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ABSTRACT

SCATTER SEARCH ON A DISK

MSc, 2019

Nisha Chopra

Applied Mathematics

Ryerson University

Consider a unit disk with two objects at unidentified locations. We examine the problem

of two or more robots in search of both objects in the wireless communication model. We

begin with two robots and both are needed to carry an object. Subsequently, we design

several algorithms that describe robots trajectories in search of the objects. We were able to

achieve a minimum worst-case search time of 6.7518 and a lower bound of 3 + π
2 .

Additionally, we define two general cases and bound the worst-case search time for both.

The first of the cases is for n ≥ 3 robots and an object can be moved by one robot. The

second case is where we have n ≥ 3 robots and two robots are needed to carry an object.

We achieve an upper bound of 1 + 2π
n + sin (⌊n2 ⌋

π
n) for the first case and an upper bound of

3 + 2π
n + sin π

n for the second case, with lower bounds of 2 + π
n and 3 + π

n respectively.
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Chapter 1

Introduction

A large component of applied mathematics aims to obtain solutions to practical problems

by using optimization models. One such area of mathematics is Search Theory. In search

problems active members, often called mobile agents or robots, explore a domain seeking

out members with unknown locations. Ideally they want to find the optimal time it takes to

locate immobile members, also called targets. There are a multitude of variations in search

problems from types of search, to domain types, to mobility of players, to number of players

and even in the quantities being optimized. The combinations are extensive. The domain of

search problems can be linear, circular or a graph and there exists popular search problems

on all domains. For example, in the famous Cow Path Problem [5] a cow is standing on an

infinite straight line and would like to find a grazing field that she can only see when standing

directly on it. The cow does not know which direction the field lies nor how far she is from

the field. The algorithm explored in the paper aims to minimize the time spent in looking for

the field no matter which direction the field lies. In this problem the mobile agent is the cow

and the immobile agent is the field.
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1.1 Overview of Research

We will commence by giving a brief background and history of the field of Search Theory.

We follow with a description of our problem and lay out our main contributions. We then

explore real life motivations and recent related work in the field.

In Chapter 2, we begin by introducing elementary bounds for the particular problem of

two robots and both robots are required to move any given object. We tighten these bounds

in Section 2.3 and 3.2, while spending some brief time in Section 3.1 exploring the difficulty

involved with tightening the bounds.

In Chapter 4, we go beyond the particular problem and explore bounds for two general

problems. The first of the problems is when we have n robots and each item can be carried

by one robot. The second general problem is when there are n robots and exactly two are

required to move any given object. For each of the problems we discover and prove both

upper and lower bounds.
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1.2 Search Theory

In the famous Cow Path problem, the mobile agent is an independent searcher. However

search can also be performed as a group activity in which there are two or more searchers.

These types of problems are called Group Search and typically they terminate when any

cooperating member locates a target. One variation on Group Search is Evacuation problems.

Evacuation problems terminate when all active members locate a target called an exit [16].

Another variation named Gathering problems, requires mobile searchers to collect a set of

targets and terminates when all items are at the same location. While Gathering problems

can fall under group search, this is not a requirement. It is possible that there is only one

mobile agent searching for one or more targets to collect.

However which way search problems differ, the main objective is locating a target in a

well-defined domain. Linear search is defined on an infinite line where targets are placed

at a distance from the point of origin of the searcher [3]. Circular search is on a disk of

specified size and objects are usually placed on the disk’s perimeter [4]. Search can also

occur in graphs where movement can be one-directional and location is defined by nodal

points [4]. Decisions regarding direction for mobile agents is not solely restricted to graph

search problems. All search is concerned with algorithmic design outlining trajectories of

mobile agents. Trajectories can be defined deterministically or randomly. Randomness

involves probabilistic methods for determining the performance of the algorithm. Algorithmic

performance is defined as either the worst case or the average case cost of finding the hidden

targets [10].

Algorithms determine the trajectories of the mobile agents and in problems where mobile

agents are specifically robots, there is also the question of faulty robots [14]. Faultiness in

Search Theory can be caused by a robot’s inability to properly identify or locate a target or

perhaps a robot is not honest and does not truthfully communicate their findings [11]. In

Group Search, communication is key and can be defined in a couple of ways. Agents can

either communicate wirelessly, at any distance and advise one another of findings in real time

or can communicate non-wirelessly, which is also called the face-to-face to model [16]. In the
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face-to-face model robots cannot communicate until they are both at the same point in the

domain. Combinations of inputs in Search Theory are endless and will continue to grow as

the field advances.
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1.3 Model and Main Results

Here we introduce a particular search problem of the gathering kind denoted as SRCHn,k

in which we have n mobile agents searching for two immobile items hidden on a unit circle.

Henceforth robots, mobile agents and searchers will be used interchangeably. Similarly,

immobile members, items, objects and treasures will be synonymous. The movement of

immobile members is restricted by the number of robots required to carry them. The number

of robots needed to carry immobile items is k (where k ≤ n). Robots search for treasures

and termination occurs once at least k robots and all treasures are in the same location.

Robots’ visibility is minimal and they are unable to see the treasures unless they are standing

directly in front of the object. In this problem, robots can communicate wirelessly and

instantly with one another to announce the discovery of treasures and thus are not required

to search together. Robots move at the same speed of 1. Our solutions are provided with

a deterministic approach and our goal is to minimize the worst case time of locating the

objects and bringing them together.

Worst-case performance analysis of an algorithm has proven to solicit complex approaches

in search problems [3, 4]. In the chapters that follow we attempt to derive the optimal

worst-case time it takes to find two objects and bring them together in SRCHn,k. As will

be seen in Chapters 2,3 and 4, this is difficult to achieve and instead we aim to enclose

this optimal value by providing upper and lower bounds. Lower bounds indicate that no

matter what algorithm is presented, it will not be able to beat that bound for the worst

case. Whereas for upper bounds we are interested in determining a tight upper bound for

a particular algorithm. This is useful as it provides insight as to how poorly the algorithm

can run in the worst case. Furthermore, if the lower and upper bounds match, then we have

determined an algorithm that provides the optimal worst-case completion time.

It is also important to note that not all bounds are useful bounds. For example, in

SRCHn,k since the robots start and the center of a unit disk, move with speed 1, and must

move to the perimeter to begin searching, then an obvious lower bound for any algorithm

would be 1. Clearly, this is not useful as it doesn’t take into account any search on the
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perimeter and is too obvious to provide any insight. So we can improve on this bound. We

present our main results in Table 1 for our problem SRCHn,k. Our results provide some

bounds for searching with a small number of robots as well as an asymptotically large number

of number of robots.

Search on a Disk with two Treasures

n k Upper Bound Lower Bound

1 1 1 + 2π 1 + 2π

2 1 1 + π 1 + π
n ≥ 3 1 1 + 2πn + sin (⌊n2 ⌋πn) 2 + π

n

2 2 6.7518 3 + π
2

n ≥ 3 2 3 + 2π
n + sin π

n 3 + π
n

Table 1.1: Main Results for SRCHn,k
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1.4 Related Work

While search problems assume a modern flair they were first introduced and discussed in

the sixties by Bellman [7] and independently proposed by Beck [6]. Since that time the field

of Search Theory has continued to grow its branches by the countless variations available,

some of which were discussed above. There are basic search problems where termination is

determined once all treasures are found [16]. There are evacuation problems where termination

occurs once all mobile agents find the exit located at an unknown location in the domain.

A more particular evacuation problem is priority evacuation first considered in [12,13].

The problem introduced n + 1 robots searching on the perimeter of a disk for an exit at

an unknown location. The goal was for any of the n + 1 robots to locate the exit so that

the distinguished robot given priority (called the queen) could exit. The queen was able to

participate in the search but could also not participate. The role of a distinguished agent

was new in search problems. The relevance of the paper is modeled in real life situations

where evacuation is critical and in which certain members of society are given priority over

others due to class, hierarchical position or even demographic differences. In many research

problems both the wireless and face-to-face models are reviewed for a small number as well

as an asymptotically large number of robots [13,17,22].

Traditionally in evacuation problems all agents must exit for the algorithm to terminate [10].

This research will present work with some parallels in terms of domain and number of mobile

agents. There are many similarities between search problems and yet small variances provide

large discrepancies in achieving bounds. In reviewing an evacuation problem with two robots

on a disk [9], a worst case upper bound of 5.625 is achieved. Changing the problem to a

gathering model, increases upper bounds significantly as was seen with our results. Similarly,

some variances decrease upper bounds, such as in [14] where an upper bound of 4.779 is

achieved for evacuation on a disk for two non-faulty robots and is optimal.

There are several less typical domains in evacuation problems such as polygons that have

been researched [19]. Robots in non-typical domains such as squares and triangles with sides

of equal length of 1 were explored in [15]. In some search problems robots may be in an
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unfamiliar domain that requires mapping instead of target hunting and the environment may

be modeled by a strongly connected graph [1, 18]. To map an unknown area, robots must

visit and keep track of all nodes and edges [2]. The well known game of Cops and Robbers

studied on graphs has multifarious research beginning with Quilliot [24] and independently

by Nowakoski and Winkler [21] who both explored a cop number of 1. The cop number

is the number of cops required to catch robbers in the domain and is well explored in the

book The Game of Cops and Robbers on a Graph [8]. Research in search theory is extensive

in the field of graph theory and often involves probabilistic measures for locating targets.

Meyniel’s famous conjecture announcing an upper bound for the cop number has been

studied extensively and was recently confirmed for the binomial random graph by Pralat and

Wormald [23].
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1.5 Motivation

Search Theory is applicable to an ample amount of real life problems. It is evident in

search-and-rescue operations and has been explored in [16,17] when robots receive distress

signals. Robots may only be given limited information about the exact location of the

signal. All robots are located at a base camp which is synonymous with points of origin

in the mathematical models and the signals are originating from a distant specific point.

Multiple points of distress can imply that they lie on concentric circles. When the points are

equidistant from the origin then the robots will only need to search the area of a disk which

parallels our problem [16,17]. Search-and-rescue operations occur in a numerous concerning

scenarios such as in rough terrains (mountains), when planes go missing in oceans and even

in combat.

More modern applications conjugate to Machine Learning and AI advancements. Deep

learning algorithms can have circular sub-functions and are require to locate target solu-

tions and time complexity. We are motivated by both benevolent and concomitant future

technological applications and aim to provide bounds that can determine performance if our

algorithms are applied.
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Chapter 2

Problem Definition and Preliminaries

Problem SRCHn,k is a gathering problem in which n robots are searching for two objects

located somewhere on the perimeter of a unit disk and where each object must be moved

by k robots (where k ≤ n). All robots begin the search from the center of the circle and

are able to move anywhere in the domain with an identical speed of 1. Robots are able to

communicate from a distance to notify one another when an object, also known as an item

or treasure, is found. Robot trajectories are described by families of algorithms and the

performance of these algorithms are analyzed so as to determine the completion time of the

search. The completion time is the time it takes until all objects are in the same location.

Feasible solutions are defined as robot trajectories that bring the two treasures together. The

goal is to design an algorithm describing the trajectories of the robots so as to minimize the

worst case completion time over all instances.

We will review several variations of this problem, however we focus more particularly on

a special case where we have two objects, and both n, k = 2, (SRCH2,2). We then generalize

these results and analyze the larger case where we have n ≥ 3 robots and k ∈ {1, 2}, to determine

optimal trajectories. In Mathematics and Theoretical Computer Science performance analysis

of an algorithm is typically measured by the worst case and the average case [4]. We will

present the worst case analysis of all variations of the problem. Worst case analysis regarding

completion time is of concern since we want to know how much time the robots need to

10



locate and gather the objects. Through algorithmic design and the subsequent performance

analysis we aim to enclose the optimal solutions by providing strong upper bounds and lower

bounds for both the general case and the special case. Upper bounds can be obtained by the

analysis of any particular algorithm for a specified problem. The optimal possible solution

will always be less than or equal to that upper bound. Whereas lower bounds provide a

benchmark for all families of algorithms of a problem. Optimal solutions are identified when

the upper and lower bounds match.
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2.1 Notation

We begin by exploring less complex algorithms that follow more obvious trajectories for

the robots, such as the Cooperative Algorithm and the Splitting Algorithm introduced in

section 2.4. These provide evidence and need for more complex behavior of robot trajectories

to enhance algorithmic performance. For simplicity, our domain, the unit circle will be

centered at (0,0) in the Cartesian plane. The locations of hidden objects are identified by

any u, v ∈ [0,2π). Object u, is then at point (cosu, sinu) ∈ R2 denoted by cycle(u). We call

the set of all possible placements of objects collectively as the instances I(u, v) and provide

detailed analytic support for worst case analysis of the instance.

Consider an algorithm A. The performance of A for input I(u, v) is the time it takes

to bring both objects together, which we call the completion time and which is denoted by

CA(I). We design A so as to minimize sup
I
CA(I). Feasible solutions are robot trajectories

that bring both objects together eventually. In our analysis for search when n = k = 2 we

will specify and denote the shortest arc distance from the cycle(0) to the first object found

by x1 and the shortest arc distance from the cycle(0) to the second object found by x2.

Additionally, we will always denote the robot that finds the first item by R1 and the other

robot will then always be R2. Robots move with a speed of 1, so any distance they travel

will also equal the time it took to get there and the time will be denoted as such.

12



2.2 Linepoints and Fetching

Prior to introducing algorithms it is necessary to define two functions; linepoints and

fetching which are denoted by L(A,B, t) and F(F,N,S) respectively. Both functions are

used to describe robot trajectories when searching for objects and once all objects are found.

Linepoints describes a robot’s location when inside the circle and fetching is the time it

takes robots to bring both objects together once it is announced that all objects are found.

Objects are only located on the perimeter of the circle but robots are free to move throughout

the domain. So we require a description of robot trajectories not just on the perimeter but

within the domain. We define this path describing the robots’ location by a function [10]

called linepoints.

Definition 2.2.1. Consider two distinct points A = (ax, ay) and B = (bx, by) ∈ R2 on the

perimeter of the disk. The location of a robot with speed 1 moving along the vector from

point B to point A is given by the following parametric equation, linepoints,

L(A,B, t) = (
ax − bx
∣∣B −A∣∣

t + bx,
ay − by
∣∣B −A∣∣

t + by). (2.2.1)

In Equation (2.2.1) t (where t ∈ R), is amount of time that a robot has spent moving

along the line from point B to A. Linepoints is used as an input in fetching when one

robot is not located on the perimeter but on a line segment connecting some points A and B.

In fetching, F(F,N,S), F indicates the location of the second item found and the robot

that found it, N indicates the location of the other robot and S indicates the location of

the first object found. It is possible that the three points are not distinct. Additionally,

fetching is most useful when the items have been located and only one robot has found the

second item. Fetching is a function interested in determining the minimum cost of multiple

possibilities. Once all treasures are found, robots are faced with decisions regarding the path

to take to bring the objects together. This is where the communication model exhibits its

usefulness. The ability of the robots to communicate wirelessly allows them to choose the

shortest route by advising one another of their respective locations, thus minimizing the

13



worst case completion time. So when all objects are located it is in the best interest of the

robots to determine the shortest path to bringing them together.

Theorem 2.2.2. Consider an instance I. Given that F , N and S are known, there is an

algorithm that we call fetching that requires F(F,N,S) extra time to terminate from the

moment the second item is found at point F . Where,

F(F,N,S) = ∣∣F − S∣∣ +min

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣∣F −N ∣∣

max{ ∣∣F − S∣∣, ∣∣N − S∣∣ }
. (2.2.2)

Proof. Consider SRCH2,2 and suppose that both items have been found and the robots were

not searching together. The finder of the second object is located at point F , and the other

robot is located at point N somewhere in the domain. While the first object is located at

point S. Let us recall, that all three points need not be distinct. Fetching is the time it

takes the two robots to bring together the two objects given the three points of interest.

So either item one needs to be carried to item two or item two needs to be carried to item

one. Consider the first option. If item one is carried to item two then both robots need to

travel back to the first item. It would take time max{∣∣F − S∣∣, ∣∣N − S∣∣} for the last robot to

arrive at the first object. It would then take an additional time of ∣∣F − S∣∣ to carry the first

item to the second item. Thus the total time to carry the first item to the second item is

max{∣∣F − S∣∣, ∣∣N − S∣∣} + ∣∣F − S∣∣.

Now consider the second option; carrying the second item to the first item. Recall that the

finder of the second item is with the second item, while the non-finder was located anywhere

in the domain. So it takes a time of ∣∣F −N ∣∣ for the non-finder to arrive at the second item

and an additional time of ∣∣F − S∣∣ for both to carry the second item back to the first item.

Therefore, the total time required to carry the second item to the first is ∣∣F −N ∣∣ + ∣∣F − S∣∣.

Hence the time is take to bring both items together, i.e. to fetch is,

F(F,N,S) = min

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣∣F −N ∣∣ + ∣∣F − S∣∣

max{ ∣∣F − S∣∣, ∣∣N − S∣∣ } + ∣∣F − S∣∣
(2.2.3)
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Which is clearly equivalent to equation (2.2.2).

Figure 2.1: An Example of Fetching with two Robots on the Perimeter

Example 2.2.3. In Figure 2.1 we show the three points of interests. We note that the second

item is located counterclockwise from cycle(0) at an arc distance of x2 and the first item is

located clockwise from cycle(0) at an arc distance of x1. Here F = cycle(x2), N = cycle(−R1),

S = cycle(−x1) and

∣∣F −N ∣∣ = 2 sin
∣x2 +R1∣

2

∣∣F − S∣∣ = 2 sin
∣x2 + x1∣

2

∣∣N − S∣∣ = 2 sin
∣x1 −R1∣

2
.

Since we are looking for the minimum of two paths for the robots, fetching becomes

F(F,N,S) = min

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2 sin ∣x2+R1∣

2 + 2 sin ∣x2+x1∣2

max{ 2 sin ∣x2+x1∣2 ,2 sin ∣x1−x2∣2
} + 2 sin ∣x2+x1∣2

(2.2.4)

If the location of N , the robot who did not find the second object, is not on the perimeter

then N = L(A,B, t) for some A,B ∈ R2 and for some t ∈ R. Furthermore, N need not be

distinct from the location of the first or the second object. In fact, we often see that F = N

in the algorithms to follow.
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2.3 Elementary Bounds

We begin by reviewing some elementary bounds to establish a starting point. We will first

consider the special case when n = k = 1. In the problem SRCH1,1 we have two immobile

objects and only one searcher.

Theorem 2.3.1. The optimal worst case cost of SRCH1,1 is 1 + 2π.

It is clear to see that any trajectory of the searcher that avoids an uninterrupted full tour

of the perimeter would increase the completion time. We justify the above theorem by the

following. We will start with the upper bound by presenting the following algorithm:

Algorithm 1 Tour Algorithm

1: The robot moves to cycle(0)
2: They travel counterclockwise in search of both objects
3: Once any object is located they carry it with them until the second object is found

The completion time for the robot will be the addition of time 1 to get to the perimeter

and the time it takes to find the last object. We denote the arc distance from cycle(0) of the

first and second object found by x and y respectively. Thus the worst case completion time

is equivalent to 1 +max{x, y}, where x, y ∈ [0,2π]. Suppose x is the larger value. Then the

maximum completion time is ≤ 1 + 2π. Now suppose y is the larger value then the maximum

completion time is also ≤ 1 + 2π. Thus the total worst case cost of one robot searching for

both items is bounded above by 1 + 2π.

We will now examine the lower bound. Let ε ∈ R, where ε > 0. Fix an arbitrary algorithm

A and let A run for 1 + 2π − ε. Then no matter what algorithm is provided the robot has

searched at most 2π − ε of the perimeter. Thus the worst case placement of the objects on

the perimeter will always be within the interval of arc distance (0, ε) that the robot has not

searched.

Now we consider the problem of two robots and only one robot is needed to carry an item.

Theorem 2.3.2. The optimal worst case cost of SRCH2,1 is 1 + π.
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We justify the above theorem by the following.

Algorithm 2 Split Search

1: Both robots moves to cycle(0)
2: R2 travels counterclockwise and R1 travels clockwise in search of both objects
3: Once any object is located they carry it with them until the second object is found

The completion time for the robot will be the addition of time 1 to get to the perimeter

and the time it takes to find the last object. We denote the shortest arc distance from

cycle(0) of the first and second object found by x and y respectively. Thus the worst case

completion time is equivalent to 1 +max{x, y}, where x, y ∈ [0, π]. Suppose x is the larger

value. Then the maximum completion time is ≤ 1+π. Now suppose y is the larger value then

the maximum completion time is also ≤ 1 + π. Thus the total worst case cost is bounded

above by 1 + π no matter how soon in the search the first item is found.

We will now examine the lower bounds. Let ε ∈ R, where ε > 0. Fix an arbitrary algorithm

A and let A run for 1 + π − ε. Then no matter what algorithm is provided the robots have

searched at most 2π − 2ε of the perimeter. Thus the worst case placement of the objects on

the perimeter will always be within the interval of arc distance (0,2ε) that the two robots

have not searched.

We are now ready to develop some preliminary bounds for the problem of two robots and

both robots are required to carry any given object.
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2.4 The Problem of Two Robots and Preliminary Bounds

SRCH2,2 is a particular instance of SRCHn,k where we have two treasures, two robots

and both robots are required to move a treasure. An obvious algorithm is for both robots to

travel together along the perimeter and carry the first treasure to the second treasure.

Algorithm 3 Cooperative Algorithm

1: Both robots move to cycle(0)
2: Travel counterclockwise together
3: Once they locate the first object they carry it with them until the second object is found

The objective is to determine the worst case completion time for the Cooperative Algorithm

given all inputs, I(u, v). It takes time 1 for the robots to travel to the perimeter and then

they travel together counterclockwise in search of both objects carrying the first one with

them when they find it. Thus the total time to locate both objects would be 1 plus the

object located the furthest away from their starting point anywhere after cycle(0) and before

cycle(2π). So we must minimize the following,

sup
u,v

1 +max{u, v}

where 0 ≤ u, v < 2π

(2.4.1)

On the unit circle, cycle(0) = cycle(2π), so both objects can be located either at cycle(0) or

just before cycle(2π). Suppose that the first and second object are found at a counterclockwise

arc distance of x1 and x2 respectively from cycle(0). By adopting an optimization perspective

of the algorithm the above equation becomes the following optimization problem:

max
x1,x2

1 + x2

s.t. 0 ≤ x1 ≤ x2 ≤ 2π
(2.4.2)

Clearly, the solution to the above maximization problem is x2 = 2π and so CA(I) = 1 + 2π

which is approximately 7.2832. We ask ourselves now, is there indeed an instance that would

produce this cost? There is no instance where the second object found is located exactly
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at cycle(2π), if so both robots would locate it as soon as they traveled from the center to

cycle(0). Which means that the second object found is located at cycle(2π) − ε, for some

arbitrarily small ε > 0. However, no matter what value of ε is provided there is always a worse

instance where the second object is found. Thus sup
u,v

1 +max{u, v} = maxCA(I) = 1 + 2π.

The cost of the Cooperative Algorithm is fairly high due to the lack of sophistication of

the algorithm. We can now introduce the Splitting Algorithm. In the Splitting Algorithm a

minor change in trajectories for the robots adds some complexity in the performance analysis

and employs fetching. Without loss of generality, the robot who locates the first treasure

will be denoted as R1 and the other robot will be denoted by R2.

Algorithm 4 Splitting Algorithm

1: R1 and R2 move to cycle(0)
2: R1 travels clockwise and R2 travels counterclockwise searching the disk simultaneously
3: As soon as the second object is located, R1 and R2 initiate fetching

We claim the following to be proved shortly.

Theorem 2.4.1. The worst case performance of the Splitting Algorithm is 3 + 2π
3 +

√
3.

2.4.1 Performance Analysis for the Splitting Algorithm

We will now present a systematic approach for determining the worst case performance of

the Splitting Algorithm. In doing so we will be able to contrive a better upper bound than

the one determined by the Cooperative Algorithm. Since the robots are searching in parallel

and the circle is symmetric, there are two cases to review. In Case 1 both items are found

by the same robot and in Case 2 each robot finds one item. We will assume as usual, that

R1 finds the first object.
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Figure 2.2: The two Cases of the Splitting Algorithm

The performance of the Splitting Algorithm in both cases will be the time it takes for both

agents to move from the center of the circle to the perimeter, the additional time required to

find the second item to be found and the additional time it takes to complete fetching. Thus

the general optimization problem for both cases will be,

max
x1,x2

1 + x2 +F(F,N,S)

s.t. 0 ≤ x1 ≤ x2 ≤ π
(2.4.3)

The difference in the cases occurs in the values of F,N and S which can be seen in Figure

2.2. For Case 1 F = cycle(−x2), N = cycle(x2), S = cycle(−x1) and

∣∣F −N ∣∣ = 2 sin
∣ − x2 − x2∣

2
= 2 sinx2

∣∣F − S∣∣ = 2 sin
∣ − x2 − (−x1)∣

2
= 2 sin

x2 − x1
2

∣∣N − S∣∣ = 2 sin
∣x2 − (−x1)∣

2
= 2 sin

x2 + x1
2

For Case 2 F = cycle(x2), N = cycle(−x2), S = cycle(−x1) and
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∣∣F −N ∣∣ = 2 sin
∣x2 − (−x2)∣

2
= 2 sinx2

∣∣F − S∣∣ = 2 sin
∣x2 − (−x1)∣

2
= 2 sin

x2 + x1
2

∣∣N − S∣∣ = 2 sin
∣ − x2 − (−x1)∣

2
= 2 sin

x2 − x1
2

Now we can construct our particular optimization problems for each case respectively. For

Case 1,

max
x1,x2

1 + x2 + 2 sin x2−x1
2 + 2 min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sinx2,

max{sin x2−x1
2 , sin x2+x1

2 }

s.t. 0 ≤ x1 ≤ x2 ≤ π

(2.4.4)

and for Case 2,

max
x1,x2

1 + x2 + 2 sin x1+x2
2 + 2 min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

sinx2,

max{sin x2−x1
2 , sin x2+x1

2 }

.

s.t. 0 ≤ x1 ≤ x2 ≤ π

(2.4.5)

Looking at Equations (2.4.4) and (2.4.5), we can observe that we are optimizing functions

of minimum and maximum values. Hence, each case yields four distinct non-linear programs

with different maximization functions and distinct constraints that require solving. The

maximum value of the eight non-linear programs will produce of a cost of 3 + 2π
3 +

√
3. Since

there are two cases of the Splitting Algorithm with four distinct non-linear programs, we

will solve each optimization problem and determine the maximum cost performance. Case 1

becomes NLPs 1 to 4 and Case 2 becomes NLP’s 5 to 8.

NLP 1

max
x1,x2

1 + x2 + 2 sin x2−x1
2 + 2 sinx2

s.t. 0 ≤ x1 ≤ x2 ≤ π

sin x2+x1
2 ≤ sin x2−x1

2

NLP 2

max
x1,x2

1 + x2 + 2 sin x2−x1
2 + 2 sinx2

s.t. 0 ≤ x1 ≤ x2 ≤ π

sin x2−x1
2 ≤ sin x2+x1

2
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NLP 3

max
x1,x2

1 + x2 + 2 sin x2−x1
2 + 2 sin x2+x1

2

s.t. 0 ≤ x1 ≤ x2 ≤ π

sin x2−x1
2 ≤ sin x2+x1

2 ≤ sinx2

NLP 4

max
x1,x2

1 + x2 + 4 sin x2−x1
2

s.t. 0 ≤ x1 ≤ x2 ≤ π

sin x2+x1
2 ≤ sin x2−x1

2 ≤ sinx2

NLP 5

max
x1,x2

1 + x2 + 2 sin x1+x2
2 + 2 sinx2

s.t. 0 ≤ x1 ≤ x2 ≤ π

sin x2−x1
2 ≤ sin x2+x1

2

NLP 6

max
x1,x2

1 + x2 + 2 sin x1+x2
2 + 2 sinx2

s.t. 0 ≤ x1 ≤ x2 ≤ π

sin x2+x1
2 ≤ sin x2−x1

2

NLP 7

max
x1,x2

1 + x2 + 2 sin x1+x2
2 + 2 sin x2−x1

2

s.t. 0 ≤ x1 ≤ x2 ≤ π

sin x2+x1
2 ≤ sin x2−x1

2 ≤ sinx2

NLP 8

max
x1,x2

1 + x2 + 2 sin x1+x2
2 + 2 sin x2+x1

2

s.t. 0 ≤ x1 ≤ x2 ≤ π

sin x2−x1
2 ≤ sin x2+x1

2 ≤ sinx2

We are now ready to prove Theorem 2.4.1.

Proof. We claim that an optimal solution to one of the optimization problems above will

provide a completion time of 3 + 2π
3 +

√
3. We consider Case 2 first and we will commence

with NLP 7. Let

f7(x1, x2) = 1 + x2 + 2 sin
x1 + x2

2
+ 2 sin

x2 − x1
2

,

and let u = x2+x1
2 and w = x2−x1

2 . Since 0 ≤ x1 ≤ x2 ≤ π then w ≤ u and w ≤ π
2 . So π −w ≤ u and,

π − [
x2 − x1

2
] ≤ [

x2 + x1
2

]

⇒ 2π − (x2 − x1) ≤ x2 + x1

⇒ π ≤ x2
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But x2 ≤ π. Thus x2 = π.

Using the second constraint and the fact that x2 = π, we observe that

sin
x2 + x1

2
≤ sinx2

⇒ sin
π + x1

2
≤ 0

However sin x2+x1
2 is a positive value since both x1 and x2 are values between zero and π

inclusive. So sin π+x1
2 = 0. Which implies that π+x1

2 = 0 or π.

If π+x1
2 = 0 then x1 = −π.

If π+x1
2 = π then x1 = π.

But 0 ≤ x1, so x1 = x2 = π and max f3(xi) = 1 + π which is approximately 4.1416.

Consider now NLP 8 and let,

f8(x1, x2) = 1 + x2 + 4 sin
x1 + x2

2

Observing the second constraint, sin x1+x2
2 ≤ sinx2, we can relax NLP 8 to the following

optimization problem:

max
x1,x2

1 + x2 + 4 sinx2

s.t. 0 ≤ x2 ≤ π

Where we let g8(x1, x2) = 1 + x2 + 4 sinx2 and we note that max f8(x1, x2) ≤ max g8(x2) due

to feasible region of NLP 8.

Taking the first derivative of g8 we obtain; g′8(x2) = 1 + 4 cosx2. Setting the derivative to 0

we obtain the following solution,

x0 = arccos (−
1

4
).

Noting that this solution satisfies the constraints, we know that it is a local optimizer. We
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must now check if it is a global optimizer by taking the second derivative.

g′′8 (x2) = (−4 sinx2)

And

g′′8 (x0) = (−4 sin arccos (−1
4)

) .

We obtain the following associated eigenvalue for the above solution;

λ0 = −4 sin arccos(−
1

4
),

showing that g′′8 (x0) ≤ 0. Thus x0 is a global maximizer and the cost of NLP 8 is no more

than 6.6965. Reviewing NLP 6 we observe the constraints are similar to NLP 7. Letting

f6(x1, x2) = 1 + x2 + 2 sin x2+x1
2 + 2 sinx2, u =

x2+x1
2 and w = x2−x1

2 again we obtain that x2 = π.

If x2 = π then we can reduce NLP 6 to the following optimization problem,

max
x1,x2

1 + π + 2 cos (x12 )

s.t. 0 ≤ x1 ≤ π

We let g6(x1) = 1+π+2 cos (x12 ) and observe that cos (x12 ) ≤ 1. Solving for x1, we get x1 ≤ 0.

Thus x1 = 0, which satisfies the constraints. So x1 = 0 and x2 = π and max f2(xi) = 1 + π + 2

which is approximately 6.1416.

For NLP 5 let,

f5(x1, x2) = 1 + x2 + 2 sin
x1 + x2

2
+ 2 sinx2

Then,

▽f5(x1, x2) =
⎛
⎜
⎝

cos x2+x12

1 + cos x2+x12 + 2 cosx2

⎞
⎟
⎠

Setting the gradient to 0 we obtain the following system of equations,
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⎛
⎜
⎝

cos x2+x12

1 + cos x2+x12 + 2 cosx2

⎞
⎟
⎠
=
⎛
⎜
⎝

0

0

⎞
⎟
⎠
.

Solving the above system of equations yields the following feasible solution set

x0 =
⎛
⎜
⎝

x1

x2

⎞
⎟
⎠
=
⎛
⎜
⎝

π
3

2π
3

⎞
⎟
⎠
.

The solution set satisfies both constraints. Hence, x0 is a local optimizer. We must now only

check if x0 is a global maximizer.

▽2f5(x1, x2) =
⎛
⎜
⎝

−1
2 sin x2+x1

2 −1
2 sin x2+x1

2

−1
2 sin x2+x1

2 1 − 1
2 sin x2+x1

2 + 2 sinx2

⎞
⎟
⎠

Inputting our solution x0 we obtain,

▽2f5(x0) =
⎛
⎜
⎝

−1
2 −1

2

−1
2 −1

2 −
√

3
2

⎞
⎟
⎠
.

Solving for the eigenvalues of the above Hessian we can see that,

λ0 =
⎛
⎜
⎝

λ1

λ2

⎞
⎟
⎠
=
⎛
⎜
⎝

1
4(−2 −

√
3 −

√
7)

1
4(−2 −

√
3 +

√
7)

⎞
⎟
⎠
.

Thus, ▽2f5(x0) ≼ 0 and so x0 is a global maximizer. Hence,

f5(x1, x2) = 1 +
2π

3
+ 2 sin

2π
3 + π

3

2
+ 2 sin

2π

3

= 3 +
2π

3
+
√

3.

Case 1 follows a similar pattern and we present the solutions for both cases in the following

table.
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Solutions to Cases 1 and 2
Case 1 Case 2

NLP 1 3 + π ≈ 6.1416 NLP 5 3 + 2π
3 +

√
3 ≈ 6.8264

NLP 2 ≤ 6.8264 NLP 6 3 + π ≈ 6.1416
NLP 3 ≤ 6.6965 NLP 7 1 + π ≈ 4.1416
NLP 4 ≤ 6.6965 NLP 8 ≤ 6.6965

Table 2.1: Solutions for the Splitting Algorithm

We can clearly see that NLP 5 for Case 2 attains the desired worst case performance for

the Splitting Algorithm. In Case 2 each robot locates one object, so the worst case placement

of objects is either I(2π
3 ,−

π
3 ) or I(π3 ,−

2π
3 ) both attaining the same worst case cost. The

completion time of 3 + 2π
3 +

√
3 ≈ 6.8264 is now our benchmark for upper bounds that will be

improved upon with subsequent algorithms. We are left now to explore a lower bound for

SRCH2,2.

Theorem 2.4.2. There is no algorithm for SRCH2,2 with a performance better than 3 + π
2 .

Proof. Let ε ∈ R, where ε > 0. Fix an arbitrary algorithm A and let A run for 1 + π
2 − ε time.

It takes time 1 for both robots to move to the perimeter of the unit circle. After extra time

π
2 − ε the robots have searched at most 2(π2 − ε) = π − 2ε of the perimeter. Consider a diameter

lθ, that forms angle θ with the x-axis. We define S ⊆ [0, 2π) as follows, θ ∈ S if and only if at

least one of the endpoints of lθ has been explored. If at least one endpoint of all antipodal

points has been explored, then [0, π] ⊆ S. However, that means at least π of the perimeter

has been searched, which is a contradiction as the robots have searched at most π − 2ε of the

perimeter. Therefore at time 1+ π
2 − ε, there exists two antipodal points on the circle, both of

which have not been explored. We place the objects there and observe that it takes at least

time 2 to bring the objects together as both robots are required to carry one object.
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Chapter 3

Improving Bounds for two Robots

3.1 The Problem of Improving Bounds

The main contribution of our work is presented in this section and the next, where we

explore algorithms with more sophisticated trajectories. As in the Splitting Algorithm, we

will be employing a case by case analysis for the performance of the algorithms. We begin

by introducing a new family of algorithms named α −RALLY whose performance varies as

α changes. We establish α −RALLY to note the difficulty in improving upon the Splitting

Algorithm and so that we can inaugurate the best algorithm for SRCH2,2 that our research

allowed. The difficulty in improving upper bounds might not seem obvious. Various attempts

not presented here were made. We use α−RALLY as an example as it serves as a prerequisite

to the algorithm presented in the next section. We must define some new notation that will

be used in the following analysis. Consider two robots traveling in opposite directions from

cycle(0). Once they both arrive at an arc distance of α one cuts across the circle and the

other continues along the perimeter where they both meet at a point. We will define dα as

the length of the chord joining α and the point the robots meet.

Definition 3.1.1. The distance dα is defined as the unique positive solution to the non-linear

equation,

dα = 2 sin
2α + dα

2
.
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Since the robots both travel at the same speed and simultaneously, then the arc distance

from α′ to the point the robots meet is equivalent to dα.

Figure 3.1: Depiction of the distance, dα

We are now ready to describe the α −RALLY algorithm.

Algorithm 5 α −RALLY

1: R1 and R2 move to cycle(0)
2: If at any time both items are located, R1 and R2 initiate F(F,N,S)
3: R1 travels clockwise and R2 travels counterclockwise searching α
4: If only one item is found within time α of searching, the finder will travel a distance of
dα and meet the non-finder to continue searching together

5: If no items are found by time α then R1 and R2 continue to search independently until
both items are found

We approach the analysis with a case by case study of the robot trajectories and locations

of the treasures. There are four main cases to observe.

• Case 1: When both treasures are located within a time of α

• Case 2: When one treasure is located within a time of α and the other after time α

and before dα

• Case 3: When one treasure is located within a time of α and the other after time

dα + α

• Case 4: Both treasures located after time α
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Case 1

Figure 3.2: Case 1 of α −RALLY

In Figure 3.2 we show an instance of Case 1. We can see that the first object is found

clockwise at arc distance of x1 from cycle(0) and the second object is found counterclock-

wise from cycle(0) and an arc distance of x2. Both objects are found within a time of

α. Just as in the Splitting Algorithm there are two possible placements: each object

can be located by a distinct robot as seen in Figure 3.2 and both objects can also be

located by the same robot, not pictured in Figure 3.2. To determine the worst case cost

of the algorithm we need the maximum value of the two instances. Just as in the Split-

ting Algorithm we need to determine the maximum value of two optimization problems:

When both objects are found by different robots, NLP Case 1a:

max
x1,x2

1 + x2 +F(cycle(x2),cycle(−x2),cycle(−x1))

s.t. 0 ≤ x1 ≤ x2 ≤ α ≤ π

When each robot finds one object, NLP Case 1b:

max
x1,x2

1 + x2 +F(cycle(−x2),cycle(x2),cycle(−x1))

s.t. 0 ≤ x1 ≤ x2 ≤ α ≤ π
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Since we are looking for the maximum of value from both optimization problems we require,

max[NLPCase1a,NLPCase1b] (3.1.1)

We continue in the same manner and present the following three cases with corresponding

optimization problems. Case 2 is represent by Figure 5 and modeled by Equation (3.1.2).

Case 2

Figure 3.3: Case 2 of α −RALLY

In Figure 3.3, we can see that the first object is located at cycle(−x1) and the second

object is found between cycle(α) and cycle(α + dα) at cycle(x2). Since the second item is

found between time α and α + dα then the non-finder is traveling along the chord of length

dα once the second item is found.

F = cycle(x2)

N = L(cycle(α), cycle(dα + α), ∣x2 − α∣)

S = S = cycle(−x1)

Using the above values and Figure 3.3 to establish constraints we obtain the following
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non-linear program,

max
x1,x2

1 + x2 +F[cycle(x2),L(cycle(−α),cycle(α + dα),cycle(y − α)),cycle(−x1)],

s.t. 0 ≤ x1 ≤ α

α ≤ x2 ≤ α + dα

(3.1.2)

Case 3

We now present the third case and it’s points of interests with the aid of Figure 3.4.

Figure 3.4: Case 3 of α −RALLY

In Figure 3.4 we can see that clearly that Case 3 represents when both robots find the second

object together in between time dα + α and 2π − α. The points of interest are

F = cycle(x2)

N = cycle(x2)

S = S = cycle(−x1).

The associated optimization problem is constructed below in Equation (3.1.3).
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max
x1,x2

1 + x2 +F[cycle(x2),cycle(x2),cycle(−x1)],

s.t. 0 ≤ x1 ≤ α

α + dα ≤ x2 ≤ 2π − α

(3.1.3)

Case 4

Finally we present Case 4. In case 4 following the same trajectories as the Splitting

Algorithm and as Case 1. In Figure 3.5 we show only one instance of Case 4; when each

object is found by a different robot. As before, we omit the image of the second instance;

when both objects are found by the same robot. In this case, none of the objects are found

within time α. So once the robots arrive at α, the decision point, they decide to continue on

their respective trajectories. Thus mirroring the Splitting Algorithm.

Figure 3.5: Case 4 of α −RALLY

We are familiar with interest points in Case 4 and so we establish our two non-linear

optimization problems for each instance of Case 4.

When both objects are found by different robots, NLP Case 4a:

max
x1,x2

1 + x2 +F(cycle(x2),cycle(−x2),cycle(−x1))

s.t. 0 ≤ α ≤ x1 ≤ x2 ≤ π

When each robot finds one object, NLP Case 4b:
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max
x1,x2

1 + x2 +F(cycle(−x2),cycle(x2),cycle(−x1))

s.t. 0 ≤ α ≤ x1 ≤ x2 ≤ π

Since we require the maximum value from both non-linear programs above, we compute

the following

max[NLPCase4a,NLPCase4b] (3.1.4)

The role of α in this algorithm serves as a decision point for the robots to either continue on

the same trajectories as outlined in the Splitting Algorithm or cut across the circle to save

time. Surprisingly, while α as a decision point shows promise it does not in fact save any

time. With the aid of software 1 and for the purpose of saving our own time, we determined

the cost of the algorithm in all four cases and noted that the cost of α −RALLY is always

greater than or equal to the cost of the Splitting Algorithm. While it is obvious that Case 1

and Case 4 behave exactly like the Splitting Algorithm it is not as obvious that Case 3 might

sustain higher costs.

The results are summarized in the figures below. In Figure 3.6 we review the worst-case

completion time of all instances for α,β −RALLY . In Figure 3.7 we compare the completion

times of the cases α,β −RALLY versus the worst case completion time for the Splitting

Algorithm. We will soon prove the result that the worst-case completion time for α−RALLY

is always greater than or equal to that of the Splitting Algorithm. The promise shown by

α −RALLY can be seen in Figures 3.6 and 3.7 where some of the other cases intersect at a

completion time below that of the Splitting Algorithm. This led us to believe that a strategic

adjustment in the behavior of robots could improve our current standing benchmark.

1Mathematica was used to assist in the numerical analysis for Algorithm α −RALLY [20]
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Figure 3.6: Performance of α −RALLY

Figure 3.7: Performance of α −RALLY vs. Performance of the Splitting Algorithm

Theorem 3.1.2. ∀α ∈ [0, π) the worst case cost of algorithm α −RALLY ≥ 3 + 2π
3 +

√
3.

Proof. Recall that α is a point of juncture for the robots on whether to change trajectories

or continue to simulate the Splitting Algorithm. If α ≥ 2π
3 , then the worst case instance of

the Splitting Algorithm induces the same performance in α −RALLY .

If α < 2π
3 we prove next that the worst case cost of α−RALLY > 3+ 2π

3 +
√

3 ≈ 6.8264 (the
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Splitting Algorithm). Consider input [cycle(−ε),cycle(−α − ε)], for some arbitrarily small

ε > 0. Then the algorithm performs according to Case 3 with cost,

CA(Iε) = 1 + y +F(F,N,S)

= 1 + 2π − α − ε + 2 sin
∣2π − α − ε − (2π − ε)∣

2
.

It is trivial that the function is decreasing in α. So

sup
I
CA(I) ≥ sup

ε
CA(Iε) = 1 + 2π −

2π

3
+ 2 sin

π

3
= 6.9208 > 3 +

2π

3
+
√

3.

Thus the worst case cost of α −RALLY is always greater than or equal to the Splitting

Algorithm.

So the worst case cost of α −RALLY never beats that of the Splitting Algorithm. We

can see from Figures 3.6 and 3.7 that there is room to improve the α −RALLY algorithm in

Case 3 - when one item is found before α.
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3.2 Two Robots and Tighter Bounds

We now look to an enriched version of the previous algorithm to beat our current bench-

mark. In SRCH2,2 it is important to benefit from the robots’ ability to communicate

wirelessly and continuously. So we advance our research with α,β −RALLY , an algorithm

that uses multiple points of decision for the robots. The two decision points are denoted

by α and β (where β < α) and are located on the perimeter. The parameters serve to avoid

the larger worse case cost situations that arose in the previous algorithm. The ability of the

robots to make optimal decisions at these variable points effectively boosts the performance

of α,β −RALLY to gain advantage over the Splitting Algorithm. We will quickly introduce

the new algorithm and then dive into the analysis.

Algorithm 6 α,β −RALLY

1: R1 and R2 move to cycle(0)
2: If at any time both objects are located, R1 and R2 initiate F(F,N,S)
3: R1 travels clockwise and R2 travels counterclockwise searching until α unless both items

are found
4: If only one item is found within time α:

a: With the item found within time β, then R1 and R2 continue on independently
b: With the item found after time β and before time α then we choose the best candidate
to abandon search and travel a distance of dα to meet the other

5: If no item is found by time α then R1 and R2 continue to search independently until
both items are found

Theorem 3.2.1. The worst case performance of the α,β −RALLY is approximately 6.7518.

We will prove this theorem as follows. First we complete a case by case performance

analysis of all instances generated by α,β−RALLY . Once we establish a series of optimization

problems representing the cases we use the help of numerical software 2 to zero in on the

best values of α and β. From this we are able to set up a system of non-linear equations

dependent on α and β. Solving that system of equations supplies the precise values of α

and β that lower the worst case completion time over all instances and beats our benchmark

established by the Splitting Algorithm.

2Mathematica was used to assist in the numerical analysis for Algorithm α,β −RALLY [20]
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3.2.1 Performance Analysis

We again, we find it important to observe that Splitting Algorithm makes an appearance

in α,β −RALLY . The algorithm employs the trajectory of the Splitting Algorithm in the

following three cases:

• When one item is within time β and the other item is found after time α

• When no items are found within time α

• When both items are found within time α

As before we establish a series of cases accounting for probable placements of all instances to

discover the worst case performance of the algorithm. As the algorithm is dependent on two

parameters there are many cases to analyze. We will breakdown the analysis into major cases

and sub-cases. In each of the analyses we will represent the location of the first object and

second object found by x1 and x2 which represents the shortest arc distance from cycle(0).

There are three main cases to review,

• Case 0: 0 items found within α

• Case 1: 1 item found within α

• Case 2: 2 items found within α

We begin by reviewing Case 0. If 0 items are found within α this means that 0 items

are found within β as well. This can be seen below in two sub-cases. Sub-case 0a is when

both items are found on the same side and Sub-case 0b is when both items are found on the

opposite side.

37



Figure 3.8: Case 0 and its Sub-cases

By now, we are familiar with the process of developping the optimization problem for the

cases outlined in Figure 3.8. As in the Splitting Algorithm, we obtain two sub-cases and we

require the maximum value case only. We model this here with one optimization problem:

max
x1,x2

1 +min{x2,2π − x2} + 2 sin x1+x2
2 + 2 min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 sinx2,

max{sin x2−x1
2 , sin x2+x1

2 }

s.t. α < x1 ≤ π

x1 ≤ x2 ≤ 2π − x1

(3.2.1)

We now describe Case 2 and its sub-cases. Case 2 has three plausible scenarios. When

both objects are found within time β. When both objects are found after time β and before

time α and when one item is found within time β and the second one after time β and before

time α. Since the cases and sub-cases are plentiful, for clarity we will show the arc intervals

where the objects’ arc distances are located in the following table.
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Sub-Cases for Case 2 in α,β −RALLY
Sub-case 2a Sub-case 2b Sub-case 2c

Location of first
item found

0 ≤ x1 ≤ x2 0 ≤ x1 ≤ β β < x1 ≤ x2

Location of sec-
ond item found

x1 ≤ x2 ≤ β β < x2 ≤ α x1 ≤ x2 ≤ α

Description of
Sub-cases

Both items found
within time β

one item found in time
β and 2nd item found
in time α

Both items found af-
ter β and before α

Table 3.1: All possible instances of Case 2 for α,β −RALLY

Since the decision points for trajectory changes for R1 and R2 occur at α and β then

the above cases are similar to the Splitting Algorithm as well, however with the constraints

outlined in Table 3.1 and so an image here is trivial. Sub-cases 2a and 2c can be modeled by

one optimization problem where both items are found within time α. We present the below

optimization problem describing both sub-cases.

max
x1,x2

1 +min{x2,2π − x2} + 2 sin x1+x2
2 + 2 min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 sinx2,

max{sin x2−x1
2 , sin x2+x1

2 }

s.t. 0 < x1 ≤ x2 ≤ α

(3.2.2)

Before presenting the optimization problem for Sub-case 2b we must introduce the sub-

cases for Case 1. Case 1 is when only one item is found within time α. There are two distinct

possibilities; when one item is found within time β and when one item is found within time

β and after time α. The first of the sub-cases is when one object is found within β, and

will be denoted by Sub-case 1c. This is the sub-case that aligns with Sub-case 2b. In both

sub-cases we have one item found within time β and the second item is somewhere else on

the perimeter anytime after β. This situation is represented by the following optimization

problem:
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max
x1,x2

1 +min{x2,2π − x2} + 2 sin x1+x2
2 + 2 min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 sinx2,

max[sin x2−x1
2 , sin x2+x1

2 ]

s.t. 0 < x1 ≤ β

β ≤ x2 ≤ 2π − β

(3.2.3)

At this time all robot trajectories described above match the Splitting Algorithm with

different set of constraints. Since we are familiar with solving these problems we will proceed

with establishing the final sub-cases for α,β −RALLY . We are left with the following four

instances in which the trajectories of the robots follow a different path than the one we are

used to.

Sub-Cases for Case 1 in α,β −RALLY
Sub-case 1a1 Sub-case 1b1

Location of first
item found

β ≤ x1 ≤ α β ≤ x1 ≤ α

Location of second
item found

α ≤ x2 ≤ α + dα 2π − α − dα ≤ x2 ≤ 2π − α

Description R1 finds the first item and
R2 finds the second before R1

arrives at cycle(dα)

R1 finds the first item and
the second before R2 arrives
at cycle(−dα)

Sub-case 1a2 Sub-case 1b2
Location of first
item found

β ≤ x1 ≤ α β ≤ x1 ≤ α

Location of second
item found

α + dα ≤ x2 ≤ 2π − α α ≤ x2 ≤ 2π − α − dα

Description R1 finds the first item, trav-
els along the chord of length
dα and together they find the
second item

R1 finds the first item, R2

travels along the chord of
length dα and together they
find the second item

Table 3.2: Sub-cases for Case 1 of α,β −RALLY

We can establish four non-linear programs each representing one of the sub-cases above us-

ing the location intervals in Table 3.2 to build the feasible regions of the optimization problems.
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NLP 1a1

max
x1,x2

1 + x2 +F[cycle(x2),L[cycle(−α), cycle(α + dα), x2 − α], cycle(−x1)]

s.t. β ≤ x1 ≤ α

α ≤ x2 ≤ α + dα

NLP 1a2

max
x1,x2

1 + x2 + 2 sin x1+x2
2

s.t. β ≤ x1 ≤ α

α + d + α ≤ x2 ≤ 2π − α

NLP 1b1

max
x1,x2

1 + x2 +F[cycle(x2),L[cycle(α), cycle(2π − α − dα),2π − α − x2], cycle(−x1)]

s.t. β ≤ x1 ≤ α

2π − α − dα ≤ x2 ≤ 2π − α

NLP 1b2

max
x1,x2

1 + x2 + 2 sin x1+x2
2 + 2 sin x2+x1

2

s.t. β ≤ x1 ≤ α

α ≤ x2 ≤ 2π − α − dα

We obtain the final optimization problem for Case 1:

max
x1,x2

min{max{NLP1a1,NLP1a2},max{NLP1b1,NLP1b2}} (3.2.4)

The intention of Case 1 above is to find the minimum value of two possibilities:

• The discoverer of the first item forgoes their search and meets their comrade

• The non-finder of the first item forgoes their search and meets the discoverer

In α −RALLY the robots where not given this extra choice. Equations 3.2.1, 3.2.2, 3.2.3

and 3.2.4 holistically describe all instances of the treasures and the trajectories of the robots
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in α,β −RALLY . Our goal is to choose the best values for α and β that minimize our worst

case cost among all instances so that we can achieve a lower upper bound than the one

established by the Splitting Algorithm. We chose our α and β with the aid of numerical

software 3. Plotting all instances for all values of α and β and with much trial and error

we were able to zero in on the optimal values. We fix β = 0.424 and observe the behavior

of the functions for for various values of α. We see can see clearly in Figure 3.9 below that

there are three cases for which the performance of the algorithm is equivalent. Coincidentally,

that is also where cost is at a minimum in the worst case among all instances. It is for that

performance we choose our best α and β.

Figure 3.9: Worst-case Analysis Results of the Splitting Algorithm

We identify the cases as Sub-case 1a1, Sub-case 2c and Sub-case 1c. Furthermore, we are

able to identify the maximizers in these sub-cases that minimize the worst-case cost.

Sub-case 1a1

The first item is found after time β and before α. The second item is found at 2π − α.

3Mathematica was used to assist in the numerical analysis for Algorithm α,β −RALLY [20]
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The cost of this instance is:

C1(I) = 1 + 2π − α + 2 sin
α − β

2

Sub-case 2c

Both items are found within time α. The first item is found within time π − α and the

second item is found at time α. The cost of this instance is:

C2(I) = 2 + α + 2 sinα

Sub-case 1c

The first item is found at time β. The second item is found at some time y, where

β ≤ y ≤ 2π − β. The cost of this instance is:

C3(I) = 1 + y + 2 sin y + 2 sin
y + β

2

Both C1(I) and C2(I) are functions of α and β. To find the optimal value of y at the

precise intersection point above we must solve for y by letting the derivative equal 0. We

obtain the following system of non-linear equations,

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 + 2 cos y + cos y+β2 == 0

1 + α + 2 sinα + 2 == 1 + 2π − α + 2 sin α−β
2

1 + 2π − α + 2 sin α−β
2 == 1 + y + 2 sin y + 2 sin y+β

2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

The numerical results are summarized in Table 3.3.

Optimal Solution for α,β −RALLY
Value of y 2.2381

Value of α 1.8076

Value of β 0.4236

Cost of Algorithm 6.7519

Table 3.3: Results for α,β −RALLY
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Therefore we choose α = 1.8076 and β = 0.4236 so that the worst case performance of

α,β −RALLY is less than the Splitting Algorithm at approximately 6.7519.
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Chapter 4

The General Problem

We complete our research with generalizing our model and providing some bounds for asymp-

totic values of n. Let us recall our model SRCHn,k in which we have n mobile agents

searching for two immobile items hidden on a circle. It is a gathering problem where the

movement of objects is restricted by the number of agents required to carry them. The

number of mobile agents needed to carry objects is k (where k ≤ n). The mobile agents are

robots searching for objects and termination occurs once at least k robots and all treasures

are in the same location. The domain is a unit disk with both treasures hidden on the

perimeter. Robots can communicate wirelessly and instantly with one another to announce

the discovery of treasures and thus are not required to travel together. All robots move at the

same speed of 1 and always begin searching at the center of disk. We generalize the problem

by letting n be any integer, while examining only two values for k, k = 1 or k = 2. We again

explore the cost, the time it takes to locate both treasures and bring them together. Our

search is completed once both items are in the same location.
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4.1 Upper Bounds for the General Problem

Let us begin the exploration of the general case with an example. As usual, consider two

robots and two treasures. Suppose now that only one robot is needed to carry any given

treasure. In particular this problem is denoted by SRCH2,1.

Theorem 4.1.1. There exists an algorithm for SRCH2,1 with a worst-case performance of

2 + π.

Algorithm 7 Solo Hunt

1: Both robots start at the center of the disk
2: R1 moves to cycle(π) and R2 moves to cycle(0)
3: Both R1 and R2 travel counterclockwise
4: Whenever either robot finds an item they carry it with them
5: The robots meet in the center once they’ve both searched an arc distance of π

We will now prove Theorem 4.1.1.

Proof. It takes time 1 to move to the perimeter of the disk. Robots must search an arc

distance of π regardless if they find both items early on or not. The robots are both starting

their respective search at antipodal points, travel in the same direction and move at the

same speed. Therefore they are always at antipodal points from one another. Once time

π has passed, the robots have searched the entire perimeter of the disk and have carried

the items independently. At the end of their journeys they are both at the antipodal point

from whence they commenced. Thus the total time passed for the algorithm to terminate is

1 + π + 1 = 2 + π.

The above algorithm is not the most sophisticated for SRCH2,1. We could suggest that

once any item is found the finder cuts across the disk to meet their companion and they

continue the search together. However, we can instantly see that the worst case performance

here, would indeed be larger than the simple algorithm above. We could imagine the first

item being placed just a short distance counterclockwise from cycle(π) and the next one

small distance from cycle(0) in the clockwise direction. In this case the robots would not
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find the second item until they have already searched the majority of perimeter, and so the

worst case cost would approach 1 + 2π!

Additionally, consider an algorithm the same as above, except when both items are found

the robots decide to meet along the shortest chord length between them. However, if that was

the case the worst case placement of the objects would occur at the last two antipodal points

possible; once each robot has already searched a distance of π. The worst case cost would still

be the same as in the Solo Hunt Algorithm! When k = 1, and n grows asymptotically large, we

will observe that a minimal worst case performance is often achieved with an unsophisticated

algorithm. We now present our first general problem and an algorithm that complements the

problem.

Problem 1: SRCHn,1

Algorithm 8 Scatter Search 1

1: Robots R1,R2, ...,Rn start at the center of the disk, move to the perimeter and scatter
at an arc distance of γ = 2π

n from each other
2: All robots travel counterclockwise in search of both items
3: When any item is found it is carried by the finder and the robots continue searching in

the same direction until the second item is found
4: Once the second item is found the finders meet as soon as possible

Figure 4.1: Scatter Search 1
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Above we show the movement of n robots in the algorithm Scatter Search 1 and the

position once all objects are found. All n robots start at the center and travel to the perimeter

at distance of γ = 2π
n from one another. We show an instance where the first object is found

in section t = 0 after a time of x1 of searching and the second object is found in section t > 1

after time x2 of searching, where x2 > x1.

Theorem 4.1.2. The worst case performance of algorithm Scatter Search 1 is 1+ 2π
n +sin [⌊n2 ⌋

π
n]

for n ≥ 2 and for k = 1.

Proof. Consider algorithm Scatter Search 1. It takes time 1 for n robots to move simultane-

ously from the circle center to the perimeter. In Scatter Search 1, all robots are located at

an angle distance of γ from each other and search a maximum distance of γ, (where γ = 2π
n ).

These trajectories divide the circle into n equally long arcs which we will call sections. WLOG

let the first item be found in section 0. Then the second item will be located after the first

item in section t = 0, ..., n − 1. Then the time it takes for Scatter Search 1 to terminate is,

sup
x1,x2,t

1 + x2 + sin tγ2

s.t. 0 ≤ x2 < γ

t = 0,1, ..., n − 1

As usual we will adopt an optimization perspective for the problem.

max
x1,x2

1 + x2 + sin tπn

s.t. 0 ≤ x2 ≤ γ

t = 0,1, ..., n − 1

(4.1.1)

The maximum value x2 can take is γ. So our optimization problem becomes:

max
t

1 + 2π
n + sin tπn

s.t. t = 0,1, ..., n − 1

We are looking for values of t that maximize the argument, arg max
t

sin (tπn), where t =
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0, ..., n − 1. Let f(t) = sin (tπn). We must consider values of t when n is odd and when n is

even. Suppose n is odd, then n = 2s + 1, where s ∈ N. If tπn ≤ π
2 then f(t) is increasing and

t ≤ n
2 = s +

1
2 . If tπn ≥

π
2 then f(t) is decreasing and t ≥ n

2 = s +
1
2 . But t ∈ Z so,

⌊
n

2
⌋ ≤ t ≤ ⌈

n

2
⌉ or s ≤ t ≤ s + 1

Since t is an integer then we know that either t = ⌊n2 ⌋ or t = ⌈n2 ⌉. We must show that

sin (s
π

n
) = sin ((s + 1)

π

n
).

But this is true, if and only if

π

2
− s

π

n
= (s + 1)

π

n
−
π

2

If and only iff

s
π

n
+ (s + 1)

π

n
= π

So,

s
π

n
+ (s + 1)

π

n
= s

π

n
+ s

π

n
+
π

n
= 2s

π

n
+
π

n
= (2s + 1)

π

n
= π

Now suppose n is even, then n = 2s, where s ∈ N. If tπn ≤ π
2 then f(t) is increasing and

t ≤ n
2 = s. If tπn ≥ π

2 then f(t) is decreasing and t ≥ n
2 = s. Thus t = n

2 . In either case t = ⌊n2 ⌋

and so the cost of the algorithm is 1 + 2π
n + sin ⌊n2 ⌋

π
n .

As previously noted, in the example with the algorithm Solo Hunt, it is not necessary

to have the finders meet as soon as both items are found. The worst case cost is the same

in both cases. In Scatter Search 1 all robots could search an arc distance of γ regardless of

when the objects are found and the worst case performance of the algorithm would remain

unchanged. We leave the exploration of a lower to the next section and we continue on to

our second general problem.
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Problem 2: SRCHn,2

Algorithm 9 Scatter Search 2

1: Robots R1,R2, ...,Rn start at the center of the disk, move to the perimeter and scatter
at an arc distance of γ = 2π

n from each other
2: All robots travel counterclockwise in search of both items
3: WLOG R1 finds the first item and announces it’s location to the other robots
4: Then the second item is found by Ri where i = 1,2, ..., n
5: Once the second item is found by Ri, Ri+1 meets Ri and together they travel the shortest

distance to the first item

We begin as usual by modeling the time complexity of the algorithm with an optimization

problem. Visualizing the problem we obtain the following placement of objects and robots

once both objects have been located.

Figure 4.2: Scatter Search 2

In Figure 4.2 we show the movement of n robots in the algorithm Scatter Search 2 and

their positions once all objects are found. As in Scatter Search 1, all n robots start at the

center and travel to the perimeter at distance of γ = 2π
n from one another. We show a possible

instance of the objects where the first object is found in the first section counterclockwise

at an arc distance of x1 from cycle(0) and the second object is found in another section

counterclockwise at an arc distance of x2 from cycle(2π). Note that since all robots travel at
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the same speed they remain separated at an arc distance of γ from one another. Thus when

the second object is found they are all still separated by γ.

Theorem 4.1.3. The worst case performance of Scatter Search 2 is 3 + 2π
n + sin π

n .

Proof. Consider algorithm Scatter Search 2. It takes time 1 for n robots to move simulta-

neously from the circle center to the perimeter. All n robots are constantly moving at a

distance of γ from each other and search a maximum distance of γ, (where γ = 2π
n ). WLOG

let the first item be found in section t = 0. Then the second item will be located after the first

item in section t = 0, ..., n − 1. Then the time it takes for Scatter Search 2 to terminate is,

max
x1,x2,t

1 + x2 + 2 sin γ
2 + 2 sin x2−x1+tγ

2

s.t. 0 ≤ x1 ≤ x2 ≤ γ

t ∈ {0,1,2, ..., n − 1}

(4.1.2)

Let f(x1, x2, t) = 1+x2 + 2 sin γ
2 + 2 sin x2−x1+tγ

2 , where t represents the section in which the

second object is found. Note that the maximum value for x2 is γ and the maximum value

that sin x2−x1+tγ
2 can assume is 1.

We give an instance when n is both odd and even that produces the worst case completion

time of 3 + 2π
n + sin π

n . If n is odd consider the following instance, x2 =
2π
n , x1 =

π
n and t = ⌊n2 ⌋.

Let n = 2s + 1 where s ∈ N. Inputting this instance into f , we obtain

f = 1 +
2π

n
+ 2 sin

π

n
+ 2 sin

π
n + s

2π
n

2

= 1 +
2π

n
+ 2 sin

π

n
+ 2 sin

π
n(1 + 2s)

2

= 1 +
2π

n
+ 2 sin

π

n
+ 2 sin

π

2

= 3 +
2π

n
+ 2 sin

π

n

Suppose now that n is even and so n = 2s, for some s ∈ N. Considering the following

instance where x2 = x1 =
2π
n and t = ⌊n2 ⌋, we see that
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f = 1 +
2π

n
+ 2 sin

π

n
+ 2 sin

s2π2s
2

= 1 +
2π

n
+ 2 sin

π

n
+ 2 sin

π

2

= 3 +
2π

n
+ 2 sin

π

n
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4.2 Lower Bounds for the General Problem

Finally, we explore lower bounds for the general cases where n > 3 and k = 1,2.

Theorem 4.2.1. For all n ≥ 2 and k = 1 the performance of any algorithm is at least 2 + π
n .

Proof. Let ε ∈ R, where ε > 0. Fix an arbitrary algorithm A and let A run for 1+ π
2 − ε time. It

takes time 1 for both robots to move to the perimeter of the unit circle. After time π
2 − ε the

robots have searched at most n(πn − ε) = π − nε of the perimeter. Consider a diameter lθ, that

forms angle θ with the x-axis. We define S ⊆ [0,2π) as follows, θ ∈ S if and only if at least

one of the endpoints of lθ has been explored. θ ∈ S if and only if at least one of the endpoints

of lθ has been explored. If at least one endpoint of all antipodal points has been explored,

then [0, π] ⊆ S. However, that means at least π of the perimeter has been searched. Which is

a contradiction as the robots have searched at most π − nε of the perimeter. Therefore at

time 1+ π
2 − ε,∃ two antipodal points on the circle, both of which have not been explored. We

place the objects there and observe that it takes at least time 1 to bring the objects together

as only one robot is needed to carry one object.

The proof of the following theorem is analogous to that of Theorem 2.3.2 and Theorem 4.2.1.

Theorem 4.2.2. For all n ≥ 3 and k = 2 the performance of any algorithm is at least 3 + π
n .
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Chapter 5

Conclusion and Open Problems

We introduced a particular gathering problem and some fundamental bounds. SRCHn,k is a

gathering problem centered around bringing two hidden objects together and where mobile

agents can communicate wirelessly. We constructed upper and lower bounds covering all

values of n and two values k. An evident next step would be to tighten and close the gap

between said bounds. Admittedly, this addition would not aid in the construction of an

exhaustive compendium. There are several other related and compelling problems one might

tackle:

1. The same gathering problem in the face-to-face model

2. Exploring the competitive ratio analysis for SRCHn,k

3. Generalizing the model for asymptotic values of k, where k ≤ n

4. Assigning weights to objects by cogitating different values of k for each object

5. Exploring a polygon domain with m sides of equal length, and letting mÐ→∞ to see

if comparable with the disk version

We note again the considerable combinations that can be derived. Another logical direction

would be to authorize randomness in terms of robot trajectories with the intent of improving

bounds.
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