
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2011

Modeling User's Non-Functional Preferences for
Personalized Service Ranking
Rozita Mirmotalebi
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Mirmotalebi, Rozita, "Modeling User's Non-Functional Preferences for Personalized Service Ranking" (2011). Theses and dissertations.
Paper 1387.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1387&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1387&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1387&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1387&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1387?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1387&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

MODELING USER’S NON-FUNCTIONAL PREFERENCES

FOR PERSONALIZED SERVICE RANKING

by

Rozita Mirmotalebi

B.E. in Computer Science, Azad University, Iran, 2007

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the program of

Computer Science

Toronto, Ontario, Canada, 2011

©Rozita Mirmotalebi 2011

ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis or dissertation to other institutions or

individuals for the purpose of scholarly research.

ROZITA MIRMOTALEBI

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

ROZITA MIRMOTALEBI

Signature Date

Signature Date

iii

MODELING USER’S NON-FUNCTIONAL PREFERENCES FOR

PERSONALIZED SERVICE RANKING

Rozita Mirmotalebi

Master of Science, Computer Science, 2011

Ryerson University

ABSTRACT

As the number of web services is increasing on the web, selecting the proper web service is

becoming a more and more difficult task. How to make the selection results from a list of

services more customized towards users’ personal preferences and help users identify the right

services for their personal needs becomes especially important under this context. In this thesis,

we propose a novel User Modeling approach to generate user profiles on their non-functional

preferences on web services, and then apply the generated profiles to the ranking process in order

to make personalized selection results. The User Modeling system is based on both implicit and

explicit information from the user. Also, this is a flexible model to include different types of non-

functional properties. We performed experiments using a real web service dataset with values on

various non-functional properties to show the accuracy of our system.

iv

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my supervisor, Dr. Cherie Ding,

professor of Computer Science department at Ryerson University. This work would not have

been possible without her support and guidance when encountering obstacles. Her valuable

suggestions, patience, and encouragement during all difficulties have greatly contributed to this

research.

Also, I would like to thank the faculty of the Computer Science department, Dr. Alex

Ferworn, Dr. Eric Harley and Dr. Isaac Woungang who have reviewed my thesis and given me

valuable comments, which enabled me to improve my thesis.

I would like to express my deepest gratitude to my husband, Ali Mirmotallebi, for his

patience during these past two years.

v

TABLE OF CONTENTS

AUTHOR’S DECLARATION ... ii

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

LIST OF ACRONYMS ... ix

CHAPTER 1 ... 1

INTRODUCTION ... 1

1.1 Background of Generic User Modeling and Web Service Selection 1

1.2 Motivation and Problem Statement .. 3

1.3 Proposed Methodology ... 4

1.4 Objectives of the Thesis ... 5

1.5 Thesis Outline ... 6

CHAPTER 2 ... 8

LITERATURE REVIEW .. 8

2.1 Introduction .. 8

2.2 Generic User Modeling .. 8

2.3 Personalization and Recommender Systems .. 11

2.4 Web Services and Quality of Services ... 15

2.5 Web Service Selection and Recommendation .. 18

2.6 Understanding WSDL in a UDDI Registry .. 19

2.7 Summary ... 20

CHAPTER 3 ... 21

USER MODELING FOR WEB SERVICE SELECTION ... 21

3.1 Introduction .. 21

3.2 User Model Properties .. 21

3.3 User Model Data Collecting ... 25

3.3.1 Explicit User Preference Data .. 26

3.3.2 Implicit User Preference Data .. 27

vi

3.4 Implicit User Modeling .. 27

3.4.1 System Architecture ... 27

3.4.2 Log Data Processing ... 29

3.4.2.1 Fuzzy Representation of User Preferences.. 30

3.4.2.2 Implicit Data Formulation ... 31

3.4.3 Personalized Service Ranking ... 42

3.4.3.1 Similarity Calculation Between User Modeling system and Services 42

3.4.3.2 Total Similarity Calculation .. 49

3.5 Summary ... 50

CHAPTER 4 ... 51

IMPLEMENTATION AND EXPERIMENT ... 51

4.1 Introduction .. 51

4.2 Implementation ... 51

4.2.1 Programming Environment .. 51

4.2.2 Interface Design to Get User’s Explicit Preferences .. 51

4.3 Experiment.. 57

4.3.1 Dataset .. 58

4.3.2 Sample Query and Results .. 62

4.4 Evaluation and Analysis of User Modeling System ... 63

4.5 Summary ... 67

CHAPTER 5 ... 68

CONCLUSIONS ... 68

5.1 Conclusion .. 68

5.2 Main Contributions ... 69

5.3 Future Works .. 69

APPENDIX A – Hierarchy list of all Quality of Service (QoS)[58] .. 70

APPENDIX B – Experiment design for all users ... 71

APPENDIX C – Results ... 73

REFERENCES ... 75

vii

LIST OF FIGURES

Figure 1.1- The three processes involved in user model [4] ..2

Figure 2.1- A Generic User Modeling Architecture [3] ..11

Figure 2.2- The relation between SOAP, WSDL, and UDDI [52] ...16

Figure 2.3- Key elements for supporting QoS in web services [44] ...18

Figure 3.1- The structure of our selected non-functional properties ...25

Figure 3.2- System Architecture ..28

Figure 3.3- provider Location flowchart ..45

Figure 4.1- User Modeling system interface schema (GUI schema) ..52

Figure 4.2- Layer 1 of User Modeling system interface: sign-in ...53

Figure 4.3- Layer 2 of User Modeling system interface: sign-up ..53

Figure 4.4- Provider history scales ..54

Figure 4.5- Layer 3 of User Modeling system interface: user preference (1)55

Figure 4.6- Layer 3 of User Modeling system interface: user preference (2)56

Figure 4.7- Layer 4 of User Modeling system interface: search ..57

Figure 4.8- The selected keywords and number of services used in the experiment60

Figure 4.9- Top 10 result on ―finance‖ for user test ..63

Figure 4.10- Baseline result for ―finance‖ ...63

Figure 4.11- MAP calculation on different keywords ...66

Figure 4.12- MAP comparison on different number of preferences ..66

viii

LIST OF TABLES

Table 4.1- Properties and ranges ..54

Table 4.2- Experiment design preferred ..61

Table 4.3- test user profile ...62

Table 4.4- MAP calculation on each keyword ...65

ix

LIST OF ACRONYMS

AH: Adaptive Hypermedia

AP: Average Precision

API: Application Programming Interface

GUI: Graphical User Interface

HCI: Human Computer Interaction

HTTP: Hypertext Transfer Protocol

MAP: Mean Average Precision

QoS: Quality of Service

SOAP: Simple Object Access Protocol

UDDI: Universal Description, Discovery and Integration

UM: User Modeling

UMS: User Modeling Server

WSDL: Web Service Description Language

XML: Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

1.1 Background of Generic User Modeling and Web Service Selection

 User Modeling (UM) is an area of research which can help make systems’ behaviours more

personalized by focusing on users’ preferences and characteristics. UM is useful for web users in

different aspects, such as, personalized search, recommender systems, educational delivery

systems, assisting web browsing or purchasing activities, etc. [1].

The process of personalization for each user is based on his/her individual characteristics

[2]. A personalized system attempts to collect information about each user. Then by using that

information and various personalization techniques (e.g. machine learning), a user model can be

built. The user model includes user profiles for many different users and is based on the type of

the service. Therefore there are two main steps for personalization: user modeling (making user

models) and adaption (personalization based on user models) [3]. In the user modeling step, we

can consider three responsibilities: user model initialization, user model updating and system

process [4]. In the initialization process, users need to initialize properties, and the user model

includes all the properties, and their descriptions. After initialization, the system needs to update

the user profile for the specific user. User profile could be either knowledge-based or behavior-

based. Knowledge-based approach dynamically matches users to the closest model by using

questioners and interviewers to obtain the user’s information. Behavior-based approach uses

machine-learning techniques and behavior to build the user model [5]. Finally in the system

2

process the user model will complete all the properties not answered by the user from user’s

history data. Now the user model would be ready to be used for various purposes (Figure 1.1).

User Model

Initialization Updating

System Process

Figure1.1- The three processes involved with the user model [4]

Web services are self-contained systems that exist on the network which could be the

infrastructure for other applications and software systems. Nowadays, web services are

becoming more and more popular on the internet. Since the information volume is increasing

rapidly, it is difficult to find and choose a specific data for the users. Also we can say if people

have common interests on an item, the item chosen by one user could be recommend to another

user. For instance, two people like same type of movies, then if

one person likes a movie which hasn't been watched by another person yet,

this movie could be recommended to the second person because he/she may like

it considering he/she is sharing interest with the first person. Therefore understanding users’

behaviours and characteristics while selecting and using services is important, and it could help

them to find their desired services [6]. There are two general steps for web service selection:

discovering and matching based on functional requirements, and then filtering and ranking based

on non-functional requirements. Functional requirements specify the capability that the system

must be able to support. These requirements are specified through keywords or tags e.g. hotel,

3

weather, economics, etc. Non-functional requirements are about the system itself and the quality

of the system performance, e.g. location, language, availability, reliability, response time, etc.

As a novel idea, in this research we design a User Modeling system for web services that can

capture the history of users’ preferences on non-functional properties and can be used later for

the personalized service ranking. Implementing User Modeling is possible in two ways: as a part

of a user-adaptive application, called user shell [7], or as an independent User Modeling Server

(UMS) [8]. The choice of our work is the latter: UMS: the central storage information which

could be used with other applications.

1.2 Motivation and Problem Statement

The earlier research efforts on web service selection mainly used functionality based

matching techniques for selecting services [6]. Because of the large number of web services,

matching services with each other only on functional requirements is a huge and tedious task.

Therefore, filtering and selecting services not only by functional attributes, but also by non-

functional attributes emerged [9]. For service selection based on users’ non-functional

requirements, the biggest obstacle is that users may not define their requirements accurately and

completely, or they may not want to spend time on defining these requirements. Therefore, if we

could build a User Modeling system which could capture user’s preferences on various non-

functional properties and use this user model in the selection process, the ranking result could be

more personalized and accurate. Also in the meantime, user efforts of defining their non-

functional requirements each time when they have service requests could be largely reduced.

Personalization based on user models have been proved to be very effective for a lot of web

4

related activities such as searching, browsing, product shopping or other e-Commerce activities

[10,11,12].

To the best of our knowledge, there is not much work done on User Modeling for web

service selection. Therefore, this motivates us to propose a User Modeling approach to get user

profiles of their preferences on non-functional properties of web services, and use the user model

to make service selection and ranking more personalized. We consider different aspects of user

preferences and also different ways of getting this kind of information. For instance, a user may

have some restrictions/preferences (e.g. location of the service provider, language of the service

output, etc.), about which kind of results he/she wants to receive upon his/her request. To know

the user preferences, we could either ask them to enter into the selection system and save into

their personal profiles, or check their selection and invocation histories to make a reasonable

guess. Then by making some experiments on user preferences in the User Modeling system and

offering services based on them, we will find that the results would be more accurate and close to

user’s preferences and request.

1.3 Proposed Methodology

Nowadays, choosing a specific web service (e.g. flight booking, weather, etc.) from a long

list of web services with the same functionality is really difficult. To solve this problem, we

decided to design and implement a personalized ranking system. This system is an intermediary

located between users and services. The User Modeling is the first step, and the generated user

model could understand users’ preferences from their past invocation histories and from

characteristics of invoked services. Then the user model is applied to the service ranking process

so that the personalized ranking result could be returned to users.

5

To get user preferences, we need to collect service descriptions in the web service definition

language (WSDL) documents and quality attribute information from the service level agreement

(SLA) or monitored data, and also information from registries and usage data from log files.

In this work by using User Modeling in web service selection, we could offer a new list of

web services to the user which is closer to his/her requirements and preferences. From our study

we see that most of the works until now deal with some specific functional and non-functional

requirements; however, more general preferences of users on various non-functional properties

are not taken into consideration. One of the ways for considering user general preferences is User

Modeling based on invocation history. User preferences could be captured based on two different

aspects: implicit feedback or explicit feedback from the user. The implicit approach comes from

usage patterns, and user preferences based on implicit feedback may not be accurate because the

usage data may not be complete and user identification may not be correct [13]. Explicit

feedback is more accurate; however, it places a burden on users and sometimes users may not

want to provide it, and also it may not be reliable (depends on users’ mood and personality).

Since usually on the web the implicit data is easier to get whereas users are reluctant to give

explicit feedback, it is more common to use implicit feedback for User Modeling, and then

combine with explicit feedback if it is available [14]. In this thesis, we consider both; however,

in the experiment because of the lack of the log data, we only use explicit feedback information

for our testing.

1.4 Objectives of the Thesis

The main goal of this work is to make a User Modeling system for web service selection.

We propose an integrated and powerful User Modeling system for all users which later will help

6

them search and find the services they want based on their preferences. This User Modeling

system will cover various non-functional user preferences.

The objectives of this work are given as follows: Firstly, we propose a mechanism to collect

the user preference data – explicitly and implicitly, and build user models. Secondly, we define

which non-functional preferences are important for users to select services. Finally, we give a

sample application about how the user model can be used; in our case, we just implement it for

personalized service selection; however, it could be used in the other facets of web service

selection.

The major contributions of our work are as follows:

 To the best of our knowledge, it is a novel idea to propose a User Modeling system on user’s

non-functional preferences on web services. Those are some general preferences which are

not restricted to a particular domain.

 We defined which non-functional preferences are important for the users to select services.

The list of properties and the formulas of how to calculate use preferences on them from

implicit user feedback was explained. The system also supports explicit preference definition

from the user.

 We discussed a sample application about how a user model can be used, which is

personalized service selection and ranking in our implementation. The result of the User

Modeling could also be used in the other facets of web service selection.

1.5 Thesis Outline

The rest of the thesis is organized as follows:

7

Chapter 2 – Literature Review: this chapter reviews works related to this thesis in

different areas such as: User Modeling, web service selection and personalized search and

recommendation systems.

Chapter 3 – User Modeling for Web Service Selection: this chapter begins with the

overview of User Modeling for web service selection and goes on to discuss all the features

about the required non-functional properties. It further explains the method of collecting implicit

and explicit data. It also discusses the system architecture model that we have used for our

implementation. This chapter finishes with similarity and ranking calculation between users and

services.

Chapter 4 – Implementation and Experiment: this chapter gives details about

implementation steps and the experiment design. The chapter continues with the result analysis

and comparisons between different approaches.

Chapter 5 – Conclusion: this chapter concludes and summarizes our work. Also the

benefits of this work and the points of improvements are highlighted. It points out some

suggestions and potential future works.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The main purpose of this chapter is to give detailed information of research works in

different areas: i) User Modeling in general, ii) User Modeling for the web and personalized

search or recommendation systems, iii) web services, iv) recommendation systems for web

services.

2.2 Generic User Modeling

The history of User Modeling can be traced back to the works of Allen and Cohen in 1979

according to Kobsa [15, 16, 17]. User Modeling was an application system in different

application environments. In the mid-eighties, developers began to separate the user model from

components as an independent component [18] and User Modeling started to be a separate part

of an application. In 1986, the ―General User Modeling System (GUMS)‖ was proposed by Tim

Finin [19]. GUMS can save facts and information provided by the application system and can

answer queries by concerning currently saved assumptions about the user. But it never has been

used by any application and just opened a new future to User Modeling systems [20]. In 1990,

Kobsa made a User Modeling shell system which was the first shell system. A shell system is

part of just one system [7].There are many User Modeling shell systems after GUMS with

different characteristics, such as: UMT [21], PROTUM [22], TAGUS [23], um [25]. After that

User Modeling servers have become more popular. They are central server systems that can

9

communicate with different applications simultaneously. In contrast with shell systems, server

systems are more independent [25]. There are different examples of User Modeling servers such

as: BGP-MS [26, 7], UMS [27], etc. Also, there was an evolution from academic User Modeling

to commercial User Modeling and Group Lens [28] is an outstanding example.

User Modeling is one of the research areas which are related to many other different areas

such as human computer interaction (HCI), artificial intelligence, social psychology, etc. [4]

which can help the computer systems to interact with the users easily. HCI has focused on the

interaction between users and computers and is not only based on interfaces, but also is about

personalization; User Modeling can provide some answers to HCI [1].

User Modeling can be combined with different areas such as: adaptive hypermedia (AH),

web personalization, e-learning, etc. [29]. In adaptive hypermedia, the modeling is done

automatically by the system, and the user has little knowledge about how to proceed with the

work. Therefore, AH tailors all the user’s goals, interests and knowledge and will offer the most

appropriate ones to the user [30].

Applying the user model to personalized search, which is very similar to our goal in this

research, begins with user login. This means that when we ask the user to login, all of the

following steps in the system are simply based on the user’s preferences. User’s general

preferences can help the search engines to clarify the query. Also users’ personal information in

different systems cannot transfer to other systems and sometimes users have to access their

information in multiple systems [31], thus, by using the user model this problem could be fixed.

There are different types of personalization systems. Feng and Junghoo [32] have proposed a

personalized framework user model to formalize users’ interests and preferences with their click

history on search results. And at the end they computed page rank on multiple topics for ranking

10

the results. The work in [32, 33] is concerned with user model personalization on short-term and

long-term user needs documents without considering the level of document correlations and is

simply derived from query matching. Because the studies show that most of the users are not

willing to make explicit feedback on search results and their interests [32], search engines try to

collect user preferences implicitly and automatically. In [10] Sun et al. proposed a mechanism

for personalized ranking based on implicit feedback regarding user preferences from web access

logs. They showed how site structure can make better results from access logs in CiteSeer

academic search engine and also they showed personalized ranking is better than the other

ranking features. Our work is a combination of explicit and implicit feedback and preferences

from the user.

Personalized systems require knowledge about users which can be expressed as a user model

which is a set of preferences from a user. Figure 2.1 is a generic (application-independent) User

Modeling architecture proposed by Kobsa and Fink (2006) [3, 34]. This model contains two

main functional components: user-adaptive application and User Modeling, which is our main

focus in this research. User Modeling is responsible to make and maintain user models for

storing different information about users such as: their goal, plan, and preferences. Also, we can

make more assumptions from existing information. A user-adaptive application will deliver

personalized services (e.g. personalized flight recommendation) to the users via internet, and is

based on User Modeling systems.

11

Figure 2.1- A Generic User Modeling Architecture [3]

In this thesis, we have developed a user-friendly interface for adding, updating and

removing preferences with different properties in real time. In addition, our User Modeling

system is utilized to support personalized ranking process to select and invoke web services.

2.3 Personalization and Recommender Systems

Personalized systems require accurate modeling of users’ interests and needs. Such systems

can make tailored results for the user. A typical example of a personalized system is a

recommender system [35], which recommends items which users may like based on user

profiles. The results will be collected by exploiting users’ past history and interaction with

different resources. Recommender systems have different types. One of the classifications

contains three categories: content-based filtering [35, 36], collaborative filtering [35, 37,38], and

hybrid recommendation. In content-based filtering, the new recommendation is based on

previous ratings and items selected by the user. Content-based methods are designed mostly for

12

text-based items and they contain some keywords in the model. There are different techniques to

implement content-based filtering: Bayesian classification [39], machine learning techniques,

including clustering, decision trees and neural networks [40], data mining [41] etc. The content-

based recommendation method has several limitations:

 Limited content analysis: there are some limitations for the features related to objects, so the

content must be in a form that could be parsed automatically like texts, or features that could

be assigned manually. For example, automatically assigning for multimedia, such as movies

and images is difficult, because they are not text. Moreover, because of the limitation in

resources manually assigning is not practical. Another problem with content-based approach

is that, if you are assigning the same keywords or features to two different items, they are

not distinguishable, so you cannot find which one is better and closely related

(semantically).

 Overspecialization: it occurs when a user does not have any experience with the item. For

example, when a user does not have any experience with horror movies and wants to try one

for the first time, the system cannot recommend anything so it offers a random choice.

 New user: a new user has no ratings, and therefore cannot receive the correct

recommendation.

The collaborative filtering method comes from the ratings of previous similar users. In this

method, the systems will try to find peers of users. For instance, when two users have the same

tastes in movies, they would rate the same movies similarly. Algorithms for collaborative

filtering can be grouped in two categories: memory-based (or heuristic based) and model-based

[42]. Memory-based algorithms use heuristics and are based on the previous ratings by the users.

Model-based algorithms use the collection of ratings for learning the model. After that we can

13

use the algorithm for making rating prediction. For this prediction, we use probabilistic models

in two ways: Cluster models and Bayesian models. In cluster model, we cluster the same users in

a group and their ratings are independent. In the Bayesian model, each item in the domain is a

node in a Bayesian network, and the state of each node is the rating values for each item.

Collaborative filtering systems have some limitations:

 New user problem: the same problem as mentioned above in content-based systems for new

users. One solution for that is using a hybrid approach, which is the combination of content-

based and collaborative systems.

 New item problem: collaborative filtering is based on user preferences, so when we have a

new item without any rating it would be difficult.

 Sparsity: it means that the number of ratings is less than the predictions, and the availability

of users in the same place and time. One solution is to collect their profile information while

collecting the similarity information.

Hybrid recommendation is the combination of content-based recommendation and

collaborative filtering which can help to decrease the number of problems that we explained

before for both content-based and collaborative methods. We can classify the combination of

content-based and collaborative methods in four ways [6]:

1- Performing content-based and collaborative methods separately and then just combining the

prediction.

2- Adding the content-based characteristics to collaborative systems.

3- Adding collaborative characteristics in content-based systems.

4- Merging content-based and collaborative characteristics in one model.

14

Recommender systems can give users high quality recommendations if they have been made

based on user preferences. The task of collecting user’s preference information is typically called

the User Model (UM) [8], and can be done in two ways: explicit and implicit. Explicit data is

collected by asking from users explicitly. Implicit data refers to applying different mechanisms

to collect data by monitoring observable user’s behaviours [8]. Hybrid data is the combination of

those two approaches to make the UM more accurate because explicit data needs the user’s effort

to complete the forms. However, researches show that users do not devote much effort to

complete them. Also implicit data sometimes involve incorrect translation from user’s

behaviours. But the combination of these two approaches can make a concrete solution to the

users’ preferences [40], which is the method that we use in our user model solution for web

services. The characteristics of the user model can lead to better recommendations with higher

quality to the users. For instance, if our UM has a lot of accurate information which is up-to-date,

it will affect the quality of the top k results. The quality means offering services which are closer

to the user’s preferences and interests. As we mentioned before, our User Modeling system can

be used in different areas such as recommender systems. And based on our former explanations

on recommender systems and User Modeling, each recommender system can support a

collection of user models. It means that user models are specialized for specific content or

products in the recommender systems (flights, movies, etc.), and one of the specific

implementation techniques for recommender systems that we explained before (collaborative

filtering, content-based, etc.) [35]. This work focuses on making a User Modeling system for

web service selection.

15

2.4 Web Services and Quality of Services

According to W3C (World Wide Web Consortium), web service ―is a software system

designed to support interoperable machine-machine interaction over a network‖ [43]. Web

services are self-containing systems that exist on the internet, and they could be building blocks

for other applications and software systems on the Internet [44]. They can interact with each

other regardless the fact that they are based on different platforms and run by different protocols.

Today, web services represent the core technology for e-businesses. They have the ability of

making the whole business process a reality over the network. This brings customers, suppliers

and partners together to successfully achieve the business goal.

Web services can interact with other software agents by using XML messages to exchange

information. Some examples of the web services are travel and hotel reservation, auction, ticket

purchase, and so on. There are three defined XML standard technologies for web services:

WSDL, UDDI, and SOAP [45]. Web service Definition Language (WSDL) is a protocol or

language for describing the interfaces of web services and is the format for processing them in

the machine. The shortcoming of this technology is the limitation as different versions of

services attempt to communicate dynamically over the network. As McIlralth and Martin (2003)

demonstrated [46], to overcome this problem, we must bring semantics to web services. This can

be accomplished by developing new technologies to express and fully describe contents, objects

and their interrelations on the internet. Some of the languages that were created for this purpose

are Resource Description Framework (RDF) [47], RDF Schema (RDFS) [48], Web Ontology

Language (OWL) [49] and Web Ontology Language for Services (OWL-S) [50]. The overall

benefit of using these languages is to express the semantics of the web services; for instance,

OWL-S has been developed to describe web services by defining general domain classes and

16

properties [51]. The main goal of Semantic web service is giving a robust and meaningful

description to the web services. Semantic Web extends web services’ functionality by giving

information well-defined meanings, and by helping both human and computing systems

cooperate with each other.

SOAP (Simple Object Access Protocol) is an XML-based standard over Hypertext Transfer

Protocol (HTTP) and other internet protocols to exchange web services’ information between

requesters and providers. UDDI (Universal Description, Discovery and Integration) is a standard

for indexing business registry of web services on the internet, and provides keyword-based

searching on services, which is called tModels. Figure 2.2 shows the relation between three

standards of web service [52]. Commonly UDDI enables businesses to publish their service

listings over the internet and also makes it possible to interact with each other. UDDI registry is

a repository for web services and could be used as a database for all of their information.

Providers publish WSDL for their services in the UDDI registry, and requesters can access the

services by using SOAP. Furthermore UDDI can reduce the integrity and time consumption

between them [53].

Business Registry

UDDI

XML Repository

WSDL

Application Server

HTTP GET

HTTP SOAP
HTTP POST

locates

describes

Figure 2.2- The relation between SOAP, WSDL, and UDDI [52]

17

Users’ interaction with the web services could be stored in log files which are located in the

client side or server side and contains web usage by the users. The client side log file can collect

all of the usage data for the individual user on all of his/her interactions with different web

services. On the other hand, the server side log file can collect all of the interactions from

different users on the web services which are hosted by the server. There are different types of

usage data, such as, browsing history, click-through data, and so on [54, 55, 38]. In our work, we

have used the log files for collecting user’s data implicitly from user’s history, and also we have

made our log files work with our user model. We will go through them in the next chapter.

Quality of Service (QoS) refers to the mechanism to enable web services to respond to

invocations in a proper way. QoS tries to make an appropriate answer for any requests with

mutual expectations from providers and users. Each service may offer a different choice of

quality of services based on the technical requirements; also here QoS is part of non-functional

requirements. QoS is the most important and critical part of web services because of the dynamic

and unpredictable nature of web services, and all efforts on web services aim to find a way to

adjust QoS based on users’ tastes to make better results for requests. According to Mani [44],

there are some key elements for supporting QoS in web services (Figure 2.3). Also more detail of

different attributes with all of the classifications in Quality of Services can be found in Appendix

A [58].

18

Figure 2.3- Key elements for supporting QoS in web services [44]

2.5 Web Service Selection and Recommendation

Recommendation algorithms can be used in web services in different ways: for service

selection and ranking, for QoS prediction, etc. In [57], Averbakh, Krause and Skoutas calculated

the scores of web services based on the feedback from similar users. In [13], Zheng et al. used

collaborative filtering for the prediction purpose. They proposed WSRec, a Web service

recommender system to predict the QoS value a user may experience based on other similar

users’ experiences. In [38], Zhang proposed a collaborative filtering based service selection

algorithm. The similarity calculation is based on similar users on the past QoS queries and actual

invocations. The recommendations to the users are based on their matching similarity degrees

with similar users in the past. In our work we consider the previous history of a user and we

recommend items by only considering his/her history.

Accessibility
Conformance
to Standards

Availability

Performance Integirity Reliability

Security
Transactional

ity Scalability

19

2.6 Understanding WSDL in a UDDI Registry

To complete the required information in our user model implicitly, the knowledge about

source of data is required. WSDL and UUDI are two main data sources for our work, which are

related to each other. WSDL is a description of services and contains a definition of operations

and messages for binding them to each other. UDDI registry provides a method to describe

businesses (providers) and their services. UDDI supports different types of services and does not

have direct access to WSDL; therefore mapping WSDL into a UDDI registry is needed. There

are four primary data types in the UDDI registry [52]:

- BusinessEntity: includes information about business (business is a provider in our case)

- BusinessService: includes technical and business description for a web service

(BusinessService is a web service in our case)

- BindingTemplate: references to one or more tModel.

- tModel: is a technical definition for a service.

WSDL documents are divided in two types:

- Service interface: a description of a service about types, import, message, portType, and

binding elements.

- Service implementation: contains service elements and at least has a reference to service

interface and describes an instance of a service.

Now if we want to publish a WSDL for UDDI registry, service interface in WSDL will be

published as a tModel in a UDDI registry and service implementation will be published as a

businessService. This is the way that WSDL document will map to a UDDI registry.

20

2.7 Summary

In this chapter, we explained the research works related to the User Modeling and web

service personalization. To the best of our knowledge, there is no comprehensive works on

making a user model for web services. In our approach as a novel idea, we will design a user

model for web services, explicitly and implicitly, which can be used in different aspects of web

service selection. Our user model will cover non-functional requirements on any kind of web

services by emphasizing quality of services through a central mechanism.

21

CHAPTER 3

USER MODELING FOR WEB SERVICE SELECTION

3.1 Introduction

As we mentioned before in this research, we are going to propose a unique and comprehensive

User Modeling system for web service selection. In this chapter, we will explain the process in

different steps from collecting data to ranking services and presenting the results to the user. The

chapter is organized as follows: (i) selecting user profile properties, (ii) collecting user data for

user profiles implicitly and explicitly, (iii) calculating the similarity between user model and web

services, and (iv) performing the personalized ranking process based on user’s request.

3.2 User Model Properties

The User Modeling for web services should be based on user requests and needs to cover all

of the user preferences for any kinds of web services. To address this issue, the generic user

model for representing users’ profiles is required, and a User Modeling system has a set of user

profiles for different users. A user profile contains the collection of relevant characteristics

related to a specific user, and a set of user profiles comprises the user model in the web

environment. The User Modeling system could be used for personalization; in our work we are

using it for web service selection.

As we mentioned before, web service properties are categorized in two groups: functional

and non-functional properties. Functional properties include semantic information, inputs,

outputs, pre-conditions and effect, etc. Non-functional properties typically focus on qualities and

22

characteristics of the service. Quality of Service (QoS) is the most common type of non-

functional properties, which include: availability, security, reliability, performance, etc. The

whole list can be found in Appendix A [58]. Non-functional requirements enforce constraints on

the design time. In general, functional properties contain the description of what the system

actually can provide, and non-functional properties capture how the system is supposed to do the

functional part. For example, in the case of a flight booking service, booking a ticket is the

functionality and might be constrained by a reliable agent (reliability as a non-functional

property) and by response time of the invocation (as a non-functional property) [59]. Our User

Modeling system only captures the non-functional preferences of the users.

The first step to make a generic User Modeling system for web services is collecting a set of

non-functional properties, which are crucial for decision making to express user requirements

when selecting web services. The most important source for collecting non-functional service

properties is from the service provider or a third party (third party such as: network monitoring

agency, a registry, a certification authority, etc.). After our study on different sources for

providers and third parties, we made a list of mandatory non-functional properties, which cover

preferences on providers and preferences on services. We save their values from different

services in our provider information repository and service information repository.

Provider-related properties can be represented as a 4-tuple component:

 pName: identifies the names of the provider’s preferred by the user, and is based on the

effective top level domain of the server, and they are available in the UDDI registry or a

third party. The type of data for pName is a set of nominal data.

𝑷𝒓𝒐𝒗𝒊𝒅𝒆𝒓 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔: 〈𝑝𝑁𝑎𝑚𝑒, 𝑝𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑝𝐻𝑖𝑠𝑡𝑜𝑟𝑦, 𝑝𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦〉

23

 pLocation: determines the location of each provider based on the physical location of the

provider’s server. The information can be found in the UDDI registry or the third party. The

provider location itself includes two elements as defined here:

pContinent and pCountry show the continent and the country of the provider respectively

and each provider can have one location at a time. The type of the stored data is set of nominal

data.

 pHistory: represents the provider history which is the life time for each provider. This

information could be found under each provider’s description in the UDDI registry or a third

party.

 pPopularity: shows the provider popularity among various requestors. Popularity could be

measured by how frequent services from this provider are invoked or the number of service

requestors by looking at the log file or provider invocation history [4].

Service related properties can be represented as an 8-tuple component:

 sLanguage: states the language(s) of the output from a service. This information can be

found in the WSDL repository on the server side.

 sHistory: indicates the service history, which means the length of the time that the service is

existing and can be found in the UDDI registry.

 sFreshness: expresses the service freshness, which is the last time that the service has been

updated.

𝑷𝒓𝒐𝒗𝒊𝒅𝒆𝒓 𝑳𝒐𝒄𝒂𝒕𝒊𝒐𝒏: 〈𝑝𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡, 𝑝𝐶𝑜𝑢𝑛𝑡𝑟𝑦〉

𝑺𝒆𝒓𝒗𝒊𝒄𝒆 𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔: 〈
𝑠𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝑠𝐿𝑖𝑓𝑡𝑇𝑖𝑚𝑒, 𝑠𝐹𝑟𝑒𝑠𝑛𝑒𝑠𝑠, 𝑠𝑅𝑎𝑡𝑖𝑛𝑔, 𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦,

 𝑆𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑠𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒, 𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
〉

24

 sRating: denotes the service rating, which is the average rating for a service by all users in

its life time. A larger number means a higher rating.

 sPopularity: shows the service popularity. The calculation is the same as provider

popularity. A larger number shows a higher popularity.

As we stated before, non-functional properties of services include various QoS attributes. In

our work because of the dataset that we used for the experiment (Seekda) and also the available

QoS values from in this dataset, we have selected three QoS parameters for service properties:

 sAvailability: represents the service availability, which measures the degree of service

accessibility and functionality when the user requests it. A larger number is better.

 sResponseTime: is the elapsed time between the end of a request to a service and the

beginning of the service’s response time. In other words, it is the total waiting time before

the service begins to respond to the user. A smaller response time is better because it means

the waiting time for the user is less.

 sDocumentation: shows whether the service is well documented in WSDL or not (such as:

API explanation). A well-documented service has a more complete functional description

than services without or with poor documentation, so that the functional matching for these

kinds of services is more accurate and the services have higher chances to be retrieved by

requestors. The type of the data is a set of nominal data.

Figure 3.1, shows the hierarchical structure of the fundamental non-functional properties

that we have chosen for our User Modeling system in this research:

25

Figure 3.1- The structure of our selected non-functional properties

3.3 User Model Data Collecting

In the previous section, we have reviewed all of the required properties for user preferences

in our User Modeling system with their data types. Now we need to collect the source data for all

of the properties.

As we explained before, explicit data collection has some problems such as: some users are

not willing to answer all the questions in a form, they don’t have any idea or background about

N
o

n
-F

u
n

ct
io

n
al

 P
ro

p
er

ti
es

Provider Properties

pName

pLocation

pContinent

pCountry

pHistory

pPopularity

Service Properties

sLanguage

sHistory

sFreshness

sRating

sPopularity

QoS Attributes

sAvailability

sResponseTime

sDocumentation

26

the question, and sometimes their answers do not reflect their interests. Thus we need to propose

an implicit user data collection in the user model. Here both explicit and implicit data collecting

are explained.

3.3.1 Explicit User Preference Data

In the personalization mechanism explicit preference declarations would be possible by

asking the user (by indicating the consent) to complete a series of forms and questions. Then we

can sort and save all of them in the user profile. In other words, the explicit user model stores the

information elicited from the user’s favourites [60].

In a user-centric service selection system designing a good user interface is very important.

The reason is that, on one hand, it should be compatible with all of data sources, and on the other

hand, it should not put too much burden on users to complete complex forms. Therefore, in the

user model design time, we have considered these points and have added some guided process

for the user [61].

Upon navigating our profile input forms, a user can explicitly specify his/her preferences in

a personalized system for a set of pre-defined questions with different options. Or if the user

leaves them unspecified, in which case, it is the system’s responsibility to complete them

implicitly by considering the user’s previous history information. We have divided our forms into

two parts: part one is the information related to the provider and part two is the information

about the service. The system will save users’ preferences under their names in the database, and

the users can change them later on. The details of the form design will be discussed in Chapter 4.

27

3.3.2 Implicit User Preference Data

For implicit data collection the same preference information as in implicit can be extracted

or calculated from the usage logs.

As we explained in Chapter 2, there are different types of usage data that can be used in User

Modeling systems. In search engine systems different types of data collection such as the click-

through data and searching history data have been used to increase the accuracy in the search

results [55, 38]. Similarly in our work we need to analyze service invocation logs to discover

user’s interests and preferences and extract them [38].

3.4 Implicit User Modeling

In this section we will go through the implicit User Modeling process in detail, which is one

of the most important parts of the work. We will first present our system architecture design, then

describe the User Modeling process, and finally discuss how we can use the generated user

model to implement a personalized service ranking system.

3.4.1 System Architecture

 The main components of the system reside on the server side, which in our case is an

extended UDDI registry, and the user interface components are located on the user side. This

architecture has extended from the Zhang’s work [38] based on our assumptions and definitions.

The architecture model of our system is shown in Figure 3.2.

28

Server-Side

User-Side

Search UI
User

Prefernce UI

User Logs User QoS

Explicit User

Profiling

Invocation Log QoS Repository

Selecting and

Ranking

Component

Personalized

Ranking

Component

Service

Repository

Provider

Repository

Result UI

User

Modeling

Component

Implicit User

Profiling

User-side Proxy

Log Collection QoS Collection

Figure 3.2- System Architecture

On the user side, we have a user-side proxy to relay all the user requests to the server. It can

collect the usage data in the log files. Also the proxy collects the actual QoS data by monitoring

invocations and that information will be saved in the QoS repository. The proxy component can

be installed on the client machine.

29

There are two main processes performed on the server side: User Modeling process, and

personalized ranking process. The User Modeling process includes three components: explicit

profiling, implicit profiling, and user modeling component. In fact, implicit and explicit

components are two sub-components of user modeling component. A user can have access to the

user preference interface to complete his/her preferences. All of the preferences will go to the

explicit profiling component for processing. On the other hand, implicit user profiling

component will complete all of the user’s preferences by using logs and repositories. Then the

user modeling component will combine all of the collected preferences from both explicit and

implicit user profiles, and will send them to personalized ranking component.

The personalized ranking process includes two components: service selecting and ranking

component and personalized ranking component. When the user searches for a service through

the search UI, the request will be sent to proxy to save them in the log and in the meantime, the

request goes to the selecting and ranking component. At first all the available services just based

on the user’s request will be selected and ranked in this component and then those services will

be sent to the personalized ranking component. The personalized ranking component will re-rank

those services based on the generated user preferences from user modeling component and

information from service repository and provider repository. The top k (k=10) personalized

results will be sent to the result interface for the user’s knowledge.

3.4.2 Log Data Processing

Now we have designed the system architecture and identified all of the relationships

between different components. If a user enters all the necessary information for generating the

user profile, the entered information will be saved as the user profile. It is a simple process, and

30

it will be explained in more detail later when we discuss our system implementation and the

interface design. If a user does not enter any information or only enters partial information, the

implicit profiling component will be called to generate the implicit user profile. In this section,

we will explain how we process the log data.

3.4.2.1 Fuzzy Representation of User Preferences

Before we move on to discuss the implicit User Modeling process, we need to explain the

data types for representing the user preferences. For instance, we want to know the user

preference on the provider life time. Suppose the unit for life time is year. We can ask this

question in different ways. We could ask user to enter the exact number of years (e.g. 3 years), or

a range of the years (e.g. > 3 years and < 10 years), or a fuzzy value which represents a range of

years in a relative way (e.g. long). To define an exact number, users have to have some

knowledge about the data distribution, which is usually difficult for the users. Therefore a more

reasonable option and an easier way for users would be to use fuzzy values. In the user interface

we demonstrated user preferences by an n-point Likert scale for required attributes, which

includes 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 as well [62]. For this particular property (i.e. provider life time), we

have selected a 4-point Likert scale (𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑠𝑜𝑟𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑛𝑔). The reason is that

by analyzing the year of establishment for all of the providers from our testing dataset, we found

that four is a good choice. We will explain our chosen fuzzy Likert scales for all other properties

in Chapter 4.

31

3.4.2.2 Implicit Data Formulation

As we previously mentioned, our user model includes a list of properties which are common

for all requestors. Here is the list of provider related and service related properties:

 Provider-related:

 Provider Name

 Provider History

 Provider Location

 Provider Popularity

 Service-related:

 Service History

 Service Language

 Service Rating

 Service Popularity

 Service Freshness

 Service QoS attributes (QoS value)

Suppose there are 𝑀 users registered in our system, 𝑁 providers in the provider directory

and 𝑄 services in the service directory. Also we should remember each service is associated with

one provider. The set of users could be represented as 𝑈 = *𝑢1, 𝑢2, 𝑢3⋯𝑢𝑀+ where 𝑢𝑖 is the i-th

user in the set. The set of providers could be represented as 𝑃 = *𝑝1, 𝑝2, 𝑝3⋯𝑝𝑁+ where 𝑝𝑗 is the

j-th provider. In addition, the set of services could be represented as

𝑆 = {𝑠1, 𝑠2, 𝑠3⋯𝑠𝑄} where 𝑠𝑘 is the k-th service in the set. Because of the relation between

32

providers and services we can show them as a correlation: for each 𝑝𝑗 ∈ 𝑃 there is a list of

services {𝑠𝑗1, 𝑠𝑗2 , 𝑠𝑗3 … 𝑠𝑗ℎ} 𝑆, where 1 ≤ 𝑗 ≤ 𝑄.

In our implicit User Modeling process, for each property, we define how we can calculate

the user preference based on the past invocation history. The following describes the calculation

methods for all the non-functional properties we include in this work.

 Provider

 Provider Name

To calculate user 𝑢𝑖’s preference on the provider name, we need to track user’s history. The

first step is going through the invocation log to count all the services invoked by this user in the

past. Then we count all of the providers associated with those services from the provider

directory. By calculating the invocation frequency on provider 𝑝𝑗 by user 𝑢𝑖 and comparing this

with a threshold (𝑇 𝑁) value we can know whether this user has preference on this particular

provider. We go through the list of all providers to check their invocation frequencies to get the

set of providers the user preferred (𝑃𝑁𝑢). The provider name frequency is calculated as follows:

where 𝑃𝑁𝐹𝑝 represents the invocation frequency on provider 𝑝𝑗, 𝑁 𝑣𝑝 represents the number of

invoked services from 𝑝𝑗 by 𝑢𝑖, and 𝑁 𝑣 in the denominator represents the number of all

invoked services by 𝑢𝑖 from all providers. If 𝑃𝑁𝐹𝑝 𝑇 𝑁 , then this provider would be in the

list of provider name preferences for 𝑢𝑖, but if none of the providers has met the threshold, then

the provider name preference property for 𝑢𝑖 would be 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. 𝑇 𝑁 is a pre-defined

𝑷 𝒑𝒋 =
𝑁 𝑣𝑝
𝑁 𝑣

, (3.1)

33

number, which shows the lower boundary in the conditions to check the frequency. The value

could be assigned in the implementing time based on the number of services and providers in the

repositories. All the possible results on provider name on user 𝑢𝑖 (𝑃𝑁𝑢) are as follows:

 Provider History

The steps for calculating the user preference on the provider history are similar as those

for the provider name, but in the provider directory we should find the established date for each

provider instead of the provider name. Before going through the actual calculation, we need to

explain the method of calculating provider’s life time. The calculation formula is as follows:

Where 𝐿𝑇𝑝 represents the life time of provider 𝑝𝑗. Based on the values of 𝐿𝑇𝑝 , we can

categorize the providers in different nominal sets: providers with short lifetime, medium

lifetime and long lifetime. The boundary range for each nominal set would be defined in the

user model implementation time by considering all of the providers’ life time. We can now

compute the provider history frequency by using this formula:

where 𝑃𝐻𝐹 represents the history frequency for each category (𝑠𝑜𝑟𝑡, 𝑚𝑒𝑑𝑖𝑢𝑚 𝑙𝑜𝑛𝑔), how

many services have been invoked for each category. 𝑁 𝑣 represents the number of invoked

services by 𝑢𝑖 from each category: short, medium or long life time, and 𝑁 𝑣 in the denominator

𝒐𝒖𝒕𝒑𝒖𝒕(𝑷 𝒖𝒊): 𝐴 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑒𝑡 *𝑝1, 𝑝2, ⋯ , 𝑝𝑛+ 𝑃 , 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑳 𝒑𝒋 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑎𝑡𝑒 𝐷𝑎𝑡𝑒 𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠𝑒𝑑 𝑇𝑖𝑚𝑒𝑝𝑗 (3.2)

𝑷 (𝒔𝒉𝒐𝒓𝒕 𝒎𝒆𝒅𝒊𝒖𝒎 𝒍𝒐𝒏𝒈) =
𝑁 𝑣(𝑠ℎ𝑜𝑟𝑡 𝑚 𝑖𝑢𝑚 𝑙𝑜𝑛)

𝑁 𝑣
, (3.3)

34

represents the total number of all invoked services by user 𝑢𝑖. After calculating 𝑃𝐻𝐹 for each

lifetime category, the result needs to be compared with a threshold (𝑇) value. For instance,

if the value of 𝑃𝐻𝐹𝑠ℎ𝑜𝑟𝑡 is bigger than the threshold value, then the user preference on provider

history would be short. If PHF values for two categories are greater than the threshold, the user

preference on provider history would be both of them, for all the rest of conditions user

preference would be 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. Below shows the possible results for provider history

and 𝑃𝐻𝑢 represents provider history on the user 𝑢𝑖.

 Provider Location

Since in our work we don’t need all of the details on the address, we have decided to

divide it into two parts: the continent and country for each provider. If the user has not entered

any preferences for the provider location, we need to calculate it based on his/her history. After

discovering all of the services which have been invoked by this user in the past from his/her

invocation log, the providers’ location could be found in the provider information directory.

The formulas for provider location frequency on continent x (𝑃𝐿𝐹 𝑜𝑛𝑡𝑖𝑛 𝑛𝑡), and provider

location frequency on country y (𝑃𝐿𝐹 𝑜𝑢𝑛𝑡𝑟𝑦) for 𝑢𝑖 is as follows:

where 𝑁 𝑣 𝑜𝑛𝑡𝑖𝑛 𝑛𝑡 represents the number of invoked services from 𝑐𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡𝑥 by user 𝑢𝑖 ,

and 𝑁 𝑣 𝑜𝑢𝑛𝑡𝑟𝑦 represetnts the number of invoked services from 𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑦 by user 𝑢𝑖. Also,

 𝒖𝒕𝒑𝒖𝒕(𝑷 𝒖𝒊): 𝑠𝑜𝑟𝑡 , 𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑙𝑜𝑛𝑔 , 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑷𝑳 𝒄𝒐𝒏𝒕𝒊𝒏𝒆𝒏𝒕𝒙 =
𝑁 𝑣 𝑜𝑛𝑡𝑖𝑛 𝑛𝑡

𝑁 𝑣

(3.4) ,
𝑷𝑳 𝒄𝒐𝒖𝒏𝒕𝒓𝒚𝒚 =

𝑁 𝑣 𝑜𝑢𝑛𝑡𝑟𝑦
𝑁 𝑣

,
(3.5)

35

𝑁 𝑣 in the denominator represents the number of all invoked services by user 𝑢𝑖. A provider

can have only one location. Then, by looking at those providers who have met the threshold

(𝑇), 𝑃𝐿𝐹 𝑜𝑛𝑡𝑖𝑛 𝑛𝑡 𝑇 or 𝑃𝐿𝐹 𝑜𝑢𝑛𝑡𝑟𝑦 𝑇 , we can make two lists of the provider

locations for user 𝑢𝑖. However, if none of the providers have PLF values greater than or equal

to the threshold 𝑇 , then the provider location preference for user 𝑢𝑖would

be 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. All the possible results on provider location on user 𝑢𝑖 (𝑃𝐿𝑢) are as

follows:

 Provider Popularity

As we explained earlier, provider popularity is the level of popularity on each provider by

all users. We need to find invoked services by 𝑢𝑖 from the invocation log and find their related

providers from the service directory. Afterwards, from the provider directory, we need to count

all of the providers for this user. From the invocation log we should count all of the service

invocations on provider 𝑝𝑗. The formula for provider popularity calculation is as follows:

where 𝑃𝑃𝑝 represents the provider popularity on provider 𝑝𝑗, and 𝑁 𝑣𝑝 represents the number

of all service invocations on provider 𝑝𝑗 by all users, also 𝑁 𝑣 in the denominator represents

the number of all service invocations on all providers by all users. Similar to the provider

history, we need to categorize the provider popularity in three ranges: low, medium and high.

Then we should calculate provider popularity frequency with this formula:

 𝒖𝒕𝒑𝒖𝒕(𝑷𝑳𝒖𝒊): 𝑇𝑤𝑜 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑒𝑡𝑠 *𝑝1, 𝑝2, ⋯ , 𝑝𝑛+ 𝑃, 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑷𝑷𝒑𝒋 =
𝑁 𝑣

𝑁 𝑣
, (3.6)

36

where 𝑃𝑃𝐹 represents the popularity frequency for each category (low/medium/high), 𝑁 𝑣

represents the number of invoked services by user 𝑢𝑖 for services with low, medium or high

popularity, and 𝑁 𝑣 in the denominator represents the number of all invoked services by user

𝑢𝑖. After that, based on the results for low, medium or high, if one of them has passed the

threshold (𝑇): 𝑃𝑃𝐹 𝑇 , it defines the user preference on the provider popularity. If the

combination of two of them have met the threshold, both of them are considered as user

preference, for the rest of conditions the user preference would be 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.

There could be multiple preferences if more are bigger than threshold. All the possible

results on provider popularity on user 𝑢𝑖 (𝑃𝑃𝑢) are as follows:

 Service:

 Service History

Service History is about the life time of the service, therefore we need to go through the

invocation log and find all the invoked services by 𝑢𝑖. We will then be granted access to the

detailed information about each service in the service directory. After finding all the invoked

services by user 𝑢𝑖 the services need to be categorized. As we described in the provider

history, the life time for each service could be in a different scope: short, medium or long. The

formula for calculating the history frequency on 𝑢𝑖 for 𝑠𝑘 is as follows:

𝑷𝑷 𝒍𝒐𝒘 𝒎𝒆𝒅𝒊𝒖𝒎 𝒉𝒊𝒈𝒉 =
𝑁 𝑣(𝑙𝑜𝑤 𝑚 𝑖𝑢𝑚 ℎ𝑖 ℎ)

𝑁 𝑣
, (3.7)

 𝒖𝒕𝒑𝒖𝒕(𝑷𝑷𝒖𝒊): 𝑙𝑜𝑤 , 𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑖𝑔 , 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

37

where 𝑆𝐻𝐹 represents the history frequency in each category (short, medium, long), 𝑁 𝑣

represents the number of invoked services by user 𝑢𝑖 for services with short, medium or long

life time, and 𝑁 𝑣 in the denominator represents the number of all invoked services by 𝑢𝑖.

The difference between 𝑆𝐻𝐹and 𝑃𝐻𝐹is that in 𝑆𝐻𝐹 the provider for each service is not

important. After calculating the history frequency, we need to compare them with the

threshold (𝑇) to check whether it satisfies the condition 𝑆𝐻𝐹 𝑇 . If two of them have

met the threshold the user preferences would be both of them are considered as user

preferences, in the rest cases user preference would be 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. The summary of all

possible results could be shown as:

 Service Freshness

Similar to the service history, we can find the service’s last updated time from the service

directory. To calculate service freshness, evaluating the service’s last updated time is needed,

where 𝐿𝑈𝑠 represents the last time that this service has been updated:

After calculating 𝐿𝑈𝑠 , we can categorize services in different sets: low, medium and high.

The boundary could be assigned in the implementation time based on all of the services. The

𝑺 𝒔𝒉𝒐𝒓𝒕 𝒎𝒆𝒅𝒊𝒖𝒎 𝒍𝒐𝒏𝒈 =
𝑁 𝑣(𝑠ℎ𝑜𝑟𝑡 𝑚 𝑖𝑢𝑚 𝑙𝑜𝑛)

𝑁 𝑣
, (3.8)

 𝒖𝒕𝒑𝒖𝒕(𝑺 𝒖𝒊): 𝑠𝑜𝑟𝑡 , 𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑙𝑜𝑛𝑔 , 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑳 𝒔𝒌 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑎𝑡𝑒 𝐿𝑎𝑡 𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒𝑠 (3.9)

38

unit could be day, month or year. In this step, calculating service freshness frequency is

needed: (low, medium, high)

In this formula, 𝑆𝐹𝐹 shows service freshness frequency for each category

(low/medium/high), 𝑁 𝑣 represents the number of invoked services by user 𝑢𝑖 for services

with low, medium or high last updated time, and 𝑁 𝑣 in the denominator represents the

number of all invoked services by user 𝑢𝑖 on all providers. Then, by comparing all of the

numbers by threshold (𝑇), 𝑆𝐹𝐹 𝑇 ; if it is greater than the threshold, it indicates the

user preference on service freshness for user 𝑢𝑖. If two of them have met the threshold those

two would be user preferences, for the rest of conditions user preference would be

 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. All the possible results on service freshness on user 𝑢𝑖 (𝑆𝐹𝑢) are as

follows:

 Service Language

We have a list of languages in our database which is shown as: *𝑙1, 𝑙2, 𝑙3⋯ 𝑙 + = 𝐿.

Tracking the language(s) of each service would be the same as service history. The difference

is that in the service directory we are looking for service languages instead of the service

established time. The next step is calculating language frequency on invoked services for each

language by user 𝑢𝑖:

𝑺 𝒍𝒐𝒘 𝒎𝒆𝒅𝒊𝒖𝒎 𝒉𝒊𝒈𝒉 =
𝑁 𝑣(𝑙𝑜𝑤 𝑚 𝑖𝑢𝑚 ℎ𝑖 ℎ)

𝑁 𝑣
 (3.10)

 𝒖𝒕𝒑𝒖𝒕(𝑺 𝒖𝒊): 𝑙𝑜𝑤 , 𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑖𝑔 , 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

39

In this formula, 𝑆𝐿𝐹𝑧 shows the service language frequency on language z, 𝑁 𝑣 represents

the number of services with 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝑧, and 𝑁 𝑣 in the denominator represents the number

of all invoked services by user 𝑢𝑖. The next step is comparing all the results with threshold

(𝑇). If 𝑆𝐿𝐹𝑧 𝑇 , then the language used in calculation is the preferred language(s) by

the user 𝑢𝑖. However, if the result was empty, the preference on the service language for user

𝑢𝑖 would be 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. All the possible results on service language on user 𝑢𝑖 (𝑆𝐿𝑢) are

as follows:

 Service Rating

As we explained before overall service rating comes from rating or voting from all the

users who have invoked this service. Access to user rating would be possible from the service

repository. At first, we have to go through the log file to find those services that have been

invoked by user 𝑢𝑖 by looking at the ratings through the service directory. For different

services and considering some boundaries, we should divide them into different scopes of

low, medium and high. It is possible in the implementation time, depending on the volume of

ratings, to decide on the boundaries. The formula to calculate user rating frequency is as

follows: (low, medium, high)

𝑺𝑳 𝒛 =
𝑁 𝑣(𝑙 𝑛 𝑢)

𝑁 𝑣
 (3.11)

 𝒖𝒕𝒑𝒖𝒕(𝑺𝑳𝒖𝒊): 𝐴 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑒𝑡 *𝑙1, 𝑙2, ⋯ , 𝑙𝑛+ 𝐿 , 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑺 𝒍𝒐𝒘 𝒎𝒆𝒅𝒊𝒖𝒎 𝒉𝒊𝒈𝒉 =
𝑁 𝑣(𝑙𝑜𝑤 𝑚 𝑖𝑢𝑚 ℎ𝑖 ℎ)

𝑁 𝑣
, (3.12)

40

where 𝑆𝑅𝐹 represents user rating frequency for each category (low/medium/high) for user 𝑢𝑖,

𝑁 𝑣 represents the number of services invoked by 𝑢𝑖 with low, medium or high rating, and

𝑁 𝑣 in the denominator represents the number of all invoked services by 𝑢𝑖. The next step is

comparing all the results with threshold (𝑇). If just one or two categories have met the

threshold, 𝑆𝑅𝐹 𝑇 , then results show the rating, but for the rest of conditions the results

would be 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. All the possible results on service rating on user 𝑢𝑖 (𝑆𝑅𝑢) are as

follows:

 Service Popularity

Service popularity is similar to provider popularity. The formula for service popularity

calculation is as follows:

where 𝑆𝑃𝑠 represents the service popularity on service 𝑠𝑘 , and 𝑁 𝑣𝑠 represents the number

of all invocations on all services by all users. Also 𝑁 𝑣 in the denominator represents the

number of all service invocations on all providers by all users. Similar to provider history, we

need to categorize the provider popularity in three ranges: low, medium and high the only

difference is instead of calculating all invocations on providers we should compute it for

services in the service directory. The frequency formula is represented as:

 𝒖𝒕𝒑𝒖𝒕(𝑺 𝒖𝒊): 𝑙𝑜𝑤 , 𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑖𝑔 , 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑺𝑷𝒔𝒌 =
𝑁 𝑣𝑠
𝑁 𝑣

, (3.13)

41

where 𝑆𝑃𝐹𝑢 represents service user rating frequency for user 𝑢𝑖, 𝑁 𝑣 represents the number of

invoked services by 𝑢𝑖 for services with low, medium or high popularity, and 𝑁 𝑣 represents

the number of all invoked services by user 𝑢𝑖. After 𝑆𝑃𝐹 𝑇 , if one or two of them have

met the threshold (𝑇), this would be the user preference. For the reset of possible

conditions the user preference would be 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. All the possible results on service

popularity on user 𝑢𝑖 (𝑆𝑃𝑢) are as follows:

 QoS attributes

In Chapter 2, we have listed all of the quality of service attributes for web services. At

first, we should find out a set of attributes that the user has a requirement on by using this

formula:

This formula will return the preferred attribute 𝑎𝑡𝑡ℎ that the user 𝑢𝑖 has preference on.

𝑁𝑄 𝑡𝑡 represents the number of queries having a request on 𝑎𝑡𝑡ℎ by user 𝑢𝑖,and 𝑁𝑄 in the

denominator represents the number of all submitted queries by 𝑢𝑖. For each acquired attribute

from 3.15, there is a definition on value fuzzy terms, for example low, medium or high. After

setting up the boundaries for all attributes’ values we should find the user’s preference on

𝑺𝑷 𝒍𝒐𝒘 𝒎𝒆𝒅𝒊𝒖𝒎 𝒉𝒊𝒈𝒉 =
𝑁 𝑣(𝑙𝑜𝑤 𝑚 𝑖𝑢𝑚 ℎ𝑖 ℎ)

𝑁 𝑣
, (3.14)

 𝒖𝒕𝒑𝒖𝒕(𝑺𝑷𝒖𝒊): 𝑙𝑜𝑤 , 𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑖𝑔 , 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝒂𝒕𝒕𝒉 =
𝑁𝑄 𝑡𝑡
𝑁𝑄

 (3.15)

42

𝑎𝑡𝑡ℎ by using formula 3.16, where 𝑄𝑜𝑆𝐹 𝑡𝑡 shows the selected 𝑎𝑡𝑡ℎ attribute frequency in

the User Modeling system for user 𝑢𝑖 for service in category (low/medium/high):

where 𝑁 𝑣 𝑡𝑡 represents the number of invoked services with low, medium or high values on

𝑎𝑡𝑡ℎ by user 𝑢𝑖, and 𝑁 𝑣 in the denominator represents the number of all services associated

with a query from 𝑢𝑖. If one or two of the fuzzy values for 𝑄𝑜𝑆𝐹 𝑡𝑡 have passed the threshold

(𝑇 𝑡𝑡) in this formula, 𝑄𝑜𝑆𝐹 𝑡𝑡 𝑇 𝑡𝑡 , then the value for that specific QoS will be

defined. For the rest of conditions would be 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. We should note that the range

and the number of the fuzzy values in different attributes are different. All the possible results

on QoS for specific attribute on user 𝑢𝑖 (𝑄𝑜𝑆𝑢) are as follows:

3.4.3 Personalized Service Ranking

In the earlier sections, we have designed our User Modeling system with user preferences on

a set of non-functional properties. The user model could be generated explicitly by asking users

to complete the user preference forms or implicitly by calculating from past invocation history

data. Now, we need to calculate the similarity between all user preferences in the User Modeling

system and services.

3.4.3.1 Similarity Calculation Between User Modeling system and Services

 𝒐𝑺 𝒂𝒕𝒕𝒉 =
𝑁 𝑣 𝑡𝑡 ()

𝑁 𝑣
, (3.16)

 𝒖𝒕𝒑𝒖𝒕(𝒐𝑺𝒖𝒊): 𝑙𝑜𝑤 , 𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑖𝑔 , 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

43

Whenever a user submits a service request to the system, after the functional matching is

done based on user’s functional requirements, our personalized ranking component will do the

similarity calculation. The similarity calculation is between user’s non-functional preferences

saved in the User Modeling system and the actual non-functional property values of the

functionally matching services. These services will be ranked on their similarity scores and the

services with high matching degrees with the user profile will be ranked higher. In this section

we will explain this similarity calculation process.

Suppose the user profile of 𝑢𝑖 ∈ 𝑈 contains 10 non-functional properties, which could be

represented as:

We explained before the first four properties represent: the user preferred provider name,

provider history, provider location and provider popularity respectively. Also, 𝑃𝑁𝑖 and 𝑃𝐿 𝑖 can

have more than one value and could a set 𝑃𝑁𝑖 = *𝑝𝑛1, 𝑝𝑛2, 𝑝𝑛3⋯𝑝𝑛𝑛+, 𝑛 1, 𝑛 ≤ 𝑁; and

𝑃𝑁𝑖 = {𝑝𝑙1, 𝑝𝑙2, 𝑝𝑙3⋯𝑝𝑙𝑓}, 𝑓 1, 𝑓 ≤ 𝐹; for the provider name and the provider location,

respectively.

The next five components are mainly used to show service properties including its history,

freshness, language, rating and popularity. Also 𝑆𝐿𝑖 can have more than one value and could

appear as a set 𝑆𝐿𝑖 = *𝑠𝑙1, 𝑠𝑙2, 𝑠𝑙3⋯𝑠𝑙𝑛+, 𝑛 1.

The last property 𝑄𝑜𝑆 𝑡𝑡 includes all of the QoS attributes preferred by user 𝑢𝑖. In this

research, because of the data source that we are using, three attributes have been defined:

availability, documentation and response time. On the other hand, each service 𝑠𝑘 ∈ 𝑆 also can

be represented as a 10-tuple with the same 10 properties, which is shown as below.

𝑢𝑖 = 〈𝑃𝑁𝑖, 𝑃𝐻𝑖 , 𝑃𝐿𝑖 , 𝑃𝑃𝑖 , 𝑆𝐻𝑖 , 𝑆𝐹𝑖, 𝑆𝐿𝑖, 𝑆𝑅𝑖 , 𝑆𝑃𝑖 , 𝑄𝑜𝑆 𝑡𝑡 〉

44

In order to compare the similarity between the service and the user profile, we need to

compare their similarities on each property separately first, and then get the overall similarity

value. Next we will explain how we calculate the similarity for each property.

 Provider:

 Provider Name (PN)

The value for the provider’s name in the user model for user 𝑢𝑖 could be more than one and

we should match them with services’ provider names one by one. Consider 𝑃𝑁𝑖 as a set of

provider names: 𝑃𝑁𝑖 = *𝑝1, 𝑝2, 𝑝3⋯𝑝𝑛+ where 𝑝𝑛 ∈ 𝑃 and 𝑖 0, 𝑛 ≤ 𝑁; since 𝑃 is the active

domain of providers, the cardinality of the set is finite. Based on user preferences (both explicit

and implicit), different scenarios may happen.

Firstly, if the cardinality of the set 𝑃𝑁𝑖 was zero, which means the preferred name on the

𝑃𝑁𝑖 for 𝑢𝑖 in the User modeling system is 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. Secondly, if at least one of the

providers in the user preferences from the set 𝑃𝑁𝑖 was the same as the provider’s name of the

service, the degree of similarity would be one. Finally, if none of the providers’ names in user

preferences in UM was the same as the provider of the service, the degree of similarity for 𝑃𝑁𝑖

would be zero. The following similarity equation shows various possible conditions and degrees

of similarity results between user 𝑢𝑖 in the user model and one of the services on the provider

name 𝑃𝑁𝑖, where 𝑆𝑖𝑚 𝑁(𝑢𝑖 , 𝑠𝑘) represents the similarity degree on the provider name between

the user (𝑢𝑖) preference and the service.

𝑠𝑘 = 〈𝑃𝑁𝑘, 𝑃𝐻𝑘 , 𝑃𝐿𝑘 , 𝑃𝑃𝑘, 𝑆𝐻𝑘, 𝑆𝐹𝑘 , 𝑆𝐿𝑘, 𝑆𝑅𝑘 , 𝑆𝑃𝑘, 𝑄𝑜𝑆 𝑡𝑡 〉

45

 Provider Location (PL)

Provider location includes a 2-tuple: 〈𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦〉. In order to define the similarity

degree between user 𝑢𝑖 and 𝑠𝑘 on provider location, different scenarios may occur. The user can

select more than one provider location and for each selection different conditions can happen: 1-

continent has been specified, but country has not been specified, 2- both continent and country

are specified, 3- none of them have been specified by the user which means 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.

Based on these conditions and the provider directory, there will be different similarity results.

Figure 3.3 shows the flowchart of them:

Continent
found

Country
found

EndStart Location
Continent
specified

Country
specified

0 0.5 0.5 0.5

1

Y

NN N N

Y Y Y

As a result of the above algorithm, the values for the similarity degree on the provider

location 𝑆𝑖𝑚 (𝑢𝑖 , 𝑠𝑘) would be:

𝑆𝑖𝑚 𝑁(𝑢𝑖 , 𝑠𝑘) = {

𝟏 𝑂𝑛𝑒 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑜𝑛 𝑃𝑁𝑖 𝒓 𝑛𝑜 𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝟎 𝑁𝑜 𝑆𝑖𝑚𝑖𝑙𝑎𝑟 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑜𝑛 𝑃𝑁𝑖

𝑆𝑖𝑚 (𝑢𝑖 , 𝑠𝑘) = {
𝟏
𝟎. 𝟓

𝟎

 , 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 1

Figure 3.3- Provider Location flowchart

46

 Provider History (PH)

To calculate the similarity degree on the provider history and some of the other properties, we

need to assign fuzzy values to our Likert scale [62] variables. Provider history is in a 4-point

Likert scale with different domains of 〈𝑛𝑜𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑠𝑜𝑟𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑛𝑔〉. To calculate

similarity degree we don’t need to consider 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, and the fuzzy values for short,

medium, and long are 0, 1, and 2, respectively. To calculate the similarity degree between fuzzy

values, we adopt the array of semantic similarity proposed by Chen and Singh [63, 64] as shown

in formula 3.15. There are some modifications have been made for this research.

Where 𝑆𝑖𝑚 shows the similarity degree between the user (𝑢𝑖) preference and a service (𝑠𝑘)

on provider history. We have changed the size and values of the array to better fit our work. If the

user preference has not been given by the user, this means 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 and the default

similarity value will be set as 1. The values in the above matrix represent their similarity in

evaluating the service’s provider history from the user preference with a web service. For

instance, in the first row and second column the value of the array is 0.7, which means the

semantic similarity for user 𝑢𝑖 and service 𝑠𝑘 on provider history will be 0.7. In other words,

when the user preference on provider history is long and the actual provider history of the service

is medium, their similarity is 0.7. Also, if the similarity has not been found, the value would be

zero.

 Provider Popularity (PP)

 𝒔𝒌

𝑆𝑖𝑚 (𝑢𝑖 , 𝑠𝑘): 𝒖𝒊

2 1 0
2
1
0

[
1 0. 0
0. 1 0.
0 0. 1

]

(3.17)

47

Provider popularity can be considered as a 4-tuple Likert scale

〈𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑐𝑒, 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑖𝑔〉. The calculation is similar to provider history and we

consider low, medium, high with 0,1,2, respectively. The rest of the process is the same as the

provider history.

 Service:

 Service History (SH)

The similarity calculation for service history is similar to the provider history.

 Service Freshness (SF)

The similarity on service freshness is the same as the service history.

 Service Language (SL)

The user can have preference on more than one service languages and the set of service

languages could be shown as 𝑆𝐿 = {𝑙1, 𝑙2, 𝑙3⋯ 𝑙𝑓}, 𝑓 ≤ 𝐹. When the user has preference on some

specific languages, the similarity degree for those services containing user’s preferred languages

are one and the rest would be zero. If the user has 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 the similarity degree for all

services would be 1, and if there was not any similar services the result is zero. All the possible

similarity degrees could be shown as:

𝑆𝑖𝑚 (𝑢𝑖 , 𝑠𝑘) = {

𝟏 𝑂𝑛𝑒 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑜𝑛 𝑆𝐿𝑖 𝒓 𝑛𝑜 𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝟎 𝑁𝑜 𝑆𝑖𝑚𝑖𝑙𝑎𝑟 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑜𝑛 𝑆𝐿𝑖

48

 Service Rating (SR)

Service rating could be considered as a 6-tuple Likert scale:

〈𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤, 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑖𝑔, 𝑣𝑒𝑟𝑦 𝑖𝑔〉. Without considering

 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, by converting them to the proportional values in the fuzzy scale the values

would be 0,1,2,3,4 for very low, low, medium, high and very high, respectively. To find similar

services by considering the user’s preferred rating, we have adopted the matrix by Chen and pal

Singh [63]. We then modified the cardinality and values in the matrix to fit our problem. The

semantic similarity matrix for service rating is as follows:

When the service rating from user model is 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 , the similarity is 1.

 Service Popularity (SP)

The similarity degree on service popularity is the same as provider popularity and all the steps

are the same and on the services.

 Quality of Services (QoS)

We have listed all of the quality of services in Appendix A, but only here we will go through

the ones that we have access to their data for related web services.

 Service Availability (SA)

 𝒔𝒌

𝑆𝑖𝑚 (𝑢𝑖 , 𝑠𝑘): 𝒖𝒊

4 3 2 1 0
4
3
2
1
0 [

1 0. 0.2 0 0
0. 1 0.3 0 0
0.2 0.3 1 0.3 0.2
0 0 0.3 1 0.
0 0 0.2 0. 1]

(3.18)

49

To calculate the similarity degree of services’ availability, we have a 6-tuple Likert scale:

〈𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑚𝑐𝑒, 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤, 𝑙𝑜𝑤,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑖𝑔, 𝑣𝑒𝑟𝑦 𝑖𝑔〉. Without considering

𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 the converted fuzzy values are: 0, 1, 2, 3 and 4 for very low, low, medium, high

and very high, respectively. To calculate service availability similarity, the matrix is the same as

service rating.

 Service Documentation (SD)

Similarity degree on service documentation is the same as the provider history.

 Service Response Time (SR)

Similarity on service response time is the same as service rating.

3.4.3.2 Total Similarity Calculation

Early parts explained different calculations to find similar services matching with the user

profile on each user model properties. Relevance computations returned different lists of services

based on the similarity degree between user preferences and the actual values of services. In

order to return a single ranked list of services to the user, we need to combine the similarity

degree on each property linearly to get a composite similarity score for the final ranking. The

combination formula is shown below:

In this formula, 𝑆𝑖𝑚(𝑢𝑖 , 𝑠𝑘) represents the total similarity degree between user 𝑢𝑖 and a web

service (𝑠𝑘), based on all of the properties 𝑆𝑖𝑚 (𝑢𝑖 , 𝑠𝑘) represents the similarity degree on each

𝑺𝒊𝒎(𝒖𝒊, 𝒔𝒌) =∑ 𝑛 𝑆𝑖𝑚 (𝑢𝑖 , 𝑠𝑘)

𝑛

𝑖 1

; (1 2 ⋯ 𝑛 = 1) (3.19)

50

property for user 𝑢𝑖 in the User Modeling system and service 𝑠𝑘 and 𝑎𝑛 shows each of the

properties. 𝑛 is coefficient which determines the weight for each property and it depends on the

significance we can decide on them in the design time. Also, 𝑛 is the number of properties that

has been considered.

Based on the above formula, we can calculate the overall similarity score between the user

profile and the service. We can rank all the services based on their matching degrees with the

user profile. In this way, personalized ranking can be achieved. The top k results are most likely

complying with user’s interest and preference, which makes the selection result more accurate

and takes user less time to locate the desired services.

3.5 Summary

In this chapter, we proposed the architecture of our User Modeling approach with all of the

required properties in terms of different variables and their operators. Moreover, in this chapter

we explained all of the non-functional properties which are crucial for decision making on

service selection. The way of collecting data explicitly and implicitly for every single property

had been considered. Finally, the method of making a personalized ranking list of top k services

according to the user preferences was presented. In the next chapter, the implementation and

experiment part will be explained.

51

CHAPTER 4

IMPLEMENTATION AND EXPERIMENT

4.1 Introduction

As we discussed before the main contribution of this thesis is to make a user model for

personalized web service ranking. In this chapter, we demonstrate the implementation on the

explicit User Modeling and the personalized ranking system. We also conducted some

experiments to measure the performance of the personalized ranking algorithm. This chapter

includes two parts, in the first part we will go through various steps of the implementation, and

in the second part we will explain the experimental design and different parameter settings and

the final results.

4.2 Implementation

4.2.1 Programming Environment

The framework has been developed as a windows-based application, using the Java

language, in the Eclipse environment. In the database part, we used MySQL workbench 5.2 to

make directories as a database and also using it to help users interact with the user model and

input their preferences on various non-functional properties.

4.2.2 Interface Design to Get User’s Explicit Preferences

User Interface (UI) design in User Modeling system is very important, because this is the

way that the user can interact with the system. In this work we design a simple User Profile

52

solicitation interface which is understandable for users at any level. Our user model interface has

a multi-layer and modular architecture to increase its customization level. Figure 4.1 shows the

preliminary schema of the interface and also the relation between different pages; we will go

through them in details in the next section.

Sign in Sign up User preference Search Result

Our user model interface consists of five layers: sign in, sign up, user preference

specification, search, and result presentation. The first layer defines the sign-in page. If the user

is new to the system, he/she should go to the second layer which is the sign-up page. In the sign-

in page the current user should enter the user name and password to login in. The user can go

either to the search page or to his/preferences page from this page. The first time when a user

signs up to the system, he/she should specify the user preferences, and later user preferences

could be updated when necessary. We explain different layers by making a sample user (user

test). Figure 4.2 presents the sign-in page for this sample user.

Figure 4.1- User Modeling system interface schema (GUI schema)

53

 Figure 4.2- Layer 1 of User Modeling system interface: sign-in

Then the second layer, as shown in Figure 4.3, illustrates the sign-up form. The sign-up

layer is just for new users and it is mandatory to answer starred (*) questions. From this page

they go to the preference page, also it is possible to reset their information in the page by

clicking the reset button.

Figure 4.3- Layer 2 of User Modeling system interface: sign-up

54

The third layer, which is the most important layer in the User Modeling system interface, is

user preference specification. As we explained before about user preferences, this layer contains

two parts, provider preferences and service preferences. Provider preferences part includes all the

properties related to the provider. The service preferences part includes two sections: general

properties and QoS properties. For those properties which work with Likert Scale, we added an

information button to explain the value range for each scale. Figure 4.4 shows an example which

is for provider history.

 Figure 4.4- Provider history scales

The complete list of all possible selections for all of the properties, based on the source of

the dataset that we are using for the experiment are shown in Table 4.1.

Table 4.1- properties and ranges

Property Value ranges of its scales

Provider History (year) short: <=1.5, medium: 1.5 < and <=3, long: >3

Service History (year) short: <=1.5, medium: 1.5 < and <=3, long: >3

Service Freshness (month) low: <=6, medium: >6 and <=12, high: >12

Service Rating (range) very bad: >=0, bad: >1, medium: >2.5, good: >=3.5, excellent: >=4.5

Service Availability (percent) very bad: >=0, bad: >50, medium: >70, good: >=80, very good: >=95

Service Response time (ms) very low: >=0, low: >=700, medium: >750, high: >=770, very high: >=790

55

As we explained before, there are different types of data in provider and service preferences

such as: ordinal, nominal, etc. To represent them in the interface of the User Modeling system

we have converted them in two schemas: multiple-choice items and drop-down list. In multiple-

choice items, the user can select one item at a time. In the drop-down list, the first item is

𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, and when it has been selected adding the other items is impossible. The user

can add any number of items that he/she is willing into the right-hand list. Figure 4.5 shows

provider preference and general service preference.

 Figure 4.5- Layer 3 of User Modeling system interface: user preference (1)

56

 Since there are many QoS attributes and we can add them to the user model, and also QoS

is the most important part of web services, we made a new page for them. In the second page of

the third layer, there are all of the supported QoS attributes. For instance, in our work, because of

the source of dataset that we used for our experiment, we chose three QoS attributes. We

converted them to multiple-choice items to show them in the user preferences. Also we are trying

to make it clear for the user; therefore, we added an explanation to the relevant QoS attributes on

this page to facilitate it. Figure 4.6 represents the second step of user preferences layer.

Figure 4.6- Layer 3 of User Modeling system interface: user preference (2)

57

The forth layer defines the search page. The user would be forwarded to this page by

clicking on ―submit‖ button in the second page of the user preferences or from the sign-in page

by clicking on the ―search‖ button. The search page includes keyword selection which is an item

to lead the system to produce results compatible with user’s functional requirement, e.g. finance,

economics, travel, etc. Search page, ideally should be text box where the users can type in any

words, but here for the experiment purpose, we have dropped-down menu selection. The user

will be guided to this page from sign in page, or from user preference page for the new users.

Search page is shown in Figure 4.7. When the ―search‖ button is clicked, the functional matching

services will be ranked based on the explicit user profile if the user has specified his/her non-

functional preferences through these interfaces, or the implicit user profile generated from the

past invocation histories if the user has chosen to skip the user preference specification step.

Figure 4.7- Layer 4 of User Modeling system interface: search

The fifth layer is the result layer, which shows the ranked result list. The sample of the result

page with an example will be shown in the sample query in section 4.3.2.

4.3 Experiment

The main purpose of the experiments in this work is evaluating the accuracy of the

personalized service ranking algorithm based on our generated user model. In other words, we

58

want to show that by using our system, users can find more relevant results matching their

preferences. To implement all of the proposed algorithms in chapter 3, we need to have access to

the invocation and query logs collected from real users. However, it is hard to find such a

dataset. Due to the time constraints, we also didn’t have time to run the simulation to generate

the log data. Therefore in the experiment, we only test the explicit User Modeling system and run

the personalized ranking algorithm on the explicit user profile. Also our User Modeling system,

can find similar services for each property, by using the formulas in personalized ranking section

in chapter 3 (3.4.3). Then for total similarity of for each service we used formula 3.19 and we

considered all the coefficients (𝑖) equal to 0.1. Because we have 10 properties in our User

Modeling system and we assumed equal weight for all of them.

4.3.1 Dataset

Currently there is no public UDDI registry that we can query. Based on our research, Seekda

[65] is the most comprehensive global search engine for public web services. Seekda is an

Austrian search engine for web API (web services at the moment) and web services. The services

are collected by the focused crawling process and some of their QoS values are daily monitored.

Seekda includes 7739 providers and 28606 services over more than 28000 descriptions to date

(Aug.02.2011). The outstanding point about Seekda is that the information about a service is

either taken from its WSDL file or from its provider’s website (e.g. by monitoring on its

availability, its wiki description, etc.) [65]. For each provider it contains the real data on its

country, the number of services it published, the actual list of services, its wiki history, etc. The

wiki history is about the different versions of providers. Also for each service there is

information about its provider, the hosting server, its WSDL file, the monitoring time, its rating,

59

etc. In addition, for QoS attributes Seekda covers documentation, availability, and response time.

Monitoring time on web services in Seekda started in 2006. Hence, the oldest web services in our

dataset were published in 2006. All of the services can be tested at Seekda with the Seekda

online tester tool directly. To summarize the benefits of Seekda in comparison with the other

available web service directory resources such as XMethods [66] in the absence of a UDDI

registry, we have listed the following points:

- Not just focusing around the programmatic access to the registry: they make it simple, even

for the first time learner about web service technologies, to explore services and their

specifications.

- Updated availability: there is a mechanism to check the availability of web services to find

whether they are working at a particular time.

- Community feedback: there is a support for community feedback features.

From all the above descriptions of Seekda, we found it the best source for data collection to

test our algorithm. We can search Seekda for web services with their tags (keywords) in different

ways, for instance, based on the provider country, service tag cloud, recent services, and most

used services. We have used all of them in our data collecting.

We have collected our dataset by crawling and monitoring online web services in Seekda

during a six-month period (December, 2010 to May, 2011). Our dataset includes altogether 537

providers and 1208 services; each provider contains at least one service. We used them as our

provider directory and service directory respectively. There are 287 service keywords in our

dataset collection of which we chose 30. We have categorized our web services in three groups

based on the number of services for each group. Group one: 10 keywords with equal to or less

than 50 services per keyword; Group two: 10 keywords with equal to or less than 100 services

60

per keyword; and Group three: 10 keywords with greater than 100 services per keyword. Then

we chose 3 most popular keywords per group as the functional keyword queries, such as

‖traffic‖, ―university‖ and ―travel‖, to test our algorithm. The selected keywords and the number

of services are shown in Figure 4.8.

Figure 4.8- The selected keywords and number of services used in the experiment

As we explained before, we are currently just testing the personalized ranking part of our

model with explicitly collected user profiles. The reason is that, in the first part, we need real

data from log files, which are currently not possible for us to collect. In addition, we collected

the required dataset from Seekda. The reason is that it is the only public web service search

engine with a good number of services in its directory, larger than any other datasets we know

(e.g. XMethods, QWS)[66,67], and it has the web service data on a few non-functional

properties.

Our simulator program, which is the combination of three simulators, was implemented in

Java using Eclipse under Windows XP platform, to generate random users with random user

profiles and random functional queries for each user. Based upon our experiment design, we

Charter Flight 7

Telecommunication 21

Traffic 38

Travel 70

Government 76

Finance 97

Bioinformatics 120

Tourism 140

University 169

61

have generated 60 random users with different random profiles. Randomly generated users have

been clustered in 6 groups, and for each group there is a fixed number of properties and the rest

of them are defined as 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒s. For instance, 10 users have preferences on all non-

functional properties, or 10 users have preferences on two different non-functional properties and

have no preferences on the rest of the properties. The user profile with all non-functional

properties defined as 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 would be the baseline to compare with the other user

profiles. Inside the simulator we used a configuration file to adjust the number of preferred non-

functional properties and related users.

Each query record includes a functional and a set of non-functional requirements. In the

current experiment setting, the functional query makes use of 9 keywords listed in Figure 4.8.

QoS attributes are availability, response time and documentation, which are supported by

Seekda. User’s query is in accordance with user’s functional requirement on the one hand as well

as the non-functional requirements on the other hand. Table 4.2 shows the experiment design for

users and properties. The detail of the experiment design for all of the users is available in

Appendix B.

Table 4.2- Experiment design preferred

Number of Users

(Out of 60)

Number of preferred Properties

(Out of 10)

Number of “𝒏𝒐 𝒑𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝒔”

(Out of 10)

10 1 9

10 2 8

10 4 6

10 6 4

10 8 2

10 10 0

62

4.3.2 Sample Query and Results

We simulated user profiles randomly with possible combinations of different non-functional

properties, and also we had a list of functional queries. In this part we will explain a sample

query on the user test profile that we made in the previous section, and will show that the

personalized ranking results can promote good results to top positions. The summary of user

preferences for user test sample is shown in Table 4.3.

Table 4.3- test user profile

The ranking top 10 results for the user test on query ―finance‖ with the defined preferences as

in Table 4.3 are shown in Figure 4.9. By comparing the ranking of the results with baseline

(𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒), show that by using our personalized ranking algorithm we can offer better

results to the user. Also by asking user’s preferences explicitly we can make the results closer to

user’s taste. Baseline results are shown in Figure 4.10. For instance, service with the ranking

order 27 was promoted to the rank 3 after considering the user’s preference by using our User

Modeling system.

Non-functional

Property
Value

pName 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

pLocation
North America, United states

Europe, France

pHistory Long

sLanguage English, French

sHistory 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

sFreshness 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

sRaiting 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

sDocumentation 𝑔𝑜𝑜𝑑

sResponseTime 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

sAvailability 𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

63

4.4 Evaluation and Analysis of User Modeling System

Since our personalized ranking algorithm adds user’s preferences on top of the original

search engine, we would like to check the accuracy of the system. Suppose our algorithm gets

Figure 4.9- Top 10 result on ―finance‖ for user

test

Figure 4.10- Baseline result for ―finance‖

64

personalized results to top positions, we could use MAP (Mean Average Precision) of these top

10 results in the original baseline run to measure the improvement of the accuracy from our

algorithm.

Mean Average Precision (MAP) is one of the ways to evaluate the performance of the

information retrieval systems and the measure needs a set of queries [68]. MAP has more

discriminative power in compare with the other metrics in information retrieval [68]. AP

(Average Precision) is the average precision value after each relevant result is retrieved. MAP is

used for a set of queries to measure the mean of the APs for each query. In our case, using MAP

can show that personalized ranking can promote good results to top positions. Formula 4.1 shows

AP as follows:

Where 𝐴𝑃 is the average precision of a single query which is the mean of the precision

scores after each relevant service is retrieved, 𝑃(𝑟) is the precision at cut-off r in the list. Here, 𝑟

is the rank list of services, N is the number of retrieved services by using our ranking algorithm

(which is 10 in our experiment design) and 𝑟𝑒𝑙() is the relevancy of each service, which is an

indicator function equal to 1 if the service at rank r is relevant, otherwise is zero [68,69].

Formula 4.2 shows the MAP for a set of queries, where 𝑄 is the number of queries.

In our case, we get the result set when considering user preferences, take the top k (i.e. 10)

results as the relevant result set, and then check the top k results from the baseline run when user

𝐴𝑃 =
∑ (𝑃(𝑟) 𝑟𝑒𝑙(𝑟))𝑁
𝑟 1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠
 (4.1)

𝑀𝐴𝑃 =
∑ 𝐴𝑃(𝑞)𝑄
𝑞 1

𝑄
 (4.2)

65

preferences are not considered, to get its MAP value. When the MAP value is less, it means that

the baseline result is worse than our personalized ranking result. We have calculated MAP in

different aspects.

Table 4.4 shows the results for different keywords with different number of non-functional

preferences defined.

Table 4.4- MAP calculation on each keyword

By analyzing the results in the above table and comparing with the base condition

(𝑛𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒), we found that when the number of preferred properties and the number of

services increase, the MAP value generally decreases. The result of comparison is shown in

Figure 4.11 and 4.12.

Charter

flight
Telecommunication Traffic Travel Government Finance University Tourism Bioinformatics

1
preferred

1.000000 0.655843825 0.516257653 0.327105512 0.22300576 0.271859828 0.142051042 0.211911011 0.152547815

2
preferred

1.000000 0.644020962 0.36759549 0.244404361 0.197175335 0.169476703 0.216093295 0.111420863 0.078058293

4
preferred

1.000000 0.619150869 0.306778718 0.153982517 0.189835893 0.193277768 0.163855861 0.070880691 0.066629246

6
preferred

1.000000 0.467197663 0.292959909 0.247937825 0.175946697 0.086297201 0.110002429 0.07994943 0.123158745

8
preferred

1.000000 0.586770647 0.340984625 0.180187836 0.24431011 0.130214806 0.118819951 0.081314985 0.058700476

10
preferred

1.000000 0.457261 0.334913197 0.250624048 0.196057294 0.14466184 0.10823554 0.079228121 0.064612085

66

Figure 4.11- MAP calculation on different keywords

Also the interesting point is that when the number of services is less than k (k, in top k),

which is 10 in our calculations, the MAP remains 1. For example, in our data base the maximum

number of services on ―charter flight‖ was seven, as a result the MAP equals to one for all the

users (Figure 4.12).

Figure 4.12- MAP comparison on different number of preferences

0.0000000000

0.2000000000

0.4000000000

0.6000000000

0.8000000000

1.0000000000

1.2000000000

M
A

P

Keyword

1

2

4

6

8

10

Of

preferred

properties

0.0000000000

0.2000000000

0.4000000000

0.6000000000

0.8000000000

1.0000000000

1.2000000000

1 2 4 6 8 10

M
A

P

of preferred properties

Charter flight

Telecommunication

Traffic

Travel

Government

Finance

University

Tourism

Bioinformatics

67

All of the numbers and calculations for AP and MAP on different users and groups are

available on Appendix C.

4.5 Summary

In this chapter, we explained our implementation part with all of experiment designs. Also

we used MAP formula to calculate the accuracy of our work by measuring the precision at all the

queries. By investigating all of the above results we showed that using a personalized service

ranking algorithm can offer the users a list of better results.

68

CHAPTER 5

CONCLUSION

5.1 Conclusion

In this thesis, we reviewed different research about User Modeling and web services.

According to our research, there is no comprehensive User Modeling system on non-functional

preferences for web services. This finding motivated us to propose a User Modeling system on

user general preferences and use it for personalized service selection and ranking. The model can

infer implicitly on user preferences based on previous history and invocation data. By using

fuzzy range values to represent user preferences both explicitly and implicitly, the system would

be easier to follow for all the users in any level. Also the matching could cover more potential

useful services which would partially solve the data sparsity problem for many recommender

systems. Our user model is flexible and can be expanded to include more non-functional

properties when their information is available in the source data. Also, the user can add as many

preferences as needed on different properties and the system could support it. To check whether

personalized ranking could improve the selection accuracy, we compare the results with a well-

known service search engine. This search engine does not consider user preferences in its

selection algorithm and is the data source for our testing dataset. The result showed the accuracy

of our algorithm would be better than the original. The result proves that the effectiveness of our

personalized service ranking algorithm and indirectly proves the soundness of our User

Modeling approach.

69

5.2 Main Contributions

The major contributions of our work are as follows:

 To the best of our knowledge, it is a novel idea to propose a User Modeling system on user’s

non-functional preferences on web services. Those are some general preferences which are

not restricted to a particular domain.

 We defined which non-functional preferences are important for the users to select services.

The list of properties and the formulas of how to calculate use preferences on them from

implicit user feedback was explained. The system also supports explicit preference definition

from the user.

 We discussed a sample application about how a user model can be used, which is

personalized service selection and ranking in our implementation. The result of the User

Modeling could also be used in the other facets of web service selection.

5.3 Future Works

There are a few directions that we would like to add to our system. Firstly, due to the time

constraints and the lack of real usage data, we didn’t conduct experiments on proving the

accuracy of the implicit User Modeling part. Therefore, in the future we would like to either find

a real dataset or use some simulation data to test our User Modeling algorithm.

Secondly, we may expand our work to combine with different users’ history as proposed in

[38]. Finally, we would like to implement other applications based on the generated user model,

such as service recommendation, user clustering, etc.

70

APPENDIX A – Hierarchical list of all Quality of Service (QoS)[58]

Q
o
s

fo
r

w
eb

 s
er

v
ic

es

Performance

Processign Time/Excecution Time

Throughput

Response Time

Latency

Dependability

Availability

Accessiblity

Accuracy

Reliability

Capacity

Scalability

Stability/Exception Handling

Roubostness/Flexibility

Integrity
Data Integrity

Transactional Integrity

Regulatory/Interoperability

Security

Accountability

Authentication

Authorization

Tranceability/Auditability

Non-Repudiation

Confidenatiality/Privacy

Encryption

Application-Specific Metrics

71

APPENDIX B – Experiment design for all users

Property/

User
pName pLocation pHistory sLanguage sHistory sFreshness sRating sDocumentation sRating sAvailability

 1 preferred properties and rest no preference

u1 ×

u2 ×

u3 ×

u4 ×

u5 ×

u6 ×

u7 ×

u8 ×

u9 ×

u10 ×

 2 preferred properties and rest no preference

u11 × ×

u12 × ×

u13 × ×

u14 × ×

u15 × ×

u16 × ×

u17 × ×

u18 × ×

u19 × ×

u20 × ×

 4 attributes set and rest No preference

u21 × × × ×

u22 × × × ×

u23 × × × ×

u24 × × × ×

u25 × × × ×

u26 × × × ×

u27 × × × ×

u28 × × × ×

u29 × × × ×

u30 × × × ×

 6 preferred properties and rest no preference

u31 × × × × × ×

u32 × × × × × ×

u33 × × × × × ×

u34 × × × × × ×

u35 × × × × × ×

u36 × × × × × ×

u37 × × × × × ×

u38 × × × × × ×

u39 × × × × × ×

u40 × × × × × ×

 8 preferred properties and rest no preference

u41 × × × × × × × ×

u42 × × × × × × × ×

72

u43 × × × × × × × ×

u44 × × × × × × × ×

u45 × × × × × × × ×

u46 × × × × × × × ×

u47 × × × × × × × ×

u48 × × × × × × × ×

u49 × × × × × × × ×

u50 × × × × × × × ×

 10(all) preferred properties

u51 × × × × × × × × × ×

u52 × × × × × × × × × ×

u53 × × × × × × × × × ×

u54 × × × × × × × × × ×

u55 × × × × × × × × × ×

u56 × × × × × × × × × ×

u57 × × × × × × × × × ×

u58 × × × × × × × × × ×

u59 × × × × × × × × × ×

u60 × × × × × × × × × ×

73

APPENDIX C – Results

This table shows the precision measurements on our personalized ranking system. The

results are the Average Precision (AP) values for 9 single-word queries submitted by different

users. Users are grouped into sections. For each section of users, the bottom row shows the Mean

Average Precision (MAP) value for each query. Also the rightmost column shows the MAP for

each user. At the end of the next page you can find the legend of the table.

Key/user
K1(50)

#service(7)

K2(50)

#service(21)

K3(50)

#service(38)

K4(50-100)

#service (70)

K5(50-100)

#service(76)

K6(50-100)

#service(97)

K7(100)

#service(169)

K8(100)

#service(140)

K9(100)

#service(120)

 Charter flight Telecommunication Traffic Travel Government Finance University Tourism Bioinformatics

u1 1.0000000000 0.5077893868 0.4952301018 0.5039500502 0.2642577028 0.1849157888 0.3039167657 0.4490200792 0.0737966878 0.4203196181

u2 1.0000000000 0.6635629292 0.4719477855 0.2754639338 0.0831034758 0.1655493835 0.0498372723 0.0750927439 0.3640195292 0.3498418948

u3 1.0000000000 0.7181083837 0.5600312049 0.4604461015 0.2642577028 0.3303396298 0.1721919305 0.3343857672 0.0883412222 0.4364557714

u4 1.0000000000 0.7181083837 0.6003084416 0.3486124738 0.2642577028 0.3303396298 0.1721919305 0.1836329897 0.0889132219 0.4118183082

u5 1.0000000000 0.6747590838 0.4806599551 0.1713922104 0.1412979914 0.1501325374 0.0740091111 0.0658356773 0.0706426168 0.3143032426

u6 1.0000000000 0.7181083837 0.3782353285 0.1044034963 0.2082385493 0.1241773565 0.0742290535 0.0523518500 0.1862511356 0.3162216837

u7 1.0000000000 0.7181083837 0.6003084416 0.3486124738 0.2480850049 0.3303396298 0.1721919305 0.2840270960 0.0953245264 0.4218886096

u8 1.0000000000 0.4550131456 0.4422909035 0.4106419234 0.1606625962 0.4848108606 0.2454796549 0.1967634871 0.1749723276 0.3967372110

u9 1.0000000000 0.6667717903 0.5836720487 0.2989199777 0.3316391681 0.2876538381 0.0863880493 0.2941096980 0.1927450172 0.4157666208

u10 1.0000000000 0.7181083837 0.5498923160 0.3486124738 0.2642577028 0.3303396298 0.1750424475 0.1838907204 0.0855041310 0.4061830894

 1.0000000000 0.6558438254 0.5162576527 0.3271055115 0.2230057597 0.2718598284 0.1525478146 0.2119110109 0.1420510416

u11 1.0000000000 0.4156549007 0.3830920550 0.1111789726 0.2027746573 0.2129490556 0.0457222186 0.0541735978 0.0922827532 0.2797586901

u12 1.0000000000 0.6721275048 0.3175015842 0.5332722627 0.2176494081 0.0953892721 0.1267165021 0.1387081836 0.2766597852 0.3753360559

u13 1.0000000000 0.8572546898 0.2298654380 0.1094244053 0.1509889398 0.1520094349 0.0575730042 0.1890632679 0.2413976852 0.3319529850

u14 1.0000000000 0.6417717903 0.4386115355 0.1853892307 0.3316391681 0.2477338797 0.0636020878 0.0553973311 0.1664846156 0.3478477377

u15 1.0000000000 0.6538141923 0.4529439285 0.2707744696 0.2520771948 0.1389875248 0.0834893181 0.1695891059 0.1670359765 0.3543013012

u16 1.0000000000 0.7181083837 0.4250464421 0.1307322300 0.1369738938 0.3199502821 0.0652882639 0.2715732931 0.0878294192 0.3506113564

u17 1.0000000000 0.8572546898 0.2459368666 0.1122545238 0.1194184481 0.1049757774 0.0586309280 0.0672552501 0.5338699870 0.3443996079

u18 1.0000000000 0.4156549007 0.4029604978 0.4009659810 0.1860811357 0.0905309890 0.0556554862 0.0520956670 0.2892259228 0.3214633978

u19 1.0000000000 0.5433730159 0.3980920550 0.3065898541 0.2442724054 0.1662750182 0.0537116484 0.0589461949 0.1829375190 0.3282441901

u20 1.0000000000 0.6651955479 0.3819044955 0.2834616833 0.1298781024 0.1659657923 0.1701934757 0.0574067405 0.1232092817 0.3308016799

 1.0000000000 0.6440209616 0.3675954898 0.2444043613 0.1971753354 0.1694767026 0.0780582933 0.1114208632 0.2160932945

u21 1.0000000000 0.4798412698 0.3830920550 0.1161657100 0.1759016484 0.1747010936 0.0436394100 0.0541272216 0.1798744106 0.2897047577

u22 1.0000000000 0.4156549007 0.2677300674 0.0991950295 0.1294363352 0.1182692772 0.0521958080 0.0577193469 0.1222735149 0.2513860311

u23 1.0000000000 0.8572546898 0.3344259054 0.1749977773 0.1411894859 0.1274236707 0.0763381087 0.0647015906 0.1456780265 0.3246676950

u24 1.0000000000 0.4513763576 0.2515655688 0.1116881714 0.1653422980 0.2824515512 0.0359754139 0.0500425742 0.1165184547 0.2738844878

u25 1.0000000000 0.8572546898 0.2831498443 0.1994574037 0.1779557639 0.1337513939 0.0701009513 0.0758646318 0.1716735878 0.3299120296

74

u26 1.0000000000 0.3500131456 0.3572666589 0.1105054844 0.1599196461 0.1324537624 0.0712680968 0.0500413483 0.0710031827 0.2558301472

u27 1.0000000000 0.7859649123 0.3825082308 0.3693863122 0.3398164697 0.3094763326 0.1574448060 0.0786646767 0.3004694774 0.4137479131

u28 1.0000000000 0.8572546898 0.2298654380 0.1311241509 0.1779557639 0.1249228860 0.0734873351 0.1706492778 0.3021804244 0.3408266629

u29 1.0000000000 0.6209066372 0.2384406379 0.1035805519 0.1173704410 0.0769574581 0.0378936836 0.0546723698 0.1056782444 0.2617222249

u30 1.0000000000 0.5159873950 0.3397427708 0.1237245737 0.3134710798 0.4523702530 0.0479488444 0.0523238743 0.1232092817 0.3298642303

 1.0000000000 0.6191508687 0.3067787177 0.1539825165 0.1898358932 0.1932777679 0.0666292458 0.0708806912 0.1638558605

u31 1.0000000000 0.4437637801 0.2940975850 0.3271580047 0.3855773165 0.0741060278 0.1230058091 0.1409263426 0.1078140505 0.3218276574

u32 1.0000000000 0.4197567354 0.3057378856 0.3007517776 0.1227840984 0.0687668479 0.0380898841 0.0544675432 0.1108219904 0.2690196403

u33 1.0000000000 0.4197567354 0.3910924714 0.1000420887 0.1237565529 0.1083789857 0.0375717398 0.0532412111 0.1085208540 0.2602622932

u34 1.0000000000 0.5911538462 0.3071738364 0.2572904700 0.0858339540 0.0965633739 0.0636096649 0.0834892167 0.1050084055 0.2877914186

u35 1.0000000000 0.3531057371 0.3715799697 0.4256702038 0.0990083271 0.0753592909 0.5638130875 0.0807536945 0.0643367216 0.3370696702

u36 1.0000000000 0.5739652015 0.2600138513 0.3293116663 0.2799774240 0.1329194570 0.0463270747 0.0775909213 0.1523453292 0.3169389917

u37 1.0000000000 0.6169000934 0.2909010510 0.1030649743 0.0785024984 0.0649636550 0.0415050342 0.0498366878 0.1178005060 0.2626082778

u38 1.0000000000 0.4716798123 0.2593116506 0.1477961150 0.0971248508 0.0793349692 0.0548459359 0.0523802682 0.1065611200 0.2521149691

u39 1.0000000000 0.3750131456 0.2228732829 0.1225985979 0.1899747660 0.0680391394 0.0462888914 0.0567237225 0.0795432086 0.2401171949

u40 1.0000000000 0.4068815468 0.2268175058 0.3656943554 0.2969271784 0.0945402584 0.2165303303 0.1500846944 0.1472721067 0.3227497751

 1.0000000000 0.4671976634 0.2929599090 0.2479378254 0.1759466966 0.0862972005 0.1231587452 0.0799494302 0.1100024292

u41 1.0000000000 0.5579761905 0.2903758415 0.2036919588 0.3957311494 0.1363516387 0.0527724379 0.0608801528 0.1764835413 0.3193625457

u42 1.0000000000 0.5713677989 0.3471107999 0.1682427592 0.3007162390 0.1390810724 0.0562776427 0.0899444998 0.1084991141 0.3090266584

u43 1.0000000000 0.6265414651 0.2934752938 0.1049088562 0.1126296125 0.1429788292 0.0418567616 0.0567391058 0.0922389242 0.2745965387

u44 1.0000000000 0.6391971917 0.3231165549 0.1186602549 0.2558170230 0.1306222493 0.0466559128 0.0595633745 0.1917154369 0.3072608887

u45 1.0000000000 0.6102530803 0.3708587443 0.2707549225 0.0822843066 0.1255346876 0.0554426038 0.0856506681 0.0790463315 0.2977583716

u46 1.0000000000 0.4197567354 0.3838660907 0.3072482364 0.1274711708 0.2186658444 0.0848650307 0.1294951733 0.0630246757 0.3038214397

u47 1.0000000000 0.6531113331 0.3248381891 0.1462739562 0.3387071256 0.1151836364 0.0618494106 0.0681893157 0.0663344455 0.3082763791

u48 1.0000000000 0.6873260073 0.3390733673 0.1423438776 0.3072263135 0.0972951307 0.0662659857 0.0900472878 0.1026710777 0.3146943386

u49 1.0000000000 0.6572652786 0.3327055622 0.1671377063 0.4321874528 0.1245961267 0.0811445556 0.1196436039 0.1180401993 0.3369689428

u50 1.0000000000 0.4449113876 0.4044258047 0.1726158304 0.0903307098 0.0718388474 0.0398744194 0.0529966667 0.1901457652 0.2741266035

 1.0000000000 0.5867706468 0.3409846248 0.1801878359 0.2443101103 0.1302148063 0.0587004761 0.0813149848 0.1188199512

u51 1.0000000000 0.4197567354 0.3341070492 0.2235516762 0.1003556499 0.1407368903 0.0776829051 0.0736139024 0.0662398029 0.2706716235

u52 1.0000000000 0.4862317748 0.3335098888 0.1111789726 0.3080033703 0.1008685982 0.0482751315 0.0529809669 0.1067341036 0.2830869785

u53 1.0000000000 0.4173611111 0.3219102727 0.2925010463 0.1332679334 0.2692868952 0.0567789064 0.0481323108 0.1352799343 0.2971687122

u54 1.0000000000 0.5337854251 0.3339417651 0.1304976761 0.2177649067 0.1177249966 0.0470767323 0.2391112791 0.1124747231 0.3035975005

u55 1.0000000000 0.4636291486 0.2790626911 0.1116943389 0.1203033706 0.0752041795 0.0497764181 0.0606257062 0.1615689230 0.2579849751

u56 1.0000000000 0.4364377289 0.3168500471 0.1778373641 0.1096086331 0.1825835992 0.0421941046 0.0507343077 0.0708403747 0.2652317955

u57 1.0000000000 0.6071686157 0.3808090597 0.1131967272 0.0945850014 0.0844791985 0.0451169752 0.0516608446 0.1172206924 0.2771374572

u58 1.0000000000 0.3288476444 0.4159919078 0.6179757505 0.3009258419 0.1784855327 0.1399223615 0.0800998365 0.0922845785 0.3505037171

u59 1.0000000000 0.5365445665 0.3692043325 0.1549553051 0.3777802496 0.1619986191 0.0514926387 0.0816406852 0.0921853968 0.3139779771

u60 1.0000000000 0.3428472478 0.2637449601 0.5728516255 0.1979779802 0.1352498938 0.0878046734 0.0536813679 0.1275268685 0.3090760686

 1.0000000000 0.4572609998 0.3349131974 0.2506240482 0.1960572937 0.1446618403 0.0646120847 0.0792281207 0.1082355398

 MAP

 MAP

AP

AP

75

REFERENCES

[1] G. Fischer, "User Modeling in Human-Computer Interaction," User Modeling and User-

Adapted Interaction, vol. 11, pp. 65-86, 2001.

[2] A. Kobsa, "A Component Architecture for Dynamically Managing Privacy Constraints in

Personalized Web-Based Systems," in Privacy Enhancing Technologies. vol. 2760, R.

Dingledine, Ed., ed: Springer Berlin / Heidelberg, pp. 177-188, 2003.

[3] Y. Wang, "A Framework for Privacy-Enhanced Personalization," Doctoral Dissertation,

University of California, Irvince, Oct. 2010.

[4] P. de Vrieze, "Fundaments of adaptive personalization," PhD thesis, Radboud University

Nijmegen. ISBN-13: 978-90-9021113-8, 2006.

[5] S.E. Middleton, "Capturing knowledge of user preferences with recommender systems,"

Ph.D. thesis, University of Southampton, May 2003.

[6] G. Adomavicius and A. Tuzhilin, "Toward the Next Generation of Recommender Systems:

A Survey of the State-of-the-Art and Possible Extensions," IEEE Trans. on Knowl. and Data

Eng., vol. 17, pp. 734-749, 2005.

[7] A. Kobsa, "Modeling the user's conceptual knowledge in BGP-MS, a user modeling shell

system," Comput. Intell., vol. 6, pp. 193-208, 1991.

[8] A. Kobsa, "Generic User Modeling Systems," User Modeling and User-Adapted Interaction,

vol. 11, pp. 49-63, 2001.

[9] J. Schafer, D. Frankowski, J. Herlocker, and S. Sen, "Collaborative Filtering Recommender

Systems," in The Adaptive Web. vol. 4321, P. Brusilovsky, A. Kobsa, and W. Nejdl, Eds.,

ed: Springer Berlin / Heidelberg, 2007, pp. 291-324.

[10] Y. Sun, H. Li, I. G. Councill, J. Huang, W.-C. Lee, and C. L. Giles, "Personalized ranking

for digital libraries based on log analysis," presented at the Proceeding of the 10th ACM

workshop on Web information and data management, Napa Valley, California, USA, pp.

133-140, 2008.

[11] G.-w. You and S.-w. Hwang, "Search structures and algorithms for personalized ranking,"

Inf. Sci., vol. 178, pp. 3925-3942, 2008.

[12] Y.-H. Yang, Y.-C. Lin, and H. Chen, "Personalized music emotion recognition," presented

at the Proceedings of the 32nd international ACM SIGIR conference on Research and

development in information retrieval, Boston, MA, USA, pp. 748-749, 2009.

[13] P. Zigoris and Y. Zhang, "Bayesian adaptive user profiling with explicit \& implicit

feedback," presented at the Proceedings of the 15th ACM international conference on

Information and knowledge management, Arlington, Virginia, USA, pp. 397-404, 2006.

[14] X. Amatriain, J. M. Pujol, and N. Oliver, "I Like It... I Like It Not: Evaluating User Ratings

Noise in Recommender Systems," presented at the Proceedings of the 17th International

Conference on User Modeling, Adaptation, and Personalization: formerly UM and AH,

Trento, Italy, pp. 247-258, 2009.

[15] A. Kobsa, "Generic user modeling systems," in The adaptive web, B. Peter, K. Alfred, and

N. Wolfgang, Eds., ed: Springer-Verlag, pp. 136-154, 2007.

[16] P. R. Cohen and C. R. Perrault, "Elements of a Plan-Based Theory of Speech Acts*,"

Cognitive Science, vol. 3, pp. 177-212, 1979.

[17] J. F. Allen, "A Plan-Based Approach to Speech Act Recognition," Dept. of Computer

Science, University of Toronto, Canada, Technical Report 131/79, 1979.

76

[18] R. Kass, "Acquiring a Model of the User's Beliefs from a Cooperative Advisory Dialog," in

Dept. of Information and Computer Science, Philadelphia, PA, University of Pennsylvania

,1988.

[19] A. Kobsa. Benutzermodellierung in Dialogsystemen. Berlin, Heidelberg, Springer Verlag,

Spri. 1985.

[20] T. Finin. "GUMS: A General User Modeling Shell," in User models in Dialog Systems," .A.

Kobsa, W. Wahlster Berlin and Ed. Heidelberg: Springer-Verlag, 1989, pp. 411-430.

[21] G. Brajnik and C. Tasso, "A shell for developing non-monotonic user modeling systems,"

Int. J. Hum.-Comput. Stud., vol. 40, pp. 31-62, 1994.

[22] H. Vergara. "PROTUM: A prolog based tool for user modeling," WIS Memo 10, WG

Knowledge-Based Information Systems, Department of Information Science, University of

Konstanz, Germany, 1994.

[23] A. Paiva and J. Self, "TAGUS — A user and learner modeling workbench," User Modeling

and User-Adapted Interaction, vol. 4, pp. 197-226, 1994.

[24] J. Kay. ―UM: A Toolkit for User Modeling,‖ In: Second International Workshop on User

Modeling, Honolulu, HI, 1990, pp. 1-11.

[25] A. Kobsa, D. Müller and A. Nill. "KN-AHS: An Adaptive Hypertext Modeling System

BGP-MS," Proceedings of the Fourth International Conference Modeling, Hyannis, MA,

PP. 99-105, 1994.

[26] A. Kobsa and W. Pohl. "The BGP-MS User Modeling System," User Modeling and User-

Adapted Interaction: The Journal of Personalization Research 4, 59-106, DOI:

10.1007/BF01099428, 1995.

[27] J. Fink. User Modeling Servers- Requirements, Design, and Evaluation. Amsterdam,

Netherlands: IOS Press, 2004.

[28] Group Lens, http://www.grouplens.org/, last retrieved at Aug. 2011.

[29] G. Fischer, "User Modeling: the long and winding road," presented at the Proceedings of the

seventh international conference on user modeling, Banff, Canada, pp. 349-355, 1999.

[30] F. Albrecht, N. Koch, and T. Tiller, "SmexWeb: An adaptive web-based hypermedia

teaching system," J. Interact. Learn. Res., vol. 11, pp. 367-388, 2000.

[31] F. Zhang, Z. Song, and H. Zhang, "Web Service Based Architecture and Ontology Based

User Model for Cross-System Personalization," presented at the Proceedings of the 2006

IEEE/WIC/ACM International Conference on Web Intelligence, pp. 849-852, 2006.

[32] F. Qiu and J. Cho, "Automatic identification of user interest for personalized search,"

presented at the Proceedings of the 15th international conference on World Wide Web,

Edinburgh, Scotland, pp. 727-736, 2006.

[33] A. Micarelli, F. Gasparetti, F. Sciarrone, and S. Gauch, "Personalized search on the world

wide web," in The adaptive web, B. Peter, K. Alfred, and N. Wolfgang, Eds., ed: Springer-

Verlag, 2007, pp. 195-230.

[34] S. Kordumova, I. Kostadinovska, M. Barbieri, V. Pronk, and J. Korst, "Personalized Implicit

Learning in a Music Recommender System," in User Modeling, Adaptation, and

Personalization. vol. 6075, P. De Bra, A. Kobsa, and D. Chin, Eds., ed: Springer Berlin /

Heidelberg, 2010, pp. 351-362.

[35] S. Berkovsky, T. Kuflik, and F. Ricci, "Mediation of user models for enhanced

personalization in recommender systems," User Modeling and User-Adapted Interaction,

vol. 18, pp. 245-286, 2008.

77

[36] M. Morita and Y. Shinoda, "Information filtering based on user behavior analysis and best

match text retrieval," presented at the Proceedings of the 17th annual international ACM

SIGIR conference on Research and development in information retrieval, Dublin, Ireland,

pp. 272-281, 1994.

[37] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, "GroupLens: an open

architecture for collaborative filtering of netnews," presented at the Proceedings of the 1994

ACM conference on Computer supported cooperative work, Chapel Hill, North Carolina,

United States, pp. 175-186, 1994.

[38] Q. Zhang. "Collaborative Filtering Based Service Ranking with Invocation Histories."

Master of Science Thesis (MSc.), Ryerson University, Toronto, Canada, 2011.

[39] R.J. Mooney, P.N. Bennett, and L. Roy, “Book Recommending Using Text Categorization

with Extracted Information,” Proc. Recommender Systems Papers from 1998 Workshop,

Technical Report WS-98-08, 1998.

[40] M. Pazzani and D. Billsus, "Learning and Revising User Profiles: The Identification

ofInteresting Web Sites," Mach. Learn., vol. 27, pp. 313-331, 1997.

[41] J. B. Schafer, J. A. Konstan, and J. Riedl, "Meta-recommendation systems: user-controlled

integration of diverse recommendations," presented at the Proceedings of the eleventh

international conference on Information and knowledge management, McLean, Virginia,

USA, pp. 43-51, 2002.

[42] J.S. Breese, D. Heckerman, and C. Kadie, “Empirical Analysis of Predictive Algorithms for

Collaborative Filtering,” Proc. 14
th

 Conf. Uncertainty in Artificial Intelligence, pp. 43-52,

July 1998.

[43] D. Austin, A. Barbir, C. Ferris, and S.Garg, "Web services architecture requirements", W3C

Working Group Note, W3C, 2002. Available at: http://www.w3.org/TR/wsa-reqs, last

retrieved at Aug. 2011.

[44] M. Papazoglou, Web Services: Principle and Technology (1
st
 ed.), Harlow: Pearson

Education Limited, 2008.

[45] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, "Deploying and managing Web Srvices:

issues, solutions, and directions," The VLDB Journal, vol. 17, pp. 537-572, 2008.

[46] S. A. McIlraith and D. L. Martin, "Bringing Semantics to Web Services," IEEE Intelligent

Systems, vol. 18, pp. 90-93, 2003.

[47] W3C, "Resource Description Framework (RDF)", http://www.w3.org/RDF/, last retrieved at

Aug. 2011.

[48] W3C, "RDF Schema (RDF-S)", http://www.w3.org/TR/rdf-schema/, last retrieved at Aug.

2011.

[49] W3C, "Web Ontology Language (OWL)", http://www.w3.org/TR/owl-features/, last

retrieved at Aug. 2011.

[50] W3C, "Web Ontology Language for Services (OWL-S)",

http://www.w3.org/Submission/OWL-S/, last retrieved at Aug. 2011.

[51] J. Zhou, J. Koivisto, and E. Niemelä, "A Survey on Semantic Web Services and a Case

Study", in Proc. CSCWD, 2006, pp.763-769.

[52] IBM Services Architecture Team, ―Understanding WSDL in a UDDI registry, Part 1‖,

http://www.ibm.com/developerworks/webservices/library/ws-wsdl/, last retrieved at Aug.

2011.

78

[53] J. Wu and Z. Wu, "Similarity-based Web Service Matchmaking," presented at the

Proceedings of the 2005 IEEE International Conference on Services Computing - Volume

01, pp. 287-294, 2005.

[54] G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma, W. Xi, and W. Fan, "Optimizing web

search using web click-through data," presented at the Proceedings of the thirteenth ACM

international conference on Information and knowledge management, Washington, D.C.,

USA, pp. 118-126, 2004.

[55] E. Agichtein, E. Brill, and S. Dumais, "Improving web search ranking by incorporating user

behavior information," presented at the Proceedings of the 29th annual international ACM

SIGIR conference on Research and development in information retrieval, Seattle,

Washington, USA, pp. 19-26, 2006.

[56] W3C Working Group, "QoS for Web Services: Requirements and Possible Approaches",

http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/, last retrieved at Aug. 2011.

[57] A. Averbakh, D. Krause, and D. Skoutas, "Recommend me a Service: Personalized

Semantic Web Service Matchmaking." In: 17th Workshop on Adaptivity and User Modeling

in Interactive Systems,2009.

[58] Y. Wang and J. Vassileva, ―Toward Trust and Reputation Based Web Service Selection: A

Survey,‖ Int’l Trans. Systems Science and Applications, vol. 3, no. 2, pp. 118-132, 2007.

[59] WSMO, "Non-functional properties in Web Services",

http://www.wsmo.org/TR/d28/d28.4/v0.1/, last retrieved at Aug. 2011.

[60] C. Tziviskou and M. Brambilla, "Semantic personalization of web portal contents,"

presented at the Proceedings of the 16th international conference on World Wide Web,

Banff, Alberta, Canada, pp. 1245-1246, 2007.

[61] D. Mobedpour, C. Ding, and C.-H. Chi, "A QoS Query Language for User-Centric Web

Service Selection," presented at the Proceedings of the 2010 IEEE International Conference

on Services Computing, pp. 273-280, 2010.

[62] D. Bertram, "Likert scales",

http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/topic-dane-likert.pdf, last

retrieved at Aug. 2011.

[63] M. Chen and J. P. Singh, "Computing and using reputations for internet ratings," presented

at the Proceedings of the 3rd ACM conference on Electronic Commerce, Tampa, Florida,

USA, pp. 154-162, 2001.

[64] H. Wang, C. Lee, and T. Ho, "Combining subjective and objective QoS factors for

personalized Web Service selection", presented at Expert Syst. Appl., 2007, pp.571-584.

[65] Seekda, "UDDI", http://seekda.com/blog/the-fairytale-of-uddi-registry-and-public-web-

services/, last retrieved at Aug. 2011.

[66] Web Services search engine, "xMethods", http://xmethods.com/ve2/index.po, last retrieved

at Aug. 2011.

[67] E. Al-Masri and Q. H. Mahmoud, "QoS-based Discovery and Ranking of Web Services," in

Computer Communications and Networks, 2007. ICCCN 2007. Proceedings of 16th

International Conference on, 2007, pp. 529-534.

[68] A. Dasdan, K. Tsioutsiouliklis and E. Velipasaoglu, "Web search engine metrics: (direct

metrics to measure user satisfaction)", in Proc. WWW, 2010, pp.1343-1344.

[69] A. Turpin and F. Scholer, "User performance versus precision measures for simple search

tasks," presented at the Proceedings of the 29th annual international ACM SIGIR

http://seekda.com/blog/the-fairytale-of-uddi-registry-and-public-web-services/
http://seekda.com/blog/the-fairytale-of-uddi-registry-and-public-web-services/

79

conference on Research and development in information retrieval, Seattle, Washington,

USA, pp. 11-18, 2006.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2011

	Modeling User's Non-Functional Preferences for Personalized Service Ranking
	Rozita Mirmotalebi
	Recommended Citation

