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Abstract

—

Watermarking is a tez:hnique of hiding a message about a work of media within that Work
itself in the purpose of protectiﬁg the digital information against illegal dupliéé,tion kar'ld.
manipulation.

The objectives of this st;udy are to analyze the robustness and distortion performance of
watermarking system and to explore watermarkmg schemes which balance the robustness~
distortion tradeoff optimally. :

In this thesis, We present a d?tectof algqritﬁm to adaptively extract spread spect;‘ti;fn
watermark by filtering the Watern’larkedéimag‘és with Wiene;' filter. Two optimization algo-
rithms for quantization watermarking are proposed. First one optimizes uniform quantiza-
tion based lop'l;-‘-up‘ table émbpdéing which minimizes wéterrha;’king distortion. éécon;ily, we
analyze the robustness-distortion tradeoff and formulate the robustness-distortion tradeoff
into a Lagrangmn functlon Hence optlmal quantlzers for Watermarkmg subject to gwen

robustness or ﬁdehty constramt are achleved S e e
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Chapter 1

Introduction:

1.1 Digital Watermark

With the emergence of high-capacity digital recording devices, coupled with the recent
growth of ﬁetworked multimedia systems, the prétection of ownership and prevention of
unauthorized tampering of multimedia data become important concerns. Unlike analog me-
dia such as audio and VHS video tapes, multimedia data in digital forﬁ can be cop;ea without
. degradation and distributed freely. Therefore, a major concern, with respect to protecting
intellectual property rights, has arisen. One approach to addressing this problem is the em-
bedding of an invisiblé digital watermark into multimedia daé{s, to “‘ma.r ? the owﬁership.
The embedded digital watermark may bev copyright or authentication code, or an impercepwt
tible “signature” of the originator, or recipient of the host data. In general, if it is useful
to associate some additional information with a multimedia work (image/ vidéo/ audio), this
metadata can be embedded as a watermark [1] Of éourée, there are other ways to gssociat;a
~ information with é work, such as placing it in the header of a digital file, encoding it in a
vigible bar code cﬁ an image. Watermarking is distinguished from other techniques in three
important ways. First watermarks are imperceptible [1]{2][3]. Unlike bar codes, watermarl;§
do not damage the art value of an image. Second, watermarks are ingepamble from tile '

work in which they are embedded. Unlike header fields, they are not removed when the
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image/video are displayed or converted to other file formats. Finally, wagerma,rks undergo

the same transférmations. This means that it is possible to learn something about those
transformations by looking at the resulting watermarks [1][2][3][4]. It is these three attributes
that make watermarking invaluable for certain multimedia applications.

A typical data hiding framework is illustrated in Figure 1.1. Starting with the multi-

Multimedia Watermarked

Host Data ' Data g
s Watermark Inverse w
Transform= £ o dder > Transforml—*
A
Watermark T
0110...101 key
w

. Figure 1.1: Watermark Embedding Process.

media host data, or its transformed format, an embedding module puts the watermafk and
a;n optional public or secret key. The watermark often consists of a binary'data sequence,
reprqsenting a number, text, or even an image: The public or secret key is used to anofce
se;:urity The watermark sequence is embedded in the host dafa by making impercepti-
ble modification to its content. The output of the Watermark embedding algorithm is the
modlﬁed ie. watermarked data.

The general watermark extraction process is depicted in Figure 1.2. With or without the
use ‘of the key, the estimate of the original watermark is extracted from the watermarked
multlmedla data. In robust waterma,rkmg ‘applications, the watermark must be recoverable
even When the watermarked data undergo a reasonable level of distortion. According to~
whether or not the original host data is exploited during; the watermark defection process,
the existing schemes can be pla,ced”under iwo ca,tegdries: blind watermark and non-blind
‘ watermark. Methods reported in [5] rgaquife the host signal for detection, whereas the scheme )
in [6][ ] does not. o - ‘ | ,
" To protect copynght successfully, there are several fundamental reqmrements for water-

marking.
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Figure 1.2: Watermark Extraction Process.

e Imperceptibility: The watermark should not be perceptible when embedded in the
host data. In other words, the watermark embedding process should not introduce any
perceptible artifacts into the host data. The commercial or art value of the host should
not be affected. ‘

¢ Robustness: The watermark should remain intact in the host data regardless of any
change that may occur to the host data, including all possible signal processing, and

_ - possible malicious attacks that unauthorized parties may attempt. Robustness against
all possible attacks may be impossible to achieve. Thus, the practical requirement is
that the embedded watermark is computationally impossible to be removed without

severely damaging the commercial or art value of the host data.

e Accuracy: The detection should be accurate, i.e. the probability of false alarm and

miss detection should be as low as possible. .

e Embedding Capacity: The total embedding capacity, namely, the number of bits that
can be embedded and extracted with small probability of error is also an important

measurement. Fortunately, not all scenarios require a high embedding capacity.

e There might be other requirements, such as blind detection, for those applications

~ where the access to the original host data is impossible.

Unfortunately, the first two basic requirements are contradictory. For imperceptibility,

the watermark embedding process should not introduce any peréeptible artifacts into the host

P
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data. On the other hand, for high robustness, it is desirable that the watermark amplitude

be as high as possible. Thus the design of watermarking methods always involves a tra,deqﬁ'
between imperceptibility and robustness.

Watermarking is a promising solution that can protect the copyright of multimedia data.
Unlike encryption methods, digital watermarking does not restrict access to the multimedia
work to prevent illicit acts. Instead, it provides evidence of a wmng—doing after it has taken
place. Digital watermarking has the potential to provide protection even after the data is
decrypted.

Also a reasonable expectation of applying watermarking techniques for copyright protec-
tion is to considér specific application scenarios, because the distortion behavior invoived in
these cases (quantization, compression and geometric distortions) could be predictable.

~ While the most prominent application of watermarking techniques is copyright protec-
tion, watermarking is also an attractive tool for any application where it is desirable to
attach permanentl& hidden information to a multimedia signal, such as data monitoriqg
and tracking, content labelling, multilingual céptioning, usage control, and general covert:‘
communications [8]. An example for data monitoring is the automatic monitoring of broad-
casted radio programs such that royalties are automatically paid to the copyright owners of
the broadcast data. In transaction tracking applications, the owner or producer of the work
would place a uﬁique watermark in each copy; if the work were subsequently misused (leaked
to the press or redistributed illegally), the owner could find out who was responsible [1]. In \
usage control applications, a digital watermark can be inserted to indicate the number of
copies permitted. An example is digital video dis¢ (DVD) [2]. -

In recént' years, a number of practical data hiding systems have been proposed for image,
audio or video watermarking. Most of recently reported schemes cast watermark into the
transform domain [1][5][9], due to the fact that the transform domain watermarking schemes
tend to achieve both perceptual transparency and robustness better than spatial/time do-
main schemes. However embedding watermark by directly modifying image pixels or audio

samples is always simpler and faster [10](11].
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In terms of different robustness requirements, watermarking schemes can be divided into

robust watermark, fragile watermark and semi-fragile watermark. In a robust watermark

systeﬁi, the embedded data can survive common signal processing operations, whereas fragile

watermark becomes undetectable after even minor modifications. Semi-fragile watermark is

..a hybrid of-the two of above, only distortions that exceed a user-specified threshold will
break the watermark.

All existing robust watermarking schemes can also be placed under two categories based
on embedding mechanism: coherent embedding or non-coherent embedding . In non-coherent
embedding algorithms, the embedded data have no relationship to the host data. Addi-
tive spread spectrum algorithm [5] is a representative of this category. In the second cate-
gory, data hiding is achieved by enforcing a relationship between the bits to be embedded

“and the marked values. Quantization based watermarking schemes are in this category.
Besidés, Chen et. al. divided the existing embedding methods into two classes [12][13):
host-interference non-rejecting methods and host-interference rejecting methods. Generally,
host-interference rejecting embedding methods correspond to coherent embedding, whereas
host-interference non-rejecting embedding methods correspond to non-coherent embedciz'ng.
In host-interference rejecting embedding methods, due to the enforced rela,tionship between
the watermark and the marked signal, the host signal is often not necessary durmg detectlon
On the contrary host-interference non-rejecting methods are primarily used where elther the
host signal is available at the detector or the host interference is small enough.

Much of the work on robust digital watermarking is based on spread spect:,rum principles
[14][15]. Spread spectrum watermarking schemes borrow ideas frém spread spectrum com-
munications. In these échemes, watermark is embedded into the host signal by adding a
1ow energy pseudo—randomly generated Whlte noise sequence. This specific pseudonoise se-
quence is detected by correlatmg the ongmal watermark sequence with either the extracted
watermark or the watermark signal itself (if the host data is not available for extractlon).'
Spread spectrum watermarking has demonstrated great robustness and invisibﬂity when the

original host signal is available in detection [5]. However, in blind detection, the watermark
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experiences interference from the host data even when there is no noise from processing and

intentional attack.

In another typical class of watermarking techniques, quantization based schemes [12][13][16],
the watermark, oftén a binary sequence, is embedded into the host data by qué,ntize-replace
strategies that replace a quantized host signal with another quantization value. A simple
exa,mple belonging to the class is the so called odd-even embedding: the host signal is re-
placed by the nearest even integer if to embed a “0” and the nearest odd integer if to embed

a “1” [2]. This class of watermarking schemes are free from the interference from host data.

1.2 Optimal Watermarking and Data Hiding

In the design of any watermarking scheme, robustness against data distortion through signal
processing or intentional attacks and the similarity between signal before and after water-
marking are two major requirements. For some watermarking applications, watermarks are
designed to survive normal processing and to resist any attempt by an adversary to thwart
their intendefi purpose. In désigning a robust watermark it is important to identify the
specific processes that are likely to occur between embedding and detection. Examples of-
processes a watermark might need to survive include lossy compression, digital-to-analog-
to-digital conversion, analog recording, printing and scanning, format conversion, and so on.
For example, a video watermark designed for monitoring television advertisements [1] will
need to survive the various processes involved in broadcasting — digital-to-analog conve;-‘ _
sion, lossy compression, and so on — but need not survive other processes, such as rotation h
or halftoning.

For other watermarking applications, fidelity is the primary perceptual measure. In these
cases, the watermarked work must be indistinguishable from the original. In medical image
applications, people may reduire this prdi)erty of a watermark [1].

Clearly, various robustness and fidelity requirements involved in watermarking scheme
design. In the applications where surviving the common signal processing operations is the = -

primary concern, the robustness requirement should be satisfied first, we then maximize
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the fidelity. In other applications, the prerequisite is the perceptual similarity between the

~ unwatermarked and watermarked signals, the robustness needs to be maximized. We define
a watermarking system as optimal watermarking when it achieves a maximum robustness
subject to a given fidelity criterion or a minimum distortion subject to a given robustness
.. requirement. :

Oﬁr objective in this thesis is to theoretically férmulate this robustness-distortion trade-
off. The theoretical result may be applied directly to previously proposed as well as future
robust watermarking algorithms' in order to enhance their performance.

Although optimal watermarking is first introduced in this thesis, several papers related to
this topic have been reported. Chen et. al. [12][13][17] introduced quantization index modu-
lation (QIM) and theoretically proved that QIM achieves better robustness-distortion trade-
off than the current popular spread-spectrum methods. Wu [2][7] indicated thaj: through a
look-up table of nontrivial run, the probability of detection error can be considerably smaller
than the praditional odd-even embedding. Optimal nonuniform quantization embedding is
also studied by Wu et. al. [18]. They proposed algorithms for designing the optimal uni-
form quantization encoding scheme and optimal nonuniform quantization encoding scheme.
In this thesis, we reformulate the robustness-distortion tradeoff and proposed an _eptimal

watermarking system design method by addressing the tradeoff.

1.3 Organization of this Thesis

The remainder of the thesis is organized as follows. Chapter 2 is a brief review of background
- material that we employ later on. Then algorithms about robust watermarking scheme
- design are presented in the subsequent chapters, in which either the knowledge of reference
watermarks or the knowledge of host data are employed in watermarking system. The

following chapters are organized to highlight four principal contributions:

1. In Chapter 3, we consider a spread spectrum watermarking scheme where Wiener filter
is employed into the design of the adaptive watermark detector. Two new local noise

(watermark) variance estimation methods are employed in Wiener filtering.
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2. Chapter 4 provides a look-up table (LUT) based watermark embedding scheme which

achieves near minimum distortion. The LUT is determined by the probabilities that

the feature to be embedded watermark “0” and “1” falls into each quantization cell.

3. Chapter 5 focuses on optimal watermarking. The robustness-distortion tradeoff is
theoretically formulated as a robustness-distortion function. Lagrange’s method is
used to solve the robustness-distortion constrained optimization'problem, hence an

optimal watermarking scheme is obtained.

4. In :Chapter 6, a novel image labelling system integrated with the cuttiné-edge still
image compression standard—JPEG2000 is proposed.

Conclusions and suggestions for future research are discussed in Chapter 7. The proof of a

useful theorem is provided in appendix.



’Ch'apter 2

Preliminaries of Information Hiding

In this chapter, we present the background materials which will be employed later in
the thesis. Channel capacity and performance indices of a watermarking scheme are briefly

covered here.

2.1 Channel Capacity

The channel capacity of a memoryless channel is theoretically defined as the maximum mu-
tual information between the channel input and output over all possible input distributions
[19], | o
| C = max I(X;Y). (2.1)

The “operational” definition of channel capacity is the hlghest rate in bits per channel use
at which information can be sent with arbitrarily low probab1hty of error. Shan;non s second
" theorem [19], called the channel coding theorem, establishes that the “information” channel
capacity is equal to the operatlonal” channel capacity. Channel capacity serves as a good
measure of the transmission potenua,hty of a channel. )

Two simple examples of channel capacity will be employed in sﬁbseciuent chapters The
first is a discrete memoryless channel, the binary symmetric channel (BSC); and the other

is a continuous channel, the additive white Gaussian noise channel (AWGN)
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2.1.1 Binary Symmetric Channel (BSC)

The binary symmetric channel with probability of bit error p is illustrated in Figure 2.1.
The channel input X and output Y are binary signals [20]. When an error occurs, a “0” is
received as a “1” is sent and visa versa. When p # 0, some of the received bits may be in

€IrTor.

1- :
0 P 50
5
X , Y
P
1 1
1-p

Figure 2.1: Binary symmetric channel.

However, by employing the channel coding theorem, we observe that we can still use
such a communication channel to send information at a non-zero rate with an arbitrarily
low probability of error. The capacity of a binary symmetric channel with probability of bit"

error p is given by ’ -
C = m(a.x I(X;Y) =1+ plogap + (1 — p)loga(1 — p) bits per channel. . (2.2)

where the maximum is taken over all possible input distributions p(X).
The channel capacity of a BSC is achieved when the input X is equi-probable bmary
distribution, i.e. P(X =0)=P(X =1) =1

2.1.2 Additive White Gaussian Noise (AWGN) Channel

Flgure 2 2 illustrates the addmve white Gausman noise channel. In this channel, each element
of the additive random noise vector is drawn independently from a Gaussian distnbutlon ‘

The capamty of the Gaussian channel with power constraint Pis given by

1 P
C= p(e): (X3} <P I(X;Y) = '2'1092(1 + -ﬁ) bits per channel. (2.3)
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X ‘ ) > Y

Figure 2.2: Additive white gaussian channel.

where the maximum is taken over all possible input distributions p(X) satisfying the power
constraint [21]. .

The capacity is achieved when X follows Ga,ﬁssian distribution with zero mean and
variance P, X ~ N(1,P).

2.2 Performance Indices

As mentioned in the introduction, an effective watermarking algorithm involves an appro-
priate tradeoff between imperceptibility and robustness. In this section, we present three

quantitative measures to highlight this compromise.
1. Peak Signal-to-Noise Ratio (PSNR) ~ -

The Peak Signal-to-Noise Ratio is defined as

MN o f2m,n)
PSNR(, fu) = ooy oozl (0n)

in units of dB, where f is the original image and f,, is the watermarked image. M x N

(2.4)

is the size of the image. Although-this' measure is generally not very accurate, the
PSNR metric serves as a good rule of thumb measure of imperceptibility to assess the
distortion introduced to the image as a result of embedding the watermark [22]. The

larger the PSNR is, the better will be the performance of a watermarking scheme. -

2. Probabilities»of False Positive or False Negati{fe

The probability of false positive and the probability of false negative are two measures
to objectively evaluate the robustness of watermarking schemes [2]. In security ap-

plications one must often detect the presence of a watermark or discover its unlawful
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modification by comparing the embedded and extracted marks. It is possible, how-

ever, that the presence of a watermark is not properly detected or that tampering is
not identified, The chance of this occurring is called the probability of false negative.
Similarly, the possibility of an incorrect watermark being detected in an image or the

likelihood of false detection of tampering is termed the probability of false positive.

3. Bit Correct Ratio (BCR) or Bit Error Ratio (BER)

Each time after watermark detection, the extracted watermark is compared with the
original watermark to evaluate the robustness of the algorithm. The number of correct
and erroneous bits divided by the total number of bits embedded are the bit correct

ratio and the bit error ratio, respectively.

2.3 Common Signal Processing for Watermark Attack

Because many data hiding applications operate in a competitive environment where an ad-
‘versary has the incentive to obliterate the embedded data, testing the systems’ robustness
and security against attacks is important. To evaluate the robustness of a scheme, a number-
'of attacks against data hiding system are applied on the watermarked work before detection.
It is well accepted that no watermarking scheme can survive all attack methods, espe-
cially if the adversary has part or full knowledge of the watermarking a,lgorithrﬁ. Several
attacks as well as some countermeasures have been reported in the literature. Forging a fake ‘
“original” image for ownership claims can be thwarted by imposing invertibility requireQ
ment on watermarks. Collusion attack involves the averaging of multiple copies of the same
original but having different markings. It is possible to systematically learn about the wa-
termarks from the input-output relationship of a detector using many manipulated versions
of watermarked images. Watermarks can also be attacked by geometric distortion, including
rotation, scale, translation, warping, line dropping/adding, or in conjunctior; with moderate
low-pass filtering and interpolation, but may not be alwa){s effective when the original image

is available to perform registration.
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In this thesis, one of our tasks is to search the optimal watermarking algorithm which is

robust to common signal processing,.
In the following sections, we examine the effects of three major types of common distortion

on watermark detection : additive noise, low-pass filtering and lossy compression.

2.3.1 Additive Noise

Some processes that might be applied to a multimedia work have the effect of adding a
random noise. That is

zT=s+n ' (2.5)

where s is the host data and 7 is a random vector chosen from some distortion, independently
of s. For example, audio broadcast over a radio channel might be corrupted by white noise.
In this case, the noise is independent of the multimedia work. Such noise process is a case of
additive noise. Because of its simplicity, analysis of most watermarking algorithms assumes
that the watermarked works are transmitted over an additive noise channel. Consequently,
we will discuss watermarking system’s robustness against additive noise in Chapter 3 through

6.

2.3.2 Filtering

Another common type of signal processing that may change multimedia signal in normal

operations is filtering. That is,

T=3 * 1 : (2:6)

where s is the host data, f is a filter, and * denotes convolution. Many normal operations
on images and audio are explicitly implemented with filters. The blurring and sharping
effects in image editing programs apply simple filtering operations. In addition, many lossy

processes, although not explicitly implemented with filters, can be modelled as filtering.
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2.3.3 Lossy Compression

Multimedia data contains redundancy with respect to what is needed for human perception,

so losing information to a certain extent can be acceptable.

compressed
representation of
original “doggy” 4

marked “doggy”, no compressed

perceptual change,d,; " representation of_ N
marked “doggy'd,, —

Figure 2.3: Difference should exist between the watermarked compressed image and the original
compressed image.

7

It is pointed out that a fundamental conflict exists between watermarking and lossy
pompression [1]. With an ideal lossy compressor, there should be a single compressed rep- -
resentation for all perceptually equivalent works. As illustrated in Figure 2.3, d should be
equal to dy. ~ L

If there are two compressed representations res;ﬂting from per;:eptually equivalent works,
then the lossy compressor does not remove all of the rédundancy in the work. However, from
a watermark embedder’s viewpoint, to survive lossy compression, the compressed versions of
the original a,nd'the watermarked data must be different, i.e., d should not be equal to d,.

Fortunately, lossy compression algorithms are far from ideal in practice, and there are still

redundancies for a watermarking algorithm to survive lossy compression while maintaining
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excellent fidelity.

People also noticed that lossy compression and watermarking share some common char-
acteristics [23]. Significant frequency coefficients must be achieved first for encoding in
compression and for watermark casting in watermarking. Hence by integrating frequency
.. domain watermarking with‘compression processes, the expensive transform cOméutation can
be saved. On the other hand, combining coding and watermarking is highly desired in some
classic applications, such as popyright protection, copy and access control and annotation,
where compression and watermarking are performed before spreading abroad. In Chapter 6,
we will introduce a reliable image watermarking scheme integrated with state-of-art image

compression standard — JPEG2000.



Chapter 3

Spread Spéctrum Watérmarkiﬂghand
Adaptive Filter Based Detector

3.1 Introduction

-In this chapter, we focus on the spatial-domain spread spectrum watermarking scheme and
the detector design where an adaptive filter technique is exploited. Our intention is to design.
the watermark detector that improves the detection response. We designed two detector
algorithms: one uses the estimated local variance of the watermarked image, and tﬁe other
uses not only the local variance of the received image but also the local variance of the
reference watermark. The experimental results verify that a detector based on adaptive

Wiener filter has better performance than high-pass filters.

3.2 Spread Spectrum Watermarking ]

Much of the work on robust digital wa?ermarking is based on spread spectrum principles
[5][9][14][24]. Spread spectrum watermarking schemes borrow ideas from spread spectrum
communications. In spread spectrum communication, a narrow-band signal is spread across
a wide band of ‘frequencies. This can be accomplished by modulating the narrow-band

signal (the watermark information) with a wide-band signal, such as white Gaussian noise.

16
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> Transform Frequency {9
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Watermark w—®{ modulation e— signal

Figure 3.1: Typical block diagram of spread spectrum watermark embedding.

Therefore, the signal energy present in any single frequency is undetectable. Similarly,
in spread spectrum watermarking system, the watermark is spread over many frequency
bins so that the energy in any one bin is small and undetectable. Nevertheless, because
the watermark verification process knows the location and content of the watermark, it is
possible to concentrate these many weak signals into a single output with high signal-to-noise
ratio. Destroying such a watermark would require noise of high amplitude to be added to all
frequency bins. Thus, the commercial value of the watermarked multimedia work will also
be destroyed. Spreading the watermark throughout the spectrum of an image/audio ensures
a large measure of security against unintentional or intentional attacks q

In real spread spectrum schemes, a watermark is embedded into the host signal by adding
a low energy pseudo-random noise sequence which is often modulated by the intended mes-
sage. |

Figure 3.1 displays the block diagram of a typical spread spectrum watermarking process.
The watermark embedding process can occur in either a spatial domain or a frequency
domain. For frequéncy*doma,in techniques, an orthogonal transformation, such as discrete
cosine transform (DCT) or discrete wavelet transform (DWT) is applied to the host data f.
The transformation decomposes the host daiv:éy s into coefficients to which the Watermérk is
embedded. . '

Let s = [s1, 83, ..., Sn] be the coefficients in watermark domain. The watermark consists
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of a sequence of numbers, w = [w;, ws, ..., wx| with a given statistical distribution, such as

a normal distribution N(0,1) with zero mean and unit variance. The watermark sequence

is embedded into the coefficients s according to the relationship,
X =38+ aw, : (3.1)

where o is a scaling parameter which determines the extent to which one can alter s without
changing the fidelity of the multimedia work, x is the watermarked coefficient. -
Taking the inverse transform on z produces the watermarked data which should be
perceptually identical to the original data. |
To detect the existence of the watermark, the receiver transforms the watermarked data
into watermark domain and obtains the extracted signal x which contains both the water-
mark signal and the original signal in watermark domain. In order to suppress the inter-
ference from the host signal and to obtain detection result with small probability of error,
peéple often subtract the original signal from x before correlation-based watermark verifica-
-tion operation. The existence of the original watermark w within the watermarked signal is
detected by calculating the similarity between the original watermark w and the extracted-

signal w. The similarity measure is given by the correlation coefficient as follows:

Zﬁil wiw;

N .2 [xoN 2
\/ PIARE \/ii=1 w}

If the correlation coefficient is above a given threshold, the watermark is considered to be

| (3.2)

p(w, W) =

present; otherwise, the watermark is considered not to be present in the received signal.

w

Figure 3.2 presents the diagram of spread spectrim watermark detection procedure.

As discgssed in the introduction, we are interested in blind V\;a.termarking for which the
original multimedia work is not available. Thus the original signal can be regarded as a
major noise source in detection. Hartung, et al. [15] proposed a spread spectrum blind
image watermarking system in which subtraction of the original data is replaced by the pre-
V filtering. The high-pass filtered watermarked image is then demodulated using exactly the

same pseudo-noise signal previously used for watermark embedding. In this way, the filtered
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Figure 3.2: Typical block diagram of spread spectrum watermark extraction.

image is treated as the extracted watermark. The filtering based watermarking system is
illustrated in Figure 3.3.

High-pass filtering can effectively suppress the original image’s interference due to the
fact that this interference is mainly contributed by low-frequency components, while the
power spectrum of the original image at high-frequency is relatively small.

Wiener filter is a classic linear noise reduction filter. It is often used for image denoising
applications. Exploiting Wiener filter in watermark extraction algorit;hm; as illustrated in
Figure 3.4, we use the error signal at the output of the filter v(z,y) = g(z,y) — f(z,v) as

the extracted watermark..

3.3 Wiener Adaptive Filter Based Watermarking Sys-
tem

3.3.1 Wiener Filter

Wiener filter is the mean-square-error optimal stationary linear filter and based on the as-
sumption that the power spectra of the ideal source and the noise are known.” The goal of
Wiener filtering is to obtain an estimate of the 6riginal signal from a degraded version of the

signal. The degraded image g(m,n) can be represented by

g(m, n) = f(ma n) '*'.v(m’ n)& K e (3'3)
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Figure 3.3: Filter based spread spectrum watermarking system.

where f(m,n) is the nice, uﬁdegraded signal and v(m,n) is the noise. Given the degra,dég
signal g(m,n) and some knowledge of the nature of f(m,n) and v(m,n), we want to come
up with a function h(m,n) that will output a good estimate of f(m,n). This estimate is
p(m,n), and is defined by the following: ‘ ,

p(m, n) = g(ma n) * b’(ma 'l!), , \ (34)

P(wl,w2) = G(wl,wg)H(wl,wg). ) - (35)

where P(wiy,ws), G(wy,ws) and H(wy,ws) are-the power spectra of p{m,n), g(m,n) and
h(m,n) respectively. ‘ | )‘
The Wiener filter generates an h(i, y) that minimizes the mean square error, which is
defined by: ’ | 1 \
E{eX(m,n)} = B{(g(m,n) — £(m,n))?}. (36).

According to the orthogonality principle, the error, e(m,n) = g(m,n)— f(m,n), is minimized



Wiener Filter
h(x,y)
noised image (@)
ax.y)
Wiener Filter
h(x.y)

denoised image
fx.y)

extractd watermark
vix,y)=g(x.y)-f(x.y)

(b)

21

. Figure 3.4: (a) Wiener filter for image denoising. (b) Wiener filter for watermark extraction.



by requiring that e(m, n) be uncorrelated with any random variable of g(m,n),
E{e(m,n)g(m,n)} =0, for all e(z,y) and g(m,n) .

Then we have

E{f(m,n)g(m,n)} = E{(e(m,n)+p(m,n))g(m,n)}
= E{p(m, n)g(m,n)}

= E{(g(m,n) x h(m,n))g(m,n)}
= T o TR oo hlkr, k) E{g(z — kn,y — K2)g (m,n)}
= o Ligm—oo R(K1, ko)Ry(z — ky —m,y — ko — n},

where Ry(z,y) is the autocorrelation function of g(z,¥). So
Rfy(ﬂ?, y) = h(iC, y) * Rg(iﬂ,y),

and
Pg(wi,w2)

H(whw2) = Pg(ﬁb‘l,&)2) .

‘Suppose f(z,y) is uncorrelated with v(z,y),
Ry4(z,y) = Ry(z,9),

9(3; y) Rf(:n,y) +Rv(xs y)9

and,
Prg(wy,wp) = Py(wy, ws),
Py(wi,ws) = Pr(wy,wa) + Po{wr,we)-

So,
Pf (wlv w2)

Pf(wl,wg) + P, (wl,wg)

H(wh w2)
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(3.7)

(3-8)

(3.9)

(3.10)

(3.11)-

- (3.12)

(3.13)

(3.14)

(3.15)

Since the power spectra Ps(wy,ws) and P, (w1, (4)2) are real and nonnegatlve, H(wy,ws) is also

real and nonnegative. Therefore, the Wiener filter affects the spectral magnitude but not

the phase.



3.3.2 2D Wiener Adaptive Filter »
To obtain an accurate estimate of the power spectrum, an ensemble of many samples of the
ideal image is required. However, in practical applications, it is unlikely that there will be
~ an ensemble of ideal image §amp1es available for estimation. In most applications, only the
image to be restored is available and ‘all prior knowledge about the ideal image signal has
to be estimated from it. Hence, the power spectr\,ﬁn estimated from this single copy of the
degraded image is far from the true power spectrum of fhe ideal image. For this reason, it is
expected that the restoration filter is no longer optimal because of the lack of accurate prior
information.

Although the Wiener filter is optimally derived, the success of Wiener filter in restoring
real-world images depends on accurate estimation of the image power spectrum. In general,
an image is modelled as an inhomogeneous random field. The Wiener filter requires estimat-
ing the signal mean ¢, noise mean p,, signal power spectrum Py(wl,w2), and noise power .
spectrum P,(wl,w2). They can be estimated locally in adaptive Wiener filtering.

In [25], Lee proposed the whole calculation procedure. The additive noise v(m,n) is
assumed as zero mean and white with variance of o2. Its power spectrum Py(wy,w;) is then
given by P,(wy,ws) = 2. In a small local region the signal f(z,y) is assumed h?mogeneous.

Within the local region, the signal f(z,y) is modelled by
f(m,n) = ps + ogw(m,n), ' (3.16)

where iy and oy are the local mean and standard deviation of f(m,n), and w(m, n) is zero-
- mean white noise with unit variance. Within the local region, the Wiener filter H(w;,ws)

and h(m,n) are given by:

_ Py(ws, wa) _ o} ‘
‘ H(wh&&) - Pf(wl,wg) -+ Pv(wl,wz) - 0’% +03’ (3.17)
‘ N o2 4
© h(m,n)) = —L—=8(m,n). . - (3.18)

0} + o}
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Then, the restored image p(m,n) within the local region can be expressed as ‘

pm,n) = sy + (g(m, m) = ty) * 3sg8(m, )

o2 . (3.19)
= py + g (e(m,n) — 1),
where 1y and oy are assumed updated at each pixel,
plmyn) = g (my) + =2 (glam,m) = py(m,m)). (3:20)
’ T o%(m,n) + o3(m,n) ’ e

The new blind watermark detection technique is based on adaptive denoising filter. Given
a received corrupted watermarked image X., pixel-wise adaptive denoising filtering is applied
to X,. This pixel-wise adaptive denoising filtering is based on statistics estimated from a local
neighborhood of each pixel. The local image mean value p and variance o? are estimated

using neighborhoods of size N-by-M:

1 ’ -
 — 3.21
“[‘(mi n) NM m’;eq XC(m3 n’)’ ( )
1
o?(m,n) = —— X2(m,n) — p?, (3.22)
( ) NM m%;n ¢ ) =

where 77 is the N-by-M local neighborhood of each pixel in the image X,. To extract wa-

2

termark, an estimate of local noise (watermark) variance, v* is necessary. Then a denoised

image can be obtained by a pixel-wise adaptive Wiener denoising filtering according to [26]:

0% — 12
Sc(m,ﬂ) = 1"+ 2

S Kulmm) =) = Xelmm) = S (Kelmym) =), (329)

Then an estimation of the watermark W can be obtained by
a y2 "‘ . :
W - Xc — SC _ ;i(Xc(m, n) hids ,u«). . . (3.24)

Note that the estimate W may also contain other noises besides the desired spread spectrum
watermark. However, as long as these noises are uncorrelated with the spread spectrum

watermark, they will be eliminated by the subsequent correlation detector.



3.3.3 Wiener Adaptive Filter based Detector %
From (3.22) and (3.23), it is clear that the local noise variance estimatioh is critical in ex-
tracting the watermark. Various methods have been proposed to estimate the local noise
variance in digital image debluring and enhancement applications. Different to image en-
hancement applications, for image watermarking system, not only we have the watermarked
image, the possible embedded watermarks and the watermark embedding strategy are also
known to the detector. Hence watermark detection algorithm incorporates the reference
watermarks mayc have further improved performance.

Here we propose two schemes to estimate the local noise variance 2. And therefore two
types of blind detectors can be constructed.

Type I detector: The first scheme of the local noise (watermark) variance estimation
is based on the method in [26]. It is assumed that the noise (watermark) variance »? is
uniform in the whole image and the original image has very low variation all over the image.

Therefore, a glc;bal noise variance can be estimated by:
v? = E{o*(m,n)}. (3.25)

Type II detector: In the second scheme of the local noise (watermark) variance es-
timation, we do not assume the uniform local noise (watermark) variance and the image
flatness. Instead, the local noise (watermark) variance v? is estimated adaptively according

to the local statistics of the watermark:

Uﬁz(mi n) 2 '/ ' )
I/2 = mE{U (m, N)}, (3‘26)

where o2 is the local variance of the watermark to be detected. It is calculated in the
same fashion as in (3.22). If n watermarks may be present in the observed image, n different
filtered images will be generated and used for detection. Only the real watermark is expécted |
to have largest correlation coefficient with its corresponding extfacted watermark. Figure
3.5 outlines the steps to embed and extract watermark

The above-mentioned denmsmg filtering tailors 1tse1f to the local image variance. When

_ the local variance is large, the filter performs little smoothmg. When the variance is small,
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Figure 3.5: Block diagram for the Wiener denoising filter based watermarking scheme

the filter performs more smoothing. Note that theoretical Wiener filtering system assurgles
additive Gaussian noise. Previous work in the robust watermarking area has pointed out
that the effect of distortions on the overall watermarked signal can be modelled as additive
Gaussian noise [5]. So the extracted watermark is possibly corrupted by additive Gaussian
noise. As we use spread spectrum watermark tecﬂniqﬁe, additive Gaussian noise will not

impact the final result of correlation-based detector.

3.4 Simulation ._ =

The 512 x 512 images of Lena and Bridge are used to demonstrate the robustness'of the
presented new blind watermarking detection method. Note that these two images are t)}pical
in that Lena image has rich grayscale information and the Bridge image is full of details and
edges. Spread spectrum watermark is generated as 512 x 512 matrix, where each value is -
chosen independently according to N1, oo). The value of « is set to 5 to ensure tﬁat the
change i'ntroduced by the watermark is perceptio&a,lly invisible. Figure 3.6 shows the results
of digital watermarked images on Lena and Bridge. ﬂ

First, type I detector is used and the noise variance is estimated according to (3.25).
The size of neighborhood 7 is 3 x 3. By subtracting the filtered image S, from X, the
watermark is extracted. Then type II detector is used and the noise variance is estimated

according to (3.26). All imssible watermarks are examined. The similarity is evaluated with
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Figure 3.6: Digital watermarking for Lena and Bridge.

respected to all the reference watermarks. The highest correlation coefficient indicates the
real watermark. In the following demonstrations, the performance of the new watermark
detectors are evaluated under three common image distortions: additive noise corruption,
low-pass filtering and lossy compression. The results are analyzed and compared with the
high-pass filter based detector proposed in [15]. Figure 3.7 shows the performance of three
methods in additive white Gaussian noise, which is a simple simulation of channel noise.
. According to Figure 3.7, the detector’s response value is highly. related to the quality of the
observed ii'rlage; Given a watermarked image, the new locally adaptive denbising filter based
detectors provide greater correlation coefficient than the high-pass filter based detect'pr in
[15]. Type II adaptive watermark detector also proYides better performance for both images
than type I. detector does. . , _’ ) | -
Figure 3.8 shows the results of the test for robustness against low-pass filtering distortion.

By comparing the correlation coefficient values of the Wiener filter based method (0.6) and
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Figure 3.7: Performance of three different detectors subject to additive noise corruption.

the Hartung method (0.45), we can see that our method is more robust to low-pass filtering

attacks.
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Figure 3.8: Performance of three different detectors subject to low-pass filtering corruption.

~

Figure 3.9 shows the detection response against JPEG compression with various com-

pression degrees. It can be seen that, even after heavy compression, the adaptive filter

based methods can still reliably detect the correct watermark. The correlation coefficient of

the correct watermark is about 0.3, which is much higher than that of the high-pass filter

based method in [15]. Again, type II adaptive watermark detector provides better detection
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performance for both images than type I detector.
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Figure 3.9: Performance of three different detectors sub ject to JPEG compression distortion.

Finally, Figure 3.10 shows the detection results against the state-of-art image compression
method JPEG2000. When 0.6bpp (about 1:13.33) JPEG2000 compression is applied, the
correlation coefficient achieved by Hartung’s method becomes 0.2431, while of the same

processing is applied to our method, the correlation coefficient value becomes around 0.5.

Correlation Coefficient

?ﬁ 8} ofa o:a 027 ofs ofs o.«; :20) o}s 0.2(1:40)
JPEG2000 Compression Bit-Per-Pixel (Compression Ratio)

Figure 3.10: Performance of three different detectors subject to JPEG2000 compression distortion.

The experimental results demonstrate that even if the watermarked image has undergone

severe distortion, the detector "desi'gned based on adaptive denoising filter can still detect the

_ correct watermark.
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3.5 Summary

This chapter focuses on developing blind watermark detection scheme. The presented scheme
is developed by exploiting denoising technique, based on the principle that the additive
spread spectrum watermark can be treated as uncorrelated noise with respect to the host;
data. A locally adapiive-denoising filtering scheme is employed to construct themwater-
mark detector. Adaptive local noise/watermark variance estimation schemes are presented
to achieve best filtering performance. Two types of blind detectors are develéped based on
different local noise variance estimation schemes. Experimental results show that the pre-
sented methods are very effective and robust against rﬁost imége processing attacks, such as
loésy campression, noise addition and spatial filtering, etc., and they have superior detgction

performance compared to some conventional methods.



Chapter 4

Near Minimum Distortion LUT
Embedding

L

' 41 Introduction

In this chapter, Wé focus on the LUT embedding algorithms. Look-up table (LUT) embed-
ding is a simple embedding technique used to hide information into multimedia work for
copyright protection, transaction tracking or content annotation. The LUT is often associ-
ated with a cryptographic key, thus provides security to embedding. This chapter studies
the distortion introduced by LUT embedding where the maximum allowable run is limited
to 2. Here run means the largest number of consecutive 0’s or 1’s in LUT. We find that
designing LUT according to the distribution of the host data and the watermark data to
be embedded can greatly reduce the distortion from LUT embedding. Hence a practical
near-minimum-distortion look-up table design method is proposed. Meanwhile, security and
’ robustness of the designed information hiding system are almost maintained. We apply this
method into a wavelet domain image watermarking system. Because only significant wavelet -
coefficients can be selected to embed the watermark, an Expectation-Maximization (EM)

algorithm based method is employed to model the statistical distribution.
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4.2 Overview of the LUT Embedding .

A LUT is a random sequence of 0’s and 1’s, with runs of 0’s and 1’s being limited in length.
It also constitutes the key for the watgrmark extraction algorithm. Every possible value
of the host data is quantized using a quantization function (Q(-)) to a small set of values,i
equal in number to the size of the LUT. For example, a uniform quantizer with cell width
g maps the original signal to kq,k ='1,---, K, where K is the size of the LUT. The table,
then maps the quantized value to “0” or “1”. To erhbed a “1” iz; a coefficient, the coefﬁcient
is unchanged if the entry of the table corresponding to that coeflicient is also a “17. If the
entrir of the table is “0”, then the coefficient is changed to its nearest neighboring value for
which the entry is “1”. The émbedding of a “0” is similar. The look-up function (Lookup(-))

simply returns a “0” or “1” depending upon the input index,
Lookup(s) = value in Look-up table at index s L (4.1)

The LUT(-) function takes the value of the original singal as the input and maps it to a “0”
or “1” according to the LUT. Thus, the LUT(-) function is actually a simple composition of

the lookup and the quantization functions:
LUT(s) = Lookup(Q(s)) (4.2)

Figure 4.1 shows the general process of LUT embedding‘algorithm. An orthogonal trans-
formation T,, decomposes the host data s into coefficients z in the watermark d(;main to
which the watermark w is embedded. Then the coefficients are quantized and inapped ac-
cording to LUT.

The entire process altering a coefficient can be abstracted into the following formula:
| x__{s if LUT(s) = b -

s+d if LUT(s)#b, d= mmldl(LUT(s +d) = z,), (4.3)

where s is the original coefficient, = is the marked one, b is the bit to be embedded.
For LUT embedding, once the LUT is known to the detector, the watermark can be
extracted easily through a simple lookup from the LUT. The table is looked up as

b= LUT(z), : C (4.4)
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Figure 4.1: General LUT Embedding Algorithm

where b is the extracted bit and # is the watermark embedded, possibly corrupted signal.
A typical LUT embedding algorithm is the odd-even embedding. First, a uniform quanti-
zation function Q(-) is defined which partitions the signal space R into subsets as illustrated
in Figure 4.2. The host data is mapped to the nearest even numbered quantization point
to embed a “0” and the nearest odd numbered quantization point to embed a “1”. Thus
a global relationship between the watermark bit and the marked signal is deterministically

enforced.

P o e ey Per By
N4 NY & NI N/
(k-3)q (k-2)q (k-1)q kq (k+1)q (k+2)q -

R R [ ———

P e e o e e e o e e e e

decision
boundaries

Figure 4.2: The odd-even embedding

The watermark bit is extracted by the following way,

N { 0 ifgﬁ@iseven

) - 4.5
1 if Q; is odd. (_ )
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In the odd-even embedding scheme, the table entries for embedding ”1” and ”0” are arranged

in an interleaving order, {..., Lookup((k — 1)q) = 0, Lookup(kq) = 1, Lookup((k + 1)q) =
0, Lookup((k + 2)q) = 1,...}, which is also described as run=1 LUT embedding in [2]. It
is pointed out that LUT embedding with larger run constraints introduces larger distortion
but have smaller probability of detection error. ,
During LUT embedding, when Lookup(Q(z)) does not match the bit to be embedded b,
we need to find a nearby entry in LUT that is associated with b. As such, the run of “17
and “0” entries of an LUT becomes a main concern which needs to be constrained to avéid

excessive modification on the feature.

4.3 < Robustness Issue

Distribution after

Marked feature with AWGN noise

“0” embedded

i
1 ZX ]

v

Feature values  (k-1)q kq (k+1)q
LUT mapping 0 0 1

Figure 4.3: Illustration of reduced detection errors of LUT embedding as the maximum allowable
run r increases.

To quantify the robustness in terrr,ﬁ; of the probability of detection error, we assume that
the watermarked feature is at kg and the additive noise follows i.i.d. Gaussian distribution
N (1, 0€) with zero mean and variance o2. The probabﬂity of noise pushing a feature to other
intervals that are far away from kq is small aue to the fast decay of the tails of Gaussian

distribution, so the probability of detection error can be approximated by considering only

IN
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the nearby intervals around kq. An example is shown in Figure 4.3. When noise drags

the watermarked feature away from kq to 2z, we will encounter detection error only when
LUT(z) # LUT(kq). For LUT embedding with a maximum allowable run of 2, there are
three cases for the LUT entries of (k — 1)q, kg and (k + 1)¢:

. Ca,sfeﬂlz {Lookup(kq) = Lookup((k — 1)q), Lookup(kq) # Lookup((k + 1)g)};
'0 Case 2: {Lookup(kq) # Lookup((k — 1)q), Lookup(kq) = Lookup((k + 1)q)};
o Case 3: {Lookup(kq) # Lookup((k — 1)q), Lookup(kq) # Lookup((k+ 1)q)}.

Table 4.1 shows all the possible combinations of the binary look-up table entries (k — 1)g,
kq and (k+1)q.

Table 4.1: All possible cases for LUT entries of (k — 1)q, kg and (k + 1)g are listed where each of
them can only be “0” or “1”.

(k—=1)g | kg | (k+1)g
0 0 1 Case 1
0 1 0 Case 3
0 1 1 Case 2
1 0 0 Case 2
1 0 1 Case 3
1 1 0 Case 1

Suppose that each entry of the LUT has the equal probability to be “0” or “1”.

. (4.6)

P(Lookup(kq) = 0).= P(Lookup(kq) = 1) = %
Using (4.6) and Table 4.1, we can find the probability of the first case as
. , 1
P(Lookup(kq) = Lookup((k — 1)q), Lookup(kq) # Lookup((k +1)g)) = 3. 4.7)

Similarly, the probabilities of the other two cases are

P(Lookup(kq) # Lookup((k — 1)q), Lookup(kq) = Lookup((k + 1)g)) = % C (48)
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P(Lookup(kq) # Lookup((k — 1)q), Lookup({kq) # Lookup((k + 1)q)) = ;%,' (4.9)

Thus the probability of detection error under Gaussian noise can be approximated by

Pr=2 =~ P(Lookup(kq) # Lookup((fé - 1)q); Lookup(kq) # Lookup((k + l)q))*- 2-Q(%
+P(Lookup(kq) = Lookup((k — 1)g), Lookup(kq) # Lookup((k + 1)q)) - Q(%
+P(Lookup(kq) # Lookup((k — 1)q), Lookup(kq) = Lookup((k +1)q)) - Q(s%)

—4.Q(L
T (4.10)

where the Q-function Q(z) is the tail probability of a Gaussian random variable N(0,1).
In contrast, for LUT with a maximum run of 1 (or equivalently, the odd-even embedding),
detection error occurs as soon as the noise is strong enough to drag the watermarked feature
to the quantization intervals next to‘the kq interval. The probability of detection error for
this embedding is ]
| | P;”‘:l ~2- Q(é%). - (4.11)
Tﬁe above analytic approximations of the probability of detection error indicate that
LUT embedding with maximum allowable run of 2 can potentially provide higher robﬁstnes‘s

than the commonly used quantization embedding with equivalent run 1.

4.4 Near Minimum Distortion LUT Embedding
4.4.1 Distortion Analysis |

In LUT embedding, uniform quantization Q(-) divided the input signal space into K equi-
spaced levels. Then if the k-th entry of LUT is b, the data samples of signal s in the
quantization cell of [(k — 1/2)g, (k + 1/2)q] to be embedded b is rounded to kq; the mean
square distortion produced by this opération is calculated as '
N s
where f(s) is the Probability Density Function of s. However, if the desired bit for s is not
b, the host data must be mapped to the nearest quantization points correspondihg to the

desired bit (k+1)q,! > 0. If the maximum allowable run is 2, the entry next to the k-th entry,
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i.e. either the k —1-th entry or £+ 1-th entry or both matches the desired bit. We subdivide

the} above situation into 3 cases as the previous section. In all the cases, further distortion
will be introduced. If it is the first case, {Lookup(kq) = Lookup((k — 1)q), Lookup(kq) #
Lookup((k + 1)q)}, the samples of s which are in the quantization cell of [(k — 1/2)q, (k +
.1/2)q] have to be rounded to (k +.1)g. The distortion is
Dowsarls) = fujog Is = (k-+ 1alf(e)ds
‘=Dig+9q f((,ffll//%)f f(s)ds —2q f(f,ffff;?(s — kq)f(s)ds.

Similarly, in the second case, the samples in k—th cell have to be mapped to (k —1)g. we

(4.13)

have

(k+1/2 )q +1/2 )q '
Degs = / - (4.
Case2($) Dy, + ‘1 (k=1/2)q + q 12, kq)f(s)ds (4.14)

In the third case, we have two nearest quantization points (k+1)q and (k—1)q correspond-
ing to the desired bit simultaneously, then the original features in the range of [(k—1/2)q, kq]
will be rounded to (k — 1)g, and the features in the other half interval [kg, (k + 1/2)q] will
be mapped to (k + 1)g. The distortion will be composed by two parts:

' Dowss() —foc_l,g}q[s—(k 1)q)f(s)ds + S5 /s — (k + 1)g*f(s)ds

= Dig+9q f(:fll/f)? f(s)ds +2q [f(k 1/2)¢(8 — k@) f(s)ds — ST s - kqg (135);}38]

If the feature is approximately uniformly distributed within each cell or only fine quantizer
is ﬁtilized, the last terms of (4.13) and (4.14) are close to 0, and the last term of (4.15), which
is in the range of [—q f(:ff/%f f(s)ds, 0], approxin;ates to =~ g%@f f(s)ds.

For a binary data hiding system, we can divide the features into two categories: the
features th.a,t are used to embed bit “0”, denoted by s, and the features that are ‘used to
embed bit “1”, denoted by s,. The PDF's of sy and s; are fo(so) and fi(s1), respectively.
First we consider the overall mean squa.red distortion due to quantization only, ‘

MSEpun =iy U(gwil;’f)? |so — kgl fo(so)dso + f((lfjllljg? |51 = kal*fy (Sl)dsl] (4.16)

= Tia1 [Dkq(SO) + Dig(s1)] -

Now consider that each of the KX LUT entries is either “0” or “1”. In all'K quantiia,tior%(
cells, either the data to be embedded' “)” or the data to be embedded “1” are mapped to their ‘
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local reconstructmn points. Other data have to be mapped to neighboring reconstruction

points where the above three cases appear. According to (4.13)-(4.16), the pvera.ll LUT
embedding distortion can be formulated as

MSEy = MSEqun+¢* Thsy o 1/ fo(so)dsa+¢* Ty v JEHIS fi(s1)dsy

=L E Bok STl fo(so)dso — LYK 1ﬁ1kf(;f+1/2 ' fi(s1)dsy i

where o and g can be 0 or 1, a(0,k) = 1 if the k-th reconstruction point is for “1” em-
beddmg, similarly a(1,k) = 1 when the k-th LUT entry is “0”, hence a(O k) = mod(1 —
o(1,k),2), only when Case 3 appears 3 is equal to 1, that is: if {Lookup((k — 1)q) #
Lookup(kq), Lookup(kq) # Lookup((k + 1)q), Lookup(kq) = 1}, Box = 1; if {Lookup((k —
1)q) # Lookup(kq), Lookup(kq) # Lookup((k + 1)q), Lookup(kq) = 0}, B1x = 1.

i) (k+1/2)q fo(so)dso and f((:"”llf;){f fi1(s1)ds; represent the probability that sp and s; fall into

(k—1/2)q
the k-th quantization cell of Q(-), respectively. We denote them as Fox and Py, i.e.

d Py = d 4.18
k-1/2)q 0(30 S0, 41,k (k—1/2)q 1(81) S1. ( )

(k+1/2)¢ (k+1/2)q
By =/(

Thus we rewrite (4.17) as

MS'E = MSEquan+4¢° Zaﬁkpok+q Zalkplk"—Zﬂekplk""ZﬁIkplk (4.19)

k=1 k=1

" Ifthe original feature follows uniform distribution, the probabilities that the feature falls
info each qua;,ntization cell will be exactly the same, then various LUTS have same ove;all
distortion. nge we assume the distribution of the host signal is nonuniform. It is reasona‘ble,
as in real world most signals are not uniform. For example, the wavelet coefficients of a
natural image do not follow uniform distortion. The probabilities that a nonuniform signal
falls in each quantiza{;ion cell are different to each other. Embedding watermark according
to different LUT scheme can produce different distortion. From (4.19), we c.a,n see that
the pa,raméters 0 ks dl ¥ Pog and Brg, k =1, o K corresponding to each LUT scheme is
unique. Therefore, various distortion can be obtained with various LUT schemes. Among

them, the LU’I‘ which achieves near minimum d.lstortxon is our target.
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4.4.2 Near Minimum Distortion LUT Embedding Algorithm

Figure 4.4 shows an example of wavelet coefficients which will be embedded biﬁary water-
mark. The number of coefficients to be embedded “0” and “1” fall into each quantization
cell is different to each other. We can design a variety of run of 2 LUTs, but only the one

.which achieves minimum distortion is what we want.
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Figure 4.4: A minimum-distortion LUT needs to be generated according to the given wavelet
coefficient distribution.

-According to (4.19), the LUT embedding distortion is determined by the LUT (a and f3)
and the distribution of sp and s;. We obtain the near-minimum distortion look-up table by
looking at the probabilities that the coefficients to be embedded “0” and “1” falls into each
cell, Pox and Py, k = 1,2..K. First we sort Py and P4 in descending order. The sorting
result is a probability queue like Py &, Pi x+1, Pok+2, Pl,;., .... Then the look-up table is built in
the way that the entry corresponding to the largest probability are set to its corresponding
bit in priority. For example, if Py is the largest in the probability queue currently and
the look-up table entry Lookup(kq) is still not determined yet, we set Lookup(kqg) = 0.
After each operation, we remove the largest probability value from the queue and move
on the next. There is a rule we must keep in mind due to the maximum run constraint
(r=2): the assignment should also satisfy the present maximum run number r = 2, i.e. the
maximum run for “0” or “1” must be equal or less than 2 and at the border of the quantizer
Lookup(Q(mins)) # Lookup(Q(mins) + g), Lookup(Q(maxs)) # Lookup(Q(maxs) — g).
The algorithm for run of 2 can be summarized in the following three steps: ‘

- STEP 1: Arrange the probabilities that the original feature associated with the desired
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bit falls into each quantization cell in descending order.

STEP 2: We find the largest probablllty P; ;. from the above queue, where 3 =0orl. If
Lookup(kq) has been determined, go to STEP 3. Otherwise, among the determined look-up
table entries, if any of the following situation occurs, { Lookuf)((k—2)q) = Lookup((k—1)q) =
1}, {Lookup((k—1)q) = Lookup((k +1)q) = 1}, {Lookup((k+1)q) = Lookup((k+2)q) =},
{k = 2, Lookup(q) = 1}, {k = L — 1, Lookup(L) = 1},1 € {0,1}, Lookup(kq) is set to the
complement of I, Lookup(kq) = mod(l + 1,2), no matter j value; otherwise Lookup(kq) = 7,
the original feature corresponds to P,k is not shifted to other quantization points.

STEP 3: P is removed from the queue. If the queue is not empty, gd- back to STEP

To illustrate the above near minimum distortion look-up table generation algo:;itflm, an

example is provided in Figure 4.5.
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Figure 4.5: Example of a max-run=2 minimum distortion look-up table.

4.5 Significant Coeflicient Selection Based on a Gaus-
sian Mixture Model in the Wavelet Domain - -

In our scheme, only wavelet coefﬁciénts with large magnitudex are selected to b(;ar water-
mark. In general, these coefficients do not change significantly after image processmg and
compresswn attack. We propose a statlstlcal method to pick the embeddable coefﬁments
based on a Gaussian Mlxture Model in a wavelet subspace by Expectatmn—Mammlzatlon
(EM) algorithm [27]. The wavelet coeflicients have a peaky, heavy-tailed marginal distribu-

tion, which record image texture and edge mformatmn at d1fferent; scales [28]. Only a few
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significant coefficients take large values at the positions where edges occur, while most others

take small values. This statistical characteristic can be expressed by using a two component

Gaussian mixture:
p(wi) = Ps 'g(wi>090§) +pl 'g(w‘iv 0)0?)5 (420)
pstp=1" - (4.21)

where the class of small coefficients is represented by subscript “s” and the class of large
coefficients by subscript “I”. The a priori probabilities of the two classes are represented by
ps and p;, respectively. The Gaussian component;, éogresponding to the small coefficients has
a relatively small variance o2, capturing the peakiness around zero, while the component
corresponding to the large state has a relatively large variance o2, capturing the heavy tails.
An EM algorithm as in [28] can then be applied to find out the Gaussian mixture model
by obtaining the model parameters [p,, pi, 02, 07]. The Gaussian mixture model is then used
to find large coefficients for watermarking. The watermark is only embedded into the class
~of large coefficients because modifying coefficients which represent the edge information will
introduce less perceptual degradation. We select significant coefficients by examining the
coefficient magnitude that is larger than a threshold p determined by the Gaussian mixture
model. That is, suppose that there are m coefficients in a detail subband s, the number of
coefficients which is larger than p is approximately ‘mp; and the number of coefficients less

than p is approximately mp,. Coeflicient ws(z,y) will be chosen for watermark embedding

if [fws(z, )| = p.

4.6 Simulation

The proposed Watermarking‘ scheme is tested on seven images of different types. We evaluate
the quality of watermarked and attacked image by peak-signal-to-noise-ratio (PSNR), and
the robustness under several intentional /unintentional attacks is denoted by bit correct ratio
(BCR). First we inserted binary watermark into the images by applying the new method.

Figure 4.6 shows one example (Lena). The modified significant coefficients are mainly at
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the edge of the image. The watermark robustness to common operations such .as image

compression is tested. The discrete cosine transform (DCT) based coding system JPEG
baseline, and the discrete wavelet transform (DWT) based coding system, JPEG 2000, are
‘the two compression attacks in our tests. We evaluate the robustness by the average BCR
for all test images. As shown in Figure 4.7, the BCR of the extracted watermark is larger

than 75% until the compression quality factor is smaller than 60.

Figure 4.6: The watermarked image and the difference from the original image with black denoting
zero difference.

Since the watermark is\ embedded in the wavelet domain, the presented algorifhm has
perfect robqstnegs against DWT based JPEG 2000 compression attack. The results are
shown in Figure 4.8. The decoded watermark can be 100% reconstructed after JPEG 2000
compression of 1bpp and is reliable until the compression bit-rate smaller than 0 2bpp (1:40).
The embedded watermark and the extracted watermark in Figure 4.9 is a,n example of
the watferma:‘lc extraction with JPEG 2000 severe compression (1:40) and shows that the

new scheme can survive JPEG 2000 compression very well. The comparison of watermark
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Figure 4.7: The robustness against JPEG compression.
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Figure 4.8: The robustness against JPEG 2000 compression.

embedd:ing‘with and without the statistical model based significant coefficient ;e.election is
also shown in the Figure 4.7 and 4.8. The advantages of the new method with the coefficient
selectionw are apparent.

Finally, we compare;d the distortion performance between the interleaving LUT (odd-
even ‘e.rhnbedd‘ing, run=1), our distortion-minimized LUT and the average distortion of all
LUTs with maximum allowable run of 2 in terms of various quantization level. According
to Figure 4.10, the dlstortlon of the new method is the minimum, thcugh it provides better

robustness



Figure 4.9: The embedded watermark (left) and the watermark (nght) extracted after JPEG
2000 severely compressed (1:40) image.
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Figure 4.10: The image quality comparison between run=1 (interleaving) LUT, distortion-
minimized run=2 LUT embedding and the average distortion of all maximum-run=2 LUTs.

4.7 Summary

We have analytically evaluated the distortion brought by LUT embedding with run con-
straint. Based on this analysis,. we proposed a novel minimum-distortion algorithm to de-
sign LUT which can improve the watermarked signal quality. If sécurity issue is taken
into ;ccount, with a little bit change, the probosed approach can generate more than one
near-minimum-distortion look-up tables. Thus our aIéorithm fits into some watermarking
applications where joint—security-ﬁdelity is required. For example in transaction tracking
apphcatlons, a unique Watermark is embedded into each copy; if the multimedia Work were
subsequently leaked to the press or redlstrlbuted illegally, the owner could ﬁnq out who was
responsible. Expenmental results show that the look—up table obtained with our method is

superior to the odd-even(interleaving) embedding in terms of image quality.



Chapter 5

Optimal Quantization Based
Watermarking Algorithm

5.1 Introduction

"In this chapter, we focus on robust quantization based data hiding'scheme. Robust data
hiding techniqges are required to achieve maximum robustness and fidelity simultaneously.-
However robustness and fidelity are always a pair of conflicting requirements.- In this chapter,-
we consider the optimization of one given that the other is fixed. A Distortion-Robustness
function, D(R) and a Robustness-Distortion, R(D)’iaxe formulated in the context of quanti-
zation based information hiding. Based on the theoretical analysis on robustness-distortion
tradeoff, a new optimization strategy for data hiding given the embedding distortion or ro-
bustness constraint is proposed. This algorithm follows the general model of Quantization
Index Modulation. The problem of designing the optimal nonuniform quantization encoder
given ﬁdelity‘ or robustnéss criteria, ig formulated into a Lagrange function.  Experimental
results show that the optimal quantization vs}aterxhérking scheme performs better than the
existing schemes. The algorithm lends itself to applications where distortion or robustness
is specifically requested. ’ |

This chai)ter studies optimal no;mniform quantization watermarking scheme. Starting

with Lloyd-Max method based optimal quantization, the optimal quantization watermarking

45
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algorithm is designed by exploiting the statistics of the host data. Specifically, we assume

the quantization level is fixed and consider two constrained optimization problems: (1) given

robustness criterion, looking for quantization encoding scheme which minimizes distortion;

(2) given fidelity constraint, looking for quantization encoding scheme which maximizes

robustness.

5.2_ Robust-Distortion function

5.2.1 Quantization Based Information Hiding

In quantization based information hiding schemes, the watermark information is conveyed in

the choice of quantizer. The message symbol to be embeded is denoted by m € {0,1,---, M — 1},

which is also called M-ary watermark. In quantization based information hiding system

shown in Figure 5.1, M quantizers are needed to embed M-ary watermark. To simplify the

model, here we focus on binary watermark where two quantizers are needed for watermark-

ing. We can divide the host data into two categories: the data samples that are used to

embed message bit “0”, denoted by sg, and the data samples that are uséd to embed bit “1”,

denoted by s;. Suppose two quantizers are denoted by Qo and Q;, where Qg is used for sq

and Q; is used for s;.

multimedia
host data s | quantizer
designation

M-ary according

watermark tom
m —™

Q)
Q) —»
QM-v(.) —p

watermarked
data x
-

Figure 5.1: General diagram of embedder for quantization based data hiding system The host
data is quantized with the quantizer associated with the watermark bit.
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Figure 5.2: General diagram of decoder for quantization based data hiding system. The distances
between the received signal and the nearest quantizer reconstruction points are used for either
soft-decision or hard-decision error correction decoding,. ”

Denoting the k-th reconstruction point of Qo as rox,k = 1,---, K, we have

Tor = QO(S); s € [dﬂ,k-—lg dO,k], (5'1)

~where dox, k =0, -+, K is the decision level of the quantizer Q. Similarly, for quantizer Q;,

ik = Qu1(s), s € [d k-1, d1], (5.2)

where 714,k = 0,---,K and dix,k = 0,-- -, K represent reconstruction points and decision
levels of the quantiéer @1, respectively. .

The messdge embedding procedure can be illustrated by Figure 5.1. For message bit
m = 0, the host data is mapped to the nearest reconstruction point of the quantizer Qo.
For message bit m = 1, the host signal is mapped to the nearest reconstruction point of the
quantizer Q;. In another word, sg is quantized with Qo whereas s, is quantized with Q;. An
example of quantization ensembles for data embedding is illustrated in Figure 5.3, where A
and ¥ represent quantization points for “0” and “1” embedding respectively.

A block diagram of the general decoding procedure is shown in Figure 5.2. The distance
between the received signal y and the sets of reconstruction points of different quantizers are

employed in hard-decision or soft-decision decoding algorithm.
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_Figure 5.3: An example of signal constellation for quantization based data hiding.
Hard;decision Decoder
For hard-decision decoding, one can make decisions on each coded bit y [12] [1?;],
i = arg min |ly — Qm(®)II%, m € {0,1}, . (53)

where v is the received, maybe corrupted signal and Qm(y) is the reconstructioh point of Qg

or Q; that nearest to £. Unless the channel noise is strong enough to drag the watermarked

feature out of the enforced interval, the detection result is 7 = m.
Soft-decision Decoder

Alternatively, for soft-decision decoding, the message to be embedded m is one of M binary
séquences m = m;4 = 1,.--, M where each possible sequence is »'composed of L binary
bits m; = {ma,---,mir}. The extracted watermark 1 is determined by evaluating the
square-sum of distance between the received signal y = {yy,-- ~?y5} and the nearest set of

quantization ensembles.
L
m = a'rgnrlanE(yl - Qmu(yl))21mil € {O: 1}’7: = 1, e ‘QMaz = 1» Tty La ) (5'4)
I=1 ’
where Qp, (1) is the reconstruction point of ¢ or Q1 which nea;rest to y;.

5.2.2 Quantization Distortion _ : r

Apparently, through mapping the host signal to the nearest quantization véulue controlled

by the watermark, distortion is introduced. The v-power difference distortion incurred by
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scalar quantization can be expressed as the sum of the distortions for each of the decision

regions. The distortion produced by quantizing source s with a given L-levels quantizer @ is

D(v) = fo:l dk 1 {8 - Q(S)!vf(S)dS] (5 5)
= ZkK=1 fdk_l |s —1e|"f (5)d3]
-where di, k= 0,- K and rg, k = 1,---, K are the decision levels and reconstruction points

of the given quantlzer Q respectively, f(s) is the Probablhty Density Function (PDF) of s.
In our two quantizer case, the total distortion is the sum of @y and @J; quantization

distortion

K
D(v) = _D(()”) o ng) = Z [/ lSO —To k‘ fo(So)ng] + Z [/ lSl -7 kl f1(81)d31

k=1 LYdok-1 dyk—1
’ (5.6)
where fo(sp) and fi(s1) are the PDFs of sg and s; respectively.
In the special case of v = 2, the difference distortion measure becomes the widely-used
medn square error (MSE) criterion, and a quantizer which minimizes D@ is termed MSE-
optimal or minimum mean-square-error (MMSE) quantizer. In the rest of this chapter, we

evaluate the quantization distortion by MSE, which is denoted as D,

1,k-1

‘D ZU kllso—rofcl fo(so)d30]+zj[L ls1 = rxlPfi(sr)ds:| . (5.7)

5.2.3 Robustness Measurement

In our information hiding system, we use a soft-decision decoder as'(5.4). The square-sum
of distance between the received data and the sets of reconstruction points of different quan-
tizers are used to determine the embedded information. Therefore, we define the robustness
measure as

K ' do,k
R=Y" —rigll? [
[um rall? [

X | a1k
sodse] +3 [Ibos=raal? [ Ae)ds]. 65)
) k=1 1,k~1 . )

The overall mean squared distance between the nearest set of quantization ensembles are used

to evaluate the robustness of quantization watermarking. fdo ol fo(s0)dso and fdl *  filsi)dsy
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represent the probability that sy and s; fall into the k-th quantization cell of Qo and @

respectively. We denote them as Py and Py, i.e.

doe dig S
Po,k=/do,k_1 fo(So)dso,Px,k=/d fi(s1)ds;. (5.9)

1,k—1

(5.8) can be re-written as

K K . -
R=3}, (Po,k“’f‘o,k - mllz) +> (Pl,kHTo,k - 7”1,xrc||2) (5.10)
k=1 ) k=1

5.2.4 Distortion-Robustness Function and Robustness-Distortion
Function - -

When we design information hiding algorithm, we always face the tradeoff between fidelity
and robustness requirements. Qur purpose is to find a set of quantization ensembles which
achieve the maximum robustness R(D) subject to the given distortion D or achieve the mini-
mum distortion D(R) subject to the given robustness R. Then two constrained optinulization
problems are formulated as: (1)given robustness criterion, looking for quantization encod-
ing scheme which minimizes distortion; (2)given ﬁdelit:; kconstraint, loolging for quantization
encoding scheme which maximizes robustness.

The maximum R given that the distortion D is fixed can be represente& by
R(D) = mgx(R). ’ (5.11)

Similarly, we can define a D(R) function to describe the minimum distortion subject to fixed
robustness, >
D(R) = min(D). - ‘ (5.12)

The relationship between distortion and robustness is demonstrated in Figure 54 The
curve shows the maximum robustness given distortion, therefore the region below the R(D)
curve is achievable and the region above it is unachievable. .

- Figure 5.5 illustrates the first constrained optimization problem, the region above the

given robustness Ry and below R(D) curve satisfies the robustness criterion. At the position
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Figure 5.4: Distortion-Robustness function.
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Figure 5.5: The region below D — R curve above R, is the target region.

where the horizontal line of R, intersects the Robustness-Distortion curve, quantization
encoding scheme minimizes distortion subject to R,.

Quantization embedding scheme which a)chieves maximum robustness subject to given
distortion is illustrated in Figure 5.6. Only the region right to the given distértion D, and
below R(D) curve satisfies the specified distortion criterion. At the position where the line

of D = D, intersects the curve, the robustness is the maximum.
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Figure 5.6: The region below D — R curve right to D, is the target region.
5.3 Properties of R(D) and D(R) Function o

To clarify the approximate figure of R(D) and D(R) function, it is necessary to anaiyze the
properties of R(D) and D(R) function in its defined region. ‘

R(D) and D(R) functions are monotonous increasing functions

According to the definition of R(D), among all possible quaﬁtization ensembles which gen-
erate equal or less than the given distortion Dy, we select the quantization ensembles which
achieve the maximum robustness. When the allowable distortion D, is enlarged, the set
of choice quantization ensembles is widened which include all choice quantizers subject to
previous D,. Now searching the maximum robustness among this extended set of quantlza-
tion ensemble, clearly the maximum robustness will increase, at most unaltered. So R(D) is
non-decreasing, with increased allowable dlStOI‘thIl Dg, the maxunum a,chlevable robustness

will increase. As R(D)’s inverse functlon, D(R) function is also monotonous increasing,.

The domain of definition of R(D) and D(R)

o
For given host data so and s;, the minimum and maximum distortion, Dmm,D ez and

the achievable maximum robustness, Rmq, as well as the robustness corresponding to the
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minimum distortion R(Dyn).

1. Dmin and R(Dmin)

First we discuss the minimum distortion where the host data and the quantization
level are given. Without robustness concern, the desired quantization ensembles are
simply the optimal quantizers in which the decision levels and reconstruction levels are

selected that minimize the distortion subject to the quantization level constraint:

) K 0 2 K di,1 g
Dmin = 1min Z ] !So — Tk,OI fo(So)dso -+ E / ‘31 — Tk,ll fl(sl)dsl
k=1 k-1,0 k=1 k1,1

*(5.13)
Depending on the distribution of sy and s;, the watermaiking scheme based on the
achieved optimal quantizers hase some extent of robustness. If the distribution of sq is
similar to the distribution of s;, the reconstruction points of the two optimal quantizers
are also similar, then the watermarking system will have poor robustness performance.

If the two quantizers are exactly same, then R(Dpniy) = 0.

2. Ryoz and D(Rpmez)

The maximum robustness is obtained when the data to be marked “0” is mapped to

b

the minimum value that the data can be changed to and the data to be marked “1” is

mapped to the maximum value or vice versa. “This time the distortion is

Timax

(50— ﬂmin)2f (s0)dso + f

rin

:"'” (mae — $1)2f (51)ds1 (5.14)

Nmin

where fmin and e, are the minimum and maximum of the host data.

Nmin = min(s); Nmaz = ma.x(s) . (5.15)

9.4 Optfmal Watermarking Implementation

The performance of optimal nonuniform quantization encoding scheme is represented by a
point on the curve of Figure 5.4 with given distortion Dy or given robustness R,. If we

can find the curve, i.e. R(D) function, we can achieve the optimal watermarking scheme



54
with any given constraint. Leave the robustness requirement aside, to achieve the mini-

mum distortion due to the quantization operation, the Qo and @; quantizers should be the
minimum-distortion quantizers for feature to be embed “0” and “1” respectively.

The problem of minimum-distortion quantization design is to select decision levels and
reconstruction levels that minimize distortion sub ject ta a constraint on the number of levels
K. This amounts to the simple requirement that the partial derivatives of with respect to

the decision levels and reconstruction levels be zero [29][30][31]:

2

%—Sk-—()k~1 JK—1 (5.16)
2

%fk—:ozs K (517)

Lloyd found the necessary and sufficient conditions for a fixed-rate quantizer to be locally
optimal (minimum-distortion) [29]: the quantizer partition must be optimal for the set of
reproduction levels, and the set of reproduction levels must be optimal for the pértition.
Solving equations (5.15) and (5.16), the decision level dg,k =0,---, K is theﬁ averag»e of the

surrounding quantization levels,
Tk + Tkl
2

and the reproduction level ry,k = 1,--+, K corresponding to a given cell is the centroid of

di = (5.18)

the source value given that it lies in the specific cell:

dk 1 sf(s)ds
dk ' f(s)ds

After performing Lloyd-Max algorithm on sy and s; respectively, we can obtain the initial

(5.19)

optimal quantizers (Jy and Q.

However, if the binary watermark is distributed randomly, the probability that feature
to be embedded “0” is close to the probability that it is embeddéd “17. It is found that
the PDF of s¢ is similar to the PDF of s;. The m1mmum~dlstort10n quantizer'is determined
by the agna.l’s statistical distribution. Because 8o and 81 have similar PDFs and the fixed

quantlza,tlon levels are same, the two optlmal quantlzers obtamed by Lloyd-Max method are
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similar, that is for any 4, 1 <4 < L,

Tio & 71 (520)

and for any j, 7 # j
Dist(rip,1i,1) < Dist(ri,75,1)
Dist(ri0,151) < Dist(rig,751) (5.21)
* Dist(rip, 1i,1) < Dist(rii,751) N

where Dist(-) is the distance between two reconstruction points.
distribution of the

feature to be
embed “0”

} meo

distribution of the
featuretobe -
embed “1”

+ a®

Figure 5.7: The signals that follow similar PDFs have similar optimal quantizers.

In Figure 5.7, the two PDFs are plotted and the A points and 7 points represent the
optimal quantizers for “0” embedding and “1” embedding respectively. | ‘

The distance between the sets of recoﬁstruction points of different obtained optimal
quantizers, i.e. Dist(rig,ri1), is so small that the embedded watermark can be destructed
even by a faiﬁt perturbation. Intuitively, we need to adjust the two quantizers by enlarging
Dist(r;p,7:1) to improve the embedding scheme’s robustness I;erférma.nce. For example, if
the i-th reconstruction point of 0 quantizer, ;g is close to but less than 7y, to decrease the
error probability, we should reduce 1i0 and enlarge Ti1 83 illustrated in Figure 5.8.

Before the adjustment for robustness improvement, the distortion is only contnbuted

by quantization. The distortion produced by quantizing source s with K level optlmal
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Figure 5.8: Reconstruction points need to be adjusted to achieve the optimal distortion-robustness
tradeoff. . =

quantizers
K dy
D= Z (/ |s — rk|2f(s)ds) (5.22)
k=1 \Ydk-1

where dg,k =0,++, K and i, k = 1,--+, K are the decision levels and reconstruction points
of source s’s minimum-distortion quantizer. The reconstruction points are optimal in the
MSE sense so that any change on them will introduce further distortion. Assume ;;ha,t the
k-th optimal quantization point 7y is moved to 1}, k = 1,---, K, the distortion of new
constructed quantizer is: '
Do = [f32, ls = Tk (5)ds]
= Ek=1 fc}i“! |s —7h + 1% — 'rklzf(s)ds] (5.23)
= YA ik, |s = rel + Irw — rif? + 2Irk — 7aflre — s|f(s)ds] .

Since fj* i f(s)ds = [ sf(s)ds, we have

Dy =K, [, Is = ruf> + |re — ri[2f (s)ds] (5.24)
Ko i, Ire =42 f(s)ds] + D '
In our bi-quantizer case, the total distortion is
D, =YK, [f;‘i°;_ Iro. — b 4|2 fo(s0)dso] + Do
+ i ]fd1 e e — P fi(s)ds| + Dy y (5.25)

= Tha1 [fgf v Toxfo(s0)dso| + Do
+Ek=1]fd1 v Tixfi(s1)ds1| + Dy,
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where Dy and D; are only due to the initial Q¢ and @y optimal quantizers which is achieved

prior to adjustment, and
!
Tok = Tok — To ks TLk = Trk — T'l,k~ (5.26)

We argue that robustness of quantization watermarking scheme is not determined by the
minimum distance between the sets of reconstruction points of different quantizers. Take
the distributions of the host data sp and s; into account, according to (5.10), the statistical
weighted square quantizer-distance robustness measurement after adjustment is as

R =i [Porlros = ril?] + Sis [Pealrhy = el (5.27)
= 81 [Pok(To + o + 1) + Lacy [Pea(Tok + ok + 1x)7
where 79 and 7 are the magnitude that wé adjust the reconstruction points rox and 7y,
respectively and p; is the distance between the reconstruction points ;>f the initial Qo and
@1 quantizers.

jI’hen we can formulate designing the optimal quantization ensembles for watermarking
into a Légrangia,n function,

J(k,) =—R+AD ’ o
= — YK [Pox(ror + pr + 1x)*] — Thoy [Pralror + o + T16)7] (5.28)

Do + PO (Pa,k’fg,k) + D1+ T, (P1,k7‘ f,k)],
which combines our proposed robustness measurement. The cost function measures the
MSE between the original data and the watermarked data. Because the MMSE quantizers
are achieved before this optimization procedure, Dy, D, are supposed to be known as well
as pr, k = 1,2,..., K, the initial distances between Qo and @y quantizer points. A simple

solution to the above equation is that the partial derivatives qf J with respect to k; and [;

be zero. -

2L = 2Py k(7o + o + Tk) — 2P1k(‘fo:e +30k+’f1k)+2)‘1’01e70k—-0

o _ (PoxtP (5.29)
= T 0,6+ Py ) {pr+Tk)

0.k {(A=1)Po,x—Py,x

81 — _ 2)\P; =0

oy = —2h k(’ro &+ i+ k) — 2Pii(Tok + pr + k) + 2APLAT Lk (5:30)
— (Pox+Pri)(ok+Tie) . ,

= Lk = (I Pe-Por
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Thus we have 2K equations for 2K + 1 real variables (7o, Tick = 1,-++, K and A). This

question is unsolvable. Fortunately there is a given criterion, it may be:a robustness
condition,R = YK | [Py (1o + px + Tox)%] + YK [Pix(rok + pr + Tox)?] = Ry or a fidelity
condition, Dy, = Dy + X5 Poxté + D1 + T, Pl,kr(i ¢ < Dy The additional equation
makes the variables in kg, i and A achievable.

In Figure 5.9, we present all the steps involved in the watermark embedding process.

multimedia ’ . l watermarked
host data timal A.D R-D °$t'ma' embed data
quantization optimization quantization

bina l robustness or l
v distortion
watermark .

requirement

Fig'ure 5.9: Watermark embedding algorithm.

5.5 Performance Evaluation

In this section we show some experimental results to demonstrate the performance of the
proposed scheme on source which subject to various distributions. To demonstrate the .
necessity of the adjustments on the quantizers, the mbustnesg of the data hiding schemes
with and without quantizers adjustment are compared. Since uniform quantization based
odd-even embedding [2] is widely used in information hiding systems, this algorithm is also
compared in the experiments. '

Multimedia data can be depicted by various distributions, for eﬁample, image signal is
often modelled as Laplace distribution or generalized Gaussian distribution. For each distri-
bution except uniform distribution, the obtained optimal quantizer is always totally different
from and outperforxﬁs uniform quantizer. Meanwhile, uniformly distributed multimedia data

is quite rare, so our proposed optimal quantization based embedding scheme is more effective
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than uniform scalar quantization based embedding scheme in solving multimedia information

hiding problems.

First, we examine the robustness of three quantization strategies on uniform distributed
source. Figure 5.10 shows that the performances of the uniform quantizer and the minimum-
distortion quantizer are two single points in the Robustness-Distortion coordinate. That
is because, éiven a source, there is only one fixed-level uniform quantizer and minimum-
distortion quantizer. The quantizers adjustment in accordance with the given robustness
or distortion criterion generates various sets of quantization ensembles, which robustness-
distortion performance is represented By a R — D curve in Figure 5.10. For uniform distri-
bution, the achieved minimum-distortion quantizer is close to uniform, so the performance
of the two quantizers are close to each other and are all around the border of R — D curve.
Nevertheless, both minimum-distortion quantizer and uniform quantizer do not adapt to

specific robustness or fidelity requirement of various data hiding applications.

uniform distributed source

700

g 8

robustness: R
3
(=4

200 -@~ constrained optimat quantizer {R--D function)
% optimal{minimum~distortion) quantizer
1 uniform quantizer

100, T =
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distortion: D . -

Figure 5.10: R-D performance of quantizers with uniform distributed source.
Second, AGaussian distributed source is exploited to evaluate the performance of the new

scheme. We can see that the constrained Robustness-Distortion optimal quantizers have

better performance than the uniform quantizer. An obvious proof is that the point which
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represents the performance of the uniform quantizer is below the R — D curve. The quanti-

zation ensembles obtained with our method present about 16.4% higher robustness than the
uniform quantization ensembles at the same expense of distortion. At the same robustness,

the constrained optimal quantizers have 12.4% less distortion than the uniform quantizers.

Gaussian distributed source
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Figure 5.11: R-D performance of quantizers with Gaussian distributed source.

Figure 5.12 shows the performance of the method on the Laplace distributed source:
The quantization ensembles generated with our method show about 20, relatively 18.2%
higher robustness than the uniform quantization ensembles or 5.7% fidelity advantage over
the uniform quantization strategy.

Finally, we evaluate the performance of new scheme on digital image “Lena”. Figure 5.13
shows that we can achieve non-uniform quantizers which perform better than the uniform
quantizer. The robustness of the non-uniform quaﬁtization can be 18 or relatively 23% higher
tl}an the uniform quantizer at the same expense of distortion. We can also find quantizers

which show the same robustness to the uniform quantizer but 4% less distortion.
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Figure 5.12: R-D performance of quantizers with Laplace distributed source.

image "Lenna” source ‘
- B0 Certaensinne .‘ ................ ,.
120
119
100
x 90
g
% 80
-
e 70
60
SO v . » .
40boooeesiflore ;. [~8= cOMStrained oplimal quantizer (R-D function) |
; i1 ¥ optimai{minimum-distortion) quantizer :
1 uniform quantizer :
30 i3 i T 1 ) 1 J

25 - 26 27 28 29 30 3
distortion: D

Figure 5.13: R-D performance of quantizers with image “Lena”.

5.6 Summary

In summary, this chapter studies designing fixed-level non-uniform quantizers for robust

information hiding. The robustness-distortion tradeoff is formulated into a Distortion-
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Robustness function D(R) and a Robustness-Distortion function R(D). Then the properties

of R(D) and D(R) function are analyzed. We quantify the robustness of non-uniform quan-
tization watermarking scheme in terms of the distances between the sets of reconstruction
points of different quantization ensembles. The distortion can also be formulated as a func-
tion of the adjustment magnitude on the reconstruction points of all involved quantizers.
Based on the formulated R(D) function, plus a given robustness or distortion constraint, a
Lagrangian function is established. By solving it, we achieve the robustness or distortion
constrained optimal quantizers. A series of experiments have been made, in which various
distribution sources are used. Results show that our proposed nonuniform quantization em-
bedding method performs better than existing scalar quantizer based watermarking schemes

and can satisfy users’ various robustness or fidelity requirements.



Chapter 6

Image Labélling System Based On
JPEG2000 Compression Standard

6.1 Introduction

>Watermarking has now come as a widely accepted approach for copyright protection and
ownership identification. A lot of efforts have been dedicated to the development of robust
watermarking schemes to achieve these goals. In this chapter, we consider identifying the
ownership and distributi§n of image in digital network environment.

There are many practical requirements for succf:ssful ownership and distribution identi-
-ﬁcation. In order to be effective and workable in a multimedia environment, the copyright
label must be difficult to remove and survive processing which does not seriousljk reduce
the value of the image. This encompasses a wide range of possibilities including format
conversions, data compression, and low-pass filtering. Besides these well known robustness
requirements, a copyright labelling system should also satisfy the following basic functional

" requirements to be a reliable identification tool:

1. The image must contain a label or code, which makes it as property of the copyright

holder.

2. The image data must contain a user code, which verifies the user is in legal possession

63
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of the data.

3. The image data is labelled in a manner which allows its distribution to be tracked.

First, a digital terminal, for example “Cell-phone A”, sends an image requést to the ap-
propriate image server, “Image-server A” which belongs to “Vendor A”. “Image-server A”
replies by sending an image to the cell-phone. For copyright protection purpose, the image
is watermarked. To reliably identify the ownership and distribution, the watermark mes-
sage should includes but not limited to some key words like “Vendor A”,” Image—Server A”,
Cell-phone A”, etc. Thus even if the watermarked image is passed to “PC B” by “Cell-
phone A”, the extracted watermark can still clearly demonstrate the oﬁer, the origin and
the distributor of the image. In network environment, transmitting a complete image from
server to client is not only time-consuming, the precious network resource is also‘ taken. So
the muitimedia data(image/audio/video) is often in its compression format in network ap-
plications. Clearly in image labelling system, the watermark embedding method should be
integrated with image compression. '

Itis worthwhile to point out that image compression —é,nd frequency«-d(_)main watermarking
share some common characteristics. In image compression, we encode signjﬁcant frequencf
coefficients first because these coefficients convey more fundamental visual information about
the image. In watermarking, we choose significant coefficients (coeflicients with large ampli-
tude) for watermark casting to enhance its robustness since these coefficients often remain
stable after the attack. If they do change substantially, the reconstructed image will be per-
ceptually different from the original one, and the value of protecting the intellectual property
right of such a seriously degraded image becomes low. With this similarity, efficiency can be
achieved by integrating frequency-domain Wa,termérking procedures with compression pro-
cesses, since the most expensive computation related to the image transform has already
been computed as one part of compression and decompression algorlthms

In thzs chapter, we propose a watermarking scheme integrated with the ne:w ISO / ITU-T
still image coding standard, JPEG2000. This scheme satisfies the design criterion for image

labelling on network.



6.2 Brief Review of JPEG2000 and Discrete Waveleﬁg
Transform

The image compression scheme, on which our watermarking approach is based, is the latest
still image compression standard, JPEG2000.

JPEG2000 adopted a discrete wavelet transform (DWT) based technology in its com-
' pression scheme [32). This means that the first step in the algorithm is to decompose the

input image into a set of subbands via a discrete wavelet transform.

6.2.1 Discrete Wavelet Transform

The basic idea in the DWT for a one dimensional signal is the following. A signal is split by
a pair of low-pass and high-pass filters into two parts, high frequencies and low frequencies.
The edge, texture and detail components of the signal are largely confined to thevhigh
frequency part. Conversely, the low-pass filter preserves the low frequencies of a signal

‘while attenuating or eliminating the high frequencies, thus resulting in a blurred version
of the original signal. The low-pass and high-pass filter pair is knf-)wn as analysis filter-
bank [32]. The low frequency part is split again into two parts of high and low frequencies.
This process is continued until the signal has been entirely decomposed or stopped before
by the application at hand. For compression ap?lications, _generally no more than five
.decomposition steps are computed. Furthermore, from these DWT coefficients, the Qrigigal
signal can be reconstructed with another pair of low-pass and high-pass filters, ﬂkx‘lown as the
synthesis filter-bank [32). This reconstruction process is called the inverse DWT. The DWT
and IDWT for one dimensional signal f(n) is best understood as successive applications of
analysis and synthesis filter-banks, as illustrated in Figure 6.1.

The 1-D DWT can be easily extended to two dimensions (2-D) by applying the filter-
bank in a separable manner. At each level of the wavelet decomposition, each row of a 2-D
image is first transformed usirig a 1-D horizontal analysis filter-bank. The same filter-bank
is then applied vertically to each column of the filtered and subsampled data. The result

of a one-level wavelet décbmposition is four filtered and sﬁbsampled images, referred to as’
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Figure 6.1: 1-D, 2-band wavelet analysis and synthesis filter-bank.

subbands. In a 2-D dyadic decomposition, the lowest frequency subband (denoted as the LL
band) is further decomposed into four smaller subbands, and this process may be continued
until no tangible gains in compression efficiency can be achieved. Figure 6.2 shows a 3-level,
2-D dyadic decomposition and the corresponding labelling for each subband. For example,
the subband label kHL indicates that a horizontal high-pass(H) filter has been applied to the
rows, followed by a vertical low-pass(L) filter applied to the columns during the kth level of
the DWT decomposition. Figure 6.3 shows a 3-level, 2-D DWT de;composition of the Lena

image.

6.2.2 JPEG2000

Each subband will then contain different frequency components of the information in the
origipal image with the appropriate subsampling. The used wavelet transform can be either |
a floating- or a fixed-point wavelet, which implies lossy cbding due to limited precision, or a
reversible mteger wavelet, which enables lossless coding. :

. Thel PEG2000 1mage coding standard is based on a scheme originally proposed by Taub-
man and known as EBCOT (“Embedded Block Coding With Optimized Truncation”). The
major difference between previously proposed wavelet-based image C(;mpression algorithms

such as EZW (“Embedded Zerotree Wavelet ”) [33] or SPIHT (“Set Partitioning in Hier-
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Figure 6.2: 2-D, 3-level wavelet decomposition.

Figure 6.3: 2-D, 3-level wavelet decomposition of Lena.

archical Trees”) [34] is that EBCOT as well as JPEG2000 operate on independent, non-
overlapping blocks which are coded in several bit layers to create an embedded, scalable
bitstream. Instead of zerotrees, the JPEG2000 scheme depends on a per-block quad-tree
structure since the strictly independent block coding strategy precludes structures across
subbands or even code-blocks. These independent code-blocks are passed down the “coding

pipehne” shown in Figure 6.4. and generate separate bitstreams. Transmitting each bit layer



A 68
corresponds to a certain distortion level. The partitioning of the available bit budget be-

tween the code blocks and layers, i.e. “truncation points” is determined using a sophisticated

optimization strategy for optimal rate/distortion performance.

original -
. uniform
image data e
N pre~ DWT quantization
processing with
dead-zone
* —
compressed we embed
image . watermark
codestream ontro adaptive here
A — rate g i Py §—— arithmetic pg——— -
allocation ’ coding coding

Figure 6.4: JPEG 2000 compression standard fundamental building bloc;ks.

6.3 Previous Work

Several attempts to introduce image Wate;rma,rking 't‘:echnnique into JPE-IG2000 system have
been reported in the recent literatures [23][35][36]. All of them embed watermark into the
wavelet domain. In Su’s scheme [23], a random noise sequence is generated as watermark
and in each code-block, wavelet coefficients, which larger than a certain threshold value 4,
are selected to bear watermark. To detect the embedded watermark, correlation detection
is performed before dequantization to identify watermark. Hence reference watermarks are
absolutely' necessary in the watermarking system. In [35], Meelward exploited quantization
index modulation (QIM) [13] to embed and detect watermark. Although watermarkA can be
decoded directly in this way, the amount of data that can be embedded is quite limited. Chen
et al. proposed a watermarking scheme,‘in which the watermark is scattered, embedded by |
bit-plane modification, followed by distortion reduction operation.

Both the above three methods cast watermark just after the stage of qug,ntizatzion. Al-

though they fit into JPEG 2000 coding pipeline, the rate allocation procedure is not seriously

considered. In JPEG2000, to generate an optimal image for a target file size (bit-rate), a rate
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control process is performed after entropy coding. In [37], an efficient rate control method

is proposed that achieves a desired rate based on post-compression R-D optimization. The
rate control algorithm finds the optimal bit allocation for all code-blocks, such that the total
distortion is minimized subject to the target bit-rate.

Clearly the distortion brought by the rate control threatens the existence of watermark.
The strength of watermark should be related to the compression ratio or bit-rate. For mild
compression, the rate distortion is small and the energy of watermark should be low to
maintain the image quality as good as possible. On the contrary, for higher compression.
raﬁio, the energy of watermark should be high enough to survive strong distortion caused
by rate control. Furthermore, with declined image quality caused by compression, even
a strong watermark becomes imperceptible. In our new watermarking algorithm, wavelet
coefficients are modified depending on the compression ratio (bit-rate). A weak watermark
is embedded into a mildly compressed image, while a strong watermark is applied to heavily
, corr'fpressed image. It is shown in this chapter that the new adaptive method integrates with
JPEG2000 standard very well. The watermark is detected in a simple and fast way without
assistance from either the original image or the reference watermarks. Meanwhile, by taking
into account the compression ratio, the tradeoff between imperceptibility and robustness is

balanced.

‘6.4 Watermarking Syétem Intégréted with JPEG2000
6.4.1 Watermark Embedding '

I the proposed watermarking method, watermark is embedded into the detail sub-bands of :
middle resolution after stages of quantization and region of interests (ROI) scalin_g. N ]?qring;
t];e staée of quantization, a wavelet coefficient s(u,v) in subband b is mapped to a quantized
index value gy(u,v). It is normalized as the most significant bit (MSB) carries the sign bit
and the remaining bits represent the absolute magnitude of the coefficient. In this work, we
assume that 8 bits are utilized to represent the integer part of gs(u,v). Thus the values of

wavelet coefficients fall into [-255,255].
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For wavelet coefficient, the operation of finding the optimal truncation point is nothing

but performing an optimal non-uniform scalar quantization. Table 6.1 records the value
of some wavelet coefficients before and after rate allocation with different t‘é‘réet bit-rate
. We find that the degree of quantization highly depends on ¢. This poir;t is quite easy
to understand as the aim of this truncation operation is to achieve . Since the optimal
truncation point is determined in the way that the whole image is represented best, the
quantization step of each individually processed code-block djﬁers from each other and not
only determined by ¢, factors like the significance of this code-block among all code-blocks are
also taken into account. Fortunately, it is not necessary to estimate the accurate quantization
step; a coarse estimated quantization interval Q is enough for watermarking. Actually we
prefer ( a little bit larger than the true interval, especially when the compression ratio is }ow,
in order to reliably decode the watermark. The basic idea is to make the image distortion
caused by the watermarking conforming to the distortion caused by the entropy coding such

that the watermark embedding capacity is maximized.

Table 6.1: Example wavelet coefficient values before and after rate control with different com-

pression degrees(coefficients are selected randomly from 3HH subband of image ”"Baboon” with
Jasper).

original _
coefficient | ¢ = 1bpp | ¢ = 0.625bpp | ¢ = 0.5bpp | ¢ = 0.25bpp | ¢ = 0.1bpp | ¢ = 0.08bp;
2 2 3 0 0 - 0 0 -
12 - 12 14 12 0 0 0
23 23 22 20 24 0 0
-32 -32 -34 .-36 - -48 -48 0
45 45 46 44 48 48 0
-66 -66 -66 -68 -80 -96 -64
104 104 106 108 112 96 128

i
The binary watermark w is embedded into selected code-blocks as follows:

e Step 1. Estimate @ with the provided target bit-rate according to Table 6.2.
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Table 6.2: Estimated quantization intervals for different bit-rate value.

bit-rate ¢ | estimated quantization interval Q
>1 2
1-0.8 4
0.8 -0.5 8
0.5 —-0.25 16
0.25-0.2 32
0.2-0.1 48
< 0.1 64

e Step 2. The watermark bits to be embedded are each repeated M times: M is also
determined by ¢, for watermark bits embedded in mild compressed image are more
fragile to common image processing, hence a large M is need to improve its robustness.

Note that the spread watermark is still binary.

e Step 3. Coefficients belong to [-Q/2, Q/2] are excluded to bear watermark.

—

e Step 4. Positive coefficients are mapped to the nearest even multiples of Q except 0 to
embed “0” and the nearest odd multiples of Q to embed “1”, while negative coeflicients
are mapped to the nearest even multiples of @ except 0 to embed “1” and the nearest

odd multiples of @ to embed “0”. The above operation of encoding bit “1” and “0”
can be formulated as (6.1) and (6.2), . )

%(L%J +0.5) x2Q] ©>2Q
y =

[55] % 2Q) z < ~Q | (61)
Q Q/2<2<2Q
—2Q _Q <z < "Q/za
%Lﬁg—éﬁj x 2Q) z>Q
_ ) (1&1-05) x2Q] z<-2Q ‘ (6.
Y 2(692@ )<l Q/2<<Q ©2)
—Q -2Q<z<-Q/2

where z is the original data and y is the modified data.
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6.4.2 Watermark Retrieval
Watermark is decoded before dequantization during image decompression. In terms of the
bit-rate of compressed image, we can achieve the same quantization interval ) as the one
for watermark casting. The received coefficient § is mapped to the nearest multiple of @, d

Then the watermark sequence is recovered by

. (1 d=@n-1)Qord=(-20)Q _ ..
b_{U d=(2n)Qord=(-2n+1)Q;‘”“1’233 . (6.3)

Finally the M consecutive decoded watermark bits are summed and a threshold decision
yields the output bits. Thus, the results of the watermark decoder are the same watermark-

bits that have been embedded.

6.5 - Simulation Results

In this section, the performance of the proposed watermarking scheme to vafic;us distor-
tions is demonstrated by experiments on grayscale image. The JPEG2000 codec thatA is
used to test the new watermarking system is Jasper, a;t implementatic;n of the JPEG2000
encoder/decoder [6]. The objective quality of watermarked image is indicated by PSNR.
The robustness under several intentional/unintentional attacks is represented by bit correct
ratio (BCR). The. grayscale image "baboon” is for demonstration here. The testing results
for other images are similar.

In the experiment, the watermark is embedded into the quantized coefficients of 3HH
subband (5 decomposition levels are default for Jasper Codec). The original and water- ’
marked images are shown in Flgure 6.5. In Table 6.3, the PSNR (Peak-Slgnal»Nmse—Ratlo)
of compressed image with and without watermark as well as watermark embeddmg capac-
ity (i-e. the maximal number of watermark bits can be embedded) are shown in terms of
various compression degrees. The results show that, the new bit-rate adaptive approach is
superior to the watermark-strength fixed scheme in that the new method take; advantage of
the compression to improve the watermark embedding capacity while minimizes the image

distortion on top of the compressed images with various compression bit-rates.
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(a) bit-rate=1bpp b) bit-rate= 1bpp

(c) bit-rate=0.5bpp d) bit-rate=0.5bpp

(e) bit-rate=0.25bpp f) bit-rate=0.25bpp

(g) bit-rate=0.1bpp h) bit-rate=0.1bpp

Figure 6.5: (a)(c)(e) and (g) are JPEG2000 compressed images with bit-rate=1, 0.5, 0.25, 0.1bpp
respectively; (b)(d)(f) and(h) are their watermark embedded counterparts respectively. The details
are presented in Table 3.
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Table 6.3: Watermark detector results, measured in BCR, with various compression degrees.

¢ | PSNR without watermark | PSNR with watermark | capacity (bits) | BCR

1 60.89dB 50.38dB 220 100%
0.625 45.63dB 43.58dB 220 100%
0.5 40.83dB 38.07dB 373 100%
0.25 30.59dB 28.83dB 373 100%
0.1 23.91dB 23.41dB 251 100%

Robustness is tested on four conditions: JPEG baseline, JPEG2000 compression, additive
noise and low-pass (noise-removal) filtering.

JPEG is widely used for image compression. Figure 6.6 shows the results of the test for
robustness against JPEG compression. When JPEG compression quality factor is between
50 and 100, the BCR is 100% for ¢ = 0.1 and nearly 100% for ¢ = 0.25 and 0.5. For ¢ =1,

the watermark scheme is reliable until the quality factor is smaller than 60, as shown in .

100

95

BCR {%)}

+
:
86 SPURUOIPOT SOT

75H ~# bitrele=tbpp M=32 [ ...
1| e~ bitrate=0Sbpp M=18 :
~g~ bitrates0.250pp M=8 :
~3- bibrate=0.1bpp M=4 :
- X

7 H
Qe 90 Rl 70 60 50
JPEG basstine compression quality

2

Figure 6.6: The robustness of watermarked images against JPEG baseline compression with four
different bit-rates.

f
Also we test the watermarked image with JPEG 2000 compression with different bit rate
. The results are shown in Figure 6.7. For ¢ = 1 and ¢ = 0.5, the decoded watermark is

reliable until the compression bit-rate smaller than 0.5bpp.
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Figure 6.7: The robustness of watermarked images against JPEG2000 compression with four
different bit-rates.

Noise is the most common distortion in image processing and transmission. In the ex-
periments, Gaussian noise with variance from 0.01 to 0.05 is added into the watermarked
image. As shown in Figure 6.8, The BCR is about 100% for ¢ = 0.1 and 0.25. For p=1
and 0.5, the detected watermark is not reliable when the noise variance is larger than 0.02.

Noise-removal filter is another common attack to the watermarked image. In the exper-
iments, Wiener filter is used to filter the watermarked image with estimated noise variance
of 0.01, 0.02, 0.03, 0.04 and 0.05. Refer to Figure 6.9, the BCR is 100% for ¢ = 0.1, around
95% for ¢ = 0.5 and 0.25, and 90% for ¢ = 0.1.

It can be seen from the experimental result, the new compression adaptive watermarking
algorithm is robust to these common attacks and distortions while keeping an acceptable

visual quality of the image.

6.6 Summary

In this chapter, we presented a compression degree adaptive watermarking method inte-

grated with JPEG2000 image compression standard. Binary watermark is embedded into
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Figure 6.9: The robustness of watermarked images against noise-removal filtering with four dif-
ferent bit-rates.

middle frequency wavelet coefficients after quantization. During image decompression, the
watermark is decoded without assistance from either the original image or the reference

watermarks. The interval of quantization is designed based on the target bit rate, hence
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the strength of watermark is proportional to the compression ratio. We point out that, in

this way, not only watermark can survive rate distortion, the tradeoff hetween visual quality
and robustness is also balanced. The experiments show that the new algorithm has a good

performance in terms of both robustness and fidelity.



Chapter 7

Conclusions and Future Work

Imperceptibility, robustness against moderate compression and processing are the ba-
sic but rather contradictory requirements for watermarking applications. The design of a
successful watermarking scheme always involves a tradeoff between imperceptibility and ro-
bustness. This thesis focuses on the situation in which the watermarked signal undergoes
common signal processing: additive noise, filtering, lossy compression. Distortion brought
by watermarking is also considered as keeping a multimedia work’s commercial value is a
prerequisite for all data hiding algorithms.

In this work, two common types of watermarking algorithms are considered: spread
spectrum and quantization based watermarking algorithm. For the spread spectrum water-
marking schemes, we present an adaptive Wiener denoising filter based watermark detector
and the experimental results show that it has better performance than Hartung’s low-pass
filter based detector.

For quantization based watermarking algorithms, the problem of designing embedding
algorithm is transformed to designing signal constellations to which the host data is mapped
to embed watermarking. Here both the look-up table for LUT embedding and the quan-
tization ensembles for quantization watermarking are deemed as signal constellations. The
signal constellation determines the property of the watermarking scheme: robustness, dis-

tortion, etc. That is, depending on LUT or the position of quantizer points, a quantization

78
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based watermarking algorithm presents robustness to attacks and distorts the host data.

But no scheme can achieve both maximum robustness and minimum distortion at the same
time. In this thesis, This problem is changed to look for an optimal watermarking strat-
egy with respect to the embedding distortion given robustness constraint or with respect
to robustness given fidelity criterion. A solution to optimizing quantization watermarking
schemes is provided based on information theory, besides, robustness-distortion function
R(D) and distortion-robustness function D(R) are developed. Experimental results show
that the generated watermarking scheme is superior in terms of robustness and fidelity.

Proposed methods in th;s thesis can be applied directly in most applications where ro-
bustness and fidelity are major concern, or applied to some previously proposed and future
robust watermarking algorithms to enhance performance. It is important to notice that our
work in this thesis does not cover all aspects of multimedia data hiding. This field is so
wide that various disciplines such as image/audio/video signal processing, computer secu-
rity, human perception and business are involved. Therefore, studying various aspects of
data hiding continues to be necessary.

A few possible future research directions are:

1. We have noticed that changes in different coefficients may have different perceptual
sensitivity on human eyes. Thus, human perceptual models are often theoretically and
experimentally derived to determine the changés on a signal which remain impercepti-
ble. One of these is the Just-Noticeable-Difference (JND) model. The JND threshold
is such that changes in the frequency content in the image/audio/video in the partic-
ular frequency hand below the threshold are not noticeable. It would be interesting to

incorporate JND model into our analysis.

2. The watermark embedding and extraction are treated as a watermark communication
channel. The capacity associated with the watermark channel is used to evaluate
the efficiency of watermark scheme. Channel capacity is a theoretical upper bound
of how many bits of information can be reliably transmitted through the channel

with arbitrarily low probability of bit error. Channel coding theorem states that all
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rates below capacity are achievable. However, for the real-world scenarios in today’s

data hiding research, there exists a discrepancy between the theoretical capacity and
practically achievable watermark embedding capacity. A potential further research

problem is how to encode and decode information to approach the channel capacity.

. In a spread spectrum algorithm, or quantization based algorithm using repetition code,
each watermark bit is transmitted through parallel channels simultaneously. Each
channel has its own noise characteristics. How to spread and embed watermark into
frequency coefficients to survive various expectable channel noise and how to extract
watermark from individual extracted watermark bits are challenging topics. Chan-
nel coding which involves the addition of redundancy to allow robustness to a noisy

transmission environment is a promising solution to this problem.

. More emphasis should be placed on applications. We can see more and more real-time
multimedia services are delivered through internet to a mix of users. A possible solution
is source coding (quantization and compression) methods combined with transmission
schemes providing different grades of services. Watermarking schemes integrated with
this joint source and channel coding is yet to be studied in detail and optimized.
As an example, to hide information in video stream over internet is needed to defend
pirates, track transaction and access control. Then more factors, such as the property
of the network, video CODEC, etc., have to be taken into account before a successful

data hiding algorithm can be achieved.



Appendix A

Constrained Optimization: Lagrange’s
Method

The Lagrange method is a method used for constraint optimization. Suppose we want to

maximize (or minimize) a function of n variables:

f(x) = f(21,22, ..., x,) for x = (21,79, ..., T,) (A.1)

subject to p constraints

a(x)=c, ga(x) = ¢y, ..., and gp(x) = Cp (A.2)

The first step of Lagrange’s solution is to introduce p new parameters and write down

the Lagrangian function:
L = f(x) + A1g1(x) + A2ga(x) + ... + Apgp(x), (A.3)

the new parameters X is called the Lagrange multiplier. L has became the function we want
to maximize. Therefore we take partial derivatives of L and set them equal to zero. Hence
the constrained optimization problem is formulated and solve by the following theorem.
Theorem (Lagrange) Assuming appropriate smoothness conditions, minimum or max-
imum of f(x), subject to the constraints (A.2), that is not on the boundary of the region
where f(x) and g;(x) are defined can be found by introducing p new parameters Ar, Az, ..., Ap

and solving the system

216+ hg) =0, 1<i<n (A4)
1 ]:1
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gix)=¢;,  1=Jj=p (A.5)

This amounts to solving n + p equations for the n+p real variables in x and A.
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