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Abstract 

Watermarking is a technique of hiding a message about a work of media within that work 

itself in· the purpose of protecting the digital information against illegal dupli~ation and 

manipulation. 

The objectives of this study are to analyze the robustness and distortion performance of 

watermarking system and to explor~ watermarking schemes which balance the robustness­

distortion tradeoff optimally. 

In this thesis, We present .a detector algorithm to adaptively extract spread spectrum 
,,~ ,. , 

watermark by filtering the watermarked images with Wiener filter. Two optimization algo­

rithms for quantization watermarking are proposed. First one optimizes uniform quantiza-
" " 

tion based lo.o!c-up table embedding which minimizes watermarking distortion. Secondly, we 

analyze the robustness-distortion tradeoff and formulate the robustness-distortion tradeoff .• 

into a"Lagrangian function. Hence ·optfmal quantiiers for watermarking subjecf to given 

robustness or fidelity constraint are achieved. 
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,.Chapter 1· 

Introduction· 

1.1 Digital Watermark 

With the emergence .of high-capacity digital rec.ording devices, c.oupled with the recent 

gr.owth .of netw.orked multimedia systems, the protecti.on .of .ownership and preventi.on .of 

unauth.orized tampering .of multimedia data bec.ome imp.ortant C.onCerns. Unlike anal.og me­

dia such as audi.o and VHS vide.o tapes, multimedia data in digital f.orm can be c.opied with.out 

degradati.on and distributed freely. Theref.ore, a maj.or c.oncern, with respect t.o pr.otecting 

intellectual pr.operty rights, has arisen. One appr.oach t.o addressing this pr.oblem is the em­

bedding .of an invisible digital watermark int.o multimedia dat~ t.o "mark" the .ownership. 

The embedded digital watermark may be c.oPyright .or authenticati.on c.ode, .or an impercep­

tible "signature" .of the .originat.or, .or recipient .of the h.ost data. In general, if it is useful 

t.o ass.ociate s.ome additi.onal inf.ormati.on with a multimedia w.ork (image/video/audi.o), this 

metadata can be embedded as a watermark [1]. Of c.ourse, there are .other ways t.o ~s.ociate 

inf.ormati.on with a w.ork, such as placing it in the header .of a digital file, enc.oding it in a 

visible bar c.ode .on an image. Watermarking is distinguished fr.om .other techniques in three 

imp.ortant ways. First watermarks are imperceptible [1][2][3]. Unlike bar c.odes, watermarks 

d.o n.ot damage the art value .of an image. Sec.ond, watermarks are in~eparable fr.om the 

w.ork in which they are embedded. Unlike header fields, they are n.ot rem.oved when the 

1 
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image/video are displayed or converted to other file formats. Finally, wa!ermarks undergo 

the same transformations. This means that it is possible to learn something about those 

transformations by looking at the resulting watermarks [1][2][3][4]. It is these three attributes 

that make watermarking invaluable for certain multimedia applications. 

A typical data hiding framework is illustrated in Figure 1.1. Starting with the multi-

Multimedia 
Ho st Data 
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Watermark 
0110 ... 101 

w 

Transform f--t-o 
Watermark 
Embedder 

- ke y 

Inverse 

Watermarked 
ata 0 

Sw 

Transform r--+-
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Figure 1.1: Watermark Embedding Process. 

media host data, or its transformed format, an embedding module puts the watermark and 

an optional public or secret key. The watermark often consists of a binary data sequence, 

representing a number, text, or even an image. The public or secret key!s used to enforce 

security. The watermark sequence is embedded in the host data by making impercepti­

ble modification to its content. The output of the watermark embedding algorithm is the 

modified, Le. watermarked data. 

The general watermark extraction process is depicted in Figure 1.2. With or without the 

use of the key, the estimate of the original watermark is' extracted from the watermarked 

multim~dia data. In robUst watermarking applications, the watermark must be recoverable 
, 

even when the watermarked data undergo a reasonable level of distortion. According to 

whether or not the original host data is exploited during the watermark detection process, 

the existing schemes can be placed under two categories: blind watermark and non-blind 

~aterm~k. Methods reported in [5] r~quire the host signal for detection, whereas the scheme 

in [6] [7] does not. 

To protect copyright successfully, there are several fundamental requirements for wat<~;~' 
marking. < 
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Figure 1.2: Watermark Extraction Process. 
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• Imperceptibility: The watermark should nof be perceptible when embedded in the 

host data. In other words, the watermark embedding process should not introduce any 

perceptible artifacts into the host data. The commercial or art value of the host should 

not be affected. 

• Robustness: The watermark should remain intact in the host data regardless of any 

change that may occur to the host data, including all possible signal processing, and 

.. possible malicious attacks that unauthorized parties may attempt. Robustness against 

all possible attacks may be impossible to achieve. Thus, the practical requirement is 

that the embedded watermark is computationally impossible to be removed without 

severely damaging the commercial or art value of the host data. 

• Accuracy: The detection should be accurate,. i.e. the probability of false alarm and 

miss detection should be as low as possible. :. 

• . Embedding Capacity: The total embedding capacity, namely, the number of bits that' 

can be embedded and extracted with small probability of error is also an important 

measurement. Fortunately, not all scenarios require a high embedding capacity. 

• There might be other require~ents, such as blind detection, for those applications 

where the access to the original host data is impossible. 

Unfortunately, the first two basic requirements are contradictory. For imperceptibility, 

the watermark embedding process should not introduce any perceptible artifacts into the host 

'i 
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! 
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data. On the other hand, for high robustness, it is desirable that the watermark amplitude 

be as high as possible. Thus the design of watermarking methods always involves a tradeoff 

between imperceptibility and robustness. 

Watermarking is a promising solution that can protect the copyright of multimedia data. 

Unlike encryption methods, digital watermarking does not restrict access to the multimedia 

work to prevent illicit acts. Instead, it provides evidence of a wrong-doing after it has taken 

place. Digital watermarking has the potential to provide protection even after the data is 

decrypted. 

Also a reasonable expectation of applying watermarking techniques for copyright protec­

tion is to consider specific application scenarios, because the distortion behavior involved in 

these cases (quantization, compression and geometric distortions) could be predictable. 

While the most prominent application of watermarking techniques is copyright protec­

tion, . watermarking is also an attractive tool for any application where it is desirable to 

attach permanently hidden information to a multimedia signal, such as data monitoring 
-

and tracking, content labelling, multilingual captioning, usage control, and general covert - . 

communications [8]. An example for data monitoring is the automatic monitoring of broad­

casted radio programs such that royalties are automatically paid to the copyright oWI~ers of 

the broadcast data. In transaction tracking applications, the owner or producer of the work 

would place a uIiique watermark in each copy; if the work were subsequently misused (leaked 

to the press or redistributed illegally), the owner c~uld find out who was responsible [1J. In 

usage control applications, a digital watermark can be inserted to indicate the ?um'ger of 

copies permitted. An example is digital video disc (DVD) [2J. 

In recent years, a number of practical data hiding systems have been proposed for image, 

audio or video watermarking. Most of recently reported schemes cast watermark into the 

transform domain [1][5J[9], due to the fact that the transform domain watermarking schemes 

tend to achieve both perceptual transparency and robustness better than spatial/time do­

main schemes. However embedding watermark by directly modifying image pixels or audio 

samples is always simpler and faster [1O)[l1J. 



5 
In terms of different robustness requirements, watermarking schemes can be divided into 

robust ,watermark, fragile watermark and semi-fragile watermark. In a robust watermark 

system, the embedded data can survive common signal processing operations, whereas fragile 

watermark becomes undetectable after even minor modifications. Semi-fragile watermark is 

.. a hybrid of, the two of above, only distortions that exceed a user-specified threshold will 

break the watermark. 

All existing robust watermarking schemes can also be placed under two categories based 

on embedding mechanism: coherent embedding or non-coherent embedding . In non-coherent, 

embedding algorithms, the embedded data have no relationship to the host data. Addi­

tive spread spectrum algorithm [5] is a representative of this category. In the second cate­

gory, data hiding is achieved by enforcing a relationship between the bits to be embedded 

and the marked values. Quantization based watermarking schemes are in this category. 

Besides, Chen et. al. divided the existing embedding methods into two classes [12][13]: 

host-interference non-rejecting methods and host-interference rejecting methods. Generally, 

host-interference rejecting embedding methods correspond to coherent embedding, whereas 

host-interference non-rejecting embedding methods correspond to non-cohere~t embedding. 

In host-interference rejecting embedding methods, due to the enforced relationship between 

the watermark and the marked signal, the host signal is often not necessary during detection. 

On the contrary host-interference non-rejecting methods are primarily used where either the. 

host signal is available at the detector or the host interference is small enough. 

Much of the work on robust digital watermarking is based on spread spectrum principles 

[14][1~]. Spread spectrum watermarking schemes borrow ideas from spread spectrum com­

munications. In these schemes, a watermark is embedded into the host signal by adding a 

low energy pseudo-randomly generated white noise sequence. This specific pseudonoise se-
, 

quence is detected by correlating the original watermark sequence with either the extracted 

watermark or the watermark signal itself (if the host data is not available for extraction). 

Sp~ead spectrum watermarking has demonstrated great robu~tness and invisibility when th~ 

original host signal.is available in detection [5]. Howev~r, in bli.nd detection, the watermark 

1,­
I 
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experiences interference from the host data even when there is no noise from processing and 

intentional attack. 

In another typical class of watermarking techniques, quantization based schemes [12][13][16], 

the watermark, often a binary sequence, is embedded into the host data by quantize-replace 

strategies that replace a quantized host signal with another quantization value. A simple 

example belonging to the class is the so called odd-even embedding: the host signal is re­

placed by the nearest even integer if to embed a "0" and the nearest odd integer if to embed 

a "I" [2]. This class of watermarking schemes are free from the interference from host data. 

1.2 Optimal Watermarking and Data Hiding 

In the design of any watermarking scheme, robustness against data distortion through signal 

processing or intentional attacks and the similarity between signal before and after water­

marking are two major requirements. For some watermarking applications, watermarks are 

designed to survive normal processing and to resist any attempt by an adversary to thwart 

their intended purpose. In designing a robust watermark it is important to identify the 

specific processes that are likely to occur between embedding and detection. Examples of 

processes a watermark might need to survive include lossy compression, digital-tOr-analog­

tOr-digital conversion, analog recording, printing and scanning, format conversion, and so on. 

For example, a video watermark designed for monitoring television advertisements [1} will 

need to survive the various processes involved in broadcasting - digital-tOr-analog conver­

sion, lossy compression, and so on - but need not survive other processes, such as rotation 

or h3J.ftoning. 

For other watermarking applications, fidelity' is the primary perceptual measure. In these 

cases, the watermarked work must 'be indistinguishable from the original. In medical image 
, .-

applications, people may require this property of a watermark [1]. 

Clearly, various robustness and fidelity requirements involved in watermarking scheme 

design. In the applications where surviving the common signal processing operations is the' 

primary concern, the robustness requirement should be satisfied first, we then maXimize 

• 
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the fidelity. In other applications, the prerequisite is the perceptual similarity between the 

unwatermarked and watermarked signals, the robustness needs to be maximized. We define 

a watermarking system as optimal watermarking when it achieves a maximum robustness 

subject to a given fidelity criterion or a minimum distortion subject to a given robustness 

.. requirement. 

Our objective in this thesis is to theoretically formulate this robustnes~distortion trade­

off. The theoretical result may be applied directly to previously proposed as well as future 

robust watermarking algorithms in order to enhance their performance. 

Although optimal watermarking is first introduced in this thesis, several papers related to 

this topic have been reported. Chen et. al. [12] [13] [17] introduced quantization index modu­

lation (QIM) and theoretically proved that QIM achieves better robustness-distortion trade...: 

off than the current popular spread-spectrum methods. Wu [2] [7] indicated that through a 

look-up table of nontrivial run, the probability of detection error can be considerably smaller 

than the traditional odd-even embedding. Optimal nonuniform quantization embedding is 

also studied by Wu et. al. [18]. They proposed algorithms for designing the optimal uni­

form quantization encoding scheme and optimal nonuniform quantization encoding scheme. 

In this thesis, we reformulate the robustness-distortion tradeoff and proposed an optimal 

watermarking system design method by addressing the tradeoff. 

1.3 Organization of this Thesis 

The remainder of the thesis is organized as follows. Chapter 2 is a brief review of background 

material that we employ later on. Then algorithms about robust watermarking scheme 

design are presented in the subsequent chapters, in which either the knowledge of reference 

watermarks or the knowledge of host data are employed in watermarking system. The 

following chapters are organized to highlight four principal contributions: 

1. In Chapter 3, we consider a spread spectrum watermarking scheme where Wiener filter 

is employed into the design of the adaptive watermark detector. Two new local noise 

(watermark) variance estimation methods are employed in Wiener filtering. 

-

/ 
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2. Chapter 4 provides a look-up table (LUT) based watermark embedding scheme which 

achieves near minimum distortion. The LUT is determined by the probabilities that 

the feature t~ be embedded watermark "0" and "I" falls into each quantization cell. 

3. Chapter 5 focuses on optimal watermar~ing. The robustness-distortion tradeoff is 

theoretically formulated as 'a robustness-distortion function. Lagrange's method is 
, 

used to solve the robustness-distortion constrained optimization problem, hence an 

optimal watermarking scheme is obtained. 

4. In Chapter 6, a novel image labelling system integrated with the cutting-edge still 

image compression standard-JPEG2000 is proposed. 

Conclusions and suggestions for future research are discussed in Chapter 7. The proof of a . 

useful theorem is provided in appendix. 

• 



Chapter 2 

Preliminaries of Information Hiding 

In this chapter, we present the background materials which will be employed later in 

the thesis. Channel capacity and performance indices of a watermarking scheme are briefly 

covered here. 

2.1 Channel Capacity 

The channel capacity of a memoryless channel is theoretically defined as the maximum mu­

tual information between the channel input and output over all possible input distributions 

[19], 

C = maxI(X; Y). 
p(x) 

(2.1) 

The "operational" definition of channel capacity is the highest rate in bits per'channel use 

at which information can be sent with arbitrarily low probability of error. Shannon's second 

theorem [19], called the channel coding theorem, establishes that the "information" channel 

capacity is equal to the "operational" channel capacity. Channel capacity serves as a good 

measure of the transmission potentiality of a channel. 

Two simple examples of channel capacity will be employed in subsequent chapters. The 

first is a discrete memoryless channel, the binary symmetric channel (BSC); and the other 

is a continuous channel, the additive white Gaussian noise channel (AWGN). 

9 
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2.1.1 Binary Symmetric Channel (BSC) 

The binary symmetric channel with probability of bit error p is illustrated in Figure 2.1. 

The channel input X and output Y are binary signals [20J. When an error occurs, a "0" is 

received as a "I" is sent and visa versa. When p #- 0, some of the received bits may be in 

error; 

1-p 
O ____ ~ ____ --__ --~--~O 

x y 

1----~----------~--~1 

Figure 2.1: Binary symmetric channel. 

However, by employing the channel coding theorem, we observe that we can still use 

such a communication channel to send information at a non-zero rate with an arbitrarily 
-

low probability of error. The capacity of a binary symmetric channel with probability of bit 

error p is given by 

0= maXI(X; Y) = 1 + pl092P + (1 - p)1092(1- p) bits per channel., (2.2) 
p(x) 

where th~ maximum is taken over all possible input distributions p(X). 

The channel capacity of a BSC is achieved when the input X is equi-probable binary 

distribution, i.e. P(X = 0) = P(X = 1) = ~. 
-

2.1.2 Additive White Gaussian Noise (AWGN) Channel 
. . 

Figure 2.2 illustrates the additive white Gaussian noise channel. In this channel, each element 

of the additive r~dom noise vector is drawn independently from a Gaussian distribution. 

The capacity of the Gaussian channel with power constraint P is given by 

0= max leX; Y) = -21l092(1 + NP ) bits per channel. 
p(x):E{X2}~P 

(2.3) 
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Figure 2.2: Additive white gauSsian channel. 

where the maximum is taken over 'all possible input distributions p(X) satisfying the 'power 

constraint [21], , 

The capacity is achieved when X follows Gaussian distribution with zero mean and 

variance P, X '" N(/, P). 

2.2 Performance Indices 

As mentioned in the introduction, an effective watermarking algorithm involves an appro­

priate tradeoff between imperceptibility and robustness. In this section, we present three 

quantitative measures to highlight this compromise. 

1. Peak Signal-to-Noise Ratio (PSNR) , 

The Peak Signal-to-Noise Ratio is defined as 

, MNm8Xmn/2(m,n)" 
PSNR(j,lw) = lOlo91OEM EN (t (' ) _ I( »)2' (2.4) 

m=l n=l w m,n m,n 

in units of dB, where I is the original image and Iw is the watermarked image. M x N 
, 

is the size of the image, Although. this measure is generally not very accurate, the 

PSNR metric serves as a good rule of thumb measure of imperceptibility to assess the 

distortion introduced to the image as a result of embedding the watermark [22]. The 

larger the PSNR is, the better will be the performance of a watermarking scheme. 

2. Probabilities of False Positive or False Negative 

The probability of false positive and the probability of false negative are two measures 
• -' < ~ 

to objectively evaluate the robustness' of watermarking schemes [2]. In security ap­

plications one must often detect the presence of a watermark or discover its unlawful 
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12 
modification by comparing the embedded and extracted marks. It is possible, how-

ever, that the presence of a watermark is not properly detected or that tampering is 

not identified.. The 'chance of this occurring is called the probability of false negative. 

Similarly, the possibility of an incorrect watermark being detected in an image or the 

,likelihood of false detection of tampering is termed the probability of false positive. 

3. Bit Correct Ratio (BCR) or Bit Error Ratio (BER) 

Each time after watermark detection, the extracted watermark is compared with the 

original watermark to evaluate the robustness of the algorithm. The number of correct 

and erroneous bits divided by the total number of bits embedded are the bit correct 

ratio and the bit error ratio, respectively. 

2.3 Common Signal Processing for. Watermark Attack 

Because many data hiding applications operate in a competitive environment where an ad­

versary has the incentive to obliterate the embedded data, testing the systems' robustness 

and security against attacks is important. To evaluate the robustness of a scheme, a number=­

of attacks against data hiding system are applied on the watermarked work before detection. 

It is well accepted that no watermarking scheme can survive all attack methods, espe-
" 

dally if the adversary has part or full knowledge of the watermarking algorithm. Several 

attacks as well as some countermeasures have been reported in the literature .. Forging a fake 

"original" image for ownership claims can be thwarted by imposing invertibility require-, 

ment on watermarks. Collusion attac-k involves the averaging of multiple copies of the same 

original but having different markings. It is possible to systematically learn about the wa­

termarks from the input-output relationship of a detector using many manipulated versions 

of watermarked images. Watermarks can also be attacked by geometric distortion, including 

rotation, scale, translation, warping, line dropping/adding, or in conjunction with moderate 

low-pass filtering and interpolation, but may not be always effective when the original image ' , 

is available to perform registration. 
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In this thesis, one of our tasks is to search the optimal watermarking algorithm which is 

robust to common signal processing. 

In the following sections, we examine the effects of three major types of common distortion 

on watermark detection : ~ditive noise, low-pass filtering and lossy compression. 

2.3.1 Additive Noise 

Some processes that might be applied to a multimedia work have the effect of adding a 

random noise. That is 

X=8+n (2.5) 

where 8 is the host data and n is a random vector chosen from some distortion, independently 

of 8. For example, audio broadcast over a radio channel might be corrupted by white noise. 

In this case, the noise is independent of the multimedia work. Such noise process is a case of 

additive noise. Because of its simplicity, analysis of most watermarking algorithms assumes 

that the watermarked works are transmitted over an additive noise channel. Consequently, 

we will discuss watermarking system's robustness against additive noise in Chapter 3 through 

6. 

2.3.2 Filtering 

Another common type of signal processing that may change multimedia signal in normal 

operations is filtering. That is, 

x = 8 * j, (2.6) 

where s is the host data, f is a filter, and * denotes convolution. Many normal operations 

on images and audio are explicitly implemented with filters. The blurring and sharping 

effects in image editing programs apply simple filtering operations. In addition, many lossy 
\ 

processes, although not explicitly implemented with filters, can be modelled as filtering. 

...... 
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2.3.3 Lossy Compression 

Multimedia data contains redundancy with respect to what is needed for human perception, 

so losing information to a certain extent can be acceptable. 

original "doggy", d 

marked "doggy", no , 
perceptual change,dw 

compressed 
representation of , 
original "doggy" d 

compressed 
representation of,.. 
marked "doggy'liw 

Figure 2.3: Difference should exist between the watermarked compressed image and the original 
compressed image. 

It is pointed out that a fundamental conflict exists between watermarking and lossy 

compression [1]. With an ideal lossy compressor, there should be a single compressed rep- . 

resentation for all perceptually equivalent works. As illustrated in Figure 2.3, d should be 

equal to lw. 
If there are two compressed representations resulting from perceptually equivalent works, 

then the lossy compressor does not remove all of the redundancy in the work. However, from 

a watermark embedder's viewpoint, to survive lossy compression, the compressed versions of 

the original and the watermarked data must be different, Le., d should not be equal to lw. 
Fortunately, lossy compression algorithms are far from ideal in practice, and there are still 

redundancies for a watermarking algorithm to survive lossy compression while maintaining 

• 

. 
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excellent fidelity. 

People also 'noticed that lossy compression and watermarking share some common char­

acteristics [23]. Significant frequency coefficients must be achieved first for encoding in 

compression and for water,mark casting in watermarking. Hence by integrating frequency 

, ' domain watermarking with compression processes, ,the expensive transform computation can 

be saved. On the other hand, combining coding and watermarking is highly desired in some 

classic applications, such as copyright protection, copy and access control and annotation, 

where compression and watermarking are performed before spreading abroad. In Chapter 6, 

we will introduce a reliable image watermarking scheme integrated with state-of-art image 

compression standard - JPEG2000. 

" 
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Chapter 3 

Spread Spectrum Waterm~rking and 
Adaptive Filter Based D.etector 

3.1 Introduction 

.- In this chapter, we focus on the spatial-domain spread spectrum watermarking scheme and 

the detector design where an adaptive filter technique is exploited. Our intention is to desigIl­

the watermark detector that improves the detection response .. We designed two detector 

algorithms: one uses the estimated local variance of the watermarked image, and the other 

uses not only the local variance of the received image but also the local variance of the 

reference watermark. The experimental results verify that a detector based on adaptive 

Wiener filter has better performance than high-pass filters. 

3.2 Spread Spectrum Wate~marking 

Much of the work on robust digital watermarking is based on spread spectrum principles 

[5][9][14][24). Spread spectrum watermarking schemes borrow ideas from spread spectrum 

communications. In spread spectrum communication, a narrow-band signal is spread across 

a wide band of frequencies. This can be accomplished by modulating the narrow-band 

signal (the watermark information) wit,h a wide-band signal, such as white Gaussian noise. 

16 

... 
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Multimedia ... __ ••• _._ ••• _ ... Watermarked 

Host Data I I ,.. ..................... -: Data 

I Inverse I fw ___ f __ -II~~i Frequency t-i __ ...... 
I Transform I 

: . -)----..... ~: Frequency i-i ----I ........ 

: Transform i 
I I ............ --........ .. I I . ..................... .... 

Watermark w----.. modulation 
.... ___ pseudo-noise 

signal 

Figure 3.1: Typical block diagram of spread spectrum watermark embedding. 

Therefore, the signal energy present in any single frequency is undetectable. Similarly, 

in spread spectrum watermarking system, the watermark is spread over many frequency 

bins so that the energy in anyone bin is small and undetectable. Nevertheless, because 

the watermark verification process knows the location and content of the watermark, it is 

possible to concentrate these many weak signals into a single output with high signal-to-noise 

ratio. Destroying such a watermark would require noise of high amplitude to be added to all 

frequency bins. Thus, the commercial value of the watermarked multimedia work will also 

be destroyed. Spreading the watermark throughout the spectrum of an imagej audio ensures 

a large measure of security against unintentional or intentional attacks 

In real spread spectrum schemes, a watermark is embedded into the host signal by adding 

a low energy pseudo-random noise sequence which is often modulated by the intended mes-

sage. 

Figure 3.1 displays the block diagram of a typical spread spectrum watermarking process, 

The watermark embedding process can occur in either a spatial domain or a frequency 

domain. For frequency-domain techniques, an orthogonal transformation, such as discrete 

cosine transform (DOT) or discrete wavelet transform (DWT) is applied to the host data f, 

The transformation decomposes the host data 8 into coefficients to which the waterm~k is 

embedded: 

Let s = [S1I 82, •• " SN] be the coefficients in watermark domain. The watermark consists 
. i 
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of a sequence of numbers, w = [WI, W2, ••• , WN] with a given statistical distribution, such as 

a normal distribution N(O, 1) with zero mean and unit variance. The watermark sequence 

is embedded into the coefficients s according to the relationship, 

x=s+aw, (3.1) 

where a is a scaling parameter which determines the extent to which one can alter s without 

changing the fidelity of the multimedia work, x is the watermarked coefficient. 

Taking the inverse transform on x produces the watermarked data which should be 

perceptually identical to the original data. 

To detect the existence of the watermark, the receiver transforms the watermarked data 

into watermark domain and obtains the extracted signal x which contains both the water­

mark signal and the original signal in watermark domain. In order to suppress the inter­

ference from the host signal and to obtain detection result with small probability of error, 

people often subtract the original signal from x before correlation-based watermark verifica-

< tion operation. The existence of the original watermark wwithin the watermarked signal is 

detected by calculating the similarity between the original watermark wand the extracted:­

signal w. The similarity measure is given by the correlation coefficient as follows: 

( A) E~l WiWi P W,W = . 
VEf'::l wrVEf'::l w; 

(3.2) 

If the correlation coefficient is above a given threshold, the watermark is considered to be < 

present; otherwise, the watermark is considered not to be present in the received signal. 

Figure 3.2 presents the diagram of spread spectrum watermark detection procedure. 
~ 

As discussed in the introduction~ we are interested in blind watermarking for 'which the 

original multimedia work is not available. Thus the original signal can be regarded as a 

major noise source in detection. Hartung, et aL [15] proposed a spread spectrum blind 

image watermarking system in which subtraction of the original data is replaced by the pre­

filtering. The high-pass filtered watermarked image is then demodulated using exactly the 

same pseudo-noise signal previously used for watermark embedding. In this way, the filtered 
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Figure 3.2: Typical block diagram of spread spectrum watermark extraction. 

image is treated as the extracted watermark. The filtering based watermarking system is 

illustrated in Figure 3.3. 

High-pass filtering can effectively suppress the original image's interference due to the 

fact that this interference is mainly contributed by low-frequency components, while the 

power spectrum of the original image at high-frequency is relatively small. 

Wiener filter is a classic linear noise reduction filter. It is often used for image denoising 

applications. Exploiting Wiener filter in watermark extraction algorithm, as illustrated in 

Figure 3.4, we use the error signal at the output of the filter vex, y) = g(x, y) I(x, y) as 

I' '" j; 
I' 
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the extracted watermark. I. 

3.3 Wiener Adaptive Filter Based Watermarking Sys­
tem 

3.3.1 Wiener Filter 

Wiener filter is the mean-square-error optimal stationary linear filter and based on the as­

sumption that the power spectra of the ideal source and the noise are known.' The goal of 

Wiener filtering is to obtain an estimate of the original signal from a degraded version of the 

signal. The degraded image gem, n) can be represented by 

gem, n) = f(m, n) + v(m, n), (3.3) 

n 
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Figure 3.3: Filter based spread spectrum watermarking system. 
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where f(m, n) is the nice, undegraded signal and vem, n) is the noise. Given the degrad~d 

signal gem, n) and some knowledge of the nature of f(m, n) and v(m, n), we want to come 

up with a function hem, n) that will output a good estimate of f(m, n). This estimate is 

p( m, n), and is defined "by the following: 

p(m, n) = gem, n) * hem, n), (3.4) 

(3.5) 

where P(Wl,W2), G(Wl,W2) and H(WI,W2) are-the power spectra of p(m,n), g(m,n) and 

h( m, n) respectively. 

The Wiener filter generates an he;, y) that m~nimizesthe mean square error, which is 

defined by: 

E{e2(m,n)} = E{(g(m,n) - f(m,n))2}. . (3.6). 

According to the orthogonality principle, the error, e(m, n) = gem, n) - f(m, n), is minimized 

'IF 

-



noised image 
g(x,y) 

Wiener Filter 
h(x,y) 

(a) 

Wiener Filter 
h(x,y) 

extracted watermark 
v(x,y)=g(x,y)-f(x,y) 

(b) 

21 

denoised image 
. f(x,y) 

Figure 3.4: (a) Wiener filter for image denoising. (b) Wiener filter for watermark extraction. 
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by requiring that e(m, n) be Ullcorrelated with any random variable of gem, n), 

E{e(m, n)g(m, n)} = 0, for all e(x, y) and gem, n) . 

Then we have 

E{/(m, n)g(m, n)}' = E{(e(m, n) + p(m, n»g(m, n)} 
= E{p(m, n)g(m, n)} 
= E{{g(m, n) * hem, n»g(m, n)} . 
= L:~=-oo L:~=-oo h(kb k2)E{g(x - kb y - k2)g(m, n)} 
= L:~=-oo L:~=-oo h(kl' k2)Rg(x - kl - m, Y - k2 - n}, 

where Rg(x, y) is the autocorrelation function of g(x, V). So 

R,g(x, y) = hex, y) * Rg(x, v), 

and 

Suppose I(x, y) iSUllcorrelated with vex, v), 

Rg(x, y) = R,(x, y) + Rv(x, v), 

and, 

P,g(WbW2) = P,(Wb W2), . 

Pg(Wl,W2) = P,(Wl,W2) + Pv(Wb W2)' 

So, 

22 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.n}:. 

- (3.12) 

(3.13) 

(3.14) 

(3.15) 

Since the power spectra P,(Wl, W2) and Pv(Wl, W2) are real and nonnegative, H(wl' W2) is also 

real and nonnegative. Therefore, the Wiener filter' affects the spectral magnitude but not 

the phase. 

... 
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3.3.2 2D Wiener Adaptive Filter 

To obtain an accurate estimate of the power spectrum, an ensemble of many samples of the 

ideal image is required. However, in practical applications, it is unlikely that there will be 

an ensemble of ideal image samples available for estimation. In most applications, only the 

image to be restored is available and -all prior knowledge about the ideal image signal has 

to be estimated from it. Hence, th~ power spectrum estimated from this single copy of the 

degraded image is far from the true power spectrum of the ideal image. For this reason, it is 

expected that the restoration filter is no longer optimal because of the lack of accurate prior 

information. 

Although the Wiener filter is optimally derived, the success of Wiener filter in restoring 

real-world images depends on accurate estimation of the image power spectrum. In general, 

an image is modelled as an inhomogeneous random field. The Wiener filter requires estimat­

ing the signal mean ILf, noise mean ILv, signal power spectrum PJ(w1, w2), and noise power 

spectrum Pv (w1, w2). They can be estimated locally in adaptive Wiener filtering. 

In [25} , Lee proposed the whole calculation procedure. The additive noise v(m, n) is 

assumed as zero mean and white with variance of O'~. Its power spectrum Pv (Wl,W2) is then 

given by Pv (WI,W2) = O'~. In a small local region the signal f(x, y) is assumed homogeneous. 
> 

Within the local region, the signal f(x, y) is modelled by 

f(m, n) = ILJ + O'Jw(m, n), (3.16) 

where ILJ and O'J are the local mean and standard deviation of f(m, n), and w(m, n) is zero­

. mean white noise with unit variance. Within the loc~l r~gion, the Wiener fiiter H(Wb W2) 

and h( m, n) are given by: 

H( ) 
_ Pf(Wl, W2) _ 0'1 

WI, W2 - ( ) ( ) - 2 2 ' PJ Wl,W2 + Pv Wl,W2 O'J + 0'1) 
(3.17) 

(3.18) 

/ 
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Then, the restored image p( m, n) within the local region can be expressed as 

p(m, n) 
0'2 

= Jtf + (g(m, n) - JtJ) * 0'2+10'28(m, n) 
I 11 0'2 . 

= Jtf + 0'2+10'2(g(m,n) - Jtf), 
J 11 

(3.19) 

where Jt f and (If are assumed updated at each pixel, 
- , -

, (l2(m, n) 
p(m, n) = JtJ(m, n) + 2( f) 2( ) (g(m, n) - Jtf(m, n)). 

(lJ m, n + (Iv m, n 
(3.20) 

The new blind watermark detection technique is based on adaptive denoising filter. Given 

a received corrupted watermarked image Xc, pixel-wise adaptive denoising filtering is applied 

to Xc. This pixel-wise adaptive denoising filtering is based on statistics estimated from a local 

neighborhood of each pixel. The local image mean value Jt and variance (12 are estimated 

using neighborhoods of size N-by-M: 

1 
Jt(m,n) = NM :L Xc(m,n), 

m,nEl1 

(3.21) 

(3.22) 

where 17 is the N-by-M local neighborhood of each pixel in the image Xc' To extract wa­

termark, an estimate of local noise (watermark) variance, v2 is necessary. Then a denoised 
v 

image can be obtained by a pixel-wise adaptive Wiener denoising filtering according to [26]: 

(3.23). 

Then an estimation of the watermark W can be obtained by 

(3.24) 

Note that the estimate W may also contain other noises besides the desired spread spectrum 

watermark. However, as long as these noises are uncorrelated with the spread spectrum 

watermark, they will be eliminated by the subsequent correlation detector. 

-

---.. 
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3.3.3 Wiener -Adaptive Filter based Detector 

From (3.22)' and (3.23), it is clear that the local noise variance estimation is critical in ex­

tracting the' watermark. Various methods have been proposed to estimate the local noise 

variance in digital image debluring and enhancement applications. Different to image en­

hancement applications, for image watermarking system, not only we have the watermarked 

image, the possible embedded watermarks and the watermark embedding strategy are also 

known to the detector. Hence watermark detection algorithm incorporates the reference 

watermarks may have further improved performance. 

Here we propose two schemes to estimate the local noise variance v2 • And therefore two 

types of blind detectors can be constructed. 

Type I detector: The first scheme of the local noise (watermark) variance es~imation 

is based on the method in [26]. It is assumed that the noise (watermark) variance v2 is 

uniform in the whole image and the original image has very low variation all over the image. 

Therefore, a global noise variance can be estimated by: 

(3.25) 

Type II detector: In the second scheme of the local noise (watermark) variance es-
, 

timation, we do not assume the uniform local noise (watermark) variance and the image 

flatness. Instead, the local noise (watermark) variance v2 is estimated adaptively according 

to the local statistics of the watermark: 

2 O'~(m, n) E{ 2( )} 
V = E { O'~ (m, n)} ,0' m, n , (3.26) 

where O'~ is the local variance of the watermark to be detected. It is calculated in the 

same fashion as in (3.22). If n watermarks may be present in the observed image, ~ different 

filtered images will be generated and used for detection. Only the real watermark is expected 

to have largest correlation coefficient with its corresponding extracted watermark. Figure 

3.5 outlines the steps to embed and extract watermark. 

The above-mentioned denoising filtering tailors itself to the local image variance . .when 
--

the local variance is large, the filter performs little smoothing. When the variance is small, 
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Figure 3.5: Block diagram for the Wiener denoising filter based watermarking scheme 

the filter performs more smoothing. Note that theoretical Wiener filtering system assumes 

additive Gaussian noise. Previous work in the robust watermarking area has pointed out 

that the effect of distortions on the overall watermarked signal can be modelled as additive 

Gaussian noise [5]. So the extracted watermark is possibly corrupted by additive Gaussian 
I' 

noise. As we use spread spectrum watermark technique, additive Gaussian noise will not 

impact the final result of correlation-based detector. 

3.4 Simulation 

The 512 x 512 images of Lena and Bridge are used to demonstrate the robustness of the 

presented new blind watermarking detection method. Note that these two images are typical 

in that Lena image has rich grayscale information and the Bridge image is full of details and 

edges. Spread spectrum watermark is generated as 512 x 512 matrix, where each value is . 

chosen independently according to N(/, (0). The value of a is set to 5 to ensure that the 

change introduced by the watermark is perceptionally invisible. Figure 3.6 shows the results 

of digital watermarked images on Lena and Bridge. 

First, type I detector is used and the noise variance is estimated according to (3.25). 

The size of neighborhood 1] is 3 x 3. By subtractfng the filtered image Be from Xc, the 

water1?ark is extracted. Then type II detector is used and the noise variance is estimated 

according to (3.26}. All possible watermarks are examined. The similarity is evaluated with 
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Figure 3.6: Digital watermarking for Lena' and Bridge. 

respected to all the reference watermarks. The highest correlation coefficient indicates the 

real watermark. In the following demonstrations, the performance of the new watermark , 

detectors are evaluated under three common image distortions: additive noise corruption, 

low-pass filtering and lossy compression. The results are analyzed and compared with the 

high-pass filter based detector proposed in [15]. Figure 3.7 shows the performance of three 

methods in additive white Gaussian noise, which is a simple simulation of channel noise. 

According to Figure 3.7, the detector's response value is highly related to the quality of the 

observed image. Given a watermarked image, the new locally adaptive denoising filter based 

detectors provide greater correlation coefficient than the high-pass filter based detect?r in 

[15]. Type II adaptive watermark detector also provides better performance for both images 

than type I detector does. 

Figure 3.8 shows the results of the test for robustness against low-pass filtering distortion: 

By comparing the correlation coefficient values of the Wiener filter based method (0.6) and 
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Figure 3.7: Performance of three different detectors subject to additive noise corruption. 
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the Hartung method (0.45), we can see that our method is more robust to low-pass filtering 

attacks. 
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Figure 3.8: Performance of three different detectors subject to low-pass, filtering corruption. 

Figure 3.9 shows the detection response against JPEG compression with various com­

pression degrees. It can be seen that, even after heavy compression, the adaptive filter 

based methods can still reliably detect the correct watermark. The correlation coefficient of 

the correct watermark is about 0.3, which is much higher than that of the high-pass filter 

based method in (15J. Again, type II adaptive watermark detector provides better detection 



performance for both images than type I detector. 
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Figure 3.9: Performance of three different detectors subject to JPEG compression distortion. 

Finally, Figure 3.10 shows the detection results against the state-of-art image compression 

method JPEG2000. When 0.6bpp (about 1:13.33) JPEG2000 compression is applied, the 

correlation coefficient achieved by Hartung's method becomes 0.2431, while of the same 

processing is applied to our method, the correlation coefficient value becomes around 0.5. 

'~:8) 0.9 0.8 0.7 0.6 0.5 0.4(1:20) o.s 0.2(1:40) 

JPEG2000 Compression BR-Per-Pixel (Compression Ratio) 

Figure 3.10: Performance of three different detectors subject to JPEG2000 compression distortion. 

The experimental results demonstrate that' even if the watermarked image has undergone 

severe distortion, the detector designed based on adaptive denoising filter can still detect the 

correct watermark. 
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3.5 Summary 
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This chapter focuses on developing blind watermark detection scheme. The presented scheme 

is developed by exploiting denoising technique, based on the principle that the additive 

spread spectrum watermark can be treated as uncorrelated noise with respect to the host 

data. A locally adaptive denoising filtering scheme is employed to construct the water­

mark detector. Adaptive local noise/watermark variance estimation schemes are presented 

to achieve best filtering performance. Two types of blind detectors are developed based on 

different local noise variance estimation schemes. Experimental results show that the pre­

sented methods are very effective and robust against most image processing attacks, such as 

lossy compression, noise addition and spatial filtering, etc., and they have superior detection 

performance compared to some conventional methods. 
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Chapter 4 " 

Near Minimum· Distortion LUT 
Embedding 

'4.1· Introduction 

In this chapter, we focus on the LUT embedding algorithms. Look-up table (LUT) embed­

ding is a simple embedding technique used to hide information into multimedia work for 

~opyright protection, transaction tracking or content annotation. The L UT is often associ­

ated with a cryptographic key, thus provides security to embedding. This chapter studies 

the distortion introduced by LUT embedding where the maximum allowable run is limited 

to 2. Here run means the largest number of consecutive D's or l's in LUT. We find that 

designing L UT according to the distribution of the host data and the watermark data to 

~e embedded can greatly reduce the distortion from L UT embedding. Hence ,a . practical 

near-minimum-distortion look-up table design method is proposed. Meanwhile,· security and 

robustness of the designed information hiding system are almost maintained. We apply this 

method into a wavelet domain image watermarking system. Because only significant wavelet 

coefficients can be selected to embed the watermark, an Expectation-Maximization (EM) 

algorithm based method is employed to model the statistical distribution. 

31 
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4.2 Overview of the L UT Embedding 
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A LUT is a random sequence of O's and 1 's, with runs of O's and 1 's being limited in length. 

It also constitutes the key for the watermark extraction algorithm. Every possible value 

of the host data is quantized using a quantization function (Q(.» to a small set of values, 

equal in number to the size of the LUT. For example, a uniform quantizerG with cell, width 

q maps the original signal to kq, k = 1"", K, where K is the size of the LUT., The table; 
'" ~ 

then maps the quantized value to "0" or "1". To embed a "I" in a coefficient, the coefficient 

is unchanged if the entry of the table corresponding to that coefficient is also a "1". If the 

entry of the table is "0", then the coefficient is changed to its nearest neighboring value for 

which the entry is "1". The embedding of a "0" is similar. The look-up function (Lookup(·)) 

simply returns a "0" or "I" depending upon the input index, 

Lookup( s) = value in Look-up table at index s (4.1) 

The LUT(·) function takes the value of the original singal as the input and maps it to a "0" 

or "I" according to the LUT. Thus, the LUT(·) function is actually a simple composition of 

the lookup and the quantization functions: 

LUT(s) = Lookup(Q(s» (4.2) 

Figure 4.1 shows the general process of LUT embedding algorithm. An orthogonal trans-, 
formation Tw decomposes the host data s into coefficients x in the watermark domain to 

which the watermark w is embedded. Then the coefficients are quantized and mapped ac­

cording to LUT .. 
, 

The entire process altering a coefficient can be abstracted into the following formula: 

_ { s if LUT(s) = b . - . - . 
x - s + d if LUT(s) :f b, d = minldl(LUT(s + d) = b), (4.3) 

where s is the original coefficient, x is the marked one" b is the bit to be embedded. 

For LUT embedding, once the LUT is known to the detector, the watermark can be 

extracted easily through a simple lookup from the LUT. The table is looked up as 

b = LUT(x), (4.4) 
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Figure 4.1: General LUT Embedding Algorithm 
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where b is the extracted bit and x is the watermark embedded, possibly corrupted signal. 

A typical L UT embedding algorithm is the odd-even embedding. First, a uniform quanti­

zation function Q(.) is defined which partitions the signal space ~ into subsets as illustrated 

in Figure 4.2. The host data is mapped to the nearest even numbered quantization point 

to embed a "0" and the nearest odd numbered quantization point to embed a "1". Thus 

a global relationship between the watermark bit and the marked signal is deterministically 

enforced. 

(k-3)q (k-2)q (k-1)q kq (k+1)q 

decision 
boundaries 

Figure 4.2: The odd-even embedding 

The watermark bit is extracted by the following w:ay, 

A {o if Q(x) is even 
b = ~'L . 

1 if ~ is odd. q 

(k+2)q . 

(4.5) 
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In the odd-even embedding scheme, the table entries for embedding" 1" and" 0" are arranged 

in an interleaving order, { ... , Lookup((k - l)q) = 0, Lookup(kq) = 1, Lookup((k + l)q) = 

O,Lookup((k + 2)q) = I, ... }, which is also described as run=1 LUT embedding in (2J. It 

is pointed out that LUT embedding with larger run constraints introduces larger distortion 

but have smaller probability of detection error. 

During LUT embedding, when Lookup(Q(x)) does not match the bit to be embedded b, 

we need to find a nearby entry in LUT that is associated with b. As such, the run of 'i1" 

and "0" entries of an LUT becomes a main concern which needs to be constrained to avoid 

excessive modification on the feature. 

4.3 Robustness Issue 

Marked feature with 
"0" embedded 

---I-,""" 

Feature values (k-1)q 

LUTmapping o 

kq 

o 

Distribution after 
AWGNnoise 

(k+1)q 

1 

Figure 4.3: Illustration of reduced detection errors of LUT embedding as the maximum allowable 
run r increases. 

To quantify the robustness in terms of the probability of detection error, we assume that 

the watermarked feature is at kq and the additive noise follows Li.d. Gaussian distribution 

N(/, (;E) with zero mean and variance (;2. The probability of noise pushing a feature to other 

int~rvals that are far away from kq is small due to the fast decay of the tails of Gaussian 

distribution, so the probability of detection error can be approximated by considering only 
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the nearby intervals around kq. An example is shown in Figure 4.3. When noise drags 

the watermarked feature away from kq to z, we will encounter detection error only when 

LUT(z) ::f LUT(kq). For LUT embedding with a maximum allowable run of 2, there are 

three cases for the LUT entries of (k - l)q, kq and (k + l)q: 

• Case 1: {Lookup( kq) = Lookup( (k - 1) q), Lookup( kq) ::f Lookup( (k' + 1) q)}; 

• Case 2: {Lookup(kq) ::f Lookup«k - l)q), Lookup(kq) = Lookup«k + l)q)}; 

• Case 3: {Lookup(kq)::f Lookup«k - l)q), Lookup(kq) ::f Lookup«k + l)q)}. 

Table 4.1 shows all the possible combinations of the binary look-up table entries (k - l)q, 

kq and (k +'I)q. 

Table 4.1: All possible cases for LUT entries of (k - l)q, kq and (k + l)q are listed where each of 
them can only be "0" or "1". 

(k -1)q kq (k + l)q 
0 0 .1 Case 1 
0 1 0 Case 3 
0 1 1 Case 2 
1 0 0 Case 2 
1 0 1 Case 3 
1 1 0 Case 1 

Suppose that each entry of the LUT has the equal probability to be "0" or "1". 

. 1 
P(Lookup(kq) = 0),= P(Lookup(kq) = 1) = 2' 

Using (4.6) and Table 4.1, we can find the probability of the first case ,as 

(4.6) 

. 1 
P(Lookup(kq) = Lookup«k - l)q), Lookup(kq) ::f Lookup«k + l)q)) = 3' (4.7) 

Similarly, the probabilities of th~ other two cases are 

1 
P(Lookup(kq) ::f Lookup«k - l)q), Lookup(kq) = Lookup((k + l}q» = 3" (4.8) 

I 
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P(LOokup(kq) =I Lookup«k - l)q), Lookup(kq) =I Lookup«k + l)q)) = ~. 
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(4.9) 

Thus the probability of detection error under Gaussian noise can be approximated. by 

jY!=2 
e ~ P(Lookup(kq) =I Lookup«k - l)q), Lookup(kq) =I Lookup«k + l)q)f· 2· Q(#;) 

+P(Lookup(kq) = Lookup«k - l)q), Lookup(kq) =I Lookup«k + l)q)) . Q(#;) 
+P(Lookup(kq) =I Lookup«k - l)q), Lookup(kq) = Lookup«k + l)q)) . Q(#;) 
= 1. Q(.!L) 3 2<1. 

(4.10) 

where the Q-function Q(x) is the tail probability of a Gaussian random variable N(O, 1). 

In contrast, 'for LUT with a maximum run of 1 (or equivalently, the odd-even embedding), 

detection error occurs as soon as the noise is strong enough to drag the watermarked feature 

to the quantization intervals next to the kq interval. The probability of detection error for 

this embedding is 

. (4.11) 

The above analytic approximations of the probability of detection error indicate that 

LUT embedding with maximum allowable run of 2 can potentially provide higher robustness 

than the commonly used quantization embedding with equivalent run 1. 

4.4 Near Minimum Distortion LUT Embedding 

4.4.1 Distortion Analysis 

In LUT embedding, uniform quantization Q(.) divided the input signal space into K equi­

spaced levels. Then if the k-th entry of LUT is b, the data samples of signal s in the 

quantization cell of [(k - 1/2)q, (k + 1/2)q] tO,be erp.bedded b is rounded to kq, the mean 

square distortion produced by this operation is calculated as 

. 1(k+1/2)q , 
Dkq(S) = Is - kql2 f(s)ds, 

. (k-l/2)q 
(4.12) 

where f(s) is' the Probability Density Function of s. However, if the desired bit for s is not 

b, the host data must be mapped to the nearest quantization points correspondi~g to the 

desired bit (k±l)q, l > O. If the maximum allowable run is 2, the entry next to the k-~h entry, 

-
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i.e. either the k - I-th entry or k + 1-th entry or both matches the desired bit. We subdivide 

the above situation into 3 cases as the previous section. In all the cases, further distortion 

will be introduced. If it is the first case, {Lookup(kq) = Lookup((k - l)q), Lookup(kq) =J 

Lookup((k + l)q)}, the samples of s which are i~ the quantization cell of [(k - 1/2)q, (k + 

. 1/2)q] have to be rounded to .(k +1 )q. The distortion is 

DCasel(S) = f(~~11/:1: Is - (k + 1)q12 f(s)ds 
Dkq + q2 J(~~IY:lqq f(s)ds - 2q f{~~N:l:(s - kq)f(s)ds. 

(4.13) 

Similarly, in the second case, the samples in k-th cell have to be mapped to (k -1)q. we 

have 
21(k+1/2)q '1(k+1/2)q 

DCase2(S) = Dkq + q f(s)ds + 2q . (s -- kq)f(s)ds 
(k-l/2)q (k-l/2)q. 

, (4.14) 

In the third case, we have two nearest quantization points (k+ 1)q and (k-l)q correspond­

ing to the desired bit simultaneously, then the original features in the range of [(k-l/2)q, kq] 

will be rounded to (k - l)q, and the features in the other half interval [kq, (k + 1/2)q] will 

be mapped to (k + l)q. The distortion will be composed by two parts: 

DCase3(S) = f(~~1/2)q[S - (k -- 1)q]2 f(s)ds + f~;+1/2)q[S - (k + l)q]2 f(s)ds 
= Dkq + q2 f{~~N:l: f(s)ds + 2q [f(~~1/2)q(s -- kq)/(s)ds -- f~;+1/2)q(S - kq)/(s)ds] 

(4.15) 

If the feature is approximately uniformly distributed within each cell or only fine quantizer 

is utilized, the last terms of (4.13) and (4.14) are close to 0, and the last term of (4.15), which 
~ . 

is in the range of [_q2 f(~~1Y:lqq I(s)ds, 0], approximates to -t f(~~IY;'): I(s)ds. 

For a binary data hiding system, we can divide the features into two categories: the 

features that are used to embed bit "0", denoted by So, and the features that are used to 

embed bit "1", denoted by SI. The PDFs of So and S1 are lo(so) and !l(S1), respectively. 

First we consider the overall mean squared distortion due to quantization only, 
, , 

MSEquan = l:{f=1 [f(~~11/:1: Iso -- kqI2/o(so)dso + f(~~i/:l: lSI - kQI2!l(Sl)ds1] 

= l:{f=l [Dkq(SO) + Dkq(Sl)] . 
(4.16) 

Now consider that each of the K LUT entries is either "0" or "1". In all'K quantization 

cells, either the data to be embedded "0" or the data to be embedded "I" are mapped to their 
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local reconstruction points. Other data have to be mapped to. neighboring reconstruction 

points where the above three cases appear. According to (4.13)-(4.16), the ,overall LUT 

embedding distortion can be formulated as 

MSEw = MSEquan + q2 r:f=l aO,k f(~~IY;l: fo(so)dso + q2 r:f=l al,k f(~~;;;lqq !t(sl)ds1 

-~ r:f=l f30,k f(~~;;;l: fo(so)dso - ~ r:f=l f31,k f(~~f/~~q h(Sl)ds l 

(4.17) 

where a and f3 can be 0 or 1, a(O, k) = 1 if the k-th reconstruction point is for "I" em­

bedding, similarly a(l, k) = I when the k-th LUT entry is "0", hence a(O, k) = model -

a(l,k),2), only when Case 3 appears f3 is equal to 1, that is: if {Lookup((k - l)q) =f 
Lookup(kq),Lookup(kq) =f Lookup((k+ l)q), Lookup (kq) = I}, f3o,k = 1; if {Lookup((k­

l)q) =f Lookup(kq) , Lookup(kq) =f Lookup((k + l)q), Lookup(kq) = O}, f31,k = 1. 

f(~~lY;i: fo(so)dso and flkk~;;;l: !t(sl)ds1 represent the probability that So and SI fall into 

the k-th quantization cell of Q(.), respectively. We denote them as PO,k and P1,k, Le. 

1

(k+1/2)q 1(k+1/2)q . 
PO,k = fo(so)dso, P1,k = !t(sl)ds1• 

(k-l/2}q (k-l/2)q 
(4.18) 

Thus we rewrite (4.17) as 

If the original feature follows uniform distribution, the probabilities that the feature falls 

into each quantization cell will be exactly the same, then various L UTs have same overall 

distortion. Here we assume the distribution of the host signal is nonuniform. It is reasonable, 

as in real world most signals are not uniform. For example, the wavelet coefficientf:) of a 

natural image do not follow uniform distortion. The probabilities that a nonuniform signal 
, . 

falls in each quantization cell are different to each other. Embedding watermark according 

to different LUT scheme can produce different distortion. From (4.19), we can see that 

the parameters aO,k, al,k, f3o,k and -f3I,k) k = 1"", K corresponding to each 4!JT scheme is 

unique. Therefore, various distortion can be obtained with various LUT schemes. Among 

them, the LUT which achieves near minimum disto~tion is our target . 
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4.4.2 Near Minimum Distortion LUT Embedding Algorithm 

Figure 4.4 shows an example of wavelet coefficients which will be embedded binary water­

mark. The number of coefficients to be embedded "0" and "I" fall into each quantization 

cell is different to each other. We can design a variety of run of 2 LUTs, but only the one 

which achieves niinimum distortion is what we want. 
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I 

l I i I 1 • I 
J .~. . • '. • • , .. I '- >. .1 I '::","'.',',', .l .' I 
I • I I ..... . .. I .. .. .. : . I • ... iIo t 

.., A· I 
t I I I I I I 

.J----o • 
(kq) 

I (j 
I a I 

(J 
I 

CJ 
I 

I I I I t .... 
I (k":"Z)q 1 I 'kq I (k"'l) I ~k+2)q.· t (~+~)q, I 
I " • .... q I I '. ,+,q:; I I I, 
f I I I i I I 
t .' • .; f • . , ... I , ...... I • •••• I • .i.~: • I .; . • I 
I I J I i I , 

'~~T2.: 4,k;-1 
·.it • 

P, " PU4t ~'2: 'pJ)i.j' Itt :,- .. " .. ,: 

Figure 4.4: A minimum-distortion LUT needs to be generated according to the given wavelet 
coefficient distribution. ' 

-According to (4.19), the LUT embedding distortion is determined by the LUT (0 and /3) 

and the distribution of So and SI. We obtain the near-minimum distortion look-up table by 

looking at the probabilities that the coefficients to be embedded "0" and "I" falls into each 

cell, PO,k and P1,kl k = 1,2 ... K. First we sort PO,k and P1,k in descending order. The sorting 

result is a probability queue like PO,k, P1,k+b PO,k+21 P1,k, .... Then the look-up table is built in 

the way that the entry corresponding to the largest probability are set to its corresponding 

bit in priority. For example, if PO,k is the largest in the probabili~y queue currently and 

the look-up table entry Lookup(kq) is still not determined yet, we set Lookup(kq) = O. 

After each operation, we remove the largest probability value from the queue and move 

on the next. There is a rule we must keep in mind due to the maximum run constraint 

(r=2): the assignment should also satisfy the present maximum run number r . 2, Le. the 

maximum run for "0" or "I" must be equal or less than 2 and at the border of the quantizer 

Lookup(Q(mins)) =I- Lookup(Q(mins) + q),Lookup(Q(maxs)) =I- Lookup(Q(maxs) -- q). 

The algorithm for run of 2 can be summarized in the following three steps: 

STEP 1: Arrange the probabilities that the original feature associated with the desired 
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bit falls into each quantization cell in descending order. 

STEP 2: We find· the largest probability Pj,k from the above queue, where! ',. 0 or 1. If 

Lookup(kq) has been determined, go to STEP 3. Otherwise, among the determined look-up 

table entries, if any ofthe following situation occurs, {Lookup((k-2)q) = Lookup((k-l)q) = 

I}, {Lookup((k-l)q) = Lookup((k+ l)q) = I}, {Lookup((k+ l)q) = Lookup((k+2)q) = I}, 

{k = 2, Lookup(q) = I}, {k = L - 1, Lookup(L) = I}, 1 E {O, I}, Lookup(kq) is set to the 

complement of 1, Lookup(kq) = model + 1,2), no matter j value; otherwise Lookup(kq) = j, 

the original feature corresponds to Pj,k is not shifted to other quantization points. 

STEP 3: P;,k is removed from the queue. If the queue is not empty, go back to STEP 

2. 
c 

To illustrate the above near minimum distortion look-up table generation algo:rithm, an 

example is provided in Figure 4.5. 
, 
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Figure 4.5: Example of a'max-run=2 minimum distortion look-up table. 

4.5 Significant Coefficient Selection Based on a Gaus­
sian Mixture Model in the Wavelet Domain 

In our scheme, only wavelet coefficients with large magnitude are selected to bear water-. , 

mark. In general, these coe~cients de;> not change significantly after image processing and 

compression attack. We propose a statistical method to pick the embeddable coefficients 
, . . I ' 

based on a Gaussian Mixture Model in a wavelet subspace by Expectation-Maximization 

(EM) algorithm [27]. The wavelet coefficients have a peaky, heavy-tailed marginal,distribu­

tion, which record image texture and edge information at different scales [28]. Only a few 
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significant coefficients take large values at the positions where edges occur, while most others 

take small values. This statistical characteristic can be expressed by using a two component 

Gaussian mixture: 

Ps + Pl":"- 1. 

(4.20) 

( 4.21) 

where the class of small coefficients is represented by subscript "s" and the class of large 

coefficients by subscript "l". The a priori probabilities of the two classes are represented by 

Ps and Ph respectively. The Gaussian component corresponding to the small coefficients has 

a relatively small variance a;, capturing the peakiness around zero, while the component 

corresponding to the large state has a relatively large variance a;, capturing the heavy tails. 

An EM algorithm as in (28J can then be applied to find out the Gaussian mixture model 

by obtaining the model parameters [Ps,PI, a;, arJ. The Gaussian mixture model is then used 

to ~nd large coefficients for watermarking. The watermark is only embedded into the class 

of large coefficients because modifying coefficients which represent the edge information will 

introduce less perceptual degradation. We select significant coefficients by examining the 

coefficient magnitude that is larger, than a threshold p determined by the Gaussian mixture 

modeL That is, suppose that there are m coefficients in a detail subband s, the number of 

coefficients which is larger than p is approximately:"mpl and the number of coefficients less 

than p is approximately mps. Coefficient ws(x,y) will be chosen for watermark embedding 

if IIws (x, y)11 > p. 

4.6 Simulation 

The proposed watermarking scheme is tested on seven images of different types. We evaluate 

the quality of watermarked and attacked image by peak-signal-to-noise-ratio (PSNR), and 

the robustness under several intentional/unintentional attacks is denoted by bit correct ratio' 

(BCR). First we inserted binary watermark into the images by applying the new<method.: 

Figure 4.6 'shows one example (Lena). The modified significant coefficients are mainly at 

it 
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the edge of the image. The watermark robustness to common, operations such ,as image 

compression is tested. The discrete cosine transform (DCT) based coding system, JPEG 

baseline, and the discrete wavelet transform (DWT) based coding system, JPEG 2000, are 

. the two compression attacks in our tests. We evaluate the robustness by the average BCR 

for all test images. As shown in Figure 4.7, the BCR of the extracted watermark is larger 

than 75% until the compression quality factor is smaller than 60. 

Figure 4.6: The watermarked image and the difference from the original image with black denoting 

zero difference. 

Since the watermark is embedded in the wavelet domain, the presented algorithm has 

perfect robustness against DWT based JPEG 2000 compression attack. The results are 

shown in Figure 4.8. The decoded watermark can be 100% reconstructed after JPEG 2000 
" , 

co~pression of 1bpp and is reliable until the compression ~it-rate smaller than 0.2bpp (1:40). 
, r 

The, embedded watermark and the extracted wate~ark in Figure 4.9 is an example of 

the wa~ermar,k extraction with JPEG 2000 severe compression (1:40) and shows that the 

new scheme can survive JPEG 2000 compression very welL The comparison of watermark 
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Figure 4.7: The robustness against JPEG compression. 

Figure 4.8: The robustness against JPEG 2000 compression. 

embedding with and without the statistical model based significant coefficient selection is 

also shown in the Figure 4;7 and 4.8. The advantages of the new method with the coefficient 

selection are apparent. 

Finally, we compar~d the distortion performance between the interleaving LUT (odd-
. " 

even embedding, run=l),.our distortion-minimized LUT and the average distortion of all 

LUTs with maxiII}um allowable run of 2 in terms of various quantization leveL According 

to Figure 4.10, the distortion of the new method is the minimum, though it provides better 

robustness. 
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Figure 4.9: The embedded watermark (left) and the watermark (right) extracted after JPEG 
2000 severely compressed (1:40) image. 

';6 ,8" '0, 12 
c, Quantization LeVe! 

Figure 4.10: The image quality comparison between run=l (interleaving) LUT, distortion­
minimized run=2 LUT embedding and the average distortion of all maximum-run=2 LUTs. 

4.7 Summary 

We have analytically evaluated the distortion brought by LUT embedding with run con­

straint. Based on this analysis, we proposed a novel minimum-distortion algorithm to de­

sign LUT which can improve the watermarked signal quality. If security issue is taken 

into account, with a little bit change, the proposed approach can generate more than one 

near-minimum-distortion look-up tables. Thus our algorithm fits into some watermarking 

applications where joint-security-fidelity is required. For example, in transaction tracking 

applications, a unique watermark is embedded into each copy; if the multimedia work were 

subsequently leaked to the press or redistributed illegally, the owner could finq out who was 

responsible. Experim~ntal results show that, the, look-up table obtained with our method is 

superior to the odd-even(interleaving) embedding in terms of image quality. 
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Chapter 5 

Optimal Quantization Based 
Watermarking Algorithm 

5.1 Introduction 

, In this chapter, we focus on robust quantization based data hiding scheme. Robust data 

hiding techniq~es are required to achieve maximum robustness and fidelity simultaneously. 

However robustness and fidelity are alwa~s a pair of conflicting requirements.' In this chapter,' 

we consider the optimization of one given that the other is fixed. A Distortion-Robustness 

function, D(R) and a Robustness-Distortion, R(D),'are formulated in the context of quanti­

zation based information hiding. Based on the theoretical analysis on robustness-distortion 

tradeoff, a I!-ew optimization strategy for data hiding given the embedding distortion or ro­

bustness constraint is proposed. This algorithm foll~ws the general model of Quantization 

Index Modulation. The problem of designing the optimal nonuniform quantization encoder 

given fidelity or robustness criteria is formulated into a Lagrange function. Experimental 

results show that the optimal quantization watermarking scheme performs better than the 

existing schemes. The algorithm lends itself to applications where distortion or robustness 

is specifically requested. 

This chapter studies optimal no~uniform quantization watermarking scheme. Starting 

with Lloyd-Max method based optimal quantization, the optimal quantization watermarking 
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algorithm is designed by exploiting the statistics of the host data. Specifically, we assume 

the quantization level is fixed and consider two constrained optimization problems: (1) given 

robustness criterion, looking for quantization encoding scheme which minimizes distortion; 

(2) given fidelity constraint, looking for quantization encoding scheme which maximizes 

robustness. 

5.2 Robust-Distortion function 

5.2.1 Quantization Based Information Hiding 

In quantization based information hiding schemes, the watermark information is conveyed in 

the choice of quantizer. The message symbol to be embeded is denoted by mE {O, 1,· '.', M - I}, 

which is also called M-ary watermark. In quantization based information hiding system 

shown in Figure 5.1, M quantizers are needed to embed M-ary watermark. To simplify the 
. 

model, here we focus on binary watermark where two quantizers are needed for watermark-

ing. We can divide the host data into two categories: the data samples that are used to 

embed message bit "0", denoted by 80, and the data samples that are used to embed bit "1", 

denoted by 81' Suppose two quantizers are denoted by Qo and Qb where Qo is used for 80 

and Q1 is used for 81' 

dia multime 
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Figure 5.1: General diagram of embedder for quantization based data hiding system. The host 
data is quantized with the quantizer associated with the watermark bit. 
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Figure 5.2: General diagram of decoder for quantization based data hiding system. The distances 
between the received signal and the nearest quantizer reconstruction points are used for either 
soft-decision or hard-decision error correction decoding. 

Denoting the k-th reconstruction point of Qo as TO,k, k = 1"", K, we have 

TO,k = Qo(s),s E (do,k-bdo,k], (5.1) 

where dO,k, k = 0, ... , K is the decision level of the quantizer Qo. Similarly, for quantizer Qb 

(5.2) 

where Tl k, k = 0, - --, K and dl k, k = 0,· --, K represent reconstruction points and decision '. , 

levels of the quantizer Ql, respectively. 

The message embedding procedure can be illustrated by Figure 5.1. For message bit 

m = 0, the host data is mapped to the nearest reconstruction poi~t of the quantizer Qo. 

For message'bit m = 1, the host signal is mapped to the nearest reconstruction point of the 

quantizer Q1. In another word, So is quantized with Qo whereas 81 is quantized with QI- An 

example of quantization ensembles for data embedding is illustrated in Figure 5.3, where 6. 

and \l represent quantization points for "0" and "I" embedding respectively. 

A block diagram of the general decoding procedure is shown in Figure 5.2. The distance 

between the received signal y and the sets of reconstruction points .of different quantizers are 

employed in hard-decision or soft-decision decoding algorithm. 
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v ... 
1\ 

" ~ A v ~ V L..J. 

/" /" reconstruction reconstructi ~n 
point for "0" point for "1 ~ 

/" . 
decision 

level 

o Figure 5.3: An example of signal constellation for quantization based data hiding. 

Hard-decision Decoder 

For hard-decision decoding, one can make decisions on each coded bit Y {12] [13], 

171, = argmin Ily - Qm(Y)112, mE {a, I}, 
m 

• (5.3) 

where y is the received, maybe corrupted signal and Qm{Y) is the reconstruction point of Qo 

or Q1 that nearest to x. Unless the channel noise is strong enough to drag the watermarked 

feature out of the enforced interval, the detection result is 171, = m. 

Soft-decision Decoder 

Alternatively, for soft-decision decoding, the message to be embedded m is one of M binary 

sequences m = mh i = 1"", M where each possible sequence is composed of L ~inary 

bits mi = {mil,"" miL}' The extracted watermark 171, is determined by evaluating the 

square-sum of distance between the received signal Y = {Yb···., YL} and the nearest set of 

quantization ensembles. 

L 

171, = argrm~ 2:(Yl - Qmi/{Yt)?, mil E {a, I}, i = 1",,; M, l = 1"," L, . (5.4) 
• 1=1 . 

where Qmi/CYI) is the reconstruction point of Qo or Ql which nearest to, yz· 

5.2.2 Quantization Disto'rtion 

Apparently, through mapping the host signal to the nearest quantization value controlled 

by the watermark, distortion is introduced. The v-power difference distortion incurred by 



'". 

49 
scalar quantization can be expressed as the sum of the distortions for each of the decision 

regions. The distortion produced by quantizing source s with a given L-levels quantizer Q is 

D(v) = 'L};=1 [f::-
1 

Is - Q(s)IV fCs)ds] 

= Eff::l [I::-l Is - rk\V f(s)ds] 
(5.5) 

where dk , k = 0,···, K and rk, k = 1"", K are the decision levels and reconstruction points 

of the given quantizer Q respectively, f(s) i~ the Probability Density Function (PDF) of s. 

In our two quantizer case, the total distortion is the sum of Qo and Ql quantization 

distortion 

(v) (v) (v) do,/o V dl,/o 'V K [ K ' 
D = Do + D1 = E i .... _, Iso - ro .• 1 Jo(soldSo] + f, [L.,_, 181 - r1 .• 1 J.(slldS1] 

(5.6) 
where fo(so) and !t(S1) are the PDFs of So and S1 respectively. 

In the special case of v = 2, the difference distortion measure becomes the widely-used 

mean square error (MSE) criterion, and a quantizer which minimizes D(2) is termed MSE­

optimal or minimum mean-square-error (MMSE) quantizer. In the rest of this chapter, we 

evaluate the quantization distortion by MSE, which is denoted as D, 

5.2.3 Robustness Measurement 

In our information hiding system, we use a soft-decision decoder as (5.4). The square-sum 

of distance between the received data and the sets of reconstruction points of different quan­

tizers are used to determine the embedded information. Therefore, we define the robustness 

measure as 

R . i;. [liro .• - r1 .• I1'1.::, Jo(soldSo] + i;. [liro .• - r1 .• II' f.~.~:, !t(81ldS1]' (5.8) 

The overall mean squared distance between the nearest set of quantization ensembles are used . . . 

to evaluate the robustness of quantization watermarking. Jt.~-l fo(so)dso and J~~~~l fl(Sl)ds l , 
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represent the probability that So and S1 fall into the k-th quantization cell of Qo and Ql 

respectively. We denote them as PO,k and Pt,k, Le. 

(5.9) 

(5.8) can be re-written as 

K K." 

R = 2: (Po,kllro,k - rl,kI12) + 2: (P1,kllro,k - rl,kI1 2
) 

k=l k=l 
(5.10) 

5.2.4 Distortion-Robustness Function and Robustness-Distortion 
Function 

When we design information hiding algorithm, we always face the tradeoff between, fidelity 

and robustness requirements. Our purpose is to find a set of quantization ensembles . which 

achieve the maximum robustness R(D) subject to the given distortion D or achieve the mini­

mu~ distortion D(R) subject to the given robustness R. Then two constrained optimization 

problems are formulated~: (l)given robustness criterion, looking for quantization encod-
- -

ing scheme which minimizes distortion; (2)given fidelity constraint, looking for quantization 

encoding scheme which maximizes robustness. 

The maximum R given that the distortion D is fixed can be represented by 

R(D) = max(R). 
D 

(5.11) 

Similarly, we can define a D(R) function to describe the minimum distortion subject to fixed 

robustness, 

D(R) = mineD). 
R 

\, 

I 

(5.12) , 

The relationship between distortion and robustness is demonstrated in Figure 5.4. The 

curve sho~s the maximum robustness given distortion, therefore the region below the R(D) 

curve is achievable and the region above it is unachievable. 

Figure 5.5 illustrates the first constrained optimization problem, the region above the 

given robustness Rg and below R(D) curve satisfies the robustness criterion. 'At the position 



a 

;.. 

Figure 5.4: Distortion-Robustness function. 
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Figure 5.5: The region below D - R curve above Rg is the target region. 
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where the horizontal line of Rg intersects the Robustness-Distortion curve, quantization 

encoding scheme minimizes distortion subject to Rg • 

Quantization embedding scheme which achieves maximum robustness subject to given 

,distortion is illustrated in Figure 5.6. Only the region right to the given distortion Dg and 

below R(D) curve satisfies the specified distortion criterion. At the position where the lirie 

of D = D 9 intersects the curve, the robustness is the maximum. 
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Figure 5.6: The region below D - R curve right to Dg is the target region. 

5.3 Properties of R(D) and D(R) Function 
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To clarify the approximate figure of R(D) and D(R) function, it is necessary to analyze the 

properties of R(D) and D(R) function in its defined region. 

R(D) and D(R) functions are monotonous increasing functions 

According to the definition of R(D), among all possible quantization ensembles which gen­

erate equal or less than the given distortion Dg , we select the quantization ensembles which 

achieve the maximum robustness. When the allowable distortion Dg is enlarged, the set 

of choice quantization ensembles is widened which include all choice quantizers subject to 

previous Dg • Now searching the maximum robustness among this extended set of quantiza­

tion ensemble, clearly the maximum robustness will increase, at most unaltered. So R(D) is 

non-decreasing, with increased allowable distortion Dg, the maximum achievable robustness 

will increase. As R(D)'s inverse function, D(R) function is also monotonous increasing. 

The domain of definition of R(D) and D(R) - , 

For given host data 80 and 811 the minimum and maximum distortion, D min , Dmax and 

the achievable ~aximum robustness, Rmax as well as the robustness corresponding to the 
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minimum distortion R(Dmin). 

L Dmin and R(Dmin) 

First we discuss the minimum distortion where the host data and the quantization 

level are given. Without robustness concern, the desired quantization ensembles are 
. . ~, . 

simply the optimal quantizers in which the decision levels and reconstruction levels are 

selected that minimize the distortion subject to the quantization level constraint: 

Dmin=min{t [rdk'O Iso-rk,oI2fo(so)dSO] + t [rdk'l ISl-rk,112!I(Sl)dS1]} 
k=l Jdk-l,O k=l Jdk-l,l 

, (5.13) 

Depending on the distribution of So and Sh the watermarking scheme based on the 

achieved optimal quantizers hase some extent of robustness. If the distribution of So is 

similar to the distribution of S1, the reconstruction points of the two optimal quantizers 

are also similar, then the watermarking system will have poor robustness performance. 

If the two quantizers are exactly same, then R(Dmin) = O. 

2. Rmax and D(Rmax) 

The maximum robustness is obtained when the data to be marked "0" is mapped to 

the minimum value that the data can be changed to and the data to be marked "I" is 

mapped to the maximum value or vice versa. -This time the distortion is 

(5.14) 

where "!min and T}max are the minimum and maximum of the host data. 

T}min_= min(s)j T}max = max(s) (5.15) 

5.4 Optimal Watermarking Implementation 

The performance of optimal nonuniform quantization encoding scheme is represented by a 

point on the curve of Figure 5.4 with given distortion Dg or given robustness Rg. If we 

can find the curve, Le. R(D) function, we can achieve the optimal watermarking scheme 
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with any given constraint. Leave the robustness requirement aside, to achieve the mini-

mum distortion due to the quantization operation, the Qo and Q1 quantizers should be the 

minimum-distortion quantizers for feature to be embed "0" and "I" respectively. 

The problem of minimum-distortion quantization design is to select decision levels and 

reconstruction levels that. minimize distortio~ subject to a constraint on the number of levels 

K. This amounts to the simple requirement that the partial derivatives of with respect to 

the decision levels and reconstruction levels be zero [29][30][31]: 

8D2 
,8d

k 
= OJ k = 1, ... , K - 1 

8D2 
-8 = OJ k = 1, ... , K 

Tk 

(5.16) 

(5.17) 

Lloyd found the necessary and sufficient conditions for a fixed-rate quantizer to be locally 

optimal (minimum-distortion) [29]: the quantizer partition must be optimal for the set of 

reproduction levels, and the set of reproduction levels must be optimal for the partition. 

Solving equations (5.15) and (5.16), the decision level dk , k = 0"", K is the average of the 

surrounding quantization levels, 

(5.18) 

and the reproduction level Tk, k = 1"", K corresponding to a given cell is the centroid of 

the source value given that it lies in the specific cell: . 

J:;_l sf(s)ds 
Tk = d Jd;_l f(s)ds 

(5.19) 

After performing Lloyd-Max algorithm on So and S1 respectively, we can obtain the'initial 

optimal quantizers Qo and Q1' 

However, if the binary watermark is distributed randomly, the probability that feature 

to be embedded "0'" is close to the probability that it is embedded "1". It is found that 

the PDF of So is similar to the PDF of S1. The minimum-distortion quantizer'is determined 

by the signal's statistical distribution. Because So and Sl have similar PDFs and the fixed 

quantization lev.els are same, the two optimal quantizers obtained by Lloyd-Max met~od are 
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similar, that is for any i, 1 < i < L, 

and for any j, i =f. j 
Dist(rt,O, ri,l) « Dist(ri,O, rj,l) 
Dist(ri,O, ri,l) « Dist(ri,O, rj,l) 

. Dist(ri"O, ri,l) « Dist(ri;i, Tj;l) 

where Dist(·) is the distance between two reconstruction points. 
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... 
x 

Figure 5.7: The signals that follow similar PDFs have similar optimal quantizers. 
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(5.20) 

(5.21) 

In Figure 5.7, the two PDFs are plotted and die l::i. points and \l points represent the 

optimal quantizers for "0" embedding and "1" embedding respectively. 

The distance between the sets of reconstruction points of different obtained optimal 

quantizers, i.~. Dist(ri,Ol ri,l), is so small that the embedded watermark can be destructed 

even by a faint perturbation. Intuitively, we need to adjust the two quantizers by enlarging 
. , 

Dist(ri,O, ri,l) to improve the embedding scheme's robustness performance. For example, if 

the i-th reconstruction point of 0 quantizer, ri,O is close to but less than ri,l, to decrease the 

efrOf probability, we should reduce ri,O and enlarge ri,l as illustrated in Figure 5.8. 
. . 

Before the adjustment for robustness improvement, the distortion is only contributed 

by quantization. The distortion produc~ by quantizing source s with K level optimal 

II 
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Figure 5.8: Reconstruction points need to be adjusted to achieve the optimal distortion-robustness 
tradeoff. 

quantizers 

, (5.22) 

where dk, k = 0, ... , K and rk, k = 1, ... , K are the decision levels and reconstruction points 

of source s's minimum-distortion quantizer. The reconstruction points are optimal in the 

MSEsense so that any change on them will introduce further distortion. Assume that the 

k-th optimal quantization point rk is moved to rk' k _ = 1,,'" K, the distortion of new 

constructed quantizer is: 

= Ef=l It:- 1 Is - rk + rk - rkl2 J(s)ds] 
Dw = Ef::l!ft,.k_1 Is - rkl2 J(s)ds] 

= Ef=l ftkk_l Is - rkl2 + Irk - rkl2 + 21rk - rkllrk - sIJ(s)ds] . 

Since f::_
1 
rkJ(s)ds = ft:_l sJ(s)ds, we have 

Dw = Ef=l [ft:-1 Is - rkl 2 + Irk - rkI2J(s)ds] 
= Ef=l [f::_1Irk -~12f(s)ds] +D 

In our hi-quantizer case, the total distortion is 

= Ef=l [f~~~"_l IrO.k - rotk 12 foC so)dso] + Do 
+ Ef=1 ]f:l1,~_1 IrItk - ri,kl2 h(sl)dsil + Dl 
= Ef::l [f~~~_l 76,kJO(SO)dso] + Do , 
+ Er:=I]f!~~_l 7f,kh(SI)ds l ] + D1, 

(5.23) 

(5.24) 

, I (5.25) 
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where Do and Dl are only due to the initial Qo and Ql optimal quantizers which is achieved 

prior to adjustment, and 

(5.26) 

We argue that robustness of quantization watermarking scheme is not determined by the 

minimum distance between the sets of reconstruction points of different quantizers. Take 

the distributions of the host data So and 81 into account, according to (5.10), the statistical 

weighted square quantizer-distance robustness measurement after adjustment is as 

R = r:f::l [Po,klro,k - rLkl2] + r:f::l [Pk,llro,k -_rLkI2] 
= r:f[=l [PO,k(TO,k + Pk + Tl,k)2] + r:f[=l [Pk,l(TO,k + Pk + Tl,k)2] ' 

(5.27) 

where To,k and Tl,k are the magnitude that we adjust the reconstruction points rO,k and rl,k, 

respectively and Pk is the distance between the reconstruction points of the initial Qo and 

Ql quantizers. 
-
Then we can formulate designing the optimal quantization ensembles for watermarking 

into a Lagrangian function, 

J(k, 1) = -R+>'D 
= - r:f::l [PO,k(To,k + Pk + Tl,k)2] - Ef[=l [P1,k(TO,k + Pk + Tl,k)2] 
+>'[Do + r:f::l (PO,kTS,k) + Dl + r:f[=l (P1,kTf,k)], 

(5.28) 

which combines our proposed robustness measurement. The' cost function measures the 

MSE between the original data and the watermarked data. Because the MMSE quantizers 

are achieved before this optimization procedure, Do, Dl are supposed to be known as well 

as Pk, k = 1,2, ... , K, the initial distances between Qo and Ql quantizer points. A simple 

solution to the above equation is that the partial derivatives of J with respect to k., and li 

be zero. 

08J = - 2Po k (To k + Pk + Tn) - 2P1,k (To,k + Pk + Tl,k) + 2>'Po,k TO,k = 0 
urO,k ' J t 

=> 7i - (PO,k+P},k)(Pk+'il,k) , , 
O,k - (A-l)po,k-Pl,k 

(5.29) 

(5.30) 
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Thus we have 2K equations for 2K + 1 real variables (TO,h Tl,kk = 1,,'" K and A). This 

question is unsolvable. Fortunately there is a given criterion, it may be; a robustness 

condition,R = '2::=1 [PO,k( TO,k + Pk + TO,k)2] + 2::=1 [P1,k( TO,k + Pk + TQ,k)2] > Rg or a fidelity 

condition, Dw = Do + 2:~1 PO,kT~,k + Dl + 2::=1 Pl,kT~,~ < Dg • The additional equation 

makes the variables in kk' lk and A achievable. 

In Figure 5.9, we present all the steps involved in the ,watermark embedding process. 

dia multime 
hostda ta 

binary 
watermark 

optimal 
quantization 

--

R-D 
optimization 

robustness or 
i distort on 

requirement 

R-Doptimal embed 
quantizers ... watermark by 

quantization 

Fig'ure 5.9: Watermark embedding algorithm. 

5.5 Performance Evaluation 

wat ermarked 
data 

---tJIo 

In this section we show some experimental results to demonstrate the performance of the 

proposed scheme on source which subject to various distributions. To demonstrate the 

necessity of the adjustments on the quantizers, the robustness of the data hiding schemes 

with and without quantizers adjustment are compared. Since uniform quantization based 

odd-even embedding [2] is widely used in information hiding systems, this algorithm is also 

compared in the experiments. 

Multimedia data can be depicted by various' distributions, for example, image signal is 

often modelled as Laplace distribution or generalized Gaussian distribution. For each distri­

bution except uniform distribution, the obtained optimal quantizer is always totally different 

from and outperforms uniform quantizer. Meanwhile, uniformly distributed multimedia data 

is quite rare, so our proposed optimal quantization based embedding scheme is more effective 

os 
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than uniform scalar quantization based embedding scheme in solving multimedia information 

hiding problems. 

First, we examine the robustness of three quantization strategies on uniform distributed 

source. Figure 5.10 shows that the performances of the uniform quantizer and the minimum­

distortion quantizer are two single points in the Robustness-Distortion coordinate. That 

is because, given a source, there is only one fixed-level uniform' quantizer and minimum­

distortion quantizer. The quantizers .adjustment in accordance with the given robustness 

or distortion criterion generates various sets of quantization ensembles, which robustness­

distortion performance is represented by a R - D curve in Figure 5.10. For uniform distri­

bution, the achieved minimum-distortion quantizer is close to uniform, so the performance 

of the two quantizers are close to each other and are all around the border of R - D curve. 

Nevertheless, both minimum-distortion quantizer and uniform quantizer do not adapt to 

specific robustness or fidelity requirement of various data hiding applications. 

uniform distributed source 
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Figure 5.10: R-D performance of quantizers with uniform distributed source. 

Second, Gaussian distributed source is exploited to evaluate the performance of the new 

scheme. We can see that the constrained Robustness-Distortion optimal quantizers have 

better performance than the uniform quantizer. An obvious proof is that the point which 
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represents the performance of the uniform quantizer is below the R - D curve. The quanti-

zation ensembles obtained with our method present about 16.4% higher robustness than the 

uniform quantization ensembles at the same expense of distortion. At the same robustness, 

the constrained optimal quantizers have 12.4% less distortion than the uniform quantizers. 

Gaussian distributed source 
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Figure 5.11: R-D performance of quantizers with Gaussian distributed source. 

Figure 5.12 shows the performance of the method on the Laplace distributed source. 

The quantization ensembles generated with our method show about 20, relatively 18.2% 

higher robustness than the uniform quantization ensembles or 5.7% fidelity advantage over 

the uniform quantization strategy. 

Finally, we evaluate the performance of new scheme on digital image "Lena". Figure 5.13 

shows that we can achieve non-uniform quantizers which perform better than the uniform 

quantizer. The robustness of the non-uniform quantization can be 18 or relatively 23% higher 

than the uniform quantizer at the same expense of distortion. We can also find quantizers 

which show the same robustness to' the uniform quantizer but 4% less distortion. 
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Figure 5.12: R-D performance of quantizers with Laplace distributed source. 
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Figure 5.13: R-D performance of quantizers with image "Lena". 

5.6 Summary 

In summary, this chapter studies designing fixed-level non-uniform quantizers for robust 

information hiding. The robustness-distortion tradeoff is formulated into a Distortion-
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Robustness function D(R) and a Robustness-Distortion function R(D). Then the properties 

of R(D) and D(R) function are analyzed. We quantify the robustness of non-uniform quan­

tization watermarking scheme in terms of the distances between the sets of reconstruction 

points of different quantization ensembles. The distortion can also be formulated as a func­

tion of the adjustment magnitude on the reconstruction points of all involved quantizers. 

Based on the formulated R(D) function, plus a given robustness or distortion constraint, a 

Lagrangian function is established. By solving it, we achieve the robustness or distortion 

constrained optimal quantizers. A series of experiments have been made, in which various 

distribution sources are used. Results show that our proposed nonuniform quantization em-~ 

bedding method performs better than existing scalar quantizer based watermarking schemes 

and can satisfy users' various robustness or fidelity requirements. 
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Chapter 6 

Image Labelling System Based On 
JPEG2000 Compression Standard 

6.1 Introduction 

Watermarking has now come as a widely accepted approach for copyright protection and 

ownership identification. A lot of efforts have been dedicated to the development of robust 

watermarking schemes to achieve these goals. In this chapter, we consider identifying the 

ownership and distribution of image in digital network environment. 

There are many practical requirements for succ~ssful ownership and distribution identi­

fication. In order to be effective and workable in a multimedia environment, the copyright 

label must be difficult to remove and survive processing which does not seriously reduce 

the value of the image. This encompasses a wide range of possibilities including format 

conversions, data compression, and low-pass filtering. Besides these well known robustness 

requirements, a copyright labelling system should also satisfy the following basic functional 

requirements to be a reliable identification tool: 

1. The image must contain a label or code, which makes it as property of the copyright 

holder. 

2. The image data must contain a user code, which verifies the user is in legal possession 
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of the data. 

3. The image data is labelled in a manner which allows its distribution to be tracked. 

First, a digital terminal, for example "Cell-phone A", sends an image request to the ap­

propriate image server, "Image-server A" which belongs to "Vendor A". "Image-server A" 

replies by sending an image to the cell-phone. For copyright protection purpose, the image 

is watermarked. To reliably identify the ownership and distribution, the watermark mes­

sage should includes but not limited to some key words like "Vendor A", "Image-Server A", 

"Cell-phone A", etc. Thus even if the watermarked image is passed to "PC B" by "Cell­

phone A", the extracted watermark can still clearly demonstrate the owner, the origin and 

the distributor of the image. In network environment, transmitting a complete image from 

server to client is not only time-consuming, the precious network resource is also taken. So 

the multimedia data(image/audio/video) is often in its compression format in network ap­

plications. Clearly in image labelling system, the watermark embedding method should be 

integrated with image compression. 

It is worthwhile to point out that image' compression and frequency-domain watermarking 

share some common characteristics. In image compression, we 'encode significant frequency 

coefficients ,first because these coefficients convey more fundamental visual information about 

the image. In watermarking, we choose significant coefficients (coefficients with large ampli­

tude) for watermark casting to enhance its robustness since these coefficients often remain 

stable after the attack. If they do change substantially, the reconstructed image will be per­

ceptually different from the original one, and the value of protecting the intellectual property 

right of such a seriously degraded image becomes low. With this similarity, efficiency can be 

achieved by integrating frequency-domain watermarking procedures with compression pro­

cesses, since the most expensive computation related to the image transform has already 

been computed as one part of compression and decompression algorithms. 
; . , . I 

In this chapter, we propose a watermarking scheme integrated with the new ISO/ITU-T 

still image coding standard, JPEG2000. This scheme satisfies the design criterion for image 

labelling on network. 



6.2 Brief Review of JPEG2000 and Discrete Wavel:i 
Thansform 

The image compression scheme, on which our watermarking approach is based, is the latest 

still image compression standard, JPEG2000. 

JPEG2000 adopted a discrete wavelet transform (DWT) based technology in its com­

pression scheme [32]. This means that the first step in the algorithm is to decompose the 

input image into a set of subbands via a discrete wavelet transform. 

6.2.1 Discrete Wavelet Transform 

The basic idea in the DWT for a one dimensional signal is the following. A signal is split by 

a pair of low-pass and high-pass filters into two parts, high frequencies and low frequencies. 

The edge, texture and detail components of the signal are largely confined to the high 

frequency part. Conversely, the low-pass filter preserves the low frequencies of a signal 

. while attenuating or eliminating the high frequencies, thus resulting in a blurred version 

of the original signal. The low-pass and high-pass filter pair is known as analysis filter­

bank [32]~ The low frequency part is split again into two parts of high and low frequencies. 

This process is continued until ~he signal has been entirely decomposed or stopped before 

by the application at hand. For compression applications, generally no more than five 

decomposition steps are computed. Furthermore, from these DWT coefficients, the original 

signal can be reconstructed with another pair of low-pass and high-pass filters, known as the 

synthesis filter-bank [32). This reconstruction process is called the inverse DWT. The DWT 

and IDWT for one dimensional signal f(n) is best understood as successive applications of. 

analysis and synthesis filter-banks, as illustrated in Figure 6.1. 

-

The I-D DWT can be easily extended to two dimensions (2-D) by applying the filter­

bank in a separable manner. At each level of the wavelet decomposition, each row of a 2-D 

image is first transformed using a I-D horizontal analysis filter-bank. The same filter-bank 

is thEm applied vertically to each column of the filtered and subsampled data. The result 

of a one-level wavelet decomposition is four filtered and subsan:pled images, referred to as . 

! 
I 
i 
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!zo(n) 
A 

fen) 

Analysis Filter Bank Synthesis Filter Bank 

Figure 6.1: I-D, 2-band wavelet analysis and synthesis filter-bank. 

subbands. In a 2-D dyadic decomposition, the lowest frequency subband (denoted as the LL 

band) is further decomposed into four smaller subbands, and this process may be continued 

until no tangible gains in compression efficiency can be achieved. Figure 6.2 shows a 3-level, 

2-D dyadic decomposition and the corresponding labelling for each subband. For example, 

the subband label kHL indicates that a horiz<?ntal high-pass(H) filter has been applied to the 

rows, followed by a verticallow-pass(L) filter applied to the columns during the kth level of 

the DWT decomposition. Figure 6.3 shows a 3-level, 2-D DWT decomposition of the Lena 

image. 

6.2.2 JPEG2000 

Each subband will then contain different frequency components of the information in the 

original image with the appropriate subsampling. The used wavelet transform can be either 

a fioating- or a fixed-point wavelet, which implies lossy coding due to limited precision, or a 

reversible integer wavelet, which enables lossless coding. 

r The JPEG2000 image coding standard is based on a scheme originally proposed by Taub­

man and known as EBCOT ("Embedded Block Coding With Optimized Truncation"). The 

major difference between previously proposed wavelet-based image compression algorithms 

such as EZW C'Embedded Zerotree Wavelet ") [33J or SPIHT ("Set Partitioning in Hier-
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Figure 6.2: 2-D, 3-level wavelet decomposition. 

Figure 6.3: 2-D, 3-level wavelet decomposition of Lena. 

archical Trees") [34] is that EBCO'r as well as JPEG2000 operate on independent, non­

overlapping blocks which are coded in several bit layers to create an embedded, scalable 

bitstream. Instead of zerotrees, the JPEG2000 scheme depends on a per-block quad-tree 

structure since the strictly independent block coding strategy precludes structures across 

subbands or even code-blocks. These independent code-blocks are passed down the "coding 

pipeline" shown in Figure 6.4. and generate separate bitstreams. Transmitting each bit layer 

':1 
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corresponds to a certain distortion level. The partitioning of the available bit budget be-

tween the code blocks and layers, i.e. "truncation points" is determined using a sophisticated 

optimizatio!! strategy for optimal rate/distortion performance. 

original 
uniform 

image data 
pre- quantization .. DWT .. 

processing 
.. with 

dead-zone 

, r--
co mpressed 

image 
codestream adaptive 

rate ... en~ropy arithmetic 
"'" ..... 

coding ""'" ...... 
allocation coding 

Figure 6.4: JPEG 2000 compression standard fundamental building blocks. 

6.3 Previous Work 

we embed 
watermark 

here 

Several attempts to introduce image wat~rmarkingtechnique into JPEG2000 system have 

been reported in the recent literatures [23][35][36]. All of them embed watermark into the 

wavelet domain. In Su's scheme [23J, a random noise sequence is generated as watermark 

and in each code-block, wavelet coefficients, which larger than a certain threshold value 0, 

are selected to bear watermark. To detect the embedded watermark, correlation detection 

is performed before dequantization to identify watermark. Hence reference watermarks are 

absolutely necessary in the watermarking system. In [35], Meelward exploited quantization 

index modulation (QIM) [13] to embed and detect watermark. Although watermark can be 

decoded directly in this way, the amount of data that can be embedded is quite limited. Chen 

et al. proposed a watermarking scheme,' in which the watermark is scattered, embedded' by . 

bit-plane modification, followed by distortion reduction operation. 
, f , 

Both the above three methods cast watermark just after the stage of quantization. Al-

though they fit into J~EG 2000 coding pipeline, the rate allocation procedure is not seriously 

considered. In jPEG2000, to generate an optimal image for a target file size (bit-rate), a rate 
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control process is performed after entropy coding. In [37], an efficient rate control method 

is proposed that achieves a desired rate based on post-compression R-D optimization. The 

rate control algorithm finds the optimal bit allocation for all code-blocks, such that the total 

distortion is minimized subject to the target bit-rate. 

Clearly the distortion brought by the rate control threatens the existence of watermark. 

The strength of watermark should be related to the compression ratio or bit-rate. For mild 

compression, the rate distortion is small and the energy of watermark should be low to 

maintain the image quality as good as possible. On the contrary, for higher compression 

ratio, the energy of watermark should be high enough to survive strong distortion caused 

by rate control. Furthermore, with declined image quality caused by compression, even 

a strong watermark becomes imperceptible. In our new watermarking algorithm, wavelet 

coefficients are modified depending on the compression ratio (bit-rate). A weak watermark 

is embedded into a mildly compressed image, while a strong watermark is applied to heavily 

. compressed image. It is shown in this chapter that the new adaptive method integrates with 

JPEG2000 standard very well. The watermark is detected in a simple and fast way without 

assistance from either the original image or the reference watermarks. Meanwhile, by taking 

into account the compression ratio, the tradeoff between imperceptibility and robustness is 

balanced. 

6.4 Watermarking System Integrated with JPEG2000 

6.4.1 Watermark Embedding 

In the proposed watermarking method, watermark is embedded into the detail sub-bands of. 

middle resolution after stages of quantization and region of interests (ROI) scaling. i)uring. 

the stage of quantization, a wavelet coefficient Sb( U, v) in subband b is mapped to a quantized 

index value qb(U, v). It is norma~ized as the most significant bit (MSB) carries the sign bit 

and the remaining bits represent the absolute magnitude of the coefficient. In this work, we 

assume that 8 bits are utilized to represent the integer part of qb(U, v). Thus the values of 

wavelet coefficients fall into [-255,255]. 

i ., 
,i 
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For wavelet coefficient, the operation of finding the optimal truncation point is nothing 

but performing an optimal non-uniform scalar quantization. Table 6.1 records the value 

of some ,wavelet coefficients before and after rate allocation with different target bit-rate 

cp. We find that the degree of quantization highly depends on cp. This point is quite easy 

to understand as the aim of this truncation operation is to achieve cp. Since the optimal 

truncation point is determined in the way that the whole image is represented best, the 

quantization step of each individually processed code-block differs from each other and not 

only determined by cp, factors like the significance of this code-block among all code-blocks are 

also taken into account. Fortunately, it is not necessary to estimate the accurate quantization 

step; a coarse estimated quantization interval Q is enough for watermarking. Actually we 

prefer Q a little bit larger than the true interval, especially when the compression ratio is low, 
l 

in order to reliably decode the watermark. The basic idea is to make the image distortion 

caused by the watermarking conforming to the distortion caused by the entropy coding such 

that the watermark embedding'capacity is maximized. 

'!able 6.1: Example wavelet coefficient values before and after rate control with different com­
pression degrees(coefficients are selected randomly from 3HH subband of image "Baboon" with 
Jasper). 

original 
coefficient cp = 1bpp cp = 0.625bpp cp = 0.5bpp cp = 0.25bpp cp = O.lbpp cp = 0.08bpp 

2 2 3' 0 0 '< 0 0 
12 12 14 12 0 0 0 
23 23 22 20 24 0 0 
-32 -32 -34 " -36 -48 -48 0 
45 45 46 44 48 48 0 
-66 -66 -66 -68 -80 -96 -64 
104 104 106 108 112 96 128 

" 

f 

The binary watermark w is embedded into selected code-blocks as follows; . 

• Step 1. E~timate Q with the provided target bit-rate according to Table 6.2. 

-
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Table 6.2: Estimated quantization intervals for different hit-rate value. 
bit-rate <p estimated quantization interval Q 

>1 2 
1- 0.8 4 

0.8 - 0.5 8 
0.5 - 0.25 16 
0.25 - 0.2 32 
0.2 - 0.1 48 

< 0.1 64 

• Step 2. The watermark bits to be embedded are each repeated M times: M is also 

determined by <p, for watermark bits embedded in mild compressed image are more 

fragile to common image processing, hence a large M is need to improve its robustness. 

Note that the spread watermark is still binary. 

• Step 3. Coefficients belong to [-Q /2, Q /2) are excluded to bear watermark. 

• Step 4. Positive coefficients are mapped to the nearest even multiples of Q except 0 to 

embed "0" and the nearest odd multiples of Q to embed "1", while negative coefficients 

are mapped to the nearest even multiples of Q except 0 to embed "I" and the nearest 

odd multiples of Q to embed "0". The above operation of encoding bit "I" and "0" 

can be formulated as (6.1) and (6.2), ' 

Y= 

Y= 

[(L2QJ + 0.5) x 2Q] 

(rTcfl x 2Q) 
Q 
-2Q 

( L ¥Jl J x ,2Q) 
[(r 2Q 1 - 0.5) x 2Q] 
2Q 
-Q 

x>2Q 

x< -Q 
Q/2 < x <2Q 
-Q < x <-Q/2, 

x>Q 

x<-2Q 
Q/2 5:. x 5:. Q 
-2Q 5:. x < -Q/2, 

where x is the original data and Y is the modified data. 

(6.1) 

(6.2) 

F 
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6.4.2 Watermark Retrieval 

Watermark is decoded before dequantization during image decompression. In terms of the 

bit-rate of co'mpressed image, we can achieve the same quantization interval Q as the one 

for watermark casting. The received coefficient j) is mapped to the nearest multiple of Q, d. 

Then the watermark sequence' is recovered by 

b - {I d = (2n - l)Q or d = (-2n)Q n = 1 2 3 ... 
- 0 d= (2n)Q or d= (-2n+ l)Q; " . 

(6.3) 

Finally the M consecutive decoded watermark bits are summed and a threshold decision 

yields the output bits. Thus, the results of the watermark decoder are the same watermark­

bits that have been embedded. 

6.5 . Simulation Results 

In this section, the performance of the proposed watermarking scheme to various distor­

tions is demonstrated by experiments on grayscale image. The JPEG2000 codec that is 

used to test the new watermarking system is Jasper, an implementation of the JPEG2000 

encoder/decoder [6]. The objective quality of watermarked image is indicated by PSNR. 

The robustness under several intentional/unintentional attacks is represented by bit correct 

ratio (BCR). The,grayscale image "baboon" is for demonstration here. The testing results 

for other images are similar. 

In the experiment, the watermark is embedded into the quantized coefficients of 3HH 

subband (5 decomposition levels are default for Jasper Codec). The original and water­

marked images are shown in Figure 6.5. In Table 6.3, the PSNR (~eak-Signal-Noise-Ratio) 

of compressed image with and without watermark as well as watermark embedding capac­

ity (Le. the maximal number of watermark bits can be embedded) are shown i~ terms of 

various compression degrees. The results show that, the new bit-rate adaptive approach is 
I 

superior to the watermark-strength fixed scheme in that the ne~ method takes advantage of 

the compression to improve the watermark embedding capacity while minimizes the image 

distortion on top of the compressed images with various compression bit-rates. 

• 
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(a) bit-rate= 1 bpp (b) bit-rate=1 bpp 

(c) bit-rate=O.5bpp (d) bit-rate=O.5bpp 

(e) bit-rate=O.25bpp (f) bit-rate=O.25bpp 

(g) bit-rate=O.1 bpp (h) bit-rate=O.1 bpp 

Figure 6.5: (a)(c)(e) and (g) are JPEG2000 rompressed images with bit-rate=l , 0.5 , 0.25, O.lbpp 
respectively; (b)(d)(f) and(h) are their watermark embedded counterparts respectively. The details 
are presf'nted in Table 3. 
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Table 6.3: Watermark detector results, mea.'lured in BCR, with various compression degrees. 
r.p PSNR without watermark PSNR with watermark capacity (bits) BCR 
1 60.89dB 50.38dB 220 100% 

0.625 45.63dB 43.58dB 220 100% 
0.5 40.83dB 38.07dB 373 100% 
0.25 30.59dB 28.83dB 373 100% 
0.1 23.91dB 23.41dB 251 100% 

Robustness is tested on four conditions: JPEG baseline, JPEG2000 compression, additive 

noise and low-pass (noise-removal) filtering. 

JPEG is widely used for image compression. Figure 6.6 shows the results of the test for 

robustness against JPEG compression. When JPEG compression quality factor is between 

50 and 100, the BCR is 100% for r.p = 0.1 and nearly 100% for r.p = 0.25 and 0.5. For <p = 1, 

the watermark scheme is reliable until the quality factor is smaller than 60, as shown in . 
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Figure 6.6: The robustness of watermarked images against JPEG baseline compression with four 
different bit-rates. 

r 
Also we test the watermarked image with JPEG 2000 compression with different bit rate 

<p. The results are shown in Figure 6.7. For r.p = 1 and r.p = 0.5, the decoded watermark is 

reliable until the compression bit-rate smaller than 0.5bpp. 

b 
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Figure 6.7: The robustness of watermarked images against JPEG2000 compression with four 
different bit-rates. 

Noise is the most common distortion in image processing and transmission. In the ex­

periments, Gaussian noise with variance from 0.01 to 0.05 is added into the watermarked 

image. As shown in Figure 6.8, The BOR is about 100% for 'P = 0.1 and 0.25. For'P 1 

and 0.5, the detected watermark is not reliable when the noise variance is larger than 0.02. 

Noise-removal filter is another common attack to the watermarked image. In the exper­

iments, Wiener filter is used to filter the watermarked image with estimated noise variance 

of 0.01, 0.02, 0.03, 0.04 and 0.05. Refer to Figure 6.9, the BOR is 100% for 'P = 0.1, around 

95% for 'P 0.5 and 0.25, and 90% for 'P = 0.1. 

It can be seen from the experimental result, the new compression adaptive watermarking 

algorithm is robust to these common attacks and distortions while keeping an acceptable 

visual quality of the image. 

6.6 Summary 

In this chapter, we presented a compression degree adaptive watermarking method inte­

grated with JPEG2000 image compression standard. Binary watermark is embedded into 
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Figure 6.8: The robustness of watermarked images against additive noise with four different 
bit-rates. 
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Figure 6.9: The robustness of watermarked images against noise-removal filtering with four dif­
ferent bit-rates. 

middle frequency wavelet coefficients after quantization. During image decompression, the 

watermark is decoded without assistance from either the original image or the reference 

watermarks. The interval of quantization is designed based on the target bit rate, hence 
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the strength of watermark is proportional to the compreHsion ratio. We point out that) in 

this way) not only watermark can survive rate distortioll) the tradeoff between visual quality 

and robustness is also balanced. The experiments show that the new algorithm has a good 

performance in terms of both robustness and fidelity. 



Chapter 7 

Conclusions and Future Work 

Imperceptibility, robustness against moderate compression and processing are the ba­

sic but rather contradictory requirements for watermarking applications. The design of a 

successful watermarking scheme always involves a tradeoff between imperceptibility and ro­

bustness. This thesis focuses on the situation in which the watermarked signal undergoes 

common signal processing: additive noise, iUtering, lossy compression. Distortion brought 

by watermarking is also considered as keeping a multimedia work's commercial value is a 

prerequisite for all data hiding algorithms. 

In this work, two common types of watermarking algorithms are considered: spread 

spectrum and quantization based watermarking algorithm. For the spread spectrum water­

marking schemes, we present an adaptive Wiener denoising filter based watermark detector 

and the experimental results show that it has better performance than Hartung's low-pass 

filter based detector. 

For quantization based watermarking algorithms, the problem of designing embedding 

algorithm is transformed to designing signal constellations to which the host data is mapped 

to embed watermarking. Here both the look-up table for LUT embedding and the quan­

tization ensembles for quantization watermarking are deemed as signal constellations. The f 

signal constellation determines the property of the watermarking scheme: robustness, dis­

tortion, etc. That is, depending on LUT or the position of quantizer points, a quantization 
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based watermarking algorithm presents robustness to attacks and distorts the host data. 

But no scheme can achieve both maximum robustness and minimum distortion at the same 

time. In this thesis, This problem is changed to look for an optimal watermarking strat­

egy with respect to the embedding distortion given robustness constraint or with respect 

to robustness given fidelity criterion. A solution to optimizing quantization watermarking 

schemes is provided based on information theory, besides, robustness-distortion function 

R(D) and distortion-robustness function D(R) are developed. Experimental results show 

that the generated watermarking scheme is superior in terms of robustness and fidelity. 

Proposed methods in this thesis can be applied directly in most applications where ro­

bustness and fidelity are major concern, or applied to some previously proposed and future 

robust watermarking algorithms to enhance performance. It is important to notice that our 

work in this thesis does not cover all aspects of multimedia data hiding. This field is so 

wide that various disciplines such as image/audio/video signal processing, computer secu­

rity," human perception and business are involved. Therefore, studying various aspects of 

data hiding continues to be necessary. 

A few possible future research directions are: 

1. We have noticed that changes in different coefficients may have different perceptual 

sensitivity on human eyes. Thus, human perceptual models are often theoretically and 

experimentally derived to determine the changes on a signal which remain impercepti­

ble. One of these is the Just-Noticeable-Difference (JND) model. The JND threshold 

is such that changes in the frequency content in the image/audio/video in the partic­

ular frequency hand below the threshold are not noticeable. It would be interesting to 

incorporate JND model into our analysis. 

2. The watermark embedding and extraction are treated as a watermark communication 

channel. The capacity associated with the watermark channel is used to evaluate 

the efficiency of watermark scheme. Channel capacity is a theoretical upper bound 

of how many bits of information can be reliably transmitted through the channel 

with arbitrarily low probability of bit error. Channel coding theorem states that all 
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rates below capacity are achievable. However, for the real-world scenarios in today's 

data hiding research, there exists a discrepancy between the theoretical capacity and 

practically achievable watermark embedding capacity. A potential further research 

problem is how to encode and decode information to approach the channel capacity. 

3. In a spread spectrum algorithm, or quantization based algorithm using repetition code, 

each watermark bit is transmitted through parallel channels simultaneously. Each 

channel has its O\vn noise characteristics. How to spread and embed watermark into 

frequency coefficients to survive various expectable channel noise and how to extract 

watermark from individual extracted watermark bits are challenging topics. Chan­

nel coding which involves the addition of redundancy to allow robustness to a noisy 

transmission environment is a promising solution to this problem. 

4. More emphasis should be placed on applications. We can see more and more real-time 

multimedia services are delivered through internet to a mix of users. A possible solution 

is source coding (quantization and compression) methods combined with transmission 

schemes providing different grades of services. Watermarking schemes integrated with 

this joint source and channel coding is yet to be studied in detail and optimized. 

As an example, to hide information in video stream over internet is needed to defend 

pirates, track transaction and access control. Then more factors, such as the property 

of the network, video CODEC, etc., have to be taken into account before a successful 

data hiding algorithm can be achieved . 
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Appendix A 

Constrained Optimization: Lagrange's 
Method 

The Lagrange method is a method used for constraint optimization. Suppose we want to 

maximize (or minimize) a function of n variables: 

(A.l) 

subject to p constraints 

(A.2) 

The first step of Lagrange's solution is to introduce p new parameters and write down 

the Lagrangian function: 

(A.3) 

the new parameters .\ is called the Lagrange multiplier. L has became the function we want 

to maximize. Therefore we take partial derivatives of L and set them equal to zero. Hence 

the constrained optimization problem is formulated and solve by the following theorem, 

Theorem (Lagrange) Assuming appropriate smoothness conditions, minimum or max­

imum of f(x), subject to the constraints (A.2), that is not on the boundary of the region 

where f{x) and 9j(X) are defined can be found by introducing p new parameters '\1, "\'2, .. ,,"\'p 

and solving the system 

(A.4) 
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This amounts to solving n + p equations for the n + p real variables in x and )... 
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