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The objective of this thesis is to provide a simulations-free approximation to the price of

multivariate derivatives and for the calculation of risk measures like Value at Risk(VaR). The

first chapters are dedicated to the pricing of multivariate derivatives. In particular we focus

on multivariate derivatives under switching regime Markov models. We consider the cases of

two and three states of the switching regime Markov model, and derive analytic expressions

for the first and second order moments of the occupation times of the continuous-time

Markov process. Then we use these expressions to provide approximations for the derivative

prices based on Taylor expansions. We compare our closed form approximations with Monte

Carlo simulations. In the last chapter we also provide a simulations-free approximation

for the VaR under a switching regime model with two states. We compare these VaR

estimations with those obtained using Monte Carlo.
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Chapter 1

INTRODUCTION

The focus of this thesis is the pricing of multivariate derivatives and the computation of

risk management measures under switching regime models.

There are a few reasons why we have selected switching regime models for the stock(s)

dynamics in this thesis. Switching regime models are very flexible, and can describe many

features that are present in the financial market (volatility clustering, for example). On the

other hand, under mild assumptions on the switching mechanism (for example, a Markov-

type assumption) the models still keep some analytical tractability, which we are going to

strongly use in this work. Last but not least, switching regime models, and their parameters,

can be interpreted very easily: the regimes represent different external (changing) economic

circumstances.

Switching regime models are very common in modern financial modelling, but they

have been used mostly in a univariate setting. That is why we have considered multivari-

ate switching regime models, which have been treated considerably less in the financial

literature.

The simplest regime switching model in continuous time that can be found in the fi-

nancial literature is the Black and Scholes regime switching model, introduced by Kijima

and Yoshida [20], it assumes m number of states or regimes and considers that within each
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possible market regime, asset prices evolve according to a geometric Brownian motion with

specific constant parameters.

Opposed to the typical benchmark cases of constant parameters, when working with

switching models the (joint) distribution at maturity time is not explicitly available. There-

fore, some financial problems like derivative pricing, as well as the computation of risk

measures like Value at Risk (VaR), become much more difficult, and most of the time,

impossible to solve analytically, more so in the multivariate case. What this means is that,

in the presence of a switching mechanism, there are not too many alternatives to compute

derivative prices, beyond the ubiquitous Monte Carlo methods. Monte Carlo methods are

reliable, and in general can be easily implemented, but they are not very efficient from a

computational point of view.

In this work we will provide efficient closed form approximations for the pricing of

multivariate derivatives under switching regime models as an alternative to Monte Carlo

Methods. In the univariate case, we will also provide a methodology to compute Value at

Risk under a switching regime model.

The main approximating tool that we will use is the classical Taylor expansion. This

technique, in different variations, has been used to price derivatives in many papers, for

example Hull and White(1987), and Alvarez, Escobar and Olivares (2010) [5], among others.

However, as far as we know, there is nothing similar to the VaR approximation that we

propose in this thesis in the available literature.

The organization of this thesis is as follows:
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In Chapter 1 we introduce some notations and basic concepts needed in this thesis.

These are standard elements and the reader will be referred to other sources for more

details. In this section first we introduce the notion of stochastic process, and specifically

we cover the cases of Brownian Motion and continuous time Markov process. Then we give

a short summary of some stochastic processes that are common in the financial literature,

as well as a review of financial derivatives and option pricing methods.

In Chapter 2 we introduce the multivariate switching regime models that will be the

main ingredient in this thesis. Next we focus on the closed form approximation for derivative

pricing considering a two states Markov regime. At the end of this chapter we discuss our

simulation results, and compare them with Monte-Carlo prices.

In Chapter 3 we consider a switching regime model with three states. The moments

of the occupation times will be analytically calculated under this kind of Markov model.

Similarly to Chapter 2 we present comparison with Monte-Carlo pricing method.

In Chapter 4 we provide a closed form approximation for the Value at Risk (VaR)

under a univariate switching Regime model, and we assess its accuracy by performing a

comparison with Monte Carlo methods. Chapter 5 concludes.
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Chapter 2

PRELIMINARIES ON STOCHASTIC PROCESSES AND FINANCIAL

MODELING

In order to make this thesis as self-contained as possible, this chapter summarizes some

basic notations, definitions and results that we need in the rest of thesis. In section 2.1 we

start introducing stochastic processes in general, and we cover the specific cases of Brownian

Motion and continuous time Markov process, which are the basic blocks for this project. In

section 2.2 we focus on univariate and multivariate asset modelling. In section 2.3 we have

a summary of derivatives and their pricing methods.

2.1 Stochastic Processes

Consider a probability space (Ω,F ,P). A stochastic process X on (Ω,F ,P) is a collection

of random variables {Xt}t≥0 defined on (Ω,F ,P). The parameter t is usually interpreted

as time.

If ω ∈ Ω is fixed, Xt(ω) ≡ X(t, ω) : R+ → R(Rn) is called a sample path (or trajectory)

of the process X. A stochastic process X is said to be continuous if almost surely, its

trajectories X(·, ω) are continuous.

A filtration {Ft}t≥0 is an increasing family of σ-algebras included in F . The σ-algebra

Ft represents the information available up to time t. We say that a stochastic process X,
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is Ft-adapted if the random variable Xt is Ft measurable.

If we have a stochastic process X, it is possible to generate a filtration by taking Ft =

σ(Xs, s ≤ t). We call it the natural filtration of the process X. From now on, if a filtration

is mentioned without specifying it, it will be assumed that it is the natural filtration of the

stochastic process that is being considered.

Definition 2.1.1. (Martingale) A {Ft}-adapted stochastic process {Xt, t ≥ 0}, is a mar-

tingale if for any t, E|Xt|<∞ and for any s > 0.

E [Xt+s|Ft] = Xt a.s. (2.1)

For a martingale, its expected future value conditional on its present value and past

history is equal to its present value.

2.1.1 Brownian Motion

A Brownian motion (also called Wiener process)[11] is a continuous stochastic process W =

{Wt, t ≥ 0} satisfying the following properties:

• P (W (0) = 0) = 1.

• (independent increments) If s < t, Wt −Ws is independent of Fs.

• (stationary normal increments) If s < t, Wt −Ws ∼ N(0, σ2(t− s)).

• the paths are continuous,i.e., the function t 7→Wt is a continuous function of t, almost

surely.
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The standard Brownian motion has σ2 = 1. It is clear from the definition that for any

t > 0, we have EP(Wt) = EP(W0) = 0. Moreover W is a martingale with respect to its

natural filtration.

Figure 2.1 shows several simulated trajectories of a Standard Brownian motion.

Figure 2.1: µ = 0 , σ = 0.1

2.1.2 Continuous time Markov Process

A continuous time Markov process X is a stochastic process taking values in some set S

called the state space, that satisfies the following Markov property:

P (X(t) = j|X(s) = i,X(tn−1) = in−1, ..., X(t1) = i1)

= P (X(t) = j|X(s) = i)

(2.2)

for any non decreasing sequence of n + 1 real times 0 ≤ t1 ≤ t2 ≤ ... ≤ tn−1 ≤ s ≤ t and

any i1, i2, , ..., in−1, i, j ∈ S.

The Markov property has the interpretation that conditionally on the present, the future
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behaviour of X is independent of the past values of X.

In the particular case that the state space S is finite(or countable), X can also be called

a Markov chain. If S is finite there exists a square matrix Q of the same dimension of

S, called the transition rate matrix that, together with the initial state X(0), completely

defines the Markov process. For simplicity assume that S = {1, 2, ..., N}. The transition

rate matrix

Q =



q1,1 q1,2 q1,3 · · ·

q2,1 q2,2 q2,3 · · ·

q3,1 q3,2 q3,3 · · ·

· · · · · · · · · · · ·


(2.3)

is such that

P (X(t+ h) = j|X(t) = i) = δi,j + qi,jh+ o(h) (2.4)

Where δi,j is a unit matrix.

Expression (2.4) implies that

• qi,j ≥ 0 for i 6= j

• qi,i ≤ 0 for all i

•
∑
j

qij = 0.

It can also be proved from (2.4) that once state i is reached (if it is reached), the Markov
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process X will remain there for a random length of time that is exponentially distributed

with parameter λi = −qii. Then, it will jump to another state j (j 6= i) with probability

pij =
qi,j∑

j 6=i
qi,j

=
qi,j
λi

(2.5)

For more details about Markov processes the reader may refer to [17], among others

references.

2.2 Univariate and multivariate models for the stock market

In this section we will introduce different stochastic processes that have been used to model

stock market dynamics, both in the univariate and multivariate case.

2.2.1 Geometric Brownian motion

A Brownian motion W cannot be used directly to describe stock prices, as a Brownian

motion takes negative values with positive probability, which is unrealistic. The Bachelier

model [9], which represents the first attempt to use the Brownian motion to model stock

prices, also has the same drawback of assigning positive probability to negative prices. The

geometric Brownian motion keeps most of the nice properties of the Bachelier’s model, but

at the same time it is guaranteed that price trajectories for the model remain positive.

A Geometric Brownian motion S is a continuous time stochastic process satisfying

St = S0exp

{(
µ− 1

2
σ2
)
t+ σWt

}
(2.6)
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where W is a standard Brownian motion, and µ, σ are real parameters with σ > 0. This

is also known as the Black-Scholes model [18], and for more than 40 years it has been a

paradigm to describe stock prices movements.

Expression (2.6) is equivalent to

logSt = logS0 +

(
µ− 1

2
σ2
)
t+ σWt (2.7)

The interpretation of the parameters in the Black-Scholes is as follows: µ represents a

drift (or trend) parameter, and it is associated with long term behaviour. The parameter

σ is associated with variability, and is usually called the volatility parameter.

Another way to introduce the Black-Scholes model is through the following stochastic

differential equation:

dSt = µStdt+ σStdWt (2.8)

or equivalently, based on expression (2.7):

d logSt =

(
µ− 1

2
σ2
)
dt+ σdWt (2.9)

The connection between expressions (2.6) and (2.8) is given by Ito’s formula. For more

details about stochastic integration, Ito’s formula, and stochastic differential equations, see

[14],[12], among other classical references.

Based on (2.7) we get that logSt is a normally distributed random variable. Moreover,

the log-increment logSt − logS0 satisfies that:

logSt − logS0 ∼ N
((

µ− 1

2
σ2
)
t, σ2t

)
(2.10)
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The expected value and variance of St can be computed as:

E [St] = S0e
µt

var [St] = S2
0e

2µt
(
eσ

2t − 1
) (2.11)

Figure 2.2 shows several simulated trajectories of a geometric Brownian motion.

Figure 2.2: µ = 0.1 , σ = 0.3

2.2.2 Multivariate Geometric Brownian motion

In this section we will define a multivariate extension of the Geometric Brownian motion in

(2.9)

Consider a vector µ ∈ R and a symmetric positive definite matrix Σ ∈ Md(R) where

Md(R) is the set of real square matrices of order d. Define also diag(Σ) as the d-dimensional

vector whose elements correspond to the main diagonal of matrix Σ.
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Consider S(t) = (S1(t), S2(t), ..., Sd(t)), representing the prices for d different assets,

and logS(t) ≡ (logS1(t)), logS2(T ), ..., logSd(T )).

Then, the multivariate geometric Brownian motion is given by the following stochastic

differential equation:

d logS(t) =

(
µ− 1

2
diag(Σ)

)
dt+ Σ1/2dWt (2.12)

Where W =
(
W 1,W 2, ...,W d

)
is a d-dimensional standard Brownian motion defined on the

probability space (Ω, F,P). This means that each component W i is a standard Brownian

motion, and that the components W i are independent.

Analogously to the univariate model, the element µi in vector µ represents the drift

parameter of asset i. On the other hand, the matrix Σ can be written as

Σ =



σ21 ρ12σ1σ2 . . . ρ1nσ1σn

ρ21σ1σ2 σ22 . . . ρ2nσ2σn

...
. . .

...

ρn1σnσ1 ρ2nσ2σn . . . σ2n


(2.13)

The parameter σi represents the volatility associated to the assets i, and the parameter

ρi,j is a correlation parameter between assets i and j.

Moreover, similar to expression (2.10) we have that logS(t) is (multivariate) normally

distributed:

logS(t) ∼ N
(

logS(0) + µt− 1

2
diag(Σt),Σt

)
(2.14)

Clearly, each of the components Si of S is itself a univariate geometric Brownian motion.
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2.3 Derivatives

A financial derivative is a financial contract that derives its value from an underlying asset.

This underlying asset may be a stock, index, interest rate.

History shows that the first financial derivatives were developed to secure the supply of

commodities both in time and geographical distance as well as to protect against changes in

prices and to mitigate risks. Derivatives fostered trade and contracts evolved over history

primarily to meet the specific needs of traders. For example derivatives were an instrument

for farmers to insure them against a corp failure, for merchants to finance their future

commercial activities and for governments and churches to raise money ,(Steve Kummer

and Christian Pauletto 2012) [8].

Derivatives may be traded on exchanges or over the counter(OTC). Exchanges traded

derivatives are standardized contracts. Trading over the counter is generally only available

to professional investors in wholesale markets. Derivatives can be classified in several groups

such as:

• future or forward is a contract enter into a transaction at a given price on a given

date or dates in the future.Such contract called future when traded on an exchange

or forward when traded OTC.

• Swap contracts are agreement to exchange one asset for another. The asset is usually

a future payment or stream of payments.

• Options are financial contracts that give the buyer the right (but importantly) not

12



the obligation to enter into pre-arranged financial agreement at a pre-defined price on

a future date or dates.

The above examples are the most common forms of contracts on financial derivatives. There

are many other types that could be made out of a combination of the above examples.

When these forms are combined, the contract takes on new features or characteristics that

are unique and different from the other forms.

2.3.1 Classification of options

An option is a contract that gives the buyer the right but not the obligation to buy or sell

an underlying asset S at a specified price called strike price K on or before a certain date

calls expiry time T . A cash flow when an option is exercised is referred to as payoff. An

option where the holder has the right to buy the underlying at maturity called call option.

Conversely, an option where the holder has the right to sell the underlying at maturity is

known as a put option. A call option contract hedges upward movement of the price of

underlying asset and buying a put option contract hedges downward movement of the price

of underlying asset. Selling or writing a call or put option is just the opposite and is a short

position because the investor owes the holder the right to buy the shares from or sell the

shares to him at the holder’s discretion.

For a simple example, let’s say we purchase a call option on shares of Intel (INTC) with

strike price of $40 and expiration (maturity) date of Sep. 16th. This option will give you

the right to purchase a share of Intel at a price of $40 on Sept 16th (the right to do this, of
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course,will only be valuable if Intel is trading above $40 per share at that point of time).Let’s

imaging the price of trading is $45 per share. In this case the profit is $(45− 40) = $5. If

the price per share fall to $35 per share, we do not exercise and the profit will be zero.

The payoff for European call/put option can be shown as following formula:

Hc(S, T ) = Ccall(S) = (ST −K)+

Hp(S, T ) = Cput(S) = (K − ST )+
(2.15)

Where the plus sign indicates the positive part of a real number.

x+ =


x if x ≥ 0

0 if x < 0

(2.16)

In other words, the holder of a call option would thus earn ST −K if ST > K and zero if

ST ≤ K.

The vast majority of options are either European or American options. These options

where the payoff is calculated similarly are referred to as vanilla options. Vanilla options

have a fixed strike price, expiration date and a single underlying asset. The payoff equals the

difference between the value of the underlying asset and the strike price.The options where

the payoff is calculated differently are categorized as exotic options. There are different

type of exotic options as ,Barrier options,Asian options, Bermudan options, Binary options,

Rainbow options, Look back options, Reload options.

2.3.1.1 European options vs. American option

European options can only be exercised at the expiration time T defined in the contract.

The holder of European call/put option has the right to buy/sell an underlying for strike
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price at expiration date.

American options are very similar to European options but they have one additional

feature. American options [4][15] can be exercised at any time on or before the expiration

time T defined in the contract.

2.3.1.2 Path dependent options

Contrary to a European option, in which the payoff only depends on the underlying asset’s

value at maturity time T , a path dependent option’s payoff is determined by the whole path

of the underlying asset’s price. Some common path dependent options are:

• A basic American option as it can be exercised at any time prior to expiration.

• An Asian option, also called an average option, because its payoff is based on the

average price of the underlying asset during the contract term. One advantage of

Asian options is that these reduce the risk of market manipulation at maturity. The

payoff for an Asian option is usually given by

H =

(
1

T

∫ T

0
Srdr −K

)+

(2.17)

• A barrier option as its value changes to existence or extinguishes if the underlying

asset reaches or surpasses a specified price. Barrier options are also cheaper than

a similar option without barrier.The most common barrier options, namely up-and-

in(UI), up-and-out (UO), down-and-in(DI) and down-and-out(DO) call option. The
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respective payoffs of UI and UO barrier call options are as below:

HUI = (ST −K)+ 1[B,∞) (MS)

HUO = (ST −K)+ 1(−∞,B] (MS)

(2.18)

Where MS = sup {St; 0 ≤ t ≤ T} and 1I(x) is an indicator function equal to one if x

belongs to interval I and zero otherwise.

2.3.2 Option pricing

Options like those covered in the previous section give their owner the possibility of receiv-

ing a positive payoff at a future time. One of the most important problems in financial

mathematics is to determine the “fair” value of such contracts. This problem is known as

option(or derivative) pricing.

The problem of option pricing gained a lot of attention in the early 1970s, after the

Chicago Board Options Exchange and other markets around the world started trading

these derivatives contracts. In these circumstances, the now famous works of Black, Scholes

and Merton gave a solid mathematical framework, and basic insights and principles related

to the solution of the pricing problem. Since those early days, the theory of derivatives

pricing has developed considerably. The level of mathematical sophistication that is needed

to solve these problems is also very high. In this section we will review some of the basic

elements of option pricing theory.

One of the first insights in the mentioned works is the idea that the price of an option

should be the necessary amount of capital needed at initial time in order to replicate the

payoff at maturity time T . This idea, coupled with the notion that there should not exist
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arbitrage opportunities in the market, was used to derive a partial differential equation

(PDE) whose solution gives the option price. If the market is complete, meaning that we

can perfectly replicate any future payoff, this replication methodology provides the answer

to the pricing problem. However, this completeness condition is not always satisfied.

On the other hand, other works in the late 1970s and early 1980s notably Harrison

(1981)[6] established the relationship between the option pricing problem and the notion of

martingale.

The basic idea is as follows: if there exists a unique probability measure Q, equivalent

to the actual probability measure P, such that the discounted underlying asset price process

e−rtXt is a martingale under Q, then the fair price for a derivative with payoff h(ST ) is the

discounted expected value of the payoff under Q:

P = e−rTEQh(ST ) (2.19)

Such a probability measure is called ”martingale measure” or ”risk neutral” measure.

In the case of incomplete markets, when there exist more than one probability measure,

the pricing problem is solved by selecting one of the available risk neutral measures Q, based

on some criteria, and the expression (2.19 ) is still used to compute the derivative price.

It is not always possible to find this expected value explicitly, but in some well know

cases, notably within the Black-Scholes model, we do have explicit expressions for the option

price.
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2.3.2.1 Pricing under the Black-Scholes model

If the asset satisfies a Geometric Brownian motion as in expression (2.6) then it is possible

to prove that there exists just one risk neutral measure Q for that model. Moreover, under

Q the prices satisfy that:

S(t) = S(0)exp

[(
r − 1

2
σ2
)
t+ σWt

]
(2.20)

The only difference between expressions (2.6) and 2.20 is that µ was replaced by the interest

rate r. In general, the dynamics of the asset price process under the risk neutral measure

Q is usually obtained by replacing the drift term by the riskless rate r.

Under this model for the asset, and using (2.19) it can be found that at initial time

t = 0, the price of the European call with exercise price K and time of maturity T is given

by

C = e−rTEQ
[
(ST −K)+

]
(2.21)

which results in the following explicit expression:

C(0, r,K, T, σ, S0) = S0Φ(d1)− exp(−rT )KΦ(d2) (2.22)

Where Φ(x) is the cumulative standard normal distribution function and,

d1 =

ln

(
S0
K

)
+

(
r +

1

2
σ2
)
T

σ
√
T

d2 = d1 − σ
√
T

(2.23)
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2.3.2.2 Multivariate options pricing

In the case of derivatives that depend on several assets, the risk neutral valuation idea

remains valid. If ST represents a vector of asset prices at maturity time T , and some

derivative has a payoff h(ST ), then we can use the same pricing equation (2.19) as long as

each (discounted) component in the multivariate price process S is a martingale under Q.

As an example we can consider a bivariate process S = (S1, S2). A spread option is a

type of European derivative with payoff given by:

P = (S1(T )− S2(T )−K)+ (2.24)

In the case that S is considered a multivariate geometric Brownian motion like in (2.12) we

have that

P = e−rTEQ
(
(S1(T )− S2(T )−K)+ |S1(0), S2(0)

)
(2.25)

For spread options, it is not possible to give an explicit expression for this expected value,

but there are some closed form approximations that give very accurate results. Among

them, we have the one proposed by Li, Deng and Zhou [3], which we will use in this thesis.

In general, the pricing problem can not be solved exactly except for a handful of cases.

This means that in practice we have to use approximated methods to find option prices.

Some of these methods are either related to the solution of some PDE, or the use of Monte

Carlo methods to evaluate expected values, after a risk neutral measure is chosen. In both

cases, and depending on the complexity of the model for the assets, these methods may not

be very efficient from a computational point of view. On the other hand, practitioners need

efficient methods. That is the reason why in this thesis we study the problem of providing
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closed-form approximations for derivative prices, as an alternative to the pricing methods

mentioned above.
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Chapter 3

PRICING APPROXIMATION UNDER A SWITCHING REGIME MODEL

WITH TWO STATES

It is well-known that volatility of financial time series changes over time. Different models

have been developed to capture this empirical phenomena. One of the first works in this

direction is the discrete time GARCH model proposed by Bollerslev in 1987 [1]. The option

pricing in GARCH models was investigated by Duran in 1995 [7]. Option pricing in a

continuous time stochastic volatility was considered by Hull and White in 1987 and Markov

switching model which modeled by Hamilton (1988) [2]. In 1989 Turner and Nelson[19]

applied switching model for excess returns in which returns switch between low and high

variance regime. In 1998 Lam and Li [10] generalized the model to Markov switching regime.

Most of these works, and subsequent applications of Markov chains for financial modelling,

focus on the univariate case. See Bollen (2000) [21], Campbell (2002)[16]

In this chapter we will study the problem of pricing multivariate derivatives under

switching regime models. In particular we will focus our attention to spread options and

the case of a Markov process with two states. The case of three states is covered in Chapter

4.

In Section 3.1 we introduce the multivariate switching regime model of interest in the

general case, and in Section 3.2 we discuss the derivative pricing under this switching model

21



for the two-states case. Based on the results from 3.2, in Section 3.3 we propose a closed

form approximated price for these derivatives under switching regime models. In section

3.4 we go over the technical details of finding the first two moments of the occupation time,

which are needed in our closed-form approximation. In section 3.5 we compare the prices

for the proposed linear and quadratic closed-form approximations with Monte-Carlo pricing

methods.

3.1 Multivariate switching regime model

In this section we will introduce the notation for a general d-dimensional multivariate model

for asset prices that switches between N different Markov model regimes.

Suppose (Ω, F,P) is a complete probability space, where P is a real world probability

measure. Let τ denote the time index set [0, T ] of the model. We assume that the states of

the economy are modelled by a continuous time Markov process {Xt}t∈τ on (Ω, F,P) with

a finite state space χ = (X1, X2, . . . , XN ). .

Without loss of generality we can identify the state space χ by a finite set of unit vectors

{e1, e2, . . . , eN}, where ei = (0, . . . , 1︸︷︷︸
ith

, . . . , 0) ∈ RN . This notation (using canonic unitary

vectors) is quite standard to model switching regime stochastic processes, see for example

[13].

Consider symmetric positive definite matrices Σj ∈Md(R), each representing a volatil-

ity(covariance) matrix within state j. Now we can write the (stochastic) evolution of the

instantaneous switching covariance matrix ΣX,t that depends on the Markov process X as
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follows

ΣX,t =
N∑
j=1

〈Xt, ej〉Σj (3.1)

where < ., . > denotes inner product in RN . Expression (3.1) means that at each time

t, the instantaneous covariance matrix ΣX,t will be completely determined by the current

value of the switching process Xt. if Xt = ek, then all terms in the sum in (3.1) will cancel

out except the k-th term, and ΣX,t = Σk.

In a similar way, if µj ∈ Rd represents the drift parameter within state j, we can define

the instantaneous drift parameter as

µX,t =
N∑
j=1

〈Xt, ej〉µj (3.2)

Then define the following dynamics for the d-dimensional price process S:

d (logS(t)) =

(
µX,t −

1

2
diag (ΣX,t)

)
dt+ (ΣX,t)

1/2dWt (3.3)

For pricing purposes, a risk neutral measure Q has to be considered. The model in (3.3)

is incomplete, due to the uncertainty introduced by X, therefore the risk neutral measure is

not unique. For the purposes of this work, let us consider the risk neutral measure Q under

which the drift parameters become equal to the interest rate parameter r for all assets. In

other words µj = r ≡ (r, r, ..., r) ∈ Rd for all j.

Under this risk neutral measure, and conditionally on the path of switching process X,

the vector logS(T ) has a multivariate normal distribution N(µG,ΣG) with
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µG = logS0 + rT − 1

2

N∑
i=1

[∫ T

0
〈Xs, ei〉 ds

]
diag(Σi)

ΣG =

N∑
i=1

[∫ T

0
〈Xs, ei〉 ds

]
Σi

(3.4)

Both expressions in (3.4) include terms of the form

∫ T

0
〈Xs, ei〉 ds. If we define

TX,i =

∫ T

0
〈Xs, ei〉 ds (3.5)

then the random variables TX,i represent what is known in the general theory of Markov

process as occupation time for each state: the time that the Markov process spends in state

i (or ei in our case).

It is clear that
N∑
i=1

TX,i = T .

In the particular case of N = 2, meaning that there are only two states for the economy,

we can get simplified expressions for the parameters. In particular we will have that TX,1 +

TX,2 = T , therefore TX,2 = T − TX,1. Then we get that the conditional distribution of

logS(T ) under the mentioned risk neutral measure Q is a bivariate normal distribution

N(µG,ΣG) with:

ΣG = TX,1Σ1 + (T − TX,1)Σ2

µG = logS0 + rT − 1

2
(TX,1diag(Σ1) + (T − TX,1)diag(Σ2))

= logS0 + rT − 1

2
diag (ΣG)

(3.6)

Let us now compare expressions (2.14) and (3.6). We can see that in the switching

model given by (3.3), conditionally on TX,1, the distribution of logS(T ) is the same as in
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the constant parameters model (2.12) by taking TΣ = ΣG, or equivalently we can write Σ

as a function of TX,1 as follows:

Σ =
ΣG

T
=

1

T
[TX,1Σ1 + (T − TX,1)Σ2] = Σ(TX,1) (3.7)

Next, we will focus on writing these equations in terms of the individual volatilities and

correlations, like in expression (2.13), for the case of d = 2 assets, as it will be our main

focus in the simulations carried in Section (3.5).

Let Σ1 =

 σ21,1s ρ1sσ1,1sσ2,1s

ρ1sσ1,1sσ2,1s σ22,1s

 and Σ2 =

 σ21,2s ρ2sσ1,2sσ2,2s

ρ2sσ1,2sσ2,2s σ22,2s


This notation means that σi,js represents the volatility of asset i within state j, and ρjs

represents the correlation between the two assets within state j

According to expression (3.7) we can write

Σ =

 σ21 ρσ1σ2

ρσ1σ2 σ22

 =
1

T
[TX,1Σ1 + (T − TX,1)Σ2]

Then we can get easily get:

σ2i =
1

T

[
TX,1σ

2
i,1s + (T − TX,1)σ2i,2s

]
for i = 1, 2

and

ρ =
1

T

TX,1ρ1sσ1,1sσ2,1s + (T − TX,1)ρ2sσ1,2sσ2,2s
σ1σ2

3.2 Derivative price under switching models

Suppose that we have to price a European derivative with payoff h(S(T )) = h(S1(T )

, S2(T ), ..., Sd(T )) under the multivariate geometric Brownian motion with constant pa-
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rameters in (2.12). The derivative price Pc can be found as the discounted expected value

of the payoff at maturity time T under risk neutral measure Q:

Pc = e−r(T−t)EQh (S(T )) (3.8)

For simplicity let us consider t = 0, and assume that there exists a closed form expression

for this price. That means that we can have Pc expressed as an explicit function of the

different parameters of the model. For the purposes of this work, let us ignore some of these

parameters (like the interest rate r, the maturity time T , among other parameters) and let

us consider Pc only as a function of the covariance matrix Σ. In other words, from now

on we will consider Pc = Pc(Σ), even if the other parameters (which are constant for the

model) are also included in function Pc.

On the other hand, consider the pricing of that same European derivative, with payoff h,

but now under multivariate switching process in (3.3). Assume that the switching process X

under consideration only has two states. We know from (3.7) that there exists a connection

between the two models. Moreover, we have that

P = e−rTEQh(ST ) = e−rTEQ [EQ (h (ST ) |TX,1)]

= EQ
[
e−rTEQ (h (ST ) |TX,1)

]
= EQ [Pc(Σ(TX,1))]

(3.9)

If we define the composite function Π = Pc ◦ Σ. then we can rewrite the previous

expression as:

P = EQΠ(TX,1) (3.10)
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This is an exact expression for the derivative price under the switching model, but

evaluating it is not easy. While the function Π is known, the expected value EQΠ(TX,1)

cannot be found analytically in general. In the following section we propose a methodology

to get a closed form approximation of P .

3.3 Approximated closed form for derivative pricing

Intuitively, if X is a random variable, and functions f and g are close in some domain D

that contains “most” of the support of the random variable X, then we should expect that

Ef(X) is close to Eg(X).

Following that intuitive principle, we will approximate the price P by using a function Φ

instead of Π in expression (3.10). Then, if Φ is close to Π, we would expect that EQΦ(TX,1)

is close to P . We will use functions Φ so that EQΦ(TX,1) can be found analytically.

Our proposal below is to use Taylor approximations of the function Π in order to get

the desired approximations for P . These Taylor approximations will be centered around

T ∗ = EQ (TX,1).

Consider first
∼
Π the linear Taylor approximation of Π around T ∗.

∼
Π(TX,1) = Π(T ∗) + Π

′
(T ∗) (TX,1 − T ∗) (3.11)

After taking expected values, the first order approximated price p1 can be obtained:

p1 = EQ
∼
Π(TX,1) = Π(T ∗) (3.12)
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The second order Taylor approximation is:

−
Π(TX,1) = Π(T ∗) + Π

′
(T ∗) (TX,1 − T ∗) +

1

2
Π

′′
(T ∗) (TX,1 − T ∗)2 (3.13)

Taking expected values again we have the second order approximated price p2:

p2 =EQ
−
Π(TX,1) = Π(T ∗) +

1

2
Π

′′
(T ∗)V arQ (TX,1) (3.14)

At this moment, it is important to make some remarks:

• Similarly to the way that we defined p1 and p2, it is possible in theory to provide price

approximations pn of arbitrary order n.

• Given that the function Π is known, we can find explicit expressions for the corre-

sponding derivatives, or we can accurately estimate them using numerical methods.

Then, the approximated prices pn can be computed analytically as long as the mo-

ments of TX,1 (up to order n) are available. In the next section, we will study the

problem of finding the moments of the occupation time TX,1.

• It is known that, in general, Taylor polynomials provide a good approximation of

function only locally. In principle, this may affect the overall price approximation, in

cases for which the function Π and its approximation are not close in some region S

of the support of TX,1 in which the probability P (TX,1 ∈ S) is not small. We will

see that in many examples, the second order Taylor approximation will be accurate

enough in a very large region of the support of TX,1, so the proposed method will

work very well.
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3.4 Calculation of moments of occupation times

As mentioned in the previous section, we must find EQ (TX,1) and V arQ (TX,1) in order to

compute the proposed price approximations p1 and p2.

We have the set {e1, e2} representing the two states of the Markov process X. Assume

that this Markov Process has transition rate matrix:

Q =

 −λ1 λ1

λ2 −λ2


We will also assume that the initial state of the Markov Chain X0 is known. Define

Y (t) =

∫ t

0
< Xs, e1 > ds

mi(t) = EQ (Y (t)|X0 = ei)

(3.15)

Then, the conditional expectation of random variable TX,1 satisfies:

EQ (TX,1|X0 = ei) = mi(T ) for i = 1, 2 (3.16)

We have that:

mi(t) = E (Y (h) + (Y (t)− Y (h)) |X0 = ei)

= EQ (Y (h)|X0 = ei) + EQ (Y (t)− Y (h)|X0 = ei)

(3.17)
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Then, using the law of total probability and expression (2.4) we get:

mi(t) =



(1− λ1h)h+ λ1h · h

+m2(t− h) (λ1h) +m1(t− h) (1− λ1h) + o(h)

i = 1

(1− λ2h)0 + λ2h · h

+m1(t− h) (λ2h) +m2(t− h) (1− λ2h) + o(h)

i = 2

(3.18)

After subtracting mi(t − h) from both sides, dividing by h and taking the limit as h ap-

proaches 0, we get:

m
′
i =


1 +m2(t)λ1 −m1(t)λ1 for i = 1

0 +m1(t)λ2 −m2(t)λ2 for i = 2

(3.19)

The solution to this system of first order linear differential equation with constant coeffi-

cients and initial conditions m1(0) = m2(0) = 0 is given by:

m1(t) =
1

c2
(
λ1(1− e−tc) + tcλ2

)
m2(t) =

λ2
c2
(
tc− 1 + e−tc

) (3.20)

where c = (λ2 + λ1).

Analogously, we can also find the variance of the random variable TX,1 as follows:

V ar (TX,1|X0 = ei) =
(
Mi(T )−m2

i (T )
)

for i = 1, 2 (3.21)

where Mi(t) = EQ
(
Y 2(t)|X0 = ei

)
.
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We have that

Mi(t) = EQ
(
Y 2(t)|X0 = ei

)
= EQ

(
(Y (h) + Y (t)− Y (h))2 |X0 = ei

)
= EQ

(
Y 2(h) + (Y (t)− Y (h))2 + 2Y (h)(Y (t)− Y (h))|X0 = ei

)
= EQ

(
Y (h)2|X0 = ei

)
+ EQ

(
(Y (t)− Y (h))2 |X0 = ei

)
+ EQ (2Y (h)(Y (t)− Y (h))|X0 = ei)

(3.22)

Therefore, using (2.4) we get:

Mi(t) =



(h)2 +M2(t− h)λ1h+M1(t− h)(1− λ1h)

+2h (m2(t− h)(λ1h) +m1(t− h)(1− λ1h)) + o(h) i = 1

(h)2 +M1(t− h)λ2h+M2(t− h)(1− λ2h)

+0 (m1(t− h)(λ2h) +m2(t− h)(1− λ2h)) + o(h) i = 2

(3.23)

After subtracting Mi(t− h), dividing by h and taking limits as h approaches 0, we have:

M
′
i =


M2(t)λ1 −M1(t)λ1 + 2m1(t) i = 1

M1(t)λ2 −M2(t)λ2 i = 2

(3.24)

The solution to this system of linear ordinary differential equations is given by:

M1(t) =
1

c4
(
t2λ22c

2 + t(4λ1λ2c− (λ2 − λ1)2e−tcλ21) + 2λ1(2λ2 − λ1)(e−tc − 1)
)

M2(t) =
λ2
c4
(
t2c2λ2 + 2t(cλ1λ2 − λ22 + λ21) + (2λ1 − λ2)(e−tc − 1)

) (3.25)

Where c = (λ2 + λ1)

In principle, this same technique can be used to find higher order moments of the

occupation time TX,1.
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3.5 Numerical case study

In this section we will implement the pricing methodology introduced in Section 3.3 for

some parameter sets in the case of a switching regime model with two states. In order to

asses the accuracy of these approximated prices p1 and p2 we will compare the results with

those obtained using Monte Carlo methods.

We consider a spread option as defined in (2.25). The price Pc = Pc(Σ) of the spread

option, under the multivariate model with constant covariance matrix Σ in (2.12) can be

found using the closed-form expression in [3]. This closed form expression is not exact,

but it provides a very accurate approximation for spread option prices, so it serves for the

purposes of this work.

Consider the function Π as in expression (3.10). Figure 3.1 shows Π and its linear and

quadratic approximations.

Figure 3.1: Π and its linear and quadratic approximation (λ = 5)

The parameters used to generate this figure are as follows:
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-The switching process is initialized in the first state e1 and λ = λ1 = λ2 = 5. With

these parameters we get T ∗ = E(TX,1) = 0.0.5501. The Taylor polynomials are considered

around this point.

-Maturity time is T = 1, and the interest rate is r = 0.03.

-The volatilities and correlations under each regime are given by:

Regime 1: σ1,1s = 0.2, σ2,1s = 0.3, ρ1s = 0.4

Regime 2: σ1,2s = 0.4, σ2,2s = 0.6, ρ2s = 0.5

-The initial asset prices are S1(0) = 100, S2(0) = 110 and the strike price is K = 10.

We can see that both the linear and the quadratic approximations are very close to Π for

values of TX,1 close to T ∗. On the other hand, for values of TX,1 near 0 or 1, the linear ap-

proximation is not very accurate. For this set of parameters, the quadratic approximations

is very accurate even close to the interval endpoints.

As explained at the beginning of Section 3.3, we would expect that if TX,1 takes these

extreme values (close to 0 or 1) with small probability, the approximated prices p1 and

p2 (especially p2) will be close to the actual price. Then let us take a closer look to the

probability distribution of TX,1.
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Figure 3.2: Histogram of TX,1 for λ = 5 and 105 Monte-Carlo realizations

The histogram in Figure 3.2 shows the empirical distribution of TX,1 generated using

105 simulated trajectories of the switching process X, with the same parameters mentioned

above. We can see that the values of TX,1 that are far away from T ∗ = E(TX,1) = 0.5482

are a lot less likely than values close to T ∗. Under these circumstances we would expect

that the proposed price approximations p1 and p2 work well. In Table 3.1 we compare the

approximated closed-form prices p1 and p2 to prices obtained using Monte Carlo with 105

simulated trajectories. As expected, we can see that for the case of the parameters above

(λ = 5) both p1 and p2 fall within the confidence interval given by Monte Carlo. On the

other hand, we see that p1 and p2 are very close to each other. This is because the extra

term used to compute p2 is very small. This extra term is given by
1

2
Π

′′
(T ∗)V arQ (TX,1)

suggesting that if the variance V arQ (TX,1) is large, the difference between p1 and p2 would

be more visible.
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Price Running Time

λ Monte-

Carlo

p1 p2 Monte-

Carlo

Appr.

closed-

form

5 17.9±0.21 17.93 17.80 32.34 0.07

1 15.54± 0.18 16.14 15.73 12.6 0.025

Table 3.1: Linear and quadratic prices p1 and p2 vs Monte Carlo for different values of λ

Figure 3.3 shows the theoretical value of the variance of TX,1 as a function of the intensity

λ for maturity T = 1. We can see that there are values of λ for which the variance of TX,1

is larger than for λ = 5. Next we will choose λ = 1 to check the accuracy of p1 and p2 in

the case of larger variance of TX,1.

Figure 3.3: Variance of TX,1 as a function of λ

Figure 3.4 shows Π and its linear and quadratic approximation for λ = 1. All the other
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parameters remain identical to the previous example. In this case, the expansion occurs

around T ∗ = 0.7159. We can see that for values of TX,1 close to 0, the linear approximation

performs poorly with respect to the second order approximation. If the values of TX,1 close

to 0 are not very unlikely, this could imply that p1 and p2 may not be very close.

Figure 3.4: Π and its linear and quadratic approximation (λ = 1)

Let us take a closer look to the probability distribution of TX,1 when λ = 1.
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Figure 3.5: Histogram of TX,1 for λ = 1 and 105 Monte-Carlo realizations

The histogram in Figure 3.5 shows the empirical distribution of TX,1 generated using

105 simulated trajectories of the switching process X, for λ = 1. While the most frequent

values of TX,1 are close to 1, values close to 0 are not very unlikely.

In Table 3.1 we can see the expected effect: for λ = 1 the difference between p1 and p2

is noticeable. Moreover, we can see that p2 gives a much better approximation for the price

of the spread option than p1.

Table 3.2 compares the approximated prices p1 and p2 with Monte-Carlo prices for dif-

ferent values of the volatility regarding to asset two for λ = 5. All other parameters are

the same as in the previous example. Table 3.3 does the same but for α = 1. We can see

in both Tables 3.2 and 3.3 that the second order approximation price p2 provides accurate

pricing values for the spread option.
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Price Simulation Time

Volatility

of second

derivative

Monte-

Carlo

Linear

Appr.

Quadratic

appr.

Monte-

Carlo

Appr.

model

σ2,1s = 0.3,

σ2,2s = 0.6

17.9±0.21 17.93 17.80 32.34 0.07

σ2,1s = 0.1,

σ2,2s = 0.6

16.03±0.18 16.39 16.11 33.60 0.03

σ2,1s = 0.1,

σ2,2s = 0.8

20.34±0.27 21.07 20.62 34.10 0.025

Table 3.2: Linear and quadratic approximated prices for λ = 5 and different parameters for

the volatility of the second asset
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Price Simulation Time

Volatility

of second

derivative

Monte-

Carlo

Linear

Appr.

Quadratic

appr.

Monte-

Carlo

Appr.

model

σ2,1s = 0.3,

σ2,2s = 0.6

15.54± 0.18 16.14 15.73 12.6 0.025

σ2,1s = 0.1,

σ2,2s = 0.6

12.68±0.15 13.82 12.77 13.26 0.026

σ2,1s = 0.1,

σ2,2s = 0.8

15.42±0.23 17.40 15.60 12.86 0.025

Table 3.3: Linear and quadratic approximated prices for λ = 1 and different parameters for

the volatility of the second asset
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In particular, in Table 3.3 for the case where λ = 1 we can see that there could exist a

large different between p1 and p2 for some sets of parameters. The improvement of p2 over

p1 is substantial in many of these cases.

Table 3.4 shows the results of pricing for different maturity times, all other parameters

remaining identical as in the previous example. It is interesting to notice that the running

time for the Monte Carlo method (with 105 simulated trajectories) increases as the maturity

time increases, while the running time for the proposed approximated methods remains

essentially constant.

Maturity time T
Price Running Time

Monte-

Carlo

Linear

appr.

Quadratic

appr.

Monte-

Carlo

Appr.

model

0.25 6.85±0.07 6.97 6.72 8.45 0.023

0.5 10.38±0.11 10.57 10.24 9.7 0.025

1 15.84±0.18 16.14 15.73 33.2 0.023

Table 3.4: Linear and quadratic approximated prices for λ = 1 and different maturity times

Table 3.5 shows the spread option prices and running time for different strike prices.

Monte Carlo prices were obtained using 10ˆ5 realizations. The results show that the spread

options price decrease with increasing strike prices as expected. It also shows that the

second order approximated prices are very accurate compared to the Monte Carlo prices.

Finally, Table 3.6 shows the price results using different number of Monte Carlo samples.
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Strike price
Price Running Time

Monte-

Carlo

Linear

appr.

Quadratic

appr.

Monte-

Carlo

Appr.

model

5 17.98±0.19 18.43 18.04 12.47 0.022

10 15.76±0.19 16.14 15.73 12.59 0.024

20 12.02±0.17 12.35 11.89 12.35 0.025

Table 3.5: Linear and quadratic approximated prices for λ = 1 and different parameters for

strike price

The results show dramatic increase in simulation time when the number of the samples in

Monte-Carlo simulation increases. It also shows that even 106 realizations we get similar

accuracy as using the quadratic approximation p2. For these parameters, using 103 or 104

samples to get the Monte Carlo prices still leaves the price in a rather large confidence

interval. Overall, we have established in this section that the proposed closed-form price

approximations provide a very efficient way to compute spread option prices in a switching

regime model with two states. For the chosen parameters, the accuracy of the methodology

is comparable to that of Monte-Carlo methods, but a lot more efficient from a computational

point of view.
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Numbers of samples

in Monte-Carlo

Price Running Time

Monte-

Carlo

Linear

appr.

Quadratic

appr.

Monte-

Carlo

Appr.

model

103 16.96±1.88 16.14 15.73 0.36 0.025

104 15.72±0.58 16.14 15.73 1.45 0.022

105 15.77±0.18 16.14 15.73 12.55 0.023

106 15.77±0.059 16.14 15.73 121.63 0.028

Table 3.6: Linear and quadratic approximated prices for λ = 1 and different Number of

simulation in Monte Carlo
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Chapter 4

PRICING APPROXIMATION UNDER A SWITCHING REGIME WITH

THREE STATES

In this chapter we solve the same problem as in Chapter 3 but now in the case of a Markov

switching process with three states. While some of the steps are analogous to the two-states

case, having three states instead of two is an interesting step forward in several aspects. On

one hand, from the modelling point of view it shows the flexibility of the model. On the

other hand, from a purely mathematical point of view, the complexity of the problem also

increases in two meaningful ways:

1-In order to find the moments of the occupation we will have to solve linear systems of

ordinary differential equations with constant coefficients. These systems will have three

equations, which adds considerable difficulty to the problem, compared to the systems of

(two) differential equations that we solved in Section 3.4.

2-We will have to rely on multivariate Taylor expansion instead of the univariate Taylor

expansions that we used in Chapter 3.

In Section 4.1 we go over the bivariate model with two switching regimes. In Section

4.2 we discuss the pricing problem under this model and we formulate the closed form

approximation for the derivatives prices using Taylor expansions. In section 4.4 we shows

simulated results that prove the accuracy of the proposed methodology.
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4.1 Regime switching model with three states

Consider the asset price model in expression (3.3). We will assume that d = 2, and X is a

Markov process with state space (e1, e2, e3). If TX,i is defined as in (3.5) we have that:

T = TX,1 + TX,2 + TX,3 (4.1)

Under the risk neural measure Q, The distribution of logS(T ) is given by expression (3.4)

for N = 3. Using (4.1) in this case we get the following expression expression for ΣG:

ΣG = TX,1Σ1 + TX,2Σ2 + (T − TX,1 − TX,2)Σ3 (4.2)

In this case, conditionally on TX,1 and TX,2, the distribution of logS(T ) is the same as

in the constant parameters model (2.12) by taking TΣ = ΣG, or equivalently we can write

Σ as a function of TX,1 and TX,2:

Σ =
1

T
[TX,1Σ1 + TX,2Σ2 + (T − TX,1 − TX,2)Σ3] = Σ (TX,1, TX,1) (4.3)

These equations can be written in terms of the individual volatilities and correlations.

Consider

Σ1 =

 σ21,1s ρ1sσ1,1sσ2,1s

ρ1sσ1,1sσ2,1s σ22,1s

 ,Σ2 =

 σ21,2s ρ2sσ1,2sσ2,2s

ρ2sσ1,2sσ2,2s σ22,2s



and Σ3 =

 σ21,3s ρ3sσ1,3sσ2,3s

ρ3sσ1,3sσ2,3s σ22,3s
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According to expression (4.3) we can write:

Σ =

 σ21 ρσ1σ2

ρσ1σ2 σ22

 =
1

T
[TX,1Σ1 + TX,2Σ2 + (T − TX,1 − TX,2)Σ3] (4.4)

Then we can easily get:

σ2i =
1

T

[
TX,1σ

2
i,1s + TX,2σ

2
i,2s + (T − TX,1 − TX,2)σ2i,3s

]
for i = 1, 2 (4.5)

and

ρ =
(TX,1ρ1σ1,isσ1,js + TX,2ρ2σ2,isσ2,js + (T − TX,1 − TX,2) ρ3σ3,isσ3,js)

Tσjsσis
(4.6)

4.2 Approximated closed form under a switching regime model with three

states

Again we assume a European derivative with payoff h and interest rate r. Analogous to

what we did in Section 3.2 we have that the price of such derivative is given by:

P = e−rTEQh(ST ) = e−rTEQ [EQ (h (ST ) |(TX,1, TX,2))]

= EQ
[
e−rTEQ (h (ST ) |(TX,1, TX,2))

]
= EQ [Pc (Σ(TX,1, TX,2)]

(4.7)

As before, we got P = EQΠ (TX,1, TX,2) where Π = Pc ◦ Σ. This expected value is

difficult to find in general, so we will approximate Π by other functions close to it, such

that the expected value can be found explicitly.

Let T ∗ = (T ∗1 , T
∗
2 ) where T ∗i = EQ (TX,i) for i = 1, 2 and consider the Taylor linear

approximation of Π around T ∗ ∈ R2.

−
Π(TX,1, TX,2) = Π(T ∗) +

∂Π

∂TX,1
(T ∗) (TX,1 − T ∗1 ) +

∂Π

∂TX,2
(T ∗) (TX,2 − T ∗2 ) (4.8)
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Then, the first order price can be obtained:

p1 = EQ
−
Π(TX,1, TX,2) = Π(T ∗) (4.9)

The second Taylor approximation is:

∼
Π(TX,1, TX,2) = Π(T ∗) +

∂Π

∂TX,1
(T ∗) (TX,1 − T ∗1 ) +

∂Π

∂TX,2
(T ∗) (TX,2 − T ∗2 )

+
1

2

∂2Π

∂T 2
X,1

(T ∗) (TX,1 − T ∗1 )2 +
1

2

∂2Π

∂T 2
X,2

(T ∗) (TX,2 − T ∗2 )2

+
∂2Π

∂TX,1∂TX,2
(T ∗) (TX,1 − T ∗1 ) (TX,2 − T ∗2 )

(4.10)

Taking expected values we have:

p2 =EQ
∼
Π(TX,1, TX,2) = Π(T ∗1 , T

∗
2 )+

1

2

∂2Π

∂T 2
X,1

(T ∗)V ar (TX,1) +
1

2

∂2Π

∂T 2
X,2

(T ∗)V ar (TX,2)

+
1

2

∂2Π

∂TX,1∂TX,2
(T ∗)Cov (TX,1, TX,2)

(4.11)

As Π is known, then we can evaluate (4.9) (4.11) as long as the involved moments of

TX,i can be computed. In Section 4.3 we will compute these moments for the case of a three

states switching process X. Regarding the mixed second order moment Cov(TX,1, TX,2) it

is worth noticing that it can be written in terms of the variances of TX,i (i = 1, 2, 3) as

follows:

V ar(TX,1 + TX,2) = V ar(T − TX,3) = V ar(TX,3)

= V ar(TX,1) + V ar(TX,2) + 2Cov(TX,1, TX,2) =⇒

Cov(TX,1, TX,2) =
1

2
(V ar(TX,3)− V ar(TX,1)− V ar(TX,2))

(4.12)
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4.3 Calculation of moments of occupation times

Assume that the Markov Process X has space state (e1, e2, e3) and its transition rate matrix

is give by:

Q =


q1,1 q1,2 q1,3

q2,1 q2,2 q2,3

q3,1 q3,2 q3,3

 (4.13)

We know from Section 2.1.2 that after reaching state ei, the Markov process X will

remain there for a random length of time that is exponentially distributed with parameter

λi = −qi,i. Also, after this length of time is passed, the Markov process will move from

state ei to state ej with probability pi,j as in expression (2.5)

Define Y (t) =

∫ t

0
< Xs, e1 > ds and consider mi(t) = EQ (Y (t)|X0 = ei). Then we have

mi(t) = EQ (Y (t)|X0 = ei) = EQ (Y (h) + (Y (t)− Y (h)) |X0 = ei)

= EQ (Y (h)|X0 = ei) + EQ (Y (t)− Y (h)|X0 = ei) =

EQ (Y (h)|X0 = ei) +
3∑
j=1

EQ (Y (t)− Y (h)|Xh = ej)Q (Xh = ej |X0 = i)
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Then we get

mi(t) =



h[(1− λ1h) + hp12λ1 + hp13λ1]+

(1− λ1h)m1(t− h) + λ1hp12m2(t− h) + λ1hp13m3(t− h) + o(h)

i = 1

0(1− λ2h) + h2p21λ2 + 0hp23λ2+

(1− λ2h)m2(t− h) + hλ2p21m1(t− h) + hλ2p23m3(t− h) + o(h)

i = 2

0(1− λ3h) + h2p31λ3 + 0hp32λ3+

(1− λ3h)m3(t− h) + hλ3p32m2(t− h) + hλ3p31m1(t− h) + o(h)

i = 3

Subtracting mi(t− h) from both sides, dividing by h and taking limits as h approaches 0,

we get the following system of linear ordinary differential equations:

m
′
i(t) =



λ1 (−m1(t) + p12m2(t) + p13m3(t)) + 1 i = 1

λ2 (−m2(t) + p21m1(t) + p23m3(t)) i = 2

λ3 (−m3(t) + p32m2(t) + p31m1(t)) i = 3

(4.14)

We can proceed in a similar way to find EQ(TX,2). Defining:

ni(t) = EQ

(∫ t

0
< Xs, e2 > ds|X0 = ei

)
i = 1, 2, 3 (4.15)
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we can derive the system of equations:

n
′
i(t) =



λ1 (−n1(t) + p12n2(t) + p13n3(t)) i = 1

λ2 (−n2(t) + p21n1(t) + p23n3(t)) + 1 i = 2

λ3 (−n3(t) + p32n2(t) + p31n1(t)) i = 3

(4.16)

We solved the systems (4.14) and (4.16), using the symbolic toolbox in MATLAB. We

are not writing the full solutions here as they are very long. On the other hand it is clear

that :

ki(t) = EQ

(∫ t

0
< Xs, e3 > ds|(X0 = ei)

)
= T − ni(t)−mi(t) i = 1, 2, 3 (4.17)

We can find the variance of random variable TX,1 as follows:

V arQ (TX,1|X0 = e1) =
(
M1(T )−m2

1(T )
)

(4.18)

Where Mi(t) = EQ
(
Y 2(t)|X0 = ei

)
for i = 1, 2, 3.

Then we have:

Mi(t) = EQ
(
Y 2(t)|X0 = ei

)
= EQ

(
(Y (h) + Y (t)− Y (h))2 |X0 = ei

)
= EQ

(
Y (h)2 + (Y (t)− Y (h))2 + 2Y (h)(Y (t)− Y (h))|X0 = ei

)
= EQ

(
Y 2(h)|X0 = ei

)
+ EQ

(
(Y (t)− Y (h))2 |X0 = ei

)
+ EQ (2Y (h)(Y (t)− Y (h))|X0 = ei)

(4.19)
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Using again the infinitesimal properties of the Markov process X we get

Mi(t) =



h2 + o(h) + (1− λ1h)M1(t− h) + hλ1p12M2(t− h)

+ hλ1p13M3(t− h) + 2h(1− λ1h)m1(t− h)

+ 2λ1p12hm2(t− h)× 0 + 2λ1p13hm3(t− h)× 0

i = 1

o(h) + (1− λ2h)M2(t− h) + hλ2p21M1(t− h)

+ hλ2p23M3(t− h) + 2(1− λ2h)m2(t− h)× 0

+ 2hλ2p21hm1(t− h) + 2λ2p23hm2(t− h)× 0

i = 2

o(h) + (1− λ3h)M3(t− h) + hλ3p32M2(t− h)

+ hλ3p31M1(t− h) + 2(1− λ3h)m3(t− h)× 0

+ 2hλ3p31hm1(t− h) + 2λ3p32hm2(t− h)× 0

i = 3

(4.20)

Subtracting Mi(t− h) from both sides, dividing by h and taking limits as h approaches 0,

we get:

M
′
i (t) =



λ1 (−M1(t) + p12M2(t) + p13M3(t)) + 2m1(t) i = 1

λ2 (−M2(t) + p21M1(t) + p23M3(t)) i = 2

λ3 (−M3(t) + p32M2(t) + p31M1(t)) i = 3

(4.21)
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This system of differential equations can also be solved using the MATLAB symbolic tool-

box.

In order to find the variances of TX,2 and TX,3 we can derive similar systems of differential

equations for Ni(t) and Ki(t) where

Ni(t) = EQ

((∫ t

0
〈Xs, e2〉ds

)2

|(X0 = ei

)

Ki(t) = EQ

((∫ t

0
〈Xs, e3〉ds

)2

|(X0 = ei

) (4.22)

Then we have:

V arQ (TX,2|X0 = e1) =
(
K1(T )− k21(T )

)
, V arQ (TX,3|X0 = e1) =

(
K1(T )− k21(T )

)

4.4 Numerical case study

In this Section we will implement the linear and quadratic approximated prices under the

three states switching regime model in Section 4.2. We will compare these results with

Monte Carlo prices.

As in the previous sections, we will consider a spread option. For the case of three

states, the function Π has two arguments: TX1 and TX2 , and we need to consider the

domain TX,1 + TX,2 ≤ T , with TX,1, TX,2 ≥ 0. We will approximate Π with its linear and

quadratic Taylor approximations:
−
Π and

∼
Π respectively.

Figures 4.1 and 4.2 show the error of the linear and quadratic approximation of Π:

R1 = Π−
−
Π and R2 = Π−

∼
Π
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Figure 4.1: Error of linear approximated price R1

Figure 4.2: Error of quadratic approximated price R2
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Figure 4.3: Scatter plot of generated values of pairs (TX,1, TX,2), case λ = 5

As expected, we can see that the error R2 is considerably smaller (in absolute terms)

than the error R1. The second order approximation
∼
Π is very close to Π in a large region

of the domain.

On the other hand, Figure 4.3 shows a scatter-plot of pairs (TX,1, TX,2). In these figure

we can see that the random pairs (TX,1, TX,2) fall in a region of the plane for which the

errors discussed above, particularly R2, are very small. This intuitive argument justifies the

utilization of the proposed approximated pricing method.

The parameters used to generate these three figures are as follows.

The switching process is initialized in the first state e1 and its transition rate matrix is:

Q =


−5 3.5 1.5

3.5 −5 1.5

3.5 1.5 −5


-Maturity time is T = 1, r = 0.03,S1 = 100, S2 = 110 and the strike price is K = 5.
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- The volatilities and correlations under each regime are given by:

Regime 1: σ1,1s = 0.2, σ2,1s = 0.3, ρ1s = 0.4

Regime 2: σ1,2s = 0.4, σ2,2s = 0.6, ρ2s = 0.5

Regime 3: σ1,2s = 0.6, σ2,2s = 0.9, ρ2s = 0.6

In this example the intensities satisfy λ1 = λ2 = λ3 = λ = 5.

Table 4.1 below compares the approximated prices using the linear and quadratic Taylor

approximations with Monte-Carlo prices. The first line corresponds to the parameters and

figures previously discussed. We can see that for this case (λ = 5) both the linear and

quadratic approximation give very good results compared to Monte Carlo.

Price Simulation Time

λ Monte-

Carlo

Linear

Appr.

Quadratic

appr.

Monte-

Carlo

Appr.

model

5 22.89±0.28 23.01 22.71 37.07 0.03

1 19.34± 0.23 19.98 19.16 13.77 0.025

Table 4.1: Linear and quadratic approximated prices for two different λ = 5 and λ = 1

As in the case of two states, we perform similar computations corresponding to the case

λ = 1. All other parameters remain the same as discussed before.

Here the switching process is initialized in the first state e1 with transition matrix:
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Q =


−1.0000 0.7000 0.3000

0.7000 −1.0000 0.3000

0.7000 0.3000 −1.0000


Figures 4.4 and 4.5 show the error of the linear and quadratic approximations, and Figure

4.6 shows a scatter-plot of pairs (TX,1, TX,2), when λ = 1. Compared to figure 4.3( which

corresponds to λ = 5), the points in the scatter-plot for λ = 1 have more dispersion. In this

setting, it is expected that the difference between the linear and quadratic approximated

prices (in absolute value) increases with the dispersion in the scatter-plot. We can see in

Table 4.1 that this is exactly what happens. For the case λ = 1 the linear and quadratic

prices are more different, and as expected, the quadratic approximation is considerably

more accurate when compared to the Monte Carlo price.

Figure 4.4: Error of linear approximated price R1 for λ = 1
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Figure 4.5: Error of linear approximated price R1 for λ = 1

Figure 4.6: Scatter plot of generated values of pairs (TX,1, TX,2), case λ = 1

In Table 4.2 we can see that the proposed approximated prices perform very well com-

pared to Monte Carlo for different choices of the volatility parameters. For the simulations

reflected in this table, all the other parameters remain the same as mentioned before, and
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λ = 1. On the other hand, Table 4.3 includes MonteCarlo prices with different number of

realizations. We can see that in order to get a small confidence interval (plus minus 7 cents)

using Monte Carlo, it is necessary to generate 106 scenarios, with a high computational

cost. Similar results can be obtained at a tiny fraction of the cost using the quadratic

approximated price.

Price Simulation Time

Volatility

of second

derivative

Monte-

Carlo

Linear

Appr.

Quadratic

appr.

Monte-

Carlo

Appr.

model

σ2,1s = 0.3,

σ2,2s = 0.6 ,

σ2,3s = 0.9

19.36±0.23 19.98 19.16 12.64 0.02

σ2,1s = 0.5,

σ2,2s = 0.8,

σ2,3s = 0.3

24.40±0.30 24.49 24.25 13.03 0.02

σ2,1s = 0.6,

σ2,2s = 0.9,

σ2,3s = 0.1

28.18±0.30 28.11 27.89 12.86 0.02

Table 4.2: Monte-Carlo simulation v.s. Approximated for different volatility of second

derivative for λ = 1
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Numbers of samples

in Monte-Carlo

Price Simulation Time

Monte-Carlo Linear

appr.

Quadratic

appr.

Monte-

Carlo

Appr.

103 17.88±1.95 19.98 19.16 0.43 0.02

104 19.08 ±0.71 19.98 19.16 1.57 0.02

105 19.17±0.23 19.98 19.16 12.73 0.02

106 19.26±0.07 19.98 19.16 123.95 0.02

Table 4.3: Monte Carlo simulation, first and second order approximation for λ = 1 for

different number of Monte Carlo simulation
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Chapter 5

COMPUTATION OF VALUE AT RISK UNDER SWITCHING REGIME

MODELS

Value at Risk (VaR) is a widely used measure of financial risk. For a given portfolio or

asset whose value over time is described by St, for given values of 0 < α < 1 and time

horizon T , the VaR ( or α-VaR) is defined as a threshold value such that the probability of

ST going below that threshold is α. This means that the VaR is the quantile at level α of

the probability distribution of ST . Typically, the considered values of α are 0.1, 0.05 and

0.01, but in some applications even smaller values of α are considered.

If ST is a continuous random variable and the cumulative probability distribution F of

ST is known, then the α-VaR can be found as F−1(α). The main difficulty is that finding

F−1(α) analytically is only possible in a handful of cases. For many interesting models for

ST , the probability distribution of ST is not known, and it becomes impossible to find the

VaR analytically.

The most used method to find VaR, even for moderately complicated models is Monte-

Carlo simulations: after simulating a sample of N independent copies S
(1)
T , S

(2)
T , ...S

(N)
T of

the random variable ST , it is possible to find the sample quantile at level α. As usual with

Monte Carlo methods, there are advantages and drawbacks about using this methodology.

An obvious advantage is that this kind of approach can be used as long as there is a reliable
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simulation method for the random variable ST , so it can be applied in most situations. On

the other hand, in order to get accurate results we need to simulate a large number N of

realizations of ST , which may result in a substantial computational burden. This problem

becomes more obvious for very small values of α.

In this Chapter we deal with the problem of VaR estimation under switching regime

models. We will use an approximation technique based on Taylor polynomials to provide a

closed-form approximation of the VaR under these switching regime models. This approach

will allow us to estimate VaR with minimal computational cost. We will prove that using the

proposed methodology, we can get results that are comparable in accuracy to Monte-Carlo

Methods, but at a fraction of its computational cost.

In Section 5.1 we cover the VaR computation in the case of a single asset, while in

Section 5.3. we study the problem of VaR estimation for a portfolio of two assets.

5.1 Closed-form VaR approximation for an asset under switching regime mod-

els

In this section we will provide a closed-form approximation for the VaR under switching

regime. Assume that the state of the economy is described by a continuous time Markov

chain X = {X(t); t ∈ T} with two states (e1, e2) as in Chapter 3. The respective volatilities

under each state of the economy are σ1 and σ2. So we have that the instantaneous volatility

is given by:

σX,t =
2∑
j=1

σj 〈Xt, ej〉 (5.1)
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Then, assume that the asset under consideration is described by:

d (logS(t)) = µdt+ σX,tdWt (5.2)

This may be considered as a particular version of the multivariate model in (3.3) for the

one dimensional case, and with drift parameter µ identical in all states.

Like in expression in (3.5) consider that TX,1 is defined as the occupation time of the

Markov process X on state e1. Then, we can easily check that conditionally on TX,1, the

distribution of logS(T ) is normal with mean µT and variance

Tσ2T = σ21TX,1 + σ22 (T − TX,1) (5.3)

This means that, while we do not have the unconditional distribution of ST , we do know

its probability distribution, conditionally on TX,1.

The VaR in this case is defined as the number v such that

g(v) = P (ST < v) = α (5.4)

Another equivalent way of defining the VaR, given that g is an increasing function (therefore

one-to-one) is :

v = g−1(α) = V aR(α) (5.5)

We have:

g(v) = P (ST < v) = E
(
1(−∞,v)(ST )

)
= E

(
E(1(−∞,v)(ST )|TX,1)

)
= E (P(ST < v|TX,1)) = E(f(TX,1, v))

(5.6)
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where f is defined as

f(y, v) ≡ P (ST < v|TX,1 = y)

For a model like (5.2) the function f is known, but not the expected value g(v) =

E(f(TX,1, v)). Then, as in previous chapters we will approximate f using Taylor polynomi-

als, so that we can get a closed-form expression for approximations of g.

Consider Taylor polynomials around (T ∗, v∗) where T ∗ = E (TX,1) and v∗ is defined as

the value such that f(T ∗, v∗) = α. The first and second order Taylor polynomials of f

around (T ∗, v∗) are:

f1(TX,1, v) = f(T ∗, v∗) +
∂f

∂v
(T ∗, v∗)(v − v∗) +

∂f

∂TX,1
(T ∗, v∗)(TX,1 − T ∗)

f2(TX,1, v) = f(T ∗, v∗) +
∂f

∂v
(T ∗, v∗)(v − v∗) +

∂f

∂TX,1
(T ∗, v∗)(TX,1 − T ∗)

+
1

2

∂2f

∂v2
(T ∗, v∗)(v − v∗)2 +

1

2

∂2f

∂T 2
X,1

(T ∗, v∗)(TX,1 − T ∗)2

+
∂2f

∂TX,1dv
(T ∗, v∗)(TX,1 − T ∗)(v − v∗)

(5.7)

Taking expected values on both sides of the equations in 5.7 , and using that f(T ∗, v∗) =

α we have the following approximations for g(v):

g1(v) =α+
∂f

∂v
(T ∗, v∗)(v − v∗)

g2(v) =α+
∂f

∂v
(T ∗, v∗)(v − v∗) +

1

2

∂2f

∂v2
(T ∗, v∗)(v − v∗)2

+
1

2

d2f

dT 2
X,1

(T ∗, v∗)var(TX,1)

(5.8)
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It is important to notice that, when taking expected values in (5.7), the only random

quantity is TX,1. Now, to approximate the α-VaR, we can solve for v in equations g1(v) = α

and g2(v) = α.

The function g1 is a linear function of v. Moreover, it is increasing as the partial

derivative
∂f

∂v
is clearly positive. Then, the equation g1(v) = α has a single solution:

v = v∗.

For the second order approximation g2, things are slightly more complicated. The

function g2 is a quadratic function of v, so the equation g2(v) = α, which can be reduced to

∂f2
∂v

(T ∗, v∗)(v − v∗) +
1

2

∂2f2
∂v2

(T ∗, v∗)(v − v∗)2 +
1

2

∂2f2
∂T 2

X,1

(T ∗, v∗)var(TX,1) = 0 (5.9)

may have two real solutions, one solution or no real solutions at all. In the simulated

examples from Section 5.2, we get two real solutions in all cases. It is not clear whether

other sets of parameters will result in g2(v) = α having no solutions.

Even in the case that we get two solutions for g2(v) = α, a legitimate questions is:

which of the two solutions can be accepted as the approximate VaR? While we do not have

a definite answer to that question, it is important to make some observations. Notice that

locally (around the point) (T ∗, v∗), the function f2 is increasing, therefore g2 will be locally

increasing around v∗. This means that there is an open interval containing v∗ for which g2

is increasing. There can be at most one solution of the equation g2 = α in that interval, and

that would be the solution of the quadratic equation that is closest to v∗. This is giving us

an intuitive and clear criteria to select one of the two solutions of g2(v) = 0, when it has

two solutions. We will apply this criteria in the simulations study in Section 5.2.
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One last observation is that we approximated f by its Taylor polynomials at point

(T ∗, v∗). That does not mean that the proposed approximations for g are the Taylor poly-

nomials corresponding to function g at v∗. For instance

g2(v
∗) = α+

1

2

d2f

dT 2
X,1

(T ∗, v∗)var(TX,1) 6= α = g1(v
∗)

5.2 Numerical case study

In this Section we will compare the proposed methodology to compute VaR, with the results

obtained using Monte Carlo simulations.

Figure 5.1 shows a histogram of 105 Monte Carlo realizations of the switching regime

model ST and the graphical interpretation of the VaR.

Figure 5.1: Histogram of ST and corresponding α-VaR

The parameters used in this example are µ = 0.03, σ1 = 0.3, σ2 = 0.5, λ = λ1 = λ2 = 10,

α = 0.1, T = 0.5 and S0 = 100.

For this set of parameters we have T ∗ = 0.2746 and v∗ = 67.6695

Figures 5.2 and 5.3 show the errors corresponding to the linear and quadratic Taylor
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polynomials around the point (T ∗, v∗), respectively: f1(tX,1, v) and f2(tX,1, v). We can see

that the second order approximation f2(tX,1, v) is very close to f in the considered region.

Figure 5.2: Error of linear approximation f1(TX,1, v)− f(TX,1, v)

Figure 5.3: Error of quadratic approximation f2(TX,1, v)− f(TX,1, v)
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Figure 5.4: g(v), g1(v), g2(v)

α Monte-Carlo v∗
Closed form(second order)

v1 v2

0.1 67.7366 67.6695 29.0929 67.6477

0.05 60.9166 61.0396 35.6483 60.8848

0.01 49.6219 50.2263 36.7223 49.7456

0.001 39.4864 40.4570 34.1993 38.5055

Table 5.1: Linear and quadratic values for VaR for λ = 10 and different parameters for α

Figure 5.4 shows graphs for g(v) and its approximations g1(v) and g2(v). While g2

is a quadratic function, which is not invertible, in the interval under consideration it is

an increasing function. Moreover, we can clearly see that in this graph that the equation
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σ Monte carlo v∗
Closed form(second order)

v1 v2

0.3− 0.3 75.6873 75.6101 45.6391 75.6101

0.3− 0.4 71.7597 71.7843 37.5994 71.8134

0.3− 0.5 67.7298 67.6695 29.0929 67.6477

0.3− 0.6 63.6495 63.4469 20.1485 63.6444

0.3− 0.7 59.6439 59.2290 11.4219 59.4777

Table 5.2: Linear and quadratic values for VaR for λ = 10 and different parameters for the

volatility of the second asset

g2(v) = 0.1 has a solution in this interval, and that solution is between 65 and 70. Actually,

the first row of Table 5.1 covers that case. The quadratic equation g2(v) = 0.1 has two

solutions v1 and v2, but according to the criteria mentioned earlier in this Chapter, v2 will

be our choice for the VaR in this case, which corresponds to the geometric intuition from

Figure 5.3

Also Table 5.1 compares the VaR results for Monte-Carlo simulation and linear and

quadratic approximation analysis for different α. All other parameters remain as mentioned

at the begining of the section. We can see that the VaR obtained using the second order

approximation, given by the second root v2 of the quadratic equation g2(v) = α provides an

accurate estimation of the VaR, when compared to the results obtained using Monte Carlo.

We can also see in Table 5.2 the result of VaR estimation with these linear and quadratic
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approximations, and how they compare to the VaR obtained using Monte Carlo for different

sets of volatility parameters. We can see again that that the second order VaR estimation

given by v2 is very accurate.

5.3 Closed-form VaR approximation for a two-assets portfolio

Following notation of 3.1 we assume a general d-dimensional multivariate model for asset

prices that switches between N = 2 different Markov model regimes. Assume that we have

a portfolio formed with two assets. The portfolio value at maturity will be:

RT = wS1(T ) + (1− w)S2(T ) (5.10)

where w is a weight parameter. Similar to our development in Section 5.1, we can define

g(v) = P (RT < v) (5.11)

From this expression we get

g(v) = P (RT < v) = E
(
1(−∞,v)(RT )

)
= E

(
E(1(−∞,v)RT |S2(T ), TX,1)

)
= E (P(RT < v)|S2(T ), TX,1))

= E
(
f(v, Tx,1, S

(2)
T )
)

(5.12)

where f(t, v, s) ≡ P(RT < v|Tx,1 = t, S2(T ) = s)

This function f can be evaluated easily as

f(t, v, s) = P (S1(T ) < v1) = P (S1(T ) < v1)
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where v1 =
v − (1− w)s

w
and S1(T ) has a log-normal distribution with know parameters

(that depend on s and t).

As in the previous section, the fact that f can be evaluated easily does not imply that

its expected value g, as in expression (5.12) is easy to obtain. Even more difficult can be

finding the α-VaR: g−1(α).

In order to find α-VaR we will use the same procedure as in the previous section:

approximating f by Taylor polynomials. The point of expansion will be (T ∗, v∗, S∗2) where

T ∗ = E (TX,1), S
∗
2 = EQ (S2(T )), and v∗, is such that f(T ∗, v∗, s∗) = α.

The first order Taylor polynomial is:

f1(TX,1, v, S2(T )) = f(T ∗, v∗, S∗2) +
∂f

∂v
(T ∗, v∗, S∗2)(v − v∗)

+
∂f

∂T
(T ∗, v∗, S∗2)(TX,1 − T ∗) +

∂f

∂S2(T )
(T ∗, v∗, S∗2)(S2(T )− S∗2)

(5.13)

and the second order Taylor polynomial is:

f2(TX,1, v, S2(T )) = f(T ∗, v∗, S∗2) +
∂f

∂v
(T ∗, v∗, S∗2)(v − v∗)

+
∂f

∂T
(T ∗, v∗, S∗2)(TX,1 − T ∗) +

∂f

∂S2(T )
(T ∗, v∗, S∗2)(S2(T )− S∗2)

+
1

2

∂2f

∂v2
(T ∗, v∗, S∗2)(v − v∗)2 +

1

2

d2f

dT 2
X,1

(T ∗, v∗, S∗2)(TX,1 − T ∗)2

+
1

2

d2f

dS2
2(T )

(T ∗, v∗, S∗2)(S2(T )− S∗2)2 +
d2f

dTX,1dv
(T ∗, v∗, S∗2)(TX,1 − T ∗)(v − v∗)

+
d2f

dTX,1dS2(T )
(T ∗, v∗, S∗2)(TX,1 − T ∗)(S2(T )− S∗2)

+
d2f

dS2(T )dv
(T ∗, v∗, S∗2)(S2(T )− S∗2)(v − v∗)

(5.14)

Now taking expected values and using that f(T ∗, v∗, s∗) = α we get
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g1(v) = Ef1(TX,1, v, S2(T )) = α+
∂f

∂v
(T ∗, v∗, S∗2)(v − v∗) (5.15)

Then, the only solution to g1(v) = α is v = v∗.

On the other hand, for the second order approximation g2(v) = Ef2(TX,1, v, S2(T )) we

have that:

g2(v) =α+
∂f

∂v
(T ∗, v∗)(v − v∗) +

1

2

∂2f

∂v2
(T ∗, v∗)(v − v∗)2 +

1

2

d2f

dT 2
X,1

(T ∗, v)var(TX,1)

+
d2f

dTX,1dS
(2)
t

(T ∗, v, S
(2)∗
T )cov(TX,1, S

(2)
t ) +

1

2

d2f

dS2
2(T )

(T ∗, v∗, S∗2)var(S2(T ))

(5.16)

Although TX,1 and S2(T ) are not independent random variables, it is easy to prove that

they are uncorrelated, meaning that solving the equation g2(v) = α is equivalent to solve

the quadratic equation:

0 =
∂f

∂v
(T ∗, v∗)(v − v∗) +

1

2

∂2f

∂v2
(T ∗, v∗)(v − v∗)2 +

1

2

d2f

dT 2
X,1

(T ∗, v)var(TX,1)

+
1

2

d2f

dS2
2(T )

(T ∗, v∗, S∗2)var(S2(T ))

(5.17)

As mentioned in the previous section, we can not guarantee the unicity of the solution of

this quadratic equation. The remarks that we made there are applicable here as well
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Chapter 6

CONCLUSION

In this thesis we developed a method to approximate the price of derivatives under switching

regime. First we introduced some basic concepts of financial mathematics in Chapter 2.

These concepts include the Brownian motion and continuous time Markov chain in Section

2.1 and geometric Brownian motion in Section 2.2. These concepts are provided in a single

asset environment and a multiple asset environment. In Section 2.3 we walked through

the classification of derivatives. we explained the black-Scholes equation which provides

an analytical solution to price derivatives on one or many assets. We also talked about

multivariate derivative who are not able to being solved by Black-Scholes equation. In this

section we referred to few well-known methods with approximated analytical solution.

In Chapter 3 we expanded the concept of multivariate derivative by applying switching

regime with two states. In this Chapter first we introduced the multivariate regime switching

model in Section 3.1. Next in Section 3.2 we explained the derivative under this condition.

We also proposed a method to approximate the price of derivative. The approximated model

ended to calculation of expected value and variance of occupation time which covered in

Section 3.4.The results of the numerical examples described in Section 3.5. In Chapter 4

we went through the same concept with increasing the switching regime states to three, the

numerical examples also described in Section 4.4.
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At last we used the approximated analytical model to calculate VAR in Chapter 5. We

applied the concept on both single and two derivatives in Section 5.1 - 5.3

Regarding parameter choices, Estimating the parameters of a switching model from

real data can be a challenging problem. In this thesis we have not covered the estimation

problem. Then, the parameters that we have chosen for our simulations are within realistic

ranges, but they do not come from specific real data sets. For some of these simulations, we

have used different parameter sets to show that the proposed methods work well in many

instances. However, it is fair to say that a more comprehensive simulation study could give

us more information about the accuracy of the proposed methods in a larger set of the

parametric space.
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Appendix A

SYSTEM SOLUTION

The solution of systems (4.14) and (4.16), for two different λ = 5 and λ = 1 are given as

below.

The transition matrix regarding to λ = 5 is:

Q =


−5.0000 3.5000 1.5000

3.5000 −5.0000 1.5000

3.5000 1.5000 −5.0000

 P =


0 0.7000 0.3000

0.7000 0 0.3000

0.7000 0.3000 0



mm1 = (7 ∗ t)/17− (20 ∗ exp(−(17 ∗ t)/2))/289 + 20/289

mm2 = (7 ∗ t)/17 + (14 ∗ exp(−(17 ∗ t)/2))/289− 14/289

mm3 = (7 ∗ t)/17 + (14 ∗ exp(−(17 ∗ t)/2))/289− 14/289

MM1 = (560 ∗ t)/4913 + (320 ∗ exp(−(17 ∗ t)/2))/83521

− (400 ∗ t ∗ exp(−(17 ∗ t)/2))/4913 + (49 ∗ t2)/289− 320/83521

MM2 = (84 ∗ t)/4913 + (728 ∗ exp(−(17 ∗ t)/2))/83521

+ (280 ∗ t ∗ exp(−(17 ∗ t)/2))/4913 + (49 ∗ t2)/289− 728/83521

MM3 = (84 ∗ t)/4913 + (728 ∗ exp(−(17 ∗ t)/2))/83521

+ (280 ∗ t ∗ exp(−(17 ∗ t)/2))/4913 + (49 ∗ t2)/289− 728/83521

(A.1)
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Result of the system equation for :λ = 5

nn1 = (79 ∗ t)/221− (6 ∗ exp(−(13 ∗ t)/2))/169

+ (20 ∗ exp(−(17 ∗ t)/2))/289− 1646/48841

nn2 = (79 ∗ t)/221− (6 ∗ exp(−(13 ∗ t)/2))/169

− (14 ∗ exp(−(17 ∗ t)/2))/289 + 4100/48841

nn3 = (79 ∗ t)/221 + (20 ∗ exp(−(13 ∗ t)/2))/169

− (14 ∗ exp(−(17 ∗ t)/2))/289− 3414/48841

NN1 = (387732 ∗ t)/10793861 + (330 ∗ exp(−(13 ∗ t)/2))/28561

+ (14 ∗ exp(−(17 ∗ t)/2))/83521− (36 ∗ t ∗ exp(−(13 ∗ t)/2))/2197

+ (280 ∗ t ∗ exp(−(17 ∗ t)/2))/4913 + (6241 ∗ t2)/48841

− 27961784/2385443281

NN2 = (1295600 ∗ t)/10793861− (684 ∗ exp(−(13 ∗ t)/2))/28561

+ (2156 ∗ exp(−(17 ∗ t)/2))/83521− (36 ∗ t ∗ exp(−(13 ∗ t)/2))/2197

− (196 ∗ t ∗ exp(−(17 ∗ t)/2))/4913 + (6241 ∗ t2)/48841

− 4449152/2385443281

NN3 = (108388 ∗ t)/10793861 + (954 ∗ exp(−(13 ∗ t)/2))/28561

− (1890 ∗ exp(−(17 ∗ t)/2))/83521 + (120 ∗ t ∗ exp(−(13 ∗ t)/2))/2197

− (196 ∗ t ∗ exp(−(17 ∗ t)/2))/4913 + (6241 ∗ t2)/48841

− 25698744/2385443281

(A.2)
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kk1 = (3 ∗ t)/13 + (6 ∗ exp(−(13 ∗ t)/2))/169− 6/169

kk2 = (3 ∗ t)/13 + (6 ∗ exp(−(13 ∗ t)/2))/169− 6/169

kk3 = (3 ∗ t)/13− (20 ∗ exp(−(13 ∗ t)/2))/169 + 20/169

KK1 = (84 ∗ t)/2197 + (408 ∗ exp(−(13 ∗ t)/2))/28561

+ (120 ∗ t ∗ exp(−(13 ∗ t)/2))/2197 + (9 ∗ t2)/169− 408/28561

KK2 = (84 ∗ t)/2197 + (408 ∗ exp(−(13 ∗ t)/2))/28561

+ (120 ∗ t ∗ exp(−(13 ∗ t)/2))/2197 + (9 ∗ t2)/169− 408/28561

KK3 = (240 ∗ t)/2197− (320 ∗ exp(−(13 ∗ t)/2))/28561

− (400 ∗ t ∗ exp(−(13 ∗ t)/2))/2197 + (9 ∗ t2)/169 + 320/28561

(A.3)

Transition matrix regarding to λ = 1 is given by:

Q =


−1.0000 0.7000 0.3000

0.7000 −1.0000 0.3000

0.7000 0.3000 −1.0000

 P =


0 0.7000 0.3000

0.7000 0 0.3000

0.7000 0.3000 0
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The solution of the system for λ = 1 is given by:

mm1 = (7 ∗ t)/17− (100 ∗ exp(−(17 ∗ t)/10))/289 + 100/289

mm2 = (7 ∗ t)/17 + (70 ∗ exp(−(17 ∗ t)/10))/289− 70/289

mm3 = (7 ∗ t)/17 + (70 ∗ exp(−(17 ∗ t)/10))/289− 70/289

MM1 = (2800 ∗ t)/4913 + (8000 ∗ exp(−(17 ∗ t)/10))/83521

− (2000 ∗ t ∗ exp(−(17 ∗ t)/10))/4913 + (49 ∗ t2)/289− 8000/83521

MM2 = (420 ∗ t)/4913 + (18200 ∗ exp(−(17 ∗ t)/10))/83521

+ (1400 ∗ t ∗ exp(−(17 ∗ t)/10))/4913 + (49 ∗ t2)/289− 18200/83521

MM3 = (420 ∗ t)/4913 + (18200 ∗ exp(−(17 ∗ t)/10))/83521

+ (1400 ∗ t ∗ exp(−(17 ∗ t)/10))/4913 + (49 ∗ t2)/289− 18200/83521

(A.4)

76



nn1 = (79 ∗ t)/221− (30 ∗ exp(−(13 ∗ t)/10))/169

+ (100 ∗ exp(−(17 ∗ t)/10))/289− 8230/48841

nn2 = (79 ∗ t)/221− (30 ∗ exp(−(13 ∗ t)/10))/169

− (70 ∗ exp(−(17 ∗ t)/10))/289 + 20500/48841

nn3 = (79 ∗ t)/221 + (100 ∗ exp(−(13 ∗ t)/10))/169

− (70 ∗ exp(−(17 ∗ t)/10))/289− 17070/48841

NN1 = (1938660 ∗ t)/10793861 + (8250 ∗ exp(−(13 ∗ t)/10))/28561

+ (350 ∗ exp(−(17 ∗ t)/10))/83521− (180 ∗ t ∗ exp(−(13 ∗ t)/10))/2197

+ (1400 ∗ t ∗ exp(−(17 ∗ t)/10))/4913 + (6241 ∗ t2)/48841

− 699044600/2385443281

NN2 = (6478000 ∗ t)/10793861− (17100 ∗ exp(−(13 ∗ t)/10))/28561

+ (53900 ∗ exp(−(17 ∗ t)/10))/83521− (180 ∗ t ∗ exp(−(13 ∗ t)/10))/2197

− (980 ∗ t ∗ exp(−(17 ∗ t)/10))/4913 + (6241 ∗ t2)/48841

− 111228800/2385443281

NN3 = (541940 ∗ t)/10793861 + (23850 ∗ exp(−(13 ∗ t)/10))/28561

− (47250 ∗ exp(−(17 ∗ t)/10))/83521 + (600 ∗ t ∗ exp(−(13 ∗ t)/10))/2197

− (980 ∗ t ∗ exp(−(17 ∗ t)/10))/4913 + (6241 ∗ t2)/48841

− 642468600/2385443281

(A.5)
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kk1 = (3 ∗ t)/13 + (30 ∗ exp(−(13 ∗ t)/10))/169− 30/169

kk2 = (3 ∗ t)/13 + (30 ∗ exp(−(13 ∗ t)/10))/169− 30/169

kk3 = (3 ∗ t)/13− (100 ∗ exp(−(13 ∗ t)/10))/169 + 100/169

KK1 = (420 ∗ t)/2197 + (10200 ∗ exp(−(13 ∗ t)/10))/28561

+ (600 ∗ t ∗ exp(−(13 ∗ t)/10))/2197 + (9 ∗ t2)/169− 10200/28561

KK2 = (420 ∗ t)/2197 + (10200 ∗ exp(−(13 ∗ t)/10))/28561

+ (600 ∗ t ∗ exp(−(13 ∗ t)/10))/2197 + (9 ∗ t2)/169− 10200/28561

KK3 = (1200 ∗ t)/2197− (8000 ∗ exp(−(13 ∗ t)/10))/28561

− (2000 ∗ t ∗ exp(−(13 ∗ t)/10))/2197 + (9 ∗ t2)/169 + 8000/28561

(A.6)

78



Appendix B

MATLAB CODES

B.1 Spread option under switching regime with two states

Main function including calculation of the spread option price by Monte-Carlo and call the

function regarding the approximation analytic model

1 %

2 c l e a r a l l ;

3 c l o s e a l l ;

4 S1 = 100 ; S2=110; % Value o f the under ly ing

5 K = 10 ; % St r i k e ( e x e r c i s e p r i c e )

6 r = 0 . 0 3 ; % Risk f r e e i n t e r e s t ra t e

7 h=0.1;

8 rho1 =0.4 ; rho2 =0.5 ;

9 sigma11 = 0 . 2 ; sigma12 =0.4;

10 sigma21 =0.3; sigma22 =0.6;

11 T = 1 ; % Time to exp i r

12 T;

13 j =5;

14 M=10ˆ j ; % Number o f Monte Carlo t r i a l s

15 i =1;

16 Q= [ i i ; i i ] ;

17 Q1=Q diag ( diag (Q) ) ;
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18 J=diag ( 1 . / sum(Q1, 2 ) ) ∗Q1;

19 t i c

20 %U = rand ; X = (U <= 1/2) + 2∗(U > 1/2) ;

21 d e l t a t=markove state (Q, J ,M,T) ;

22 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

23 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Monte Carlo ∗∗∗∗∗∗∗

24 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

25 d i sp ( ’ sigma s ta r t ’ )

26 sigma1=[ sigma11 sigma12 ] ;

27 sigma2=[ sigma21 sigma22 ] ;

28 rho 0=[ rho1 rho2 ] ;

29 s igma1 2t=(sigma1 . ˆ 2 ) ∗ d e l t a t ;

30 s igma2 2t=(sigma2 . ˆ 2 ) ∗ d e l t a t ;

31 cov1=rho1∗ sigma11∗ sigma21 ;

32 cov2=rho2∗ sigma12∗ sigma22 ;

33 cov t=[ cov1 cov2 ]∗ d e l t a t ;

34 rho=cov t . / sq r t ( s igma1 2t .∗ s igma2 2t ) ;

35 N1=randn (1 ,M) ;

36 N2=randn (1 ,M) ;

37 mu1=(r ∗T 0 . 5 ∗ s igma1 2t ) ;

38 mu2=(r ∗T 0 . 5 ∗ s igma2 2t ) ;

39 f i n a l v a l s 1=mu1 + sq r t ( s igma1 2t ) .∗N1 ;

40 f i n a l v a l s 2=mu2 + sq r t ( s igma2 2t ) .∗ . . .

41 ( rho .∗ N1+ sqr t ( 1 rho . ˆ 2 ) .∗ N2 ) ;

42 % Evaluate the Put opt ion opt ions

43 op t i on va lu e s=max( ( S2∗exp ( f i n a l v a l s 2 ) . . .
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44 S1∗exp ( f i n a l v a l s 1 ) ) K, 0 ) ;

45 % Discount under r n assumption

46 p r e s e n t v a l s=exp ( r ∗T) ∗ op t i on va lu e s ;

47 % Compute con f id ence i n t e r v a l s

48 i n t e r v a l =1.96∗ std ( p r e s e n t v a l s ) / sq r t (M)

49 % Take the average

50 ca l l mon t ca r l o=mean( p r e s e n t v a l s )

51 t i c 1=toc

52

53 t i c

54 apprx=Analytic Apprx (S1 , S2 ,T,K, r , rho 0 , sigma11 , . . .

55 sigma12 , sigma21 , sigma22 , Q(1 , 1 ) , Q(2 , 2 ) , J (1 , 2 ) ,h ) ;

56 t i c 2=toc

57 t i c 2=t i c 2 apprx (1 , 6 )

58 f i r s t a p p r x=apprx (1 , 1 )

59 second apprx=apprx (1 , 2 )

60 t 1 s t a r=apprx (1 , 3 ) ;

61 t1 var=apprx (1 , 4 ) ;

62 second der=apprx (1 , 5 ) ;

Analytic solution including the function for system calculation and function regarding

the approximation model for spread option with constant parameters

1 func t i on value=Analytic Apprx (S1 , S2 ,T,K, r , rho 0 , sigma11 . . .

2 , sigma12 , sigma21 , sigma22 , lambda1 , lambda2 , p12 , h)

3 t i c

4 t s t a r=dso lve mat lab ( lambda1 , lambda2 , p12 ) ;
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5 m1=double ( subs ( t s t a r (1 ) ,T) ) ;

6 M1=double ( subs ( t s t a r (2 ) ,T) ) ;

7 va r t1=(M1 m1ˆ2) ;

8 t 1 s t a r=m1;

9 t i c 3=toc

10 rho1=rho 0 (1 , 1 ) ; rho2=rho 0 (1 , 2 ) ;

11 p0=d e r i v a t i v e p i ( sigma11 , sigma12 , sigma21 , . . .

12 sigma22 , r ,T, t 1 s t a r , rho1 , rho2 , S1 , S2 ,K) ;

13 ph=d e r i v a t i v e p i ( sigma11 , sigma12 , sigma21 , . . .

14 sigma22 , r ,T, t 1 s t a r+h , rho1 , rho2 , S1 , S2 ,K) ;

15 p h=d e r i v a t i v e p i ( sigma11 , sigma12 , sigma21 , . . .

16 sigma22 , r ,T, t 1 s t a r h , rho1 , rho2 , S1 , S2 ,K) ;

17 second der=(ph ( 2 ∗ p0 )+p h ) /(hˆ2) ;

18 second order=p0+0.5∗ second der ∗ var t1 ;

19 value=[p0 , second order , t 1 s t a r , var t1 , . . .

20 second der , t i c 3 ] ;

function for solving system equation

1 func t i on t s t a r = dso lve mat lab ( lambda1 , lambda2 , p12 )

2 %

3 %so l u t i o n to the expected value

4 %(m1,m2) and var iance (M1,M2)

5 %

6 syms m1( t ) m2( t ) %lambda1 lambda2 p12

7 %r r=r r+t t

8 eqn1 = d i f f (m1) == lambda1∗p12 ∗ . . .

82



9 m2 lambda1∗m1+1;

10 eqn2 = d i f f (m2) == lambda2∗p12 ∗ . . .

11 m1 lambda2∗m2;

12 S = dso lve ( eqn1 , eqn2 ,m1(0)==0,m2(0)==0) ;

13 mm1=s imp l i f y (S .m1) ;

14 %mm2=s imp l i f y (S .m2) ;

15 syms M1( t ) M2( t ) %mm1 mm2

16 eqn3=d i f f (M1) == M2∗ lambda1 ∗ . . .

17 p12 M1∗ lambda1+2∗mm1;

18 eqn4=d i f f (M2) == M1∗ lambda2 ∗ . . .

19 p12 M2∗ lambda2 ;

20 S = dso lve ( eqn3 , eqn4 ,M1(0)==0,M2(0)==0) ;

21 %S = dso lve ( eqn3 ,M1(0)==0) ;

22 MM1=s imp l i f y (S .M1) ;

23 %MM2=s imp l i f y (S .M2) ;

24 t s t a r =[mm1,MM1] ;

25 end

This function set the parameters for the calling the function regarding approximation

for spread option with constant parameters

1 func t i on value=d e r i v a t i v e p i ( sigma11 , . . .

2 sigma12 , sigma21 , sigma22 , r ,T, t 1 s t a r , rho1 , rho2 , S1 , S2 ,K)

3 sigma1=sq r t ( ( sigma11 ˆ2∗ t 1 s t a r + . . .

4 sigma12 ˆ2∗(T t 1 s t a r ) ) /T) ;

5 sigma2=sq r t ( ( sigma21 ˆ2∗ t 1 s t a r + . . .

6 sigma22 ˆ2∗(T t 1 s t a r ) ) /T) ;
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7

8 cov1=rho1∗ sigma11∗ sigma21 ;

9 cov2=rho2∗ sigma12∗ sigma22 ;

10 cov t=cov1∗ t 1 s t a r+cov2 ∗(T t 1 s t a r ) ;

11 rho=cov t /(T∗ sigma1∗ sigma2 ) ;

12 Pi=Deng( rho ,T,K, S1 , S2 , sigma1 , sigma2 , r ) ;

13 value=Pi ;

Approximation for spread option with constant parameters

1 func t i on Deng Price=Deng( Rho est ,T , . . .

2 K, S2 , S1 , sigma2 , sigma1 , r ) ;

3 %

4 v 1=sigma1∗ s q r t (T) ;

5 v 2=sigma2∗ s q r t (T) ;

6 u 1=log ( S1 )+(r sigma1 ˆ2/2) ∗T;

7 u 2=log ( S2 )+(r sigma2 ˆ2/2) ∗T;

8 R=exp ( u 2 ) ;

9 eps = v 2 ˆ2∗R∗K/(2∗ (R+K) ˆ 2 ∗ . . .

10 v 1 ∗ s q r t ( 1 Rho est ˆ2) ) ;

11 C 3=(u 1 log (R+K) ) /( v 1 ∗ . . .

12 sq r t ( 1 Rho est ˆ2) ) ;

13 D 3=(Rho est ∗v 1 v 2 ∗R/(R+K) ) . . .

14 /( v 1 ∗ s q r t ( 1 Rho est ˆ2) ) ;

15 C 1=C 3+D 3∗Rho est ∗v 1+eps ∗( Rho est ∗v 1 ) ˆ2+ . . .

16 v 1 ∗ s q r t ( 1 Rho est ˆ2) ;

17 D 1=D 3+2∗v 1 ∗ s q r t ( 1 Rho est ˆ2) ∗ eps ;
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18 C 2=C 3+D 3∗v 2+eps ∗v 2 ˆ2 ;

19 D 2=D 3+2∗v 2 ∗ eps ;

20 I 1=J0 (C 1 , D 1 )+J1 (C 1 , D 1 ) ∗ eps + . . .

21 J2 (C 1 , D 1 ) ∗( eps ) ˆ2/2 ;

22 I 2=J0 (C 2 , D 2 )+J1 (C 2 , D 2 ) ∗ eps + . . .

23 J2 (C 2 , D 2 ) ∗( eps ) ˆ2/2 ;

24 I 3=J0 (C 3 , D 3 )+J1 (C 3 , D 3 ) ∗ eps + . . .

25 J2 (C 3 , D 3 ) ∗( eps ) ˆ2/2 ;

26 Deng Price=S1∗ I 1 S2∗ I 2 . . .

27 K∗exp ( r ∗T) ∗ I 3 ;

28

1 func t i on J0=J0 (a , b)

2 J0=normcdf ( a/ sq r t (1+bˆ2) ) ;

1 func t i on J1=J1 (a , b)

2 J1=normpdf ( a/ sq r t (1+bˆ2) ) ∗(1+(1+aˆ2) ∗bˆ2) /(1+bˆ2) ˆ(5/2) ;

1 func t i on J2=J2 (a , b)

2 fab =(6 6∗ a ˆ2) ∗bˆ2+(21 2∗ a ˆ 2 a ˆ4) ∗bˆ4+4∗(3+aˆ2) ∗b ˆ 6 3 ;

3 J2=normpdf ( a/ sq r t (1+bˆ2) ) ∗a∗ fab /(1+bˆ2) ˆ(11/2) ;

B.2 Spread option under switching regime with three states

Main function including calculation of the spread option price by Monte-Carlo and call the

function regarding the approximation analytic model
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1 c l e a r a l l ;

2 c l o s e a l l ;

3 S1 = 100 ; S2=110; % Value o f the a s s e t

4 K = 5 ; % St r i k e ( e x e r c i s e p r i c e )

5 r = 0 . 0 3 ; % Risk f r e e i n t e r e s t ra t e

6 h=0.01;

7 rho1 =0.4 ; rho2 =0.5 ; rho3 =0.6 ;

8 sigma11 = 0 . 2 ; sigma12 =0.4; sigma13 =0.6;

9 sigma21 =0.3; sigma22 =0.6; sigma23 =0.9;

10 f i l l 1 = [ ] ; f i l l 2 = [ ] ; f i l l 3 = [ ] ; f i l l 4 = [ ] ; . . .

11 f i l l 5 = [ ] ; f i l l 6 = [ ] ; f i l l 7 = [ ] ;

12 T = 1 ; % Time to exp i r

13 j =6;

14 M=10ˆ j ; % Number o f Monte Carlo t r i a l s

15 i =1;

16 j =0.7∗ i ; k=0.3∗ i

17 Q= [ i j k ; j i k ; j k i ] ;

18 Q1=Q diag ( diag (Q) ) ;

19 J=diag ( 1 . / sum(Q1, 2 ) ) ∗Q1;

20 t i c

21 d e l t a t=markove state (Q, J ,M,T) ;

22 a=cov ( d e l t a t ( 1 , : ) , d e l t a t ( 2 , : ) ) ; . . .

23 cov t1t2m=a (1 , 2 ) ;

24 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

25 %∗∗∗∗∗∗∗∗∗∗∗∗Monte Carlo ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

26 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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27 sigma1=[ sigma11 sigma12 sigma13 ] ;

28 sigma2=[ sigma21 sigma22 sigma23 ] ;

29 rho 0=[ rho1 rho2 rho3 ] ;

30 s igma1 2t=(sigma1 . ˆ 2 ) ∗ d e l t a t ;

31 s igma2 2t=(sigma2 . ˆ 2 ) ∗ d e l t a t ;

32 cov1=rho1∗ sigma11∗ sigma21 ;

33 cov2=rho2∗ sigma12∗ sigma22 ;

34 cov3=rho3∗ sigma13∗ sigma23 ;

35 cov t=[ cov1 cov2 cov3 ]∗ d e l t a t ;

36 rho=cov t . / sq r t ( s igma1 2t .∗ s igma2 2t ) ;

37 N1=randn (1 ,M) ;

38 N2=randn (1 ,M) ;

39 mu1=(r ∗T 0 . 5 ∗ s igma1 2t ) ;

40 mu2=(r ∗T 0 . 5 ∗ s igma2 2t ) ;

41 f i n a l v a l s 1=mu1 + sq r t ( s igma1 2t ) .∗N1 ;

42 f i n a l v a l s 2=mu2 + sq r t ( s igma2 2t ) . ∗ . . .

43 ( rho .∗ N1+ sqr t ( 1 rho . ˆ 2 ) .∗ N2 ) ;

44 % Evaluate the Put opt ion opt ions

45 op t i on va lu e s=max( ( S2∗exp ( f i n a l v a l s 2 ) . . .

46 S1∗exp ( f i n a l v a l s 1 ) ) K, 0 ) ;

47 % Discount under r n assumption

48 p r e s e n t v a l s=exp ( r ∗T) ∗ op t i on va lu e s ;

49 % Compute con f id ence i n t e r v a l s

50 i n t e r v a l =1.96∗ std ( p r e s e n t v a l s ) / sq r t (M)

51 % Take the average

52 ca l l mon t ca r l o=mean( p r e s e n t v a l s )
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53 toc 1=toc ;

54 t i c

55

56 apprx=Analytic Apprx (S1 , S2 ,T,K, r , rho 0 , . . .

57 sigma1 , sigma2 ,Q, J , h ) ;

58 t i c 2=apprx (1 ,10 )

59 %toc 2=toc ;

60 toc 1

61 f i r s t a p p r x=apprx (1 , 1 )

62 second apprx=apprx (1 , 2 )

63 ca l l mon t ca r l o

64 i n t e r v a l

Analytic solution including the function for system calculation and function regarding

the approximation model for spread option with constant parameters

1 func t i on value=Analytic Apprx (S1 , S2 ,T , . . .

2 K, r , rho 0 , sigma1 0 , sigma2 0 ,Q, p , h)

3 t i c

4 t s t a r=dso lve mat lab (Q, p ,T) ;

5

6 t1=double ( subs ( t s t a r (1 , 1 ) ,T) ) ;

7 v1=double ( subs ( t s t a r (1 , 7 ) ,T) ) ;

8 va r t1=(v1 t1 ˆ2) ;

9

10 t2=double ( subs ( t s t a r (1 , 4 ) ,T) ) ;

11 v2=double ( subs ( t s t a r (1 , 10 ) ,T) ) ;
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12 var t2=(v2 t2 ˆ2) ;

13

14 t3=double ( subs ( t s t a r (1 , 13 ) ,T) ) ;

15 v3=double ( subs ( t s t a r (1 , 16 ) ,T) ) ;

16 var t3=(v3 t3 ˆ2) ;

17 cov t1 t2=(var t3 var t1 va r t2 ) /2 ;

18 t i c 3=toc

19

20 p0=d e r i v a t i v e p i ( sigma1 0 , sigma2 0 , . . .

21 rho 0 , r , S1 , S2 ,K,T, t1 , t2 ) ;

22 pht1=d e r i v a t i v e p i ( sigma1 0 , sigma2 0 , . . .

23 rho 0 , r , S1 , S2 ,K,T, t1+h , t2 ) ;

24 p ht1=d e r i v a t i v e p i ( sigma1 0 , sigma2 0 , . . .

25 rho 0 , r , S1 , S2 ,K,T, t1 h , t2 ) ;

26 pht2=d e r i v a t i v e p i ( sigma1 0 , sigma2 0 , . . .

27 rho 0 , r , S1 , S2 ,K,T, t1 , t2+h) ;

28 p ht2=d e r i v a t i v e p i ( sigma1 0 , sigma2 0 , . . .

29 rho 0 , r , S1 , S2 ,K,T, t1 , t2 h) ;

30 ph ht1t2=d e r i v a t i v e p i ( sigma1 0 , sigma2 0 , . . .

31 rho 0 , r , S1 , S2 ,K,T, t1+h , t2 h) ;

32 p hht1t2=d e r i v a t i v e p i ( sigma1 0 , sigma2 0 , . . .

33 rho 0 , r , S1 , S2 ,K,T, t1 h , t2+h) ;

34 phh=d e r i v a t i v e p i ( sigma1 0 , sigma2 0 , . . .

35 rho 0 , r , S1 , S2 ,K,T, t1+h , t2+h) ;

36 p h h=d e r i v a t i v e p i ( sigma1 0 , sigma2 0 , . . .

37 rho 0 , r , S1 , S2 ,K,T, t1 h , t2 h) ;
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38 second t1=(pht1 ( 2 ∗ p0 )+p ht1 ) /(hˆ2) ;

39 second t2=(pht2 ( 2 ∗ p0 )+p ht2 ) /(hˆ2) ;

40 s econd t2 t1=(phh+p h h ph ht1t2 p hht1t2 ) . . .

41 /(4∗hˆ2) ;

42 second der =0.5∗ second t1 ∗ var t1 +0 . 5 ∗ . . .

43 second t2 ∗ var t2+second t2 t1 ∗ cov t1 t2 ;

44 second order=p0+second der ;%

45 % d( p i ) /d( sigma )

46 value=[p0 , second order , t1 , t2 , var t1 , . . .

47 var t2 , second der , cov t1t2 , var t3 , t i c 3 ] ;

unction for solving system equation

1 func t i on t s t a r = dso lve mat lab (Q, p ,T)

2 %

3 %so l u t i o n to the expected value (m1,m2)

4 %and var iance (M1,M2)

5 %

6 ddd=t i c

7 lambda1= Q(1 ,1 ) ; lambda2= Q(2 ,2 ) ; . . .

8 lambda3= Q(3 ,3 ) ;

9 syms m1( t ) m2( t ) m3( t ) c l e a r

10 eqn1 = d i f f (m1) == lambda1 ∗( p (1 , 2 ) ∗m2 + . . .

11 p (1 , 3 ) ∗m3 m1 ) + 1 ;

12 eqn2 = d i f f (m2) == lambda2 ∗( p (2 , 1 ) ∗m1 + . . .

13 p (2 , 3 ) ∗m3 m2 ) ;

14 eqn3 = d i f f (m3) == lambda3 ∗( p (3 , 1 ) ∗m1 + . . .

90



15 p (3 , 2 ) ∗m2 m3 ) ;

16 S = dso lve ( eqn1 , eqn2 , eqn3 , m1(0 )==0 , . . .

17 m2(0)==0 , m3(0)==0 ) ;

18 mm1=s imp l i f y (S .m1)

19 mm2=s imp l i f y (S .m2) ;

20 mm3=s imp l i f y (S .m3) ;

21 %r r=t t+r r

22 syms M1( t ) M2( t ) M3( t ) c l e a r

23 eqn4 = d i f f (M1) == lambda1 ∗( M2∗p (1 , 2 ) + . . .

24 M3∗p (1 , 3 ) M1 ) + 2∗mm1;

25 eqn5 = d i f f (M2) == lambda2 ∗( M1∗p (2 , 1 ) + . . .

26 M3∗p (2 , 3 ) M2 ) ;

27 eqn6 = d i f f (M3) == lambda3 ∗( M1∗p (3 , 1 ) + . . .

28 M2∗p (3 , 2 ) M3 ) ;

29 S = dso lve ( eqn4 , eqn5 , eqn6 , M1(0)==0 , . . .

30 M2(0)==0 , M3(0)==0 ) ;

31 MM1=s imp l i f y (S .M1)

32 MM2=s imp l i f y (S .M2) ;

33 MM3=s imp l i f y (S .M3) ;

34 %t s t a r =[mm1,mm2,MM1,MM2] ;

35

36 syms n1 ( t ) n2 ( t ) n3 ( t ) c l e a r

37 eqn7 = d i f f ( n1 ) == lambda1 ∗ ( p (1 , 2 ) ∗n2 + . . .

38 p (1 , 3 ) ∗n3 n1 ) ;

39 eqn8 = d i f f ( n2 ) == lambda2 ∗ ( p (2 , 1 ) ∗n1 + . . .

40 p (2 , 3 ) ∗n3 n2 ) + 1 ;
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41 eqn9 = d i f f ( n3 ) == lambda3 ∗ ( p (3 , 1 ) ∗n1 + . . .

42 p (3 , 2 ) ∗n2 n3 ) ;

43 S = dso lve ( eqn7 , eqn8 , eqn9 , n1 (0 )==0 , . . .

44 n2 (0 )==0 , n3 (0 )==0) ;

45 nn1=s imp l i f y (S . n1 )

46 nn2=s imp l i f y (S . n2 ) ;

47 nn3=s imp l i f y (S . n3 ) ;

48 %r r=t t+r r

49 syms N1( t ) N2( t ) N3( t ) c l e a r

50 eqn10 = d i f f (N1) == lambda1 ∗ ( N2∗p (1 , 2 ) + . . .

51 N3∗p (1 , 3 ) N1 ) ;

52 eqn11 = d i f f (N2) == lambda2 ∗ ( N1∗p (2 , 1 ) + . . .

53 N3∗p (2 , 3 ) N2 ) + 2∗nn2 ;

54 eqn12 = d i f f (N3) == lambda3 ∗ ( N1∗p (3 , 1 ) + . . .

55 N2∗p (3 , 2 ) N3 ) ;

56 S = dso lve ( eqn10 , eqn11 , eqn12 , N1(0)==0 , . . .

57 N2(0)==0 , N3(0)==0) ;

58 NN1=s imp l i f y (S .N1)

59 NN2=s imp l i f y (S .N2) ;

60 NN3=s imp l i f y (S .N3) ;

61

62 %kk3=T mm3 nn3 ;

63 syms k1 ( t ) k2 ( t ) k3 ( t ) c l e a r

64 eqn30 = d i f f ( k1 ) == lambda1 ∗ ( p (1 , 2 ) ∗k2 + . . .

65 p (1 , 3 ) ∗k3 k1 ) ;

66 eqn31 = d i f f ( k2 ) == lambda2 ∗ ( p (2 , 1 ) ∗k1 + . . .
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67 p (2 , 3 ) ∗k3 k2 ) ;

68 eqn32 = d i f f ( k3 ) == lambda3 ∗ ( p (3 , 1 ) ∗k1 + . . .

69 p (3 , 2 ) ∗k2 k3 )+ 1 ;

70 S = dso lve ( eqn30 , eqn31 , eqn32 , k1 (0 )==0 , . . .

71 k2 (0 )==0 , k3 (0 )==0) ;

72 kk1=s imp l i f y (S . k1 )

73 kk2=s imp l i f y (S . k2 ) ;

74 kk3=s imp l i f y (S . k3 ) ;

75

76

77 syms K1( t ) K2( t ) K3( t ) c l e a r

78 eqn13 = d i f f (K1) == lambda1 ∗ ( K2∗p (1 , 2 ) + . . .

79 K3∗p (1 , 3 ) K1 ) ;

80 eqn14 = d i f f (K2) == lambda2 ∗ ( K1∗p (2 , 1 ) + . . .

81 K3∗p (2 , 3 ) K2 ) ;

82 eqn15 = d i f f (K3) == lambda3 ∗ ( K1∗p (3 , 1 ) + . . .

83 K2∗p (3 , 2 ) K3 ) + 2∗kk3 ;

84 S = dso lve ( eqn13 , eqn14 , eqn15 , K1(0)==0 , . . .

85 K2(0 )==0 , K3(0)==0) ;

86 KK1=s imp l i f y (S .K1)

87 KK2=s imp l i f y (S .K2) ;

88 KK3=s imp l i f y (S .K3) ;

89

90 t s t a r =[mm1,mm2,mm3, nn1 , nn2 , nn3 ,MM1,MM2,MM3,NN1 , . . .

91 NN2,NN3, kk1 , kk2 , kk3 ,KK1,KK2,KK3 ] ;

92 end
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This function set the parameters for the calling the function regarding approximation

for spread option with constant parameters

1 func t i on value=d e r i v a t i v e p i ( sigma1 0 , . . .

2 sigma2 0 , rho 0 , r , S1 , S2 ,K,T, t1 , t2 )

3

4 rho1=rho 0 (1 , 1 ) ; rho2=rho 0 (1 , 2 ) . . .

5 ; rho3=rho 0 (1 , 3 ) ;

6 sigma11=sigma1 0 (1 , 1 ) ; sigma12=sigma1 0 (1 , 2 ) . . .

7 ; sigma13=sigma1 0 (1 , 3 ) ;

8 sigma21=sigma2 0 (1 , 1 ) ; sigma22=sigma2 0 (1 , 2 ) . . .

9 ; sigma23=sigma2 0 (1 , 3 ) ;

10

11 sigma1=sq r t ( ( sigma11 ˆ2∗ t1+sigma12 ˆ2∗ t2 + . . .

12 sigma13 ˆ2∗(T t1 t2 ) ) /T) ;

13 sigma2=sq r t ( ( sigma21 ˆ2∗ t1+sigma22 ˆ2∗ t2 + . . .

14 sigma23 ˆ2∗(T t1 t2 ) ) /T) ;

15

16 cov1=rho1∗ sigma11∗ sigma21 ;

17 cov2=rho2∗ sigma12∗ sigma22 ;

18 cov3=rho3∗ sigma13∗ sigma23 ;

19 cov t=cov1∗ t1+cov2∗ t2+cov3 ∗(T t1 t2 ) ;

20 rho=cov t /(T∗ sigma1∗ sigma2 ) ;

21

22 Pi=Deng( rho ,T,K, S1 , S2 , sigma1 , sigma2 , r ) ;

23 value=Pi ;
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B.3 Value at Risk regarding one single asset

Main function including calculation of the value at risk using Monte Carlo and calling the

function regarding the analytic model

1 c l e a r a l l ;

2 c l o s e a l l ;

3 S1=100; % Value o f the under ly ing

4 r = 0 . 0 3 ; % Risk f r e e i n t e r e s t ra t e

5 %z a lpha = 3 . 0 9 ; alpha =0.001;

6 z a lpha = 1 . 2826 ; alpha =0.1;

7 %z a lpha = 2 . 3 3 ; alpha =0.01;

8 %z a lpha = 1 . 6449 ; alpha =0.05;

9 h=0.1 ;

10 k=0.01;

11 rho1 =0.0; rho2 =0.0 ;

12 sigma11 = 0 . 3 ; sigma12 =0.5;

13 f i l l 1 = [ ] ; f i l l 2 = [ ] ; f i l l 3 = [ ] ; f i l l 4 = [ ] ;

14 f i l l 5 = [ ] ; f i l l 6 = [ ] ; f i l l 7 = [ ] ;

15 t i c

16 T = 0 . 5 ; % Time to exp i r

17 j =6;

18 M=10ˆ j ; % Number o f Monte Carlo t r i a l s

19 i =10;

20 Q= [ i i ; i i ] ;

21 Q1=Q diag ( diag (Q) ) ;

22 J=diag ( 1 . / sum(Q1, 2 ) ) ∗Q1;
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23 %t i c

24 %U = rand ; X = (U <= 1/2) + 2∗(U > 1/2) ;

25 d e l t a t=markove state (Q, J ,M,T) ;

26 %toc

27 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

28 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Monte Carlo ∗∗∗∗∗∗∗∗

29 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

30 sigma1=[ sigma11 sigma12 ] ;

31 rho 0=[ rho1 rho2 ] ;

32 s igma1 2t=(sigma1 . ˆ 2 ) ∗ d e l t a t ;

33 N1=randn (1 ,M) ;

34 mu1=(r ∗T 0 . 5 ∗ s igma1 2t ) ;

35 f i n a l v a l s 1=mu1 + sq r t ( s igma1 2t ) .∗N1 ;

36 p va lue s=S1∗exp ( f i n a l v a l s 1 ) ;

37 qq=quan t i l e ( p va lues , alpha )

38 t i c 1=toc

39 apprx=Analytic Apprx ( sigma1 , r , S1 ,T,Q, J , h , k , z a lpha ) ;

40 %nbins = 50 ;

41 %h i s t ( p va lues , nbins )

Analytic solution

1 func t i on value=sp r ead de r i v e ( sigma1 0 , r , . . .

2 S1 0 ,T,Q, J , h , k , z a lpha )

3

4 t s t a r=dso lve mat lab (Q, J ) ;

5 t 1 s t a r=double ( subs ( t s t a r (1 ) ,T) ) ;
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6 M1=double ( subs ( t s t a r (3 ) ,T) ) ;

7 va r t1=(M1 t 1 s t a r ˆ2) ;

8

9 R star=R value ( sigma1 0 , S1 0 ,T , . . .

10 t 1 s t a r , z a lpha , r ) ;% v s t a r

11 t 1 s t a r

12 R star

13 v=d e r i v a t i v e p i ( sigma1 0 , S1 0 ,T , . . .

14 t 1 s t a r , z a lpha , r , R star ) ;

15 %Pi 0=normcdf ( v ) ;

16

17 syms x c l e a r

18 f =1/( sq r t (2∗ pi ) ) ∗ i n t ( exp ( ( 1 / 2 ) ∗( xˆ2) ) , . . .

19 in f , x ) ;%cdf

20 f i r s t f=d i f f ( f , x ) ;

21 s e cond f=d i f f ( d i f f ( f , x ) ) ;

22 f i r s t P i=double ( subs ( f i r s t f ,{ x} ,{v}) )

23 second Pi=double ( subs ( second f ,{ x} ,{v}) )

24

25 syms x c l e a r

26 sigma11=sigma1 0 (1 , 1 ) ; sigma12=sigma1 0 (1 , 2 ) ;

27 sigma1=sq r t ( ( sigma11 ˆ2∗ t 1 s t a r + . . .

28 sigma12 ˆ2∗(T t 1 s t a r ) ) /T) ;

29 sigma1T=T∗ sigma1 ˆ2 ;

30 f= ( log (x/S1 0 ) T∗ r+sigma1T/2 ) . . .

31 / sq r t ( sigma1T ) ;
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32 der v=d i f f ( f , x ) ;

33 s e c v=d i f f ( d i f f ( f , x ) ) ;

34 de r i v v=double ( subs ( der v ,{ x } , . . .

35 {R star }) )

36 s e c d e r i v v=double ( subs ( sec v ,{ x } , . . .

37 {R star }) )

38

39 syms x c l e a r

40 sigma11=sigma1 0 (1 , 1 ) ;

41 sigma12=sigma1 0 (1 , 2 ) ;

42 sigma1=sq r t ( ( sigma11 ˆ2∗x+ . . .

43 sigma12 ˆ2∗(T x ) ) /T) ;

44 sigma1T=T∗ sigma1 ˆ2 ;

45 f= ( log ( R star /S1 0 ) T∗ r + . . .

46 sigma1T/2 ) / sq r t ( sigma1T ) ;

47 d e r t=d i f f ( f , x ) ;

48 s e c t=d i f f ( d i f f ( f , x ) ) ;

49 d e r i v t=double ( subs ( der t ,{ x } , . . .

50 { t 1 s t a r }) )

51 s e c d e r i v t=double ( subs ( s e c t , . . .

52 {x} ,{ t 1 s t a r }) )

53

54 f i r s t P i v=f i r s t P i ∗ de r i v v

55 second P i t1=second Pi ∗( d e r i v t ) ˆ2+ . . .

56 s e c d e r i v t ∗ f i r s t P i

57 second Pi v=second Pi ∗( d e r i v v ) ˆ2+ . . .
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58 s e c d e r i v v ∗ f i r s t P i

59

60 syms t2 v2 v1 R1 vart c l e a r

61 pp=so l v e ( ’ 0 . 5∗ t2 ∗ vart +0.5∗v2 ∗(v R1)ˆ2+v1 ∗(v R1)==0 ’ , ’v ’ ) ;

62 pp (1 )

63 pp (2)

64 p21=double ( subs (pp (1 ) , [ t2 , v2 , v1 , R1 , vart ] , . . .

65 [ s econd Pi t1 , second Pi v , . . .

66 f i r s t P i v , R star , va r t1 ] ) ) ;

67 p22=double ( subs (pp (2 ) , [ t2 , v2 , v1 , R1 , vart ] , . . .

68 [ s econd Pi t1 , second Pi v , . . .

69 f i r s t P i v , R star , va r t1 ] ) ) ;

70 value=[R star , p21 , p22 , va r t1 ] ;

Expected value for Value at Risk

1 func t i on value=v va lue ( sigma1 0 , S1 0 , . . .

2 T, t1 , z a lpha , r ) ;

3 %(sigma1 0 , S1 0 ,T, t 1 s t a r , z a lpha , r ) ;

4 sigma11=sigma1 0 (1 , 1 ) ;

5 sigma12=sigma1 0 (1 , 2 ) ;

6 sigma1=sq r t ( ( sigma11 ˆ2∗ t1 + . . .

7 sigma12 ˆ2∗(T t1 ) ) /T) ;

8 sigma1T=T∗ sigma1 ˆ2 ;

9 va lue=S1 0∗exp ( z a lpha ∗ . . .

10 sq r t ( sigma1T ) + T∗ r sigma1T/2 ) ;

f function
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1 func t i on value=f ( sigma1 0 , S1 0 ,T, t1 , r , R star )

2 %(sigma1 0 , sigma2 0 , S2 , S1 ,T, t1 , r ,w) ;

3 %func t i on f=p( z<value )

4 %(sigma1 0 , r , S1 ,K,T, t 1 s t a r h , z a lpha ,w, S2 )

5 sigma11=sigma1 0 (1 , 1 ) ; sigma12 = . . .

6 s igma1 0 (1 , 2 ) ;

7 sigma1=sq r t ( ( sigma11 ˆ2∗ t1+sigma12 ˆ 2 ∗ . . .

8 (T t1 ) ) /T) ;

9 sigma1T=T∗ sigma1 ˆ2 ;

10 value= ( log ( R star /S1 0 ) T ∗ . . .

11 r+sigma1T/2 ) / sq r t ( sigma1T ) ;
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