forward rotating particles rebounds with a very high
rotational velocity and significant amount of the linear kinetic energy of these particles
is transferred to the rotational energy. They also reported that in the case of backward
rotating particles, increase in rebound rotational energy is significantly lower. This
assumption significantly simplified the predictioﬁ of future behavior of particles. How-
ever, it resulted in overestimating the linear kinetic energy of particles due to collisions
‘affects the rebounding characteristic and thus the interference patterns. The error

associated with this assumption is reduced for the case of more rounded powders.

4. The model assumes 1o friction for inter-particle collisions. Including friction in inter-
particle collisions is at the expense of solving fifteen equations for each collision [21], an
unacceptable computational penalty. Certainly, the fundamental assumption that the
angular particles behave as spheres most likely introduces more error than the omission

of friction in inter—partivcle collisions.

5. In the high flux case, launching a few particles simultaneously shows the similar in-

90
terference effects with launching one particle at a time at the same overall flux. But

if many particles are launched simultaneously, they travel in bursts and have different

associated interference patterns. [22]

. The model neglects contact mechanics. It is assumed that particles are not deformed
during collisions and time duration of impacts equals zero. This assumption reduces the
probability of simultaneous collisions of more than two particles, which is an extremely

complicated problem.

Chapter 5

Conclusions and Recommendations

5.1 Summary

In the present sfudy, a computer simulation was developed having a capability of predicting
the shape and size of erosion profiles in the abrasive jet niachining process. The model allows
for the variation of a wide range of material and process parameters and, for the first time,
allows particle to particle collisions to occur. To the author’s knowledge, no such model
exists in the literature.

The implementation of the computer model is based on the event-driven approach in
which the system advances from event to event, and after handling each event, the next
upcoming event is predicted. The information of the predicted events are saved in an event
queue which is ordered with respect to the event occurrence times. To speed up the particle-
particle collision detection, the space holding the particles was divided into small parts,
and inter—particlé collisions were detected between particles belonging to the same area. To
mode] the surface advancement, the cellular algorithm was used, which is based on dividing
the target surface into very small cells. The cellular octree data structure which was defined
based. on’ the octree data structure was used to model the target surface. To predict the
next particle;surface collision, particlesv were tested againsf the nodes of the cellular octree,
which were cubes presenting the volume of the substrate, in a top-down manner. To handle
inter-particle collisions and particle-surface collisions, the model uses a simplified coefficient

of restitution model.

91

92
Since the model is able to track individual particles and their collisions until they leave the

system, interference effects are included in the model. The model is also capable of examining
the effects of material and process pararheters on the shape and size of the erosion profile,
and interference patterns. ‘

The predictions of the present model were in quite good agreement with a previously
developed computer simulation for non eroding surfaces, which is capable of predicting
inter‘ference—effects. The predicted eroded profiles as a function of time, for different 1evels'
of flux and for two different erosive systems were compared with experimentally measured
results. The good agreement with the measured data demonstrates the promise of the model

in predicting the developing erosion profile for abrasive jet micromachining operations.

5.2 Future Work

The present study only considered the AIM process on unmasked targets. In many applica-
tions, masked surfaces are exposed to the stream df particleé. The present model could be
modified in the future so that the shape and depth of the erosion profile for targetsvcovered
locally by an erosion resistant mask, can be predicted. This would allow, for the first time,
a prediction of abrasive jet micromachined features that includes particle to particle and
particle to mask interactions. |

Tt should be noted that in most of the cases masks cannot provide prefect resistance
against the erosion , and will themselves erode. It would thus be desirable to use the presently
developed algorithms to also study an éroding mask. This is particularly interesting, since the
edges of the mask become rounded as they erode, and this will likely change the rebounding
characteristics of particles impacting the edges. This interaction between mask edge erosion
and resulting eroded’ target material has never before been studied, and the present model

provides the basic algorithms needed to construct such a complete model.

Appendix A
Comput\er Simulation Source Code

This appendix presents the implementations of the simulation classes in the Java program-

ming language.

PlaneJ ava: The Plane class provides functionality to deal with planar surfaces.

package Objects3D;

public class Plane { .

VAT

x The array used to store the coefficients of the plane equation.
private double[]| equation;
* A point on the plane.
*/

private Vector3D origin;
VET: .

* Normal to the plane.
*/

private Vector3D normal;
VAT

* Creates a new instance of Plane

*

* @param origin a point on the plane.
* @param mnormal a normal to the plane.

public Plane(Vector3D origin, Vector3D normal)
{
this.normal = new Vector3D(normal);
this.origin = origin;
equation = new double[4];

getEquation () [0]=normal.getX () ;

93

getEquation () [l]=normal.getY () ;
getEquation () [2]=normal.getZ () ;
) [3]=-

getEquation (VectorOperation.dotProduct (normal, origin));
JHx) .
* Checks if the plane is front facing to the given wector.
*
* @param v a vector.
*

* @return true if the plane is front facing to the given wector; false otherwise.
*/
‘public boolean isFrontFacingTo(Vector3D v)

{ .
double dot = VectorOperation.dotProduct(getNormal(), v);
return (dot<=0);

1.
VETS

* Calculates the signed distance of the given point from this plane.
% | -
public double signedDistanceTo(Vector3D point)

{
}

public double[] getEquation() {
return equation;
}

public Vector3D getOrigin () {
return origin;
}

public Vector3D getNormal() {
return normal;
}

return(VectorOperation.dotProduct(point, getNormal())+getEquation () [3]);

)

94

. 95
Vect0r3D.J ava: The Vector3D class provides functionality for three-dimentional

vector quantities.

package Objects3D;

public class Vector3D {

VAT
* The first coordinate of the wvector.
*/
public double X;
VAT
* The second coordinate of the wvector.
*/
public double Y;
VAT
* The third coordinate of the wvector.
*/
public double Z;
Ve
* Creates a new instance of Point
sk
/

public Vector3D () {

}
Sy

Creates a new instance of Point and sets its coordinate to the given values.

-
%
* @param z the wvalue of the first coordinate.
* @param y the wvalue of the second coordinate.
* @param z the wvalue of the third coordinate.
*/
public Vector3D (double x, double y, double z) {
this.setX (x);
this.setY (y);
this.setZ(z);
. return;
¥
/o
* Creates a new instance of Point and sets its coordinate to the coordinate values of
the given wvector. ' :
*
* @param C a vector.
*/
public Vector3D (Vector3D C) {
this.setX (C.X);
this.setY (C.Y);
this.setZ (C.Z);
return;

}w—’

ES
Sets the coordinates of this wector to the given wvalues.

@param z the value of the z—coordinate.
@param y the wvalue of the y—coordinate.
@param z the wvalue of the z—coordinate.

¥ ¥ ¥ ¥ ¥

public void setPoint (double x, double y, double z) {
this.setX (x);
this.setY(y);
this.setZ(z);
return;

}
ViE

* Sets the coordinates of this wvector to the coordinates values of the given wvector.
*
*. @Qparam v a vector
«/
public void setPoint(Vector3D v) {
this.setX (v.getX ());
this.setY (v.getY ());
this.setZ(v.getZ());
return;

}
VAT

* Adds the coordinates of this wector with the coordinates of the given wvector.
*
* @param v a vector
public void addWith(Vector3D v) {
this . X 4= v.getX () ;
this .Y 4= v.getY () ;
this.Z 4= v.getZ ();

VEE
* Adds the coordinates of this wvector with the given wvalue.
*/
public void addWith(double c) {
this . X 4= c;
this.Y 4= c¢;
this.Z 4= c;
}
VEE: .
* Multiplies the coordinates of this vector by the given wvalue.
*/
public void multiplyBy (double ¢) {
this . X *= c;
this.Y %= c¢;
this.Z *= c¢;
}
Ve .
* Divides the coordinates of this wvector by the given wvalue.
*/
public void divideBy(double c) {
this . X /= c¢;
this.Y /= c;
this . Z /= c;
}
Jx®
* Calculates the mnorm (length) of this vector.
*
* @return the morm of this wvector.
*

public double getNorm () {

96

return (Math. sqrt (X#«X+Y*Y+Z*Z)) ;
}

VEE
x Calculates the square norm of this wector.
%
* @return the square norm of this vector.
public double getSquareNorm () {

return (XsX4Y«Y4Z%Z) ;
} .

VeSS

%+ Normalizes this wvector to obtain .a unit vector.

* @return this vector which has been mnormilized; o vector in the same direction but
with length 1.

*/

public Vector3D normalize () {
double norm = this.getNorm();
this.setPoint (this.X/norm, this.Y/norm, this.Z/norm);
return this; A

}
Vil

* Moves this wector for the given time interval with the given wvelocity.
%
* @param V the wvelocity wvector.
x @param time the time interval.
*/
public void movePoint(Vector3D V, double time){ .
this.setPoint (V.Xstime+this.X, V.Y*xtime+this.Y, V.Zxtime+this.Z);
}

VeSS

* Checks if the content of this wvector is equal to the content of the given wvector.
*

% @param v a vector

*

* @return true if the content of this vector is equal to the content of the given

vector; false otherwise.
%
public boolean isEqualTo(Vector3D v){
return((this.X==v.getX()) && (this . Y=v.getY ()) && (this.Z==v.getZ()));

VEES
* Returns the z—coordinate of this wvector.
*
public double getX () {
return X;
}

VAT
* Sets the z—coordinate of this vector to the given wvalue.
*/
public void setX(double X) {
this . X = X;
Y
/x% .
* Returns the y—coordinate of this vector.
*/

public double getY () {

return Y;

¥
VAT A
* Sets the y—coordinate of this wvector to the given wvalue.
public void setY (double Y) {
this.Y =Y,
}
VAT
* Returns the z—coordinate of this wector.
*/
public double getZ () {
return 7Z;

}

VeSS .
* Sets the z—coordinate of this vector to the given wvalue.
public void setZ (double Z) {

this.Z = Z;
}

Ves ;
* Returns a string representation of this wvector.
*
* @return a string representation of this wvector.
*
public String toString () {

return (2 [”+X+’7 s u)7+Y+17 s -—-”+Z+”] ”) ;

98

|
!
!
|
|

) . . . 99
VectorOperat 1011.Java: The VectorOperation class provides Operations on

vector quantities.

package O‘bjectSBD;

import OcTreeADT. CellularOcTree;
import. java.io.FileOutputStream;
import java.io.IlOException;

import » mySimulation . SimulationMaﬁager ;

public class VectorOperation {

VEES

x Creates a vector which is equal to the sum of the two given vectors.

X

% @param vl a wvector.
* @param v2 a vector.
*
*

@return a vector which is equal to the sum of the two given wvectors.
*/
public static Vector3D add(Vector3D vl, Vector3D v2){
return(new Vector3D (vl.getX ()4+v2.getX (), vl.getY ()+v2.getY (), vl.getZ()+v2.getZ()))

-

VAT _ -
% Creates a vector which is equal to the sum of the three given wvectors.

*

* @param vl a vector.

x @param v2 a vector.

* @param v3 a vector.

*

* @return a vector which is equal to the sum of the three given wvectors.

*/
public static Vector3D add(Vector3D vl, Vector3D v2, Vector3D v3){
double x = vl.getX () + v2.getX () + v3.getX();
double y = vl.getY () + v2.getY () + v3.getY ();
double z = vl.getZ () + v2.getZ () + v3.getZ();
return(new Vector3D(x,y,z));

-

VAT

* Creates a vector which is equal to the subtraction of the two given wectors.
*

* @param vl a vector.

* @param v2 a vector.

*

* @return a vector which is equal to the subtraction of the two given wvectors.
*/

public static Vector3D subtract(Vector3D vl, Vector3D v2){
return{new Vector3D(vl.getX ()—v2.getX (), vl.getY()—v2.getY (), vl.getZ()—v2.getZ()))

)

}
[k

x Creates a vector which is equal to the given wvector added by the given walue.
%

* @param v a vector.

% @param c¢ a real value.
*
* @return a vector which is equal to the given vector added by the given wvalue.
*/
public static Vector3D add(Vector3D v, double c){
return (new Vector3D (v.getX ()+c, v.getY()+c, v.getZ()+c));
} .

VAL

Creates a vector which is equal to the multiplication of the two given wvectors.

*

*

* @param vl a vector.
* @param v2 a vector.
.

*

@return a vector which is equal to the multiplication of the two given wvectors.

public static Vector3D multiply (Vector3D v1, Vector3D v2){

return(new Vector3D(vl.getX () * v2.getX (), .vl.getY () = v2.getY (), vl.getZ() * v2.

getZ()));
}

VAT

*

*

*

* @param v a vector.

* @param ¢ a real value.
*
*

@return a vector which is equal to the given wvector multiplied by the given wvalue.

*/
public static Vector3D multiply (Vector3D v, double c¢){
return(new Vector3D.(v.getX ()*c, v.getY ()=c, v.getZ()*c));

VT

Creates a vector which is eqﬂal to the given vector divided by the given wvalue.

*

*

*

% @param v a vector.

% @param c¢ a Teal value.
*
*

@return a vector which is equal to the given wvector divided by the given wvalue.
public static Vector3D divide(Vector3D v, double c){

return(new Vector3D (v.getX ()/c, v.getY()/c, v.getZ()/c));
} .

VAT

Caculates the dot product of the two given wvectors.

%
*k
* @param vl a vector.
* @param v2 a vector.
*
*

@return the dot product of the two given wvectors.

+/
public static double dotProduct(Vector3D vl, Vector3D v2){

return (vl.getX () *v2.getX () + vl.getY ()xv2.getY () + vl.getZ () +v2.getZ());
} .

VeSS

Caculates the cross product of the two given wvectors.

*

*

*

* @param vl a vector.
* @param v2 a vector.
%
*

@return the cross product of the two given wvectors.

Creates a vector which is equal to the given wector multiplied by the given value.

100

*/
public static Vector3D crossProduct(Vector3D .vl, Vector3D v2){
return(new Vector3D((vl.getY ()xv2.getZ())—(vl.getZ ()*v2.getY ()),
(vli.getZ ()*v2.getX ())—(vl.getX ()xv2.getZ()),
(vli.getX ()*v2.getY ())—(vl.getY ()*v2.getX())));

}
JEx

* Creates a vector which is equal to the normalized vector of the given wvector.
*
* @param v a vector.
* @return a vector which is equal to the mnormalized vector of the given wvector.
*/
public static Vector3D normalize(Vector3D v){
double size = v.getNorm() ;
return(new Vector3D(v.getX ()/size, v.getY()/size, v.getZ()/size));
} E

VAR

* Prints an error message.

* .)

% @param S1 a string representing the error.

* @param S2 o string representing the place of the error.

«/

public static void errMassage(String S1, String S2)

{
System.out.println
System.out.println
System.out ..println
System.out . println

7\ K0 sk o s s o ek o ok ok ok ok ok ok ook ok ok ok sk ok ok ok o ok ok sk R Rk ok R R R R R R R R R Rk kR kR kR T)
)

?Error.ocurred.inside.”+S2);

S1); _

Vo ok R R KK KRR K K KR R R K KKK K R R kSRR K KR K KRR KKK KRRk ok kkkkkkx \ DT)

N N N~

}
VAT

* Prints a critical error.message.

. D

* @param S1 a string representing the error.

* @param S2 a string representing the place of the error.

public static void errMassageExit(String S1, String S2)

{ .
System . out . println (7 \msskssoksoksk ok oxnknk Critical Lerror skss s sonsarkskkssk s xx”) ;
System.out.println (" Error_.ocurred.inside.”+S2);
System .out.println (S1);
System.out. println (” Exiting._from_the_Program”);
System.out.println(”**\n”);

(7
(7

101

. : 102
Cell'ularOcTree.Java: CellularOcTree is defined based on the region octree,

and it is used to model the substrate using the top-down approach.

package OcTreeADT;
import Objects3D . Vector3D;
import Objects3D . VectorOperation;
import com.sun.org.apache.xml. internal. utils. SystemIDResolx)er ;
import mySimulation. Particle; import SystemEnvironment. Cell;
import SystemEvents. EventPSCollision . *;
import SystemEvents. EventSphereCubeCollision. CollisionPacket ;-
import SystemEvents.x;
import mySimulation.SimulationManager;
import java.util .x*;
import javax.swing.x*;
import OcTreeADT . OctNode. Type;
public class CellularOcTree {
Vir:
* The direction of the meighboring cells with respect to the cell.
* <p>
* L: left, R: right, D: Down, U: Up, B: Back, F: Front
. ’

public static enum Dif {L,R,D,U,B,F,LD,LU,LB,LF,RD,RU,RB,RF,DB,DF,UB, UF,LDB, LDF,LUB, LUF
,RDB,RDF,RUB,RUF, none}

VAT)

* The density of the target surface.

*/

private double surfaceDensity;

VAT

* The firction coefficient of the target surface.

*/

private double friction;

% An ezperimentally measured constant to calculate erosion rate.
private double D;

= |

* An ezperimentally measured constant to calculate erosian rate.
*/

private double K;

VET:

* The variable determining the type of erosive system. It is set to true for brittle
erosivr systems
* and set to false for ductile erosive systems.

103
*/

private boolean brittle;

Vet .

* A ezperimentally determined constant used for dutile erosive syszems to calculate
the volume of the material removed from the substrate.

*/

private double nl;

/i x

* A experimentally determined constant used for dutile erosive systems to calculate
the volume of the material removed from the substrate.

*/

private double n2;

VEE

* The hardness of the target material used in the case of dutile erosive systems.
=/

private double Hv;

[k

* The depth of the substrate material.
*/

private double substrateDepth;

VET
% The edge of the cube representing the substrate.
*/
protected double worldSize;
VETS .
%+ The edge of the surface cells
*/
private static double cellSlze
VAT
* The half edge of the surface cells.
*/
. private statlc double minHalfSize;
VEE:
* The value used to determins the surface cells.
ES
4
public static double testCELL;
VAT
* The depth of the cellular octree.
long totalDepth = O0;
VAT
* The root of the cellular ociree.
*/
private OctNode ocRoot;
/**

N
Creates o new instance of CellularOcTree.

@param worldSize the edge of the cubic substrate.

@param envDepth the depth of. the environment.

@param surfaceDensity the density of the target material. -
@param friction the friction coefficient of the surface.
@param D a contant used to calculate the erosion rate.

* K Kk ¥ ¥ ¥ K

true for the case of brittle

104

erosive systems and
systems .

constant used for dutile erosive systems to
removed from the substrate.

constant used for dutile erosive systems to
removed from the substrate.

@param Hv the hardness of the target material used in the case of dutile erosive

x* @param K a contant used to calculate the erosion rate.
* @param brititle a flag which is
false in the case of ductile erosive
* @param- nl an ezperimentally determined
calculate the volume of the material
% @param n2 an ezperimentally determined
calculate the wolume of the material
*
systems.
* @param substrateDepth
#/

public CellularOcTree(double worldSize,

double envDepth, double surfaceDensity, double
friction, double D, double K,
boolean brittle, double nl, double n2, double Hv, double substrateDepth)

this.worldSize = worldSize;

this. minHalfSize = this.cellSize /2.0;

this.testCELL = getMinHalfSize () + (getMinHalfSize()/2.0);.
double worldHalfSize = worldSize/2.0;

ocRoot = new OctNode(this, null, worldHalfSize, worldHalfSize,
worldHalfSize+envDepth, Type.BLACK, -1);
this.surfaceDensity = surfaceDensity;
this. friction = friction;
this.D = D;
this . K = K;
this. brittle = brittle;
this.nl = nl;
this.n2 = n2;
this .Hv = Hv;
this.substrateDepth = substrateDepth;
}
VAT
x An auziliary variable used by the SurfaceAdvancement method .
*/
static int methodCounter;
[_ _
% Decomposes the substrate to obtain the target cell and models the surface

advancement.

*

* @param particle the particle impacting the . surface.

* @param target the cell collided by the particle.

x @return true if successful ps—collision occurs and false if unsuccessful ps—
collision occurs. i '

*/ .

public boolean. SurfaceAdvancement(Particle particle,OctNode target) {
methodCounter++; .
int i;
OctNode targetCell;
Vector3D normal = null;

Vector3D contactPoint

= particle.getEvent () .getPSCollision () . getContactPoint () ;

if (target=—null)
targetCell

else
targetCell

particle.getEvent (). getPSCollision () . getTargetBox () ;

target ;

if(targetCell.getHalfSize ()>this.testCELL && *!targetCell.containsPoint (contactPoint

))

targetCéll:this .ocRoot;

if (targetCell.getOcType()=—Type . WHITE)
return false;

105

if (targetCell.getOcType ()==Type.UNDEFINED)
Objects3D . VectorOperation . errMassageExit (” Cell.status.in.undefined”,” Octree/
insertWhiteBox ()”);

while(targetCell . getOcType ()=Type.GRAY || (targetCell.getOcType()=—Type.CELL &&
targetCell. getHalfSize ()>=this.testCELL)))
targetCell = targetCell.getOctantContainsPoint (contactPoint);

VAT
* When the loop stops the nodes are decomposed to the point that the cell
* 48 reached.

*/
if (targetCell.getOcType()!=Type.WHITE)

while(targetCell . getHalfSize ()>=this.test CELL)

{

if(targetCell.getOcType ()==Type.BLACK)

// that is the first time that cell is hitted by a particle so its
5 status is changed to CELL .
targetCell.setOcType(Type.CELL) ;
for (i=0; i<8; i++)
{ .
if(targetCell . getChild () [i]!=null) :
Objects3D . VectorOperation. errMassageExit (" targetCell.getChild ()
[."+ 1 +”]!=null!_for.black.box:.\n"+ targetCell,
”OcTree/applyPSCollision ()”); .
targetCell.getChild () [i] = new OctNode(this, targetCell, i, Type.
BLACK) ; . ,

} .
targetCell = targetCell.getOctantContainsPoint (contactPoint);

} .

else
Objects3D . VectorOperation. errMassageExit (”at_this.point._.box_must_be.

) black t'!!” " Octree/insertWhiteBox ()”) ;
}

if (targetCell.getOcType ()==Type.BLACK || targetCell.getOcType()==Type.CELL)
EventPSCollision .setParticleTargetBox (targetCell);
else if(targetCell.getOcType()==Type. WHITE)

{
if (methodCounter==1)
if (fittingIntersectionPoint_WhiteBox (contactPoint,targetCell))
return(SurfaceAdvancement (particle,null));
else .
return false;
else if(methodCounter==2)
return false;
}
else

Objects3D . VectorOperation . errMassage (" The_cell ushould.not.be_gray !!!.” 7 OcTree/
insertWhiteBoxVersion2()”);

// merging the white cells
while(targetCell.parent . merging())
targetCell = targetCell. parent;

¥
Jkx
* This method is implemented to due the precisions of real numbers.
* It invoked when the collision point, P, is not contained in the area of the cell and
shifts the collision point.
*
* @param P the particle impacting the surface.
* @param cell the cell collided by the particle.
* @return true if the point has been shifted; false otherwise.

}
VAT

*

E R I

private boolean fittinglntersectionPoint_-WhiteBox (Vector3D P, OctNode cell) {

106

return true;

int u = 0;
boolean shifted = false;
if (Math.abs(P.getX () —(cell.getPosition().getX()—cell.getHalfSize ()))<=0.0000001)

P.setX (P.getX ()—this.getMinHalfSize ());
shifted = true;

else if(Math.abs(P.getX ()—(cell.getPosition () AgetX()—i-cell .getHalfSize ()))
<=0.0000001)

P.setX (P.getX ()4+this.getMinHalfSize ());
shifted = true; :

}
if (Math.abs(P.getY ()—(cell.getPosition () .getY ()—cell. getHaifSize ()))<=0.0000001)

P.setY (P.getY ()—this.getMinHalfSize ());
shifted = true;

else if(Math.abs(P.getY ()—(cell.getPosition().getY ()+cell.getHalfSize()))
<=0.0000001) :
{

P.setY (P.getY ()+this. getMinHalfSize ());
shifted = true;

if (P.getZ ()>=(SimulationManager . AJM_Environment . getDepth ()+this.getMinHalfSize ())
&&

Math.abs(P.getZ () —(cell . getPosition().getZ ()—cell.getHalfSize()))
<=0.0000001) ’

P.setZ(P.getZ ()—this.getMinHalfSize ());
shifted = true;

else if (P.getZ ()>=(SimulationManager . AJM_Environment. getDepth ()+this . getMinHalfSize
0) &&
Math . abs(P.getZ () —(cell . getPosition () .getZ()+cell.getHalfSize()))
<=0.0000001) :

P.setZ (P.getZ ()+this . getMinHalfSize ());
shifted = true;

}

return shifted;

Recieves a GRAY cube and detects the collision between the particle, P, and the cube

@param infoPack a storage used to save the information of detected ps—collision.
@param P the particle.
@param grayCube The mnode of the cellular tree with the GRAY status.

107
private void predicPSCollisionGRAYBox(CollisionPacket infoPack, Particle P, OctNode
grayCube) { :
CollisionPacket temp = new CollisionPacket (P);

// if the collision point is contained inside the substrate the method returns
if (isAcceptablePoint (infoPack.targetBox, infoPack.intersectionPoint))

return; :
else

infoPack.reset ();

if (grayCube. getOcType () |=Type.GRAY)
Objects3D . VectorOperation . errMassageExit (7 is.not_gray !!! .grayBox:.” + grayCube
,” OcTree/predicPSCollisionGRAYBox”) ;

for (int i=0; i<8; i++)
{
if (grayCube. getChild () [i]==null)
Objects3D . VectorOperation . errMassageExit (" child.is.nulllll———_grayBox:.” +
grayCube ,” OcTree/predicPSCollisionGRAYBox”) ;

else if(grayCube.getChild()[i].getOcType()==Type.BLACK || grayCube.getChild () [i
)]. getOcType ()=Type.CELL) :)

EventSphereCubeCollision . detectSphereCubeCollision (infoPack, grayCube.

' getChild () [1], P); :

else if(grayCube.getChild () [i].getOcType()==Type.GRAY)
{ .
temp.reset () ;

if (EventSphereCubeCollision. detectSphereCubeCollision (temp, grayCube.
getChild () [i], P)) :

this . predicPSCollisionGRAYBox (1v:emp!7 P, grayCube.getChild () [i]);
if (temp. foundCollision && temp.nearestTime<infoPack.nearestTime)
infoPack-. set (temp) ;

}
Virs

Moves the particle backward and invokes the predict_-PSCollision . method to
detect collision between the particle and target surface. -

*
*
*

B
* @param P the particle.
x @return false if any unusual situation occures; true otherwise.

public boolean predictPSCollision(Particle P)

{

double t = (0.5)*P.getRadius()/(P.getLinearVelocity ().getNorm ());

mySimulation. Counters. predictPSColl++;

* move particle, P, back for a distance equal to half of its radius. This is done
due to the

% problems of working with real number. Because the particle, P, might be
overlapped inside ‘

x the substrate(for a high precision).

*

P.updatingParticlePosition(—t);

boolean result = predict_PSCollision (P);

if (result)
P.updatingParticlePosition (t);

mySimulation. Counters. predictPSColl——;

return result;

108
}

Jkox
* Detects the collision between particle and substrate.
N .
* @param P the particle-.
x @return false if any unusual situation occures; true otherwise.
%
public boolean predict_ PSCollision (Particle P)
{
CollisionPacket temp = new CollisionPacket (P);
CollisionPacket infoPack = new CollisionPacket (P);
OctNode Box = this.ocRoot;
boolean result=true;

// for the case that the particle, P, is above the cube containing the substrate
if (!Box.embedded (P)) : : !
{
VAT
%« check to see if particle is colliding with the cube containing the whole
substrate,]
x if mot, obwviously particle is not colliding the substrate.
%
EventSphereCubeCollision . detectSphereCubeCollision (infoPack, Box, P);
if (!infoPack.foundCollision)
return true;

// if the target box. is BLACK or CELL the target pbint is found
if (Box.getOcType ()=Type .BLACK || Box.getOcType()=Type.CELL)

P.getEvent () . getPSCollision () .setInfo (Box, P.getParticleTime ()+infoPack.
nearestTime, infoPack.intersectionPoint,
infoPack .planeNormal,infoPack.element, infoPack.vl, infoPack.v2);
return true; :

}

// if the Bozr is GRAY, thé collision test is check againt its octant
else if(Box.getOcType()=—Type.GRAY)

{
this . predicPSCollisionGRAYBox (infoPack ,P,Box) ;

if (infoPack.foundCollision)
{
mySimulation. Counters . foundPSCollEmbed++;
P.getEvent () . getPSCollision () .setInfo (infoPack.targetBox, P.))
getParticleTime ()+infoPack.nearestTime, infoPack.intersectionPoint,
infoPack.planeNormal,infoPack.element, infoPack.vl, infoPack.v2
)5
}

else

P.setUnusualSituation (true, ”PSDetection—notEmbeddedffaild”) ;
return false;) .

}

return true;

// catch error
else if(Box.getOcType()=Type. WHITE)

Objects3D . VectorOperation . errMassageExit (” the.Box.is _WHITE: .”+Box,
”Octree/predictPSCollision ()”);

}

return true;

109

// for the case that the particle, P, is embedded inside the cube containing the
substrate :
else

List list = new LinkedList () ;

// List embeddedCellList = new LinkedList();
whiteBoxCount = 0; :
embeddedCellsCount = 0;

// making list out of the bozes that do not have overlap with particle, P
this. makingListOutOfContainingBox (P,Box, list ,infoPack);

// if there is collision between particle; P, and a embedded Boz.
if (infoPack.foundCollision)
return true;

VETS

* This part implemented to catch errors due to the problem of working with
real

* numbers. It checks if the particle is stucked inside the substrate.

v/

if (embeddedCellsCount>0)

if (whiteBoxCount==0)

{

if(P.getZ ()—P.getRadius()>SimulationManager . AJM_Environment.
getDepth ())
{

P.setUnusualSituation (true,” embedded. size>0.but._whiteBoxCount
—=07);
return false;

}

OctNode curr; .

// detect the collision from the embedded Box and their octants
for (int i=0;ji<list .size();i++)

{

curr = (OctNode) list .get (i);

if (curr.getOcType()=Type.BLACK .|| curr.getOcType()==Type.CELL)
EventSphereCubeCollision. detectSphereCubeCollision (infoPack, curr, P);

else if(curr.getOcType()=Type.GRAY)
{
temp.reset () ;) i
if (EventSphereCubeCollision . detectSphereCubeCollision (temp, curr, P))
{
i this.predicPSCollisionGRAYBox (temp,P, curr) ;
if(temp.foundCollision && temp.nearestTime<infoPack.nearestTime)
infoPack . set (temp);

}

// if collision was found the FEvent instance of the particie is set
if (infoPack.foundCollision)
{
mySimulation . Counters.foundPSCollEmbed++;
P.getEvent (). getPSCollision () .setInfo (infoPack.targetBox, P.getParticleTime
()+infoPack .nearestTime,, infoPack.intersectionPoint,
infoPack . planeNormal, infoPack . element, infoPack.vl, infoPack.v2);

110
}

return true;

}
¥
VAES
+ Determines if the detected collision point is contained in the substrate.
*
x @param grayCube the gray cube.
% @param .point detected collision point.
% @return true if the point is contained in the gray cube; false otherwise.
Ny . :

public boolean isAcceptablePoint(OctNode grayCube, Vector3D point){
while (grayCube. getChild () [0]!=null)
grayCube = grayCube. getOctantContainsPoint (point);

if (grayCube.getOcType ()==Type .CGRAY || grayCube. getChild () [0]!=null)
Objects3D . VectorOperation. errMassageExit (”wrong_found._box !!!.” + grayCube,”
Octree/checkPointColorInGrayBox”) ;

if (grayCube . getOcType ()==Type .BLACK || grayCube. getOcType ()=Type.CELL)
return true; :)

return false;

}

iz : :

% An auziliary variable used to detect errors for ps—collisions.

*/

public int whiteBoxCount=0;

x An auziliary variable used to detect errors for ps—collisions.

public int embeddedCellsCount = 0;

JH o

% Makes a list of cubes that have potential to be impacted by the particle.
%

* @param P the partilce. .

* @param Cube a cube corresponding to a node of the cellular octree.

x @param list a list to be filled up by cubes.

* @param infoPack a storage used to save the information of detected ps—collision.

private void makingListOutOfContainingBox (Particle P, OctNode Cube, List list,
CollisionPacket infoPack)

if (! Cube.embedded (P))

/o
x if Boz does mot contain the Particle P and is NOT white, Boz is added to

% the list; but if it is WHITE the method just returns.
*/ v
if (Cube.getOcType () !=Type.WHITE)
- ‘ ,
if(Ev'entSphereCubeCollision‘IsPossibilityForCollision(Cube,P))
list .add (Cube);
} .
else
whiteBoxCount+-;
return;

else

111

-if (Cube. getOcType ()==Type .BLACK || Cube.getOcType()=—Type.CELL) // && P.
getLastVelocity().getZ()>0)

EventSphereCubeColiision .detectSphereCubeCollision (infoPack, Cube, P);
if (infoPack. foundCollision)

P.getEvent () .getPSCollision () .setlInfo (infoPack.targetBox, P.
getParticleTime (), infoPack.intersectionPoint,
infoPack.planeNormal,infoPack.element, infoPack.vl, infoPack.v2
)3 ’

return;

}
embeddedCellsCount-++;
return;

f (Cube. getOcType ()==Type . WHITE)
whiteBoxCount++;
else if(Cube.getChild ()[0]==null)
System. err. println (7 it .shouldnt.be.null!” 4 Cube});
else if(Cube.getChild () [0]!=null || Cube.getOcType()!=Type. WHITE)
{
for (int i=0;i<8;i++)
this . makmgL1stOutOfContalnlnchox(P Cube. getChlld ()[i],list,infoPack);

return;

VAT
* Obtains the smallest cube coressponding to a node of the cellular octree containing
the point, P.)
* f
* @param P a point.
* @return the smallest cube containing P.
Cx/
public OctNode getTarvetBox(VectorSD P){
OctNode Box = this.ocRoot;
while (Box!=null && Box. getChild ()!=null && Box.getChild () [0]!=null)
Box = Box.getOctantContainsPoint (P);
return Box;

}

[k
* An aucziliary variable used to detect errors for ps—collisions.
*/
public static int testCount = O0;
ko
* The ID of the last particle that impacted the target surface.
*/
public static int previD=-1;
VAT
* Invokes the SurfaceAdvancement() and do some tests to catch and handle possible
errors .
*

* @param P the particle impacting the surface.
x @return true if mno error detected; false otherwise.
%
/
public boolean removeCellFromOctree(Particle P){
methodCounter=0;
if (prevID=—=P.getID ())
test Count+4-; ’
else :

112

testCount =0;
previD = P.getID () ;

if (testCount>1000)

{

P.setUnusualSituation (true,”repeatedCollDetection—more—thanl100”);
return false; i

¥

boolean result = SurfaceAdvancement(P,null);
return(result);

public OctNode getOcRoot () {
return ocRoot;
}

VEE:
*+ Returns a string representation of the cellular octree root.
. .
* @return a string representation of the cellular octree root.
x .
public String toString(){

return(”ocRoot:.” + this.ocRoot);

}

public static double getCellSize () {
return cellSize;
}

public static void setCellSize (double aCellSize) {
. cellSize = aCellSize; ' :
}

public static double getMinHalfSize () {
return minHalfSize;
}

- public double getSurfaceDensity () {
return surfaceDensity;
}

public double getFriction () {
return friction;
}

public double getD () {
return D;
}

public double getK () {
return K;
} ,

public boolean isBrittle () {
return brittle; ’
}

public double getN1() {
return nl;
}

public double getN2() {
return n2;

}

public double getHv () {
return Hv;
}

public double getSubstrateDepth ()
return substrateDepth;
¥

{

113

OctNode.j ava: OctNode implements the nodes of the cellular octree.

114

package OcTreeADT;

import Objects3D . Vector3D ;
impdrt Objects3D . VectorOperation;
import mySimulation.Particle;
import SystemEvents.EventPSCollision;
import mySimulation.SimulationManager;
import SystemEvents. EventSphereCubeCollision;
public class OctNode {
L xx v
* The status of modes.
*/
public enum Type { GRAY, BLACK, WHITE, CELL, UNDEFINED }
VAT .
% The wvaraible that store the status of the node.
*/
private ‘Type ocType;
Jxx
* The parent of the mnode.
*/
public OctNode parent = null;

x The array that stores the octants of the node.
*/
private OctNode[] child;

VETS

The label of the node with respect to its parent.

#/

public int index;

VAT

* The depth of the mnode in the cellular octree.

*/

public int depth;

VAT

% The variable that determines the removed volume of the cell
node.

*/

private double loss = 0;

Ve .

x The center of the node.

private Vector3D position;

VETS

x The half edge of the cube corresponding to this node.

corresponding to this

private double halfSize;

VAT

*

The diameter of the bounding sphere.

*/

public double diameter;

VEE

.ok

The number of impacts on the cell corresponding to this mnode.

%
public double numOfColls=0;

*

NS

L B I O

public OctNode(CellularOcTree tree, OctNode p, double x, double y, double z, Type

—

VTS

*
%
*
*
*
*

public OctNode(CellularOcTree tree, OctNode p, int index, Type ocType) {

Creates a nmew instance of OctNode

@param tree the cellular octree.
@param p the parent of the new node.

@param z the z—coordinate of the position of the cube corresponding to this node.
@param y -the y—coordinate of the position of the cube corresponding to this mode.
@param z the z—coordinate of the position of the cube corresponding to this node.

@param ocType the status of the new node.
@param index the label of the new node with respect to its parent.

ocType, int index) {

parent = p;

setPosition (new Vector3D(x, y, z));
if (p!l=null)

setHalfSize (p. getHalfSize () / 2);

depth = p.depth++;
} , ' :
else ‘ :)
{

setHalfSize (tree.worldSize/2);

depth = 0;

// Tight triangle: a"2 = b"2 + ¢ "2; :
double b = Math.sqrt (getHalfSize ()*xgetHalfSize () *2.0);
diameter = Math.sqrt(bxb + getHalfSize ()xgetHalfSize());
this.setOcType(ocType) ; .
child = new OctNode[8];

for (int j = 0; j < 8; j++)
if (getChild()[j] != null){
getChild () [j] = null;

this.setIndex (index);

Creates a new instance of OctNode

@param tree the cellular octree.

@param p the parent of the mew node.

@param index the label of the new node with respect to its parent
@param ocType the status of the new node.

parent = p;

Vector3D ppp = new Vector3D (this.getChildCenter (p, index));
setPosition (ppp);

setHalfSize(p. getHalfSize() / 2.0);

depth = p.depth + 1;

115

double b = Math.sqrt (getHalfSize ()*xgetHalfSize () *2.0);
diameter = Math. sqrt (- bxb + getHalfSize ()*xgetHalfSize ());
this.setOcType(ocType);

child = new OctNode[8];

for (int j = 0; j < 8; j++)
Cif (getChild () [j] != null){
getChild () [j] = null;

this.setIndex (index);

~N

ek
Calculates the center of a child using the center of its parent.

@param child the label of. the child.
@return center of the child node.
public Vector3D getChildCenter (OctNode parent, int child)

{

ES

* ‘)

* @param parent the parent of the child.
*

*

double

quarterSize = parent.getHalfSize () /2.0;

double x
Yy
z

= parent.getPosition () .getX (),
= parent.getPosition () .getY (),
= parent.getPosition().getZ();

if(child==0 || child==2 || child==4 || child==6)
x —= quarterSize;

else
x += quarterSize;

if (child==0 || child==1 || child==2 || child==3)"
y —= quarterSize;

else
y += quarterSize;

f(child==0 || child==1 || child==4 || child==5)
7z —= quarterSize;

else
z +=. quarterSize;

return(new Vector3D(x, y, z));

}
VETS

* Checks if the cube corresponding to this mode contains a given point (with small
precision).
% .
* @param P a given point. .
* @return true if the cube contains the point; false otherwise.
*/
public boolean containsPoint(Vector3D P)
{ .
double pr = SimulationManager. precision*100.0;
double h = this.getHalfSize ()+pr; (

return (P.getX() =(this. getPosition (). getX()+h) && P.getX ()>=(this. getPosition ().

getX ()—h) &&

P.getY ()<=(this.getPosition () .getY ()+h) && P.getY ()>=(this.getPosition ().

getY ()—h) &&
P.getZ ()<=(this. getPosition () .getZ ()+h) && P. getZ()>_(thls getPosition ().
getZ()-h));

VAT

116

public boolean embedded(Particle P) {

117

Checks if the cube corresponding to this mnode contains a given point.

@param P a point.
@return true if the cube contains the point; false otherwise.

double X=P.getPosition ().getX (), Y=P.getPosition().getY (), Z=P.getPosition ().getZ ()

double a,b,c,d;

VETS

" % checking if the Particle and Boz(this) owerlapped in Z azis
* checking if line a—b and c—d overlapping (a<=c)

*/

if (Z—P.getRadius ()<=this . position.getZ ()—this. getHalfSize ())

a=Z—P. getRadius () ;

b=7+P. getRadius () ;

c=this.position.getZ()—this.getHalfSize ();
}

else

{

a=this.position.getZ ()—this.getHalfSize ();
b=this . position.getZ ()+this.getHalfSize ();

c=Z-P.getRadius ()

if (¢>=b—0.0000000001)
return false;

// checking if the Particle and this octNode overlapped in X azis
if (X—P.getRadius ()<=this.position.getX ()—this.getHalfSize())

{
a=X—P.getRadius () ;
b=X+P. getRadius () ;
c=this.position.getX ()—this.getHalfSize () ;
}
else
{

a=this.position.getX ()—this.getHalfSize ();
b=this . position.getX ()+this. getHalfSize ();
c=X—P.getRadius () ;

if (¢c>=b—0.0000000001)
return false;

// checking if the Particle and this octNode overlapped in Y azis
if (Y-P.getRadius()<=this.position.getY ()~this.getHalfSize())

a=Y-P.getRadius () ;
b=Y4+P. getRadius () ;
c=this.position.getY ()—this.getHalfSize ();

}

else
a=this.position.getY ()—this.getHalfSize ();
b=this.position.getY ()+this.getHalfSize ();
c=Y-P. getRadius () ;

¥
if (¢>=b—0.0000000001)
return false;

return true;

VeSS

x Finds the octant of this node containing the given point.

* <p>

% Note: upper, left and back boundaries are closed, and lower, right and front
boundaries are opened

*

* @param P a given point

* @return the octant containing the given point

" .

public OctNode getOctantContainsPoint(Vector3D P) {
if (this.getChild () [0]==null)
Objects3D . VectorOperation . errMassageExit (?Box.info :.” + this,” OcCell/
getOctantContainsPoint ()”);

// mumbers represent the index of the octant

// 0, 2, 4, 6 .
if(P.getX()<getPosition ().getX())
// 0, 2
if (P.getY ()<getPosition () .getY())
/0

if (P.getZ ()<getPosition () .getZ())
return getChild () [0];

// 2
else
‘return getChild () [2];
}
)46
else
{
/74 :
if (P.getZ ()<getPosition (). getZ())
return getChild () [4];
// 6
else
return getChild () [6];
}
}
// 1, 3, 5,7
else
{
// 1, 3
if (P.getY ()<getPosition () .getY ())
// 1
if (P.getZ ()<getPosition ().getZ())
return getChild () [1];
// 3
else .
return getChild () [3];
} ' ’
/) 5, 7
else
{
/5
if (P.getZ()<getPosition ().getZ ())
return getChild () [5];
Y7
else
return getChild () [7];
} .
¥

118

119
VAT

* Merges the group of eight siblings of the white color.
x @return true if merging has occurred; false otherwise.
public boolean merging () {

int i;

VAT
* check if all the children are white. If not inside for loop the FALSE will be .
* returned by the function
for (i=0;i<8;i++)
if (this.child[i]. ocType!=Type. WHITE)
return false;

// all the children were WHITE, so they will be remowved and merged to the one WHITE
cube. :

for (i=0;i<8;i++)
this.child [i]=null;

this.ocType = Type.WHITE;

return true;

}

public Type getOcType() {
return ocType;
}

public void setOcType(Type ocType) {
this.ocType = ocType;
public OctNode[] getChild () {

return child;
}

public void setChild (int i, OctNode child) {
this.child[i] = child; '
} v

public Vector3D getPosition () {
return. position;
}

public void setPosition (Vector3D position) {
this.position = position;
}

public int getIndex () {
return index;
}

public void setIndex (int 1ndex) {
this.index = index;
}

public double getLoss () {
return loss;
}

public void setLoss(double loss) {
this.loss = loss;
}

120

- public double getHalfSize () {
return halfSize; :
}

public void setHalfSize (double ‘halfSize) {
this. halfSize = halfSize;
}

ek .
x Returns a string representation of the ranges occupied by the cube corresponding to
this node in three azes. ' :
*
% @return the string representing the range of the cube.
*/
public String getRange(){ . . :
return. ("\n..x:.” + (position.getX()—this.getHalfSize())+”—”+(position.getX()-l—this.
getHalfSize ())+ v :
"\newy:” + (position.getY()~this.getHalfSize())+”—”+‘(position.getY()+this.
getHalfSize ())+)
"\neez:n” 4+ (position.getZ()—this.getHalfSize())+”—”+(position.getZ()+this.
getHalfSize ())+ 7\n”); :
}

/xx .
x Returns a string representation of this mnode.
*
x @return a string representation of this node.
*/
public String toString() {
int i;))
“8tring s="\n.Position: . ”+this.getPosition ()4 "\n.Color:.” + this.ocType + ”\n.-
Index:.” +)

this.getIndex () -+ ”\n.Depht:.” + this.depth + ”\n.Halfsize:.” + this.
getHalfSize () + ”\n.num.Of_PSColl:.” 4 this.numOfColls+
"\n.loss:.” + this.loss +”\n_Range:” + this.getRange();
OctNode p = this.parent; ’
s = s + ”\n.parents{bot—>top)”;
s = s + this.getIndex();
while (p!'= null && p.index>—1){
s = s + p.index;
p = p.parent;

}

return s;

' 121
Cell Java: Cell implements the elements of the array representing the cuboid space

holding all the particles.’

package SysteﬁiEnvironment;
import OcTreeADT . CellularOcTree;
import Objects3D . Vector3D;
import java.util.=x;
import mySimulation .x*;
public class Cell {
[.
* The first index of the cell in the array representing the space holding particles.
*/
public int indexl1;
VeSS ,
* The second indez of the cell -in the array representing the space holding particles..
- public int index2;
VAES
* The third index of the cell in the array representing the space holding particles.
public int index3;
VATT
* The size of the cell.
private Vector3D size;
ko : :
* The top/left/back corner of the cell.
%
private Vector3D position;
VETS
« The list of particles assigned to this cell.
*/
private List Members;
* Creates a new instance of Cell.
*
* @param size the size of the cell. .
* @param position the top/left/back corner of the cell.
* @param I1 the first indez of the cell.
% @param I2 the second index of the cell.
* @param I3 the third index of the cell.
public Cell(Vector3D size, Vector3D position, int 11, int 12, int I13)
{ o
this.size = new. Vector3D (size);
this. position = new Vector3D (position); -
Members = new LinkedList (); - :
indexl = 11;
index2 = 12;

122
index3 = 13;
}

VAT
x Checks if the cell either fully or partially contains the given particle.
*

* @param P a particle.

% @return true if particle fully or partially is contained inside this cell; false
otherwise.
*/

public boolean contains(Particle P)

if (position.getX ()<P.getX () && position.getX()+size.getX()>P.getX ())
{

if(position.getY ()<P.getY () && position.getY()+size.getY()>P.getY())

if (position.getZ()<P.getZ () &% position.getZ ()+size.getZ ()>P.getZ())
return true;

}

return false;

B
S

*+ Checkes if particle is the member of this' cell.
*
* @param P a particle. .
% @return true if particle is the member of this cell; false otherwise.
%
public boolean isItMember({Particle P){
return Members. contains (P);

}

JEx

+ Adds the given particle to the Members list.
*

* @param P a particle.

public void addMemberTo{Particle P){
Members . add (P) ;
return;

}
[k

% Deletes particle from thr Members list
* @param P a particle.
public void deleteMemberFrom(Particle P){
Members. remove (P) ;
return;

}

public List getMembers () {
return Members;
¥

public Vector3D getCubePosition (){
return this.position;

}

public Vector3D getSize () {
return this.size;

123
/o
% Returns a string representation of this cell.

*

* @return a string representation of this cell.
*/
public String toString ()
return(”\n..index:cooo["+index14”, 2”+index24”, .7 + index3 +7]7 +
?\n..poision:.” + position +
’\n..size:.” 4+ size);

Environment.java:

124
The Environment class represents the whole space holding

particles. The cuboid space holding all particles is divided up into smaller cubes called cells.

import
import
import
import
import
import
import

public
/%

package SystemEnvironment;

Objects3D . Vector3D;
Objects3D . VectorOperation;

java.lang.Math; import my

SystemEvents. Event . enteredCubeType;

SystemEvents. Event . *;
SystemEvents . ;
OcTreeADT . CellularOcTree;

class Environment {

* The width of the cuboid space holding particles.
*/
private double width;

S

* The height of the cuboid space holdzng particles.

“/

private double height;

VLS

* The depth of the cuboid space holding particles.

*/

private double depth;

ik

* The edge of the nmon—marginal environment cells.

*/

private double cellSize;

Verl

* The size of the mon—marginal cells.

*/

private Vector3D stdCubeSize;

Jxx

The number of cells of the environment along z, y, and z—azes.
*/

public static Vector3D numOfCubes;

VAT k

* The array whose element are the cells of the environment.
*/

private Cell [|[][] Space;

VEE

% Creates a new instance of Environment. :
* A 8D-array is created to -hold particles flowing in the boundary of the system.
*

* @param envWidth the width of the environment.

Simulation .x;

125

* @param envHeight the height of the environment
* @param envDepth the depth of the environment
* @param cellSize the edge length of the non—marginal cubic cells of the environment.
public Environment (double envWidth, double envHeight, double envDepth, double cellSize)
int roundW, roundH, roundD;
double exactW, exactH, exactD;
int i, j, k;
double xSize=0, ySize=0, zSize=0;
double xPosition, yPosition, zPosition;
double leftWidth, leftHeight, leftDepth;
Vector3D cubeSize = new Vector3D();
Vector3D cubePosition = new Vector3D () ;

this.width = envWidth;

this.height = envHeight;

this.depth = envDepth;

this.cellSize = cellSize;

stdCubeSize = new Vector3D(cellSize, cellSize, cellSize);

exactW = envWidth/stdCubeSize . getX () ;
exactH = envHeight/stdCubeSize.getY () ;
exactD = envDepth/stdCubeSize.getZ();

roundW = (int)‘Math. ceil (exactW) ;
roundH = (int)Math. ceil (exactH);
roundD = (int)Math. ceil (exactD);

leftWidth = envWidth — (double) (roundW—1)*(stdCubeSize.getX());
leftHeight = envHeight — (double) (roundH-1)x*(stdCubeSize.getY ());
leftDepth = envDepth — (double) (roundD—1)*(stdCubeSize.getZ());

if(leftWidth<0 || leftHeight<0 || leftDepth<0)
Objects3D . VectorOperation . errMassageExit (”._lettW1dth<0._| | cleftHeight<O.|] .
leftDepth<0”, ”Envuonment”)
Space = new Cell [roundW] [roundH] [roundD |;

xPosition

= 0;
‘yPosition = 0;
zPosition = 0;

for (1=0; i<roundW; i++)

{ .
for (j=0; j<roundH; j++)
{ ;
for (k=0; k<roundD; k++)
{
if(i == (roundW-1))
xSize = leftWidth;
else

xSize = stdCubeSize.getX () ;

if(j = (roundH-1))
ySize = leftHeight;
else
ySize = stdCubeSize.getY () ;

if (k = (roundD-1))
zSize = leftDepth + SlmulatlonManager AJM_Substrate.
getSubstrateDepth () ;
else
z3ize = stdCubeSize.getZ () ;

126

if (k = (roundD-1))
cubeSize.setPoint (xSize, ySize, zSize+SimulationManager.
AJM_Substrate. getSubstrateDepth ());
else
cubeSize.setPoint (xSize, ySize, zSize);

cubePosition.setPoint (xPosition, yPosition, zPosition);

zPosition = zPosition 4 zSize;

Space[i][j][k] = new Cell(cubeSize, cubePosition, i, j, k};
}
yPosition = yPosition + ySize;
zPosition = 0;

xPosition = xPosition 4+ xSize;
yPosition = 0;

numOfCubes = new Vector3D (roundW, roundH, roundD);

}
JEx

* Findes the environment cell containing a given point.
*

% @param P a point.

% @return the cell containing the given point.

public Cell findCube(Vector3D P)

{ ’ .
int Xc, Yc, Zc;

double Xp=P.getX (), Yp=P.getY (), Zp=P.getZ();
Xe' = Ye = Zc = 0; : : !

if((Math. ceil (Xp/stdCubeSize.getX ())=Xp/stdCubeSize.getX ()) && (Xp!=this.getWidth
())) Xe=1; ‘ ' : '
if((Math. ceil (Yp/stdCubeSize.getY ())==Yp/stdCubeSize.getY ()) && (Yp!=this.

getHeight ())) Ye=1; i
if ((Math. ceil (Zp/stdCubeSize.getZ ())=—Zp/stdCubeSize.getZ ()) && (Zp!=this.getDepth
0O)) Ze=1 : :

Xc = Xc+{(int)Math. ceil (Xp/stdCubeSize . getX

())-1
Ye = Ye+(int)Math. ceil (Yp/stdCubeSize.getY ())—1;
Zc = Zc+(int)Math. ceil (Zp/stdCubeSize.getZ ()) -1

if (Zc==numOfCubes. getZ ())

Zc——;
if (Zc<0)
. Zc=0; .
if (Xc>=numOfCubes.getX () || Ye>=numOfCubes.getY () || Zc>=numOfCubes.getZ () || Xc<O0
|| Ye<O || Ze<0) ‘ '

return null;

return Space[Xc][Yc]{Zc];
}

VEES

* Adds a new particle into a cell of the environment.
*

* @param P a mew particle. :

* @return true if mo error occurrs; false otherwise.
*/

public Cell addNewParticle(Particle P)

Cell cube;

127

cube = findCube(P. getPositi'on 0);
if (cubel=null)

{

cube . addMemberTo (P) ;
P.setCurrentSpace(cube);

}

return cube;.

-

* %
Returns the cell with given indices in the array representing the environment .

NS

@param 12 the second indez.
@param i3 the third indez.
@return the cell with the given indices.
#/
public Cell getSpaceElement (int il, int i2, int i3){
if (i3==this.numOfCubes. getZ ())
i3——;
return Space[il][i2][i3];

*
*
* @param 11 the first index.
*
*
*

}
VAT

% Calculates the total number of members of all the environment cells.
% @return the total number of members of all the environment cells

«/

public static double getTotalMembersOfCubes|()

{

double totnumMem = 0.0;
int-i,j,k;
for (i=0; i<numOfCubes.getX (); it+)

{

for (j=0; j<numOfCubes.getY (); j++)

for(k=0; k<numOfCubes.getZ (); k++)
totnumMem += SimulationManager. AJM_Environment. getSpaceElement (i,j,k).
getMembers () . size () ;

}
}
return totnumMem;

}

public Vector3D getNumOfCubes() {
return numOfCubes;
}

public double getWidth () {
return width;
3

public double getHeight () {
return height;
}

public double getDepth() {
return depth;
¥

. ' » 128
EVel’lt Java: The Event class is created for each particle. This class is used to store

the information of the particle’s next events.

It has three inner classes implemented:

1. The PPCollisionStorage class is used to store the information of the next inter-particle

collision of the particle.

2. The PSCollisionStorage class is used to store the information of the next particlé-

surface collision of the particle.

3. The transferStorage class is used to store the information of the next transfer of the

particle.

package SystemEvents;

V import OcTreeADT . OctNode;

import OcTreeADT. CellularOcTree;

import Objects3D . VectorSD ;

import Objects3D . VectorOperation;

import mySimulation . *;

import SystemEnvironment. Cell;

: iniport v Objects3D . Vector3D;

import SystemEvents. EventSphereCubeCollision. CollisionPacket ;
import SystemEvents. EventSphereCubeCollision . Element;
public class Event {

VAT

* The type of the events.

public enum EventType {PPCollisionType, PSCollisionType, transferType, launchType,
undefinedType} ’

JEx
% The directions that particles can take to enter a nmew environment cell.
*/
public enum enteredCubeType {ba,_ck ,backLeft ,backTop, backTopLeft, left ,top, topLeft; front,
bottom, right,itself, undefinedCube}

VEE
* The particle associated with this instance of the Event class.

private Particle ownerParticle;

* the wariable that stores the information of the next pp—collision of the particle.
«/
private PPCollisionStorage PPCollision;

VeSS
% .the variable that stores the information of the next ps—collision of the particle.
«/

private PSCollisionStorage PSCollision;

VAT
* the wariable that stores the information of the next transfer of the particle
«/

private transferStorage Transfer;

VAT . v

* Creates a nmew instance of FEwvent for a given particle.
*

% @param P the ownerParticle.

*/

public Event(Particle P)
{
setOwnerParticle (P) ;
PPCollision = this. new PPCollisionStorage();

PSCollision = this. new PSCollisionStorage () ;
Transfer = this. new transferStorage();

}
VEE

* Creates a new instance of Event for ownerParticle and fills up the new event using
the information of the given. event, e.

* .

* @param e an event.

#/

public Event(Event e)

{
setOwnerParticle (e. getOwnerParticle ());
PPCollision = e.getPPCollision ();
PSCollision = e.getPSCollision ();
Transfer = e.getTransfer();

* The PPCollisionStorage class is used to store the information of the nezt inter—
particle collision of the particle.

*/
public class PPCollisionStorage
{
Jkx
* The particle invloved in the next detected pp—collison of the ownerParticle.
*/
public Particle InvolvingParticle;
x The time of the next pp—collision of the ownerParticle.
*/
public .double PPCollTime;
x Creates a new instance of PPCollisionStorage.
*/

public PPCollisionStorage ()

{

129

130
PPCollTime = Double. POSITIVE_INFINITY ;

InvolvingParticle = null;
1 .
[.
* Resets the information of this storage to default wvalues.
*/

public void resetInfo () { ,
PPCollTime = Double. POSITIVE_INFINITY ;

InvolvingParticle = null;

}

VaE .

* Assigns new values to the wvariables of this storage.

*

% @param p the new particle invloved in the next detected pp—collison of the
ownerParticle.

* @param t the time of the mext pp—collision for the owmnerParticle.

N :

public' void setInfo (Particle p, double t)

PPCollTime = t;
InvolvingParticle = p;

}

public double getMinTime () {
) return PPCollTime;
3

public Particle getInvolvingParticl'e(){
return InvolvingParticle;
}

VET
* Returns a string representation of this PPCollisionStorage.
*

* @return a string representation of this PPCollisionStorage.
*/ ' .
public String toString (){-)
return (”PPCollisionEvent:.” + ”\nl._time:” +PPCollTime +)
"\n2..involvingParticle.position:” + InvolvingParticle.getPosition());

}

public class PSCollisionStorage

{
VEE:
* The time of the nezt ps—collision of ownerParticle.
*/

private double minTime;

Vi

% The collision point for the next ps—collision of ownerParticle.

private Vector3D contactPoint;

VET

x-The target cube correspoding to a node of the cellular octree of the next ps—
collision . i

*/

private OctNode targetBox;

VeSS

* The normal to the local surface at the predicted collz‘si’on point.

131
*/

private Vector3D planeNormal;

VAT

* The element at which ownerParticle hits the target cell in its mezxt ps—collision

private Element element;

VEE
* For the case of impacting on edge or wvertices, this wvariables stores an ends of
the edge or vertex containing the detected collision point.

private Vector3D vl;

[.

x For the case of impacting on edge, this wvariables stores an ends of the edge
containing the detected collision point.

*/

private Vector3D v2;

VET
*x Creates a new instance of PSCollisionStorage.
s/
public PSCollisionStorage (){
setMinTime (Double . POSITIVE_INFINITY) ;
this.setContactPoint (null);
this.setPlaneNormal (null);

element = Element.none;
vl = null;
v2 = null;

} o _
JHx

x Assigns mew values to the variables of this storages.

@param targetBoxr the target cube correspoding to a mnode of the cellular octree
of the nezt ps—collision.
@param minTime the time of the mezt ps—collision.
@param contactPoint the collision point of the next ps—collision.
@param planeNormal the normal to the local surface for the mnext ps—collison.
@param element the element at which ownerParticle hits the target cell in its
next ps—collision . .
* @param vl an end of the edge or wvertex containing next ps—collision point. For
the cases that particle hits the square plane this wvariable is set to null.
* @param v2 an end of the edge containing next ps—collision point. For the cases
" that particle hits the square plane or one of the wvertices this variable is
set to null.
*/

public void setInfo (OctNode targetBox, double minTime, Vector3D contactPoint,
Vector3D planeNormal, Element element, Vector3D vl, Vector3D v2)
{

* ¥

* X ¥ ¥

this.setTargetBox (targetBox);
this.setMinTime (minTime) ;
this.setContactPoint (contactPoint);
this.setPlaneNormal (planeNormal) ;
this.element = element;

this.vl = vl;

this.v2 = v2;

}
S

* Resets the information of this storage to default wvalues.

*/

132

public void resetInfo (){
minTime = Double.POSITIVE_INFINITY ;

contactPoint = null;
targetBox = null;
planeNormal = null;
element = Element.none;
vl = null;

v2 = null;

}

public double getMinTime() {
return minTime;
} .

public void setMinTime(double minTime) {
this . minTime = minTime;
}

public Vector3D getContactPoint () {
return contactPoint;
}

public void setContactPoint(Vector3D contactPoint) {
this.contactPoint = contactPoint;
}

public OctNode getTargetBox () {
return targetBox;
:

public void set‘TargétBox(OctNode targetBox) {
this.targetBox = targetBox; ' " o
}
public Vector3D getPlaneNormal() {
return planeNormal;
}

public void setPlaneNormal (Vector3D planeNormal) {
this.planeNormal = planeNormal;
}

public Element getElement () {
return element;
}

public void setElement (Element element) {
this.element = element;
¥

public Vector3D. getV1() {
return vl;
}

public veid setV1(Vector3D v1) {
this.vl = vl;
}

public Vector3D getV2() {
return v2;
}

public void setV2(Vector3D v2) {
this.v2 = v2;

}

b
VAT

* Returns a string representation of this PSCollisionStorage.
% .

* @return a string representation of this PSCollisionStorage.
+/
public String toString(){

return(”\n_.minTime:.” + this.minTime + ”\n.contactPoint:.” + this.contactPoint

+ "\n.plane.normal:.” + this.getPlaneNormal());

public class transferStorage

{

/e x

* The cube that ownerParticle will enter mnext.

private enteredCubeType enteredCube;

VEE
* The time of the mnezt trasner event of ownerParticle.

private double time;

VAT

* The time of the ownerParticle before handliﬁg the next trasnfer.

private double prevSystemTime;

ViL .

* The position of the ownerParticle after handling its next transfer event.

*/
public Vector3D testNextPosition;

VAL

* Creates a mew instance of transferStorage.

*/

public transferStorage ()

{

) enteredCube = Event.enteredCubeType.undefinedCube;
time = Double. POSITIVE_INFINITY ;
prevSystemTime = —1;

VEE:

% Resets the information of this storage to default wvalues.
public void resetInfo-(){

time = Double.POSITIVE_INFINITY ;

enteredCube = Event.enteredCubeType.undefinedCube;

}

[.

* Assigns new values to the wvariables of this storage.

* . .

% @param t the time of the nexzt transfer for ownerParticle.

* @param dir the direction that ownerParticle takes to enter a new cell
environment.

*/

public void setInfo (double t, Event.enteredCubeType dir){
time = t;

enteredCube = dir;

of the

133

134
¥

public double getMinTime (){
return time;
}

public Event . enteredCubeType getEnteredCubeType(){
return enteredCube;
} .

public void setPrevSystemTime ()

{
¥

public double getPreSystemTime ()

{
}

prevSystemTime = SimulationManager.SystemTime; .

return prevSystemTime;

VL
* Returns a string representation of this transferStorage.
%
* @return a string representation of this transferStorage.
*/

public String toString()
{
return (”ExitingCubeEvent:.” + ”\nl..time:.”+time + ”\n2._enteredCube:. "+
enteredCube + ‘ '
”\n3..prevSystTime:.”+ prevSystemTime + ”\n4 _SystTime:.”+ SimulationManager.

SystemTime) ;
}
}
/**
* Sets the information of the EventNode of the ownerPartzcle to its earlies event.
*/

public void pickNextEventInfo ()

{ :
double minTime = Double.POSITIVE_INFINITY ;

EventType type = EventType.undefinedType;
f(PPCollision = null && PSCollision = null. & Transfer = null) :
Objects3D . VectorOperation . ertMassageExit (” there_is _not_any_defined .event._for.
this_particle!”,
”Error! H1ns1de_Event/plckNextEventInfo”) ;
if (PPCollision!=null & PPCollision.PPCollTime < minTime)
minTime = PPCollision. PPCollTime;
type = EventType.PPCollisionType;
if (PSCollision!=null && PSCollision'. getMinTime ()<minTime)
minTime = PSCollision.getMinTime () ;
type = EventType.PSCollisionType;
if(TraﬁSfer!:null && Transfer.getMinTime ()<minTime)

minTime = Transfer.getMinTime () ;
type = EventType.transferType;

135
¥

gewanerParticle () .getEventNode () .setNextEventNodeInfo (minTime, type);

}
JEx

* Resets the information of this event to default values.

*/

public void resetInfo (){) »
getOwnerParticle () . getEventNode () . resetNextEventNodelnfo () ;
this.PPCollision.resetInfo ();
this. Transfer.resetInfo ();
this. PSCollision.resetInfo ();

}
/i x

* Update the information of the ownerParticle’s éveﬂt after the trasnfer.
#/
public void setUpEvent_After_-Transfer ()

{

resetInfo ();

// When the particle is in the boundary and is moving outward we have to rTemove it
try

{

if (! EventTransfer. detectTransfer (getOwnerParticle()))

EventTransfer. removeParticle (getOwnerParticle());
return;

if (getOwnerParticle () . getCurrentSpace () .index3 = SimulationManager.
AJM_Environment . getNumOfCubes () . getZ () —1)

if (! SimulationManager . AJM_Substrate. predictPSCollision (getOwnerParticle()))

{
if (getOwnerParticle().isUnusualSituation() || !EventTransfer.
detectTransfer (getOwnerParticle()))
{
EventTransfer.removeParticle (getOwnerParticle());
return; :
}
}

}

catch(StackOverflowError e){
System.out. println (7 \n\nsssssss s srsskrkrk s x x50k kkkxx\nP. info: .7 +
getOwnerParticle () +
?\nP.event:.” + getOwnerParticle().getEvent () +
?\ncurrEvent:.” + SimulationManager.currEventType);

getOwnerParticle () . setUnusualSituation (true,” StackOverflowError”);
EventTransfer.removeParticle (getOwnerParticle());
return;

EventPPCollision . predictEvent (getOwnerParticle ());

}
VAT

x Sets the information of the ownerParticle’s event after it is launched by the

nozzle.
public void setUpEvent_After_Lunching ()
{
resetInfo ();
boolean r = EventTransfer.detectTransfer (getOwnerParticle());
this . pickNextEventInfo () ;
SimulationManager . AJM_EventHeap. insert (getOwnerParticle () . getEventNode());
EventPPCollision. predictEvent (getOwnerParticle());

}
VAT))
* Update the information of the particle that its partner left their common
environment cells. -

public void setUpEvent_After_PartperLeaving ()
{ .
getOwnerParticle (). getEventNode () .resetNextEventNodelnfo () ;
this. PPCollision.resetInfo ();

EventPPCollision. predictEvent (getOwnerParticle ());

i
S

* Update the information of the ownerParticle’s event after the pp—collision.
*/

public void setUpEvent_After PPCollision ()

{

Particle partner = PPCollision. getInvolvingParticle();

resetInfo (); " : :

try{ ‘

if (! EventTransfer.detectTransfer (getOwnerParticle()))
{ .

EventTransfer . removeParticle(getOwnerParticle());
setOwnerParticle (null);

}

else

getOwnerParticle () . getEventNode().changeElement_Place_Info (getOwnerParticle

0);

?
if(getOwnerParticle (). getCurrentSpace() .index3 = SimulationManager.
AJM_Environment . getNumOfCubes () . getZ () —1) -
{ .

if (getOwnerParticle () .isUnusualSituation() || !SimulationManager .
AJM_Substrate. predictPSCollision (getOwnerParticle()))

if (! EventTransfer. detectTransfer (getOwnerParticle()))

{ .
EventTransfer.removeParticle (getOwnerParticle());
setOwnerParticle (null);

}

catch(StackOverflowError e){
System.out. println ("\n\nxksssxssxsskkxxrkxxxxxxxx%%\nP. info: .7 +
getOwnerParticle () +
?\nP.event:.” + getOwnerParticle().getEvent() +
?\ncurrEvent:.” + SimulationManager.currEventType);
getOwnerParticle () . setUnusualSituation (true,” StackOverflowError”);
EventTransfer .removeParticle (getOwnerParticle());
setOwnerParticle (null);

136

137

if (partner==null || partner.getCurrentSpace()=null)

lf(partner .getEventNode ()!=null)
EventTransfer.removeParticle (partner);
partner=null;
}
else
{ .
partner.getEvent () .resetInfo ();
try {
if (! EventTransfer . detectTransfer (partner))

EventTransfer.removeParticle (partner);
partner=null;

}

else
{
partner.getEventNode () .changeElement_Place_Info(partner);
if(partner.getCurrentSpace () .index3 = SimulationManager.
AJM_Environment . getNumOfCubes () . getZ () —1)
{ .

if (partner.isUnusualSituation() || !SimulationManager. AJM_Substrate
.predictPSCollision (partner)) : i

if (! EventTransfer.detectTransfer (partner))

{

EventTransfer.removeParticle(partner);
partner=null;

}

catch(StackOverflowError e){ .
partner.setUnusualSituation (true,” StackOverflowError”);
EventTransfer. removeParticle (partner);
partner = null;

}

}
EventPPCollision. predictEvent (getOwnerParticle(), partner);

)

}
VAT

* Update the information of the ownerParticle’s event after the ps—collision.
public void setUpEvent_After_PSCollision ()

{

resetInfo ();

try

{

if (! EventTransfer. detectTransfer (getOwnerParticle()))
EventTransfer.removeParticle (getOwnerParticle());
return;
if (getOwnerParticle (). getCurrentSpace () .index3 = SimulationManager.

AJM_Environment . getNumOfCubes () . getZ () —1)

if (getOwnerParticle () .isUnusualSituation () || !SimulationManager.
AJM_Substrate. predictPSCollision (getOwnerParticle ()))

f(!EventTransfer.detectTransfer (getOwnerParticle ()))

EventTransfer.removeParticle(getOwnerParticle ());
return; :

}

catch(StackOverflowError e){
System .out . println (7 \n\m#s### sk xomsxkksookkokkkkkxxx\nP . info : L7 +
getOwnerParticle () +
"\nP.event:.” + getOwnerParticle().getEvent() +
?\ncurrEvent:.” + SimulationManager.currEventType) ; .
getOwnerParticle () .setUnusualSituation (true,” StackOverflowError”);
EventTransfer . removeParticle (getOwnerParticle ());
return;

EventPPCollision . predictEvent (getOwnerParticle());

}

public Particle getOwnerParticle () {
- return ownerParticle;
}

public void setOwnerParticle(Particle ownerParticle) {
this.ownerParticle = ownerParticle;
}

public PPCollisionStorage getPPColllslon(){
return PPCollision;
}

public PSCollisionStorage getPSCollision (){
return PSCollision;
¥

public transferStorage getTransfer (){
return Transfer;
}

e
= Returns a string representation of this event.
*
* @return a string representation of this event.
#/

public String toString () {

return(”\n...PPColl:.” + this. PPColllslon PPColiTime + ”\n...PSColl:."+ this.

PSCollision . minTime 4
’\n.ooExitintCube: 7+ this.Transfer.time 4+ o enteredCube: .”+this.
Transfer.enteredCube);

138

, . 139
Event Heap Java: The EventHeap class implements the event queue which is used

to store the information of the predicted events of péurticles. This class provides methods
to perform the heap operations, such as inserting a new element, deleting an element, and

updating the position of an element.

package SystemEvents;
import java.lang.Math;
import mySimulation. Particle;
import SystemEvents.EventNode. State;
import mySimulation.SimulationManager ;
| public class EventHeap {
JSEx
x The reet of the heap.
%/
EventNode heapRoot;
x Deapest level (heapRoot is in level 0)
*/
private int lastLevel;
VEE:
% The total number of heap nodes.
*/
private static int memberCounter;
[.
* The mazimum possible number of nodes in the last level.
*/
private static int possibleNodes;
VAT
* The variable used to store the last leaf of the heap.
private EventNode lastNode;
VET] :
* The wvariable used to store the bottommost, leftmost node of the heap
*/
private EventNode bottomLeftNode;
VET:
* An auziliary variable used to keep the heap complete.
x/ -
© private EventNode bottomRightNode;
[.
* An auziliary wvariable used to handle errors.
*/
public EventNode secondNodeL;
VT

140

* An auziliary variable used to handle errors.

*/

public EventNode secondNodeR ;

VAT

* Creates a mew instance of EventHeap
*/

public EventHeap ()
{ .
heapRoot = null;
lastLevel = —1;
memberCounter = 0;
possibleNodes = 0;
lastNode = null;
bottomLeftNode = null;
bottomRightNode = null;

}

VAT

* Inserts a nmew node to the heap.
*

* @param newNode a new node.

*/

public void insert (EventNode newNode)

{

EventNode currNode;

/3 R R R R KRR R K Rk R K R KRR
x 1. When the Heap is emptly x*
eokskok ok ok ok ok o ook ok R R R K R KR Rk Rk kR ok /
if (heapRoot=—=null)
//System . out. przntln(”mf(hea,pRoot =null)~——mnewNode Value: ” + newNode.
getTimeValue());
if (memberCounter!=0)
Objects3D . VectorOperation . errMassageExit (?"ERRORRRR! _heapRoot=NULL._but..
memberCounter!=0",
"EventHeap/insert”);

/% updating newNode information */
newNode. setIndex (0) ;

newNode. setLevel (0);

newNode. setState (State .ROOT) ; :

heapRoot = newNode;

/* updating Heap information %/
lastLevel = 0; :
memberCounter+4;

possibleNodes = 1;

lastNode = newNode;
bottomLeftNode = newNode;
bottomRightNode = newNode;
return;

}

/R R K o R KKK R oK ok R sk ok ok ok R K s o ok sk sk o i ks sk skl kot sk sk R R SRR SRR R SR R R K K ok ok
x 2. When last level is full and we have to jump to the new level x
stk s sk s sk sk s st ok ok o o s sk sk st ok R s S S s sk sk stk g R ROR R ok SR ok KR K KR R SR KR KK K K R R R KK KK K K R ok %/
else if (memberCounter = possibleNodes) :

{

currNode = bottomLeftNode; ‘

' /* updating newNode inforhation x/

141
newNode. setIndex (memberCounter) ;
newNode. setLevel (currNode. getLevel () +1);
newNode. setState (State .LEFT) ;
newNode. setParent (currNode) ;
currNode.setLeftChild (newNode) ;
/* updating Heap information x/
lastLevel++;
memberCounter++; :
possibleNodes = possibleNodes + (int)Math.pow(2,lastLevel);
lastNode = newNode;
bottomLeftNode = newNode;

}

/o

* 8. Lastlevel is not full & lastNode is LeftChild, So the RightChild place of its
Parent is empty

«/

else if(lastNode.getState ()==State.LEFT)

if (lastNode.getParent () .getRightChild () !=null)

Objects3D . VectorOperation . errMassageExit (” 1. ERRORRRRRR! (inside _.INSERT)”,
”EventHeap/insert”);

currNode = lastNode.getParent () ;

/% updating newNode information x/
newNode. setIndex (memberCounter) ;
newNode. setLevel (currNode. getLevel () +1);
newNode. setState (State .RIGHT) ;

newNode. setParent (currNode) ;

currNode. setRight Child (newNode) ;

/% updating Heap information x/
memberCounter++;

if (memberCounter=—=possibleNodes)
bottomRightNode = newNode;
lastNode = newNode;

}

* 4. When last level is not full and lastNode is the RightChild *

else if(lastNode.getState ()==State.RIGHT)

if(lastNode.getParent (). getLeftChild ()=null)

Objects3D . VectorOperation. errMassageExit (” 2.ERRORRRRRR! - (inside .INSERT)”
"EventHeap/insert”);

currNode = lastNode;
while (currNode. getState ()==State .RIGHT)
currNode = currNode. getParent () ;

currNode = currNode.getParent () .getRightChild () ;

while (currNode. getLeftChild ()!=null)
currNode = currNode. getLeftChild ();

/% updating newNode information x/
newNode . setIndex (memberCounter) ;
newNode. setLevel (currNode. getLevel ()+1);

142

newNode. setState (State .LEFT) ;
newNode. setParent (currNode) ;

currNode.setLeftChild (newNode) ;

/* updating Heap information */
memberCounter+-+;
lastNode = newNode;
}
else
Objects3D . VectorOperation . errMassageExit (”The_Insertion.is_.impossible!!!”
”?EventHeap/insert”);

currNode = lastNode;
while (" currNode . getIndex () =0 && currNode.getTime{)<currNode.getParent () .getTime())
{;

currNode .swapNode(currNode. getParent ());

currNode = currNode. getParent () ;

}
return;
}
VeSS
% Updates the position of the given node.
% .
* @param currNode a node whose key has been updated.
*/
public void UpdateNodePosition (EventNode currNode)
{ .

EventNode siblingNode;
if (this:memberCounter==1)
‘return; v .
if (currNode. getIndex ()!=0 && currNode.getTime()<currNode.getParent () .getTime())

do

if (currNode.getParent (). getRightChild () !=null)
currNode = (currNode. getParent () .getLeft Child () .getTime ()<=currNode.
getParent () . getRightChild () . getTime())7 i
currNode . getParent () . getLeftChild () :currNode. getParent () .
getRightChild () ;

currNode . swapNode (currNode. getParent ()) ;
currNode = currNode.getParent () ;

while(currNode. getIndex ()!=0 && currNode. getTime ()<currNode. getParent () .
getTime()); - : :

return;

}

else if((currNode.getLevel()<lastLevel) && B
(currNode. getLeftChild ()!=null) &&
(currNode.getTime ()>=currNode. getLeftChild () .getTime () |]
(currNode. getRightChild ()!=null && currNode.getTime ()>currNode.

getRightChild () .getTime())))
{

EventNode child = null;

if (currNode. getLeftChild ()!=null && currNode. getRightChild () !=null)
child = (currNode.getLeftChild () .getTime()<=currNode.getRightChild ().
getTime()) 7 currNode.getLeftChild () :currNode.getRightChild ();
else if(currNode. getLeftChild ()!=null && currNode. getRightChild ()==null)

143
child = currNode. getLeftChild () ;

else if(currNode. getLeftChild ()=null && currNode. getRightChild ()==null)

if (currNode. getParent ()==null)
) Objects3D . VectorOperation . errMassageExit (” Error!_.inside .EventHeap/
UpdateNodePosition{)”,
) ? EventHeap/UpdateNodePosition”) ; :
else if(currNode.getTime ()>=currNode.getParent ().getTime())

/* there is mo more child, so currNode is in the lastLevel of the
EventHeap, SUCCESSFUL UpdateNodePositionx/

secondNodel. = heapRoot. getLeftChild();

secondNodeR = heapRoot.getRightChild () ;

return;

}

else
{

Objects3D . VectorOperation. errMassageExit (”Error!._inside _.EventHeap/
UpdateNodePosition()”,

”»EventHeap/UpdateNodePosition”) ;

} .
if (child==null)
Objects3D . VectorOperation . errMassageExit (7
0000000000000000000000000000000”+child,
?EventHeap/UpdateNodePosition”) ;

if (currNode.getTime ()>child.getTime())

currNode.swapNode(child);
currNode = child;
} ,
else

{
/% currNode is in the middle of -the EventHeap, SUCCESSFUL
UpdateNodePositionx/
secondNodeL = heapRoot.getLeftChild () ;
secondNodeR = heapRoot.getRightChild () ;
return;

while(currNode != null && currNode.getLevel ()<lastLevel);
secondNodeL. = heapRoot.getLeftChild () ;

secondNodeR = heapRoot.getRightChild () ;

return;

secondNodeL = heapRoot.getLeftChild () ;
secondNodeR = heapRoot.getRightChild () ;

)

return;
}
VEES
* Reconnect the disconnected root to the heap.
*/
public void handleNullRoot () {
Event e = new Event (secondNodeL.getEvent{));

heapRoot = new EventNode(e);
heapRoot.setRightChild (secondNodeR) ;

heapRoot . setLeftChild (secondNodeL) ;
heapRoot.setParent (null);

Delete (secondNodeL . getEvent () . getOwnerParticle ());

144
VETS

x Deletes a node of the given particle from the heap.
* @param P a particle which has left the boundary of the system.
*/
public void Delete(Particle P)
{ .
EventNode currNode=null, deletedNode=lastNode;
Particle remP;
EventNode node = P.getEventNode () ;

// The following part is for UPADETING heap wvariable after deleting node

Ve
% 1. When the lastNode is root
_if(node!=null && lastNode.getIndex ()=node. getIndex ())
{
//heapRoot = null;
lastLevel = —1;
memberCounter = 0;
possibleNodes = 0;
if (lastNode.getEvent ()!=null)
{
remP = lastNode.getEvent().getOwnerParticle();
remP . setEventNode (null);
remP . setEvent (null)
}
remP = null;
lastNode = null;
bottomLeftNode = null;
bottomRightNode = null;
return ;
}

node . swapNode(lastNode) ;

// setting the EventNode of the Particle of the deletedNode to .the Null
if (lastNode.getEvent () !=null) :
remP = lastNode.getEvent().getOwnerParticle();

remP = null;

/* .

%« 2. When the lastNode is bottomLeftNode

if (lastNode. getIndex ()==bottomLeftNode. getIndex ())
{

lastLevel ——;

‘memberCounter——;

possibleNodes = possibleNodes — (1nt)Math pow(2,lastLevel+1);;
lastNode = bottomRightNode;

bottomLeftNode = bottomLeftNode . getParent () ;

}

V&

* 3. When the lastNode is bottomRightNode

*/

else if(lastNode.getIndex ()=—bottomRightNode. getIndex())

{

memberCounter——;
lastNode = bottomRightNode. getParent() getLeft Child () ;
bottomRightNode = bottomRightNode. getParent();

145
/* :
* 4. When the lastNode is the right child of a middle node
*/
else if(lastNode.getState ()==State .RIGHT)

{

memberCounter——;
lastNode = lastNode.getParent().getLeftChild ();
}
/*
* 5. When the lastNode 15 the left child of a middle node
*
/

else if(lastNode.getState ()=State .LEFT)

{

memberCounter—-—;

/* probing the lastNode x/

currNode = lastNode;

while (currNode. getState ()==State .LEFT)
currNode = currNode.getParent () ;

currNode = currNode. getParent (). getLeftChild ();

while (currNode. getRightChild () I=null)
currNode = currNode. getRightChild () ;

lastNode = currNode;
}
else .
Objects3D . VectorOperation. errMassageExit ("———>_(none.of_the_above)”+
"ERROR, _the_node_.can.not_.be_deleted !!!(inside .EventHeap/Delete)”,
»EventHeap/Delete”) ;

/%% following part is for remowing the comnection of the parent of the deletedNode
* . '
if (deletedNode. getState ()==State .LEFT)
deletedNode. getParent () .setLeftChild (null);
else if(deletedNode.getState ()==State .RIGHT)
deletedNode. getParent () . setRightChild (null);
else)
Objects3D . VectorOperation . errMassageExit ("ERROR, .the_node_to.be.deleted_does’nt
~have.Dir!!!(inside _EventHeap/Delete)”,
”EventHeap/Delete”) ;
this. UpdateNodePosition (node);

return ;
¥
Ak
*+ Returns a string representation of the event queue.
*
* @return o string representation of this event queue.
*/

public String toString()

{

return(”\n\n 4
?\n...Event_.Heap._.Information..”+
7:\11 . 77+
”\nl..lastLevel:.” 4+ lastLevel+
"\n2._memberCounter:.” + memberCounter+

”\n3._possibleNodes:.” + possibleNodes+

”\n4._heapRoot.Value:.” + heapRoot.getTime ()+

”\n5._Root.left Child.Value:.” + heapRoot.getLeftChild (). getTime ()+

"\n.._.Root.left _left .Value:.” + heapRoot.getLeftChild ().getLeftChild ().
getTime ()+

"\n...Root.left _right._.Value:.” 4+ heapRoot.getLeftChild ().getRightChild ().

146

getTime ()+
?\n6:_.Root.rightChild .Value:.” + heapRoot.getRightChild () .getTime ()+
?\noo..Root_right .left .Value:.” + heapRoot.getRightChild () .getLeftChild ().
. getTime ()+ . : :
"\n...Root.right .right _.Value:.” + heapRoot.getRightChild ().getRightChild ().
getTime ());

}

public EventNode getHeapRoot (){
return heapRoot; '
}

public int getMemberCounter () {
return memberCounter;
}

EventNode.java:

147
The EventNode implements the elements of event queue. The

nodes of the event queue, the particle nodes and the launch node, are instantiated from this

class.

package SystemEvents;

import mySimulation. Particle;

public class EventNode {
JEx
* The states of nodes.
3
* RIGHT: right child of
*
*
*/

public enum State { LEFT,
/o
*/

private double time;

VAT

*

import mySimulation.SimulationManager;

LEFT: left child of their parent.

ROOT: Toot of the heap.
UNDEFINED: undefied status.

* The time of the earlies event of the associated particle.

x The type of the earlies event of the associated particle.

private Event'.EventType nextEventType;

%+ The event of the particle associated with this node.

VAT

* The indexr of the node
*/

private int index;

[

* The level of the node
private int level;

VEE:

%« The state of the node.
*/

private State state;

VAT

*/

private Event pEvent;
JEx

* The parent of the mnode.
*/

private EventNode parent;
VTS

* The left child of the
*/

private EventNode leftChild;

their parent.

RIGHT, ROOT, UNDEFINED }

in the event heap.

in the event heap.

node.

148

VET:
* The right child of the node.
*/

private EventNode rightChild;

VETS

* Creates a new instance of EventNode.

*

% @param e the event of the particle associated with this node.
*/

public EventNode(Event e){

pEvent = e;

if (pEvent==null) :)
this.setNextEventNodelInfo (SimulationManager . SystemTime+(SimulationManager .
AJM_Nozzle. getLunchingTimelInterval ()),
Event.EventType.launchType) ;
else :)
resetNextEventNodelnfo () ;

index = —1;

level = —1;

state = State .UNDEFINED;
parent = null;

leftChild = null;
rightChild = null;

}

VAT)
* Updates the time for launching the next particle. This is only used for the launch

public void setNextEventNodelnfo_LunchingParticle(){
if (nextEventType!=Event.EventType.launchType)

Objects3D.. VectorOperation . errMassageExit (" The_function..’
setNextEventNodeInfo_LunchingParticle ()’ .must_be.called.for.
LunchingParticleEvent _ONLY” ,

”EventHeapElement / :
setNextEventNodelnfo_.LunchingParticle

0")s

this.time 4= SimulationManager. AJM_Nozzle. getLunchingTimelnterval () ;

SimulationManager . AJM_EventHeap . UpdateNodePosition (this);

if (((SimulationManager . AJM_EventHeap. getHeapRoot () . getLeft Child ())!=null &&
(SimulationManager . AJM_EventHeap . getHeapRoot () . getLeft Child () . getTime ()<
SimulationManager . AJM_EventHeap . getHeapRoot () . getTime())) ||

((SimulationManager . AJM_EventHeap . getHeapRoot () . getRightChild ())!=null &&

(SimulationManager .. AJM_EventHeap . getHeapRoot () . getRight Child () . getTime ()<

SimulationManager . AJM_EventHeap . getHeapRoot () . getTime ()))) :
Objects3D . VectorOperation . errMassageExit (”wrong.order.in._.heap”,”
EventHeapElement”) ; ‘

}
S

* Resets the time and tyoe of the event of this mnode to default values.
public void resetNextEventNodelInfo (){
time = Double. POSITIVE_INFINITY ;
nextEventType = Event.EventType.undefinedType;

VAT

149

* Swaps the position of this node with the given node.
E3

* @param secondElement a node.
*/
public void swapNode(EventNode secondElement) {
double tempTime = secondElement.getTime();
Event.EventType tempType = secondElement . getNextEventType () ;
Event tempEvent = secondElement. getEvent ();

secondElement . setEvent (this . pEvent);
secondElement . setNextEventNodeInfo (this.time, this.nextEventType);

this.setEvent (tempEvent) ;
this.setNextEventNodelnfo (tempTime, tempType);

null)

if (this.getEvent()!=
t().getOwnerParticle () .setEventNode(this);

this.getEven

if (secondElement . getEvent () !=null)
secondElement . getEvent () . getOwnerParticle () .setEventNode (secondElement) ;

}
Virs

* Updates the position of the node inside the event heap.

*

% @param P the particle associated. with this node.

public void changeElement_Place_Info(Particle P){

if (Pl=pEvent.getOwnerParticle())

Objects3D . VectorOperation . errMassageExit ("P!l=pEvent. getOwnerParticle ()”,”

EventHeapElement/changeElement_Place. Info()”),

thls pEvent. pickNextEventInfo () ;

SimulationManager . AJM_EventHeap. UpdateNodePosition(this);

}
VEES

% Sets the time and the nextEventType wvariables of this node to new wvalues.
*/

public void setNextEventNodelnfo(double time, Event.EventType type){
this.time = time;

nextEventType = type;

}

public double getTime () {
return time;
}

public Event.EventType getNextEventType(){
. return nextEventType;
}

public EventNode getLeftChild () {
return leftChild;
})

public void setLeftChild (EventNode node) {
if (node!=null)
{
node.state = State.LEFT;
node. parent = this;
leftChild = node;
b
else
this.leftChild = null;

150
}

public EventNode getRightChild (){
return rightChild;
Yo

public void setRightChild (EventNode node){
if (node!=null)

{
node.state = State . .RIGHT;
node. parent = this;
rightChild = node;

}

else

this.rightChild = null;

}

public EventNode getParent () {
return parent;

} =

public void setParent(EventNode node) {
parent = node;

¥

public Event getEvent (){
return pEvent;

}

public void setEvent (Event e){
pEvent = e;

} . " P

public int getIndex () {
return index;
}

public void setIndex(int i){
index = 1i;
} -

public int getLevel (){
return level;

}
public void setLevel(int 1){
level = 1; :
}

public State getState(){
return state;:
}

public void setState(State s){
state = s}
}

151

EventP PCOHISIOHJ ava: The EventPPCollision class is used to predict and

handle collisions between particles.

package SystemEvents;

import Objects3D . Vector3D;

import Objects3D . VectorOperation;

import java.lang.Math; import java.util.x;

iﬁlport SystemEvents. Event . EventType;

import mySimulation.*; '

import SystemEnvironment . x;

import SystemEvents.Event.enteredCubeType;
| import Objects3D . Vector3D;

publ}c class EventPPCollision {

* %

* Auziliary variables used by the P_P_CollisionTime method. They defines as static
variables to reuse their memory spaces.

static Vector3D Xl=mnew Vector3D (), X2=new Vector3D ();

Vess ,
* Awuziliary wvariables used to store a pair of the last overlapped particles.

static int overLappedP1=0, overLappedP2=0;

/

*

*

* Detects a. particle—particle collision between the two given particles.
*
* @param Pl the first particle.
* @param P2 the second particle.
*
* @return the time of the collision between two particles. If the particles are not
colliding, infinity will be returned.
*/
public static double P_P_CollisionTime(Particle P1, Particle P2)
{

if (theyJustCollided (P1,P2) || Pl.getID{()==P2.getID())
return (Double . POSITIVE_INFINITY) ;

int particleld = SimulationManager.collParticleld, partnerId=SimulationManager.
collPartnerld;
double R1=P1.getRadius (), R2=P2.getRadius();
double distance, R; i
double diffP1Time = SimulationManager.SystemTime~P1. getParticleTime () ;
double diffP2Time = SimulationManager.SystemTime~P2. getParticleTime () ;
boolean backwardTime = false;
- double minTime = —1;

X1.setPoint (P1l. getPosition ());
X2.setPoint (P2. getPosition ());
Vector3D V1 = Pl.getLinearVelocity ();
Vector3D V2 = P2.getLinearVelocity ()3

152

X1. addW1th(VectorOperatlon multiply (V1,diffP1Time));
X2.addWith(VectorOperation. multiply (V2,diffP2Time)) ;
Vector3D deltaX = VectorOperation.subtract (X1,X2);

distance = VectorOperation.subtract (X1,X2).getNorm();

distance = deltaX.getNorm();
R = RI4R2;

if (distance=R)

if (P1.getParticleTime ()!=P2. getParticleTime())
VectorOperation.errMassageExit (” These_two.particles_.have_already.collided.at
~the_time.O.and_.P1l. getPar” +
”ticleTime ()!=P2. getPartlcleTlme() 17,7 EventHandler PP Collision/
P_P_CollisionTime ()”); .
return Double. POSITIVE_INFINITY ;

}
else if(distance<R)
{
Vector3D Vlitest = VectorOperation.multiply (V1,—1.0);
Vector3D V2test = VectorOperation. multiply (V2,-1.0);
double timeRemOverlap = getRoot (deltaX, VectorOperation.subtract(Vl1test, V2test),
R); v
X1 = VectorOperation.add(VectorOperation . multiply (V1test,timeRemOverlap),X1);
X2 = VectorOperation.add(VectorOperation. multiply (V2test,timeRemOverlap),X2);
Vector3D deltaXtest = VectorOperation.subtract (X1,X2); .
distance = deltaXtest.getNorm () ;
if (timeRemOverlap!=Double. POSITIVE_INFINITY &&
timeRemOverlap>0 && isInBoundary (X1,P1. getRadlus()) && isInBoundary (X2,
P2.getRadius()))

double t = SlmulatlonManager SystemTlme——tlmeRemOverlap,
if (t<P1l.getParticleTime())

if (P1.getLastEvent ()==Event.EventType. iaunchType)
f ('hadOverlap (Pl.getID () ,P2.getID()))

if (P1.getLastEvent ()==Event.EventType.launchType ||
P2.getLastEvent ()==Event . EventType . launchType)
mySimulation. Counters.overAtLaunch++;
mySimulation. Counters.overlapCounting++;
overLappedP1 P1l.getID();
overLappedP?2 P2.getID () ;

[l

return Double. POSITIVE_INFINITY ;
}

s
if (t<P2. getParticleTime ())
if (Pl.getLastEvent ()==Event.EventType.launchType)

if (!hadOverlap (P1l.getID () ,P2.getID()))

{ .

if (Pl.getLastEvent ()=—Event.EventType.launchType ||
P2.getLastEvent ()==Event . EventType.launchType) .

mySimulation. Counters.overAtLaunch+4+;

mySimulation. Counters.overlapCounting-++;

overLappedP1 Pl.getID();

overLappedP?2 P2.getID ()}

([l

}
return Double. POSITIVE_INFINITY ;

153
return t;

}

else

{ .
if (!hadOverlap (P1.getID () ,P2.getID()))

if (Pl.getLastEvent (}==Event.EventType.launchType ||
Pl.getLastEvent ()==Event . EventType. launchType)
mySimulation. Counters.overAtLaunch++;
if (timeRemOverlap=Double . POSITIVE_INFINITY)
mySimulation. Counters. infinit++;
if (timeRemOverlap<0)
mySimulation. Counters.remOverLapTime++;
if (distance<R)
mySimulation . Counters . disLessR++;
if (!isInBoundary (X1,P1.getRadius()) || !isInBoundary(X2,P2.getRadius()))
mySimulation. Counters.isNotInBound-++;

mySimilation. Counters. overlapCounting++;
overLappedPl = P1.getID();
overLappedP2 = P2.getID ();

}

return Double. POSITIVE_INFINITY ;

}

Vector3D deltaV = VectorOperation.subtract(V1,V2);

/* ' , _

* If particles are mot owverlapping at time 0, and the equation has two solution,
then)

* the smaller solution 1is the time of their next collision.

* Otherwise, if the equation has no solution, the particles will not collide if
they

* move along the same straight line indefinitely.

*/

double result = getRoot(deltaX, deltaV, R);

if (result==Double . POSITIVE_INFINITY)
return result;

if(result == Double.NaN || result == Float.NaN || result==0 || result<0)
VectorOperation . errMassageExit (”result otime.—_" + result, ”
EventHandler _PPCollision/P_P_CollisionTime ()”);
if (result!=Double. POSITIVE_INFINITY)
if (backwardTime)

SimulationManager . SystemTime = minTime + result ;
return SimulationManager.SystemTime;

result = SimulationManager.SystemTime + result;
)

return result;

~

Checks if the two particles had overlapped .

* %
*

*

* @param i1 the id of the first particle.
* @param i2 the id of the second particle.
*
*

’

Q@return true if the particle with id, i1, had overlapped with the particle with id

154
i2; false otherwise.
private static boolean hadOverlap(int il, int i2){)
return ((il=overLappedP1 && i2=—overLappedP2) || (il==overLappedP2 && 12=
overLappedP1l));

}

Vel .

x Checkes if the particle is about to leave the system.

* .

x @param p the center of the particle.

% @param radius the r_adz“us of the particle.

*

% @return true if particle is about to leave the system; flase otherwise.
=/

private static boolean isInBoundary(Vector3D p, double radius){

return(p.getX ()—radius>0 && p.getX ()+radius<SimulationManager. AJM_Environment .
getWidth () :

&& p.getY ()—radius>0 && p.getY ()+radius<SimulationManager. AJM_Environment . getWidth

0 4
&& p.getZ ()—radius>0 && p.getZ ()+radius<
(SimulationManager . AJM_Nozzle. getStand_off_dis ()+SimulationManager .
AJM_Substrate. getSubstrateDepth ()));

~ =

¥ ¥* ¥ X ¥

Solves a quadratic equation to find the collision time between two particles.

<p>

Solving the equation requires that particles are not overlapping at time 0.

If the solution of the equation, has only one positive solution, the solution %s the
time of the mext collision,

* and if it has two positive solution' the smaller one is the time of the next

collision.

* If it does mot have any positive solution, these two particles will not collide.

% .

+ @param deltaX subtraction of the positions of the two particles.

% @param deltaV subtraction of the veloceties wvectors of the two particles. .

x @param R sum of the radii of the two particles.

% @return the time that two particles collide with each other if the particles are
colliding; 4nfinity otherwise.

k

/

public static double getRoot(Vector3D deltaX, Vector3D deltaV, double R){
double t1, t2, result; .
double a, b, c;

a = deltaV .getSquareNorm () ;)
b = 2.0% VectorOperation.dotProduct(deltaV ,deltaX);

¢ = deltaX .getSquareNorm () —(R+R) ;
/* .
+ Now in order to gain the time ”t”? we have to calculate the roots of this equation

(t1,t2):
x ax(t 2)+b(t)+c=0;

*/
if (((bxb)—(4.0xaxc))<0)
return Double.POSITIVE_INFINITY ;

tl = (—b + Math.pow((bxb)—(4.0%axc) , 0.5)) / (2.0xa);
t2 = (—b — Math.pow((bsb)—(4.0xaxc) , 0.5)) / (2.0%a);
result = —1;

if (£1>=0 &b t2>=0)
return Math. min(t1,%2);

155
else if(t1<0 && t2>=0)
return t2;

else if(t1>=0 && 12<0)
return tl;

else if(t1<0 && t2<0)
return Double. POSITIVE_INFINITY ;

else if(tl==Double.NaN || t2=Double.NaN || tl==Float.NaN || t2=Float.NaN)"
return Double. POSITIVE_INFINITY ;)

else

{

SimulationManager . printStatistics () ;
System . exit (0);

return Double.POSITIVE_INFINITY ;
}

VAT
* Checks if the two given particles were the last two particles that their collision
was handled.

*

* @param P1 the first particle.

* @param P2 the second particle.

* @return true if the two particles were the last two particles that their collision
was handled; false otherwise.

*/

public static boolean theyJustCollided (Particle P1l,Particle P2){
int particleld = SimulationManager.collParticleld, partnerIld=SimulationManager.
collPartnerld; :

if(Pl.getID ()==particleld)
return (P2. getID ()==partnerld);
else
return ((P1. getID ()==partnerld)&&(P2: getID ()=—=particleld));
}
Jxs |
* Renew the memberships of the particle in environment cells and assigns the particle
to the cells that contain it or the one
% in which the particle is about to enter.

*
% @param P a particle that its particle—particle collision was just handled.
*/

public static void updatingCubesAfterPPColl(Particle P)

{
~if (P. getOldSpace ()==null)
return;
if (P.getCurrentSpace ()=null)
Objects3D . VectorOperation. errMassageExit (”P. currCube=null!\n” + P + ”\nold.
cube:.” + P.getOldSpace() +
»\ncurrCube:.” + P.getCurrentSpace ()
,”EventHandler.PPCollisoin/updatingCubesAfterPPColl”);
P.setCurrentSpace (P.getOldSpace());
return; _ o ‘
} :)
SystemEnvironment . Cell oldCube = P.getOldSpace();
double distance=0;

//Back
if (P.getOldSpace().index1==P.getCurrentSpace () .index1+41)

156
distance = oldCube.getCubePosition () .getX ()-P.getX();

//Front =
if (P.getOldSpace() .index1=P.getCurrentSpace () .index1—1)
distance = P.getX() — (oldCube.getCubePosition () .getX ()+oldCube. getSize () . getX

)

// Left :
if (P.getOldSpace() . index2=P. getCurrentSpace () .index2+41)
distance — Math.abs(oldCube. getCubePosition () .getY ()—P.getY 0O);

//Right)
if (P.getOldSpace () .index2=P.getCurrentSpace () .index2-1)
distance = P.getY () — (oldCube.getCubePosition().getY ()4+oldCube. getSize () . getY

03

//Top
if (P.getOldSpace() . index3=P.getCurrentSpace () .index3+1)
distance = oldCube.getCubePosition () .getZ ()-P.getZ();

//Bottom
if (P.getOldSpace() .index3=P. getCurrentSpace () .index3—1)
distance = P.getZ () — (oldCube.getCubePosition () .getZ ()+oldCube. getSize () . getZ -
0);

distance = Math.abs(distance);
if(distance>P.getRadius())

P.getOldSpace () . deleteMemberFrom (P) ;
P.setOldSpace(null);

}

else

{
SystemEnvironment . Cell tempCube;
tempCube = P.getOldSpace();
P.setOldSpace(P.getCurrentSpace ());
P.setCurrentSpace (tempCube) ;

}

¥
Ve

+ Handles the collision between two given particles by updting their positions and
their wvelocities. :)

To update their position moves the particle to time at which collision occurrs. ’

To update their velocities, a coefficient of restitution approach is used .

@param P1 first particle.
@param P2 second particle.
@param time the time of at which the two particles collide with each .other.

¥ ¥ KX X X X

public static void handleEvent (Particle Pl1, Particle P2, double time)
{ .
double t1 = time — P1l.getParticleTime ();
double t2 = time — P2.getParticleTime();

Pl.increaseNumPPColl () ;
P2.increaseNumPPColl () ;
Pl.updatingParticlePosition(t1);
P2.updatingParticlePosition(t2);

Pl.setParticleTime () ;

157

P2.setParticleTime () ;
updatingVelocities (P1, P2);
updatingCubesAfterPPColl (P1);
updatingCubesAfterPPColl (P2);
}
% Update the wvelocities of the two given particles using a coefficient of restitution
approach.
* .
* @param P1 first particle.
* @param P2 second particle.
public static void updatingVelocities(Particle P1, Particle P2)//(Vector3D Vi, Vector3D
V2, Vector8D X1, Vector3D X2, double Mi1, double M2)
{ v
VectorOperation opr = new VectorOperation ();
Vector3D V1 = Pl.getLinearVelocity ();
Vector3D V2 = P2.getLinearVelocity ();
Vector3D X1 = Pl.getPosition();
Vector3D X2 = P2.getPosition ();
Vector3D n = opr.subtract (X2,X1).normalize ();
Vector3D tl1 = opr.crossProduct(n,V1).normalize();
Vector3D t2 = opr.crossProduct(n,tl).normalize();
double V1n = opr.dotProduct(V1,n);
double V1tl = opr.dotProduct(V1,t1);
double V1t2 = opr.dotProduct(V1,t2);
double V2n-:=-opr.dotProduct(V2,n);
double V2t1 = opr.dotProduct(V2,t1);
double V2t2 = opr.dotProduct(V2,t2);
double epp = Particle.get-epp();
double M1 = P1.getMass();
double M2 = P2.getMass () ;
double finVlin = (M2x(V2n + epp*(V2n—Vin)) + (MixVin)) /(MIH+M2);
double finV2n = (Mlx(Vln — epp*(V2p—Vin)) + (M2%V2n)) /(MHM?2);
Vector3D vn,vtl,vt2;
~vn = opr.multiply(n, finVin);
vtl = opr.multiply (t1,V1tl);
vt2 = opr.multiply (t2,V1t2);
Pl.setLinearVelocity (opr.add(vn,vtl,vt2));
vn = opr.multiply (n, finV2n);
vtl. = opr.multiply (t1,V2t1);
vt2 = opr.multiply (t2,V2t2);
P2.setLinearVelocity (opr.add(vn,vtl,vt2));
¥
VAT
* Finds the smallest particle—particle collision time between the given particle and.
members of the given list.
* previous partner. thurfore, we have to find the new partner for it.
* @param P a particle
* @param Members a list which includes mneighbors of the particle.
*
* @return true if the particle is colliding with the partner of some other particle
earlier than they collide with each other;

x false if the list is empty, the particle is found to collide with a particle that
does mot have any partner,
% or the particle is mot colliding with any of its nezghbor
*/
public static boolean predictPListCollision (Particle P, Llst Members).
{ v
double tempTime = 0, minTime=Double.POSITIVE_INFINITY ;
Particle collidingParticle=null, tempParticle;
int count, 1i;
SystemEnvironment . Cell. pCube = P.getCurrentSpace () ;
count = Members. size () ;

P.getEventNode() .resetNextEventNodelnfo () ;
P.getEvent () . getPPCollision () .resetInfo () ;.

//1. The list is empty.
if (count==0)

P.getEventNode().changeElement_Place.Info (P);
if (P.getEventNode () . getTime () !=P.getEvent () . getTransfer () .getMinTime () &&

P.getEventNode () . getTime ()!=P.getEvent () . getPSCollision () . getMinTime())

Objects3D . VectorOperation . errMassageExit (” if (count==0)"
" BEventHandler_PPCollision/P_List_CollisionTime ()”);
return false; .

for (i=0; i<count; i++)
{ .
tempParticle = (Particle)Members. get(1);
tempTime = P_P_CollisionTime (P,tempParticle);

o
« The third expression inside the ”if” means that the curTentPartner(
tempParticle) should not

x collide with any other particles before colliding with particle P.

*

* IMPORTANT: :

* _ Before, the logical operation in the third ezpression was ’<=" but it
was changed to "<” to

* ignore the case that the three particles collide with each other at the
same -time which is

* " not cosidered in the model.

*/

if (tempTime!= Double. POSITIVE INFINITY &&
tempTime<=minTime && }
tempTime<tempParticle . getEvent () . get PP Collision () . getMinTime ())

minTime = tempTime;
~collidingParticle = tempParticle;

}

VAT

* When the condition znszde the 7if” stisfies, the particle P will not collide
with any

* particle from the List.

*

x 4. There was not any PPCollision between the particle and the list.

*/

if(collidingParticle=null)

P.getEventNode() . changeElement_Place_Info (P);
return false;

158

159

if (minTime=Double . POSITIVE_INFINITY)
Objects3D . VectorOperation . errMassageExit (" minTime—Double . POSITIVE_INFINITY !!!”
”EventHandler.PPCollision/
P_List_CollisionTime ()”);

if(collidingParticle.getEvent ().getPPCollision () .getMinTime ()<=minTime)
Objects3D . VectorOperation . errMassageExit ("PPCollTime.of.collidingParticle.is.
"~ less.than_.minTime!!!” 4 ”We_are.not.supposed._to.pick.such.a.
collidingParticle!”,
"EventHandler_.PPCollision/
P.List-CollisionTime ()”);

/* :

* This ”74if” is for the case that the next PPCollision of the collidingParticle
should be changed to

* the collision with particle P. Because if the condition applies, it means that
Collision between

* collidingParticle and P will -happen earlier than the curent next PPCollision of
the collidingParticle.

*/

else

P.getEvent () . getPPCollision () .setInfo(collidingParticle, minTime);
P.getEventNode () .changeElement_Place_Info (P);

/* ‘

x* 2. The smallest PPCollision time is found and the colliding particle has
another paritner.

«/

Particle prePartner = collidingParticle. getEvent() getPPColllsmn()
getInvolvingParticle () ;

if(prePartner!=null && P!=prePartner)
return true;

else

{
/* ' .
* 3. The smallest PPCollision time is found and the colliding particle
does not have any other partner.
*
- collidingParticle.getEvent ().getPPCollision () .setInfo (P, minTime);
collidingParticle.getEventNode().changeElement_Place_Info(collidingParticle
)3

“ return false;

}

Objects3D . VectorOperation.errMassageExit (" unusual.situation!!!” [”
EventHandler_.PPCollision/P_List_CollisionTime ()”);
return false;

et

VEES

x Adds a new list to lhe neighbor of the particle
*

* @param neighbors -the list of meighbor.

* @param | a new list .

* @param ¢ a cell associated with the list [

% @param P a particle

private static void addToNeighbors(List neighbors, List 1, Cell ¢, Particle P){
if (1=null)
return;
neighbors.addAll(1);
¢ .addMemberTo (P) ;
P.getContainingCube () .add(c);
}

VAT
% Removed the membership of a particle from its previous cells.
*
% @param P a particle.
*/
" public static void resetContainngCubes(Particle P){
List cells = P.getContainingCube ();
P.setContainingCube (new LinkedList ()); .
Cell curr = P.getCurrentSpace(), prev = P.getOldSpace();
for (int i=0;i<cells.size ();i++)

Cell ¢ = (Cell)cells.get(i);
¢ .getMembers () .remove (P) ;

}
VAT

% Creates a list of particle current mneighbors.

*

% @param P a particle.

% @return a list of particle current neighbor.

*/

public static List createList(Particle P) {
Cell origin=P.getOldSpace(), dest=P. getCurrentSpace (),

templ,temp2,temp3,temp4,temp5,temp6, temp7 ;temp8;
List neighbors = new LinkedList (dest.getMembers());
resetContainngCubes (P) ; .
if (origin!=null && origin!=dest)
addToNeighbors(neighbors, origin . getMembers () , origin ,P);

double x=P.getX (), y=P.getY (), z=P.getZ(), r=P.getRadius () ;

Vector3D vl=new Vector3D (), v2=new Vector3D (), v3=new Vector3D (), vd=new Vector3D ()

)

vi=new Vector3D (), v6=new Vector3D (), v7=new Vector3D (), v8=new Vector3D();

vl.setPoint (x—r,y—r,z—T)

v2.setPoint (x—r,y—r,z+r)

v3.setPoint (x—r,y+r,z—r)

vd .setPoint (x—r,y+r,z+r)

v5.setPoint (x+r,y—r,z—1);
)
)
)

v6.setPoint (x+r,y—r,z+r
v7.setPoint (x+r,y+r,z—r
v8.setPoint (x+r,y+r, z+r

templ = mySimulation.SimulationManager . AJM_Environment . findCube (vl);
if (templ!=null && templ!=origin && templ!=dest)
addToNeighbors(neighbors ,templ. getMembers () ,templ,P);

temp2 = mySimulation.SimulationManager. AJM_Environment . findCube (v2) ;
if (temp2!=null && temp2!=origin && temp2!=dest &&
. temp2!=templ)

addToNeighbors(neighbors ,temp2.getMembers () , temp2 ,P);

temp3 = mySimulation.SimulationManager . AJM_Environment . findCube (v3);
if (temp3!=null && temp3!=origin && temp3!=dest &&
temp3!=temp2 && temp3!=templ)
addToNeighbors (neighbors , temp3. getMembers () , temp3 ,P);

160

temp4 = mySimulation.SimulationManager . AJM_Environment . findCube (v4);
if (temp4!=null && temp4!=origin && tempd4!=dest &&
temp4!=temp3 && tempd!=temp2 && temp4!=templ)
addToNeighbors (neighbors, temp4 . getMembers () , temp4 ,P) ;

temp5 = mySimulation.SimulationManager : AJM_Environment . findCube (v5);
if (tempb!=null && tempb5!=origin && tempb5l=dest &&
tempb!=temp4 && tempb!=temp3 && tempb!=temp2 && temp5!=templ)
addToNeighbors (neighbors, temp5. getMembers () , temp5,P) ;

temp6 = mySimulation.SimulationManager . AJM_Environment . findCube (v6) ;
if (temp6!=null && temp6!=origin && tempb6!=dest &&
temp6!=temp5 && tempb6!=temp4 && tempb!=temp3d && tempb!=temp2 &&
temp6!=templ)
addToNeighbors(neighbors,temp6.getMembers () ,temp6,P) ;

temp7 = mySimulation. SimulationManager . AJM_Environment . findCube (v7);
if (temp7!=null && temp7!=origin && tempT7!=dest &&
temp7!=temp6 && tempT7!=tempb && tempT7!=tempd && temp?'—tempS &&
temp7!=temp2 && temp7!=templ)
addToNeighbors (neighbors,temp7.getMembers () , temp7,P) ;

temp8 = mySimulation.SimulationManager. AJM_Environment . findCube(vS)'
if (temp8!=null && temp8!=origin && temp8!=dest &&
temp8!=temp7 && temp8!=temp6 && temp8!=tempd && temp8!=temp4 &&
temp8!=temp3 && temp8!=temp2 && temp8!=templ)
addToNeighbors(neighbors,temp8. getMembers () ,temp8,P) ;

return neighbors;

}hv-’

Checks if a list of meighbors must be created.

@param P a particle.
@param c a cell containing the particle.

EE L

@return true if list must be created; false otherwise.

*/

public static boolean listMustBeCreated (Particle P, Cell ¢)

{

double pr = SimulationManager. precision, r=P.getRadius();
Vector3D p = c.getCubePosition (); ‘
Vector3D s = c.getSize();

return ((P.getX ()+r<=(p.getX ()+s.getX ()+pr) && P.getX ()—r>=(p.getX ()—pr) &&

P.getY ()+r<=(p.getY ()+s.getY ()+pr) && P.getY ()—r>=(p.getY ()—pr) &&

, P.getZ ()+r<=(p.getZ ()+s.getZ ()+pr) && P.getZ ()—r>=(p-getZ ()—pr)));
Vixs

* Predicts the next particle—particle collision for the given particle.
*
* @param P a particle.
*/
public static void predictEvent(Particle P)
{
mySimulation. Counters. predictPPColl++;
List members = new LinkedList (P.getCurrentSpace () .getMembers());
if (P.getOldSpace()!=null)
members. addAll (P. getOldSpace () . getMembers ()) ;
List removedMembers = new LinkedList () ;
int i=0;

161

Particle currP = P;
Particle prePartner;
Particle prevP=null;
boolean result=false;

if (P!l=null && listMustBeCreated (P,P.getCurrentSpace()))

while (members. size () >=1)

{

162

members = createList (P);

i+
members . remove (currP) ;

// find the mearest collision between currP and members list
result = predictPListCollision (currP, members);

// continute — find the collision between the old partner of the new partner of
the currP and rest of the list
if(result)

removedMembers . add (currP) ;
prePartner = currP.getEvent (). getPPCollision () .getInvolvingParticle();
if (! members. contains (prePartner))
Objects3D . VectorOperation . errMassageExit (7 ! members. contains (prePartner)
» ”EventHandler _PPCollision/predictEvent”);

members . remove (prePartner) ;
removedMembers . add (prePartner) ;

_ prevP = currP;
Ve
%+ Finds a mew partner for the prePartner.
*/

currP = prePartner.getEvent () .getPPCollision (). getInvolvingParticle ();

if (currP==null)
mySimulation. Counters. predictPPColl——;

if (currP=—=null)
return;

if (currP==prevP)
Objects3D . VectorOperation . errMassageExit (7 currP .=—_prevP” + 7\
nEventHandler.PPCollision/setCubePPColl_After_Transfer_Lunching()”

)

»EventHandler_PPCollision/predictEvent”);

prePartner.getEvent () . get PP Collision () . setInfo (prevP,; prevP.getEvent ().
getPPCollision () . getMinTime ()) ;
prePartner. getEventNode () . changeElement_Place_Info (prePartner);

try{
currP . getEventNode () . resetNextEventNodelInfo () ;

currP . getEvent () . getPPCollision () . resetInfo () ;
}catch(NullPointerException e)

EventTransfer.removeParticle (currP);

Objects3D . VectorOperation . errMassageExit (”currP:.” + currP,”
EventPPCollision/predictEvent”);

if (currP!=null)

{

//mySimulation . Counters.removeParticleInPPPredictEvent++;

163

mySimulation. Counters. predictPPColl——;
return;

if (currP.getCurrentSpace ()!=prevP.getCurrentSpace())
{
members = new LinkedList (currP.getCurrentSpace () .getMembers());
if (currP.getOldSpace()!=null)
members. addAll (currP . getOldSpace () . getMembers ()) ;
members . removeAll (removedMembers) ;

}

else
break;

mySimulation. Counters. predictPPColl——;

VAT
* Predicts the mnext particle—particle collisions for the two given particle after
their collision.
*
* @param P1 first particle.
* @param P2 second particle.
*/
public static void predictEvent (Particle P1, Particle P2)
{
mySimulation. Counters. predictPPColl++;
List members;
List removedMembers = new LinkedList ();
int i=0;
Particle temtPartner;
Particle currP = P1;
Particle prePartner;
Particle prevP;
boolean result=false;

if (Pl!=null)

membeis = new LinkedList (P1l.getCurrentSpace().getMembers());
if (P1.getOl ace ()!=null)
members. addAll (P1. getOldSpace () . getMembers()) ;
members . remove (P2) ;
removedMembers. add (P2) ;

}

else
members = new LinkedList () ;

if (P1l!=null && !listMustBeCreated (P1,P1.getCurrentSpace()))
members = createList (P1);
System.out.println (members. size () + "....” + Pl.getCurrentSpace().getMembers().size

()

while (members. size () >=1)

{

i4++;
members. remove (currP) ;
result = predictPListCollision (currP, members);

if(result)

removedMembers.add (currP) ;
prePartner = currP.getEvent ().getPPCollision (). getInvolvingParticle();

memnbers . remove (prePartner) ;
removedMembers . add (prePartner) ;
prevP = currP;

currP = prePartner.getEvent () .getPPCollision ().getInvolvingParticle ();

if (currP=null)
mySimulation. Counters. predictPPColl——;

if (currP==null)
return;

prePartner.getEvent () . getPPCollision () .setInfo (prevP, prevP.getEvent 0.
getPPCollision () . getMinTime ()) ;
prePartner.getEventNode () . changeElement_Place_Info(prePartner) H

try{
currP . getEventNode () . resetNextEventNodelnfo (
currP . getEvent () . get PP Collision () . resetInfo (
Ycatch(NullPointerException e)

{

)
)’

EventTransfer .removeParticle (currP);

Objects3D . VectorOperation. errMassageExit (” currP:.” + currP,”
EventPPCollision/predictEvent”);

mySimulation. Counters. predictPPColl——;

return;

if (currP . getCurrentSpace () !=prevP. getCurrentSpace ())-

{
members = new LinkedList (currP.getCurrentSpace () .getMembers 0));
if (currP . getOldSpace ()!=null))
members . addAll (currP . getOldSpace () . getMembers 0);
members . removeAll (removedMembers) ;
}

else break;

mySimulation. Counters. predictPPColl——;
if (P2!=null)
predictEvent (P2);

164

EVGHtPSCOHiSiOH.jaV&: The EventPSCollision class is used to predict

handle particle-surface collisions.

165
and

package SystemEvents;
import Objects3D . Vector3D;
import OcTreeADT . x;
import com.sun.org.apache.bcel.internal. generic.Type;
import com.sun.org.apache.bcel.internal.verifier.statics.DOUBLE_Upper;
import com.threed.jpct.OcTree;
import javax.xml.transform. Result;
import mySimulation . x*;
import mySimulation.SimulationManager;
import SystemEnvironment . x;
import java.util .x;
import Objects3D . VectorOperation;
import Visualization.Plot;
import SystemEvents. EventSphereCubeCollision. CollisionPacket ;
import SystemEvents. EventSphereCubeCollision .Element;
import SystemEvents. EventSphereCubeCollision;
import OcTreeADT. CellularOcTree.Dir;
import Jama.x;
import Jama. util .x;

public class EventPSCollision {

VAT

* The depth of the erosion profile.

*/

public static double maxDepth = Double. NEGATIVE_INFINITY ;
VxS

x The deepest cell.

*/

private static OcTreeADT.OctNode deepestCell = null;

Vit

* The number of points at the profile cross—section to find the best
*/

OcTreeADT . CellularOcTree . getCellSize ()) + 1;

VAT

public static int num_points = (int)(SimulationManager. AJM_Environment.getWidth () /

* The array used to save the points at the profile cross—section to find the best

166

curve fit.

*/

public static double [][] point = new double [num_points][2];

VAT

« The variable used to save the wased energy of particles that is not trasnfer to the
surface.

*/

public static double wastedEnergy = 0;

VEx:

x Initializes the array, point, used to save the points at the profile cross—section .
*/

public static void initPoint (){

for (int i=0; i<num-_points; i++)

point [i][0] = i %*OcTreeADT . CellularOcTree. getCellSize () ;
}
VAT
* An auziliary variable used in the getNormalVar method.
*/
public static double maxVar=0;
VAT
x The last surface cell impacted by a particle.
*/
private static OctNode particleTargetBox;
VAT

% Sets the particleTargetBox variable to the target cell impacted by the last particle
hitting the surface.
*.—/ . IR RN A] LR A i
public static void setParticleTargetBox (OctNode cell){
particleTargetBox = cell;
}

Vixs
x+ Handle particle—Surface collision for the given particle if target cell had not been
removed before by some other particle.

*

% @param P the particle that is hitting the target surface .

x @return true if a successful particle—surface collision occurrs; false if the
collision was unsuccessful which happen when

% the target cell had been removed earlier by the impact of some other partilce and
was turned to the white cell..

*

/

public static boolean handleEvent(Particle P)

{
particleTargetBox = null;
Vector3D normal = new Vector3D(P getEvent () . getPSCollision () . getPlaneNormal())
Vector3D contact = P.getEvent () .getPSCollision () .getContactPoint () ;

if (mySimulation.SimulationManager. AJM_Substrate.removeCellFromOctree (P))
{
if (normal.isEqualTo (P.getEvent () .getPSCollision () .getPlaneNormal 0O))
Objects3D . VectorOperation . errMassageExit (” normal._has_been.changed”,”
handlePScollision”);

double t = (0.2)*P.getRadius () /(P.getLinearVelocity () .getNorm());
settingStatistics (P);

updateParticleVelocity (P, contact);

if (P.getOldSpace ()!=null)

double distance = Math. abs(SimulationManager.AJM_Environment .getDepth() — P

167

.getPosition () .getZ ());
if (distance>P. getRadius())

P.getOldSpace () . deleteMemberFrom (P) ;
P.setOldSpace (null);
}
}
return true;

if (P.isUnusualSituation ())
EventTransfer.removeParticle (P);

VEE:

* When the target cell had been removed before, the unsuccessful partcle—surface
collisoin occurrs and

* method returns false.

*/

return false;

}
VAT

* An auziliary variables used by the setCellLoss method; it is defined as a global
variable to allow reusing its space instead of

* allocating a new space.

*/

private static Vector3D pV = new Vector3D () ;

/%
*. The variable used to store the wvalue of (D/(hxDensityxA)) which is used to calculate
the loss for cells after each impact.

*/

private static double erosionConstant;

Jkx

* Calculates the value of the erosionConstant (D/(hxDensityxA)).
*/

public static void setErosionConstant () {
erosionConstant = (SimulationManager. AJM_Substrate.getD()/
(Math . pow (OcTreeADT . CellularOcTree. getCellSize () /1000.0,3.0) *
SimulationManager . AJM_Substrate. getSurfaceDensity ()));

}
VAT

* Calculates the loss wvariable of the cell which determines the removed volume of the
cell.

% <p>

x Loss = (D/(hxDensityxA))«Mp()*(VxcosAngle) K

* @param cell .

* @param P

* @param mnormal

*/

public static void setCellLoss(OctNode cell, Particle P, Vector3D normal){
// cos of the impact angle
double cosTheta;
double loss,preLoss=cell.getLoss();
double h = OcTreeADT . CellularOcTree. getCellSize () /1000.0;
particleTargetBox = cell; .
cell . numOfColls++;
double N = 1.0;
pV.setPoint (P.getLinearVelocity ());
pV = VectorOperation.divide (pV,1000.0) ;
double V = pV.getNorm () ;
double dotProductNV = (VectorOperation.dotProduct (pV,normal)*—1.0);
double A = hxh;

168

cosTheta = Math.abs(dotProductNV /(N%V));

if (SimulationManager . AJM _Substrate. isBrittle)
loss = erosionConstant*P.getMass () *Math.pow (VxcosTheta, SimulationManager .
AJM_Substrate.getK ());
else
loss = erosionConstant=P.getMass () *Math.pow(V,SimulationManager . AJM_Substrate.
getK ()) *
(Math . pow (cosTheta, SimulationManager . AJM _Substrate.getN1())x*
Math . pow (1.0+ SimulationManager . AJM_Substrate. getHv () *(1.0—cosTheta),
SimulationManager . AJM_Substrate . getN2()));

if (loss!=Double.NaN)
cell .setLoss(cell.getLoss()+loss);

}
VAT

« Remove the cell from the surface whose loss value 1is ‘equal or greater than 1.
*/
public static void removeCell (){
particleTargetBox .setOcType(OctNode. Type .WHITE) ;
OctNode Parent = particleTargetBox.parent;
while (Parent!=null && Parent .getOcType ()!=0OctNode. Type .GRAY)
{
Parent . setOcType (OctNode . Type.GRAY) ;
Parent = Parent.parent;

mySimulation. Counters. numOfRemovedCells++;

}
Ver:

x Check if the given cell must be removed and if wyes invokes the remowveCell method to
removed the cell from substrate.

%

* @param cell the last cell impacted by a particle.
x @param P the last particle impacting the surface.
%
*

@return true if the cell has been removed; false otherwise.

*/

public static boolean checkCellToBeRemoved (OctNode cell, Particle P){
double loss = cell.getLoss();
Vector3D cellPosition = cell.getPosition();

if(loss>=1.0)

wastedEnergy += (loss—1.0);
try

SimulationManager.WriteBoundaryCellInExcel?DY(cellPosition , 0.0);
}catch (ArrayIndexOutOfBoundsException e){}

Visualization .Plot.setRemovedCell(cell . getPosition());
if(cell.getPosition () .getZ ()>maxDepth)

maxDepth = cell.getPosition () .getZ();
deepestCell = cell;

removeCell () ;
return true;

}

else

cell .setOcType(OctNode. Type.CELL) ;
if (loss<0)

VETS

*

¥ ¥ K K K X ¥

*/

public static Dir getMarchingDirection (OctNode cube, Vector3D vl, Vector3D v2, Vector3D

{

System.out. println (?Loss.is«negetive !!!117);
System . exit (0) ; g

double z = loss*OcTreeADT . CellularOcTree. getCellSize () ;
try

{
SimulationManager . writeBoundaryCellInExcel2DY (cellPosition, z);
}catch (ArrayIndexOutOfBoundsException e){}

return false;

Returns the direction which is outward and perpenbdicular to the side face
the impacted edge.

@param cube the cube impacted by a particle.

@param vl an end of the cube edge impacted by a particle.

@param v2 an end of the cube edge impacted by a particle.

@param normal the mormal to the side face containing the impacted edge.

@return the direction which is outward and perpendicular to the side face
the impacted edge.

normal)

// B: back F: front L: left R: right
Vector3D center = cube. getPosition();
if (normal.isEqualTo(EventSphereCubeCollision .topNorm))
{
// pl—>p2 or p2—>p3
if(vl.getX()<center.getX())

if(v2.getX ()<center.getX())
return Dir.B;

else
return Dir .R;

// p3—>p4 or pi—>pl
else
{
if (v2.getX ()>center.getX())
return Dir.F;
else
return Dir.L;

}

else if(normal.isEqualTo(EventSphereCubeCollision .bottomNorm))
{

// pl->p2 or p2—>p3

if(vl.getX()<center.getX())

if (v2.getX()<center.getX())
return Dir .B;

else
return Dir .R;

// p8—>p4 or pi—>pl
else

if (v2.getX ()>center.getX ())

169

containing

containing

170

return Dir.F;
else
return Dir.L;

else if(normal.isEqualTo(EventSphereCubeCollision .backNorm))

{
return Dir.B;
}
else if(normal.isEqualTo(EventSphereCubeCollision . frontNorm))
{

return Dir . F;

}

else if(normal.isEqualTo(EventSphereCubeCollision. leftNorm))

{

return Dir.L;

else if(normal.isEqualTo(EventSphereCubeCollision. rightNorm))

{

return Dir .R;

return Dir.none;

}
VAL

% Returns a vector parallel. to both the zy—plane and the face of the cube on the given
side .

*
x @param cube a cube whose egde is impacted by a particle.

x @param determines the direction at which the face of the cube.is located.
N .

%

@return a vector parall‘el“‘t‘o"bbth ‘the zy—plane and the face of the cube on the given
side .
private static Vector3D getVectorParallelEdge (OctNode cube, Dir dir){
Vector3D pl = cube.getPosition ();
Vector3D p2=null;
if (dir==Dir.R || dir==Dir.L)
p2 = new Vector3D(pl.getX()+0.1,pl.getY () ,pl.getZ());
else if(dir==dir.B || dir==Dir.F)
p2 = new Vector3D (pl.getX() ,pl.getY () +0.1,pl.getZ());
else i
VectorOperation.errMassageExit (?wrong.direction”,” GEometryHandler/getEdge ()”);

return VectorOperation.subtract (pl,p2);

}
VTS

% Changes the given indices to reflect the cell in the given direction.
*
% @param inder a two—dimensional array which stores the indices of an element in the
removedCell array.
* @param d a direction
*/
public static void setNeighborIndex(int [1[]index, Dir d){
if(d = Dir.L)
index [0][1] ——;
else if(d == Dir.R)
index [0][1]++;
else if(d == Dir.B)
index [0][0] ——;
else if(d = Dir.F)
index [0][0]++;

VxS

* Sets the local coordinate system for the particle—surface impact.

* For the cases particles hit\ edges or wvertices of the cells, it estimates the
bisecting plane and

calculates the mormal and tangential vectors to the plane.

@param P the particle impacting the surface.

@param mn the mormal vector to the impact surface.
@param t1 a tangential vector to the impact surface.
@param t2 a tangential vector to the impact surface.

* K K X ¥ ¥

*/

private static void setCoordinateSystem_HitEdge(Particle P, Vector3D n, Vector3D t1,
Vector3D t2)

{

double cellsize = OcTreeADT. CellularOcTree. getCellSize ();

int index [][] = new int[1][2];

index [0][0] = (int)(particleTargetBox.getPosition().getX()/cellsize);
index [0][1] = (int)(particleTargetBox.getPosition().getY()/cellsize);

int X0O=index [0][0], YO=index [0][1];
if (!(X0<Visualization.Plot.count && YO<Visualization.Plot.count))

setCoordinateSystem_HitSquare (P, n, tl1, t2);
return;

}

double Z01 = Math.abs(Plot.removedCell [X0] [YO0]);
double Z02=0.0;
if (particleTargetBox.getPosition ().getZ ()>(SimulationManager. AJM_Environment .
getDepth ()+cellsize))
702 = particleTargetBox.getPosition ().getZ() + (cellsize /2.0) —
SimulationManager . AJM_Environment . getDepth () ;

double Z0 = Math.min(Z02,Z01);

Vector3D vl = P.getEvent () .getPSCollision () .getV1();

Vector3D v2 = P.getEvent ().getPSCollision () .getV2();

Vector3D planeNormal = P.getEvent().getPSCollision () .getPlaneNormal();
Dir dir = getMarchingDirection (particleTargetBox, vl, v2, planeNormal);
Vector3D edgel=null;

double x, y, z;

double currZ;

setNeighborIndex (index, dir);

z=cellsize;

double testCurrx = index [0][0];

double testCurry = index [0][1];

double testCurrz;

try
{
testCurrz = Plot.removedCell [index [0][0]][index[0][1]];
}catch (ArrayIndexOutOfBoundsException e){
setCoordinateSystem_HitSquare (P,n,t1,t2);
return;

}
currZ = Math.abs(Plot.removedCell[index [0][0]][index[0][1]]);

// if this cell and neighbor are in the same level so FLAT surface is wused.
if (currZ==70)
{

setCoordinateSystem_HitSquare (P,n,t1,t2);

return;

171

172
}

// if meighbor cell is deeper

else if(currZ+(cellsize /2.0)>70)

{
double i=index [0][0], j=index [0][1];
// if different between tergetCell and neighbor is 1 level
if ((currZ—70)<=cellsize)

double tempZ = currZ;
while (tempZ=—currZ)
{
i = index [0][0];
j = index [0][1];
setNeighborIndex (index, dir);
try{
currZ = Math.abs(Plot.removedCell [index [0][0]][index [0][1]]);
}catch(ArrayIndexOutOfBoundsException e)

{
}

// this is like a removed cell that between two unremoved cells
if (Math.max(i—X0,j—Y0)==1 && currZ==70)

break;

setCoordinateSystem_HitSquare (P,n,t1,t2);
return;

}

else
edgel = new Vector3D (i-—XO0,j—Y0,1.0);

// if different is more than 1 level
else ‘
{
int stepZ = (int) ((currZ—Z0)/cellsize + 0.5);
edgel = new Vector3D (i—XO0,j—Y0,stepZ);

}

)
Vector3D edge2 = getVectorParallelEdge (particleTargetBox,dir);
n.setPoint (VectorOperation.crossProduct (edgel,edge2).normalize());
t1.setPoint (VectorOperation.crossProduct (n,P. getLinearVelocity ()).normalize());

t2.setPoint(VectorOperation.crossProduct(n;t1).normalize());
} .
else

setCoordinateSystem_HitSquare (P,n,t1,t2);

}
VET:

% Sets the local coordinate system for particle—surface impacts on the square planes
of cells.

@param P the particle impacting the surface.

@param n the normal vector to the impact surface.
@param t1 a tangential vector to the impact surface.
@param t2 a tangential vector to the impact surface.

EIE I O

*/

private static void setCoordinateSystem_HitSquare(Particle P, Vector3D n, Vector3D t1,
Vector3D t2)

{

mySimulation. Counters. numPlaneNormal+4+;
Vector3D planeNormal = P.getEvent () .getPSCollision () .getPlaneNormal () ;

if (planeNormal.getX ()!=0)

n.setPoint (EventSphereCubeCollision . frontNorm) ;

173

tl.setPoint (EventSphereCubeCollision.rightNorm) ;
t2.setPoint (EventSphereCubeCollision . bottomNorm) ;

else if(planeNormal.getY ()!=0)

n.setPoint (EventSphereCubeCollision.rightNorm) ;
t1.setPoint (EventSphereCubeCollision . bottomNorm) ;
t2.setPoint (EventSphereCubeCollision . frontNorm) ;

else if(planeNormal.getZ ()!=0)

{
n.setPoint (EventSphereCubeCollision . bottomNorm) ;
t1.setPoint (EventSphereCubeCollision . frontNorm) ;
t2.setPoint (EventSphereCubeCollision . rightNorm) ;

}
else
VectorOperation.errMassageExit (" undefined.coordinate.system” + ”\nnormal:.” +
planeNormal,” EventHandler _PSCollision/setCoordinateSystem”) ;

}
VEE:
* The degree of the polynomial of the curve fitted to the cross—section of the profile
public static int degreeOfPoly = 3;
VAT
x* The array representing the best fit polynomial.
public static double parameters|[] = new double[(degreeOfPoly+1)];
* Calculates the best curve fit to the cross—section of the erosion profile.
*/

public static void getBestCurveFit ()
{
int ignoredPoints = 6;
int skip = 0;
int numParam = degreeOfPoly+1;
double [][] alpha = new double|[numParam | [numParam];
double [] beta = new double[numParam];
double term = 0;
VETS
x to avotd ezxtra calculation the points[i][0] "k are saved in this array.
*
double [] pointPowK = new double[num_points];

VAT

* Row of equarions matriz

*/
for (int k=0; k < numParam; k++)

for (int i=skip; i < num_points—skip; i=it+ignoredPoints)

VET:
* Calculate =7k
*/
pointPowK [i]=Math.pow (point [i][0], (double)k) ;
VTS)
* Only need to calculate diagonal and upper half of symmetric matriz.
*
/

for (int j=k; j < numParam; j++)

{
VAT

o et
*

*
*
*
*
*

x Calculates terms over the data points

¥ Calculate sigma over points Sigma{z"j * z"k} which is the value of
elements alpha[k][j] and alpha[j][k]

*/
for (int i=skip; i < num_points—skip; i=i+ignoredPoints)
{

VAT

x Calculate z°k % z7J

*/

term = pointhwK [i]* Math.pow(point[i][0],(double)j);
alpha[k][j] += term;

}

/%

* matriz s symmetric

*/
alpha[j][k] = alpha[k][j];

for (int i=skip; i < num._points—skip; i=i+ignoredPoints)

term = (point[i][1] * pointPowK[i]);
beta [k] +=term;

VTS

% Use the Jama QR Decomposition classes to solve for the parameters.

*/

Matrix alpha_matrix = new Matrix (alpha); :
QRDecomposition alpha-QRD = new QRDecomposition (alpha_matrix);
Matrix beta_matrix = new Matrix (beta,numParam);
Matrix param_-matrix;
try {
param_matrix = alpha-QRD.solve (beta_matrix);
}
/o
* QRD solve failed
*/
catch (Exception e) {
return;

}
if (alpha_matrix.det ()==0)

System.out.println ("dte.~—=.0");
return;

}

for (int k=0; k<numParam ; k++)

parameters [k] = param_matrix.get (k,0);
mySimulation. Counters. preNumOfRemovedCells = SimulationManager.countPoints;
return;

Caluclates the mormal of the particle—surface collision wusing the bet curve fit.

@param point the point at which the particle hits the surface.
@param n the mormal vector to the impact surface.

174

175

% @param t1 o tangential vector to the impact surface.
* @param t2 a tangential vector to the impact surface.
* @param P the particle impacting the surface.
*/
public static boolean getNormalToPolynomial(Vector3D point, Vector3D n, Vector3D tl,
Vector3D t2, Particle P){
double x = point.getX();
double y = point.getY ();
double z = point.getZ();
int count = 0;

// if the number of removedCells increased calculate the Parameter of Polynomial.

if (SimulationManager.countPoints<10 || SimulationManager.countPoints ==
mySimulation . Counters . preNumOfRemovedCells+10)

{

mySimulation. Counters. numOfPloyCalc+-+;
getBestCurveFit () ;

}

Vector3D r = VectorOperation.subtract (point,SimulationManager. AJM_Nozzle.
getPosition ());

r.setZ(0);

double radius = r.getNorm();

double pY = SimulationManager. AJM_Nozzle. getPosition ().getY () + radius;

double newY2 = SimulationManager.AJM_Nozzle. getPosition () .getY () — radius;

VL
* polynomial:
* parameters [0] + parameters[1]xz + parameters[2]xx"2 + ... + parameters[T]xz"7
% Derivation of the polynomial:
. ox parameters[1] + 2xparameters[2]xz + 3xparameters[3]xx 2 + ... + Txparameters
[7]xz"6
*/

// derivative at point (pX,pY)
double drv=0;

for (int i=1;i<(degreeOfPoly+1);i++)
drv 4= ixparameters[i]*Math.pow(pY,(i—1));

if (drv==0.0)
return false;

// slop of the mormal to the polynomial at point (pY,pZ). pZ = slopexpY
double slope = —1.0/drv;

Vector3D normalYZ = new Vector3D (0.0,1.0,slope);

normalYZ .normalize () ;

// two wvector on the plane(X,Y). The normalYZ must rotate around deepest cell

Vector3D vl = new Vector3D (0.0,—0.1,0.0);

Vector3D v2 = new Vector3D (x—SimulationManager . AJM_Nozzle. getPosition () .getX (),
y—SimulationManager . AJM_Nozzle. getPosition () .getY () ,0.0);

if (v2.getNorm ()==0)

n.setPoint (EventSphereCubeCollision . bottomNorm) ;
t1.setPoint (EventSphereCubeCollision . frontNorm]);
t2.setPoint (EventSphereCubeCollision .rightNorm) ;
return true; :

}

// det(A,B) = AxzBy—BzAy
double det = (v1.Xxv2.Y) — (v2.Xxv1.Y);

176

// the angle theta is not counter—clockwise
if (det<0)
{

v1l.multiplyBy (—1.0);

normalYZ. multiplyBy (=1.0);

}

// theta is counter—clockwise rotation angle

double cosTheta = VectorOperation.dotProduct(vl,v2)/(vl.getNorm()*v2.getNorm());
double theta = Math.acos(cosTheta);

double sinTheta = Math.sin (theta);

[/

x rotations of z—azxe in a counterclockwise direction when looking towards the
origin

* rotation matix:

x Rz = (cos,—sin,0)(sin,cos,0)(0,0,1);

x rotating using Rz: RzxnormalYZ

*/
double Nx = cosTheta*normalYZ.X — sinThetax*normalYZ.Y;
double Ny = sinTheta*normalYZ.X + cosThetasnormalYZ.Y;

double Nz = normalYZ.getZ();

n.setPoint (Nx,Ny,Nz);

n.normalize () ;

Vector3D vector = VectorOperation.subtract (point,P.getPosition());
t1.setPoint (VectorOperation . crossProduct (n, vector).normalize());
t2.setPoint (VectorOperation.crossProduct(n,t1).normalize());
return true;

}

Vir:

x Update the velocities of the given particle using a coefficient of restitution
approach.

%

* @param P the particle hitting the surface.
% @param contact point the point at which particle hits the surface.
w/
public static Vector3D updateParticleVelocity (Particle P, Vector3D contact)
{
VectorOperation opr = new VectorOperation () ;
Vector3D V = P.getLinearVelocity ();
Vector3D W = P.getAngularVelocity () ;
Vector3D X = P.getPosition ();

VeTS

x setting the coordinate system

*/
Vector3D n=new Vector3D (), tl=new Vector3D (), t2=new Vector3D ();
Element e = P.getEvent().getPSCollision () .getElement () ;

J*%
« This if is deactivated by wusing false, since we decided to mot using the best
curve fit approach. - .

*
if(false && SimulationManager.AJM_Nozzle. getVelocity () .getX ()==0.0)

{ ‘
if(SimulationManager .SystemTime>0.01)

boolean result = getNormalToPolynomial (contact,n,tl,t2,P);

if (!result)

if (e = Element.square)
setCoordinateSystem_HitSquare (P, n, tl1, t2);

else)
setCoordinateSystem_HitEdge (P, n, tl1, t2);

}

else
{
if (e = Element.square)
setCoordinateSystem_HitSquare (P, n, t1, t2);
else
setCoordinateSystem_HitEdge (P, n, tl, t2);

}
else
{
if (e = Element.square)
setCoordinateSystem_HitSquare (P, n, t1, t2);
else

setCoordinateSystem_HitEdge (P, n, t1, t2);

double vn .= opr.dotProduct(V,n);
if (von==0.0)

P.getEvent ().getPSCollision () .setElement (Element.square);
setCoordinateSystem_HitSquare(P, n, tl1, t2);
vn = opr.dotProduct(V,n);

}

setCellLoss (particleTargetBox, P, n);
EventPSCollision.checkCellToBeRemoved (particleTargetBox ,P);

double vtl = opr.dotProduct(V,t1);
double vt2 = opr.dotProduct(V,t2);

// components of incident angular velocity
double wn = opr.dotProduct (W,n);

double wtl = opr.dotProduct(W,t1);

double wt2 = opr.dotProduct(W,t2);

double eps = mySimulation. Particle. get_eps();
double rp = P.getRadius();
double f = SimulationManager.AJM_Substrate. getFriction ();

// kinetic coefficients or impulse ratios
double utl=0,ut2=0;

// the critical impulse ratios

double uc_tl, uc-t2;

// the resultant critical impulse ratio
double uc;

uc_tl = (2x(vtl—-rp*wt2))/(7«vnx(l+eps));
uc-t2 = (2x(vt24+rpxwtl)) /(7xvnx(l+eps));
uc = Math.sqrt(uc_tlsuc_tl + uc_t2xuc_-t2);

// f>uc => sphere begins rolling at some point during contact
if (Math.abs(f) > Math.abs(uc))
{

utl = uc_tl;

ut2 = uc_-t2;

177

178

// f<=uc => sphere slides throughout the whole impact
else
{
// from figure 2.5 in david’s thesis
double a = Math.atan ((vt2+rp*wtl) /(vtl-rpxwt2));
utl = Math. abs(f+Math.cos(a));
ut2 = Math.abs(f+*Math.sin (a));

// the signs of uzr & wy are the same as the signs of uzc & uyc
utl #= Math.signum (uc_t1);
ut?2 s= Math.svignum(uc_tQ);

}

// updated linear wvelocity components
double Vn = —1lxvnxeps;

double Vtl1 = vtl — utlxvnx(l+eps);
double Vt2 = vt2 — ut2xvnx(l+eps);

// updated angular velocity components
double Wn = wn;

double Wtl = wtl — (5/(2*rp))*ut2xvnx(l+eps);
double Wt2 = wt2 + (5/(2%rp))*utlxvnx(l+eps);

Vector3D finVn = opr.multiply (n,Vn);

Vector3D finVtl = opr.multiply (t1,Vtl);

Vector3D finVt2 = opr.multiply (t2,Vt2);
P.setLinearVelocity (opr.add(finVn, finVt1l,finVt2));

Vector3D finWn = opr.multiply (n,Wn);

Vector3D finWtl = opr.multiply (t1,Wtl);

Vector3D finWt2 = opr.multiply (t2,Wt2);
P.setAngularVelocity (opr.add (finWn, finWtl, finWt2));
return n;

VAT

* Sets the counters monitoring the number of surface impacts of this particle and
surface impacts of all particles.

*

x @param P the particle that just impacted the surface.

*/

public static void settingStatistics(Particle P)

{

mySimulation. Counters . numPSColl++;
P.increaseHitSurface();
if (P.getNumHitSurface ()==1)

mySimulation. Counters.numHitSurfacel++;
if (P.getNumPPColl ()==0) .
mySimulation. Counters. numHitSurfBeforePPColl++;
else
mySimulation. Counters. numHitSurfAfterPPColl++;

}
else if(P.getNumHitSurface ()==2)

mySimulation. Counters. numHitSurface2++;
else if(P.getNumHitSurface ()>2)

mySimulation. Counters. numHitSurfaceMore++;

179

EventSphereCubeCollision.java: The EventSphereCubeCollision class

is used

to detect the collision between a spherical particle and a cube.

package
import
import
import
import
import
import
import
public

VTS

*

VAT

*

}

*

*

{

*/

public static enum Element { square, vertex, edge, none}

*/
public EventSphereCubeCollision() {

/% %

*/
public static final Vector3D

JHx
*/

backNorm = new Vector3D(—-1,0,0),
frontNorm = new Vector3D (1,0,0),
leftNorm = new Vector3D(0,—1,0),
rightNorm = new Vector3D (0,1,0),
topNorm = new Vector3D(0,0,—1),
"bottomNorm = new Vector3D (0,0,1);
The CollisionPacket class used to store the information of an impact on the cube.
public static class CollisionPacket
VEE:
* The spherical particle.
*/
public Particle particle;
/%
* The cube.
*/
public OctNode targetBox;
/%

SystemEvents;
Objects3D . Vector3D;
Objects3D . VectorOperation;
Objects3D . Plane;
mySimulation. Particle;
OcTreeADT . OctNode;
mySimulation.SimulationManager ;
OcTreeADT . CellularOcTree. Dir;
class EventSphereCubeCollision {

Represents the elements at which a particle can hit a cube.

Creates a new instance of EventSphereCubeCollision .

Normals at 6 different faces of each cube associated with a node in the cellular
octree ..

* The mormalized velocity of the impacting particle.

PROPERTY OF
. RYERSON UNIVERGITY LISRARY

180
*/

public Vector3D normalizedVelocity ;

VA
* The variable that is set to true if the collision between the particle with the
given wvelocity and the cube is detected.

*

public boolean foundCollision;

VeSS

x The nearest dist

*/

public double nearestTime;

Vex:

* The point at which the particle his the cube.
*/

public Vector3D intersectionPoint;

/%%

* The element at which the particle hits the cube.
*/

public Element element;

VAT

* The normal to the face at which particle hits the cube.
*/

public Vector3D planeNormal;

VETS :

* The end point of a edge impacted by partiéle (for the cases that particle hits
an edge or a vertex). Otherwise is set to mnull.

*/

public Vector3D vl;

VAT
* The end point of a edge impacted by particle (for the cases that particle hits
edge). Otherwise is set to null.

*/

public Vector3D v2;

ks ,

* Creates a mew instance of CollisionPacket.
*

public CollisionPacket (){

}
VAT

* Creates a new instance of CollisionPacket using the information of the given
particle.

* @param P a particle.

%

public CollisionPacket (Particle P){
this. particle = P;

this.normalizedVelocity = VectorOperation.normalize(this. particle.
getLinearVelocity ());

this.foundCollision = false;

this.nearestTime = Double.POSITIVE_INFINITY ;

this.intersectionPoint = null;

this.targetBox = null;

this.planeNormal = null;

this.vl = null;
this.v2 = null;

181
}

VEES
* Sets the fields of this instance of CollisionPacket to the default values.
*/
public void reset () {
this.foundCollision = false;

this . nearestTime = Double.POSITIVE_INFINITY ;
this.intersectionPoint=null;

this . targetBox = null;

this.planeNormal = null;

this.vl = null;

this.v2 = null;

}
VEx

x Sets the fields of this instance of CollisionPacket to the fields values of the
temp CollisionPacket.)

* .

* @param temp a storage including the information of an impact. between the
particle and the cube.

*/

public void set (CollisionPacket temp){
this.element = temp.element;
this. foundCollision = temp.foundCollision;
this.nearestTime = temp.nearestTime;
this.intersectionPoint = temp.intersectionPoint;
this.targetBox = temp.targetBox;
this . planeNormal = temp.planeNormal;
this.vl = temp.vl;
this.v2 = temp.v2;

} -

VET:
* Returns a string representation of this CollisionPacket.
*
* @return a string representation of this CollisionPacket.
*/

public String toString()
{
return(”\n.element:.”+element + "\n.foundCollision :.”+foundCollision +
"\n.intersection.point:.”’+intersectionPoint 4 ”\nplane_normal:.” +
planeNormal + ”\ntargetBox:.” 4+ this.targetBox + ”\nvelocity:.” +
this.particle.getLinearVelocity () + ”\n\n”);

}
Jxx

*x Checks for the collision between the given particle and the bounding sphere of the
given cube.

@param cube a cube.
@param P a spherical particle.

¥ ¥ ¥ ¥ ¥

@return true if the particle is going to collide with the bounding sphere of the
cube; false otherwise.

*/

public static boolean IsPossibilityForCollision (OctNode cube, Particle F){

Vector3D deltaV = P.getLinearVelocity ();

Vector3D deltaX = VectorOperation.subtract (P.getPosition (),cube.getPosition ());

// distance between the Box center and Particle center

double distance = deltaX.getNorm () ;

double R = P.getRadius() + cube.diameter;

boolean checking = true;

182

if (!(distance<R+SimulationManager. precision))

double a = deltaV.getSquareNorm () ;
double b = 2.0%x VectorOperation. dotProduct(deltaV deltaX);
double ¢ = deltaX.getSquareNorm () —(R*R);
double D = (bxb)—(4.0%xaxc);
if (D<0)
return false;

double sqrtD = Math.sqrt (D) ;
double t1 = (=b + sqrtD) /(2.0xa);
double t2 = (—=b — sqrtD) /(2.0xa);
if (1(t1>=0 || t2>=0))

return false;

}

return true;

}
Vixs

Detects the collision between the given spherical particle and the given cube.

*
*

* @param infoPack a storage for holding the impact information.
* @param cube a cube.

* @param P a spherical particle.

*
%

@return true if the particle is going to collide with the cube; false otherwise.
*/
public static boolean detectSphereCubeCollision(CollisionPacket infoPack, OctNode cube,

Particle P){

Vector3D deltaV = P.getLinearVelocity ();

Vector3D deltaX = VectorOperation.subtract (P. getPosition (), cube. getPosition());

// distance between the cube centér and Particle center

double distance = deltaX.getNorm() ;

double R = P.getRadius() + cube.diameter;

boolean checking = true;

if (!(distance<R+SimulationManager. precision))

double a = deltaV.getSquareNorm() ;

double b = 2.0xVectorOperation.dotProduct(deltaV , deltaX) ;
double ¢ = deltaX.getSquareNorm () —(R*R) ;

double D = (bxb)—(4.0%axc); .

if (D<0)

return(infoPack.foundCollision);
double sqrtD = Math.sqrt (D) ;
double t1 = (=b + sqrtD) /(2.0xa);
double t2 = (=b — sqrtD) /(2.0xa);
if(1(t1>=0 || t2>=0))
return (infoPack.foundCollision);
¥
double halfSize = cube.getHalfSize();
boolean found = false;)
if((P.getZ()+P.getRadius()) <= (cube.getPosition().getZ()—halfSize) && P.
getLinearVelocity () . getZ () >0)

found = EventSphereCubeCollision.detectSphereSquareCollision (infoPack,

new Vector3D (cube.getPosition ().getX ()—halfSize, cube.getPosition ()
.getY ()—halfSize, cube.getPosition().getZ()—halfSize),

new Vector3D (cube. getPosition ().getX()—halfSize, cube.getPosition ()
.getY ()+halfSize, cube.getPosition().getZ()—halfSize),

new Vector3D (cube.getPosition().getX()+halfSize, cube.getPosition O
.getY ()+halfSize, cube.getPosition().getZ()—halfSize),

new Vector3D (cube. getPosition ().getX ()+halfSize, cube.getPosition ()
.getY ()—halfSize, cube.getPosition () .getZ()——halfSiz‘e) ,

P,cube,EventSphereCubeCollision . topNorm) ;

183
if (found)
return infoPack.foundCollision;

}
else if((P.getZ()—P.getRadius()) >= (cube.getPosition().getZ()+halfSize) && P.
getLinearVelocity () . getZ () <0)

found = EventSphereCubeCollision. detectSphereSquareCollision (infoPack,
new Vector3D (cube. getPosition().getX()—halfSize, cube.getPosition ()
.getY ()—halfSize, cube.getPosition().getZ()+halfSize),
new Vector3D (cube. getPosition().getX()—halfSize, cube.getPosition ()
.getY ()+halfSize, cube.getPosition().getZ()+halfSize),
new Vector3D (cube. getPosition().getX ()+halfSize, cube. getPosition ()
.getY ()+halfSize, cube.getPosition().getZ()+halfSize),
new Vector3D (cube. getPosition ().getX()+halfSize, cube.getPosition ()
.getY ()—halfSize, cube.getPosition ().getZ()+halfSize),
P,cube,EventSphereCubeCollision . bottomNorm) ;
if (found)
return infoPack.foundCollision;

if((P.getX()+P.getRadius()) <= (cube.getPosition().getX()—halfSize) && P.
getLinearVelocity () .getX () >0)
{

found = EventSphereCubeCollision.detectSphereSquareCollision (infoPack,
new Vector3D (cube.getPosition ().getX()—halfSize, cube.getPosition ()
.getY ()—halfSize, cube.getPosition().getZ()—halfSize),
new Vector3D (cube. getPosition ().getX()—halfSize, cube.getPosition ()
.getY ()+halfSize, cube.getPosition().getZ()—halfSize),
new Vector3D (cube. getPosition ().getX()—halfSize, cube.getPosition ()
.getY ()+halfSize, cube.getPosition().getZ()+halfSize),
new Vector3D (cube. getPosition ().getX()—halfSize, cube.getPosition ()
.getY ()—halfSize, cube.getPosition().getZ()+halfSize),
. P,cube,EventSphereCubeCollision . backNorm) ;
if (found)
return infoPack.foundCollision;

else if((P.getX()—P.getRadius()) >= (cube.getPosition ().getX ()+halfSize) && P.
getLinearVelocity () . getX () <0)

found = EventSphereCubeCollision.detectSphereSquareCollision (infoPack,
new Vector3D (cube. getPosition ().getX()+halfSize, cube.getPosition ()
.getY ()—halfSize, cube.getPosition().getZ()—halfSize),
new Vector3D (cube. getPosition ().getX()+halfSize, cube.getPosition ()
.getY ()+halfSize, cube.getPosition().getZ()—halfSize),
new Vector3D (cube. getPosition ().getX()+halfSize, cube.getPosition ()
.getY ()+halfSize, cube.getPosition().getZ()+halfSize),
new Vector3D (cube. getPosition ().getX()+halfSize, cube.getPosition ()
.getY ()—halfSize, cube.getPosition().getZ()+halfSize),
P,cube, EventSphereCubeCollision . frontNorm) ; :
if (found)
return infoPack.foundCollision;

}

if ((P.getY ()+P.getRadius()) <= (cube.getPosition().getY()—halfSize) && P.
getLinearVelocity () .getY ()>0)

found = EventSphereCubeCollision. detectSphereSquareCollision (infoPack,
new Vector3D (cube.getPosition().getX ()—halfSize, cube.getPosition ()
cgetY ()—halfSize, cube.getPosition().getZ()—halfSize),
new Vector3D (cube. getPosition ().getX ()+halfSize, cube.getPosition ()
.getY ()—halfSize, cube.getPosition().getZ()—halfSize),
new Vector3D (cube. getPosition ().getX ()+halfSize, cube.getPosition ()
.getY ()—halfSize, cube.getPosition().getZ()+halfSize),
new Vector3D (cube. getPosition ().getX()—halfSize, cube.getPosition ()
.getY ()—halfSize, cube.getPosition().getZ()+halfSize),

184

P,cube,EventSphereCubeCollision.leftNorm) ;
if (found)
return infoPack.foundCollision;

}
else if((P.getY()-P.getRadius()) >= (cube.getPosition().getY ()+halfSize) && P.
getLinearVelocity () .getY () <0)

found = EventSphereCubeCollision.detectSphereSquareCollision (infoPack,
new Vector3D (cube. getPosition ().getX ()—halfSize, cube.getPosition ()
.getY ()+halfSize, cube.getPosition().getZ()—halfSize),
new Vector3D (cube. getPosition ().getX()+halfSize, cube.getPosition ()
.getY ()+halfSize, cube.getPosition().getZ()—halfSize),
new Vector3D (cube. getPosition ().getX ()+halfSize, cube.getPosition ()
.getY ()+halfSize, cube.getPosition().getZ()+halfSize),
new Vector3D (cube.getPosition ().getX ()—halfSize, cube.getPosition ()
.getY ()+halfSize, cube.getPosition().getZ()+halfSize),
P,cube, EventSphereCubeCollision .rightNorm) ;

return(infoPack.foundCollision);

}

Virs

x* Detects the collision between the given spherical particle and the square plane of a
cube.

%

* @param infoPack a storage for holding the impact information.

% @param pl a corner of the square plane.

* @param p2 a corner of the square plane.

* @param p3 a corner of the square plane.

* @param p4 a corner of the square plane.

% @param P a spherical particle.

% @param targetCube a cube including the square plane.

% @param planeNormal a mnormal to the square plane.

* @return true if the particle is going to collide with the square plane; false

otherwise .
*/
private static boolean detectSphereSquareCollision (CollisionPacket infoPack, Vector3D
pl, Vector3D p2,
Vector3D p3, Vector3D p4, Particle P, OctNode targetCube, Vector3D planeNormal)

/xx NOTE: The parameters for cormner of the square plane must be entered clockwise.x

*/

// Creates the plane containing this square
Plane squarePlane = new Plane(pl, planeNormal);
boolean foundCollision = false;

Element element = Element.none;

Vector3D vl=null, v2=null;

if (squarePlane.isFrontFacingTo (infoPack.normalizedVelocity))

- /#*% Get interval of plane intersection x/
double t0, t1;
boolean embeddedInPlane = false;

/#% Calculate the signed distance from. sphere position to square plane %/
double signedDisToSquarePlane = squarePlane.signedDistanceTo(infoPack.particle.
getPosition ()); //infoPack.basePoint);

double normalDotVelocity = VectorOperation.dotProduct (squarePlane.getNormal(),
infoPack. particle.getLinearVelocity ());

/% 1if sphere is travelling parrallel to the plane x/
if (normalDotVelocity==0) :

185

if (Math.abs(signedDisToSquarePlane)>=P.getRadius())

/+% Sphere is not embedded in plane. So, the collision is impossible */
return false;

}

else

{

/*% Sphere is embedded in plane. It intersects in the whole range[0..1]

*
embeddedInPlane = true;
t0 = 0.0;

tl = Double.POSITIVE_INFINITY ;

else

t0 = (—P.getRadius ()-signedDisToSquareP1ane)/normalDotVelocity ;

tl = (P.getRadius()—signedDisToSquarePlane)/normalDotVelocity;
if(t0 > t1)

double temp = t1;

tl = t0;

t0 = temp;

}

Vector3D collisionPoint = null;
double t = Double.POSITIVE_INFINITY ;

if (embeddedInPlane)

System.out. println (”embeddedInPlane: .”4+embeddedInPlane) ;
Objects3D . VectorOperation . errMassageExit ("the_.particle_is._.embedded_inside.
plane!!”
”EventHandler_PSCollision/checkSquare()”);

}
Vexs

* Check for collision inside square. If this happens it must be at time t0 as
this is when the
* sphere restson the front side. Note, this can only happen if the sphere in
not embedded in the
* square.
*/
if (! embeddedInPlane)
{
Vector3D planelntersectionPoint = VectorOperation.add(infoPack.particle.
getPosition (),
VectorOperation. multiply (infoPack. particle. getLinearVelocity (), t0)

’

boolean test = checkPointInSquare(planelntersectionPoint, pl, p2, p3,p4);

if (test)
{
element = Element.square;
foundCollision = true;
t = t0;
collisionPoint = planelntersectionPoint;

}
Jkx

* [f we have not found the collision already we will have to sweep aphere

% of the square. Note: A collision inside the square always happen before a

x So, if we found the collision we can skip the sweep test.

*

if (foundCollision==false)

{

186

against points and edges

vertex or edge collision.

Vector3D velocity = infoPack.particle.getLinearVelocity ();
Vector3D base = infoPack.particle.getPosition ();

double velocitySquaredLength = velocity .getSquareNorm () ;
double a, b, c;

double newT;

double sqrR = Math.pow(P.getRadius(),2.0);

/%
* For each wvertexr or edge a quadratic equation have to be solved. We
parameterize this

* equation as axt’ 2 + bxt + ¢ = 0. Below we calculate the parameters a, b
and ¢ for each

* test.

*/

/+x Checking collision against vertices x/
a = velocitySquaredLength;

// vertexr PI1

b = 2.0%(VectorOperation.dotProduct(velocity, VectorOperation.subtract (base,
pl)));

¢ = VectorOperation.subtract (pl, base).getSquareNorm ()—sqrR;

newT = getLowestRoot(a,b,c,t);

if (newT!=Double.POSITIVE_INFINITY)

{

element = Element.vertex;

t = newT;

foundCollision = true;

collisionPoint = pl;

vl = new Vector3D(pl);

// meaningless — it is used randomly setting the normal for scattering

equation after PSCollision
v2 = new Vector3D (p2);

}

// vertexr P2
if (I foundCollision)

b = 2.0%(VectorOperation.dotProduct(velocity, VectorOperation.subtract (
base,p2)));

¢ = VectorOperation.subtract (p2, base) .getSquareNorm ()—sqrR;

newT = getLowestRoot(a,b,c,t); i

if (newT!=Double. POSITIVE_INFINITY)

{

element = Element.vertex;

t = newT;

foundCollision = true;

collisionPoint = p2;

vl = new Vector3D (p2);

// meaningless — it is used randomly setting the normal for

scattering equation after PSCollision
v2 = new Vector3D (p3);

}

// vertex P3
if (! foundCollision)

187

b

2.0x(VectorOperation.dotProduct(velocity, VectorOperation.subtract (
base,p3)));

¢ = VectorOperation.subtract (p3,base).getSquareNorm ()—sqrR;

newT = getLowestRoot(a,b,c,t);

if (newT!=Double. POSITIVE_INFINITY)

{

element = Element. vertex;

t = newT;

foundCollision = true;

collisionPoint = p3;

vl = new Vector3D (p3);

// meaningless — it is used randomly setting the mormal for

scattering equation after PSCollision
v2 = new Vector3D (p4); :

}

// vertex P4
if (! foundCollision)
{
b = 2.0%(VectorOperation.dotProduct(velocity, VectorOperation.subtract (
base,p4)));
¢ = VectorOperation.subtract (p4,base).getSquareNorm ()—sqrR;
newT = getLowestRoot(a,b,c,t);
if (newT!=Double. POSITIVE_INFINITY)

{

element = Element.vertex;

t = newT;

foundCollision = true;

collisionPoint = p4;

vl = new Vector3D (p4);

// meaningless — it is used randomly setting the normal for

scattering equation after PSCollision
v2 = new Vector3D(pl);

}

/*% Checking collision against edges x/
boolean edgeCollFound = false;

// Pl——>P2:
Vector3D edge = VectorOperation.subtract (p2,pl);
Vector3D baseToVertex = VectorOperation.subtract (pl,base);
double edgeSquaredLength = edge.getSquareNorm () ;
double edgeDotVelocity = VectorOperation.dotProduct(edge, velocity);
double edgeDotBaseToVertex = VectorOperation.dotProduct(edge,baseToVertex);
/xx Calculate parameters for equation */
a = edgeSquaredLength * (—velocitySquaredLength) + (edgeDotVelocityx
edgeDotVelocity);
b = edgeSquaredLength*(2.0x VectorOperation.dotProduct(velocity ,baseToVertex
))—
2.0xedgeDotVelocitysxedgeDotBaseToVertex;
¢ = edgeSquaredLength *(sqrR—baseToVertex.getSquareNorm ())+
edgeDotBaseToVertexxedgeDotBaseToVertex;
/xx Check if the swept sphere collides against infinite edge x/
newT = getLowestRoot(a,b,c,t);
if (newT!=Double.POSITIVE_INFINITY)

/x% Check if intersection is within line segment x/
double f = (edgeDotVelocity*newT—edgeDotBaseToVertex)/edgeSquaredLength

if (£>=08&f<=1.0)

{
/%% Intersection took place within the segment %/
element = Element.edge;
t = newT;
foundCollision = true;
collisionPoint = VectorOperation.add(pl, VectorOperation.multiply (
edge, f));
vl = new Vector3D (pl);
v2 = new Vector3D (p2);
edgeCollFound = true;
}

}

// P2——>P3:
if (!edgeCollFound)

edge = VectorOperation.subtract (p3,p2); :

baseToVertex = VectorOperation.subtract (p2, base);

edgeSquaredLength = edge.getSquareNorm () ;

edgeDotVelocity = VectorOperation.dotProduct (edge, velomty)
edgeDotBaseToVertex = VectorOperation.dotProduct (edge, baseToVertex);

/** Calculate parameters for equation x/
a = edgeSquaredLength % (—velocitySquaredLength) 4+ (edgeDotVelocity=
edgeDotVelocity);
b = edgeSquaredLength (2. O*VectorOperatlon dotProduct (velocity,
baseToVertex))—
2.0xedgeDotVelocity xedgeDotBaseToVertex;
¢ = edgeSquaredLength*(sqrR—baseToVertex.getSquareNorm ())+
edgeDotBaseToVertexxedgeDotBaseToVertex;
/x% Check if the swept sphere collides against infinite edge */
newT = getLowestRoot(d,b,c,t); ™
if (newT!=Double. POSITIVE_INFINITY)
{
/% Check if intersection is within line segment %/
double f = (edgeDotVelocitys+newT—edgeDotBaseToVertex)/

edgeSquaredLength;
if (£>=0&&f<=1.0)
{
/+x Intersection took place within the segment */
element = Element.edge;
t = newT;
foundCollision = true;

collisionPoint = VectorOperation.add(p2, VectorOperation.
multiply (edge, f));

vl = new Vector3D(p2);

v2 = new Vector3D (p3);

edgeCollFound = true;

}

/) P3——>Pj:
if (!edgeCollFound)

edge = VectorOperation.subtract(p4,p3);

baseToVertex = VectorOperation.subtract (p3,base);

edgeSquaredLength = edge.getSquareNorm () ;

edgeDotVelocity = VectorOperation.dotProduct (edge, velocity);
edgeDotBaseToVertex = VectorOperation.dotProduct (edge,baseToVertex);

/%% Calculate parameters for equation */
a = edgeSquaredLength * (—velocitySquaredLength) + (edgeDotVelocityx
edgeDotVelocity);

188

189

b = edgeSquaredLength*(2.0% VectorOperation.dotProduct(velocity,
baseToVertex))—
2.0xedgeDotVelocityxedgeDotBaseToVertex;
¢ = edgeSquaredLength *(sqrR—baseToVertex.getSquareNorm ())+
edgeDotBaseToVertexxedgeDotBaseToVertex;
/+% Check if the swept sphere collides against infinite edge */
newT = getLowestRoot(a,b,c,t);
if (newT!=Double. POSITIVE_INFINITY)
{
/x*x Check if intersection 4s within line segment x/
double f = (edgeDotVelocity«newT—edgeDotBaseToVertex)/
edgeSquaredLength;
if (£>=0&&f<=1.0)
{
/*x Intersection took place within the segment x/
element = Element.edge;
t = newT,;
foundCollision = true;
collisionPoint = VectorOperation.add(p3, VectorOperation.
multiply (edge, f));
vl = new Vector3D (p3);
v2 = new Vector3D(p4);
edgeCollFound = true;

}
¥

// P/——>P1:
if (!edgeCollFound)
{
edge = VectorOperation.subtract(pl,p4);
- baseToVertex = VectorOperation.subtract (p4, base) ;
edgeSquaredLength = edge.getSquareNorm () ;
edgeDotVelocity = VectorOperation.dotProduct(edge, velocity);
edgeDotBaseToVertex = VectorOperation.dotProduct (edge, baseToVertex);

/#% Calculate parameters for equation */
a = edgeSquaredLength * (—velocitySquaredLength) + (edgeDotVelocityx*
edgeDotVelocity) ;
b = edgeSquaredLength*(2.0% VectorOperation.dotProduct(velocity,
baseToVertex))—
2.0xedgeDotVelocityxedgeDotBaseToVertex;
¢ = edgeSquaredLength x(sqrR—baseToVertex.getSquareNorm ())+
edgeDotBaseToVertexxedgeDotBaseToVertex;
/+x Check if the swept sphere collides against infinite edge */
newT = getLowestRoot(a,b,c,t);
if (newT!=Double. POSITIVE_INFINITY)
{
/+*% Check if intersection 4is within line segment %/
double f = (edgeDotVelocity *newT—edgeDotBaseToVertex)/
edgeSquaredLength;
if (f>=08&f<=1.0)

/xx Intersection took place within the segment x/

element = Element.edge;

t = newT;)

foundCollision = true;

collisionPoint = VectorOperation.add(p4, VectorOperation.

multiply (edge, f));
vl = new Vector3D(p4);
v2 = new Vector3D (pl);

Y // if(foundCollision==false)

/*% Set result x/
if (foundCollision = true)

{
/% ’t’ is the time of the collision %/
double disToCollision =

txinfoPack.particle.getLinearVelocity ().getNorm () ;

//System . out. printin (”inside check square: ” + disToCollision);

/*% Check if this square
closest 222) =/
if (infoPack.foundCollision==false ||

qualifies fro the

if (¢>0)
infoPack.nearestTime = t;
infoPack.intersectionPoint =
infoPack.foundCollision = true;
infoPack.element = element;
infoPack.targetBox = targetCube;
infoPack.planeNormal = planeNormal;
infoPack.vl = vl;
infoPack.v2 = v2;

}
}

return foundCollision;

N W

¥ ¥ ¥ X ¥ ¥ ¥

Solves the quadratic equation.

@param
Q@param

a the coefficient of z"2.

b the coefficient of z.

@param c¢ the constant term.

@param mazR the minimum calculated time of collisions
elements of the cube.

ES

* @return the smallest positive soluation if there

smaller that the previously calculated time, mazR;
*/

private static double getLowestRoot(double a, double b,
{

/xx Check if the solution ezists x/

double determinant = bxb — 4.0xaxc;

double invalidAns=Double.POSITIVEINFINITY ;

/*xx If the determinant is it means no solut
if (determinant <0.0)

return ‘invalidAns;

negative

double sqrtD = Math.sqrt(determinant);
double r1 = (—b — sqrtD) /(2.0%a);
double r2 = (—b + sqrtD)/(2.0xa);
if(ri>r2)

double temp = r2;

r2 =rl;

rl = temp;

}

if (r1>0 && rl<maxR)
return rl;

is any and the solution also

closest hit (first hit or the

t<infoPack .nearestTime)

collisionPoint;

between the particle and
7.8
infinity otherwise.

double ¢, double maxR)

ionsx/

190

191

if (r2>0 && r2<maxR)
return r2;

/*% No (wvalid) solutions x/
return invalidAns;

—
S
*

Checks if the given point is contained inside the square.

@param point a point on the plane containing the square plane.
@param pl a corner of the square plane.
@param p2 a corner of the square plane.
@param p3 a corner of the square plane.
@param p4 a corner of the square plane.

* ¥ K X X X X ¥ ¥

@return true if the given point is contained in the square plane; false otherwise.
private static boolean checkPointInSquare(Vector3D point,Vector3D pl, Vector3D p2,
Vector3D p3,Vector3D p4){
double recX=Double.POSITIVE_INFINITY, recY=Double.POSITIVE_INFINITY ,

x=Double. POSITIVE_INFINITY, y=Double. POSITIVE_INFINITY, width=0, height=0;

if (pl.getX ()==p2.getX () && p2.getX ()=—p3.getX())
{

recX = Math.min(Math. min(pl.getY (),p2.getY ()),p3.getY());
recY = Math.max(Math.max(pl.getZ (),p2.getZ()),p3.getZ());
x = point.getY ();
y = point.getZ();

point .setX (pl.getX ()); ‘
if ((pl.getY ()—p2.getY ())!=0)
width = Math.abs(pl.getY ()—p2.getY ());
else
width = Math.abs(pl.getY ()—p3.getY ());

if ((pl.getZ()—p2.getZ())!=0)
height = Math.abs(pl.getZ ()—p2.getZ());
else
height = Math.abs(pl.getZ ()—p3.getZ());
b :
else if(pl.getY ()=—p2.getY () && p2.getY ()==p3.getY ())
{ .
recX = Math.min(Math. min(pl.getX () ,p2.getX()),p3.getX());
recY = Math.max(Math.max(pl.getZ (),p2.getZ()),p3.getZ());
x = point.getX();
y = point.getZ();

point .setY (pl.getY ());
if ((pl.getX ()-p2.getX())!=0)

width = Math.abs(pl.getX ()—p2.getX());
else

width = Math.abs(pl.getX ()—p3.getX());

if ((pl.getZ()—p2.getZ())!=0)

height = Math.abs(pl.getZ()—p2.getZ());
eise

height = Math.abs(pl.getZ ()—p3.getZ());

else if(pl.getZ ()==p2.getZ () && p2.getZ ()==p3.getZ())

recX = Math.min(Math. min(pl.getX (),p2.getX()),p3.getX());
recY = Math.max(Math.max(pl.getY (),p2.getY()),p3.getY());

192
x = point.getX();
y = point.getY ();
point .setZ (pl.getZ());
if ((pl.getX()—p2.getX())!=0)
width = Math.abs(pl.getX ()—p2.getX());
else

width = Math.abs(pl.getX ()—p3.getX());

if ((pl.getY ()—p2.getY ())!=0)
height = Math.abs(pl.getY ()—p2.getY ());
else

height = Math. abs(pl.getY()—p3.getY());
} .

else

Objects3D . VectorOperation.errMassageExit (”its_not.straight._.rectangleee!!”,”
checkPointInSquare”) ;

return (x>recX&&x<(recX+width)&&y<recY&&y>(recY—height));

EventTranSfer.j ava: The EventTransfer class is used to predict and handl

transfer events.

193
e the

package SystemEvents;

import Objects3D . VectorOperation;
import Objects3D . Vector3D;

import java.util.List;

import mySimulation .x*;

import SystemEnvironment . x;

public class EventTransfer {

VAT

* An auziliary variable which allows for reusing memory.
*/

private static eventStorage BackFront = new eventStorage();
VET: .

* An auziliary wvariable which allows for reusing memory.
*/

private static eventStorage LeftRight = new eventStorage();
VEE:

* An auziliary wvariable which allows for reusing memory.
private static eventStorage TopBottom = new eventStorage();
VEx:

* Creates a new instance of EventTransfer

public EventTransfer () {

}

VEx:
* The eventStorage class is used to store the information of the transfer events.
*/
public static class eventStorage
{
/o x

* The time of the transfer.
k
double time;

Jkx

* The wvelocity at which the particle trasfers.
*

double velocity;

VEE:

* The position of the particle after transfer.
*/

double position;

Jkx
* The type of the cell neighbor to which the particle is transfering.

*/

194

Event . enteredCubeType type;

[.

x Set the values of the fields defined in the eventStorage to the new values.

*/

public void setInfo(double T, double position, double velocity, Event.
enteredCubeType Type)

{ -

time = T;
type = Type;
this.velocity = velocity;
this.position = position;
}
}
k%
x Handles the trasfer event of a given particle. It makes the particle to enter a new
cube.

*
* @param P a given particle.
public static void handelTransfer (Particle P)
{
SystemEnvironment . Cell currentCube = P.getCurrentSpace();
Event . enteredCubeType type = P.getEvent () .getTransfer () .getEnteredCubeType();
Vector3D Destination = new Vector3D () ;
Cell originCube=null, destCube=null;
int newCubeX=-1, newCubeY=—1, newCubeZ=-1;

if (currentCube=—null){
P.setUnusualSituation (true,””);
EventTransfer.removeParticle (P);
return; :

}
newCubeX = currentCube.indexl;
newCubeY = currentCube.index2;

newCubeZ = currentCube.index3;

if (type==Event .enteredCubeType. back)

newCubeX——;

else . if (type==Event .enteredCubeType. front)
newCubeX++;

else if(type==Event.enteredCubeType.left)
newCubeY ——;

else if(type=—Event.enteredCubeType.right)
newCubeY++;

else if(type=—=Event.enteredCubeType.bottom)
newCubeZ++;

else if(type==Event.enteredCubeType.top)
newCubeZ——;

mySimulation.SimulationManager . SystemTime = P.getEvent () .getTransfer () .getMinTime ()

)

VEXS
« For the cases that the particle is leaving the boundary of the system.
*
/
if (newCubeX > mySimulation.SimulationManager. AJM_Environment.numOfCubes. getX ()~1 ||
newCubeX < 0 ||
newCubeY > mySimulation.SimulationManager . AJM_Environment . numOfCubes. getY () -1 ||
newCubeY < 0 ||
newCubeZ < 0)

195

EventTransfer.removeParticle (P);
return;

Destination = P.getNextDestination () ;
Vector3D prevDist = new Vector3D (P. getP0s1t10n 0));

if (P.getOldSpace()!=null)

P.getOldSpace () . deleteMemberFrom (P) ;
P.setOldSpace(null);

}
Ve

* This ”if” 4is for the case that particle hit the surface.

k3

if (newCubeZ > mySimulation.SimulationManager. AJM_Environment . numOfCubes. getZ () —1)

{

System.out. println (”\n.P_.Position:.”"+ P.getPosition () +’\n.P. Velocity:.” + P.
getLinearVelocity ()+ ”\n.P.currSpace:.” + P.getCurrentSpace() +

?\n_P.event:."+ P.getEvent () +
77\nP__>77 + P +
?\ncurrEvent—>.” 4+ mySimulation.SimulationManager.currEventType +

”\nSystime:.” + mySimulation.SimulationManager.SystemTime +
"\nP.time:.” 4 P.getParticleTime () +
»\nprevDist:.” + prevDist);
VectorOperatlon errMassage(” rrrrrrrrrrrrrrrrrrrrtrt 2 Environment /exitCube () 7)

EventTransfer.removeParticle (P);
return;

}

originCube = P.getCurrentSpace();
P.setCurrentSpace(null);
P.setOldSpace(originCube) ;
P.setPosition (Destination);
P.setParticleTime () ;

destCube = mySimulation.SimulationManager. AJM_Environment. getSpaceElement (newCubeX,
newCubeY, newCubeZ) ;

destCube . addMemberTo (P) ;

P.setCurrentSpace (destCube) ;

return;

N

* %
Detects the transfer event for the given particle.

%
*
* @param P a particle.
*
E3

@return false if the particle has left the system.
public static boolean detectTransfer(Particle P)

{ ’ :

mySimulation. Counters. predict Transfer++;

double time, dis;

Event . enteredCubeType dir; ,

double Rp = P.getRadius() + (0.3xP.getRadius());

SystemEnvironment. Cell tempCube=null;

eventStorage result;

SystemEnvironment . Cell currentCube = P.getCurrentSpace();

Event .enteredCubeType cubeType = Event.enteredCubeType.undefinedCube;
Vector3D cubeSize;

196

cubeSize = currentCube. getSize () ;

Vector3D Xp = P.getPosition ();

Vector3D Vp = P.getLinearVelocity () ;

Vector3D envNumCubes = SimulationManager . AJM_Environment . getNumOfCubes () ;

if (Vp.getX () <=0)
{ :

dis = currentCube.getCubePosition ().getX ()— (Xp.getX ()—Rp);
dir = Event.enteredCubeType. back;
}
else
{
dis = currentCube.getCubePosition ().getX() + cubeSize.getX () — (Xp.getX ()+Rp);
dir = Event.enteredCubeType. front;
}

time = dis/Vp.getX();
BackFront.setInfo (time, dis,Vp.getX (), dir);

if (BackFront. time<0)
if (P.getLinearVelocity () .getX () <0)
if ((P.getCurrentSpace () .index1—-1)<0)

mySimulation. Counters. predictTransfer ——;
return false;

}
if (P.getOldSpace ()!=null)
P.getOldSpace () . deleteMemberFrom (P) ;

P.setOldSpace (P.getCurrentSpace());

tempCube = SimulationManager. AJM_Environment. getSpaceElement (P.
getCurrentSpace () .index1—1,P. getCurrentSpace () . index2,P. getCurrentSpace
() .index3);

tempCube . addMemberTo (P) ;

P.setCurrentSpace (tempCube) ;

}
else if(P.getLinearVelocity ().getX()>0)

if ((P.getCurrentSpace () .index1+1)>envNumCubes.getX () —1)

mySimulation. Counters. predictTransfer——;
return false;

}

if (P.getOldSpace ()!=null)
P.getOldSpace () . deleteMemberFrom (P) ;

P.setOldSpace (P. getCurrentSpace());

tempCube = SimulationManager. AJM_Environment . getSpaceElement (P.
getCurrentSpace () .index1+1,P. getCurrentSpace() .index2,P. getCurrentSpace
() .index3);

tempCube . addMemberTo (P) ;

P.setCurrentSpace (tempCube) ;

mySimulation . Counters. predictTransfer——;
return (detectTransfer (P));

}
if (Vp.getY ()<=0)
{

dis = currentCube.getCubePosition () .getY ()+Rp—Xp.getY ();
dir = Event.enteredCubeType. left;

}

else

dis = currentCube.getCubePosition ().getY ()+cubeSize.getY ()—Rp—Xp.getY () ;
dir

}

time

LeftRight .setInfo (time, dis,Vp.getY (), dir);

if (L

}
if (Vp.getZ()<=0)
{

}

else

{

}

time

TopBottom. setInfo (time, dis,Vp.getZ (), dir);

if (TopBottom. time<0)

197

Event . enteredCubeType.right;

= dis/Vp.getY ();

eftRight . time<0)
if (P.getLinearVelocity ().getY () <0)
if ((P.getCurrentSpace().index2—1)<0)

mySimulation.Counters. predictTransfer——;
return false;

}

if (P.getOldSpace()!=null)
P.getOldSpace () . deleteMemberFrom (P) ;

P.setOldSpace (P. getCurrentSpace ()) ;

tempCube = SimulationManager . AJM_Environment . getSpaceElement (P.
getCurrentSpace () .index1,P.getCurrentSpace().index2—1,P.getCurrentSpace
() -index3);

tempCube . addMemberTo (P) ;

P.setCurrentSpace (tempCube) ;

else if(P.getLinearVelocity ().getY ()>0)

{
if ((P.getCurrentSpace().index2+1)>envNumCubes. getY () —1)

mySimulation. Counters. predictTransfer——;
return false;

}
if (P.getOldSpace ()!=null)
P.getOldSpace () . deleteMemberFrom (P) ;
P.setOldSpace (P. getCurrentSpace());
tempCube = SimulationManager . AJM_Environment . getSpaceElement (P.
getCurrentSpace () .index1,P.getCurrentSpace () .index2+1,P.getCurrentSpace
() .index3); S
tempCube . addMemberTo (P) ;
P.setCurrentSpace (tempCube) ;
}
mySimulation . Counters. predictTransfer——;
return (detectTransfer (P));

dis = currentCube.getCubePosition ().getZ ()+Rp—Xp.getZ();
dir = Event.enteredCubeType.top;

dis = currentCube.getCubePosition ().getZ ()+cubeSize.getZ ()—Rp—Xp.getZ();

dir = Event.enteredCubeType.bottom;

= dis/Vp.getZ();

if(P.getLinearVelocity () .getZ () <0)

if ((P.getCurrentSpace().index3—1)<0)

}
/%%

x Removed the particle and all of its associated components from the system.

*

* @param P a particle.

*/

public static void removeParticle(Particle P)

198

mySimulation. Counters. predictTransfer——;
return false;

}

if (P.getOldSpace()!=null)
P.getOldSpace () . deleteMemberFrom (P) ;

P.setOldSpace (P. getCurrentSpace());

tempCube = SimulationManager . AJM_Environment . getSpaceElement (P.
getCurrentSpace () .index1,P.getCurrentSpace () .index2,P.getCurrentSpace ()
.index3-1);

tempCube . addMemberTo (P) ;

P.setCurrentSpace (tempCube) ;

}

else if(P.getLinearVelocity ().getZ()>0)
f((P.getCurrentSpace () .index3+1)>envNumCubes. getZ () —1)

mySimulation. Counters. predictTransfer——;
return false;

}
if (P.getOldSpace()!=null)

P.getOldSpace () . deleteMemberFrom (P) ;
P.setOldSpace(P. getCurrentSpace());

tempCube = SimulationManager. AJM_Environment . getSpaceElement (P.
getCurrentSpace () .index1 ,P.getCurrentSpace () .index2,P. getCurrentSpace()
.index3+1); .

tempCube . addMemberTo (P) ;

P.setCurrentSpace (tempCube) ;

mySimulation. Counters. predictTransfer——;
return (detectTransfer(P)); '

result = BackFront;
result = (LeftRight.time<result.time) ? LeftRight : result;
result = (TopBottom.time<result.time) ? TopBottom : result;

double t = (Rp/Vp.getNorm())*—1.0;

P. setNextDestmatlon(VectorOperatlon add(VectorOperation. multiply ((VectorOperation
.divide (Vp, result.velocity)) , result.position) , Xp));

P.getEvent () . getTransfer () .setPrevSystemTime () ; i

P.getEvent (). getTransfer () .setInfo(result.time + P.getParticleTime() , result.type

K
mySimulation. Counters. predictTransfer——;
return true;

if (P.getNumHitSurface ()==0 && P.getNumPPColl()==0)
mySimulation.Counters. numParExitBeforeColl_Hit++;

mySimulation. Counters. numExitEnvl++;

mySimulation. Counters. numOfCurrParticles——;

List cells = P.getContainingCube () ;
P.setContainingCube (null);
Cell curr = P.getCurrentSpace(), prev = P.getOldSpace();

if(cells!=null)
{

199

for (int i=0;i<cells.size();i++)

Cell ¢ = (Cell)cells.get(i);
c.getMembers () .remove (P);

}

if (P.isUnusualSituation ()==true)
mySimulation. Counters. unusual++;

P.setDeleted (true);
if(P. getEveht ()!=null)

SimulationManager . AJM_EventHeap . Delete (P) ;
else

System.out. println (”HeapRoot:.” 4+ SimulationManager . AJM_EventHeap.getHeapRoot ()

)5
SimulationManager . AJM_EventHeap. handleNullRoot () ;

}
if (P.getCurrentSpace ()!=null)

P.getCurrentSpace () . deleteMemberFrom (P) ;
P.setCurrentSpace(null);

}
if (P.getOldSpace()!=null)

P.getOldSpace () . deleteMemberFrom (P) ;
P.setOldSpace(null);

200

Plot J ava: The Plot class is used to presents the three-dimensional view of the erosion

profiled. It is implemented using the the VisAD package. The implementation is based on

the VisAD Tutorial example 4-06.

package Visualization;
import mySimulation.SimulationManager;
import visad .*;
import visad.util.sx;
import visad.java3d.DisplaylmplJ3D;
import java.rmi.RemoteException;
import java.awt.x;
import javax.swing.x;
import java.awt.event.x; import OcTreeADT.x;
import OcTreeADT. CellularOcTree. Dir;
public class Plot {

* 3k

* The number of cells in one row bf the surface (gives the dimensions of the
removedCell array). :
*/

CellularOcTree. getCellSize ());

Ver:

% An array used to stored the depth of the surface cells.
*/

public static double[][] removedCell = new double[count][count];
VAT

* The domain quantity longitude.

*/

private RealType longitude;

VEE:

* The domain quantity latitude.

*/

private RealType latitude;

VAT

*+ The dependent quantity altitude.

*/

private RealType altitude;

VAT

x Tuple to pack longitude and latitude together.
*/

private RealTupleType domain_tuple;

VTS

* The function (domain_tuple —> altitude)

public static int count = (int)(SimulationManager.AJM_Environment.getWidth () /OcTreeADT.

201

%
private FunctionType func_domain_alt;

VAT

* Our Data values for the domain are represented by the Set.
*/

private Set domain_set;

VExS

* The Data class FlatField.

*/

private FlatField vals_ff;

JHx

* The DataReference from data to display.
*/

private DataReferencelmpl data_ref;

Virs

* The 2D display.

*/

private DisplayIlmpl display;

VEE

* The maps of 2D display.

*/

private ScalarMap latMap, lonMap;

VEE:

* The maps of 2D display.

*/

private ScalarMap altMap, altRGBMap;

VEE:

* The maps of 2D display.

*/

private ScalarMap altAlphaMap;

Jkx

* The control for 3—component Color DisplayRealType
*/

private ColorControl colCont;

Ve

* the depths of the deepest and shallowest cells.
*/

private double maxDepth, minDepth;

VEE:

* The color table.

E3

private float [][] myColorTable;

VLS

* Creates a new instance of Plot and displays the three—dimensional view of the
erosion profile. ’

*

* @param mazDepth the depth of the deepest cell.

*/

public Plot (double maxDepth) throws RemoteException, VisADException

{ v .
this . maxDepth = maxDepth;
this . minDepth = 0.5%(—maxDepth);
System.out.println (this.maxDepth) ;

202

VeTS

x Creates the quantities

% Uses RealType(String mame, Unit unit, Set set);

*

/
latitude = RealType.getRealType(”latitude”, SI.meter, null);
longitude = RealType.getRealType(”longitude”, SI.meter, null);
domain_-tuple = new RealTupleType(latitude, longitude);
altitude = RealType.getRealType(”altitude”, null, null) ;

%

+ Create a FunctionType (domain_tuple —> range-tuple)
%« Uses FunctionType (MathType domain, MathType range)
*/

func_domain_alt = new FunctionType(domain_tuple, altitude);

/#x Creates the domain Set
% LinearDSet(MathType type, double first1, double lastl, int lengthX, double first2,
double last2, int lengthY)
*/
int NCOLS = count;
int NROWS = count;
domain_set = new Linear2DSet(domain_tuple, 15.0, 0.0, NROWS,
15.0, 0.0, NCOLS);

VAT
x The flat array

*/
double [][] flat_samples = new double [1] [NCOLS % NROWS];

Ve

% Fills up the flat_samples array with the altitude walues.
*/

int index = 0;

for(int ¢ = 0; ¢ < NCOLS; c++)

{

for (int r = 0; r < NROWS; r++)

{
flat_samples [0][index] = this . getRemovedCell () [r][c];
index++;
}
}

Vit
x Creates a FlatField
%« Uses FlatField(FunctionType type, Set domain_set)

vals_ff = new FlatField(func_domain.alt, domain_set);
vals_ff.setSamples(flat_samples , false)

VET

x Creates Display and its maps

display = new DisplayImplJ3D (” surface.plot”);

VEE:

x Gets display’s graphics mode control and draw scales
*/

GraphicsModeControl dispGMC = (GraphicsModeControl) display . getGraphicsModeControl ()

dispGMC. setScaleEnable (true) ;

VAT

203

* FEnables Texture
*

dispGMC . set TextureEnable (false);

VAT

* Creates the ScalarMaps: latitude to XAzis, longitude to YAzis and
* altitude to ZAzis and to RGB .

x Uses ScalarMap (ScalarType scalar, DisplayRealType display-scalar)
*/

latMap = new ScalarMap(latitude, Display . YAxis);

lonMap = new ScalarMap(longitude, Display.XAxis);

altRGBMap = new ScalarMap(altitude, Display.RGB);
altMap = new ScalarMap(altitude, Display.ZAxis);
altAlphaMap = new ScalarMap(altitude, Display.Alpha);

VET:

* Adds maps to dzsplay

*/
display .addMap(latMap);
display .addMap(lonMap);
display .addMap(altMap);
display .addMap(altRGBMap) ;

VEE:

x Creates a different color table

*/

int tableLength = 10;

myColorTable = new float [3][tableLength];

for (int i=0;i<tableLength;i++)

{
// red component]
myColorTable [0][i]= (float) 1.0f — (float)i / ((float)tableLength—1.0f);
// green component
myColorTable [1][i]= (float) (float)i / ((float)tableLength—1.0f);
// blue component
myColorTable [2][i]= (float) 0.50f;
}
myColorTable [0][9]= f;
myColorTable[1][9]= f;
myColorTable [2][9]= f;
Jkx
* Gets the ColorControl from the altitude RGB map
*/
.colCont = (ColorControl) altRGBMap.getControl();
/**>
* Sets the table
colCont .setTable (myColorTable);
VAT
x* Creates a data reference and sets the FlatField as our data
o/

data_ref = new DataReferencelmpl(” data_ref”);
data_ref.setData(vals_ff);
display .addReference(data_ref);

VAT

* Sets maps ranges

204
*/
latMap . setRange(—1.0f, 16.0f);
lonMap.setRange(—1.0f, 16.0f);
altMap . setRange (this . maxDepth, this.minDepth);

VAT

* Create application window and add display to window
*/

JFrame jframe = new JFrame(” Erosion.Profile”);

jframe . getContentPane () .add (display .getComponent ());
jframe.setSize (600, 600);
jframe.setVisible (true);

VAT
* Updates the wvalue of an element in the removedCell array which is associated with
the cell centered at the given poisiton.
*
* @param cellPosition the position of the removed cell.
*/
public static void setRemovedCell (Objects3D . Vector3D cellPosition)
{
double cellSize = OcTreeADT. CellularOcTree. getCellSize () ;
int X = (int)(cellPosition.getX()/cellSize);
int Y = (int)(cellPosition.getY()/cellSize);
if (X>=0 && X<count && Y>=0 && Y<count)

try{
removedCell [X][Y]=—(cellPosition .getZ ()—SimulationManager . AJM_Environment .
getDepth ()+CellularOcTree. getMinHalfSize ()) ;
} catch(ArraylndexOutOfBoundsException e){}

}

VAT
% Returns the removedCell array.
*
* @return the removedCell array.
*

public double[][] getRemovedCell() {
return removedCell;
}

205

Count ers.j ava: The Counters class defines all the counters monitoring the behavior

of the simulation.

package mySimulation;

public class Counters {

VAT
* The

*/
public

VETS
* The

*/
public

VAT
* The

*/
public

Jkx
* The
*/
public

VAT
x The

*/
public

Vix:
* The

*/
public

VET
* The

p
*/
public

JHx

* Different reasons for owverlapping.

*/
public

VAT
x The

*/
public

Jxx
* The

*/
public

Vir:
% The

number

static

number

static

number

static

number

static

number

static

number

static

number

articles at the time of its launch.

static

static

number

static

number

static

number

of predicted particle—particle collisions.

int predictPPColl=0;

of predicted particle—surface collisions.

int predictPSColl=0;

of predicted transfers.

int predictTransfer=0;

of reused memory spaces for creating new particles.

int reusedSpaces=0;
of unsuccessful attémps to reuse 7"memory spaces for creating new particles
int notReusedSpaces=0;

of unusual situations.

int unusual = 0;
of obsereved ‘situations a particle has overlapped with some other

int overAtLaunch = 0;

int infinit = 0, remOverLapTime = 0, disLessR = 0, isNotInBound = 0;

of removed cells from the substrate.

int numOfRemovedCells = 0;

of removed cells at the time that best—curve—fit was calculated.

int preNumOfRemovedCells = 0;

of caculation of best—curve—fit

*/

public static int numOfPloyCalc = 0;

public int numOfEvents = 0;

VAT

% The number of particle—particle collisions.

«/

public static int numPPColl = 0;

J* %

x The number of successful particle—surface collisions.
*/

public static int numPSColl = 0;

VATS .

x The number of unsuccessful particle—surface collisions.
*/

public static int numUnsuccessPSColl = 0;

VAL

%« The mumber of lauched particles.

*/

public static int numLunch = 0;

VAT

x The number of trasfers.

*/

public static int numTransfer = 0;

VTS

x The number of particles that hit the target surface once.
*/

public static int numHitSurfacel = 0;

Jx*

x The number of particles that hit the target surface twice.
*/

public static int numHitSurface2 = 0;

VET:

+ The number of particles that hit the target surface more than two times.
*/

public static int numHitSurfaceMore = 0;

VET:

x The number of particles that hit the target surface before going through
particle—particle collision .
*/

public static int numHitSurfBeforePPColl = 0;

VETS

x* The number of particles that hit the target surface and have gone though
one particle—particle collision .

*/

public static int numHitSurfAfterPPColl = 0;

VET:

* The number of particles that have left the system without undergoing any
particle collision and

x+ particle—surface collision.

*/

public static int numParExitBeforeColl_Hit = 0;

206

any

at least

particle—

VETS
* The

*/
public

VAT
* The

*/
public

VETS
* The

*/

public

VAT
x The

*/

public

VAT
x The

*/

public

VETS

x* Creates a new instance of Counters.

*/

public Counters() {

}

number

static

number

static

number

static

number

static

number

static

207

of particles that have left the boundary of the system.

int numExitEnvl = 0;

of overlaps observed between particles.

int overlapCounting = 0;

of particles inside the system.

int numOfCurrParticles = 0;

of particles partially embedded iside their tsarget cell.

int foundPSCollEmbed = 0;

of particle—surface collisoins on the square 'planes of the surface cells.

int numPlaneNormal = 0;

. 208
NOZZIG.J&V&:- The Nozzle class is implemented to handle and predict launch events

of particle and store the nozzle information.

import SystemEvents. EventPPCollision;
import Objects3D . Vector3D;
import Objects3D . VectorOperation;
import java.lang.Math;
import SystemEvents. Event;
public class Nozzle {
VAT
x The radius of the nozzle.
«/
private double nozzleRadius;
VAL
x The number of particles launched per second.
«/
private double lunchFrequency;
VAT
% The interval between two subsequent launch events.
*/
private double lunchingTimelnterval;
VAE
+ The distance that mnozzle scans to create the channel.
*/
private double passDistance;
VAE:
+ The distance between the mozzle and the target surface along the nozzle centerline.
*/
private double stand_off_dis;
VAT
x The focus coefficient which defines divergence of the incident stream.
*/
private double beta;
Vas
« The variable that is .set to true for the case of mon—stationary nozzle.
*/
private boolean channel;
VAT
%+ The current position of the mnozzle.
*/
private Vector3D position;
VAE: .
x The velocity of the nozzle.
*/
private Vector3D velocity;
VAT

* The start point of the pass distance.

*/

private double startPoint;

VEE:

* The end point of the pass distance.

*/

private double endPoint;

VAT

* The angle by which the mnozzle

«/

private double orientationAngle;

VAT
* The sine of the

*/

private double sinA;

VET:

* The cosine of the

*/

private double cosA;

is oriented.

JHx

* The cutoff radius at which it is
*/

private double Rc;

Jkx

* The radius of particles.

*/

private double particleRadius;

VExS

* The density of abrasive particles.
*/

private double particleDensity;

/%%

* The mass of particles.

*/

private double particleMass;

ok

* The constants used in particle velocity distribution
vConstantir/h}).

*/

private double vConstantl, vConstant2;

Jkx

* The mazimum wvelocity of particles

*

private double particleVmax;

ko

Creates a new instance of Nozzle

@param lunchFrequency the number of particles

@param stand_off_dis the distance between the
the nozzle centerline.

@param beta the focus coefficient.

% @param position the

*
ES
* @param nozzRadius the radius of the mnozzle.
*
*

*

highly unlikely any particle

observed at the mnozzle

orientationAngle for the ablique nozzle.

orientationAngle for the ablique mnozzle.

arrive .

(V(r)=V(0){vConstantl—

centerline .

launched per second.
nozzle and the target surface along

initial position of the nozzle.

209

210

@param welocity the velocity of the mozzle.
@param particleRadius the radius of particles.
@param particleMass the mass of particles.
@param passDistance the distance that mozzle scans to create the channel.
@param channel the variable that is set to true for the case of mon—stationary
nozzle.
* @param vConstantl the first constant used s particle velocity distribution.
* @param vConstant2 the second constant used is particle velocity distribution.
x @param orientationAngle the angle by which the nozzle is oriented.
*/
public Nozzle(double nozzRadius, double lunchFrequency, double stand_off_dis, double
beta, Vector3D position, Vector3D velocity,
double particleRadius, double particleMass, double particleDensity,
double passDistance, boolean channel,
double vConstantl, double vConstant2, double particleVmax, double
orientationAngle)

* ¥ ¥ ¥ ¥

/xx%% Nozzle features xxxx/

this.nozzleRadius = nozzRadius;
this.lunchFrequency = lunchFrequency;
this.lunchingTimelnterval = 1/lunchFrequency;

this.stand_off_dis = stand-off_dis;
this.beta = beta;
this. position = new Vector3D (position);
this. velocity = new Vector3D(velocity);
this.Rc = stand_off_dis*(Math.sqrt(—4 * Math.log (1.0—-0.9999)))/(2.0%beta);
this.passDistance = passDistance;
this.vConstantl = vConstantl;
this.vConstant2 = vConstant2;
this . particleVmax = particleVmax;
this.orientationAngle = orientationAngle;
if (orientationAngle!=0) '
{
orientationAngle = Math.toRadians(orientationAngle);
sinA = Math.sin (orientationAngle);
cosA = Math.cos(orientationAngle);

this.channel = channel;
if (channel)

this.startPoint = position.getX();
this.endPoint = position.getX () + passDistance;

/x*xxx Particle features xxxx/
this.particleRadius = particleRadius;
this. particleMass = particleMass;
this.particleDensity = particleDensity;

return;
L
VET: ' .
x Updates the position of mozzle after time t (X=Vit+X0)
*
x @param time the time . interval used to move the nozzle from its current position.
*/

private void updatingPositon(double time)

{
}
JEx

x Calculates the initial position and velocity of a mew particle.
*

x @param Vmaz the mazimum velocity of particles which is observed at the mnozzle

position .addWith(VectorOperation. multiply (velocity ,time));

211

centerline.
* @param VO the initial velocity of the mew particle which is filled up by this method

* @param X0 the initial position of the new particle which is filled up by this method

*/
private void setParticleVectors(Vector3D V0, Vector3D XO0)
{
double x, y, z, a, size;
double r = getWeibullRV ((stand_off_dis/beta),2.0);
double theta = Math.PI*2xMath.random/() ;
double Rn = this.nozzleRadius;
double r1 = (Rn/Rc)=*r;
r=r — rl;

Jxxxxxxkxx Sets particle velocity sxsxxxxxxx/

double velocity = getParticleVmax () * (getVConstantl() — (vConstant2xr/
stand_off_dis));

x = rxMath.sin (theta);

y = rxMath.cos(theta);

z = stand_off_dis;

size = Math. sqrt (xxx+y*y+z*z);

// Makes VO equal to wvelocity

a = velocity/size;
X = axX;
y = axy;
7z = a*z;

// rotate wvelocity around z—azis
VO0.setPoint (x,y,z);
if (orientationAngle!=0)

double tempY = y;
y = y*cosA — zxsinA;
z = tempY=*sinA + zxcosAj;

VO0.setPoint (x,y,z);

JExwskkkkxx Sets particle position skkxksskkx/
x = position.X 4+ rlxMath.sin (theta);

y = position.Y + rlxMath.cos(theta);

z = position.Z;

X0.setPoint (x,y,z);

return;

}
Jkx

* The time at which the last particle was launched.
*/
static double preTime = O0;

VET:
* Recalculate the position and velocity of a mozzle for the case of channel.
*/
private void updateNozzleVectors(){
double time = SimulationManager.SystemTime — preTime;
preTime = SimulationManager.SystemTime;

this. position.movePoint (this. velocity ,time);
if (position.getX ()>=this.endPoint || position.getX ()<=this.startPoint)

this.velocity . multiplyBy (—1.0);
System.out.println (” Nozzle.velocity:.” + this.velocity + "ooooo time:.” + time +
? ie—.position:.” 4+ position);

212
}

VAL
%+ Launches a new particle, sets it vectors, and updates nozzle vectors (for the case
of the channel).
" .
% @return a new partilce which was just launched and entered the system.
*
/
public Particle lunchParticle ()
{
Particle P;
Vector3D VO=null;
Vector3D XO=null;
mySimulation . Counters. numOfCurrParticles+-+;
VO=new Vector3D () ;
X0=new Vector3D () ;
if (this.isChannel())
updateNozzleVectors () ;
setParticleVectors (V0,X0);
P = new Particle(getParticleRadius(), getParticleMass(), X0, Vo) ;
if (orientationAngle!=0)

double dis = 2.0x(this.position.getY ()—P.getPosition().getY());
P.getPosition () .setY (P.getPosition () .getY ()+dis);
P.getLinearVelocity () .setY (P. getLinearVelocity () .getY () x—1.0);

mySimulation. Counters.notReusedSpaces++;
return P;

}
ko

x It creates a weibull random wvariable by wusing a uniform random variable using the
following formula.

* Welandax(—Ln(U)) "(1/k)

*

* pdf. function of W is:

* f(W) = (k/landa) * (W/landa) (k—1) * e"(—(W/landa) k)
*

% @param landa one of the parameter of the weibull distribution.

% @param k one of the parameter of the weibull distribution.

x @return a weibull random variable.

*/

private double getWeibullRV(double landa, double k)

// random () creates a Uniform RV.

double W, U = Math.random () ;

W = landa*(Math.sqrt(—Math.log (U)));
return W; .

}

public double getRadius (){
return nozzleRadius;
}

public double getLunchFrequency (){
return lunchFrequency;
}

public double getLunchingTimelnterval(){
return lunchingTimelInterval;
}

public double getStand_off_dis(){
return stand_off_dis;

213
}

public double getBeta () {
return beta;
}

public Vector3D getPosition () {
return position;
}

public Vector3D getVelocity () {
return velocity;
}

public double getOrientationAngle() {
return orientationAngle;
}

public double getPassDistance () {
return passDistance;
}

public double getVConstantl () {
return vConstantl;
}

public double getVConstant2 () {
return vConstant2;
}

public boolean isChannel() {
return channel;
}

public double getParticleRadius () {
return particleRadius;
}

public double getParticleMass () {
return particleMass;
}

public double getParticleVmax () {
return particleVmax;
}

public double getParticleDensity () {
return particleDensity;
}

. . 214
P artlcle.J ava. The instances of the Particle class used to store the information of

particles.

package mySimulation;
import Objects3D . Vector3D;
import Objects3D . VectorOperation;
import java.util.LinkedList;
import java.util.List;
public class Particle {
VETS
* The radius of the particle.
*/
private double Radius;
VETS
* The mass of the particle.
*/
private double Mass;
Jxx
* The unique id provided with particle.
*/
private int ID;
VAT -
% For the particle which has left the system, this wvariable is changed to true.
«/
private boolean deleted = false;
VETS :
* The time associated with the position of the particle.
«/
private double particleTime;
VxS
* The linear wvelocity of the particle.
*/
private Vector3D linearVelocity;
VAT
* The rotational wvelocity of the particle.
“/
private Vector3D angularVelocity;
VAT
* The position of the particle at time of its last handlled event.
*/
private Vector3D position;
VEES
* The destination of particle after after handling its mnext precited trasfer.
*/
private Vector3D nextDestination;
ViT:

* The wvariable used to determine the particle with unusual behaviors.

*/

private boolean unusualSituation = false;

Jkx

* The number of particle—surface collisions of this particle.
*/

private int numHitSurface;

VETS

* The number of particle—particle collisions of this particle.
*/

private int numPPColl;

VEE

x* The last environment cell in which the particle enters.

*/

public SystemEnvironment. Cell currentSpace;

VAT

% The second last environment cell in which the particle enters.
*/

private SystemEnvironment. Cell oldSpace;

JEx

* The wvariavle that holdsthe information of all detected events for this
*/

private SystemEvents.Event event;

Jkx

x* The associated mode with this particle which is stored in event queue.
private SystemEvents.EventNode eventNode;

VAT

* The type of the last handled event of this particle.

*/

private SystemEvents.Event.EventType lastEvent;

ko

x* The coefficient restitution for particle—particle collisions.
*/

private static double epp;

VEE

* The coefficient restitution for particle—surface collisions.
*/

private static double eps;

private List containingCube;

/

*

*

%+ Creates a new instance of Particle

*

% @param Rp the radius of the particle.

* @param Mp the mass of the particle.)

* @param X0 the initial position of the particle at the nozzle ezxzit plane.
* @param VO the initial wvelocity of the particle at the nozzle ezit plane.
*/

public Particle(double Rp, double Mp, Vector3D X0, Vector3D VO0)

setRadius (Rp);

setMass (Mp) ;

numHitSurface = 0;

particle.

215

216

‘numPPColl = 0;

position = new Vector3D (X0);

this.nextDestination = new Vector3D(—1,—1,-1);

linearVelocity = new Vector3D(VO);

// It is assumed that particles do mot have angular wvelocity when they are lunched
from the nozzle.

angularVelocity = new Vector3D (0,0,0);

event = new SystemEvents.Event(this);

particleTime = SimulationManager . SystemTime;

eventNode = new SystemEvents.EventNode(event);

oldSpace = null;

setContainingCube (new LinkedList ());

return;

}
VAT

%* Resets the information of the particle to default values.
*/

public void resetParticle(double Rp, double Mp)

setRadius (Rp);

setMass (Mp) ;

numHitSurface = 0;

numPPColl = 0; :

this.nextDestination = new Vector3D(—1,—1,—1);

// It is assumed that particles do mot have angular wvelocity when the lunched from the
nozzle

angularVelocity = new Vector3D (0,0,0);

if(this.event.getOwnerParticle():null)
this.event.setOwnerParticle (this);

event .resetInfo ();

particleTime = SimulationManager . SystemTime;
oldSpace = null;

return;

}

Jx*

%« Moves the particle for the given time interval.

*

% @param time a time interval.

%« @return the nmew position of the particle after the given time interval.

*/

public Vector3D updatingParticlePosition (double time){
thiSAposition4setPoint(VectorOperation.add(VectorOperation.multiply(linear\/elocity,

time), this.position));

this.particleTime += time;

return position;

}
VAT

x Calculates the moment of inertia of the particle.
*/

public double GetMomentOfInertia () {

return (2.0*this.Mass*this.Radius*this.Radius)/5.0;

}
Ve

% Calculates the kinetic energy of the particle.

*/

public double GetKineticEnergy (){

return ((Mass*this.linear\/elocity.getSquareNorm() + this.GetMomentOflnertia () *
angularVelocity . getSquareNorm ()) /2.0);

217
VAT

* Increases the number of particle—surface collisions by one. This method is invoked
after each time that the particle hits the surface.
*/

public void increaseHitSurface (){
this . numHitSurface++;
¥

public double getNumHitSurface () {
return numHitSurface;
}

public int getID() {
return ID;
}

VEE:

x Increases the number of particle—particle collisions by one. This method is invoked
after each time that the particle undergoes a mew particle—particle collision.

*/

public void increaseNumPPColl () {
this . numPPColl++;
}

public double getNumPPColl() {
return numPPColl;
}

" public double getParticleTime (){
return particleTime; '
}

public void setParticleTime (){
particleTime = SimulationManager.SystemTime;
} .

public void setParticleTime (double t){
particleTime = t;
}

public void setID(int i) {
ID=i,;
}

public void setEvent (SystemEvents.Event e){
event = e;
}

public SystemEvents.Event getEvent (){
return event;
}

public void setEventNode(SystemEvents.EventNode node){
eventNode = node;
}

public SystemEvents. EventNode getEventNode () {
return eventNode;
}

public double getRadius(){
return Radius;
}

218

public double getMass () {
return Mass;
}

public Vector3D getLinearVelocity () {
return linearVelocity;
}

public Vector3D getPosition (){
return position;
} .

public double getX () {
return position.getX ();
}

public double getY () {
return position.getY ();
}

public double getZ () {
return position.getZ();
}

public void setPosition (double x, double y, double z){
position.setPoint(x, y, z);
}

public void setPosition (Vector3D P){
position = P;
}

public void setLinearVelocity (Vector3D v){
linearVelocity = v;
}

public void setLinearVelocity (double x, double y, double z){
linearVelocity .setPoint (x, y, 2);
}

public void setCurrentSpace(SystemEnvironment. Cell c¢){
currentSpace = c;
}

public SystemEnvironment. Cell getCurrentSpace (){
return currentSpace;
}

public SystemEnvironment. Cell getOldSpace() {
return oldSpace;
}

public void setOldSpace(SystemEnvironment. Cell oldSpace) {
this.oldSpace = oldSpace;
}

public Vector3D getNextDestination () {
return nextDestination;
}

public void setNextDestination (Vector3D nextDestination) {
this.nextDestination = nextDestination;
}

219

public Vector3D getAngularVelocity () {
return angularVelocity;
}

public void setAngularVelocity (double x, double y, double z) {
this.angularVelocity .setPoint(x,y,z);
}

public void setAngularVelocity (Vector3D angularVelocity){
this.angularVelocity = angularVelocity;
} .

public boolean isUnusualSituation () {
return unusualSituation;
}

public void setUnusualSituation(boolean unusualSituation, String reason) {
this. unusualSituation = unusualSituation;
}

public SystemEvents.Event.EventType getLastEvent () {
return lastEvent;
}

public void setLastEvent (SystemEvents.Event.EventType lastEvent) {
this.lastEvent = lastEvent;
}

public void setRadius(double Radius) {
this . Radius = Radius;
}

public void setMass(double Mass) {
this.Mass = Mass;
}

VAT

* Returns a string representation of the ranges occupied by the particle in three azes

*

* @return the string representing the range of the particle.

*/

public String getRange(){

return (”\n..x:.” + (position.getX()—this.Radius)+’—"+(position.getX ()+this.Radius)+
?\no.y:.” 4+ (position.getY ()—this.Radius)+’—"+(position.getY ()+this.Radius)+
?\n..z:.” + (position.getZ ()—this.Radius)+”—"+(position.getZ ()+this.Radius)+
77\n77);

}

Jx

* Returns a string representation of this particle.

*

* @return a string representation of this particle.

*/

public String toString(){
return(” Particle.Info:.\n._.Position:.” + this.position + "\n..Velocity:.” +
this.linearVelocity + ”\n.ID:.” + this.getID()+”\n.range:.” + this.getRange
O+
?\n..currentSpace:.” + this.currentSpace + ”\n_..oldSpace:.” + this.oldSpace
)
}

public static double get_epp () {
return epp;

220
}

public static void set_epp(double e) {
epp = e;

public static double get_eps() {
return eps;
}

public static void set_eps(double e) {
eps = e;
}

public boolean isDeleted () {
return deleted;
}

public void setDeleted (boolean deleted) {
this. deleted = deleted;
}

public List getContainingCube() {
return containingCube;
}

public void setContainingCube(List containingCube) {
this.containingCube = containingCube;
}

221

SimulationManager.java: The SimulationManager class implements the

general event-based algorithm of the simulation.

It chooses the easrliest event, the one

stored in the root of the event heap. It also invokes appropriate haldler at each event to

update the system and invokes appropriate detectors to update the event queue after each

event handled.

package mySimulation;

import OcTreeADT . CellularOcTree;
import ProjectInterface.Interface;
import SystemEnvironment. Cell;

import Visualization.Plot;

import Objects3D . Vector3D;

import SystemEnvironment.Environment ;
import java.awt.EventQueue;

import java.awt.event.ActionEvent;
import java.lang.Math;

import SystemEvents. x;

import SystemEvents. Event .x*;

import java.rmi.RemoteException;
import java.util.x;

import javax.swing.JProgressBar;
import org.apache.poi.poifs.filesystem .x;
import org.apache.poi. hssf.usermodel.x;
import java.io.x;

import ProjectInterface.Interface;
import javax.swing.JOptionPane;
import javax.swing.SwingUtilities;
import javax.swing.JFrame;

import SystemEvents.Event.EventType;

import visad.VisADException;

public class SimulationManager extends ProjectInterface.Interface {

Vit

222
x* The mozzle of the AJM process.

*/

public static Nozzle AJM_Nozzle;

Ve .

x The environment of AJM process holding all particles in the system.

*/

public static Environment AJM_Environment ;

VAT .

x The event queue of the simulation.

*/

public static EventHeap AJM_EventHeap;

Vix:

"% The substrate which is used in the AJM process and is exposed to the particles
stream .

*/

public static CellularOcTree AJM_Substrate;

VAT

* An auziliary wvariable used to determine the particle close to the surface cells.
*/
public static double precision = (double)0.0000001;

k%

* The actual time of the simulation.
public static double SystemTime;

VEx:

% The timeé interval at which the results of the simulation are created.

private static double printingTime;

VAT .
x The time at which the results of the simulation are created. The time interval,
printingTime, 4s used to update this wariable.

*/

static public double timeToWrite;

Vers

x The progress of the simulation in terms of time which is used to update the progress
bar of GUI.

*/

private int pBarPercent;

VTS

+ The workbook used to create exzcel files including partially eroded depths of the
surface cells at cross—sections. ’
*/

public static HSSFWorkbook cell2DWbY=null;

VEES
% The worksheet used to create ezxzcel files including partially eroded depths of the
surface cells at cross—sections.

public static HSSFSheet cell2DSheetY ;

VAES

x A row of the spreadsheet used to create ezcel files including partially eroded
depths of the surface cells at cross—sections.

*/

public static HSSFRow cell2DRowY ;

223
VAT

* The workbook used to create exzcel files including the partially eroded depths of all
the surface cells.
*/

public static HSSFWorkbook cell3DWb=null;

VAT

* The worksheet used to create excel files including the partially eroded depths of
all the surface cells.

*/

public static HSSFSheet cell3DSheet ;

VAT .

* A row of the spreadsheet used to create exzcel files including the partially eroded
depths of all the surface cells.

*/

public static HSSFRow cell3DRow ;

VAT

* The workbook used to create an ezcel files including information from the simulation
such as number of particel—particle

*. collisions, particle—surface collision, and etc.

*/

public static HSSFWorkbook wb;

VEE:

* The worksheet used to create an excel files including information from the
simulation such as number of particel—particle

* collisions, particle—surface collision, and etc.

*/

private static HSSFSheet sheet;

VAT

* A row of the spreadsheet used to create an ezcel files including information from
the simulation such as number of particel—particle

* collisions, particle—surface collision, and etc.

*/

private static HSSFRow row;

VEE:
x The counter to keep track of the number of created row in the worksheet including
information from the simulation .

*/

private static int excelRow=1;

VET:

* Initializes the fields of this SimulationManager.
*/

public void initElements ()

{
/*% Nozzle Information *x*/
double nozzleRadius;
double nozzlelunchFreq;
double nozzleHeight ;
double weibullBeta;
double nozzlePassDistance;
Vector3D nozzlePosition, nozzleVelocity;
boolean channel;
double vContantl;
double vContant2;
double orientationAngle;

/*% Particles Information *x/

224

double Vmax;

double particleRadius;
double particleMass;
double particleDensity;
double epp, eps;

/+% Surface Information %/
double surfaceDensity;
double substrateDepth;
double D;

double K;

boolean brittle;

double nl, n2, Hv;

double frictionCoefficient;

/x*% Environment Information xx/
double envEdgeSize;

double envDepth;

timebeg = System.nanoTime();

nozzlePosition = new Vector3D (Double.parseDouble(nXText.getText 0O,
Double. parseDouble (nYText . getText ()),
Double. parseDouble (nZText . getText ()));
nozzleVelocity = new Vector3D (Double. parseDouble (nVXText. getText ()),
0.0,
0.0);

nozzleRadius = Double.parseDouble (nRadiusText.getText ());
nozzlelunchFreq = Double. parseDouble (nlunchFreqText . getText O)s
nozzleHeight = Double.parseDouble(nHeightText . getText 0O)s

weibullBeta = Double.parseDouble(betaText . getText ());
nozzlePassDistance = Double. parseDouble(nPassDistanceText . getText 0O

if(nozzleVelocity . gétX()::O && nozzleVelocity .getY ()==0 && nozzleVelocity .getZ()

==0)

channel = false;
else

channel = true;

Vmax = Double. parseDouble (pVSizeText.getText ());

vContantl = Double.parseDouble(this.vConstl.getText());

vContant2 = Double. parseDouble (this.vConst2.getText ());
orientationAngle = Double.parseDouble(this. nOrientAngleText . getText ());

/%

%« changing Radius from micron unit to mm

*/

particleRadius = Double . parseDouble (pRadiusText . getText ())/1000.0;

VAT
x Kg/m*3
*/

particleDensity = Double.parseDouble (this. pDensityText . getText ());

/xx M=Desity*V (V=4/3«PIxR"3)

Vit

% changing Radius unit to m

«/

double R = particleRadius/1000.0;

double pV = (4.0/3.0)*Math.PI*Math.pow(R,S.O);
particleMass = particleDensity*pV;

epp = Double.parseDouble (PPCo_ResText . getText 0));

225

System.out . println (epp);
Particle.set_epp (epp);

eps = Double.parseDouble (PSCo_-ResText.getText ());
System.out.println (eps);
Particle.set_eps(eps);

frictionCoefficient = Double. parseDouble(this.fricCoText.getText ());
surfaceDensity = Double. parseDouble(surfDensityText.getText ());
substrateDepth = Double. parseDouble (surfDepthText.getText ());

D = Double. parseDouble (surfDText.getText ());

K = Double. parseDouble (surfKText.getText ());

brittle = this.brittleBool.isSelected ();

nl Double. parseDouble (this.surfN1Const.getText ());

n2 Double. parseDouble (this.surfN2Const.getText ());

Hv = Double. parseDouble (this.surfHv.getText ());

envEdgeSize = Double. parseDouble (envWidthText. getText ());
envDepth = nozzleHeight ;

VAT

* micron to mm

*/

double surfCellSize = (Double. parseDouble(cellSizeText .getText ())/1000);
OcTreeADT . CellularOcTree.setCellSize (surfCellSize);

AJM_Substrate = new CellularOcTree(calculateOctreeSize (envEdgeSize), envDepth,
surfaceDensity, frictionCoefficient,
D, K, brittle, nl, n2, Hv, substrateDepth);

System.out.println (” brittle:.” + brittle);
System.out.println (”ductile:.” + this.ductileBool.isSelected());

stopTime = Double. parseDouble’(this.timeTxt.getText ());

AJM_Nozzle = new Nozzle(nozzleRadius, nozzlelunchFreq, nozzleHeight, weibullBeta,
nozzlePosition, nozzleVelocity, particleRadius, particleMass,
particleDensity,
nozzlePassDistance, channel, vContantl, vContant2, Vmax, orientationAngle);

AJM_Environment = new Environment(envEdgeSize, envEdgeSize, envDepth,0.8) ;
setPrintingBounds () ;
AJM_EventHeap = new EventHeap () ;

[xxxx. For writing in Excel x*xx/
cell2DWbY = new HSSFWorkbook () ;
cell2DSheetY = cell2DWbY . createSheet () ;
cell3DWb = new HSSFWorkbook () ;
cell3DSheet = cell3DWb. createSheet () ;
wb = new HSSFWorkbook () ;

sheet = wb.createSheet ();

row = sheet.createRow ((short)0);

row. createCell ((short)0).setCellValue (” Time”);

row.createCell ((short)1).setCellValue (” Launched_.Particles”);

row.createCell ((short)2).setCellValue ("PP-Collisions”);

row.createCell ((short)3).setCellValue ("PS—Collisions”);

row. createCell ((short)4).setCellValue(” Particles_.Hit.the_.Surface_Before.Colliding”)

row. createCell ((short)5).setCellValue (”Depth_of_Erosion_.Profile”);

File f1 = new File(”mySimResult”);
if (1f1.exists())fl.mkdir();

SystemTime=0;

* <p>

¥ X ¥ ¥ ¥

*

public double calculateOctreeSize (double envWidth) {

}

Virs

‘% The current event of the system.

4

static public Event.EventType currEventType=null;

ViE:

%« The element of the event gqueue including the earliest event.

*/

static public EventNode currElement;

/%%

x The id of a particle attended in the last particle—particle collision of the system.
*/

static public int collParticleld;

VEE:

+ The id of a particle attended in the last particle—particle collision of the system.

*/

static public int collPartnerld;

226

printingTime = Double.parseDouble(this.sysPrintTime. getText ());
timeToWrite = printingTime;

pBarPercent = 0;

EventPSCollision . initPoint () ;

Calculates the appropriate edge for the substrate.

Note: Simulation assumes that the substrate is a cube. Since the present simulation
used the

cellular octree, the logarithm of the number of cells in a row to the base 2 must be
a positive integer.

If the user input for the size of the surface does mot preserve this condition, the
calculateOctreeSize

method calculates the smallest number to the user input which is larger than the
input and preserves the

condition .

@param envWidth the edge of the cubic target substrate.

@return the appropriate size for the substrate edge.

double envEdgeSize = envWidth;

double preSize = envEdgeSize;

double numCells = envEdgeSize/OcTreeADT . CellularOcTree. getCellSize)
double log2 = Math.log(numCells)/Math.log (2.0);

if (log2!=Math. floor(log2))

double correctedLog2 = Math. floor (log2 + 0.4);
envEdgeSize = Math.pow (2.0, correctedLog2) *OcTreeADT . CellularOcTree. getCellSize

) K
if (envEdgeSize<preSize)

correctedLog?2 = Math. floor (log2 + 1.4);
envEdgeSize = Math.pow (2.0, correctedLog2)+OcTreeADT. CellularOcTree.
getCellSize () ;

}
}

return envEdgeSize;

VAT
* Starts the simulation of creating the system components and invoking appropriate
handlers and detectors.

public void runSimulation () throws InterruptedException
{
/*% Creates components and initializes them. xx/
initElements () ;

/x%Sets the wvalue for calculating the volume removed from the surface. %%/
SystemEvents. EventPSCollision.setErosionConstant () ;

long time;
long startTime = System.nanoTime() ;

/x% Creates a text file including the inputs to the simulation. *x/
createlnputsFile () ;

/*x% the ‘type of the previous event that has been occurred. *x/
Event . EventType prevEventType;

/*% Sets the initial time of the simulation. xx/
this.SystemTime = 0;

Cell origin, destination;
int pBarOldPercent = 0;
int testNumHitSurf = 0;

/+x Creates the launch node of the event queue. %%/ -
currElement = new EventNode(null);

/x% The particle involving the the current event of the system. xx/
Particle P = null;

/%% The partner of the particle, P, before its current event was handled. xx/
Particle prePartner;

\

/*x Counters to monitor the time for printing information on the sceen. %%/
int limitPrintScreen = 500;
int limitPrintTime = 500;

/**Adds the launch node to the heap. Note: At this point, event queue has only one

element. xx/
this. AJM_EventHeap. insert (currElement);

/**% A counter monitoring the number of handled events in the system. %%/
int i=0;

while (true)

/x% Updates the integer determining the progress of the simulation. *x/
pBarPercent = ((int)(this.SystemTime*100/this.stopTime));

/*% Checks if the time s up. If so.the ezecution is terminated. *x/
if (SystemTime>=this.stopTime)

System.out.println (”time_to_.stop:.” + this.SystemTime);
printStatistics () ;
/% Fully fills up the progress bar xx/
SwingUtilities.invokeLater (new Runnable() {
public void run() {
updateBar (pBar. getMaximum ()) ;
}

bE

227

228
break;

}

/x% Checks if the progress bar must be updated. xx/
if (pBarPercent > pBarOldPercent)

SwingUtilities.invokeLater (new Runnable() {
public void run() {
updateBar (pBarPercent) ;
}

s
}

pBarOldPercent = pBarPercent;
prevEventType = currEventType;

/x% Sets the currElement, which is current event, to root of the minimized
event heap s%/
currElement = AJM_EventHeap.getHeapRoot () ;

if (currElement==null)
System.out . println (”currEvent:” + currEventType);

/x% Sets the type of the current cube %%/
currEventType = currElement . getNextEventType () ;

/+x Sets the last handled event for - the particle involving in the current event
*%)

if (currElement . getEvent ()!=null)
currElement . getEvent () . getOwnerParticle () . setLastEvent (currEventType) ;

/+% Reports error xx/
if (currElement . getTime () ==0)
Objects3D . VectorOperation. errMassageExit (” currElement . getTimeValue ()==0",”
SysImpelementsation”);

VAT

« The switch statement divided the algorithm into branches based on a number
of events type.

« Each branch is resposible to handle the certain type of events. It also
updates the event queue

* after the event was handled.

«/

switch (currEventType)

/x% The branch resposible for particle—particle collisions x%/
case PPCollisionType:
{
/+% Increments the mumber of launched particles. *x/
mySimulation . Counters.numPPColl++;

if (mySimulation. Counters. numPPColl==1)
System.out . println (” first .PPColl_at time:.”+ SystemTime) ;
P = currElement . getEvent () . getOwnerParticle () ;
Particle partner = P.getEvent().getPPCollision (). getInvolvingParticle ()

collParticleld = P.getID();
collPartnerld = partner.getID();

/*x Updates the time of the system to the time of the current Event.x

SystemTime = currElement . getTime () ;

/x% Handles the particle—particle collision event. xx/

;

229

EventPPCollision . handleEvent (P, partner,currElement . getTime ()) ;

/*x Updates the event heap *x%/
P.getEvent () .setUpEvent_After_.PPCollision () ;

break;
}

/** The branch resposible for particle—surface collisions. %/
case PSCollisionType:
{
P = currElement .getEvent () .getOwnerParticle () ;
double preTime = currElement.getTime(); .
prePartner = P.getEvent (). getPPCollision () .getInvolvingParticle();

/x% Updates the time of the system to the time of the current Event.x
*/

SystemTime = - preTime;

/%% Handles the particle—surface event. *x/
boolean result = EventPSCollision.handleEvent (P);
if (prePartner!=null && result)

if (prePartner. getCurrentSpace ()!=null)
prePartner.getEvent (). getPPCollision () .setInfo (null,Double.
POSITIVE_INFINITY) ;
else
Objects3D . VectorOperation.errMassage (” prePartner . getEvent ()==
null” ,”in.PSCollisionType.case”);

/*% If the partcile—surface collision was successful. %x/
if (result) - i
/#% Updates the event heap *x/
P.getEvent () .setUpEvent_After.PSCollision.();
if(prePartner != null)
{
if (prePartner.getCurrentSpace()!=null)
prePartner.getEvent () .setUpEvent_After_PartnerLeaving () ;
else
SystemEvents. EventTransfer . removeParticle (prePartner);

}

/x% If the particle—surface cllision was unsuccessful. xx/
else
{
if (prePartner != null)
prePartner.getEvent () .setUpEvent_After_PartnerLeaving () ;
else if (!P.isUnusualSituation ())
{
/*x Increments the number of unsuccessful particle—surface
collision xx/
mySimulation . Counters. numUnsuccessPSColl++;
if (!P.isUnusualSituation ())
{
/*x Updates the event heap *x/
P.getEvent () .setUpEvent_After_PSCollision () ;
if(P.getBEvent().getPSCollision () .getMinTime ()==preTime)
P.setUnusualSituation (true,” handleUnsuccPScollision—
NullPointerException”);
EventTransfer.removeParticle (P);
SystemTime = currElement.getTime () ;

230

}
}
break;
}

/+% The branch resposible for transfer events. xk)
case transferType:
{
/x% Increments the number of trasfers xx/
mySimulation. Counters .numTransfer+-;
test NumHitSurf = Counters.numPSColl;
P = currElement . getEvent () .getOwnerParticle ();

prePartner = P.getEvent () .getPPCollision (). getInvolvingParticle ();
origin = P.getCurrentSpace () ;

/x% Handles the transfer event. x5/

EventTransfer . handelTransfer (P);

Virs

% The last environment cell that the particle has entered. For the
cases that particle has left the system

x this wvariable is set to null.

*/

destination = P.getCurrentSpace();

VAT

x After updating the events of P, P it could be different from ”
currElement. getEvent (). getOwnerParticle()”,

%« the reason is after set up its event we have to update its mnode
position in the heap. In updating heap,

« we do mot meally change the node posion after swapping the node, we
just change the CONTENT of the nodes.

% so the ”currElement.getBEvent().getOwnerParticle()” is the old place
for ”P” node, but mow after updating

% its mode is changed for the new place and the reference to this mew
place is put inside P->eventNode.

if (prePartner != null)

if(preP'artner‘getCurrentSpace()!:null)
prePartner.getEvent () .setUpEvent_After_PartnerLeaving () ;
}
/%% If particle is still flowing inside the system. %%/
if(destination!=null)

P.getEvent () .setUpEvent_After_Transfer 0
if (P.getEventNode ()!=null && P. getEventNode () . getTime ()==Double.
POSITIVE_INFINITY))
Objects3D . VectorOperation . errMassageExit (”P.getEventNode () .
getTimeValue ()==Double. POSITIVE.INFINITY”,
»SystemImp/runSimulation”);

}
break;

}

/%% The branch resposible for lauchnig new particles. *x/
case launchType:

{

mySimulation . Counters . numLunch-++;

/x% Updates the time of the system to the time of the current Event.xx*/ |
SystemTime = currElement . getTime () ;

/*% Updates the time of the nezt launching event in the system.

currElement . setNextEventNodeInfo_LunchingParticle () ;

/*% Handles the launch evet == Launches a new particle xx/
P = AJM_Nozzle.lunchParticle () ;

P.setID (mySimulation. Counters.numLunch) ;

P.setLastEvent (EventType.launchType) ;

while (AJM_Environment . addNewParticle (P)==null) -

P = AJM_Nozzle.lunchParticle () ;
P.setID (mySimulation. Counters.numLunch) ;

}

/+% Updates the event queue xx/
P.getEvent ().setUpEvent_After_Lunching () ;
break ;

}

/+% Catches and Handles errors which are caused by the invalid value of the

root *x/
case undefinedType:

{

Objects3D . VectorOperation . errMassageExit (” case.undefinedType.of_.event”

+ ”\nP:_‘” +P—|—
"\nEvent:.” + P.getEvent (),” SystemImplementation” +
?\nPreEvent:.” + prevEventType);
P.getEventNode () .resetNextEventNodelnfo () ;
break;
}
}
i+
if (i=limitPrintTime)

//System . out. printin("————— > 7+ this.SystemTime);
/xx Updates the system clock xx/
this.sysTimeText.setText (String.valueOf(SystemTime)) ;
limitPrintTime +=900000;

}
if (i==limitPrintScreen)
System.out. println (”——>_"+ this.SystemTime) ;

printStatistics () ;
limitPrintScreen +=25000000;

'} //}end of while

printStatistics () ;
System.out . println ("number_of._removed.cells:.”+mySimulation. Counters.

numOfRemovedCells) ;
time = System.nanoTime() — startTime;
System.out.println (”time:.” + time);

System. exit (0) ;

/% This part is implemented to wvisualize the erosion profile in three—dimensions
using the VisAD package. *x/
if (false)

depthScale = Double. parseDouble(this.surfDepthScaleText.getText ())*—1;

try {

231
x% /)

232

new Plot(depthScale);

} catch (RemoteException ex) {
ex.printStackTrace () ;

} catch (VisADException ex) {
ex.printStackTrace () ;

JOptionPane.showMessageDialog(this, ” Plottin._.the_Erosion.Profile”);

}

return;

}
ViT:

%+ Creates a text file including the inputs to the simulation .
private static void createlnputsFile ()

{

try
{
String outputFileName = 7 mySimResult /Inputs. txt”;
FileWriter outputFileReader = new FileWriter (outputFileName) ;
PrintWriter outputStream = new PrintWriter (outputFileReader);
outputStream . println (”-t———————_Inputsuto_.theuSimulationu———————l—” +
?\n\nNozzle:” +
P\Necoon radius (mm) : .7 + AJM_Nozzle.getRadius() +
?\Docooo stand—off—distance (mm):.” + AJM_Nozzle. getStand_off_dis () +
"\Dooooo velocity (mm/s):.” + AJM_Nozzle. getVelocity () +
P\Doceon initial_.position (mm):.” + AJM_Nozzle.getPosition () +
\Deceoo launch.frequency:.” + AJM_Nozzle.getLunchFrequency O +
LN R weibull_beta:.” + AJM_Nozzle.getBeta () +
KA s PO orientation._angle:.” + AJM_Nozzle.getOrientationAngle());
if (AJM_Nozzle. getVelocity () . getX ()!=0)
outputStream . println (7 .ioo. channel.pass (mm):.” + AJM_Nozzle.

getPassDistance ()) ; ‘
outputStream . println (”\n\nParticle:” +

"\Deoooo radius (mu) :.” + (AJM_Nozzle. getParticleRadius () *1000) +

LA P density (kg/m"3):.” + AJM_Nozzle. getParticleDensity () +

\Deceow maximum. velocity (m/s):.” + (AJM_Nozzle.getParticleVmax ()
/1000) + .

\Demeoo constants_for.velocity_distribution:.” +

AN PO vl:.” + AJM_Nozzle.getVConstantl () + ”cuceucn v2:.”

+ AJM_Nozzle.getVConstant2 () +
»\n\n\nSurface:.”);
if (AJM_Substrate. isBrittle())

outputStream . println (7 oonoo erosive.system:._brittle”);
else
outputStream . println (7 cooo. erosive.system:.ductile” +
AN R erosion.rate_constants:..” +
AN PO nl:.” + AJM_Substrate.getN1() +
7 iecon n2:.” + AJM_Substrate.getN2() +
? e Hv:.” + AJM_Substrate.getHv ());
outputStream . println (7 ccacon density (kg/m"3):.” + AJM_Substrate.getSurfaceDensity
0+ '
"\Deoeeo constant.D:.” + AJM_Substrate.getD() +
"\Decooo constant K:.” + AJM_Substrate.getK() +
P\ edge_of_surface_cells (mu):.” + (OcTreeADT. CellularOcTree.

getCellSize () *1000) +
"\n\n\nCeofficients:.” +

AN TR epp:.” + Particle.get_epp() +
"\Neceoo eps:.” + Particle.get_eps() +
’\Decooo friction:.” + AJM_Substrate.getFriction () +

7 \n\nd)5
outputStream . close () ; .

} catch (IOException e) {
System.out . println (?IOException:”);

233
}

Ve)

* Prints the wvalues of counters defined in the simulation.

*/

public static void printStatistics (){

System.out.println(”\nPP—Collisions:.” + Counters.numPPColl +
: ?\nLunched.Particles:.” + Counters.numLunch +

"\nTransfers:.” + Counters.numTransfer +
?\nLeft .Environment:.” + Counters.numExitEnvl +

”\noverlapCounting:.”+ Counters.overlapCounting +
"\nunsuccessfuloPScollisions:.”+ Counters.numUnsuccessPSColl +
”\nfound.PSColls.for _embbeded_particle.case:.” + Counters.
foundPSCollEmbed +
”\nnumber_of._removed.cells:.” + Counters.numOfRemovedCells +
?\nunusual.situation:.” + Counters.unusual +
”\nmaxDepthEroded:.” 4+ EventPSCollision.maxDepth +
"\nnozzle.position:.” + AJM_Nozzle.getPosition () +
7\ \nTotal _MembersOfCubes:.” + AJM_Environment .
getTotalMembersOfCubes () + : ‘
77\1,1 AAAAAAAAAAAAAA R R R R R R I R RN ” 4
?\nHitSurfBeforePPColl:” 4+ Counters.numHitSurfBeforePPColl +
?\nPS—Collisions:.”4+ Counters.numPSColl +
?\nnumPlaneNormal:.” 4+ Counters.numPlaneNormal +
”\Il AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA v
"\nnum.of.curve.fit.calculation:.” + Counters.numOfPloyCalc +
?\nnum.of.countPoint:.” + countPoints +
A \n” +
?\nwastedEnergy:.” + EventPSCollision.wastedEnergy +
"\nAverage_of_.wastedEnergy:.” + (EventPSCollision.wastedEnergy/
mySimulation . Counters.numOfRemovedCells) + .

”»

’\nNum.of_overlap.at.launch:.” 4+ mySimulation. Counters.

overAtLaunch);
System.out.println (?\n\n\n 7
Jxx
* Prints the cefficient of best curve fit euqgaiotn.
*/

for (int p=0;p<(SystemEvents. EventPSCollision.degreeOfPoly+1);p++)
System.out.println (SystemEvents. EventPSCollision . parameters [p]);

System.out.println (”\n\nreused.spaces:.”+Counters.reusedSpaces +
"\ nnotReusedSpaces:.”+Counters.notReusedSpaces);

}
VExS

* The wariables that define the printing bounds.
*/
public static double boundlY, bound2Y, boundlX, bound2X;

Jkox
* Sets the wvariables that define the printing bounds.
*/
public static void setPrintingBounds ()
{
double X = AJM_Nozzle. getPosition ().getX();
double Y = AJM_Nozzle. getPosition ().getY ();

I

if (AJM_Nozzle.isChannel())

boundlX = X + AJM_Nozzle.getPassDistance() /2.0 — 3.0;
bound2X = X + AJM_Nozzle.getPassDistance () /2.0 + 3.0;

234

else
boundlX = X — (OcTreeADT. CellularOcTree. getCellSize () *10);
bound2X = X + (OcTreeADT. CellularOcTree.getCellSize ()*10);
}
if (AJM_Nozzle.getOrientationAngle ()!=0)
boundlY = 0;
bound2Y = AJM_Environment.getWidth () ;
}
else
boundlY =Y — 3.5;
bound2Y =Y + 3.5;
}
}
VAT

% Number of changes made to the array storing the the depth of the surface cells at
the cross—section.
*/

public static int countPoints = 0;

VxS

« The partially eroded depth of the deepest cell.

*/

private static double maxDepth=Double . POSITIVE_INFINITY ;

VEE

x Updates the worksheet storing the depth of the surface cells.
%« @param P the position of. a cell.

% @param z the partially eroded depth of a cell.

*/
public static void WriteCellinExcel3D (Vector3D P, double z)
{ v
int x = (int) ((P.getX ())/OcTreeADT. CellularOcTree. getCellSize 0));
int 'y = (int) ((P.getY ())/OcTreeADT . CellularOcTree. getCellSize 0);
int skip = 8;
if (x%skip==0 && y%skip==0)
x = x/skip;
y = y/skip;
cell3DRow = cell3DSheet .getRow (x);
if (cell3DRow!=null)
{
if (cell3DRow . getCell ((short)y)==null)
cell3DRow . createCell ((short)y) .setCellValue(z);
else
cell3DRow . getCell ((short)y) .setCellValue(z);
}
else
cell3DRow = cell3DSheet . createRow ((short)x);
7 cell3DRow . createCell ((short)y).setCellValue(z);
}
}
}
VeSS

x Updates the worksheet storing the depth of the surface cells at the cross—section.
* .

235

* @param P the position of a cell.

% @param L the partially eroded depth of a cell. For the cases that cell has been
removed L equals 0.)

*/

static long timel=0;

static long timebeg=0;

public static void writeBoundaryCelllnExcel2DY (Vector3D P, double L){
double Z;
double h = AJM_Nozzle. getStand_off_dis () ;

/% if cell is partially eroded xx/
if (L!=0)

Z = (—P.getZ ()+OcTreeADT. CellularOcTree . getMinHalfSize ()+h)-L;

}
else
{
Z = (P.getZ ()+OcTreeADT . CellularOcTree. getMinHalfSize ()—h)*—1;
}
int i;
if (AJM_Nozzle. getVelocity () .getX ()==0 && L==0)
{
countPoints++;
i = (int) (P.getY ()/OcTreeADT. CellularOcTree.getCellSize ());
if (Math.abs(Z)>EventPSCollision.point[i][1])
EventPSCollision. point [i][0] = P.getY.();
‘ EventPSCollision. point[i][1] = Math.abs(Z);
}
}

/+*x Update the worksheep for 3D plotting. xx/
WriteCelllnExcel3D (P,Z);

if (1(P.getY ()>=boundlY && P.getY ()<=bound2Y && P.getX ()>=boundlX && P.getX ()<=
bound2X))
return;

double Y = P.getY ()—boundlY;
int row = (int)(Y/OcTreeADT. CellularOcTree. getCellSize ());

if (Z<maxDepth)
maxDepth=7;

if (cell2DSheetY . getRow (row)!=null)

{
double val = cell2DSheetY .getRow (row) . getCell ((short)1).getNumericCellValue () ;
double currLength = Math. floor (Math. abs(val)/OcTreeADT. CellularOcTree.
getCellSize ())*OcTreeADT. CellularOcTree. getCellSize () ;

if (Z<val)
if (L==0)
cell2DSheetY . getRow (row) . getCell ((short)1).setCellValue(Z);
}

else

cell2DSheetY . getRow (row) . getCell ((short) 1) .setCellValue(Z);

236

else

cell2DRowY = cell2DSheetY .createRow ((short)row) ;

if (AJM_Nozzle. getOrientationAngle () !=0) .
cell2DRowY . createCell ((short)0).setCellValue (Y);

else

cell2DRowY . createCell ((short)0).setCellValue (Y—(bound2Y—boundlY) /2.0);
if (L==0)

cell2DRowY . createCell ((short)1).setCellValue(Z);

}

else

cell2DRowY . createCell ((short)1).setCellValue(Z);
}

C /xx If it 4s time to print results, creates the exzcel files. x% /
if (SystemTime>=timeToWrite)

try

{

System.out.println (”\n\n\nAt_time:.” + SystemTime +

»\nDuration:.” + (System.nanoTime()—timebeg) +
»\nlnterval:.” + (System.nanoTime()—timel));
timel = System.nanoTime();

writeInExcel ();
System.out. println (”\n\n\n\nprinting.cross—section.at TIME:.” + SystemTime)

String sheetName = »mySimResult / CrossSection—Time” + timeToWrite + ? . xls”
FileOutputStream fileOut*= new FileOutputStream (sheetName);

cell2DWbY . write (fileOut);

fileOut . close ();

fileOut=null;

sheetName = ”mySimResult/3DProfile” + timeToWrite + ”.xls”;
fileOut = new FileOutputStream (sheetName);
cell3DWb . write (fileOut) ;
fileOut . close () ;
fileOut=null;
}catch (IOException e)

System.err.println (” errorHin_entering._da,ta._into._.boundavry2D_excel._.sheet”) ;

timeToWrite += printingTime;
printStatistics ();

}
VET:

+ Add a row in the worksheet used to create the report from the simulation.
*/
public static void writeInExcel(){

row = sheet .createRow ((short)excelRow) ;
row.createCell ((short)0).setCellValue (SystemTime) ;
row.createCell ((short)1).setCellValue (Counters.numLunch);
row. createCell ((short)2).setCellValue (Counters.numPPColl);
row.createCell ((short)3).setCellValue (Counters.numPSColl) ;
row.createCell ((short)4).setCellValue(Counters. numHitSurfBeforePPColl) ;
row.createCell ((short)5).setCellValue (maxDepth);)
excelRow++;

J k%

* The standard entry point into the program.

*/

public static void main(String args[]){
SimulationManager sys= new SimulationManager () ;
sys.setVisible (true);

}

public void actionPerformed (ActionEvent e) {}

237

Interface.java:

238

The Interface class implements the graphical user interface (GUI)

for the simulation. GUI enables user to enter the input parameters and monitor the progress

and the actual time of the system.

package ProjectInterface;

import OcTreeADT. CellularOcTree;

import Objects3D . Vector3D;

import java.io.FileOutputStream;

import java.io.IOException;

import java.rmi.RemoteException;

import javax.swing.*;

import java.awt.x*;

import java.awt.event .x*;

import SystemEnvironment . x;

import SystemEvents.x*;

iﬁ]port“ rﬁySiﬁlulation R

import java.util .x;

import java.util.List;

import OcTreeADT.OctNode;

import Visualization.Plot;

import visad.VisADException;

Runnable,
VAT
x The time duration of the simulation which is
simulation .

ActionListener {

*
public double stopTime=0;

VETS
* The

*/
public

VAL
* The
*/
Thread

VTS

*+ Creates new form Interface

*/

static double depthScale=1;

thread which starts the simulation Tun.

thread;

variable used to adjust the size of the graph plotted by

abstract public class Interface extends javax.swing.JFrame implements

considered as a criteria to stop the

the Plot class.

239
public Interface ()
{
initComponents () ;
this .nVYText.setEnabled (false);
this . nVZText.setEnabled (false);
pBar.setMinimum (0) ;
pBar . setMaximum (100) ;
pBar.setStringPainted (true);
this.surfKText.setSize (10,10);

}
VAT

x* Updates the progress of the simulation in the progress par.
*
* @param newValue the percentage of the simulation progress in terms of time.
public void updateBar(int newValue) {
pBar.setValue (newValue) ;
}

VAE:
* This method is called from within the constructor to
* initialize the form.
*
// <editor—fold defaultstate="collapsed” desc=" Generated Code ">
private void initComponents() {
jSeparatorl = new javax.swing.JSeparator();
buttonGroupl = new javax.swing.ButtonGroup () ;
nozzlelnfo = new javax.swing.JPanel();
nRadius: = new javax.swing.JLabel();
nHeight = new javax.swing.JLabel();
nlunchFreq = new javax.swing.JLabel();
nPosition = new javax.swing.JLabel();
nVelocity = new javax.swing.JLabel();
nRadiusText = new javax.swing.JTextField();
nHeightText = new javax.swing.JTextField();
nVXText = new javax.swing.JTextField () ;
nXText = new javax.swing.JTextField () ;
nlunchFreqText = new javax.swing.JTextField () ;
nYText = new javax.swing.JTextField () ;
nZText = new javax.swing.JTextField ();
nVYText = new javax.swing.JTextField () ;
nVZText = new javax.swing.JTextField ()
beta = new javax.swing.JLabel();
betaText = new javax.swing.JTextField();
pVSize = new javax.swing. JLabel();
pVSizeText = new javax.swing.JTextField () ;
nPassDistance = new javax.swing.JLabel();
nPassDistanceText = new javax.swing.JTextField();
jLabel2 new javax.swing.JLabel () ;
jLabel3 = new javax.swing.JLabel();
vConstl = new javax.swing.JTextField () ;
jLabeld = new javax.swing.JLabel();
vConst2 = new javax.swing.JTextField ();
jLabel5 = new javax.swing.JLabel();
jLabel6 = new javax.swing.JLabel();
nOrientAngleText = new javax.swing.JTextField();
jLabel9 = new javax.swing.JLabel();
)3
)

)
)

bottomPanel = new javax.swing.JPanel(
runButton = new javax.swing.JButton ()
jButtonl = new javax.swing.JButton();
plot = new javax.swing.JButton();
sysTimeText = new javax.swing.JTextField();
jLabell = new javax.swing.JLabel();

240

timeTxt = new javax.swing.JTextField();
jLabel7 = new javax.swing.JLabel();

jLabell3 = new javax.swing.JLabel();
sysPrintTime = new javax.swing.JTextField ();
ParticlesInfo = new javax.swing.JPanel();
pRadius = new javax.swing.JLabel();

PPCo_Res = new javax.swing.JLabel();

pMass = new javax.swing.JLabel();

PSCo_Res = new javax.swing.JLabel();
pRadiusText = new javax.swing.JTextField();
pDensityText = new javax.swing.JTextField ();
PPCo_ResText = new javax.swing.JTextField ();
PSCo_ResText = new javax.swing.JTextField ();
EnvironmentInfo = new javax.swing.JPanel();
envWidth = new javax.swing.JLabel();
envWidthText = new javax.swing.JTextField ();
Surfacelnfo = new javax.swing.JPanel();
surfDensity = new javax.swing.JLabel();
surfK = new javax.swing.JLabel();

surfD = new javax.swing.JLabel();

surfDepth = new javax.swing.JLabel();
surfDensityText = new javax.swing.JTextField () ;
surfDepthText = new javax.swing.JTextField () ;
surfDText = new javax.swing.JTextField ();
surfKText = new javax.swing.JTextField () ;
fricCoText = new javax.swing.JTextField ();

fricCo = new javax.swing.JLabel();
surfDepthScale = new javax:.swing.JLabel();
cellSize = new javax.swing.JLabel();

cellSizeText = new javax.swing.JTextField () ;
brittleBool = new javax.swing.JRadioButton () ;
ductileBool = new javax.swing.JRadioButton();
jLabel8 = new javax.swing.JLabel();

jLabell0 = new javax.swing.JLabel();

jLabelll = new javax.swing.JLabel();

jLabell2 = new javax.swing.JLabel();
surfN1Const = new javax.swing.JTextField();
surfN2Const = new javax.swing.JTextField();
surfHv = new javax.swing.JTextField();
surfDepthScaleText = new javax.swing. JTextField () ;

setDefaultCloseOperation (javax.swing. WindowConstants .EXIT_ON_CLOSE) ;

setTitle (” Computer.Simulation_of_.Unmasked.Profile”)5

setBackground (getBackground ()) ;

setCursor (new java.awt.Cursor(java.awt.Cursor .HAND_CURSOR)) ;

setFont (new java.awt.Font(”Tahoma”, 0, 11));

setForeground (new java.awt.Color(51, 51, 51));

setResizable (false);

nozzlelnfo .setBackground (EnvironmentInfo.getBackground ());

nozzleInfo .setBorder (javax.swing.BorderFactory.createTitledBorder (null, "Nozzle.
Specification”, javax.swing.border.TitledBorder .DEFAULT_JUSTIFICATION, javax.
swing . border. TitledBorder .DEFAULT POSITION, new java.awt.Font (”Tahoma”, 1, 12),

new java.awt.Color (51, 51, 51)));

nozzlelnfo .setFocusable(false);

nozzleInfo .setFont (getFont());

nozzleInfo .setPreferredSize (new java.awt.Dimension (0, 0));

nozzlelnfo .setRequestFocusEnabled (false);

nozzlelnfo .setVerifyInputWhenFocusTarget (false);

nRadius.setBackground (new java.awt.Color (0, 0, 0));

nRadius.setFont (getFont ());

nRadius.setLabelFor (nRadius) ;

nRadius.setText (” Radius (mm) : .7) ;

nRadius.setPreferredSize (new java.awt.Dimension (146, 16));

nHeight . setBackground (new java.awt.Color (0, 0, 0));
nHeight . setFont (getFont ());

nHeight . setText (”stand.off_distance (mm):.”);
nHeight.setPreferredSize (new java.awt.Dimension (146, 16));

nlunchFreq.setBackground (new java.awt.Color (0, 0, 0));
nlunchFreq.setFont (getFont ());

nlunchFreq.setText (” Launch.Frequency:.");
nlunchFreq.setPreferredSize (new java.awt.Dimension (146, 16));

nPosition.setBackground (new java.awt.Color (0, 0, 0));
nPosition.setFont (getFont ());
nPosition.setText (” Starting_Position (mm):.”);
nPosition.setPreferredSize (new java.awt.Dimension (146, 16));

nVelocity .setBackground (new java.awt.Color (0, 0, 0));
nVelocity.setFont (getFont ());

nVelocity .setText (” Velocity (mm/s):.”);

nVelocity .setPreferredSize (new java.awt.Dimension (146, 16));

nRadiusText.setText (70.38”7);
nRadiusText.setPreferredSize (new java.awt.Dimension (100, 16));

nHeightText .setText (”20”);
nHeightText.setPreferredSize (new java.awt.Dimension (100, 16));

nVXText.setText (70”);
nVXText.setPreferredSize (new java.awt.Dimension (10, 14));

nXText.setText (74”);
nXText.setPreferredSize (new java.awt.Dimension (10, 14));

nlunchFreqText.setText (7 1.2e4+6.7) ;
nlunchFreqText.setPreferredSize (new java.awt.Dimension (100, 16));

nYText.setText (74”);
nYText.setPreferredSize (new java.awt.Dimension (10, 14));

nZText.setText (70”);
nZText.setPreferredSize (new java.awt.Dimension (10, 14));

nVYText.setText (707);
nVYText.setPreferredSize (new java.awt.Dimension (10, 14));

nVZText.setText (70”);
nVZText.setPreferredSize (new ‘java.awt.Dimension (10, 14));

beta.setBackground (new java.awt.Color (0, 0, 0));
beta.setFont (getFont ());
beta.setText (” Weibull.Beta:..”);
beta.setPreferredSize (new java.awt.Dimension (146, 16));

betaText.setText (”15”);
betaText.setPreferredSize (new java.awt.Dimension (100, 16));

pVSize.setBackground (new java.awt.Color (0, 0, 0));
pVSize.setFont (getFont ());

pVSize.setText (” Particle .Max_.Velocity.(mm/s):");
pVSize.setPreferredSize (new java.awt.Dimension (146, 16));

pVSizeText .setText (”162000”);
pVSizeText.setPreferredSize (new java.awt.Dimension (100, 16));

nPassDistance.setFont (getFont());

241

242

nPassDistance.setText (” Pass.Distance (mm):.”);
nPassDistance.setPreferredSize (new java.awt.Dimension (146, 16));

nPassDistanceText .setText (”7”);
nPassDistanceText.setPreferredSize (new java.awt.Dimension (100, 16));

jLabel2.setFont (getFont ());
jLabel2.setText (” Velocity .=");

jLabel3.setFont (getFont ());
jLabel3.setText (" Vmax..(”);

vConstl.setText (7 1.07);

jLabeld .setFont (getFont ());
jLabel4 .setText (7o—");

vConst2.setText (74.927);

vConst?2.setPreferredSize (new java.awt.Dimension (40, 16));
)3
)7)5
jLabel6.setFont (getFont());
jLabel6.setText (” Orientation.Angle:.”);

jLabel6 .setAlignmentX (getAlignmentX ());
jLabel6 .setPreferredSize (new java.awt.Dimension (146, 16));

jLabel5.setFont (getFont ()
jLabel5.setText (7 o*.(r/h)

nOrientAngleText .setText (707);
nOrientAngleText.setPreferredSize (new java.awt.Dimension (100, 16));

‘jLabel9 . setFont (vew java . awt.Font(”Tahoma”, 1, 11));
jLabe19.setText(”Distribution._.ofulnitial_.Velocities_.ofHParticle:_.”);

org.jdesktop.layout.GroupLayout nozzlelnfoLayout = new org. jdesktop.layout.
GroupLayout (nozzlelnfo);
nozzlelnfo .setLayout (nozzleInfoLayout);
nozzleInfoLayout .setHorizontalGroup (
nozzlelnfoLayout.createParallelGroup (org.jdesktop. layout . GroupLayout . LEADING)
.add (nozzleInfoLayout .createSequentialGroup ()
.addContainerGap ()
.add(nozzleInfoLayout . createParallelGroup (org. jdesktop.layout . GroupLayout.
LEADING)
.add(nozzleInfoLayout.createSequentialGroup)
.add(nozzleInfoLayout .createParallelGroup (org.jdesktop.layout.
GroupLayout . LEADING)
.add(nozzleInfoLayout . createSequentialGroup ()
.add (nozzleInfoLayout. createParallelGroup (org. jdesktop.
layout . GroupLayout . LEADING)
.add (nRadius, org.jdesktop.layout.GroupLayout.
PREFERREDSSIZE, 146, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)
.add(nVelocity, org.jdesktop.layout.GroupLayout.
PREFERREDSSIZE, 146, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)
.add(nHeight, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 146, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)
.add(nPassDistance, org.jdesktop.layout. GroupLayout .
PREFERREDSIZE; 146, org.jdesktop.layout.
GroupLayout . PREFERRED.SIZE))
.addPreferredGap (org. jdesktop. layout.LayoutStyle RELATED))
.add (org. jdesktop .layout . GroupLayout :TRAILING, nozzleIlnfoLayout
.createSequentialGroup () :

243

.add(jLabel2, org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE, 50, org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE)

.addPreferredGap (org. jdesktop.layout.LayoutStyle .RELATED)

.add(jLabel3)

.add (4, 4, 4)))

.add(nozzleInfoLayout.createParallelGroup (org.jdesktop.layout.
GroupLayout .LEADING, false)
.add(nozzleInfoLayout.createSequentialGroup ()

.add (2, 2, 2)

.add (nRadiusText, org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE, 100, org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE))

.add(nHeightText, org.jdesktop.layout.GroupLayout.

PREFERREDSIZE, 100, org.jdesktop.layout.GroupLayout.

" PREFERRED_SIZE)
.add (nozzlelnfoLayout.createSequentialGroup ()

.add (nozzleInfoLayout .createParallelGroup (org. jdesktop.
layout . GroupLayout . TRAILING)

.add(org. jdesktop.layout.GroupLayout.LEADING,
nozzleInfoLayout.createSequentialGroup ()

.add (nVXText, org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE, 34, org.jdesktop.layout.
GroupLayout . PREFERRED._SIZE)

.addPreferredGap (org.jdesktop.layout.LayoutStyle.
RELATED)

.add (nVYText, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 28, org.jdesktop.layout.
GroupLayout . PREFERRED._SIZE)

.addPreferredGap (org. jdesktop .layout.LayoutStyle.
RELATED)

.add (nVZText, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 26, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE))

.add(org. jdesktop.layout.GroupLayout .LEADING,
nPassDistanceText, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 100, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)

.add (nozzleInfoLayout.createSequentialGroup ()
.addPreferredGap (org . jdesktop.layout.LayoutStyle.

RELATED)

.add (vConstl, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 40, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)

.addPreferredGap (org. jdesktop.layout.LayoutStyle.
RELATED)

.add(jLabeld4, org.jdesktop.layout.GroupLayout.
DEFAULTSIZE, 12, Short .MAXVALUE)

.addPreferredGap (org. jdesktop.layout.LayoutStyle.
RELATED) ‘

.add (vConst2, org.jdesktop.layout.GroupLayout.
PREFERRED SIZE, 40, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)

.addPreferredGap (org. jdesktop.layout.LayoutStyle.

.addPreferredGap (org. jdesktop.layout.LayoutStyle .RELATED)

.add(jLabel5))))

.add(jLabel9))

.addPreferredGap (org. jdesktop .layout . LayoutStyle RELATED, 101, Short.
MAX VALUE) ’

.add(nozzleInfoLayout.createParallelGroup (org. jdesktop.layout.GroupLayout.
TRAILING) :
.add (beta, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 146, org.

jdesktop .layout . GroupLayout . PREFERRED_SIZE)

244

cadd(jLabel6, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 146, org.
jdesktop .layout.GroupLayout . PREFERRED_SIZE)
.add (pVSize, org.jdesktop.layout.GroupLayout. PREFERREDSSIZE, 146, org.
jdesktop.layout .GroupLayout . PREFERRED_SIZE)
.add (nlunchFreq, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 146,
org.jdesktop.layout .GroupLayout . PREFERRED_SIZE) .
.add (nPosition, org.jdesktop.layout.GroupLayout.PREFERRED.SIZE, 146,
org.jdesktop.layout.GroupLayout . PREFERRED.SIZE))
.addPreferredGap (org.jdesktop.layout.LayoutStyle .RELATED)
.add(nozzleInfoLayout.createParallelGroup (org. jdesktop.layout.GroupLayout.
LEADING)
.add (betaText, org.jdesktop.layout.GroupLayout. PREFERREDSIZE, 100, org
.jdesktop.layout . GroupLayout . PREFERRED_SIZE)
.add (pVSizeText, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 100,
org.jdesktop.layout .GroupLayout . PREFERRED_SIZE)
.add(nlunchFreqText, org.jdesktop.layout.GroupLayout.PREFERRED SIZE,
100, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
.add(nozzleInfoLayout.createSequentialGroup ()
.add (nXText, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 35,
org.jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.addPreferredGap (org. jdesktop.layout.LayoutStyle .RELATED)
.add (nYText, org.jdesktop.layout.GroupLayout. PREFERREDSIZE, 29,
org.jdesktop.layout .GroupLayout . PREFERRED_SIZE)
.addPreferredGap (org. jdesktop.layout.LayoutStyle .RELATED)
.add (nZText, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 24,
. org.jdesktop.layout.GroupLayout . PREFERRED.SIZE))
.add(nOrientAngleText, org.jdesktop.layout.GroupLayout.PREFERREDSIZE,
100, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE))
.addContainerGap ())
)
nozzleInfoLayout.setVerticalGroup (
nozzleInfoLayout .createParallelGroup (org . jdesktop.layout. GroupLayout .LEADING)
.add (nozzleInfoLayout .createSequentialGroup ()
.add (nozzleInfoLayout.createParallelGroup (org. jdesktop.layout.GroupLayout.
BASELINE)
.add(nRadius, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16, org.
jdesktop.layout .GroupLayout . PREFERRED_SIZE)
.add(nRadiusText, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 16,
org.jdesktop.layout . GroupLayout . PREFERRED_SIZE)
.add (nXText, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16, org.
jdesktop .layout . GroupLayout . PREFERRED_SIZE)
.add(nYText, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 16, org.
jdesktop .layout . GroupLayout . PREFERRED_SIZE)
.add(nZText, org.jdesktop.layout.GroupLayout. PREFERREDSIZE, 16, org.
jdesktop .layout . GroupLayout . PREFERRED_SIZE)
.add(nPosition, org-:jdesktop.layout.GroupLayout.PREFERREDSIZE, 16, org
.jdesktop.layout . GroupLayout . PREFERRED_SIZE))
.add (6, 6, 6)
.add (nozzleInfoLayout .createParallelGroup (org. jdesktop.layout.GroupLayout.
BASELINE)
.add(nHeight, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16, org.
jdesktop .layout . GroupLayout . PREFERRED_SIZE)
.add(nHeightText, org.jdesktop.layout.GroupLayout. PREFERREDSSIZE, 16,
org.jdesktop.layout . GroupLayout . PREFERRED_SIZE)
.add (nlunchFreqText, org.jdesktop.layout.GroupLayout.PREFERRED SIZE,
16, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
.add(nlunchFreq, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 16,
org.jdesktop.layout .GroupLayout. PREFERRED_SIZE))
.addPreferredGap (org. jdesktop.layout.LayoutStyle .RELATED)
.add (nozzleInfoLayout.createParallelGroup (org. jdesktop.layout.GroupLayout.
BASELINE) .
.add(nVelocity, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16, org
.jdesktop .layout . GroupLayout . PREFERRED_SIZE)
.add (nVXText, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 16, org.

245

jdesktop.layout . GroupLayout . PREFERRED_SSIZE)
.add(nVYText, org.jdesktop.layout.GroupLayout.PREFERRED.SIZE, 16, org.
jdesktop .layout.GroupLayout . PREFERRED_SIZE)
.add (pVSizeText, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16,
org.jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.add(nVZText, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16, org.
jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.add (pVSize, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 16, org.
jdesktop.layout.GroupLayout . PREFERRED_SIZE))
.addPreferredGap (org. jdesktop .layout.LayoutStyle .RELATED)
.add (nozzleInfoLayout.createParallelGroup (org. jdesktop.layout.GroupLayout.
BASELINE)
.add (nPassDistance, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16,
org.jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.add(nPassDistanceText, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
16, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
.add (betaText, org.jdesktop.layout.GroupLayout.PREFERRED SIZE, 16, org.
jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.add(beta, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16, org.
jdesktop.layout.GroupLayout . PREFERRED_SIZE))
.addPreferredGap (org. jdesktop .layout.LayoutStyle .RELATED)
.add(nozzleInfoLayout.createParallelGroup (org. jdesktop.layout.GroupLayout.
TRAILING)
.add(nozzleInfoLayout.createSequentialGroup ())
.add(nozzleInfoLayout.createParallelGroup (org. jdesktop.layout.
GroupLayout . BASELINE)
.add(nOrientAngleText, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 16, org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE)
.add(jLabel6, org.jdesktop.layout.GroupLayout. PREFERRED SIZE,
16, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE))
.add (28, 28, 28)) .
.add(nozzleInfoLayout.createSequentialGroup ()
.add (jLabel9)
.addPreferredGap (org. jdesktop.layout.LayoutStyle .RELATED)
.add(nozzleInfoLayout.createParallelGroup (org.jdesktop.layout.
GroupLayout . BASELINE)
.add(jLabel5, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
16, org.jdesktop.layout.. GroupLayout.PREFERRED_SIZE)
.add(jLabel3, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE,
16, org.jdesktop.layout.GroupLayout. PREFERRED_SIZE)
.add(jLabel2, org.jdesktop.layout.GroupLayout . PREFERRED_SIZE,
16, org.jdesktop.layout.GroupLayout. PREFERRED_SIZE)
.add(vConstl, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,
16, org.jdesktop.layout.GroupLayout. PREFERRED_SIZE)
.add(jLabel4, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE,
16, org.jdesktop.layout.GroupLayout. PREFERRED_SIZE)
.add(vConst2, org.jdesktop.layout.GroupLayout.PREFERRED.SIZE,
16, org.jdesktop.layout.GroupLayout. PREFERRED_SIZE))
.addPreferredGap (org. jdesktop .layout . LayoutStyle . RELATED)))
.addContainerGap (19, Short .MAXVALUE))
)3

nozzleInfoLayout.linkSize (new java.awt.Component[] {nHeight, nRadius}, org.jdesktop
.layout . GroupLayout . VERTICAL) ;

runButton.setText ("run”);
runButton.addMouseListener (new java.awt.event.MouseAdapter () {
public void mouseClicked (java.awt.event. MouseEvent evt) {
runHandler (evt);
}

b

jButtonl.setText (7 exit”);

246

jButtonl.addMouseListener (new java.awt.event. MouseAdapter () {
public void mouseClicked (java.awt.event.MouseEvent evt) {
exitHandler (evt);
)
1

plot .setText (" Plot”);
plot.addActionListener (new java.awt.event.ActionListener O 1
public void actionPerformed (java.awt.event. ActionEvent evt) {
plotHandler (evt);
}

1)
sysTimeText.setPreferredSize (new java.awt. Dimension (100, 16));

jLabell .setFont (new java.awt.Font(”Tahoma”, 1, 11));
jLabell .setText (”System_clock(s):.");

timeTxt .setText (71”);
timeTxt.setDoubleBuffered (true);
timeTxt.setPreferredSize (new java.awt.Dimension (100, 16));

jLabel7.setFont (new java.awt.Font(”Tahoma”, 1, 11));
jLabel7.setText (”Time.Duration(s):.");

jLabell3.setFont (new java.awt.Font(”Tahoma”, 1, 11));
jLabell3.setText (” Printing Time(s):.");

sysPrintTime.setText (”71”);
sysPrintTime.setDoubleBuffered(true) ; ‘
sysPrintTime.setPreferredSize (new java.awt.Dimension (100, 16));

org.jdesktop.layout.GroupLayout bottomPanelLayout = new org.jdesktop.layout.
GroupLayout (bottomPanel) ;
bottomPanel . setLayout (bottomPanelLayout) ;
bottomPanelLayout . setHorizontalGroup (
bottomPanelLayout . createParallelGroup (org. jdesktop. layout . GroupLayout . LEADING)
.add (bottomPanelLayout . createSequentialGroup 0
.add (20, 20, 20)
.add (bottomPanelLayout . createParallelGroup (org.jdesktop .layout.GroupLayout.
LEADING))
.add (bottomPanelLayout . createSequentialGroup 0)
.add (runButton, org.jdesktop.layout. GroupLayout . PREFERRED.SIZE, 75,
org.jdesktop.layout.GroupLayout .PREFERRED_SIZE)
.add (24, 24, 24)
.add(jButtonl, org.jdesktop.layout. GroupLayout . PREFERRED SIZE, 76,
org.jdesktop .layout .GroupLayout .PREFERRED_SIZE)
.add (24, 24, 24) ‘
.add(plot, org.jdesktop.layout.GroupLayout .PREFERRED_SIZE, 73, org.
jdesktop .layout . GroupLayout . PREFERRED_SIZE))
.add (bottomPanelLayout.createSequentialGroup O
.add (bottomPanelLayout . createParallelGroup (org. jdesktop.layout.
GroupLayout . LEADING) :
.add(jLabell3)
.add(jLabel7))
cadd (7, 7, T)
.add (bottomPanelLayout . createParallelGroup (org.jdesktop.layout.
GroupLayout . TRAILING)
.add (timeTxt, org.jdesktop.layout.GroupLayout .PREFERRED_SIZE,
100, org.jdesktop.layout.GroupLayout .PREFERRED_SIZE)
.add (sysPrintTime, org.jdesktop.layout. GroupLayout .
PREFERREDSSIZE, 100, org.jdesktop.layout.GroupLayout.
PREFERRED-SIZE))
.add (225, 225, 225)

247

.add(jLabell)
.addPreferredGap (org. jdesktop.layout . LayoutStyle .RELATED)
.add (sysTimeText, org.jdesktop.layout.GroupLayout.PREFERRED SSIZE,
100, org.jdesktop.layout.GroupLayout. PREFERRED._SIZE))
.add (pBar, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 636, org.
jdesktop .layout . GroupLayout . PREFERRED SIZE))
.add (24, 24, 24))
)3
bottomPanelLayout.setVerticalGroup (
bottomPanelLayout . createParallelGroup (org. jdesktop.layout.GroupLayout.LEADING)
.add (org.jdesktop.layout.GroupLayout.TRAILING, bottomPanelLayout.
createSequentialGroup ()
.addContainerGap ()
.add (bottomPanelLayout . createParallelGroup (org.jdesktop.layout.GroupLayout .
BASELINE)
.add(sysTimeText, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 16,
org.jdesktop.layout.GroupLayout. PREFERRED_SIZE)
.add(timeTxt, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 16, org.
jdesktop .layout.GroupLayout . PREFERRED_SIZE)
.add(jLabel7, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16, org.
jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.add(jLabell, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 16, org.
jdesktop.layout.GroupLayout . PREFERRED_SIZE))
.add (14, 14, 14)
.add (bottomPanelLayout. createParallelGroup (org. jdesktop.layout . GroupLayout.
BASELINE)
.add (sysPrintTime, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 16,
org.jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.add(jLabell3, org.jdesktop.layout.GroupLayout.PREFERRED.SIZE, 16, org.
jdesktop.layout . GroupLayout . PREFERREDSIZE))
.add (22, 22, 22)
.add (pBar, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 28, org.jdesktop
.layout . GroupLayout . PREFERRED_SIZE)
.addPreferredGap (org. jdesktop .layout.LayoutStyle RELATED, 14, Short.
MAX VALUE)
.add (bottomPanelLayout. createParallelGroup (org. jdesktop.layout . GroupLayout.
BASELINE)
.add (runButton)
.add(jButtonl, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 23, org.
jdesktop .layout . GroupLayout . PREFERRED_SIZE)
.add(plot))
.addContainerGap ())

)

ParticlesInfo.setBorder(javax.swing.BorderFactory.createTitledBorder (null, ”
Particles.Specification”, javax.swing.border. TitledBorder . DEFAULT_JUSTIFICATION
, Javax.swing.border. TitledBorder . DEFAULT _POSITION, new java.awt.Font(” Tahoma” ,
1, 12), new java.awt.Color (51, 51, 51)));

ParticlesInfo.setDoubleBuffered (false);

ParticlesInfo.setFocusable(false);

ParticlesInfo.setFont(getFont());

ParticlesInfo.setPreferredSize (new java.awt.Dimension (675, 0));

ParticlesInfo.setRequestFocusEnabled (false);

ParticlesInfo .setVerifyInputWhenFocusTarget (false);

pRadius.setBackground (new java.awt.Color (0, 0, 0));

pRadius.setFont (getFont ());

pRadius.setText (”Radius(mn):”);

pRadius.setPreferredSize (new java.awt.Dlaension {146, 16));

PPCo_Res.setBackground (new java.awt.Color (0, 0, 0));
PPCo_Res.setFont (getFont());

PPCo_Res.setText ("P—P_Coefficient .of _.Restitution:.”);
PPCo_Res.setPreferredSize (new java.awt.Dimension (146, 16));

248
pMass . setBackground (new java.awt.Color (0, 0, 0));
pMass.setFont (getFont ());
pMass . setText (” Density (Kg/m~3):7);
pMass. setPreferredSize (new java.awt.Dimension (146, 16));

PSCo_Res . setBackground (new java.awt.Color (0, 0, 0));
PSCo_Res.setFont (getFont ());

PSCo_Res.setText ("P-S.Coefficient.of.Restitution:.”);
PSCo_Res.setPreferredSize (new java.awt.Dimension (146, 16));

pRadiusText.setText (”12.5”);
pRadiusText.setPreferredSize (new java.awt.Dimension (100, 16));

pDensityText .setText (740007) ;
pDensityText.setPreferredSize (new java.awt.Dimension (100, 16));

PPCo.ResText.setText (717);
PPCo_ResText.setPreferredSize (new java.awt.Dimension (100, 16));

PSCo_ResText.setText (7 0.5”); v
PSCo_ResText.setPreferredSize (new java.awt.Dimension (100, 16));

org.jdesktop.layout.GroupLayout ParticlesInfoLayout = new org.jdesktop. layout .
GroupLayout(ParticlesInfo);

ParticlesInfo .setLayout (ParticlesInfoLayout);

ParticlesInfoLayout .setHorizontalGroup (
ParticlesInfoLayout .createParallelGroup (org. jdesktop.layout.GroupLayout .LEADING

.add(ParticlesInfoLayout .createSequentialGroup ()
.addContainerGap ()
.add(ParticlesInfoLayout .createParallelGroup (org.jdesktop.layout.
‘ GroupLayout .LEADING)
.add (pRadius, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 146, org:
jdesktop.layout . GroupLayout . PREFERRED_SIZE)
.add (pMass, org.jdesktop.layout.GroupLayout.PREFERRED SIZE, 146, org.
jdesktop .layout . GroupLayout . PREFERRED SIZE))
.addPreferredGap (org.jdesktop .layout.LayoutStyle .RELATED)
.add(ParticlesInfoLayout .createParallelGroup (org.jdesktop.layout.
GroupLayout .LEADING)
.add (pDensityText, org.jdesktop.layout.GroupLayout. PREFERREDSIZE, 100,
org.jdesktop .layout . GroupLayout . PREFERRED_SIZE)
.add (pRadiusText, org.jdesktop.layout.GroupLayout .PREFERRED_SIZE, 100,
org.jdesktop.layout .GroupLayout . PREFERRED.SSIZE))
.addPreferredGap (org . jdesktop .layout.LayoutStyle RELATED, 143, Short.
MAX VALUE)
.add (ParticlesInfoLayout .createParallelGroup (org.jdesktop.layout.
GroupLayout . TRAILING) '
.add (PPCo_Res, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 146, org
.jdesktop.layout . GroupLayout . PREFERRED_SIZE)
.add (PSCo_Res, org.jdesktop.layout.GroupLayout .PREFERRED_SIZE, 146, org
.jdesktop .layout . GroupLayout . PREFERRED_SIZE))
.addPreferredGap (org . jdesktop . layout . LayoutStyle .RELATED)
.add(ParticlesInfoLayout.createParallelGroup (org.jdesktop.layout.
GroupLayout . LEADING)
.add (PSCo_ResText, org.jdesktop.layout.GroupLayout .PREFERREDSIZE, 100,
org.jdesktop .layout . GroupLayout . PREFERRED.SIZE) ‘
.add(ParticlesInfoLayout.createSequentialGroup ()
.addPreferredGap (org.jdesktop.layout . LayoutStyle .RELATED)
.add (PPCo_ResText, org.jdesktop.layout.GroupLayout.PREFERRED SIZE,
100, org.jdesktop.layout.GroupLayout.PREFERREDSIZE)))
.addContainerGap ())
)
ParticlesInfoLayout .setVerticalGroup (
ParticlesInfoLayout.createParallelGroup (org. jdesktop.layout.GroupLayout.LEADING

249

.add(ParticlesInfoLayout .createSequentialGroup ()
.addContainerGap () :
.add(ParticlesInfoLayout.createParallelGroup (org.jdesktop.layout.
GroupLayout . BASELINE)
.add (pRadius, org.jdesktop.layout.GroupLayout. PREFERRED_SIZE 16, org.
jdesktop .layout . GroupLayout . PREFERRED_SIZE)
.add (pRadiusText, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 16,
org. jdesktop.layout.GroupLayout . PREFERRED.SIZE)
.add (PPCo_ResText, org.jdesktop.layout.GroupLayout. PREFERRED_SIZE 16,
org.jdesktop. layout GroupLayout . PREFERRED_SIZE)
.add (PPCo_Res, org.jdesktop.layout.GroupLayout.PREFERRED.SIZE, 16, org.
jdesktop.layout.GroupLayout . PREFERRED_SIZE))
cadd (7, 7, 7)
.add(ParticlesInfoLayout.createParallelGroup (org.jdesktop.layout.
GroupLayout . BASELINE)
.add (pMass, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16, org.
jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.add (PSCo_ResText, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16,
org. jdesktop.layout.GroupLayout . PREFERRED.SIZE)
.add (pDensityText, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16,
org.jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.add(PSCo_Res, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16, org.
jdesktop.layout.GroupLayout . PREFERRED_SIZE))
.addContainerGap (14, Short.MAXVALUE))
)5

EnvironmentInfo.setBorder (javax.swing.BorderFactory.createTitledBorder (null, ”
Environment_.Specification”, javax.swing.border.TitledBorder.
DEFAULT_JUSTIFICATION, javax.swing.border.TitledBorder . DEFAULT_POSITION, new
java.awt.Font (”Tahoma”, 1, 12), new java.awt.Color (51, 51, 51)));

EnvironmentInfo.setFont (getFont());

envWidth . setFont (getFont ()); :

envWidth . setText (" Width/Height (mm) : .”) ;

envWidth.setPreferredSize (new java.awt.Dimension (146, 16));

envWidthText.setText (78”);
envWidthText.setPreferredSize (new java.awt.Dimension (100, 16));

org.jdesktop.layout.GroupLayout EnvironmentInfoLayout = new org.jdesktop.layout.
GroupLayout (EnvironmentInfo) ;
EnvironmentInfo.setLayout (EnvironmentInfoLayout) ;
EnvironmentInfoLayout.setHorizontalGroup (
EnvironmentInfoLayout.createParallelGroup (org.jdesktop.layout.GroupLayout.
LEADING))
.add (org. jdesktop.layout.GroupLayout.TRAILING, EnvironmentInfoLayout .
createSequentialGroup ()
.addContainerGap ()
.add (envWidth, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 146, org.
jdesktop .layout .GroupLayout . PREFERRED_SIZE)
.addPreferredGap (org. jdesktop.layout.LayoutStyle .RELATED)
.add (envWidthText, org.jdesktop.layout.GroupLayout.PREFERRED.SIZE, 100, org
. jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.add (549, 549, 549))
)
EnvironmentInfoLayout.setVerticalGroup (
EnvironmentInfoLayout.createParallelGroup (org. jdesktop.layout.GroupLayout.
LEADING)
.add (EnvironmentInfoLayout.createSequentialGroup ()
.addContainerGap ()
.add (EnvironmentInfoLayout.createParallelGroup (org.jdesktop.layout.
GroupLayout . BASELINE)
.add (envWidth, org.jdesktop.layout.GroupLayout.PREFERRED SIZE, 16, org.
jdesktop.layout.GroupLayout . PREFERRED_SIZE)

250

.add (envWidthText, org.jdesktop.layout.GroupLayout .PREFERRED_SIZE, 16,
org.jdesktop.layout . GroupLayout .PREFERRED_SIZE))
.addContainerGap (18, Short .MAXVALUE))
) '

Surfacelnfo.setBorder (javax.swing. BorderFactory.createTitledBorder(null, ”Surface.
Specification”, javax.swing.border. TitledBorder . DEFAULT_JUSTIFICATION, javax.
swing . border. TitledBorder . DEFAULT POSITION, new java.awt.Font(”Tahoma”, 1, 12),
new java.awt.Color (51, 51, 51)));

Surfacelnfo.setDoubleBuffered (false);

Surfacelnfo.setFont (getFont ());

Surfacelnfo.setOpaque(false);

Surfacelnfo.setPreferredSize (new java.awt.Dimension (670, 0));

Surfacelnfo .setRequestFocusEnabled (false);

Surfacelnfo .setVerifyInputWhenFocusTarget (false) ;

surfDensity .setFont (getFont ());

surfDensity .setText (" Density (Kg/m"3):”);

surfDensity.setPreferredSize (new java.awt.Dimension (146, 16));

surfK .setFont (getFont ());
surfK .setText (” Constant.K:”);
surfK . setPreferredSize (new java.awt.Dimension (146, 16));

surfD .setFont (getFont ());
surfD .setText (” Constant.D:”);
surfD . setPreferredSize (new java.awt.Dimension (146, 16));

surfDepth .setFont (getFont ());
surfDepth .setText (” Substrate_Depth (mm):”);
surfDepth.setPreferredSize (new java.awt.Dimension (146, 16));

surfDensityText .setText (”2200”); -
surfDensityText.setPreferredSize (new java.awt.Dimension (100, 16));

surfDepthText . setText (777);
surfDepthText.setPreferredSize (new java.awt.Dimension (100, 16));

surfDText .setText (7 6.3e—6");
surfDText.setPreferredSize (new java.awt.Dimension (100, 16));

surfKText .setText (7 1.43”);
surfKText.setPreferredSize (new java.awt.Dimension (100, 16));

fricCoText .setText (707);
fricCoText .setPreferredSize (new java.awt.Dimension (100, 16));

fricCo .setFont (getFont());
fricCo .setText (” Friction.Coefficient:.”);
fricCo.setPreferredSize (new java.awt.Dimension (146, 16));

surfDepthScale.setFont (getFont ());
surfDepthScale.setText (? Depth.Scale.for.plot:”);
surfDepthScale.setPreferredSize (new java.awt.Dimension (146, 16));

cellSize .setFont (getFont ());
cellSize .setText (" Cell.Size (mn):.”);
cellSize.setPreferredSize (new java.awt.Dimension (146, 16));

cellSizeText .setText (714”);
cellSizeText .setPreferredSize (new java.awt.Dimension (100, 16));

buttonGroupl.add(brittleBool);
brittleBool.setFont (getFont());
brittleBool.setSelected (true);

251

brittleBool.setText (” Brittle”);
brittleBool.setBorder(javax.swing.BorderFactory . createEmptyBorder(0, 0, 0));
brittleBool.setMargin (new java.awt.Insets (0, 0, 0, 0));

buttonGroupl.add(ductileBool);
ductileBool.setFont (getFont ());
ductileBool.setText (” Ductile”);
ductileBool.setBorder(javax.swing.BorderFactory .createEmptyBorder (0, 0, 0, 0));
ductileBool.setMargin (new java.awt.Insets (0, 0, 0, 0));
ductileBool.addItemListener (new java.awt.event.ItemListener () {

public void itemStateChanged (java.awt.event.ItemEvent evt) {

activeDuctile(evt);
}

1)

jLabel8.setFont (new java.awt.Font(”Tahoma”, 1, 11));
jLabel8.setText (” Erosive.System:.”);

jLabell0.setFont (getFont ());
jLabell0.setText (7 aoeen nl:”);

jLabelll.setFont (getFont());
jLabelll.setText (" cececeon n2:”);

jLabell2.setFont (getFont());
jLabell2.setText (?Hv(GPa):”);

surfN1Const.setText (7 1.277);
surfN1Const. setEnabled (false);

surfN2Const.setText (7 15.57);
surfN2Const .setEnabled (false) ;

surfHv.setText (7 0.257);
surfHv.setEnabled (false);

surfDepthScaleText.setText (”17);
surfDepthScaleText.setPreferredSize (new java.awt.Dimension (100, 16));

org.jdesktop.layout.GroupLayout SurfacelnfoLayout = new org.jdesktop.layout.
GroupLayout (Surfacelnfo);
Surfacelnfo.setLayout(SurfacelnfoLayout);
SurfacelnfoLayout .setHorizontalGroup (
SurfaceIlnfoLayout.createParallelGroup (org.jdesktop.layout.GroupLayout.LEADING)
.add(SurfaceInfoLayout.createSequentialGroup ()
.add (SurfacelnfoLayout.createParallelGroup (org.jdesktop.layout.GroupLayout.
LEADING)
.add(SurfaceInfoLayout.createSequentialGroup ()
.addContainerGap ()
.add (SurfaceIlnfoLayout.createParallelGroup (org.jdesktop.layout.
GroupLayout . LEADING)
.add (SurfacelnfoLayout.createSequentialGroup ()
.add(SurfacelnfoLayout.createParallelGroup (org.jdesktop.
layout . GroupLayout . LEADING)
.add (surfDensity, org.jdesktop.layout. GroupLayout.
PREFERREDSIZE, 146, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)
.add(surfDepth, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 146, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)
.add(cellSize, org.jdesktop.layout.GroupLayout.
PREFERRED.SIZE, 146, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)
.add (fricCo, org.jdesktop.layout.GroupLayout.

252

PREFERREDSIZE, 146, org.jdesktop.layout.

GroupLayout . PREFERRED_SIZE))

.addPreferredGap (org. jdesktop .layout.LayoutStyle .RELATED)
.add(SurfacelnfoLayout . createParallelGroup (org. jdesktop.
layout . GroupLayout . LEADING)
.add(SurfaceInfoLayout .createSequentialGroup 0)

.add (SurfacelnfoLayout .createParallelGroup (org.
jdesktop .layout . GroupLayout . TRAILING)
.add(SurfaceInfoLayout.createSequentialGroup 0

.add(SurfaceIlnfoLayout.createParallelGroup (
org.jdesktop.layout.GroupLayout .LEADING

.add (surfDensityText, org.jdesktop.
layout . GroupLayout . PREFERRED_SIZE,
100, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)

.add (surfDepthText, org.jdesktop.layout
. GroupLayout . PREFERRED_SIZE, 100,
org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE)

.add(cellSizeText, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE, 100,
org.jdesktop.layout.GroupLayout.
PREFERREDSIZE))

.addPreferredGap (org. jdesktop.layout.
LayoutStyle .RELATED, 39, Short.
MAXVALUE))

.add(SurfacelnfoLayout.createSequentialGroup ()
.add(jLabell0)

.addPreferredGap (org.jdesktop.layout.
LayoutStyle .RELATED)))

.4dd (surfN1Cohst, org.jdesktop.layout . GroupLayout .
PREFERRED_SIZE, 70, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)

.add (23, 23, 23)

.add (SurfaceIlnfoLayout .createParallelGroup (org.
jdesktop .layout.GroupLayout .LEADING)

.add (org . jdesktop.layout.GroupLayout.TRAILING,
SurfaceInfoLayout.createSequentialGroup ()
.add (surfD, org.jdesktop.layout.GroupLayout

.PREFERREDSIZE, 146, org.jdesktop.

layout . GroupLayout . PREFERRED_SIZE)

.addPreferredGap (org. jdesktop.layout.
LayoutStyle .RELATED)

.add (surfDText, org.jdesktop.layout.
GroupLayout . PREFERRED SIZE, 100, org.
jdesktop .layout.GroupLayout.
PREFERREDSIZE)))

.add(org. jdesktop.layout .GroupLayout . TRAILING,
SurfacelnfoLayout.createParallelGroup (org.
jdesktop .layout . GroupLayout .LEADING)
.add(SurfaceInfoLayout.

createSequentialGroup ()

.add (SurfacelnfoLayout .
createParallelGroup (org. jdesktop.
layout . GroupLayout . TRAILING)

.add (SurfaceInfoLayout.
createSequentialGroup ()
.add(jLabelll)
.addPreferredGap (org. jdesktop .

layout . LayoutStyle .RELATED)
.add (surfN2Const, org.jdesktop.

layout . GroupLayout.

PREFERREDSSIZE, 70, org.

SurfaceInfoLayout setVerticalGroup (

253

jdesktop .layout.GroupLayout
.PREFERRED_SIZE)

.add (29, 29, 29))

.add (SurfacelnfoLayout .
createSequentialGroup ()

.add (surfDepthScale, org.
jdesktop .layout.GroupLayout
.PREFERRED_SIZE, 132, org.
jdesktop .layout.GroupLayout
.PREFERRED_SIZE)

.addPreferredGap (org. jdesktop .
layout . LayoutStyle .RELATED)

.add (SurfacelnfoLayout.
createParallelGroup (org. jdesktop.
layout . GroupLayout . LEADING)
.add (SurfaceIlnfoLayout .
createSequentialGroup ()
.addPreferredGap (org. jdesktop .
layout . LayoutStyle .RELATED)

.add(jLabell2)

.addPreferredGap (org. jdesktop .
layout . LayoutStyle .RELATED)

.add (surfHv, org.jdesktop.
layout . GroupLayout.
PREFERREDSIZE, 70, org.
jdesktop.layout . GroupLayout
.PREFERRED_SIZE))

.add(org.jdesktop.layout.
GroupLayout . TRAILING,
surfDepthScaleText, org.

. jdesktop.layout.GroupLayout.
PREFERRED_SIZE, 100, org.
jdesktop.layout .GroupLayout.
PREFERRED_SSIZE)))

.add(org.jdesktop.layout .GroupLayout.

TRAILING, SurfacelnfoLayout.

createSequentialGroup ()

.add(surfK, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE, 146,
org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE)

.addPreferredGap (org. jdesktop.layout .
LayoutStyle .RELATED)

.add (surfKText, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE, 100,
org.jdesktop.layout.GroupLayout.
PREFERREDSSIZE)))))

.add (fricCoText, org.jdesktop.layout.GroupLayout.
PREFERRED.SIZE, 100, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)))
.add(jLabel8)))
.add(SurfaceInfoLayout.createSequentialGroup ()
.add (35, 35, 35)
.add(SurfaceInfoLayout.createParallelGroup (org.jdesktop.layout .
GroupLayout . LEADING)
.add(ductileBool)
.add(brittleBool))))
.addContainerGap ())

SurfaceIlnfoLayout.createParallelGroup (org. jdesktop.layout.GroupLayout. LEADING)
.add (SurfaceIlnfoLayout.createSequentialGroup ()
.addContainerGap ()

254
.add(SurfaceInfoLayout .createParallelGroup (org.jdesktop.layout.GroupLayout.
TRAILING)
.add(SurfacelnfoLayout.createParallelGroup (org.jdesktop.layout.
GroupLayout . BASELINE)
.add(cellSize, org.jdesktop.layout.GroupLayout. PREFERREDSIZE, 16,
org.jdesktop.layout .GroupLayout . PREFERRED_SIZE)
.add(cellSizeText, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE,
16, org.jdesktop.layout.GroupLayout.PREFERREDSIZE))
.add (SurfacelnfoLayout .createSequentialGroup ()
.add (SurfacelnfoLayout.createParallelGroup (org.jdesktop.layout.

GroupLayout . BASELINE)

.add (surfDensity, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 16, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE)

.add(surfDensityText, org.jdesktop.layout.GroupLayout.
PREFERRED.SIZE, 16, org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE)

.add (surfDText, org.jdesktop.layout.GroupLayout.PREFERRED SIZE,

16, org.jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.add (surfD, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16,
org.jdesktop.layout .GroupLayout . PREFERRED_SIZE))
.addPreferredGap (org. jdesktop.layout . LayoutStyle .RELATED)
.add(SurfacelnfoLayout.createParallelGroup (org.jdesktop.layout.
GroupLayout . BASELINE)
.add (surfDepth, org.jdesktop.layout.GroupLayout.PREFERREDSIZE,
16, org.jdesktop.layout.GroupLayout. PREFERRED SIZE)

.add (surfDepthText, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 16, org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE)

.add (surfKText, org.jdesktop.layout.GroupLayout. PREFERREDSSIZE,

16, org.jdesktop.layout.GroupLayout. PREFERREDSIZE) -
;add (surfK, ofg.jdesktop.layout.GroupLayout.PREFERREDSIZE, 16,
org.jdesktop.layout .GroupLayout. PREFERRED_SIZE))
.addPreferredGap (org. jdesktop . layout . LayoutStyle .RELATED)
.add (SurfacelnfoLayout.createParallelGroup (org.jdesktop.layout.

GroupLayout . BASELINE)

.add(surfDepthScaleText, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 16, org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE)

.add(surfDepthScale, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 16, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE))))

.add(SurfaceInfoLayout.createParallelGroup (org.jdesktop.layout. GroupLayout.
LEADING)
.add(SurfaceInfoLayout .createSequentialGroup ()

.add (33, 33, 33)

.add(jLabel8, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 16,
org.jdesktop .layout.GroupLayout . PREFERRED SIZE)

.add (14, 14, 14) .

~.add(brittleBool)

.addPreferredGap (org.jdesktop .layout . LayoutStyle .RELATED)

.add(SurfacelnfoLayout.createParallelGroup (org.jdesktop.layout.
GroupLayout . BASELINE)

.add(ductileBool)

.add (surfHv, org.jdesktop.layout.GroupLayout. PREFERRED SIZE,

16, org.jdesktop.layout.GroupLayout .PREFERRED_SIZE)

.add (surfN2Const, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 16, org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE)

.add (jLabelll)

.add (surfN1Const, org.jdesktop.layout.GroupLayout.
PREFERREDSIZE, 16, org.jdesktop.layout.GroupLayout.
PREFERRED_SIZE)

.add(jLabell0)

255

.add(jLabell2)))
.add (SurfacelnfoLayout .createSequentialGroup ()
.addPreferredGap (org. jdesktop.layout.LayoutStyle .RELATED)
.add (SurfacelnfoLayout.createParallelGroup (org. jdesktop.layout.
GroupLayout . BASELINE)
.add(fricCoText, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE
, 16, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)
.add (fricCo, org.jdesktop.layout.GroupLayout. PREFERRED_SIZE,
16, org.jdesktop.layout.GroupLayout.PREFERREDSIZE))))
.addContainerGap (26, Short MAXVALUE))

)

org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.GroupLayout(
getContentPane());
getContentPane () .setLayout (layout);
layout .setHorizontalGroup (
layout.createParallelGroup (org. jdesktop .layout.GroupLayout.LEADING)
.add(layout.createSequentialGroup ()
.addContainerGap ()
.add (bottomPanel, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 675, org.
jdesktop .layout.GroupLayout . PREFERRED_SIZE)
.addContainerGap (org. jdesktop .layout.GroupLayout . DEFAULT_SIZE, Short .
MAXVALUE))
.add (org. jdesktop.layout.GroupLayout.TRAILING, layout.createSequentialGroup ()
.addContainerGap (org. jdesktop .layout . GroupLayout . DEFAULT SIZE, Short.
MAX VALUE)
.add(layout . createParallelGroup (org.jdesktop.layout.GroupLayout.LEADING)
.add(SurfaceInfo, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 675,
org.jdesktop.layout . GroupLayout . PREFERRED_SIZE)
.add(nozzlelnfo, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 675,
org.jdesktop.layout.GroupLayout. PREFERRED_SIZE)
.add (EnvironmentInfo, org.jdesktop.layout.GroupLayout.PREFERRED SIZE,
675, org.jdesktop.layout.GroupLayout. PREFERRED_SIZE)
.add(ParticlesInfo, org.jdesktop.layout.GroupLayout.PREFERREDSIZE, org
.jdesktop .layout . GroupLayout . DEFAULT_SIZE, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE))
.add (15, 15, 15))
)
layout .setVerticalGroup (
layout .createParallelGroup (org. jdesktop .layout . GroupLayout.LEADING)
.add (layout .createSequentialGroup ()
.addContainerGap ()
.add(nozzleInfo, org.jdesktop.layout.GroupLayout.PREFERREDSSIZE, 179, org.
jdesktop .layout . GroupLayout . PREFERRED_SIZE)
.addPreferredGap (org. jdesktop .layout . LayoutStyle .RELATED)
.add(ParticlesInfo, org.jdesktop.layout.GroupLayout. PREFERRED SIZE, 92, org
.jdesktop.layout.GroupLayout . PREFERRED_SIZE)
.addPreferredGap (org. jdesktop .layout . LayoutStyle .RELATED)
.add(Surfacelnfo, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 225, org.
jdesktop .layout.GroupLayout . PREFERRED_SIZE)
.addPreferredGap (org. jdesktop .layout . LayoutStyle .RELATED)
.add (EnvironmentInfo, org.jdesktop.layout.GroupLayout.PREFERRED.SIZE, org.
jdesktop .layout.GroupLayout . DEFAULT SIZE, org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)
.addPreferredGap (org. jdesktop.layout.LayoutStyle .RELATED, 15, Short.
MAX VALUE)
.add (bottomPanel, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, org.
jdesktop .layout.GroupLayout . DEFAULT SIZE | org.jdesktop.layout.
GroupLayout . PREFERRED_SIZE)
.addContainerGap ())
)

java.awt.Dimension screenSize = java.awt. Toolkit.getDefaultToolkit().getScreenSize

0 .
setBounds ((screenSize . width—708) /2, (screenSize.height—815)/2, 708, 815);

| 256
Y// </editor—fold>

ViR

x Changes the current state of the input fields of constants for ductile erosive
systems.

*

x @param evt the itemStateChanges event of Dutile check bozx.
private void activeDuctile(java.awt.event.ItemEvent evt) {
this.surfN1Const.setEnabled (! this.surfN1Const.isEnabled());
this.surfN2Const .setEnabled (this.surfN1Const.isEnabled());
this.surfHv.setEnabled (this.surfN1Const.isEnabled ());

}
VAT

%+ Invokes a method from the Plot class to show the three—dimensional view of the
surface
*

% @param .evt the actionPerformed event of the Plot button.
v/
private void plotHandler (java.awt.event.ActionEvent evt) {
depthScale = Double. parseDouble (surfDepthScaleText . getText ())*—1;
try {
new Plot(depthScale);
} catch (RemoteException ex) {
ex.printStackTrace () ;
JOptionPane.showMessageDialog (this, 7 first”);
} catch (VisADException ex) {
ex.printStackTrace () ;
JOptionPane.showMessageDialog(this, ”second”) ;

} ' T
Vir:

%« Creates some results and terminates the execution.
*

% @param evt the mouseClicked event of the ezit button.
*/

private void exitHandler (java.awt.event.MouseEvent evt) {

if (SimulationManager . SystemTime==0)
System . exit (0);

if (SimulationManager . SystemTime>0)
mySimulation . SimulationManager. printStatistics 0
try
{
FileOutputStream fileOut;
fileOut = new FileOutputStream (” mySimResult/ExcelReport.x1s”);
mySimulation.SimulationManager .wbh. write (fileOut);
fileOut . close ();
fileOut=null;

if (SimulationManager . cell2DWbY!=null)

System.out.println (” writing.last .excel.file_at_time.” +
SimulationManager . SystemTime) ;

String sheetName = »mySimResult / CrossSection—Time” + SimulationManager.
SystemTime + ”.xlIs”; '

fileOut = new FileOutputStream (sheetName);

SimulationManager . cell2DWbY .write (fileOut) ;

fileOut . close ();)

fileOut=null;

257
}catch (IOException e)

{

System. err. println (” error.in.entering.data.into.excel.sheet”);

System . exit (0);

}
VETS

* Creates mew thread for running the simulation and invokes its rum method to start
the simulation.
* The old thread is used to update GUI.
* .
* @param evt the mouseClicked event of the run button.
private void runHandler (java.awt.event.MouseEvent evt) {
thread = new Thread(this);
thread.start () ;

}
VETS

* Represents the code ezecuted by the thread created by runHandler.
*
/
public void run () {
int i; .
this.runButton.setEnabled (false);
try{
runSimulation () ;
}catch(InterruptedException e) {;}

this.runButton.setEnabled (true);
this.plot.setEnabled (true);

}
VAT

* An abstract method whose implementation is presented in the SimulationManager class
extending Interface.

*

* @throws java.lang.InterruptedEzception

*/.

abstract public void runSimulation () throws InterruptedException;

// Variables declaration — do not modify
private ‘javax.swing.JPanel EnvironmentInfo;
private javax.swing.JLabel PPCo_Res;

public javax.swing.JTextField PPCo_ResText;
private javax.swing.JLabel PSCo_Res;

public javax.swing.JTextField PSCo-ResText;
private javax.swing.JPanel ParticlesInfo;
private javax.swing.JPanel Surfacelnfo;
private javax.swing.JLabel beta;

public javax.swing.JTextField betaText;
private javax.swing.JPanel bottomPanel;
public javax.swing.JRadioButton brittleBool;
private javax.swing.ButtonGroup buttonGroupl;
private javax.swing.JLabel cellSize;

public javax.swing.JTextField cellSizeText;
public javax.swing.JRadioButton ductileBool;
private javax:.swing.JLabel envWidth;

public javax.swing.JTextField envWidthText;
private javax.swing.JLabel fricCo;

public javax.swing.JTextField fricCoText;
private javax.swing.JButton jButtonl;
private javax.swing.JLabel jLabell;

private javax.swing.JLabel jLabellO;

private javax.swing.JLabel jLabelll;

private javax.swing.JLabel jLabell2;

private javax.swing.JLabel jLabell3;

private javax.swing.JLabel jLabel2;

private javax.swing.JLabel jLabel3;

private javax.swing.JLabel jLabel4;

private javax.swing.JLabel jLabel5;

private javax.swing.JLabel ‘jLabel6;

private javax.swing.JLabel jLabel7;

private javax.swing.JLabel jLabel8;

private javax.swing.JLabel jLabel9;

private javax.swing.JSeparator jSeparatorl;
private javax.swing.JLabel nHeight;

public javax.swing.JTextField nHeightText;
public javax.swing.JTextField nOrientAngleText;
private javax.swing.JLabel nPassDistance;
public javax.swing.JTextField nPassDistanceText ;
private javax.swing.JLabel nPosition;)
private javax.swing.JLabel nRadius;

public javax.swing.JTextField nRadiusText;
public javax.swing.JTextField nVXText;

public javax.swing.JTextField nVYText;

public javax:swing.JTextField nVZText;
private javax.swing.JLabel nVelocity;

public javax.swing.JTextField nXText;

public javax.swing.JTextField nYText;

public javax.swing.JTextField nZText;

private javax.swing.JLabel nlunchFreq;

public javax.swing.JTextField nlunchFreqText;
private javax.swing.JPanel nozzlelnfo;

public final javax.swing.JProgressBar pBar = new javax .swing.JProgressBar () ;

public javax.swing.JTextField pDensityText;
private javax.swing.JLabel pMass;

private javax.swing.JLabel pRadius;

public javax.swing.JTextField pRadiusText;
private javax.swing.JLabel pVSize;

public javax.swing.JTextField pVSizeText;
public javax.swing.JButton plot;

private javax.swing.JButton runButton;

private javax.swing.JLabel surfD;

public javax.swing.JTextField surfDText;
private javax.swing.JLabel surfDensity;

public javax.swing.JTextField surfDensityText ;
private javax.swing.JLabel surfDepth; i
private javax.swing.JLabel surfDepthScale; = -
public javax.swing.JTextField surfDepthScaleText ;
public javax.swing.JTextField surfDepthText;
public javax.swing.JTextField surfHv;

private javax.swing.JLabel surfK;

public
public
public
public
public
public
public
public

// End

javax.swing.
javax.swing.
javax.swing.
javax.swing.
javax .swing.
javax .swing.
javax.swing.
javax.swing.

JTextField
JTextField
JTextField
JTextField
JTextField
JTextField
JTextField
JTextField

surfKText ;
surfN1Const;
surfN2Const ;
sysPrintTime;
sysTimeText;
timeTxt ;
vConstl;
vConst2;

of variables declaration

258

Bibliography

[1]

[2]

[5]

8]

A.P. Verma and G.K. Lal. An experimental study of abrasive jet machining. Interna-

tional Journal of Machine Tool Design and Research, 24(1):19-29, 1984.

V.C. Venkatesh, T.N. Goh, K.H. Wong, and M.J. Lim. An empirical study of parameters
in abrasive jet machining. International Journal of Machine Tools and Manufacture,

29(4):471-479, 1989.

R. Balasubramaniam, J. Krishnan, and N. Ramakrishnan. An empirical study on the
generation of an edge radius in abrasive jet external deburring (AJED). Journal of

Materials Processing Technology, 99:49-53, 2000.

P.J. Slikkerveer and F.H. in’t Veld. Model for patterned erosion. Wear, 233-235:377-386,
1999.

R. Balasubramaniam, J. Krishnan, and N. Ramakrishnan. A study on the shape of the
surface generated by abrasive jet machining. Journal of Materials Processing Technol-

ogy, 121(1):102-106, 2002.

J.H.M. Ten Thije Boonkkamp and J.K.M Jansen. An analytical solution for mechanical
etching of glass by powder blasting. Journal of Engineering Mathematics, 43(2-4):385-
399, 2002.

M. Achtsnick, P.F. Geelhoed, A.M. Hoogstrate, and B. Karpuschewski. Modelling and
evaluation of the micro abrasive blasting process. Wear, 259(1-6):84-94, 2005.

L. Finnie. Erosion of surfaces by solid particles. Wear, 3:87-103, 1960.

259

[9]

[10]

[11]

[12]

[13]

[16]

[17]

18]

260
J.G.A. Bitter. A study of erosion phenomena, part I. Wear, 6:5-21, 1963.
.M. Hutchings and R.E. Winter. Particle erosion of ductile metals: a mechanism of

material removal. Wear, 27:121-128, 1974.

G.L. Sheldon and I. Finnie. On the ductile behaviour of nominally brittle materials
during erosive cutting. Journal of Engineering for Industry, 88:387-392, 1966.

Y. Ballout, J.A. Mathis, and J.E. Talia. Solid particle erosion mechanism in glass.
Wear, 196(1):263-269, 1996. |

R.E. Jewett, P. I. Hagouel, A.R. Neureuther, and T. Van Duzer. Line-profile resist
development simulation techniques. Polymer Engineering and Science, 17(6):381-384,

1977.

P. I. Hagouel. X-ray lithography fabrication of blazed diffraction gratings. PhD disser-
tation, University of California at Berkeley, 1976.

S. Osher and James A. Sethian. Fronts propagating with curvature-dependent speed:
algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics,

79(1):12-49, 1988.

F.H. Dill, A.R. Neureuther, J.A. Tuttle, , and E.J. Walker. Modeling projection printing
bf positive photoresists. IEEE Transactions on Electron Devices, 22(7):456-464, 1975.

K.K.H. Toh, A.R. Neureuther, and E.W. Scheckler. Algorithms for simulation of three-
dimensional etching. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 13(5):616-624, 1994.

D. Adalsteinsson and J. A. Sethian. A level set approach to a unified model for etching,
deposition, and lithography III: redeposition, reemission, surface diffusion, and complex

simulations. Journal of Computational Physics, 138(1):193-223, 1997.

[19]

[21]

[22]

23
24
25)
26)
27)

[28]

261
E.W. Scheckler, N.N. Tam, A.K. Pfau, and A.R. Neureuther. An efficient volume-

removal algorithm for practical three-dimensional lithography simulation with experi-

mental verification. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 12(9):1345-1356, 1993.

E. Strasser and S. Selberherr. Algorithms and models for cellular based topography
simulation. IFEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 14(9):1104-1114, 1995.

R.M. Brach. Formulation of rigid body impact problems using generalized coefficients.

International Journal of Engineering Science, 36(1):61-71, 1998.

David Ciampini. Computer simulation of interference effects in particle streams. Mas-
ter’s thesis, University of Toronto, Department of Mechanical and Industrial Engineer-

ing, 2002.

A. Ghobeity, T. Krajac, T. Burzynski, M. Papini, and J.K. Spelt. Surface evolution
models in abrasive jet micromachining. Wear, 264(3-4):185-198, 2008.

R.M. Brach. Impact dynamics with application to solid particle erosion. International

Journal of Impact Engineering, 7(1):37-53, 1998.

H. Getu, A. Ghobeity, J.K. Spelt, and M. Papini. Abrasive jet micromachining of
polymethylmethacrylate. Wear, 263(7-.12):1008~1015, 2007.

B.J. Alder and T.E. Wainwright. Studies in molecular dynamics. I. general method.
Journal of Chemical Physics, 31(2):459-466, 1959.

H. Sigurgeirsson, A. Stuart, and W-L. Wan. Algorithms for particle-field simulations
with collisions. Journal of Computational Physics, 172(2):766-807, 2001.

Hanan Samet. The design and analysis of spatial data structures. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1990.

262

[29] D. Ciampini, J.K. Spelt, and M. Papini. Simulation of interference effects in particle

[30]

[31]

[32]

[33]

[34]

streams following impact with a flat surface, Part I: Theory and analysis. Wear, 254(3-

4):237-249, 2003.

A. Ghobeity, H. Getu, T. Krajac, J. K. Spelt, and M. Papini. Process repeatability in

abrasive jet micro-machining. Journal of Materials Processing Technology, 190(1-3):51~

60, 2007.

A. Ghobeity, H. Getu, M. Papini, and J.K. Spelt. Surface evolution models for abrasive
jet micromachining of holes in glass and polymethylmethacrylate (PMMA). Journal of
Micromechanics and Microengineering, 17(11):2175-2185, 2007.

Periasamy Chinnapalaniandi. An experimental study of particle-laden jet interactions
with cocurrent flows. PhD dissertation, Case Western Reserve University, Department

of Mechanical and Areospace Engineering, Aug 1992.

I.M. Hutchings. Deformation of metal surfaces by the oblique impact of square plates.

International Journal of Mechanical Sciences, 19(1):45-52, 1977.

S. Dhar, T. Krajac, D. Ciampini, and M. Papini. Erosion mechanisms due to impact
of single angular particles. Second International Conference on Erosive and Abrasive

Wear, 258(1-4):567-579, 2005.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2008

	Computer simulation of developing erosion profiles including interference effects
	Nastaran Shafiei
	Recommended Citation

