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Chapter 1 

Introduction 

1.1 Motivation 

T HE most frequently diagnosed cancer for Canadian women is by far breast cancer. 

This is applicable to the most of the developed countries. An average Canadian 

\"oman has a 1 in 9 chance to develop breast cancer in her life time. Each day more than 

10 women die in Canada from breast cancer. Because the Canada population is aging, the 

number of women who will die from breast cancer will increase [1]. 

There is no cure for breast cancer. The only effective way to save the patient life is 

early detection and removing cancerous cells. X-ray mammography is a very important tool 

and the most commonly used method for early detection. For women aged over 40 years 

old, screening mammography is recommended once a year. This result in huge number of 

mammograms that they need to be examined and interpreted by trained radiologists. 

Unfortunately, mammograms are one of the most difficult medical images to interpret. 

Specifically, visual assessment of microcalcification turns out to be a challenging task. Ap-

proximately 25% of the cancers that are visible on retrospective review are failed to detect 

by radiologists [2]. 

1 
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Thus, computer aided diagnosis (CAD) systems are motivated to help the radiologists 

with this tedious task. In fact, the goal of a CAD systems is not to create a high-tech 

radiologist or automate the detection procedure. CAD systems are intended to act as the 

first cut in the process and a second opinion for the radiologists. The term" second Opinion" 

means that the radiologists can use the results of a computer analysis of the mammogram 

in making a diagnosis. A CAD system tries to locate suspicious regions in the mammogram 

for more detailed examination by the radiologists. 

1.2 A CAD system based on texture features 

Ovcr last two decades several approaches have becn used by image processing scientists and 

researchers to develop a CAD system for microcalcification detection. A series of different 

methods and research results are briefly addressed in chapter five. Texture features are 

important and commonly used. It is not only used in breast cancer detection, but also 

is extensively used in other applications which deal with abnormality detection in medical 

images. Any texture classification method involves two major steps: 

• Feature Extraction 

• Classification 

In this thesis both concepts are studied and a new method is proposed. Researchers have 

found the feature extraction more challenging and numerous different methods have been 

proposed and applied. Recently, Kim et. al. [3] showed the effectiveness of the Support 

Vector I\1achine (SVM) in texture classification and its advancement over neural networks. 

Since SVM performs well in high dimensional space such as the space spanned by texture 

images, they successfully employed SVM without any external features. In fact, the kernel 

function in SVM algorithm, implicitly performs feature extraction. Since SVM is basically 
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suited for two-class classification problems, it is potentially a good choice for several different 

medical imaging which deal with abnormality detection. 

The main contribution of this thesis in the sense of texture classification is proposing a 

new texture classification algorithm by effectively employing ext.ernal features wit.hin SVI\l 

kernel and introducing a new feature extraction method for texture classification. 

1.3 Summary of contributions 

• Developing a new texture classification algorithm by proposing a new SV:i\1 kernel which 

incorporates external features. 

• Proposing an extension to aforementioned algorithm by using Gabor filter banks to en

rich the external features, for the case of highly non-stationary signal and image classification. 

• Achieving promising microcalcification rate by applying the new texture classification 

algori HUll. 

• Overcoming the asymmetry of training data III mammograms by applying a wavelet 

based pre-process stage to detect sllspicious sites. 

• Discussing t.he clinically assessed difficulty level of mammograms in interpreting of clas

sification rates. 
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1.4 Thesis outlines 

SVI\I is reviewed in Chapter two. Three feature extraction nlC'thod are considered to be 

used within SVl\1 kernel. These feature algorithm are presented in Chapter three. In Chap

ter four, texture classification challenges are discussed and previous works are cited. The 

three feature extraction algorithm presented in Chapter three, are compared by their esti

mated VC-dimeusioll. LPC has been fOllnd superior and is used within a new kernel for 

SVl\I. The new texture classification algorithm is compared \vith several traditional texture 

dassificatiom; and some recently reported novel methods. In Chapter five, previous works in 

micro calcification detection are addressed and the new algorithm is applied to mammograms 

following a pre-process stage. Chapter six is dedicated to conclusion aud intellded future 

works. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 2 

SVM Learning Classifier 

SUPPORT vector machine is basically proposed for the case of binary classification. 

The main idea of support vector machine is to construct a hyperplane as the decision 

surface in such a way that the margin of separation between positive imd negative examples 

is maximized. This goal is motivated by principle:,; of statifitical learning theory and the 

method of structural risk minimization [4], [5]. Indeed, the support vector machine ifi an 

approximate implementation of the structural risk minimization. According to the statistical 

learning theory, the error rate of a learning machine on the test data (i.e. the generalization 

error rate) is bounded by the sum of the training-error rate and a term that depends on 

Vapnick-Chervonenkis(VC) dimension [4]. In the case of separable patterns, SV11 produces 

a value of zero for the first term and minimize the second term. Accordingly, The optimal 

hyperplane which is sought by SVM is equivalent to minimum bound on the VC-dimension. 

In the following, we first review the formulation of SVM in the simple case of separable 

patterns and then we discuss the case of non-separable case. 

2.1 Linear SVM Classifier 

Let vector x E X denote a pattern to be classified, and let scalar y denotes its class label 

Y E {± 1 }. In addition, let {(Xi, Yi), i = 1, 2, ... , I} denote a given fiet of I training exam pIes. 

5 
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The problem is how to construct a classifier [i.e., a decision function I(.?:)] that can correctly 

classify an input. pattern that. is not necessarily from the training set.. On the assumption 

of linearly separable case, there exist a linear function of the form 

(2.1) 

Such that for each training example Xi, the function yields f(x.i) > a for :t}i +1, and 

f (Xi) < 0 for J-Ii = -l. In ot.her words, training examples from the t.wo different classed are 

s<'parated by the hyperplane f(x) = w T X + b = O. 

For a given training set, while there may exist many hyperplane that separate the two 

classes, the SV1\1 classifier is based on the hyperplane that maximizes the separating margin 

bet\vpen the two classes. In other words, SVI\i finds the hyperplane that causes the largest 

separation between the decision function values for the borderline members of the two classes 

referred as support vectors. This hyperplane can mathematically be found by minimizing 

the following cost function: 

1 1 
W(w) = -wTw = -II W 112 

2 2 
(2.2) 

Subject to separability constraints: 

for Yi = +1 

and 

wTx· +b <-1 l _ , for Yi = -1 (2.3) 

i=1,2, .. ,I. 
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Equivalently, these constraints can be written more compactly as 

T Yi (W Xi + b) ~ 1, for 'i = 1,2, .. , I. (2.4) 

This specific problem forlllulation lllay not be useful in practice because the training data 

may not. be completely separable b~T a hyperplane. In this case, slack variables, denot.ed by 

f;i, can be introduced to relax the sC'parability constraints in (2.4) as follows: 

(2.5) 

Accordingly, the cost function in (2.2) can be modified as follows: 

(2.6) 

where C is a user-specified, positive, regularizat.ion parameter. In (2.6), the variable ~ is a 

vector containing all the slack variables ~i, i = 1,2, ... , I. 

The modified cost function in (2.6) constitutes the so-called structural risk, which 

balances empirical risk (i.e., the training error reflected by second term) with model 

complexity (t.he first term) [6]. The regularization parameter C controls this trade-off. 

The purpose of llsing model complexity to constrain the optimization of empirical risk is t.o 

avoid overfilling, a situation in which the decision boundary too precisely corresponds to the 

training data, and thereby fails to perform well on data outside the training set.. 
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2.2 Non-Linear SVM Classifier 

In practice, input patterns are unlikely to be linearly separable. Non-linear SVr'vl is 1110-

tivated by Cover's theorem [7] on the separability of patterns. The theorem states that 

snch a linearly non-separable pattern space can be transformed into a new feature space 

where patterns are liuf'arly separable with a high probability. According to the theorem, the 

transform must be non-linear and the dimellsion of feature space lllust be high enough. 

Let x denote a vector drawn from the input space X, assumed to be of dimension mo. Let 

{cI>j(X)}j~] denote a set of non-linear transformatiolls from the input space to the feature 

space of dimension mI. It is assumed that {cI>j(x)} is defined a prior for all j. Then, a 

hyperplane acting as decision surface is defined as: 

111) 

L 'Wj<l>j(x) + b = 0 
j=] 

(2.7) 

where {1Oj} j~l denotes a set of linear weights com1E'cting the feature space to output space, 

and b is the bias. The equation (2.7) can be simplified by writing: 

112} 

L wjcI>j(x) = 0 
j=O 

(2.8) 

wllf're it is assumed that cJ>o(x) = 1 for all x, so that Wo denotes the bias b. Equation (2.8 

) df'fines the decision surface computed in the feature space in terms of the linear weights 

of the machine. The quantity cI>j(x) represent the input supplied to the weight Wj via the 

feature space. In fact, the vector [<l>o(x), cI>l(X), ... , cI>m1 (X)]T can be considered the "image" 

induced in the feature space due to the iuput vector x. 

The problem of finding weight coefficients w can be formulated as an optimization prob-

lem with constraint. It can be shown that finding optimal hyperplane is equal to minimizing 

the cost function [G]: 
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(2.9) 

The parameter C is regarded as the regularization parameter and is selected by user. A 

large C corresponds to assigning a higher penalty to the training errors. 

Given the training samples as {(Xi, di)}~l' the constraiuts which must be satisfied are: 

(2.10) 

This constrained optimization problem call be solved using the lagrange multiplier. The 

Lagrangian function is cOllstructed as: 

(2.11) 

where the nonnegative variables 0:; are called Lagrange multipliers. The solution to <.:on-

strained optimization problem is determined by the saddle point of the Lagrange function 

J(w, b, 0:), which has to be minimized with respect to wand b. It also has to be maximized 

with respect to 0:. Applying the optimality conditions: 

8J(w, o,~, b) = 0 
Dw 

DJ(w, o:,~, b) = 0 
8b 

DJ(w, o:,~, b) = 0 

8~ 

to Lagrange function (2.11 ) yields: 

N 

W = L O:idi <I> (Xi) 
i=l 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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Thell, the non-linear SV11 classifier is obtained as: 

N N 
f(x) = LOidi<I>T(Xj)<I>(x) + b = LQidiK(Xj,x) + b (2.16) 

i=1 i=1 

where the function K(.,.) is defined as: 

(2.17) 

K is referred as kernel function. 

Practically Lagrallge 11ultipliers arc solved from dual form of (2.9), which is expressed 

as: 

Subject to: 

N 1 N N 

" 0 - - "" eta·d ·K(x· x·) L 1 2 LL ' J J I, J 
i=1 i=1 j=1 

0::; Qi::; C, i = 1,2, ... ,N 
N 

LQidi = 0 
i=l 

(2.18) 

(2.19) 

(2.20) 

The dual problem is solved numerically through quadratic programming. The Karush-Kuhn-

Tucker optimality conditions for (2.18) lead to the following three cases for each Q( a) Qi = O. 

This corresponds to d;J(Xi) > 1. In this case, the data element Xi is outside the decision 

margin of the function f(x) and is correctly classified. b) 0 < Qi < C. In this case, 

d;J(Xi) = 1. The data element Xi is strictly located on the decision margin of f(x). Hence, 

Xi is referred as a margin support vector for f(x). c) Qi = C. In this case, d;J(Xi) < 1. 
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The data element Xi is inside decision margin (though it lIlay still be correctly classified). 

Accordingly, Xi is called an error support vector of f(x). The most of the training examples 

in a typical problem are correctly classified by the trained classifier ( case a), i.e., only a few 

training exalllpies will be support vectors. For simplicity, let Sj, nj,j = 1,2, ... , N s , denotes 

these support vectors and their corresponding nonzero Lagrange llluitipliers respectively. 

The decision function in (2.1G) can be simplifiC'd as: 

(2.21) 

As it can be seen in (2.18) and (2.21), The nonlinear lllapping ~(.) never apears explicitly in 

either dual form of SV11 training problem or the resulting decision function. The mapping 

~(.) only enters the problem implicitly through the kernel function K(., .), thus it is only 

necessary to define K(.,.) which implicitly defines ~(.). However, when choosing a kernel 

function, it is necessary to check that it is associat(>d with the iuner product of some non-

linear mapping. 1Iercer's theorem [G] titates that such a mapping indeed underlies a kernel 

K(.,.) provided that K(.,.) is a positive integral operator, that is, for every square-integrable 

function g(.) defined on It' the kcmel K(., .) satisfies the following condition: 

J J K(x,y)g(x)g(y)dxdy ~ 0 (2.22) 

A new kernel is proposed in Chapt.er 4 hased on feat.ure extraction methods reviewed in 

Chapter 3. 
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Chapter 3 

Time series and Time-frequency 
features 

F EATURE selection is a crucial step in sigual and image classification and pattern 

recognition. The goal of feature selection is having large" between class distance" and 

small "within-class variance" in the feature vector space. 

SVJ\'I classification method basically does not incorporate any external feature. In fact 

the kernel function implicitly extract features within the learning scheme. 

The main focus of current and following chapter is investigating the effectiveness of 

employing external features \\'ithin SV:M kernel. In the following sections three feature 

extraction methods are reviewed and they will be compared in the next chapter. 

3.1 Local discriminant basis 

Local discriminant basis (LDB) [8] is a supervised scheme for feature extraction and is 

the classification counterpart of the Best Basis algorithm developed by Coifman and Wick-

erhauser [9] for signal aud image compressioll. The appeal of LDB algorithm lies ill the 

supervised selection of basis functions from redundant and structured basis that are well 

localized both in time and frequency. The tree structured dictionary of the basis, which is 

provided by wavelet packet transform, is pruned to find the most discriminative basis for the 

12 
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purpose of the classification. 

In the following subsections, wavelet, wavelet packet, and LDB algorithm are briefly 

reviewed. 

3.1.1 Wavelet and Wavelet Packet Transforms 

Fourier transform has been the principle tool for signal analysis for a long time. It constructs 

a siuusoidal basis to describe the energy distribution of a signal in frequency domain. But 

Fourier transform has a drawback that the time (or spatial) information is lost due to the 

integration over entire real axis. Thus by looking at the Fourier Transform domain it. is 

impossible to say when (or where) a particular phenomena took place. However most of 

the practical signal and images contain quasi-periodic and quasi-stationary characteristics 

that capturing them is crucial for classification purpose. \Vindowing the signal and applying 

Fourier Transform to each window (Short Time Fourier Transform (STFT) ) was the first 

attempt to overcome this problem. STFT in turn, reduces the frequency resolution which is 

in compliance with Heisenberg uncertainty principal [10J. Wavelet transform, which is based 

on multiresolutional analysis, were proposed and developed to overcome fixed resolution 

problem in STFT. 

Similar to the Fourier transform, that describes a signal iu terms of the sinusoidal waves 

of various frequencies. wavelet analysis is an attempt to describe a signal according to shifted 

and scaled versions of a basis function. This basis function is referred as mother wavelet. 

By considering the wavelets and sine waves, depicted in Fig 3.1, we can see intuitively that 

signals with sharp changes might be better analyzed with an irregular wavelet than with 

a smooth sinusoid. It also makes sellse that local features can be described better with 

wavelets that have local extent. 

The discrete wavelet transform is defined as [10]: 
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(a) w3vckt 

(I» sine WHYC 

Figure 3.1: \Vavelct and Sine \>,rave 

. 1 
Wq,(), k) = I7\T L s(n)<h(n) 

vN 11 

. 1 
W'll (), k) = IN ~ s(n)wj,dn) 

n = 0"" ,N-1 

J = 0,"', J - 1 

J = log2 N 

14 

(3.1) 

(3.2) 

where N is signal length and IV<j, and IV'll are approximation and detailed coefficients 

respectively. j and k denote scale and translation. wand <I> are wavelet and scale function. 

:rvI all at [11] implemented an algorithm known as two-channel subband coder to obtain the 

discrete wavelet coefficient which is described in Fig. 3.2. The expansion can be continued 
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J times (Fig. 5.4) for complete signal decompositiOll resulting in the complete set of wavelet 

coefficients. For the sake of image processing applications the subband coding scheme of Fig. 

3.2 is generalized as depicted ill Fig. 3.4. 

low-pass filter dowllsampie approximatIon 

-q 
F 

:1 
caeffi ci en is 

1.0_0 l 2 .. cAl 

s 
G 

HLD I , 2 .. CDl 

high-pass filter dow1/samp!c detail 
('O(! {fide nts 

(a) 

Figure 3_2: Computing wavelet coefficients via subband coding method 
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Figure 3.3: Signal Decomposition to wavelet coefficients 

The wavelet transform is extended to wavelet packet decomposition which offers a richer 

range of pos~;;ibilities for signal analysis. In wavelet packet transform after splitting the signal 

to approximation and detail in first stage we continue the splitting over the detail part as 
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Figure 3.4: Generalization of subband coding for 2D Signal 
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well as approxilllatioll part. Thus, for TI level decomposition there will be n + 1 possibilities. 

These different possibilities construct the redulldant library, which is used by LDB. 

• • • • • • • • 
• • • • • • • • 
• • • • • • • • 

(a) 

Figure 3.5: \Vavclet Packet transform: An extension to wavelet trawiforIll 
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(a) 

Figure 3.6: \Vavclct Packet decomposition (quad-tree for image signal) 

3.1.2 LDB Algorithm 

The graphical LDB scheme is shown in Fig. 3.7. In the following a formal statement of the 

algorithm is presented. 

Assume that set of N training signals from L different classes are given and Ni is the 

number of signals in class l. Let s;l) denote the collection of training signals in class l, in 

which the superscript (I) indicates the class that the signal belongs to. Suppose that each 

s belongs to a unique class so that N = N] + N2 + ... + Nt. LDB uses this training set of 

signals to search for a best basis in available libraries of bases respect to its cost function. 

Definition I Given a sequence of vectors {s(c)}~~l (C is number of classes), their J

divergence is defined as in (3.3) where the summation is taken over all pairs of i and that 

are not equal. 

(3.3) 

Definition II Let {slc)}~] be a set of training signals belonging to class c. Thell the time-
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frequency energy map of class c, denoted by r Cl is a table of real numbers specified by triplet 

(j, k, I): 

,,11/c (wT s(e))2 r ( . k I) = L..,=1 J.k,f I 

c), " ,,'!c II ,(e) II 
L..,=1 8, 

(3.4) 

where w is a basis function and j = 0,1, ... , J ,k = 0,1, ... ,2) -1 , and 1 = 0,1, .. " 211o - j - 1. 

In other word, r c is computed by accumulating the squares of expansion coefficients of the 

sigllals at each position in the binary tree followed by the normalization of the total energy 

of the signals belonging to class c. This normalization is important especially if there is 

significant difference in the lllunber of samples among classes. The following notation is used 

in LDB algorithm stated below, 

~j,/.' = J( {reCi, k, ')}~=l = L J(rlCi, k, I), ... , reCi, k, l)) (3.5) 
f 

Here is an algorithm to select an orthonormal basis ( from the library), which maximizes the 

discriminant measure on the time-frequency energy distributions of classes. Let Bj,k denote 

a set of basis vectors at the subspace 0.j ,k arranged as a matrix: 

(3.6) 

Let the Aj,k represent the LDB (which the algorithm is searching for) restricted to Bj,k. 

Algorithm (The Local Discriminant Basis Selection Algorithm) . Given a training 

database of classes of signals: 

Step o. Choose a library of orthonormal bases(i.e. specify Ql\fFs for wavelet packet). 

Step 1 Construct time-frequency energy lllap re for c = 1, .. , C 

Step 2 Set Aj,k = Bj,k for k = 0,1, ... , 2J - l. 
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Step 3 DeterminE' the best subspace Aj,I,' for j = J - 1, .",0 and k = 0,1, "" 2j 
- 1 by the 

following rule: 

then A j,k = Bj,k 

Step 4. Order the basis functions by their power of discrimination (see Step 5), 

Step 5. Use k( < 11) most discriminant basis functions for constructing classifiers, 

7 
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Figure 3.7: LDB best basis selection scheme for a two class(A,B) problem 
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3.2 Linear predictive coding 

Lincar predictive coding (LPC) is a popular and effective technique for signal compression 

[12], [13]. In particular, it has been employed successfully for speech coding [14], [15], [16], 

[17] and image compression [18]. 

Usually, in a linear predictive coder, a sample of the image signal to be coded is first 

pn'dictC'd. If tIl(' sample is predicted as a weighted Sl1m of other samples of this signal, the 

LPC is called the autoregressive (AR). If the sample is predicted from a known excitation, 

the LPC is referred to as the moving average (IvIA) model. if the sample is predicted using 

both the signal to be coded and an excitation signal, the LPC is known as the autoregressive 

moving average (AR~lA) model. In this thesis, the (AR) model has been used and it is 

reviewed in the following subsections. 

3.2.1 The LPC Model 

u(o) 

A(z) I----.~ S(o) 

G 

(a) 

Figure 3.8: Linear Prediction Coding I\lodcl 

The basic idea behind the LPC model is that a given signal s(n), can be approximated 

as a linear combination of the previous p signal samples, such that 
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8('11) ~ 018(n - 1) + 028(n - 2) + ... + aps(n - p) (3.7) 

The equation 3.7 can be converted to an equality by including an hypothetical input term, 

Ou(n), which is referred as excitation in speech analysis literature. The ('quation can be 

written as: 

]J 

8('11) = LOis(n - i) + ClI(n) (3.8) 
;=1 

where 11(11) is a normalized hypothetical input and G is its gain. By expressing Eq. 3.8 in 

the z-domain we get the relation: 

11 

S(z) = LQ.iZ-iS(Z) + GU(z) 
;=1 

leading to the transfer function: 

1 

A(z) 

(3.9) 

(3.10) 

Fig. 3.8 is presenting the transfer function in 3.10. The linear prediction model indicates 

that a signal 8(n) can be estimated by a system of order p with a scaled input u(n). While 

the signal is quasi-stationary the input. can be a random noise or arbitrary quasi-periodic 

signal. Accordingly, the A(z) coefficients can provide an efficient feature for preseuting the 

signal s(n). 
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3.2.2 LPC analysis equation 

Based on the model of Fig. 3.8 the estimate s( n) is defined as: 

l' 

S = L oks(n - k) (3.11) 
/"=1 

and the prediction error is: 

l' 

C(lI) = S(l1) -.5 = s(n) - L (1k8(n - k) (3.12) 
1.-=1 

Now a set of coefficients lllust be sought to minimize mean square error in a short segment 

of the signal. To set up the equatiolls that lllust be solved to dC'terminc the predictor 

coefficients, the short-term signal and error segments arc defincd at signal sample n as: 

srlm) = s(n + 1/1); en(m) = e(n + m) (3.13) 

where m is the segment length. Then the mean square error which must be minimized can 

be written as: 

p 

En = L[Sn(m) - L aJ.;Sn(m - kW (3.14) 
, Tn 1.-=1 

To solve Eq. 3.14, for the predictor coefficients, we differentiate En with respect to each OJ.: 

and set the results to zero, 

k=1,2, ... ,p (3.15) 

giving 

p 

LSn(m -- i)sn(rn) = L QJ.: L sn(m - i)sn(m - k) (3.16) 
m J.:=1 rn 
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Knowing t hat terms of the form I: STl enl - i) STl (m - k) are terms of the short-term covariance 

of s,Jrn) , i.e., 

rPlI(i, k) = L sTl(rn - i)sn(m - k) (3.17) 
111 

The Eq. 3.16 can be expressed in the compact notation: 

l' 

rPTl(i, 0) = L OkrPll(i, k) (3.18) 
k=l 

which describe a set of p equations in p unknowns. It is readily shown that the minimum 

mean-squared error, En, can be expressed as: 

p 

En = L s;,(m) - L Uk L SnCm)Sn(m - k) (3.19) 
'" k= 1 111 

p 

rPn(O,O) - L OkrPll(O,k) (3.20) 
k=1 

Thus the minimum mean-squared error consists of a fixed term (rPn(O,O)) and terms that 

depend on the predictor coefficients. 

To solve Eq. 3.18 for the optimum predictor coefficients ( nd the (/>r,(i, k) must be 

computed for 1 ::; i ::; p and 0 ::; k ::; p, and then the resulting set of p simultaneous 

equations. Practically, the method of solving aforementioned equations is a strong function 

of the range of m used in defining both the section of signal for analysis and the region over 

which the moan-squared error is computed. In this thesis tho autocorrelation mothod was 

used and is reviewed in the next subsection. 
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3.2.3 The Autocorrelation method 

In this approach, it is assumed that the signal segment, 87/ (171), is idcntically zero outside 

the interval 0 ::; m ::; N - 1. This is equivalent to assuming that the signal, s(m + 'II), 

is multiplied by a finite length window, w( 111), which is identically zero outside the range 

o ::; m ::; N - 1. Thus the signal sample for minimization can be expressed as: 

S7/(m) = 8(m. + n).w(n), 0::; m :s; 1V - 1 (3.21) 

."in (rn) = 0, otherwise 

According to this equation, for 111 < 0, the error signal c,Jm) is zero since Sll(111) = ° for all 

'111 < 0 and therefore there is no prediction error. Furthenllore, for m > N - 1 + ]J there is 

again no prediction ('rIor because 871 (m) = a for all m > N - 1. However, in the region of 

m = 0 (Le., fromm = () to m =]J - 1) the windowed signal sll(rn) is being predicted from 

previous samples, some of which are arbitrarily zero. Hence the potential for relatively large 

prediction errors exists in this region. Furthermore, in the region of m = N - 1 (i.e., from 

m = N - 1 to m = N - 1 + p) the potential of large prediction errors again exists because 

the zero-valued (weighted) signal is being predicted from at least some nonzero previous 

samples. The purpose of the window of Eq. 3.21 is to taper the signal near m = () and near 

m = N - 1 so as to minimize the errors at section boundaries. 

Based on using the weighted signal of Eq. 3.21 the mean-squared error becomes: 

N-l+p 

En = L c;,(m) (3.22) 
m=O 

and ¢n(i, k) can be expressed as: 

N-l+p 

¢1l(i, k) = L sn{m - i)sn{m - k), 1::; i ::; p, ()::; k ::;]J (3.23) 
m=O 
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or 

1\'-1-(i-1.:) 

cP,,(i,k)= L sn(rn)sn(m+i-k), l~i~p, O~k~p (3.24) 
111=0 

Since Eq. 3.24 is only a function of i - k (ratl1('r than the two independent variables i and 

k), the covariance fUllction, 1>n(i, k), reduces to the simple autocorrelation function, i.c., 

N-l-(i-k) 

1>,,(i. k) = T lI (i - k) = L .'in(m)s,,(rn + i - k) (3.25) 
11l=() 

Since the autocorrelation function is symmetric, i.e. T lI ( -k) = Tn(k), the LPC equatiolls can 

be expressed as: 

p 

L7",,(1 i - k I)ih- = I",,(i), 1 ~ i ~ P 
1.:=1 

this equation can be expressed in matrix form as: 

7",,(0) 7",,(1) 7"71(2) 7"n(P - 1) 01 
7"n(1) 7"n (0) 7"n (1) Tn(P- 2) 02 
7"n(2) 7"n(1) 7"T/(0) 1"n(P- 3) 03 

Tn(P- 1) TrJp - 2) Tn(P- 3) T1/ (0) o'p 

rOn (1) 
rOn (2) 

(3.2G) 

Tn (3) (3.27) 

Tn(P) 

The p x P matrix of autocorrelation values is a Toeplitz matrix (symmetric with all 

diagonal clements equal) and hence can be solved efficiently through several well-known 

procedures. Levinson-Durbin algorithm implemented in matlab toolbox have been used ill 

this thesis. 

The spectral estimation for a given speech sample is shown in Fig, 3.9 and Fig. 3.10 for 

LPC model of different orders. 
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Figure 3.9: Signal spectra is compared with its estimated spectra using LPC of order a) 6 b) 12 
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3.3 Cohen's Space-Frequency signal representation 

The Cohen's group space-frequency [19] representation of signal s(n) is shown by ct(n, n) 

and is parameterized by its SFR kernel ¢. \Vhere n is discrete frequency. 

I\fany parametric SFrr kernel shapes have been proposed in literature, and an efficient 

choice is the family of radially Gaussian kernels, defined in the ambiguity plane as: 

\Vhere p and ¢ are the polar coordinates given by: 

and the contour function is: 

p =Vt,2 + T2 

if = arct an -1 ( ~ ) 
T 

Pmar 

c(ip) = 00 + 2:= [01'cos(2p!,C) + bp sin(2p'P)] 
p=l 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

in which ao is chosen such that c( if) 2: a~ > 0 for all if. The SFrr kernel parameters are 

then 0,0', 0,1' and b1" with P = 1, ... , Pmax. In the following, this set of parameters is denoted: 

Given the training set of signals ON for a two-class classification problem, an optimization 

procedure is applied to obtain the best discriminative set of parameters e. In the optimization 

procedure, (h and aT are considered to he subsets of approximately equal size obtained by 

randomly partitioning training set ON in two parts, each containing elements from both 

classes. Thcre are T+1 samples in OT labelled + 1, and T-1 samples labelled -1 (It is assumed 

that the two classes of data are labelled by -1, 1). Also, There is L+1 samples in OL labelled 

+ 1, and L-1 samples labelled -1. In order to optimally obtain e, an optimization criterion 

P( e I ON) is introduced which is minimized with respect to e via a standard optimization 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

29 

procedure. For a given training set ON and given kernel parameters (), P(() I ON) is calculated 

as follows: 

Step 1) Use the set 0 L to train the classifier. 

Stcp 2) Classify each element in OT. This results in two sets of values: 

i=l, ... ,T+l 

and 

i = 1, ... , T-l 

Step3) Compute the empirical mean 1l1+1,7n_1 and standard deviations+l,s_1 of f~i 

and f~i{ where 

1 Ttl 
,_ (i) 
711+1 - -I:f+I' 

T+I ;=1 

1 LlI. 
nl._ = - " ,.(!) 

1 T L·-l 
-I 1=1 

1 T+l 
,2 _ "( .(i) )2 

8+1 - T L j +1 - 111+1 , 

1 T_I . 

5 2 - - "(1(1) _ TTl )2 
-I - T L -1-1 

+1 ;=1 -I 1=1 

Step 4) Compute the criterion introduced in [20]: 

where 

1,+ac 1 '/1.2 

Q(v) = ~exp( -- )du 
v v 27r 2 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

steps one to four are repeated R times with differen subsets OL and OT, and the final 

criterion P(() I ON) is obtained as the average of P(() lOT, OL) over all the subsets tested. 

Under Gaussian assumption over the distributions of f~? and f~t it C311 be shown [20] 

P( () I ON) is an estimate of the classification probability of error for the classifier implemented 

with parameter (). In practice, () is selected to minimize this estimated probability of error 

P( () I ON) using a standard numerical optimization procedure. When the optimal ()' = 

argmino P(() I ON) is obtained, the classifier is trained over full learning set ON using the 

optimal SFR kernel. 
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Chapter 4 

A N Dvel SVM Kernel for Texture 
Classification 

4.1 Motivation for texture classification 

Researchers have been working for several years to implement image understanding al

goritlnlls that can duplicate the excellent ability of human brain to recognize objects. In 

addition to shape of an object, it is believed that texture characteristics play an important 

role in human brain and visual system to recognize and interpret objects in perceived im

ages. Consequently, texture analysis has been an active research field and large number of 

diverse algorithms have been proposed and tried. Texture classification currently is used as 

an essential part in a variety of image processing applications. 

4.2 Applications 

A wide range of different industrial applications have been successfully implemented based 

on texture analysis algorithms. ~:Iarti ct. al. [21] used texture features in conjunction with 

other modalities for object recognition in industrial environments. Kumar and Pang [22] 

30 
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applied texture analysis for defect detection in textured materials. Li et. al. [23] classified 

tough and tender beef by texture analysis. 

Texture characteristics have been also used extensively in medical imaging to detect 

abnormalities. Text.ure features and maximum likelihood classifier were used by Horng d. 

al. [24] to classify ultrasonic liver images into three category of normal liver, liver hepatitis 

and cirrhosis. A statistical model bast'd on autoregressive lwriodic random field model in 

cOlljullctioll with conventional texture analysis parameters were llsed by Bleck ct. at. [25] to 

det('ct microfocallesions in ultrasound li\'(~r images. \\Tang et. al. [26] used texture featur(\s 

to ddeet infected tissues by ulcer and coli in endoscopic images. Texture features and anal

ysis is also used for breast cancer detection. Gurcan ct. aI. [27] used higher order statistical 

texture features for detection of microcalcifications in mammograms. Tlwy used skewness 

and kurtosis to discriminate between normal and abnormal tissues. In allot her work, textural 

features was used by Kim and Park [28] to detect microcalcific:ation in digitized l\Iammog

raphy. A computer aided diagnosis (CAD) system for automatic abnormalities detection in 

chest radiographs was introduced by Ginneken et. aI. [29] using local texture analysis. 

4.3 Texture Classification Challenges and Previous works 

Texture classificatioll algorithms generally include two crucial steps: 1) feature extraction 

and 2) classification. In the following subsections the aforementioned and the previous work 

on each of them are addressed. 

4.3.1 Feature Extraction 

In feature extraction stage, a set of features are sought that can be efficiently computed and 

embody as much discriminative information as possible about the textural characteristics. 
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There are several methods for extracting textural feature which can be loosely classified as 

statistical, model-based and signal processing methods [3]. In statistical methods, textures 

are modelled using statistical measures. These methods are motivated by the fact that psy

chophysical experiments have demonstrated human visual system ability to extract some 

statistics of an order higher than two [30].The major drawback to this type of method is 

the enormous amount of data involved in higher order statistics. In l\lodel-based methods, 

textures are characterized based on probability distribution in random fields, such as l\Iarkov 

chains and l\larkov random fields (MRFs) [31], [32]. MRF based methods are ,,,·idely used 

but they are computationally expensive. Signal processing methods (also referred as multi

channel filtering) are popular due to their simplicity of implementation. In these methods 

a textured input image is decolllposed into feature images using filter banks such as Gabor, 

wavelet or neural network based filters [33], [34], [35]. The main issue in these methods is 

selection of optimum set of filters for the problem in hanel. 

4.3.2 Classification 

In the second stage of a texture classification algorithm, a classification paradigm is con

structed to distinguish between texture features corespondent to different texture classes. 

Several different classifiers have been reported. Minimum distance classifier based 011 Eu

clidean or Mahalanohis distance was used in [36] and [37]. Manian et. al. used K-nearcst 

lleighbor in [38J. Fisher linear discriminant (FLD) was used in [39J by Clausi and Jernigan. 

Raghu and Yegnanarayana used artificial neural network (ANN) in [40J. Bayesian classifier 

was used in [41], [42J. Bayesian classifier is known as optimal classifier, but calculation of 

underlying probability distribution of the problem under study is not practically possible, 

specially in the absence of adequate number of training samples. In this thesis, the SVM 

has been chosen since it was shown that SVM outperforms other classification methods [6]. 
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Superiority of SVl\I originates from its ability to generalize in high dimensional spaces, sHch 

as the space which is spanned by texture patterns. The generalization ability of SVM is 

based on its profound relation to the underlying statistical learning theory. In fact, SVM 

is an approximate implementation of Structural Risk l\1inimization method(SRM) since it 

imposes a theoretical bound on generalization error and sparseness of the solution. In SVM, 

instead of minimizing an objective function based on the training salllples ( sueh as mean 

square error), it is attempted to minimize a bound on generalization error ( i.e., the error 

made by the learning machine on test data not used during training). Therefore. an SVl\I 

tend to perform well when applied to data outside the training set. SVM achieves this 

advantage by focusing on the training examples that are most difficult to classify. These 

"borderline': training examples are called support vectors. 

Since SVM is a learning based classifier, it is mostly comparable with Neural Network. 

A brief comparison is given in Table 4.1. 

Table 4.1: Brief comparison between SVM and NN 

SVM NN 
Minimize Structural Risk l\1inimize Empirical Risk 

Less over fit More over fit 
Convex QP can always find a global optimum gradient descent. may stick at local optima 

Challenge: choice of kernel functions Challenge: Structures of network 
Faster training Slower training 

4.4 External features to build a new kernel for SVM 

Unlike other texture classification methods, SVM based method dose not necessarily incor-

pOl'ate any external feature extraction method. Kim ct. ai. [3] showed the effectiveness of 
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SVl\l in texture classification problem. In fact, in an SVl\1, feature extraction is implicitly 

performed by a kernel, which is defined as the dot product of two mapped patterns. There 

are some basic and popular kernels which are widely used ill different research including Kim 

et. al. 's work [3]. It is believed that the proper selection of SVM kernel significantly affect 

t he overall performance of the algorithm. 

In this thesis, we are seeking a tranSfOl"lllatioll within SVl\I kernel to transform input 

patterns to a llew space with emphasizing on difff'rf'llces hetween classes and deemphasizing 

on similarities. In practice, this is important when \\'e face small learning set and there i:-5 

a need of model-free representation space. A variety of approaches has been llsed such as 

\vavelet packet based algorithms [43] (selection of the best discriminative basis) and methods 

based on time-frequency representations (TFR) [44], [45](selection of the best TFR within 

Coben's class [19]). Also, LPC has been widely used in speech recognition and coding 

applications [46]. In this section, the effectiveness of the aforementioned features are studied 

and compared. The most effective feature is employed ill developing a new kernel for SVl\I. 

The main contribution of this thesis, in the sense of texture classification, is incorporating 

an optimized external feature into a new kernel function for the SVM algorithm. The 

proposed kernel has the form of: 

1 w 2 'U)2 

k(Xi,Xj) = e:rp- -2[2: 2: 1 NTx.(n,f2) - NTa;j(n,f2) 12] 
20" n=1 n=1 

(4.1 ) 

_____ where Xi and Xj are the vector forms of the subimages sampled by a windowing operator 

of the size w x w. nand f2 are presenting spatial and frequency domaiu variables. The 

notation NTxJn, f2) emphasize the normalization of the transform T: 

NT ( f2) _ 1 Tx(n, f2) 1 

x n, - L~v2 Lf2 1 Tx(n, f2) 1 
(4.2) 

The transformation T in 4.1 can be any of the three feature extraction reviewed in 
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Chapter 3. To select the optimized feature extraction for texture classification the VC

dimension is estimated [6] for each of the three feature extraction. The VC-dimensioll is 

principally indicates the largest number of points that can be separated in all possible ways 

using the functions of the given class [4]. The VC-dilllension of the kernel and its parameters 

can be estimated by the radius T of the smallest ball containing all the data points in the 

feature space [47]. The proposed strategy is to select the kernel and parameters that 

minimize T and eventually VC-dimension. 

The VC-dimension is estimated for each possible two-texture classification among the four 

texture shown in Fig. 4.1. According to t his estimation LPC feature extraction with optimal 

feature I1l11uber is adopted to develop t he SV~l with optimized kernel texture classificatioll. 

This algorithm is referred as optimized SV~1 (OSVM) or LPC-SVM algorithm in the rest of 

this thesis. 

4.5 Classification and segmentation Results 

To verify the effectiveness of the proposed method, experiments were performed on clas

sification and segmentation of several test images. The test images were drawn from two 

different commonly used texture sources: the Brodatz album [48] and MIT vision texture 

(VisTex) database [49]. Table 4.2 summarize the source of the test images. All textures are 

gray-scale images with 256 levels. The classifiers were trained on randomly selected portions 

of subimages of texture images that are not included in the test subimages. Both the train

ing Rnd test images W(lfe globally histogram equalized before being used. Gray scales were 

linearly normalized into [-1, 1]. 

The results of classification are compared with some other texture classification methods 

including original SVl1 [3] as well as logic operators method [38], wavelct transform mcthod 
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Figure 4.1: Average VC-Dimcnsion for three kernel fUIlctions based on the three feature extraction 
reviewed in chapter 3 

[37] and optimal Gabor filter method [39]. 

4.5.1 Comparison with Original SVM method 

Images in Fig.4.2 are 256 x 256. Classifiers were trained by 1000 patterns from each texture. 

This corresponds to about 1.7 percent of the total available input patterns. The results are 

compared at different window sizes of 9 x 9,13 x 13,17 x 17,and 21 x 21. The original SVl\1 

shows the optimal classification rate at window size 17 x 17. In the proposed LPC-SVl\1 

the classification error rate decreases by increasing window size. Classification error rates 

are presented in Table 4.10 and 4.4. The proposed method outperforms the original SV:l\I 

specifically in larger window size. This is due to the ability of LPC kernel in inducing more 
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space-frequency characteristic into feature space at larger window size. 

4.5.2 Comparison with Other Classification methods 

In order to establish the superiority of the LPC-SV:t\i, its performance is compared with the 

most common techniques in texture classification. The spatial gray level dependence method 

(SGLDM) or co-occurrence matrix method. Fourier power spectrum method, tree- structured 

wavelet transform method, Laws texture features and Gabor method are used. The SGLDM 

estimate!"' the second-order joint conditional probability density functions, writtpn in matrix 

form and are called co-occurrence matrices. Haralick [50] proposed fourteen statistical 

features that can be computed from these matrices. Although SGLD:t\1 has been proven 

to perform well for texture classification, the selection of the appropriate distance between 

pixels and angle for the co-occurrence matrix computation poses a problem and it is also 

computationally intensive. The Fourier spectrum method has not performed well even in 

earlier comparisons [51]. The statistical Fourier features of average magnitude, maximum 

magnitude, energy and features using the zonal masks used in [51] are computed. In the 

tree-structured wavelet transform (T\VT) method, the texture samples are decomposed into 

multiresolution hierarchy only at nodes where the energy of the decomposed subimages 

is not significantly smaller than the other subimages at that leveL The energy map of the 

channels is used as a feature vector for classification [52]. Energy features up to four level 

of decompositions are considered. This method has the drawback of becoming noisy at 

higher levels of decomposition. Four of the most powerful Laws mask are used to compute 

the texture energy measures [53]. Gaussian window function is used to compute Gabor 

transform and the Gabor coefficients are approximated using an optimization criteria [54]. 

Average energy and residual features are computed with this method. The feature selection 

process is applied with all methods in order to obtain the best feature set for each algorithm 
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. The Euclidean distance classifier used for all the aforementioned methods. Six differcnt 

experiment with six texture classes in each case are conducted. The results are giYen in 

Table 4.7. 

The proposed method is compared with two new method, Logical Operators [38] and 

wavelet co-occurrence features method [37]. Results are listed in Tables 4.8 and 4.9. 

4.5.3 Segmentation Results and Comparison 

One of the most important application of texture analysis in image processing is segmcn-

tatiOll. The results of segmentation using proposed method are shown and compared with 

optimized Gabor filter method in Fig.4.4. 

(a) (b) 

Figure 4.2: Two-texture images used in experiments (a) D4, D84 (b) D5, D92( Brodatz album) 

Image 
Fig4.2a 
Fig4.2b 
Fig4.3a 
Fig4.3b 
Fig4.3c 

Table 4.2: Source of test images 
Source 
D4 and D84 from [48] 
D5 and D92 from [48] 
D4,D9,D19,and D57 from [48] 
Fabric.0007, Fabric.0009, Leaves.0003, Ivlisc0002, and Sand.OOOO from [49] 
Fabric.OOOO, Fabric.0007, Flowers.0005, Food.0005, Grass.OOOl, 
1vleta1.0002, Sand.OOOO, and Stone.0004 from [49] 
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(a) (I» . (') 

Figure 4.3: Illultitcxture images used in experimcnts 

Table 4.3: Error R}ltes (pmwmt) for two-texture image (Fig.4.2a). 

Parameter Error Rate % 

window size Original SVM LPC-SV}'l 
9x9 12.7 9.6 
13 x 13 9.4 7.6 
17 x 17 8.6 4.1 

21 x 21 13.0 1.2 

Table 4.4: Error Rates (percent.) for two-texture illlage(Fig.4.2L). 

ParClmetcr Error RClte % 
window size Original SVM LPC-SVM 
9 x 9 14.6 14.2 
13 x 13 12.1 11.2 
17 x 17 11.9 7.3 
21 x 21 15.6 5.0 
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Table 4.5: Error Rates (percent) for lllllltitexture image(Fig4.3.a). 

Parameter Error Rate % 
window size Original SVM LPC-SVM 
9x9 22.3 15.2 
13 x 13 17.3 11.9 
17 x 17 16.1 8.7 
21 x 21 21.8 7.1 

Table 4.6: Error Rates (percent) for mllltitexture image(Fig4.3.b). 
Paramet.er Error Rate % 
window size Original SVl\l LPC-SVM 
9x9 21.8 14.5 
13x 13 20.0 10.3 
17 x 17 18.5 7.2 
21 x 21 19.7 4.3 

Table 4.7: Comparison of LPC-SVM with SGLDI\1,FPS,TWT,LA\VS, GABOR method 
Texture Image r % Correct Classification with different methods 

Mosaic of 6 textures LPC-SVM SGLDM FPS TWT Laws Gabor 
D94,D101,D36,D84,D103,D56 97 67 54 63 52 62 
D28,D20,D9,D38,D50,D57 98 84 75 62 84 70 
D90,D74,D93,D34,D65,D53 96 64 56 62 47 67 
D105,D79,D82,D52,D19,D78 99 59 54 53 40 55 
D28,D9,D5 7 ,D24,D4,D38 99 67 56 65 77 63 
DI03,D105,D12,D78,D79,D82 97 77 56 58 58 59 
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Table 4.8: Comparison of Correct Classification Rate in Logic Operator Method and LPC-SVl\1 

Texture Logic Operator Method LPC-SVl\1 
D15 89 89 
D19 97 100 
D52 81 100 
DG5 84 100 
D74 73 81 
D79 92 98 
D82 86 98 
D84 72 95 

Table 4.9: Comparison of Correct Classification Rate in Wavelet Transform 1'.lethod and LPC
SVl\1 

Texture \Vavelet transform 1'.letllOd LPC-SVl\J 
Bark.0006 92.86 89.0 
Clouds.OOOl 94.0 100 
Fabric.00l7 97.6 100 
Grass.OOOl 78.6 96.1 
Leaves.0012 91.7 94.2 
Misc.0002 97.7 100 
Sand.OOO2 96.4 100 
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(a) 

(b) (c) 

(d) (e) 

Figure 4.4: multitextllre images segmentation: (a) Five texture Brodatz image originally pub
lished by .Jain and Farroklmia(h) segmentation with LPC-SVlI before post processing (c) scg
mcntation with LPC-SVM after post processing (d) segmentation using Optimized Gabor Filter 
(e)segmentation using Optimized Gabor Filter (sigmoidal activation) 
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4.6 Gabor Filter Banks 

~Iuliti-channel filtering is an effective in texture classification and is widely used. Filter 

banks have the ability of decompose an image into relevant texture features suitable for the 

purpose of classification. Multi-channel filtering is motivated by its ability to mimic Human 

Visual System (HVS). Hubel and \iViesel [55] showed that simple cells in retina are sensitive 

to specific orientations with approximate bandwidth of 30°. In addition to sensitiYity, tIl(' 

HVS has spatial frequency sensitivity [56]. This consequently led to a HVS lllodpl consist 

of independent detector mechanism each preceded by a relatively narrow band Filter tuned 

to a different frequency. Experiments indicate that the frequency bandwidth of simple cells 

ill the visual cortex is about one octave [57]. 

In this way, Gabor filters are motivated to be used in the filter bank clue to thpir ability 

to be tuned into various oriental and spatial, spatial frequency characteristic. Spatially, a 

Gabor function is a Guassian modulated by a sine or cosine: 

(4.3) 

And in the frequency domain: 

We introduce Gabor Filter bank in this section to note that the ability of LPC-SVM 

algorithm in dealing with highly non-stationary and non-periodic signals, can be improved 

by adding gab or filter bank features. It is believed that gabor filter banks have an excellent 

ability in extracting non-stationary features. The main challenge in deploying Gabor filter 
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bank is proper and efficient feature selection. In the proposed method, LPC is used and the 

end of each filter for feature extraction. Such a feature extraction is not efficient for most of 

the classifiers and learning algorithms. Considering the ability of SVrvl in high dimensional 

feature spaces, the resulting algorithm i::i an excellent pattern recognition algorithm. 

Table 4.10: Error Rates (percent) for two-texture image (Fig.4.2a). 

Parameter Error Rate % 

window size Original SVI\1 LPC-SVM LPC-SVM with Gabor 

9x9 12.7 9.6 5 
13 x 13 9.4 7.6 3.9 
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Chapter 5 

Detection of Abnormalities In 
Mammograms 

B REAST cancer is a major problem of public health in the western world, where it 

is by far the most common cancer among womcn. Each clay, breast caucer calls for 

approximately oue hundred death in North America. As shown in Tablc 5.1 the rate of 

mortality is also considerably high in other developed countries. 

Table 5.1: Rate of Breast Cancer mortality in some developed countries. 

Country l\Iortality ( per 100 000) 
Canada 65.1 
France 35.5 
Germany 44.5 
Japan 10.7 
Korea 3.9 
Singapore 13.8 

On out of eight women over 40 years of age, develops one type of breast cancer. There is 

no way to prevent or cure breast cancer and the etiologies of breast cancer are unclear and no 

single dominant cause has emerged. The ouly way to save the life of patient is early detection 

and removing cancerous tissues before spreading to the other parts of body. The risk of 

45 
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mortality increases if the cancerous tumors are not detected early. Thus, early diagnosis and 

treatment has a critical role in increasing the chance of survival. X-ray mammography is the 

most effective, low cost and highly sensitive method capable of detection of breast cancer in 

asymptomatic woman at its early stage [58]. 

There are two types of mammography: screening and diagnostic. The objective of screen

ing mammography is to detect cancer when it is still small in asymptomatic woman. The 

diagnostic mammography is an X-ray examination of the breast of a woman who has either 

breast cancer symptoms or an abnormality in her screening mammography. An increasing 

number of developed countries have started screening mammography. "Vomen over 40 years 

of age are recommended to obtain mammograms regularly for screening purpose. This re

sults to a huge number of mammogram that needs to be examined and interpreted by expert 

radiologists. 

5.1 Motivation for a CAD system 

Among the various types of hreast abnormalities that are visible in the mammograms, clus~ 

tered micro calcification and mass lesions are the most important ones. Masses and clustered 

microcalcifications often characterize early breast cancer that can be detected in mammo

grams before a woman or physician can palp them. Among these two early signs, the cluster 

microc:alcific:ation is more difficult to be detected. 

A microc:alcification is a small granule-like calcium deposit that has accumulated in the 

breast tissue, alld it appears as a small bright spot embedded within an inhomogeneow:; 

background of the mammogram. Clustered micro calcification is defined by radiologist as 

the presence of three or more visible rnic:rocalcific:ations within a square of 1 cm2
. It is 

very difficult to interpret X-ray mammograms because of the aforementioned tiny size of 

microcalcification and the very small differences in the image densities of various breast tis

sues, specially in dense breast. It is estimated that radiologists fail to detect approximately 
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Figure 5.1: Sample of microcalcification in a mammogram. The microcalcification is shown in 
the right after zooming and enhancement. 

25% of the cancers that are visible on retrospective review [2]. This significant failure rate 

is due to visual fatigue, inexperienced radiologist and noise and lack of contrast in mam

mograms. Screening mammography also results in a huge number of mammograms which 

must be examined by experienced radiologist. Manual reading, the current exalllination 

procedure, is labor intensive, time consuming and demands great concentration. To help 

radiologist to overcome this huge hurden more accurately and in a reasonable time, several 

CAD (Computer Aided Diagnosis) systems have been proposed and tried. 

Indeed, the goal of CAD systems is not to create a high-tech radiologist or automate the 
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detection procedure. CAD systems are intended to act as the first cut in the process and a 

second opinion for the radiologists. The term" second Opinion" means that the radiologists 

can use the results of a computer analysis of the mammogram in making a diagnosis.\iVe 

try to locate suspicious regions in the mammogram for more detailed examination by the 

radiologists. 

5.2 Previous work 

Several CAD systems have been designed for extracting abnormalities in breast X-ray images. 

A few number of the most popular and recently proposed methods are briefly reviewed in 

the following. The reviewed methods and algorithm are summarized and listed in Table 5.2. 

5.2.1 Shape Analysis 

Shen ct. al. [59] developed a set of shape factors to measure the roughness of contours of 

calcifications in mammograms and for use in their classification as malignant or benign. The 

analysis of mammograms is performed in three stages. First, a region growing technique 

is used to obtain the contours of calcifications. Then, three measures of shape features, 

including compactness, moments, and Fourier descriptors are computed for each region. 

Finally, their applicability for classification is studied by using the three shape measures 

to form feature vectors. Classification of 143 calcifications from 18 biopsy-proven cases as 

benign or malignant using the three measures with the nearest-neighbor method was reported 

100% accurate. 

5.2.2 Iterative feature extraction 

Karssemeijer [60] implemented an adaptive noise equalization and statistics-based model 

for the detect of microcalcification. As a pre-processing step, a robust rescaling was applied 
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as a filter adaptive noise equalization, which estimated noise characteristic from the image 

at hand. This system also took into account the impact of the variability in the tissue 

across t.he image. I\IicrocaIcifications were detected in these rescaled images using an initial 

segmentation and an iterative process used to update the pixel labels. The labelling process 

used filtered versions of the mammogram, each of which depicted a local image feature 

thought to be important in distinguishing a microcalcification. This work used 25 training 

images and another 40 for testing, from the Nijmegen database. These images all contained 

one or more known clusters of microcalcifications labelled by an expert radiologist. The 

images were digitized at 12 bits of gray-scale and to a size of 2048 x 2048 pixels. 

5.2.3 Thresholding and morphology 

Nishikawa et. al. [61] proposed an algorithm including three basic steps. First, the digital 

mammogram is enhanced using a spatial filter. This step tries to enhance the signals from 

micro calcification and suppress the signals from background structures of the breast. Second, 

global and local gray-level thresholding and a morphological crosin is used to extract potential 

microcalcifications from the image. Third, the feature analysis are used to reduce the number 

of false positive(FP) detections. The algorithm has been tested on a database (10bits/pixel, 

0.1 mm/pixel) of 78 mammograms with size of 800 x 1000 pixels. Half of the images 

without microcalcification and half of them with at least one microcalcification for a total 

of 41 microcalcifications. Visual interpretation was used for determining the true positive 

rate and the average number of false positives per image. A true positive rate of %85 were 

obtained at an average false positive detection of one per image. 

5.2.4 Multiscale matched filters 

Strickland and Hahn [62J developed a wavelet transform algorithm which acted as a bank 

of multiscale matched filters for the clustered microcalcification. By studying the cross 
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section of clustered microcalcifications, Strickland and Hahn concluded that it is reasonable 

to model a microcalcificatioll using a circularly-symmetric Gaussian function. Thus, the 

matched filters were designed for detecting Gaussian objects in correlated IVlarkov noise. The 

I\IaTkov noise were adopted as the model of background and normal tissues. The method was 

tested on a database of 40 mammograms digitized at 12 bits/pixel and 100 11m/pixel. The 

data based consisted of 40 mammograms with size 2048 x 2048 pixels. Each mammograms 

contained at Olle or more clusters microcalcifications. A duster was considered detected if 

two or more microcaleifications w('re found within the truth circle. An False Positive (FP) 

was counted if two or more erroneous detections were made within an empty, dosed region 

of 0.5 in width. The results showed that the method could achieve a True Positive(TP) rate 

of about 55% with 0.7 FP detection per image. Alternatively, a TP rate of about 85% with 

a corresponding 3.2 FP per image. 

5.2.5 Statical feature of surrounding region 

Kim and Park [28] proposed a method based on statistical textural features. In their method, 

four features named horizontal-weighted sum, vertical-weighted sum, diagonal-weighted sum 

and grid-weighted sum are computed based on the surrounding region matrix. Surround

ing region matrix presents softness or coarseness for each Region Of Interest (ROI). The 

extracted features are feed into a three-layer back-propagation neural network for classifica

tioll. 120 X-ray mammograms were selected from the patient files based on visual crit.eria 

and biopsy results. The mammograms were digitized with pixel size of 100 Jim and 12 bits 

per pixel. 172 ROI's were selected to evaluate the method. 72 ROI's contained microcalci

fication and 100 ROI's without microcalcification. 86 ROIs ".'ere used for training including 

36 ROI's with micro calcifications. A fraction of 0.8 TP were reported at 0.4 FP. 
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5.2.6 Laplacian scale-space 

Netsch and Peitgen [63] developed a method based on the Laplacian scale-space representa

tion of the mamlllogram. Their motivation for applying Laplacian filtering originates on the 

fact that microcalcifications have an small bright circular appearance or slightly elongated 

spots in the mammogram. Bright spots corresponds to local maxima in Laplacian filtered 

images if the size of the filter kernel is chosen appropriat<'ly. Netsch and Peitgen applied their 

method on database of 40 mammograms digitized at 12 bits/pixel and 100 11m/pixel. The 

database consisted of 40 mammograms with size 2048 x 2048 pixels. Each mammograms 

contained one or more clusters microcalcifications. They achieved 85% TP detection at 1 

FP per image. 

5.2.7 Spatial statistical features and wavelet features 

Yu and Guan [64] used a mixture of wavelet features and gray level statistical features. A 

set of 15 features were selected among 31 features by measuring the discriminatory power of 

the features using general regression neural networks via sequential forward and sequential 

backward selection method. The method were applied to a database of 40 digitized mammo

grams of 21 patients. The database included 105 microcalcific:ation and were digitized with 

12 bit per pixels. The true positive of 90% were reported at 0.5 false positive per image. It 

mllst be noted that test data were used in feature extraction step. This must be considered, 

when the results of this work is compared with other above mentioned methods. 

5.2.8 Support Vector Machine 

EI-Naqa ct al. [65] applied SVM for detection of clustered lllicrocalcification in digital 

mammograms. In this approach SVM was used without deploying any external feature 
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extraction. In preprocess phase, a linear-phase finite impulse response high-pass filter with 

3-dB cutoff frequency We = 0.125 was applied to digital mammograms. The gray level pixels 

were directly applied to SVM after preprocessing on the digital mammograms. Using the 

gray level pixels without prior pre-process stage causes problem in training of SVM due to 

the very large number of training sample presenting normal tissue in comparison with the few 

nUlllber of twilling samples presentillg miCTocalcifications. El-Naqa ct ol. [65] proposed an 

algorithlll referred as succes::;ive cnhallCelllCl1t-learning(SEL) to reduce the training samples 

without microcalcification. 

The algorithm were evaluated using a database provided by the Department of Radiology 

at The University of Chicago. The data set contained 76 clinical mammograms, all contain

ing multiple microcalcifications. Thc mammograms were of dimension 1000 x 700 pixels, 

with a spatial resolution of O.lmrn/pixel and 10 bits gray scale. The database included 

1120 microcalcifications detected by expert radiologists at the Department of Radiology of 

Ulliversity of Chicago. A correct rate of 94% were reported at one false positive per image. 

The authors compared their algorithm with several other methods and claimed its supe

riority. 

5.2.9 Multi-resolution Based Segmentation 

S. Sentelle et al. [66] proposed a multi-resolution approach combined wavelet analysis to 

provide a segmentation of potential calcifications. An Initial multi-resolution approach to 

fuzzy c-means(FCl\I) scgmentation was employed. Some tissue areas were chosen in each 

image and were broken into multiple windows. \Vithin each window, wavelet analysis was 

used to generate a contrast image, and a local FCM segmcntation generated an estimate of 

local intensity. A sirnple two-rule fuzzy system thereafter combined intensity and contrast 

information to derive fuzzy memberships of pixels in the high-contrast, bright pixel class. 

A double threshold is applied at the end to this fuzzy membership to detect and segment 
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calcification. The algorithm was applied to 25 images obtained from the Digital Database 

for Screening .l\,iamlllography(DD.l\IS) provided by the University of Southern Florida. 
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Table 5.2: Summary of related research in calcificat.ion detect.ion 
Authors 

L. Shen et al. 
[59] 

Karssemeijer 
[60] 

Nishikawa 
[G1] 

Strickland 
and Hahn 
[G2] 

Kim and Park 
[28] 

Netsch and 
Peitgen [63] 

Yu and Guan 
[64] 

EI-Naqil ct al. 
[65] 

S. Sentelle et 
al. [66] 

Relevant techniques Image sources 

Shape Analysis 

Iteratively segmenting filtered mammograms after 
denoising the original image 

Detection of potential calcification by global and 
local gray-level thresholding and a morphological 
erosin and reducing false positive rate by feature 
analysis. 

Designing matched filters for detecting Gaussian 
objects in correlated !\larkov noise 

Extracting four texture features from surround
ing n'gion matrix and using three-layer back
propagation neural network for classification. 

Obtaining local maxima (bright spots) in the 
Laplacian scale-space representation of the mam
mogram. 

Selecting the best of 15 features among 31 features 
by measuring the discriminatory power of the fea
tures using general regression neural networks and 
using sequential forward and sequential backward 
classification method. 

Applying support vector machine to high-pass fil
tered mamograms and reducing the samples pre
senting normal tissues by successive enhancement
learning method. 

Using fuzzy c-mean segmentation on the multires
olution images followed by reconstructing the fil
tered image by bio-orthogonal wavelet. 

MIAS Database 

65 image from Ni
jmegan database 

78 mammograms 
from department of 
radiology, U niyer
sity of Michigan 

40 images from Ni
jmegan database 

Department of radi
ology, Asau !\1cdical 
centre, Korea 

40 image from Ni
jmegan database 

40 images of 21 pa
tient from Nijmegan 
database. 

Datahase of mam
mograms from the 
Department of Radi
ology, University of 
Michigan 

25 images from 
Digital Database 
of Screening Mam
mography(DDSM) 
at the Uinversity of 
Southern Florida. 
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5.3 Proposed Algorithm 

Image Segmentationt: 

Tissue & non-tissue 
(Using fuzzy c-mean) 

Image Enhancement: 
Selective Median Filter 

& 
Contrast Enhancement 

Preprocess: 
Detecting suspicious sites by 

reconstructing filtered 
mammograms using regular 

wavelet with compact support 
(i.e. Daubechies) 

Reduction of false 
positives(FPs) : 

Applying Improved SVM 
to reduce false positives 

Figure 5.2: Overall flow of the developed algorithm for detection of micro calcification 

The raw data in digital mammogram are not appropriate for learning algorithms such as 

SVM. The very high resolution and noisy images result in huge computation and ina<.:curate 

classification. Noise suppression and reduction methods are targeting image enhancement 

while trying to preserve microcalcification. On the other hand, while the image enhancement 

techniques try to ease detection of tiny calcification embodied in dense tissues, they are 
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potential of enhancing noise as well. To reduce the number of samples prior to classification, 

a highly sensitive algorithms can be used to detect suspicious sites in the mammogram. Our 

proposed methods includes three steps: ( as shown iu Fig. 5.2) 

a) Segmentation of image to tissue and non-tissue regions. 

b) Image enhancement 

c) Detection of suspicious sites 

d) Applyiug the improved SV"t\1 to sample of windows centerC'd at the suspicious sites. 

In the following subsections the aforementioned steps are discllssed in more details. 

5.3.1 Image segmentation 

The proposed algorithm begins by separating the mammographic tissue from non-tissue 

regions in the image. The fuzzy c-mean (FCl\1) [67] is used in this thesis, which is basically 

an unsupervised least-squares clustering algorithm. 

The FCl\1 is similar to hard c-mean (HCM) approach but employs fuzzy membership 

when labelling data points rather than assigning crisp labels as in HCM. In FCl\1, a set of 

initial cluster centres are specified and an iterative process begins to adjust initial centres 

and calculate the fuzzy membership of all data points to the corresponding centres. At the 

end, maximal membership is employed for determination of crisp labelling from the fuzzy 

membership. 

FCM is initiated by assiguillg an initial class label to each data point determined from 

the initialization routine. This assignment is stored in l1lcl1lbcrship l1latrix ( equation 5.1). 

In this equation, k is an index into the image for data point Xk, and (i,j) are the class indices 

for initial centres v. The number of classes is indicated by c. The m is the fuzzification 

value. 
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c II:ck' - Vi 112 "'-=-1 
'Ui,k' = [2: (II . . 11 2 ) lVi, k 

j=l Xk - Vj 
(5.1 ) 

This U matrix is then used to calculate cluster centres of the data points for each class 

label, which are stored inlllatrix V(Eq. 5.2). In this equation, i is the cluster centre l1lunber, 

n is the number of pixels, J;k is the pixel value, and m is the fuzzification index. 

",71 111 ..• 

(
L.k=l Ilik.l'k) \..I' 

U' =' vi 
1 ",71. In 

L.k=l Uik 

(5.2) 

From the new duster ce11tres, the U membership matrix is recalculated. Once the U 

matrix has been recalculated, the duster centres are then recalculated. This process contin-

nes until the measnre of the distance between old cluster centres and each set of Hew cluster 

centres meets a threshold criterion. At termination, the cluster centres for newly discovered 

data clusters as well as labels for the data points can be retrieved. 

however, this algorithm is computationally expensive due to its memory requirements, 

iterative nature, and slow convergence for large data sets sHch as high resolution lllamruo-

grams. In this thesis, to reduce the data points processed by the algorithm, a multi-resolution 

approach is employed. The image is first down sampled by a factor of 16 and the algorithm 

is applied to the down sampled image. This decrease the convergence time of the procedure 

significantly, while the accuracy of the segmentation is still acceptable for the purpose of 

segmenting image to tissue and non-tissue. Local and global thresholding is finally applied 

to the image. 

5.3.2 Enhancement of the mammograms 

The fundamental enhancement needed in mammography is an increase in contrast, espe-

dally for dense breast. Contrast between malignant tissues and normal dense tissue may be 

present on a mammogram but below the threshold of human perception. Similarly, micro-
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calcifications ill a ::-;ufficiently dense mass may not. be readily visible because of low contrast. 

As a result, defining the characteristics of microcalcifications is difficult. 

Conventional image processing t.echniques do not perform well on mammographic im-

ages [68]. In this thesis, selective median filtering is used to remove background noise while 

preserving the edge information of suspicious areas. This approach was proposed by Lai ct 

al. [69]. A selective median filter is defined as follows: 

Given a window IF (i, j), centered at image coordinates (i, j), t.he output of the selective 

median filter is: 

:ri,j = median{xl',s E NO, j), and 11'1'.8 - ,ri.j 1< T} (5.3) 

where .Ti,j is the image intensity at (i,j), N(i,j) is the area in the image covered by window 

W (i, j) ,and T is the threshold. In computing the median, the set of pixels are restricted to 

those with a differC'llee in gray level no greater than the threshold T, The amount of edge 

smearing can be controlled by adjusting the parameter T. If T is small, the edge preserving 

power of the filter is strong, but its smoothing effect is smalL If T is large, the filter behaves 

the other way around. 

In the llext step of enhancC'ment the image's contrast is improved by contrast-to-noise 

ratio method [70]: 

xCi,j) = J:(i,j) - mean(y(r, s), T', s E Window) 

std(y(l, m), l, m. E Window) 
(5.4) 

where xU, j) is the pixel value at the position (i, j), and "'Window'~ is an 9 x 9 square area 

cent.ered at position (i, j), sid is the standard deviatioll of the pixel values in the "\Vindow" , 

xCi, j) is the normalized gray level value at position (i, j), 
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5.3.3 Preprocessing 

The preprocessing detection of suspicious area is based on the hypothesis that the microcal

cification present in mammograms can be preserved under a transform which can localize the 

signal characteristics in the original and transform domain. In a time signal the harmonic 

frequency components are present but they are hidden, \vhereas in its frequency spectrum 

the time information is hidden. Therefore, transforms with basis functions other than the 

complex sinllsoids must be used. In addition, these basis functions must be able to localize 

the signal in both spatial and frequency domains. A suitable transform that satisfies t.he 

above requirements is the wavelet transform. The wavelet transform uses basis functions 

that can dilate in scale and translate in position according to the signal characteristics. 

Given that the microcalcifications correspond to high frequency components of the image 

spectrum and wavelets can localize signal characteristics in both frequency and scale, our 

hypothesis is that the resolution and scale of the rnicrocalcificatiolls in the spatial domaill 

can be preserved if we use wavelet filters to decompose the mammogram into different fre

quency subbands. Accordingly, microcalcifications can be extracted from mamlllograms by 

suppressing the subband of the wavelet-decomposed image that carries the lowest frequencies 

and contains smooth (background) information, before the reconstruction of the image. 

The proposed system is described in the block diagram shown in Fig. 5.3. The origillal 

mammogram is decomposed into a set of orthogonal subbands of different resolution and fre

quency content. The decomposition is based on wavelet analysis filtering and downsampling 

along the rows and colullllls of the illlage. Fig. 5.4 shows the seven subbands of resuItillg 

after two levels of wavelet decomposition of the image. 

The four subbauds at resolution 1 are produced by the decomposition scheme described in 

Section 3.1.1. The application of the same decomposition scheme to the upper-left subband 

that carries the lowest frequencies at resolution 1 results in the two level subband decompo

sition shown in Fig. 5.4. In the wavelet decomposed image shown in Fig. 5.4 the upper-left 
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Image enhanced mammogram 

Multi-resolution Decomposition 
(Wavelet analysis filtering) 

Low frequency subband 
Elimination 

Image Reconstruction 
(Wavelet synthesis filtering) 

Suspicious area detected mammogram 
(Non-linear thresholding) 

Figure 5.3: Preprocessing steps 

subband at resolution level 2 contains the background intensity of the original image and, 

thus, carries the lowest frequencies of the image spectrum. The microcalcifications, which 

corresponds to the highest frequencies, are carried by other subbands. The detection of mi-

crocalcifications is accomplished by setting the wavelet coefficients of the upper-left subband 

to zero in order to suppress the image background information before the reconstruction of 

the image. The reconstructed mammogram is expected to contain only high-frequency com-

ponents, including the microcalcifications. The reconstruction consists of wavelet synthesis 

filtering and up-sampling along the rows and columns of the image. 

The wavelet filters used in analysis and synthesis stages, are maximally flat wavelet fil-

ter constructed by Daubechies [71]. These wavelets are compactly supported and regular. 
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\Vavelets are compactly supported if they have finite support with maxilllulll number of 

vanishing moments for their support width. The compact. support improves the time resolu-

tion of wavelets. Table 5.3 shows the filter coefficients of the two wavelets from Daubechies 

4-coefficicnt (DAUB 4) filter and Daubechies 20-coefficient (DAUB 20) filter. In t.his table, 

g(n) is the low-pass filter and h(n) is the high-pass filter as shown in Fig.3.4. The high-pass 

filt.er can be obtained as h(n) = (-1)1!g(n)(-n + 2N - 1) where the N is the length of the 

filter. Fig 5.5 shows the amplitude plot of the mother wavelet '1/) for the family of DAUB 4 

filters. Fig.5.5(a) represent the long window used to analyze long term behavior of a sigllal, 

whereas Fig. 5.5 (b) is the scaled and translated version of the same wavelet used to analyze 

the instantaneous behavior of a signal. Fig. 5.6 shows the amplitude plot of the mother 

wavelet 'ljJ for the family of DAUB 20 filters. In each case, note that the stretched wavelets 

have higher amplitudes while the dilated wavelets have lower amplit.udes. The results of the 

preprocess st.age is shown in Fig. 5.6. All microcalcifications present in the original mam-

mogram are visible in the images produced by the proposed preprocess. The performance of 
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the preprocess depends on the length of the wavelet filters used in the decomposition of the 

mammograms. This is a direct sequence of the different f-ihapes of the corresponding mother 

wavelets. According to Fig. 5.5 and 5.6, the mother wavelet of the DAUB4 filter is more 

spike-like compared with that of f-il1l00ther DAUB20 filter. It is clear from these images that 

the DAUB4 filter detects more pixels of high spatial frequency compared with the DAUB20 

filter. These pixels may belong to microcalcifications, breast boundary, or background noise. 

Thus, short('r wavelet filters are more sensitive to existing micro calcifications but they tend 

to produce more false positives. Therefor, the DAUB4 is used in this thesis to have all 

pot('lltialmicrocalcifications in the next step( supervised learning). 

Table 5 3- Coefficients of the DAUB filters. - - '. 
DAUB4 DAUB20 

n g(n) g(n) 
0 0.482691 0.026670 
1 0.836516 0.188177 
2 0.224143 0.527207 
3 -0.129409 0.688459 
4 0.281172 
5 -0.249816 
6 -0.195946 
7 0.127369 
8 0.093057 
9 -0.071394 
10 -0.029457 
11 0.033212 
12 0.003606 
13 -0.010733 
14 0.001395 
15 0.001992 
16 -0.000686 
17 -0.000116 
18 0.000093 
19 -0.00013 
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Figure 5.5: Mother wavelet for DAUB 4, a narrow and tall wavelet for analyzing high-frequency 
characteristics 
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5.3.4 Reduction of False positives through supervised learning 

The pre-processed images contain false positives which arc presenting noise and other high

frequency components rather than microcalcific<'ltion. In this step, SV11 in conjunction with 

LPC is used to implement a supervised learning machine to reduce the number of false 

positives. The detailed procedure is discussed in the following. 

5.3.4.1 Input features 

For every pixel in the pre-processed image. we define the input pattern to LPC-SVI\l to be 

all AI x .AJ window centered at the pixel detected in preprocess. These windows are selected 

from ellhallced mammogram. The 111 x 111 matrix is converted to a vector X of length 111'2 

and then its length is reduced to N < .AJ'2 by using LPC feature extraction method. During 

the trainillg phase, each illput feature X is labelled with (y = +1) for microcalcification 

pres(,llt, or (y = -1) for mic:rocalcification absellt. 

5.3.4.2 Model selection and SVM training 

_Once the training samples are gathered, the llext step is to determine the SV11 decision 

function. In this process, the following parameters must be determined: 

a) \Vindow size, 111 

b) LPC features, N 

c:) The type of kernel functioll 

d) The regularization parallleter in the structural risk function, C 

To optimize these parameters, rn-fold cross validation [72] is applied to training data set. 

This procedure consists of the following steps. 
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First, divide randomly all the available training examples into m equal-sized subsets. 

Second, for each model-parameter setting, train the SVM classifier m times; during each 

time of the m subset.s is held out in turn while all the rest of the subsets are used to 

train the SVM. The trained SVl'vi classifier is then tested using the held-out subset, and its 

classification error is recorded. 

Third, the classification errors are averaged to obtain an estimate of the generalization 

error of the SV~l classifier. In the end, the model with the smallest generalization error will 

be adopted. 

In the next section, the performance of the overall algorithm is evaluated using Receiver 

Operating Characteristic (ROC) analysis. 

5.4 Experimental Results 

5.4.1 Database 

The research results in this thesis is based on the data sets derived from Digital Database 

for Screening Mammogmphy (DDSM), located at the University of South Florida [73]. The 

DDSM contains approximately 2500 cases of fully annotated mammographic images. Each 

case contains two views of each breast along with patient information such as age at the 

time of study, American College of Radiology (ACR) breast density rating, subtlety rating 

for abnormalities, and ACR description of each abnormality. Information about how the 

mammograms were digitized is also included, such as relative spatial resolution and scanner 

used. The DDSJ'vl is organized into" cases" and " volumes" . A" case" is a collection of images 

and information corresponding to one mammography exam of one patient. 

A case consists of between G and 10 files. These are an "ies" file, an overview" 16-bit 

PGM" file, four image files that are compressed with loss less JPEG encoding and zero to 

four overlay files. Normal cases will not have any overlay files. 
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Structure of ".ics" files: 

The ".ics" file provides information about a case as a whole. In ASCII format, it lists 

ics_version 1.Q 
filename 8-3024-1 
DATE_OF _STUDY 2 71995 
PATIENT_AGE 42 
FILM 
FILM_TYPE REGULAR 
DENSITY 4 
DATE_DIGITIZED 7 221997 
DIGITIZER LUMISYS 
SELECTED 
LEFT CC LINES 4696 PIXELS PER LINE 3024 BITS PER PIXEL 12 RESOLUTION 50 OVERLAY 
LEFT-MLO LINES 4688 PIXELS PER LINE 3048 BITS PER PIXEL 12 RESOLUTION 50 OVERLAY 
RIGHT CC LINES 4624 PIXELS-PER -LINE 3056 81TS -PER -PIXEL 12 RESOLUTION 50 OVERLAY 
RIGHT=MLO LINES 4664 PIXELS_PER_LlNE 3120 BITS_PER_PIXEL 12 RESOLUTION 50 OVERLAY 

Figure 5.7: Sample ics file 

important information such as the date of the study, the patients age, the ACR breast tissue 

density, the date of digitization of the films, the type of digitizer used and a list of the image 

files. The" .ics" file also gives an rating of 1 to 4 as assessed by an expert radiologist. 

The size of each image file, number of bits per pixel, the scanning resolution (in microns) 

and information on the existence or lack of an overlay file for each image is provided. As 

it can be seen in Fig. 5.7, all four images have overlays. If the image description lines had 

"NON-OVERLAY" instead of "OVERLAY" then the images would not have overlay files. 

Structure of Overlay files 

Abnormal cases have between one and four overlay files depending on the number of images 

in which the radiologist marked any abnormalities. Each overlay file may specify n11l1tiple 

abnormalities, so the first line of the file gives the total number of abnormalities. In the 

case of multiple abnormalities, each abnormality is then listed one after another. Each 

abnormality has information on the lesion type, the assessment, the subtlety, the pathology 

and at least one outline. The keywords that describe the lesion type are taken from the 

ACR Bi-RADS lexicon. The assessment code is a value from 1 to 5, and also comes from the 

ACR Bi-RADS standard. The outlines for the suspicious regions are derived from markings 
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made 011 the film by an experienced radiologist. Each houndary is specified as a chain code. 

This chain code is found on the line after the key\\Tord "BOUNDARY" or "CORE". The 

first two values of each chain code are t he starting column and row of the chain code that 

order. Follmving these two numbers, the chain code is given and a "#" character indicates 

the end of the chain code. The numbers correspond to the directions as shown in Fig. 5.8. 

IChain code value 
I" 

IX Coordinate 
r 
IY coordinate 
1 

Figure 5.8: Chain codes values and directions 

TOTAL_ABNORMALITIES 1 
ABNORMALITY 1 
LESION_TYPE CALCIFICATION TYPE PLEOMORPHIC-FINE_LlNEAR_BRANCHING DISTRIBUTION REGIONAL 
ASSESSMENT 5 
SUBTLETY 4 
PATHOLOGY MALIGNANT 
TOTAL_OUTLINES 4 
BOUNDARY 
813684444444422222222 ... 0000000001 # 

CORE 
1681824222222222222222 ... 1 011 011 011 # 

CORE 
3841848222222221111111 ... 0000000000# 

CORE 
3682192666666660000000 ... 0000000000 # 

Figure 5.9: Sample Overlay File 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

G9 

5.4.2 Selected Data Set 

III this thesis 60 images are used. The Images are submitted to database from mammography 

clinic, the Ann L. Baraco Centre for \Vornen's Health, located at Sacred Heart Hospital in 

PCllsacola, Florida. The images are divided to two sets of 40 and 20 images for training and 

testing. The 20 images used for test are listed in Table 5.4. 

As described in Table 5.4, the 20 imagC's with malignant microcalcifications were divided 

into four sets according to density and subtlety ratings: (1) high-density breast tissue with 

obvious abnormalities, (2) high density breast tissue with subtle abnormalities, (3) low

density breast tissue with obvious abnormalities, (4) low-density breast tissue with subtle 

abnormalities. In Table 5.4, column 1 indicates the case category. Column 2 indicates the 

case number and view. The breast density rating is shown in column 3. This rating is 

according to Breast Imaging Reporting and Data systerns (BI-RADS) density ratings. A 

density rating in scale 1 to 4 is used as follows [74]: 1= The brea<;t is almost entirely fat. 2 = 

There are scattered fibroglandular densities that could obscure a lesion on a mammogram. 

3 = The breast is hetrogelleously dense. This lllay lower the sensitivity of mammogram. 4= 

the breast is extremely dense which lowers the sensitivity of mammogram. 

According to this metric a higher density rating implies that it is more difficult for 

radiologist ( and computer) to detect the abnormality. Colull1Il 4 indicates the BI-RADS 

assessment rating ranging from 1 to 5. 1 = Negative. 2 = Benign finding. 3 = Probably 

benign finding. 4 = Suspicious abnormality (biopsy should be considered). 5 = Highly 

suggestive of malignancy (appropriate action should be taken). 

In column 5, subtlety rating is presented. The value of this measure range from 1-

5, where 1 stands for "subtle" and 5 for "obyious". A higher subtlety rating indicates 

easier interpretation task for both radiologist and computer. Columns 5 and 6 are showing 

pathology and lesion type as well as number of abnormalities. 
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Table 5.4: SUlllmary of ground truth information for the test images 

Case/view Density Assessment Subtlety Pathology Lesion type/description 
High e0060LCC 3 4 2 r-.1alignaut 1 calcification/amorphous 
density/ distribution: clustered 
subtle 

c00060LMLO 3 4 2 r-.lalignant 1 calcification/amorphous 
distribution: clustered 

c150LCC 3 4 1 Malignant 2 calcification/amorphous 
distribution: clustered 

c0150Lr-.lLO 3 .± 1 ~laligll<lllt 2 calcification/amorphous 
distribution: clustered 

c0198RCC 3 4 2 r-.lalignant 1 calcification/amorphous 
distribution: segmental 

c0198Rr-.1LO 3 4 2 Malignant 1 calcification/amorphous 
distribution: segmental 

Low cOOO2LCC 2 4 2 r-.lalignant 1 calcification/pleomorphic 
drnsity / distribution: segmental 
subtle 

cOO02Lr-.lLO 2 4 1 r-.Ialignant 1 calcification/pleomorphic 
distribution: segmental 

c0020LMLO 2 4 2 Malignant 1 calcification/pleomorphic 
distribution: regional 

c0169RCC 2 4 2 r-.lalignant 1 calcification/amorphous 
distribution: clustered 

c0169RMLO 2 4 2 Malignant 1 calcification/amorphous 
distribution: clustered 

High c0036RCC 4 4 4 Malignant 1 Calcification/punctate 
density / distribution: clustered 
obvious 

cOO36RMLO 4 4 4 Malignant 1 Calcification/punctate 
distribution: clustered 

c0120LCC 4 5 5 Malignant 1 Calcification/ 
amorphus-pleomorphic 
distribution: segmental 

c0120LMLO 4 5 5 Malignant 1 Calcification/ 
amorphus-pleomorphic 
distribution: segmental 

Low c0045RMLO 2 4 5 Malignant 1 Calcification/pleomorphic 

density / distribution: clustered 
obvious 

c0087LCC 2 5 5 Malignant 3 Calcifications/pleomorphic 
distribution: clustered 

c0087LMLO 3 5 5 Malignant 3 Calcifications/pleomorphic 
distribution: clustered 

c0214RCC 2 4 4 r-.lalignallt 1 Calcification/pleomorphic 
distribution: segmental 

c0214RMLO 2 4 4 i\laligllallt 1 Calcification/pleolllorphic 
rl;,-.f-rlhl'ltirY1,"") 0 LVlrrn"lontnl 
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5.4.3 Results 

The training data set were used to train the proposed algorithm. 40 images including 51 

micro calcification ,vere used in training phase. The preprocess algorithm on test data resulted 

in 5236 suspicious sites. The improved SVM then were applied to the test data. To detect the 

microcalcifications, the nUluber of pixels which are classified as ,. ~1icrocalcificat.ion Preseut" , 

are counted in each 1cm2 of the mamlllogram. A threshold is set to dcterminc whether 

a site contains a microcalcification or not. If the number of pixels which are classified 

as "microcalcification present" is greater than the threshold, the site is considered as a 

microcalcification. 

The ROC curves in Fig. 5.10 were generated by varying the threshold from 3 to 14. The 

proposed algorithm outperforms the previously applied SV11 to the problem of microcaIci

ficatioll [65]. The El-Naqa ct al. algorithm were applied to current data set to obtain the 

ROC curve. The area under the two curves are calculated as 7.22 for LPC-SVM and 5.68 for 

SVM. This indicates a 26% improvement. The numerical results which were obtained here 

for the SVM [65] is different from original report. The reason is that the data set is different 

here. It is obvious that the data set can significantly affect the caIculated performance. i.e. 

if some difficult subtle images were excluded from the study, the performance was totally 

different. \Vhile the overall detection performance is very good, a morc detailed analysis of 

the individual cases reveals additional insight int.o the performance. The ROC for the most 

recent published research on the same database is given in Fig.5.11. The are under curve is 

4.86 which 46% less than proposes LPC-SVM method. 

The detail results of the proposed algorithm are given in Table 5.5. This table is pre

senting the case of 1.5 false positives at 92% of correct true positive detection. As described 

before, the test data has been scIected for 4 classes mammograms: 1) low-density tissues 

with obvious calcifications, 2) low-density tiflsue with obvious calcifications, 3) high density 

tissues with obvious calcifications, 4) high-density tissue with subtle calcifications. The re-
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8P01188 of the algorithm to these classes, are different, as ran he seen ill Tahle 5.5. The 

algorithm is quite successful in detection of microcalcification in low/high density-obvious 

and low density subtle and more research is required for high-density subtle. The application 

of the proposed algorithm on the high density images are resulted in relatively high 11umher 

of false positives. 
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Figure 5.10: ROC curves show that the proposed algorithm outperforms SVl\1 
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Table 5.5: The number of false positives and correct true positives in each test image 

Case True Positive Rate False Positives Subtlety 

High density subtle c0060LCC 1 2 2 
cOO060U,ILO 1 4 2 
c150LCC 1 3 1 
c0150L~lLO 0.5 1 1 
c0198RCC 0.5 1 2 
c0198R~ILO 1 2 2 

Low density subtle cOO02LCC 1 1 2 
cOO02LMLO 1 0 1 
c0020LMLO 1 1 2 
c0169RCC 1 1 2 
c0169RMLO 1 1 2 

High density obvious cOO36RCC 1 6 4 
cOO36RMLO 1 2 4 
c0120LCC 1 1 5 
c0120LMLO 1 1 5 

Low density obvious cOO45RMLO 1 1 5 
cOO87LCC 1 0 5 
cOO87LMLO 1 1 5 
c0214RCC 1 1 4 
c0214RMLO 1 0 4 
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Conclusion and future work 

6.1 SVM in texture classification and external texture 
features 

The SVl\I learning algorithm has been proven to outperform other texture dassification 

algorithllls \\'hich are based on snpC'rvised learning i.e. neural network. 

In this thesis, the effectiveness of SVl\1 in texture classification problem was investigated. 

It was shown that SVl\1 is a powerful algorithm not only for didlOtolllY ( two-dass) problems 

but also for multi-texture. 

The effect of external features in performance of SVl\1 were studied. The estimation of 

the VC-dimension of the external features were used to chose the best feature set among 

suggested features. The comparison of the VC-dimension resulted in LPC-SVM texture 

classification algorithm. LPC which provides a high dimensional feature space were chosen 

considering the excellent ability of SVl\1 to set a learning hyperplane in a high dimension 

input features. In the study of VC-dimcnsion, LPC provides the minimum VC-dimension 

and training error. 

The discrimination ability of LPC features is reduced in high resolution classification 

75 
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when the window size of the sampled textures and evelltually the input feature dilllension is 

reduced. 

6.2 Incorporating the Gabor filter Bank to Increase 
the performance of LPC-SVM texture classifica
tion algorithm 

\Vhen we need to detect tiny feature in an image or to increase the resolution of a tex-

tme classification-based segmentation, we come across the problem of low dimension input 

features with poor texture information. 

In the low dimension input texture feature space the VC-dimension and training errors 

of LPC is reduced. This is due t.o t.he poor discriminant features in a slllall t.cxtUl"{' window. 

The Gabor filter bank is extensively and successfully used in several texture classification 

algorithms. To enrich the texture discrimination ability of input features in case of small 

window size, the Gabor filter bank were employed. 

III the proposed algorithm, for each sample windO\v ill the original image, corresponding 

sample windows from filtered version of the image are extracted and concatenated to form 

an input feature prior to LPC feature selection. In this way the classification accuracy was 

improved slightly but the time consumption of the algorithm increased considerably. 

6.3 Microcalcification detection 

SVM algorithm is an ideallearnillg machine for a supervised learning approach in a two-class 

classification (dichotomy) problem. The dichotomy problem is concerned in a wide range of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

77 

medical imaging applications. Detectioll of abllormalities in medical imaging is a dichotomy 

problem in the sense of classifying an illlage to normal and abnormal areas. 

The high rate of breast cancer development in WOlllen over 40 years of age, and the mor

tality rate was the main motivation for applying the proposed algorithm to lllicrocalcification 

detection in screening mammography. j\Iicrocalcificatioll is the most difficult type of breast 

cancer to be detected by radiologist. 

The major problelll in application of LPC-SV1I texture classificatioll algorithm to mi

crocalcification detection is the asymmetry of the training data. The huge number of pixels 

which arc presenting normal tissue ill compare with a very few number of pixels presenting 

the microcalcificatiolls. A preprocess stage was added to overall algorithm to detect suspi

cious areas and reduce the number of the pixels presenting normal areas. The preprocess 

were applied prior to the proposed algorithm to increase the accuracy and time efficiency. 

The test data for evaluating the proposed algorithm were evenly divided into four category 

of mammograms. The images were divided categorized according to tissue density and the 

difficulty of detection of microcalcification. The results were evaluated through ROC curve 

and were compared with SVM algorithm. 

A correct rate of 92% were archived at 1.5 false positives per image. Considering the 

number of very difficult images in the data set used during the test, the overall performance 

is significant. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

78 

6.4 Research contribution 

The main contribution of this work is in the field of medical imaging. The SVrvI algorithm 

were empowered by external features for t('xture classification. A number of external features 

were suggested and examined and through the study of VC-dimension the best were chosen. 

Tlw perfonnallce of LPC features in high resolution classification, \vere improved byemploy

ing gabor filter bank features. The excellent ability of SV}'1 in dichotomy problems were 

used in detection of ahnormalities. The asymmetry problem of training data were solved 

with pre-process st.age based on wavelet transform decomposition and reconstruction of the 

mammograms. The performance of the algorithm were discussed for the images clinically 

categorized illto different levels of difficulty for assessment. 

6.5 FUture work 

More research is needed to increase the accuracy of the algorithm in subtle cases of cancer 

and to reduce the number of false positives in high density images. 

Incorporating information from other modalities such as ultra sound and }'IRI imaging 

must be considered to achieve a CAD system with acceptable performance for clinical usc. 
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Acronyms 

CAD: Computer Aided Diagnosis 

LDB: Local Discriminant Basis 

LPC: Linear Predictive Coding 

HVS: Human Visual System 

ROC: Receiver Op<'rating Characteristic 

SVM: Support Vector l\lachine 

VC: Vapnic-Chcrvoncnkis 
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