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Abstract

Hand gesture and posture recognition play an important role in Human-Computer Interaction (HCI)

applications. They are main attributes in object or environment manipulations using vision-based inter-

faces. However, before interpreting these gestures and postures as operational activities, a meaningful

involvement with the target object should be detected. This meaningful involvement is called engage-

ment. Upper-body posture gives significant information about user engagement.

In this research, for our first contribution, a novel multi-modal model for engagement detection,

called Disengagement, Attention, Intention, Action (DAIA) framework is presented. Disengagement

happens when the user is disengaged from the target object. Attention occurs when user pays attention

to the target, but doesnt have the intention to take any actions. In Intention state, the user intends to

perform an action, but still does not. Action state is when the user is performing an action with hand.

Using DAIA, the spectrum of mental status for performing a manipulative action is quantized in a finite

number of engagement states. The second contribution of this research is in designing multiple binary

classifiers based on upper-body postures for state detection. 3D skeleton data is extracted from depth

image and is used to extract body posture information. Combining the output of all binary classifiers in

an order makes engagement feature vector. Moreover, This feature vector could be extended using other

channels of biometric information such as voice or gaze. However the engagemnet classifiers recognize

the state change with acceptable accuracy, minor changes in body postures or false detection of joint

locations for some milliseconds may result in transition to another states. For removing this unwanted

iii



noise and increasing the accuracy of the system, an Finite State Machine (FSM) is designed based on

the properties of human activities. The design of Engagement FSM is our third major contribution.

Finally, rotation matrix is used to increase the number of samples for training the deep learning classifier

for hand posture recognition.
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CHAPTER 1. INTRODUCTION

Hand gesture and posture recognition play an important role in Human-Computer Interaction (HCI)

applications. Hand gestures and postures are main attributes in object or environment manipulations

using vision-based interfaces. However, before interpreting these gestures and postures as operational

activities, a meaningful involvement with the target object should be detected. This meaningful involve-

ment is called engagement[1].

In this research, a novel multi-modal model for engagement detection, DAIA, is presented. DAIA

consists of four different distinguishable mental states, namely, Disengagement, Attention, Intention, and

Action. Disengagement happens when user is disengaged from target object. Attention occurs when the

user has attention to the the target, but doesnt have intention for taking any actions. In Intention state,

user intends to perform an action, but still not doing it. Finally, in Action state, user is performing an

action with hand. Using DAIA, the spectrum of mental status for performing a manipulative action is

quantized in a finite number of engagement states.

Based on important body postures factors regarding engagement, multiple binary classifiers are

desinged for upper body postures for state detection. 3D skeleton data is extracted from depth image

and is used to extract body posture information. By combining the output of all binary classifiers an

engagement feature vector is created. This feature vector could be extended using other channels of

biometric information such as voice or gaze. Using the engagement feature vector, an SVM classifier is

trained to detect the most important transition in mental state which is Intention to Act, and indicates

the transition from Attention to Intention or Action.

While these classifiers recognize the state change with acceptable accuracy, minor changes in body

postures for a few milliseconds may result in transition to other states. To remove this unwanted noise

and increase the accuracy of the system, an FSM is designed based on the properties of human activities.

The design of Engagement FSM is the third major contribution of this research. Different hand postures

in Intention state provide useful information for the system. For recognizing different hand postures in

this state, a novel algorithm for hand-shape modeling is proposed. This algorithm is the forth major
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contribution of this research.

Another contribution of this research is in introducing a new hand posture dataset, HandReader

dataset, which consists of 724 RGB images from 10 different hand postures of 74 idividuals. These

postures are 10 American Sign Language (ASL) alphabets; namely A,B,C,D,G,H,L, I, V, and Y .

Upper-body posture gives significant information about the user’s engagement.

For vision-based hand posture and gesture recognition, beside common RGB cameras, development

of a range of imaging technologies using Time-of-flight (ToF) cameras and RGB-D sensors such as

Kinect, and miniaturized camera systems such as wearable cameras or smart-phones have paved the way

for completely new types of techniques for hand posture and gesture recognition applications. These

applications include desktop computer interaction, smart meeting rooms, sign language recognition,

virtual object manipulations, and health-care intelligent systems.

In this chapter, we first introduce engagement metrics and definitions, and afterwards, review hand

posture and gesture recognition technologies.

Communication between human and computer play an important role in our daily life. We are always

looking for more convenient and faster ways of interacting with machines. Interaction between human

and computer occurs at the user interface, which could be both software and hardware based. Characters

or objects displayed by software on a computers monitor, or the input received from users via hardware

peripherals such as keyboards and mouses, and other user interactions with large-scale computerized

systems such as aircraft and power plants are some examples of human-computer interaction. Human-

computer interaction involves studying, planning, and designing of the interaction between people (users)

and computers. Human-computer interaction involves different human body positions and actions. There

are many challenges to proposing a useful model for communication and interaction. However, the easiest

way to interact with a machine is similar to the method used for the daily communication between two

human beings.

Gestures are a form of nonverbal communication in which visible bodily actions are used to commu-
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nicate important messages, either in place of or together with speech and in parallel with spoken words.

Gestures include movement of the feet, hands, face, or other parts of the body.

Gestures are a form of nonverbal communication in which visible bodily actions are used to commu-

nicate important messages, either in place of or in parallel with spoken words. Gestures include movement

of the feet, hands, face, or other parts of the body.

To achieve a natural human-computer interaction for virtual environment applications, the human

hand could be considered as an input device. Hand gesture is frequently used in everyday life. It is also an

important component of body language. Hand gestures are a powerful human- to-human communication

modality. Compared with the traditional Human-Computer Interaction devices, hand gestures are less

intrusive and more convenient in exploring the 3D virtual worlds [2]. They also can transfer information

between human and machine even faster. The human hand is a complex articulated object consisting of

many parts. Considering the global hand pose and each finger joint, the human hand motion has roughly

27 Degrees of Freedom(DOF) [2]. Therefore, hand gesture/posture recognition is a challenging issue in

computer vision and pattern recognition. Furthermore, hand gestures in sign language play an important

role in the daily life of deaf people. Sign language is a language which uses manual communication

and body language to convey meanings. Sign language involves combining postures, orientation and

movement of the hands, arms or body, along with facial expressions to express a speakers thoughts.

This paper examines the use of computer vision and pattern recognition for interpreting 10 different

non-motion-based signs from American Sign Language.

1.1 Motivation

Gesture recognition technologies, especially hand gesture recognition, have variety of applications in

different fields. Everyday, new devices and consumer electronics based on these technologies come to

the market. For instance, some years ago, Microsoft designed a motion detection device called Kinect,
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which is based on the gesture recognition technologies. Kinect is a motion sensing input introduced

for Xbox 360 video game console and also Windows PCs. Kinect uses an infrared camera to create a

depth map of the scene in front of the camera. It enables users to control and interact with Xbox 360

through gestures and spoken commands and without the need for a game controller. Selling a total of

8 million units in its first 60 days, Kinect holds a Guinness World Record for being the fastest selling

consumer electronics device. Following this recognition, Kinect was deployed in many applications as an

interactive input device[3, 4].

The application of hand gesture and posture recognition technology is not limited to game controllers.

Gesture recognition is useful for processing information which is not conveyed through speech or type.

Sign language recognition [5, 6, 7, 8], socially assistive robotics[9, 10, 11], directional indication through

pointing[12, 13], virtual controllers, and remote controllers[14, 15] are a few examples of technologies

employing hand gesture and posture recognition. The main focus of this research is on pixel-based

posture recognition using a single camera. This approach is useful in both RGB and depth-based hand

posture classification.

1.1.1 Market Trend

The market is changing rapidly due to evolving technology and increasingly more original equipment

manufacturer are adopting gesture recognition technology. Markets and Markets report that from 2013

to 2018 the gesture recognition market is estimated to grow at a healthy Compound Annual Growth

Rate(CAGR), and to exceed $15.02 billion by the end of 2018. Analysts predict that the Global Gesture

Recognition market grow at a CAGR of 29.2% over the period from 2013 to 2018. Currently consumer

electronics application contributes to more than 99% of the global gesture recognition market. As per

the report published, the healthcare application is expected to emerge as a significant market for gesture

recognition technologies over the next five years. The automotive application of gesture recognition is

expected to be commercialized in 2015 [16]. Gesture recognition is one of the fastest growing technologies,
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and in the near future lots of new applications will be developed based on this novel type of human-

computer interaction.

1.2 Challenging Issues

1.2.1 Engagement Detection Challenges

User mental status detection has variety of applications in human activity recognition systems. Without

a proper algorithm for detecting human intention to interact, the vision-based system is always on,

therefore any kind of activity may interpreted as an interaction. This problem is known as ”Midas

Touch” problem. In the most of real applications such as gesture-based game controllers, baseline

approach is defining some focus gestures such as waving hand to let the controller understand the user

is going to start a meaningful interaction. Furthermore, sequences of gestures should be segmented for

gesture recognition; this is known as Gesture Segmentation.

Designing a framework capable of recognizing user’s intention to interact without any focus gesture

is highly desirable. Furthermore, without a proper gesture segmentation technique, gesture recognition

systems could not work accurately.

A variety of studies strives for a multi-modal approach using some features of facial expression, body

motion, voice, or seat pressure to elucidate on mental states for performing an action. Body posture

gives important information about engagement. Various approaches have been investigated based on

body language analysis to improve human-computer interaction. Intention to engage with an agent e.g.

a robot [17, 18], or interactive display [19], are some of these studies. Measuring the engagement intent

is used in service robots to identify relevant gestures from irrelevant gestures[17, 20, 21].In addition,

intention to engage with a display for improving user identification is addressed in Schwarz et al. [19].

The role of body pose and motion in users interest detection using body tracking systems such as Kinect

has been addressed in several research [22, 23, 24, 25]. In our study, after investigating all related

6



CHAPTER 1. INTRODUCTION 1.2. CHALLENGING ISSUES

literature, we propose a novel framework for engagement and ”Intention to Interact” detection which is

an essential tool for hand posture and gesture recognition.

Moreover, for hand posture recognition, we study several shape descriptors to find the best com-

promise between accuracy and computation of hand posture recognition which will be appropriate in

a real-time application. We study different algorithms used for feature extraction from static hand

gestures, as well as the classification techniques employed for recognition. Multiple feature extraction

methodologies and classification techniques have been compared in recent comparative studies [26, 27].

Bourennane and Fossati[26] examined two families of contour-based Fourier descriptors and two sets of

region-based moments, all of them invariant to translation, rotation and scale changes of hands. These

approaches are also independent from the cameras view point. The experiments were performed on the

Triesch benchmark database and on their large internal and private dataset. Their results show that

the best recognition rates with Euclidean distance are given by Fourier Descriptors. Bourennane and

Fossati[26] also proposed their evaluation with different classifiers with Fourier Descriptor to examine

whether the results were better than the Euclidean distance. They employed Bayesian classifier, support

vector machine, and k-NN as their classification techniques. The recognition rates also increased with

respect to Euclidean distance. The authors concluded the results were similar for all three types of

classifiers, with k-NN being slightly better.

Trigueiros et al. [27] also presented a comparative study of seven different algorithms used for feature

extraction for hand posture modeling. These algorithms are Radial Signature, Histogram of Gradients

(HOG), Centroid Distance Signature, Local Binary Patterns(LBP), Fourier Descriptors, Centroid Dis-

tance Fourier Descriptors, and the Shi-Tomasi Corner Detector. Trigueiros and colleagues analyzed these

algorithms with RapidMiner in order to find the best learner. Their results showed that when Radial

Signature and Centroid Distance are used separately, they give better results in terms of computational

complexity.
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1.3 Applications

The applications of this study are as follows:

• To create a framework which assists in hand posture and gesture recognition

• To create a smart meeting room that detects the level of people’s engagement

• To create a real-time system which allows users to control the virtual objects with hand gestures

and postures

• To automatically find the engaged person with the object or screen in mulit-user platform

• To control a mobile robot using hand postures and gestures

• To help deaf people interact with computers using American Sign Language (ASL) or other sign

languages that have large classes of postures

• To create a real-time system that can learn from a limited number of posture samples

• To create a real-time system that allows users to train their own hand posture classes (for example

for controlling objects in a computer game), and is optimized automatically based on the set of

postures defined by the user.

• To control a mobile robot using hand postures.

• To allow directional indication through pointing (for example turning lights off or on by pointing

to the source, or changing the TV channel using different postures); a strategy which is useful in

smart homes.

• To create virtual controllers in Virtual Reality (VR) systems.
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1.4 Objectives and Contributions

We can briefly summarize the objectives of this research as follows:

• To find a solution for ”Midas Touch” Problem

• To quantize mental states of engagement into distinguishable states

• To find out a meaningful relationship between Upper-body posture and engagement states

• To discover transition rules among engagement states

• To recognize hand postures

The following contributions addresses the objectives of this study:

• Engagement States: Spectrum of mental states of engagement is quantized in four distinguish-

able states (Disengagement, Attention, Intention, Action). However some of these states are men-

tioned in previous research with similar applications of engagement detection (Michalowski et

al.[28], Bianchi et al.[22] ,Schwarz et al.[19], Vaufreydaz et al.[29] Leite et al.[30], but to the best

knowledge of author, this is the first time that engagement detection is quantized to these four

distinguishable mental states which is very useful for gesture segmentation.

• Engagement Feature Vector: A new mapping between Human Body Joint 3D Positions

(P3×N×T ) and Engagement Feature Vector (EC×T ) is offered as follows:

f : P3×N×T 7−→ EC×T (1.1)

In equation 1.1, C is the number of binary classifiers. Similar to Schwarz et al. (2014)[19], we have

used multiple weak binary classifiers to determine whether a basic feature exists in human body

posture. For instance if the location of hand is above head or not. By the way, we have extended
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binary classifiers to more meaningful features and designed 37 classifiers instead of 5 presented

in [19]. However in this research we have just mentioned to body joint locations, our mapping

function could be extended as multi-modal data to Engagement Feature Vector. For example, we

can easily add another basic feature such as gaze binary classifier (1 if not gazing, 0 if otherwise) or

voice binary classifier (1 if user voice exists, 0 if otherwise). So, our generalized mapping function is

as follows which maps a combination of all multi-modal data (MT ) to Engagement Feature Vector

(EC×T ) as follows:

f : MT 7−→ EC×T (1.2)

• Engagement Finite State Machine (FSM): The main goal for designing Engagement FSM is

classifying each of the four states not only based on Engagement Feature Vector, but also based

on the previous state. The Engagement FSM brings memory for the classifier. Without FSM,

Engagement Classifiers should only decide based on the current frame and features extracted from

human, e.g. 3D joint locations. By introducing a Finite State Machine and designing proper

Transition and Guard conditions, the system can classify more precisely.

• Training Hand Posture Classifiers with a small number of samples: We have designed

several classifiers for hand posture recognition. We created a dataset of 740 samples for 10 different

hand postures from 74 different individuals. We have shown how to increase the number of samples

for training the deep learning classifier by rotation matrix for small deviations. Our approach

helped in creating hand posture classifiers which are sensitive to direction of hand postures, but

invariant to small deviation, scale, and transformation.

In the following section, a more detailed outline of our approach is presented.
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1.5 Our Approach

In all feature extraction and classification steps, we consider using and developing real-time algorithms

to achieve better results in terms of computational complexity. Furthermore, the current widely used

RGB-D sensors, such as Kinect, do not give us a very high depth resolution for objects which are very

close together (i.e., the different parts of hand in each posture). Therefore, we can’t count on the

internal features of the depth image of a hand for creating a 3D model. In addition, even if we were

able to create a 3D model, it would have been computationally expensive and not useful for a real-time

application. Considering these requirements and limitations, we chose 2D appearance-based approach

and will develop algorithms based on this model.

After studying all recent descriptor for modeling the shape of a hand, our goal is to present a

new shape descriptor, or optimize the best available one, for static hand postures that provides better

results with minimum computational complexity. The computation complexity should be suitable for

usage in real-time applications. Furthermore, all of the above mentioned shape descriptors are reported

as invariant to translation, rotation and scale changes of hands. This set of properties are essential

for an efficient shape descriptor[31]. However, almost similar hand postures with different orientation

may be used for not the same signs. For instance, I and J have similar static posture shapes in ASL,

but the orientation of these two postures is different. A rotation invariant shape descriptor puts both

these postures into the same class. In this research, we try to develop a shape descriptor which could

be rotation invariant or rotation sensitive, based on our decision. Even if our descriptor is rotation

invariant, we are still able to report the orientation angle of the posture with respect to the trained

model after classification.

For data analysis, feature selection and extraction, dataset preparation and data transformation are

the key steps. To construct a reliable model of hand postures, it is necessary to have the hand shapes

of a large number of people. Our study addresses this issue by introducing a public RGB and binary
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static hand posture dataset. This dataset might be used as a benchmark dataset for future research.

Currently, researchers use their own internal datasets to evaluate the performance of feature descrip-

tors. For instance, Bourennane and Fossati[26] used an internal dataset that was not published publicly,

and therefore, cannot be compared with other studies. In addition, although there are publicly avail-

able datasets, such as NTU-Microsoft-Kinect- HandGesture dataset[32], that contain 1000 cases, these

datasets have been obtained from only 10 different persons. Researchers have also used Trieschs static

hand posture dataset[33] as a benchmark. Trieschs dataset consists of 10 hand postures (A, B, C, D,

G, H, I , L, V, Y ) from 24 people with 3 different backgrounds (light, dark, complex). Most real time

approaches, after some preprocessing steps convert a hand shape to a 2D binary image called silhouettes,

and extract features from these black and white binary images. In addition, as mentioned earlier, after

introducing RGB-D sensors, the complex background will not be one of the main challenges for extract-

ing hand from the background. Hence, among all these images, those with dark or light background

carry distinct information about the hand shape and posture for different people and are useful for the

purpose of hand shape modeling. We chose the images with dark background for extracting the hand

shapes. We also extended Trieschs static hand posture dataset by creating HandReader static hand

posture dataset. Our dataset consists of 500 images from 10 different hand postures showing 10 different

alphabets in American Sign Language. The dataset was created by capturing images from 50 people,

both males and females, performing the 10 postures in front of a camera. After some preprocessing

steps, we extracted binary images from Trieschs static hand posture dataset with dark background and

our own dataset to create a new static hand posture dataset, called HandReader2.

HandReader2 is a new dataset of hand-shape silhouettes which contains 128 × 128 binary square

images with the actual shape of hands exactly centered in the squares. This dataset consists of 740

square silhouettes from 10 different hand postures performed by 74 different people. From these 740

images, 500 are extracted from our HandReader dataset and 240 from Trieschs static hand posture

dataset. These postures are 10 American Sign Language alphabets (A, B, C, D, G, H, L, I , V, and
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Y). Creating this dataset allows us to make a more realistic hand shape model based on considerably

different hand shapes. HandReader2 is publicly available and can be used by anyone who is interested in

hand posture modeling or other related areas. 6.4 shows a set of these 10 silhouettes from HandReader2

dataset.

1.6 Research Publications

List of all publications and their full-text related to this research could be accessed from Google Scholar

page[34] or author’s homepage[35, 36]. There is also a continuous research for Alzheimer’s Disease

detection [37, 38, 39, 40, 41] using Deep Learning approach that author is involved.

1.7 Summary

Hand gesture and posture recognition play important role in HCI applications. They are main attributes

in object or environment manipulations using vision-based interfaces. However, before interpreting these

gestures and postures as operational activities, a meaningful involvement with the target object should

be detected. This meaningful involvement is called engagement.

In this chapter, the outline of our research for engagement detection is presented as DAIA frame-

work. DAIA consists of four different distinguishable mental states which are Disengagement, Attention,

Intention, and Action. Disengagement happens when user is disengaged from target object.
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2.1 Engagement Theories and Modeling

The understanding and analysis of engagement has a long history. It originated in psychological[42],

educational[43], and organizational fields[44] to investigate and evaluate the focus, and thereby outcome,

of learning and work. It has been a qualitative, observational evaluation of an individuals state, that

focused on long term engagement rather than situational participation.

As more artificial agents are developed the HCI community started focusing on the detection of

engagement of the human user on an immediate level to improve computer responses for more natural

interfaces. Qualitative and automated methods of engagement detection, qualitative and automated,

enables us to provide new insights into automated work engagement detection in the work environment.

One of the advantages of engagement detection is gesture segmentation. The gesture segmentation

problem is the first step towards visual gesture recognition, i.e., detection, analysis and recognition of

gestures from sequences of frames[45].

For gesture recognition, gesture segmentation involves finding the frame in which a gesture starts,

and the last frame related to that specific gesture. Therefore, gesture segmentation is necessary for

every gesture recognition system. For instance, Bulzacki [46] created a dataset of gestures and after-

wards using Polynomial Motion Approximation and Principal Component Analysis (PCA) techniques

achieved gesture classification. However, Bulzacki segmented the gestures manually and then fed them

to the gesture segmentation system for classification. He assumed that he already had a sequence

of meaningful frames and tried to develop an algorithm to classify those different frame sequences to

different gestures.

To automatically segment those frames for hand postures and gestures, we have offered DAIA to

manually segment a continuous video clip to one of four different meaningful engagement states. Using

our approach, the system can automatically segment those frames related to gestures and feed them

to any gesture recognition system such as the one provided by Bulzacki. On the other hand, in this
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research, we did not offer a new gesture recognition system, rather we proposed a system which could

be used for gesture segmentation.

This section aims to capture the theoretical work and practical implementations around engagement

state detection in group interaction and HCI. Theoretical definition of engagement is presented and the

description of an engagement evaluation scale is discussed. In addition, the research methodology and

the implementation of the approach is investigated.

2.1.1 Engagement Definition

Engagement has been investigated in various fields such as education, organizational behavior, work, or

media. Several definitions have been suggested for engagement:

• the value that a participant in an interaction attributes to the goal of being together with the

other participant(s) and continuing interaction [47, 48]

• The process by which two (or more) participants establish, maintain, and end their perceived

connection; Engagement is directly related to attention [1, 17, 48, 49]

• Effort without distress[50]

• A meaningful involvement [43]

• Enabled through vigor, dedication, and absorption [44, 51]

2.1.2 Engagement Modeling

In our previous research[52, 53], we defined engagement as an attentive state of listening, observing,

and giving feedback, leading into protagonist action in group interaction. The focus of our previous

research was engagement in meeting rooms[52]. For the present research, we define engagement as a

meaningful involvement with virtual and real objects for manipulation. This manipulation occurs using

hand gestures and postures.
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Intention to Act

One aspect of engagement highlighted in this research is a a crucial moment in interaction that user

has intention to perform an action. This crucial moment is called ”Intention” or ”Intention to Act”.

This moment is crucial because it indicates a strong change in mental user state. Intention to Act is

understood as:

• Instructions that people give to themselves to behave in certain ways[54]

• Most important predictor of a persons behavior[55]

• Mental states of individuals in which intentions are seen as internal commitments to perform an

action while in a certain mental state [56]

• a function of both attitudes toward a behavior and subjective norms toward that behavior, which

has been found to predict actual behavior [57]

• An act or instance of determining mentally upon some action or result (Dictionary.com)

• Purpose or attitude toward the effect of one’s actions or conduct a determination to act in a certain

way (Merriam Webster dictionary)

• is a mental state that represents a commitment to carrying out an action or actions in the future

(Wikipedia)

In our research, we use the following intention definition: Intention is a mental state defined by

an internal commitment to perform a specific action in the immediate future. It is of relevance for this

research because it defines a specific form of engagement that is relevant for human-computer interaction

specifically. It helps create a comprehensive understanding and interpretation of human-to-human and

human-computer interaction for seamless meeting flows[53].
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2.1.3 Engagement Features Extraction

A variety of studies strives for a multi-modal approach using some features of facial expression, body

motion, voice, or seat pressure to elucidate on mental states.

Body posture gives important information about engagement. Various approaches have been inves-

tigated based on body language analysis to improve human-computer interaction. Intention to engage

with an agent e.g. a robot [17, 18], or interactive display [19], are some of these studies. Measuring the

engagement intent is used in service robots to identify relevant gestures from irrelevant gestures which

is known as Midas Touch Problem [17, 20]. Another research interest is related to learner engagement

with robotic companions or interfaces[21]. In addition, Intention to engage with a display for improv-

ing user identification is addressed in Schwarz et al. [19]. The role of body pose and motion in users

interest detection using body tracking systems such as Kinect has been addressed in several research

[22, 23, 24, 25].

Benkaouar et al. [58] is discussing gaze and upper body posture for engagement detection. Schwarz

et. al [19] used combination of gaze, upper body and arm position for the purpose of intention detection

in engagement. Vaufreydaz et. al [17] used gaze and proxemics and Salam et. al [48] employed human

state observation for engagement detection. Engell et al. used gaze and facial expression[59] and Balaban

et al. [60] employed weight, head, and upper body motion; Scherer et al. [] and Dael et. al [51] discuss

voice, face, posture. Using Finite State Machine (FSM) for multi-modal system modeling is addressed

in multiple research[61],[62],[63],[64]. A study by Frank and Fruchter (2015[65]) uses cognitive flexibility

as an internal evaluation of engagement during meetings. However, this approach as well as self-reports

require active involvement of meeting participants. Research in this field focuses on the human body and

its features to generate indicators of mental states. Non-verbal behavior and body language expresses

emotions (Schindler et al. 2008, Mead 2011[20]); it conveys information about the speaker’s internal

state, and attitude toward the addressees (Gutwin & Penner 2002[66]). Both body posture and gesture

(Ekman 1999[67], Ekman and Friesen 1972[68]) have been identified as important social signals that
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indicate mental states and thereby also engagement (Figure 2.1). We use the preexisting qualitative

research to develop an Engagement Framework offering quantitative measurable indicators.

Various approaches have been investigated to use body language to improve interactions with digital

agents such as assistant robots and displays (Vaufrydaz 2015[29], Schwarz 2014[19]). These studies use

varying aspects of non-verbal language, such as upper body pose (Mead 2011[20], Schwarz 2014[19]),

proxemics (Vaufreydaz 2015[29]), facial expression and head posture (Vaufreydaz 2015[29]), or the ab-

sence of movement (Witchel 2014 [69]) and sometimes the combination of a small set of features from

facial expression and posture in multi-modal approaches.

Weight and weight distribution on a seat has been used to measure engagement (Mota & Picard

2003[70], DeMello et al. 2007[71], Balaban 2004 [60]). Weight is an indicator of body posture that can

be measured without affecting the participant.

The PBL Lab researchers[72] developed a cloud service and application called eRing (engagement

Ring) to detect and provide real-time feedback of learners degree of engagement during a virtual in-

teraction. eRing collects body motion data using Microsoft Kinect sensor, analyzes and interprets a

small set of the body motions and body positions including head, shoulder, and hand joints. eRing pro-

vides real-time feedback of the degree of engagement based on three states disengaged, neutral listen,

and engaged. The body motion analysis is performed for two units of analysis individual learner and

team. eRing runs on a Microsoft Azure cloud platform. eRing was used in the architecture, engineering,

construction (AEC) Global Teamwork course testbed in 2014 and 2015.

All of the studies mentioned in this section discuss a very small set of potential classifiers. They

also do not make full usage of the amount of qualitative research on non-verbal body language and its

indication of mental states. In this research, we address these features for engagement modeling and

detection.
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2.1.4 Observable Engagement

In this research we have focused on observable indicators of engagement that allow a non-intrusive

evaluation of the user without disrupting the activity. Research in this field has focused on the human

body and its features to generate indicators of mental states.

Figure 2.1: Body related social signals

Gesture are of specific interest because it is a motion of the body that contains information [73, 74, 75,

76]. Approximately 35% of hand actions are communicative gestures[66]. Gestures occur synchronous

and co-expressive with speech, and are not redundant. Gestures are frequent and accompany about 90%

of spoken utterances in descriptive discourse[77].

Gestures have been classified into co-speech gestures, emblems, iconic, deictic, metaphoric, and dis-

play gestures, on which we focus as they express mental states, regulators, adapters, beat[67, 68, 78, 79,

80]. Table 2.1 gathers these gestures.

All of the afore mentioned studies discuss a very small set of potential classifiers and do not make full

20



CHAPTER 2. LITERATURE SURVEY 2.1. ENGAGEMENT THEORIES AND MODELING

Table 2.1: Gesture types related to engagement

usage of the amount of qualitative research conducted on non-verbal body language and its indication

of mental states.

2.1.5 Engagement Classification Framework

Our goal for engagement classification is providing a framework for hand posture and gesture recogni-

tion. Based on engagement frameworks and investigations on engagement that are mentioned, we have

developed a new engagement scale for interaction in meeting room scenario[52, 53].

Engagement for this application is the level of participation in a meeting interaction. It consists of six
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stages: Disengagement, no participation and attention; Relaxed Engagement, attention but no participa-

tion; Involved Engagement, attention and non-verbal feedback; Intention to Act, preparation for active

participation in protagonistic role; Action, speaking and/or interacting with display or participants;

Involved Action, highly engaged and involved interaction with intense gesture and voice.

The six stages which is shown in Figure 2.2 help understand different team dynamics and user states

that affect the meeting interaction, productivity and effectiveness.

Figure 2.2: Engagement Scale

2.1.6 Multi-modal Classifiers

Literature reports specific observable patterns that indicate mental states. This report collects a variety

of indicators for engagement presented in various sources [19, 20, 21, 42, 81, 82]. These indicators

are abstracted into classifiers that are easy to observe. Each classifier has a specific expression for

different engagement levels. The Intention to Act, as a stage specifically relevant to HCI, uses a binary

classification. List of suggested classifiers in our technology report [53] for head (Table 2.2), face (Table

22



CHAPTER 2. LITERATURE SURVEY 2.1. ENGAGEMENT THEORIES AND MODELING

2.3), arms (Table 2.4), body (Table 2.5), and voice (Table 2.6) in our previous research [52, 53] for each

scale of engagement in Figure 2.2.

Table 2.2: Head Classifiers

Table 2.3: Face Classifiers

2.1.7 Engagement Classification Approaches

Mota used both neural networks for posture detection and Hidden Markov Models to detect engagement

at an overall accuracy of 77% which needs an expensive computation[70]. Michalowski et al. offered a

spatial model combined with gaze tracking to detect user engagement with a robot receptionist [28].

Schwarz et al. (2014[19]) used a linear regression approach to calculate weight factors to evaluate

the relative importance of five binary classifiers and defined a threshold for the sum of the classifiers to

evaluate intention to act as it is shown in Figure 2.3.
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Table 2.4: Arms Classifiers

Figure 2.3: Schwarz et al. use collection of individual classifiers to determine a users intention to interact
with a vision-based interface.

Table 2.7 shows test set accuracy of binary classifiers used in Schwarz et al. algorithm , and weights

assigned to each classifier in their final computation.

After weight calculations, Schwarz et al. have applied thresholds on intention to interact score

for intention to interact detection. In this approach, users transitioned from not engaged to engaged

when their intention to interact scores reached a threshold. Figure 2.4 illustrates the trade-off between
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Table 2.5: Body Classifiers

accuracy, false positives, and false negatives at different threshold levels.
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Table 2.6: Voice Classifiers

Figure 2.4: Trade-off between accuracy, false positives, and false negatives at different threshold levels.

2.2 Hand Posture Classification

Extensive reviews of hand posture and gesture recognition have been published during the last two

decades. Before RGB-D cameras were developed and depth images became available, most of the research

was focused on developing algorithms based on RGB images. Pavlovic et al. [83] reviewed more than

100 papers related to visual interpretation of hand gestures in context of HCI. The methods used for

modeling, analyzing and recognizing gestures were discussed and integration of hand gestures with gaze,

speech and other naturally related modes of communication in multi-modal interfaces were suggested to

address the limitations of gestural HCI. Moeslund and Granum [84] published a comprehensive review

of 130 papers discussing initialization, tracking, pose estimation and recognition of a motion capture

system. Performance characteristics related to system functionality and modern advancements in each
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Table 2.7: Test set accuracy of binary classifiers used in Schwarz et al. algorithm , and weights assigned
to each classifier in their final computation.

of these fields were comprehensively evaluated. Moeslund and Granum found predominant issues such as

lack of training data, the long time required for gesture capture, and lack of invariance and robustness

and introduced possible solutions such as employing an approach similar to speech recognition and

abstracting the motion layer that needed to be investigated in detail. Derpanis[85] reviewed the vision-

based hand gestures for HCI. The feature set, classification method and underlying representation of

gesture set were discussed in detail. The goal of our research is to develop such techniques for new

gesture representation and classification methods.

Chaudhary et al. [14] performed a comprehensive study on gesture recognition techniques, specifically

focusing on hand and facial movements. In this study Hidden Markov models, particle filtering and

condensation, finite-state machines, optical flow, skin color and connectionist models were discussed

in detail. The authors suggested there is a need for different recognition algorithms depending on
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the size of dataset, the gesture performed, and the various combinations of the two. Therefore, any

developed system should be both flexible and expandable in order to maximize efficiency, accuracy and

understandability.

In our research we are suggesting algorithms that use a small number of training samples to create

a model for hand shape that allows accurate and user-independent hand posture recognition. Wachs

et al.[9] discussed using soft computing based methods such as artificial neural network, fuzzy logic,

genetic algorithms in designing hand gesture recognition method. The model we are presenting employs

such soft computing techniques for classification step. Rautaray et al. [86] provided an analysis of

comparative surveys that use hand gestures as a natural interface with focus on the three main phases

of hand gesture recognition, i.e., detection, tracking and recognition. Different applications of hand

gestures for efficient interaction have been discussed under core and advanced application domains. The

authors also discussed the future perspectives of vision-based hand gesture recognition for HCI.

In the last decade, most of the studies in this filed have been focused on developing algorithms

based on RGB-D sensors and depth images. Suarez et al. [87] presented a literature review on the

use of depth for hand tracking and gesture recognition. The survey examined 37 papers describing

depth-based gesture recognition systems in terms of: (1) the hand localization and gesture classification

methods developed and used, (2) the applications where gesture recognition has been tested, and (3)

the effects of the low-cost Kinect and OpenNI software libraries on gesture recognition research. Figure

2.5[87] depicts the components of a video- or depth-based hand gesture recognition and pose estimation

system. In our research, we are proposing new algorithms for gesture classification block that is specified

with dashed outline in this figure.

Suarez et al. [87] concluded that a total of approximately 10 different methods are commonly

used for hand tracking and gesture recognition based on depth-images. Two of these algorithms are

used for segmentation, 3 for tracking, and 5 for classification. In the aforementioned studies, gesture

classification is done using a variety of classification algorithms. These techniques are standard machine
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Figure 2.5: The components of a video- or depth-based hand gesture recognition and pose estimation
system.

learning algorithms including Hidden Markov Models, k-NN, ANNs, SVMs, and FSMs.

Figure 2.6: OpenNI-compliant real time skeleton detection and tracking by PrimeSense

In addition, detection and tracking methods are being replaced by off-the-shelf solutions such as

PrimeSenses NiTE module for the OpenNI framework [87] [88]. OpenNI is publicly available open source
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API. Currently OpenNI supports Kinect and Xtion sensors. Moreover the main partner of the OpenNI

organization (PrimeSense) provides NiTE - the Natural Interaction Middleware. This middleware allows

to perceive the world in 3D, and to comprehend, translate and respond to human movements without

any wearable equipment or controls. NiTE provides functionality of human body detection, skeleton

extraction and simple gesture recognition. A stick figure which gives the location of body parts, such as

hand, in a depth-image can be detected and tracked. Figure 2.6 shows an example of body and hand

detection using this module. Further- more, Figure 2.7 also shows an application developed by Evoluce

using these features for a multi-touch experience. Based on these recent developments, there seems to

be a higher demand for developing powerful hand shape models for feature extraction rather than hand

detection or segmentation. Furthermore, there is a greater need for optimized classification algorithms.

Therefore, in the present research we focus on developing such algorithms rather than dealing with hand

pose estimation, hand tracking or background subtraction.

Figure 2.7: Using Kinect for Hand Gesture Recognition
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Marnik [89] uses the curvature of a hand edge to create a feature vector describing a model for hand

shape. Boundary points which correspond to boundary parts with specified curvature are used to create

a feature vector describing a hand shape. Feature vectors corresponding to shapes which are supposed

to be recognized by the system are recorded in a model set and serve as patterns in a recognition phase.

At the recognition stage, a similarity measure of the model image to the examined image is used to

calculate a similarity value of the two feature vectors. Since the number of high curvature points can be

different for different images, a special measure is proposed for the method. Figure 2.8 shows the hand

shapes used by Marnik [89].

Figure 2.8: Hand shapes used in Marnik’s experiments: a) wrist, b) palm, c - g) 1 - 5 fingers, h) thumb

Kelly et al. [90] proposed a hand posture feature based on an eigenspace Size Function. Our

presentation of hand shape also uses eigenspace for feature reduction.

Bourennane and Fossati[26] reviewed attempts for modeling the hand shape based on shape descrip-

tors for hand postures. These models consists of Fourier descriptors, Hu and Zernike moments. The

authors extensively examined the performance of hand posture recognition on two families of contour-
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based Fourier descriptors and two sets of region-based moments for modeling the hand shapes. To study

the performances of these shape descriptors, they first used Triesch hand posture dataset[33] which is

publicly available. Triesch hand posture dataset consists of 10 hand signs performed by 24 people against

three backgrounds. Bourennane and Fossati[26] used this dataset with a uniform background in order

to compare the shape descriptors without depending on segmentation. Thus, they used 479 images with

black and white backgrounds (one image for v gesture was missing).Figure 2.9 shows Triesch hand pos-

ture database for some alphabets of ASL. The images are 128×128 pixels in gray scale. While there was

very limited variability in the sizes of the hands and the orientation of hand postures, the shapes of a

same posture from different users could be very different. Bourennane and Fossati[26] also developed an

internal dataset and tested all of the methods on this newly developed dataset . However, this dataset

has not been published publicly for further examination or comparison. Figure 2.10[26] depicts 11 differ-

ent postures introduced in the internal dataset. Furthermore, Trigueiros et al.[27] present a comparative

study of seven different algorithms for hand feature extraction, for static hand gesture classification to

find the best learner. They also defined their own gesture vocabulary, with 10 gestures, and recorded

videos from 20 people performing the gestures for later processing.

In all of the aforementioned studies, the number of public hand posture shapes with uniform back-

ground is lower than the desired number for a good comparison. Furthermore, in each study the authors

have examined hand gestures used for creating a different set of letters.

Since different gestures are used to create different letters with some of them having obvious discrim-

inative features that makes them easier to classify, it is difficult to compare the results of these studies.

Therefore, we introduce a hand posture dataset [91] which is publicly available for further reference and

future research. This dataset extends the number of hand postures in the dataset proposed by Triesch

[33].
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Figure 2.9: Triesch hand posture database from some alphabets of ASL

2.2.1 Hand Shape Modeling

In this section, computation of several shape descriptors, the theory behind them, and the classification

steps used in [26] are presented.

2.2.2 Fourier Descriptors

Fourier descriptors are extensively used for the description and also classification of shapes with a

closed contour. FD are so useful in 2D modeling because they represent the shapes correctly, and have

invariance properties[92, 93]. These descriptors are contour-based shape descriptors. Here, We consider

the case of closed planar curves under the action of Euclidean transformations. If γ2(l) and γ2(l) denote

the respective arclength parametrization of two closed contour objects with, the same shape but and

different poses, we can write:

γ2(l) = aejθγ1(l + l0) + b (2.1)
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Figure 2.10: The 11 postures of internal database (cropped images)

with a the scale factor, θ the rotation angle, b the translation and l0 the starting description points

difference, l0 ∈ [0, L] with L the length of the contour. Scale invariance is achieved by normalizing

the arc-length parametrization with an equal length of 1 which leads to l0 ∈ [0, 1]. The translation

invariance is given by describing the contours according to their center of mass[26]. Before applying

Fourier transform to the shape signature, shape is first sampled to fixed number of points. In general,
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object shape and model shape can have different sizes. Consequently, the number of data points of the

object and model representations will also be different. The shape boundary of the objects and models

must be sampled to have the same number of data points. The number of resolution levels at which

the shape signature will be decomposed is determined by the length of the shape boundary. By varying

the number of sampled points, the accuracy of the shape representation can be adjusted. The larger

the number of sampled points, the more details in the representation of the shape; consequently, the

matching result will be more accurate. In contrast,fewer sampled points reduce the accuracy of the

matching results while improving the computational efficiency. There are generally three methods of

normalization (i) equal points sampling; (ii) equal angle sampling;and (iii) equal arc-length sampling[26].

If N is the total number of candidate points to be sampled along the shape boundary, the equal points

sampling method selects candidate points spaced at equal number of points along the shape boundary.

The distance between two consecutive candidate points is given by P/N , where P is the total number

of boundary points. The equal arc-length sampling method selects candidate points spaced at equal

arc length along the shape boundary. The distance between two consecutive candidate points is given

by L/N , where L is the perimeter of the shape boundary. The equal angle sampling selects candidate

points spaced at equal angle θ = 2π/N . The equal arc-length sampling method gives the best equal

space effect Among the three sampling methods among the three sampling methods.

In this problem, the complex coordinates is employed. Each point of the shape contour is represented

by a complex number zi = xi + jyi, i ∈ [1, N ], with N being the number of points of the contour. This

number must be chosen as a compromise between a reliable description of the shape, with enough details

and shape smoothing which eliminates the finest details mostly regarding the noise. Therefore, the equal

arc-length sampling is chosen to normalize the size of the shapes. For each shape, 64 candidate points

with equal arc-length space between them are selected. The computation time is another important

factor. The computation time increases with the higher number of points. For computational efficiency

of the fast Fourier transform, the number of points is chosen to be a power of two. Therefore, the Fourier
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transform gives N Fourier coefficients Ck:

Ck(γ) =

N−1∑
i=0

zie
−j 2πik

N , k = 0, . . . , N − 1 (2.2)

Equation in the frequency domain gives:

Ck(γ2) = ejθej
2πkl0

N Ck(γ1) + bδk (2.3)

where δk is the Kronecker delta. The first coefficient, C0(γ2), contains the shape position. That is no

longer taken into account. Hence, rotation of the shape and difference in the starting point affect only

the phase information. So equation 2.3, can be written as follows:

Ck(γ2) = ejθej
2πkl0

N Ck(γ1), k = 1, . . . , N − 1 (2.4)

Figure hyperref[FD-cutoff]2.11[87] shows that the low-frequency coefficients contain information on the

general aspect of the shape, whereas the high-frequency coefficients contain the finer details of the

shape. On the Triesch database, we can notice that with more than 20 coefficients, the hand shape is

well reconstructed.

Now we can define two different sets of invariants which are FD1 and FD2. In case of FD1, FD

invariants to similarities is to take the magnitude of Fourier coefficients and obtain the N − 2 FD1

coefficients in equation

Ik(γ) =
|Ck(γ)|
|C1(γ)|

, k = 2, . . . , N − 1 (2.5)

However, this set of invariants is not complete as it does not hold the phase information of the shape. In

case of FD2, a complete and stable set of invariants is obtained. The completeness of a set of invariant

features expresses the fact that two objects have the same shape if and only if they have the same set of
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Figure 2.11: Examples of reconstruction as a function of the cutoff frequency, with an initial contour
sampled with N = 64 points

features. A set of features that is complete but not stable is proposed in Stability means that a small

distortion of the shape does not induce a noticeable divergence in the values of invariant features. The

complete and stable set of invariant descriptors is defined by:

Ik0
(γ) = |Ck0

(γ)|, for k0 such that (2.6)

Ck0
(γ) ̸= 0, (2.7)

Ik1
(γ) = |Ck1

(γ)|, for k1 ̸= k0 such that (2.8)

Ck1(γ) ̸= 0, (2.9)

Ik(γ) =
Ck(γ)

k0−k1Ck0
(γ)k1−kCk1

(γ)k−k0

Ik0(γ)
k1−k−pIk1(γ)

k−k0−q
, (2.10)

∀k ̸= k0, k1, (2.11)

with p, q ∈ R+ and k1 ≤ k0. For experiments, in order to simplify the expression of Ik(γ), following
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[94], we take k0 = 2, k1 = 1, p = q = 0.5. Notice that the cepstral descriptors can be investigated as used

in speech recognition front-ends to enhance the robustness.

2.2.3 Hu and Zernike Moments

Hu and Zernike Moments are region-based descriptors. Hu invariants are used in pattern recognition to

provide a scale-, orientation- and position-invariant representation of an objects shape. These moments

are computed with the geometrical moments of the hand region. The zero-mean moments are invariant

to translations. For scale invariance descriptor , the normalized moments are calculated; ηpq : ηpq =
µpq

µγ
00

with γ = p+q
2 + 1,∀p+ q ≥ 2. Using the first three normalized moments, we can calculate the seven Hu

invariant moments[95]:

I1 = η20 + η02 (2.12)

I2 = (η20 − η02)
2 + 4η211 (2.13)

I3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (2.14)

I4 = (η30 + η12)
2 + (η21 + η03)

2 (2.15)

I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] (2.16)

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (2.17)

I6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03) (2.18)

I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] (2.19)

− (η30 − 3η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (2.20)

The first six invariant moments characterize the shape with invariance to translation, rotation and

scale changes. The seventh invariant moment allows to distinguishing the symmetrical shapes. Complex

Zernike moments are built using a set of complex polynomials that span a complete orthogonal basis

38



CHAPTER 2. LITERATURE SURVEY 2.2. HAND POSTURE CLASSIFICATION

defined on the unit disk (x2 + y2) ≤ 1. They are presented as:

Amn =
m+ 1

π

∫
x

∫
y

f (x, y) [Vmn (x, y)]
∗
dxdy (2.21)

where m = 0, 1, 2, ...,∞ defines the order, and f(x, y) is the function being described. Coefficient n

is an integer depicting the angular dependence, subject to the conditions m − |n| = even and |n| ≤ m.

The Zernike polynomials are

Vmn(r, θ) = Rmn(r)e
jnθ (2.22)

where (r, θ) are defined over the unit disk and Rmn(r) is obtained by the following equation:

Rmn(r) =

m−|n|
2∑

s=0

(−1)s
(m− s)!

s!(m+|n|
2 − s)!(m−|n|

2 − s)!
rm−2s (2.23)

Magnitudes of Zernike moments are invariant to rotation. To obtain translation and scale invariance,

images are normalized using the zeroth and first order moments. Therefore, for recognition, |A00| and

|A11| are not considered. Taking the moments from order 2 to 15 is sufficient [96], leading to 70 moments.

One major drawback of Zernike moments is their computation complexity which is very time consuming.

Different approaches have been proposed to speed up the computation [97].

2.2.4 Classification

In most cases, classification is achieved with a distance metric and nearest neighbor rules[98, 99, 100].

Furthermore, classifiers such as radial basis function are used for classification. FD have also been

employed as input features for dynamic gesture recognition with Hidden Markov Models[101, 102] and

Neural Networks[101, 103]. The complete and stable set of invariant features induces a distance on the
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Table 2.8: Recognition rates per gesture with internal database and Euclidean distance, on the testing
set [26]

1 2 3 4 5 6 7 8 9 10 11 Total

Hu 79.2 60.28 64.52 60.04 90.8 100 45.29 62.42 76.78 62.35 40.57 67.5
Zer. 74.9 61.7 64.2 64.8 88.4 96.5 52.7 62.2 76.2 68.3 39.2 68.1
FD1 92.8 75.3 78.4 92.4 93.8 94.5 89.1 70.7 85.5 75.9 76.2 83.9
FD2 76.3 68.4 70.8 72.4 86 85.1 56.5 66.4 81.5 61.6 48.5 70.3

shape space, which is given by the Euclidean distance:

d2 (γ1, γ2) =

√√√√N−1∑
k=0

|Ik (γ1)− Ik (γ2)|2 (2.24)

It is used as an error measure, while not theoretically valid for FD1.Because the number of images in

the Triesch database is small, Bourennane and Fossati[26] performed a k-fold cross-validation to estimate

the recognition rates. For Triesch database, they performed a a leave-one-out cross-validation, in which

one image for the validation and the rest for the training. For internal database, they also performed a

cross-validation with sub-samples containing 50 images.

Table 2.8 shows the recognition rates for each gesture on the test set. Based on this table, the FD1

outperforms the other shape descriptors when discriminating between visually close gestures. Either

moment invariants or Fourier coefficients are computed from the segmented hand posture. When the

postures lead to similar segmentation results, some details of the hand contour are smoothed, and both

moment invariants and Fourier coefficients are affected. Therefore, the recognition rate is reduced.

These results show that the best recognition rates with Euclidean distance are obtained by FD1.

Bourennane and Fossati[26] also proposed evaluation of different classifiers with FD1 in order to see

whether they give better results than Euclidean distance. The classifiers tested on their internal dataset

are presented in Table 2.9.

Based on the results presented in Table 2.9, for internal database, the recognition rates are similar for
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Table 2.9: Recognition rates (%) with FD1 and different classifiers: Bayesian classifier (BAYES), support
vector machine (SVM), k-nearest neighbors (k-NN) and Euclidean distance (EUCL)

BAYES SVM k-NN EUCL

Internal database, test set 84.7 84.2 87.9 83.9

the three classifiers with a small advantage for k-NN. Furthermore, Ronald and Mannes[100] provided

a comparison on human posture recognition among FD with complex coordinates, shape context his-

tograms, and Hu moments. The authors perform tests with deformed shapes to determine the robustness

of each descriptor separately, and showed that FD outperform Hu moments.

2.3 Summary

In this chapter, a comprehensive review for engagement modeling and detection is presented. Engage-

ment theories and modeling for different applications and approaches is reviewed and several literatures

that offers observable engagement feature extraction from human body is discussed. Because we mainly

are interested to the use of engagement detection for hand posture and gesture recognition, those previous

research which gives some clues for extracting meaningful features based on body postures and gestures

are highlighted. Afterwards, different classification approaches for engagement detection is provided.

In addition, the background research for hand posture detection is discussed in details. First we

argued hand shape modeling based on several welknown approaches and afterwards classification ap-

proaches are reviewed.
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CHAPTER 3. THEORY 3.1. DIMENSION REDUCTION USING PCA

3.1 Dimension Reduction Using PCA

The problem with the image representation we are given is its high dimensionality. Two-dimensional p×q

gray-scale images span an m = pq-dimensional vector space. Therefore, an image in our dataset with

128× 128 pixels falls in a 16, 384-dimensional image space already. The question is: Are all dimensions

equally useful for us? We can only make a decision if theres any variance in data, so what we are

looking for are the components that account for most of the information. The PCA is proposed to turn

a set of possibly correlated variables into a smaller set of uncorrelated variables. The idea is that a

high-dimensional dataset is often described by correlated variables, and therefore, only a few meaningful

dimensions account for most of the information. The PCA method finds the directions with the greatest

variance in the data, called principal components.

3.1.1 Algorithmic Description

Let X = {x1, x2, . . . , xn} be a random vector with observations xi ∈ Rd.

1. Compute the mean µ

µ =
1

n

n∑
i=1

xi (3.1)

2. Compute the the Covariance Matrix S

S =
1

n

n∑
i=1

(xi − µ)(xi − µ)T (3.2)

3. Compute the eigenvalues λi and eigenvectors :vi of S

Svi = λivi, i = 1, 2, . . . , n (3.3)

4. Order the eigenvectors descending by their eigenvalue. The k principal components are the
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eigenvectors corresponding to the k largest eigenvalues.

The k principal components of the observed vector x are then given by:

y = WT (x− µ) (3.4)

where W = (v1, v2, . . . , vk).

The reconstruction from the PCA basis is given by:

x = Wy + µ (3.5)

where W = (v1, v2, . . . , vk).

Inspired from Eigenfaces method[104], we can

• Project all training samples into the PCA subspace.

• Project the query image into the PCA subspace.

• Find the nearest neighbor between the projected training images and the projected query image.

For finding the nearest neighbor, different types of classifiers, such as Neural Networks, SVM,

k-NN, could be employed.

One more problem still left to solve. Imagine we are given 400 images sized100 × 100 pixel. The

Principal Component Analysis solves the covariance matrix S = XXT , where size(X) = 10000× 400 in

our example. We would end up with a 10000 × 10000 matrix, roughly 0.8GB. Solving this problem is

not feasible. From linear algebra we know that when M is greater than N, an M ×N matrix can only

have N − 1 non-zero eigenvalues. So its possible to take the eigenvalue decomposition S = XTX of size

N ×N instead:

XTXvi = λivi (3.6)
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and get the original eigenvectors of S = XXT with a multiplication of the data matrix:

XXT (Xvi) = λi(Xvi) (3.7)

The resulting eigenvectors are orthogonal, and need to be normalized to unit length to get orthonor-

mal eigenvectors. More comprehensive explanations and examples are discussed in [105]. The derivation

and proof of the equations are also presented in [106].
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3.2 Support Vector Machine (SVM)

A Support Vector Machine (SVM) [107, 108] is a discriminative classifier formally defined by a separating

hyperplane. In other words, given some labeled training data in a supervised learning task, the algorithm

outputs an optimal hyperplane which categorizes new examples. For finding out in which sense the

hyperplane obtained is optimal, Let’s consider the following simple problem. For a linearly separable set

of 2D points which belong to one of two classes (Figure 3.1), find a separating straight line.

Figure 3.1: A separation example

In this example we deal with lines and points in the Cartesian plane instead of hyperplanes, and

vectors in a high dimensional space. This is a simplification of the problem. It is important to understand

that this is done only because our intuition is better built from examples that are easy to imagine.

However, the same concepts apply to tasks where the examples to classify lie in a space whose dimension

is higher than two. In the above figure, there are multiple lines that offer a solution to the problem. Is

any of the lines better than the others? We can intuitively define a criterion to estimate the value of

each line. A line is bad if it passes too close to the points because it will be noise sensitive and it will not

generalize correctly. Therefore, our goal should be to find the line passing as far away from all points as

possible. Thereforen, the operation of the SVM algorithm is based on finding the hyperplane that gives
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the largest minimum distance to the training examples. Twice, this distance receives the important

name of mar- gin within SVMs theory. Therefore, the optimal separating hyperplane maximizes the

margin of the training data (Figure 3.2).

Figure 3.2: The Optimal hyperplane

3.2.1 Computing Optimal Hyperplane

The notation used to define formally a hyperplane can be introduced by:

f(x) = β0 + βTx (3.8)

where β is known as the weight vector and β0 as the bias.

A more in depth description of hyperplanes could be find in section 4.5, Separating Hyperplanes, of

The Elements of Statistical Learning[109].

The optimal hyperplane can be represented in an infinite number of different ways by scaling β and

β0. From all possible representations of hyperplane, we chose the following

|β0 + βTx| = 1 (3.9)
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where x symbolizes the training examples closest to the hyperplane. In general, the training examples

which are closest to the hyperplane are called support vectors. This representation is known as the

canonical hyperplane.

Now, we use distance between a point x and a hyperplane (β, β0) using the following equation:

distance =
|β0 + βTx|

||β||
(3.10)

In particular, for the canonical hyperplane, the numerator is equal to one and the distance to the

support vectors is

distance support vectors =
|β0 + βTx|

||β||
=

1

||β||
(3.11)

The margin introduced in the previous section, here denoted as M , is twice the distance to the closest

examples:

M =
2

||β||
(3.12)

Finally, the problem of maximizing M is equivalent to the problem of minimizing a function L(β)

subject to some constraints. The constraints model the requirement for the hyperplane to correctly

classify all the training examples xi. Formally:

min
β,β0

L(β) =
1

2
||β||2 subject to yi(β

Txi + β0) ≥ 1 ∀i (3.13)

where yi represents each of the labels of the training examples.

This is Lagrangian optimization problem that can be solved using Lagrange multipliers to obtain the

weight vector β and the bias β0 of the optimal hyperplane.
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3.2.2 Nonlinear Classification and Kernel Functions

Bernhard E. et al.[107] suggested a way to create nonlinear classifiers by applying the kernel method

(originally proposed by Aizerman et al.[110]) to maximum-margin hyperplanes[107]. The resulting algo-

rithm is similar to the origin one, except that in newly developed algorithm every dot product is replaced

by a nonlinear kernel function. This allows the algorithm to fit the maximum-margin hyperplane in a

transformed feature space. The transformation may be nonlinear and the transformed space high di-

mensional. Therefore, although the classifier is a hyperplane in the high-dimensional feature space, it

may be nonlinear in the original input space. Figure 3.3 shows a kernel function used to transform a

non-linearly separable functions into a higher dimension linearly separable function.

Figure 3.3: Kernel functions are used to transform non-linearly separable functions into a higher dimen-
sion linearly separable functions.

Kernel machines are used to convert non-linearly separable functions into a higher dimension linearly

separable functions.

A classification task usually involves separating data into training and testing sets. Each instance in

the training set contains one target value (i.e., the class label), and several attributes (i.e., the features or

observed variables). The goal of SVM is to produce a model (based on the training data) which predicts
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the target values of the test data using only its attributes[111].

Given a training set of instance-label pairs (xi, yi), i = 1, . . . , l where xi ∈ Rn and y ∈ {1, −1}l, the

support vector machines require the solution to the following optimization problem:

min
w,b,ξ

L(β) =
1

2
wTw+ C

l∑
i=1

ξi

subject to yi(w
Tϕ(xi) + b) ≥ 1− ξi

∀ξi ≥ 0

(3.14)

Here training vectors xi are mapped into a higher (maybe infinite) dimensional space by function ϕ.

SVM finds a linear separating hyperplane with the maximal margin in this higher dimensional space.

C > 0 is the penalty parameter of the error term. Furthermore, K(xη, xj) ≡ ϕ(xi)
Tϕ(xj) is called the

kernel function. Though new kernels are proposed by researchers, the following four basic kernels are

more common:

• Linear: K(xi, xj) = xTi xj .

• Polynomial: K(xi, xj) = (γxTi xj + r)d, γ > 0.

• Radial Basis Function (RBF): K(xi, xj) = exp(−γ∥xi − xj∥2), γ > 0.

• Sigmoid: K(xi, xj) = tanh(γxiT xj + r).

Here, γ, r, and d are kernel parameters.

3.2.3 Multi-class SVM

Multi-class SVM aims to assign labels to instances by using support vector machines, where the labels

are drawn from a finite set of several elements.
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The dominant approach for doing so is to reduce the single multi-class problem into multiple binary

classification problems[112]. The most common methods for such reduction include[112, 113]:

1. Building Binary Classifiers which distinguish between

(a) One-Versus-All: One of the labels and the rest

(b) One-Versus-One: Between every pair of classes

2. Directed acyclic graph SVM (DAGSVM)[114]

3. Error-correcting output codes[115]

In one-versus-all method, new instances are classified using a winner-takes-all strategy in which the

classifier with the highest output function assigns the class (it is important that the output functions

be calibrated to produce comparable scores). In the one-versus-one approach, classification is done by a

max-wins voting strategy. In this strategy each classifier assigns the instance to one of the two classes.

Subsequently, the number of votes for the assigned class is increased by one. The class with the most

votes determines the instance classification.

3.2.4 Implementations of Support Vector Machines

Kernel SVMs are available in many machine learning toolkits including LIBSVM, MATLAB, SVMlight,

scikit-learn, Shogun, Weka, Shark , JKernelMachines. Since the speed of algorithm is important for us,

we based our approach on LIBSVM and LIBLINEAR.

LIBSVM and LIBLINEAR are two popular open source machine learning libraries, both developed at

the National Taiwan University and both written in C++ though with a C API. LIBSVM implements

the Sequential minimal optimization (SMO) algorithm for kernelized SVMs, supporting classification

and regression[116]. LIBLINEAR implements linear SVMs and logistic regression models trained using

a coordinate descent algorithm.
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LIBSVM does support multi-class classification. implements the One-Versus-One approach (Knerr

et al., 1990) for multi-class classification. If k is the number of classes, then k(k−1)
2 classifiers are

constructed, each one training data from two classes.

In classification a voting strategy is employed. Each binary classification is considered to be a voting

where votes can be cast for all data points. At the end, a point is designated to a class with the

maximum number of votes. In cases where a point has the same number of votes for two classes , the

class appearing first in the array of storing class names will be reported.
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3.3 Finite State Machines (FSM)

State machines are the description of a life cycle of a system. They can describe the different states of

the lifeline, the events which influence it, and what it does when a particular event is detected at a any

states as the transition condition for particular state change. They offer the complete specification of

the dynamic behavior of the system.

For instance, a simple mechanism that can be modeled by a state machine is a turnstile[117, 118].

A turnstile (Figure 3.4) is a a gate with three rotating arms at waist height, one across the entryway.

Common use of turnstiles is controlling access to subways. In its initial state, the arms are locked and

blocking the entry preventing from passing through. Depositing a coin or token in a slot unlocks the

arms and allows a single patron to push and pass. After the person passes through, the arms are locked

again until another coin or token is inserted.

Figure 3.4: A common turnstile for controlling access to subway

Modeling a turnstile as a state machine, the it has two states: Locked and Unlocked[118]. The initial

state of the turnstile is Locked state. Two inputs affect its state:

• Putting a coin in the slot (coin)

• Pushing the arm (push)

In the locked state, pushing on the arm has no effects. Putting a coin in shifts the state from Locked
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Table 3.1: Turnstile State Transition table

Table 1

Current 
State

Input Next State Output

Locked
coin Unlocked Unlock turnstile and customer can push through
push Locked None

Unlocked
coin Unlocked None
push Locked Lock turnstile when customer has pushed through

�1

to Unlocked. In contrast, it the unlocked state, putting additional coins in has no effect; On the other

hand, inserting additional coin inputs does not change the state. However, giving a push input shifts

the state back to Locked.

3.3.1 Finite State Machine Representation

Finite state machine could be presented in several ways. The most common representations are as

follows:

• State Transition table (State/Event table)

• State Diagram

• UML State Machines

State Transition table (State/Event table)

The turnstile state machine can be represented by a state transition table which is shown in Table 3.1.

This table shows for each state and from each input, what will be the new state and the output result.

State Diagram

FSM can also be represented by a directed graph called a state diagram. Each of the states is represented

by a node ( shown as circle) and edges (shown as arrows) are the transitions from one state to another.

Each arrow is labeled with the input or condition that triggers that transition. Inputs or conditions
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that don’t trigger a change of state (such as a coin input in the Unlocked state) are represented by a

circular arrow returning to the original state. Figure 3.5 depicts state diagram of a common turnstile.

The initial state is presented as an arrow into the Locked node from the black dot.

Figure 3.5: Turnstile State Diagram

UML State Machines

The Unified Modeling Language (UML) is a general-purpose, developmental, modeling language in the

field of software engineering, that is intended to provide a standard way to visualize the design of

a system[119]. For describing state machines, UML has a notation. UML state machines solve the

limitations of traditional FSM while retaining their main benefits. UML state machines propose the new

concepts of hierarchically nested states and orthogonal regions, while extending the notion of actions.

These method of modeling an FSM have the characteristics of both Mealy machines and Moore machines.

They support actions that depend on both the state and triggering events which are similarly defined

in Mealy machines, as well as entry and exit actions, which are associated with states rather than

transitions, as they are available in Moore machines. In addition, after defining an FSM for software

programming, there are several high performance libraries for realtime applications to implement UML
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state machines such as Boost library Meta State Machine and StateChart [120]. Figure 3.6 shows

turnstile UML tate machine diagram.

+----------------------------------------------------------------+
|                                                                |
|         +----------------+          +----------------+         |
|     *-->|     LOCKED     |          |    UNLOCKED    |         |
|         +----------------+          +----------------+         |
|     +---| entry/         |          | entry/         |---+     |
|     |   | exit/          |          | exit/          |   |     |
|     |   |                |          |                |   |     |
| PUSH|   |                |---COIN-->|                |   |COIN |
|     |   |                |          |                |   |     |
|     |   |                |          |                |   |     |
|     |   |                |<--PUSH---|                |   |     |
|     +-->|                |          |                |<--+     |
|         |                |          |                |         |
|         +----------------+          +----------------+         |
|                                                                |
+----------------------------------------------------------------+

1/1

Figure 3.6: Turnstile UML State Diagram

3.3.2 UML State Machines Implementation

The following terms describe a state machine based on UML State Machines implementation:

• State: a stage in the life cycle of a state machine. A state (like a submachine) can have an entry

and exit behaviors.

• Initial State: The state in which the state machine starts.

• Transition: a specification of how a state machine reacts to an event. It specifies a source state,

the event triggering the transition, the target state, guard and actions.

• Action: an operation executed during the triggering of the transition.
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• Guard: a boolean operation being able to prevent the triggering of a transition which would

otherwise fire.
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3.3.3 Finite State Machine (FSM)

A finite-state machine (also called state machine), is a mathematical model of computation which is used

for designing computer programs. The machine is in only one state at a time. The state of machine at

any given time is called the current state. A triggering event or Condition can change from one state

to another and is called a Transition. A particular FSM can be defined by a list of its states, and the

triggering Condition for each Transition.[121, 122]

3.3.4 FSM Mathematical Model

A finite state machine is a quintuple (Σ, S, s0, δ, F ), where:

• Σ is the input alphabet (a finite non-empty set of symbols).

• S is a finite, non-empty set of states.

• s0 is the initial state, an element of S. In a nondeterministic finite automaton, s0 is a set of initial

states.

• δ is the state-transition function: δ : S × Σ → S.

• F is the set of final states, a subset of S
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3.4 Deep Learning

Hierarchical or structured deep learning is a modern branch of machine learning that was inspired by

human brain. It has been developed based on complicated algorithms that model high-level features and

extract those abstractions from data by using similar neural network architecture but much complicated.

The neuro-scientists discovered the neocortex which is a part of the cerebral cortex concerned with sight

and hearing in mammals, process sensory signals by propagating them through a complex hierarchy over

time. That was the main motivation to develop the deep machine learning focusing on computational

models for information representation that exhibit similar characteristics to that of the neocortex [123]

[124] [125].

3.4.1 Convolutional Neural Networks (CNNs / ConvNets)

Convolutional Neural Networks (CNNs) that are inspired by the human visual system are similar to

classic neural networks. This architecture has been specifically designed based on the explicit assumption

that raw data are comprised of two-dimensional images that enable certain properties to be encoded

while also reducing the amount of hyper parameters. The topology of CNNs utilizes spatial relationships

to reduce the number of parameters that must be learned, thus improving upon general feed-forward

backpropagation training [14] [15]. Equation 3.15 demonstrates how the gradient component for a given

weight is calculated in the backpropagation step, where E is error function, y is the neuronij , x is the

input, l represents layer numbers, w is filter weight with a and b indices, N is the number of neurons in

a given layer, and m is the filter size.

∂E

∂ωab
=

N−m∑
i=0

N−m∑
j=0

∂E

∂xℓ
ij

∂xℓ
ij

∂ωab
=

N−m∑
i=0

N−m∑
j=0

∂E

∂xℓ
ij

yℓ−1
(i+a)(j+b) (3.15)

Equation 3.15 describes backpropagation error for the previous layer using the chain rule. This equa-

tion is similar to the convolution definition where x(i+a)(j+b) is replaced by x(i−a)(j−b). It demonstrates
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the backpropagation results in convolution while the weights are rotated. The rotation of the weights

derives from delta error in Convolutional Neural Network.

∂E

∂yℓ−1
ij

=

m−1∑
a=0

m−1∑
b=0

∂E

∂xℓ
(i−a)(j−b)

∂xℓ
(i−a)(j−b)

∂yℓ−1
ij

=

m−1∑
a=0

m−1∑
b=0

∂E

∂xℓ
(i−a)(j−b)

ωab

(3.16)

In CNNs, small portions of the image (dubbed a local receptive field) are treated as inputs to the

lowest layer of the hierarchical structure. One of the most important features of CNN is that complex

architecture provides a level of invariance to shift, scale and rotation as the local receptive field allows the

neuron or processing unit access to elementary features such as oriented edges or corners. This network

is basically made up of neurons having learnable weights and biases forming Convolutional Layer. It

also includes other network structures such as Pooling Layer, Normalization Layer and Fully-Connected

Layer. As briefly mentioned above, Convolutional or so called CONV layer computed the output of

neurons that are connected to local regions in the input, each computing a dot product between their

weights and the region they are connected to in the input volume. Pooling or so called POOL Layer

performs a down sampling operation along the spatial dimensions. The Normalization Layer or RELU

layer applies an element-wise activation function, such as the max (0, x) thresholding at zero. This layer

does not change the size of the image volume. Fully-Connected Layer (FC) layer computes the class

scores, resulting in volume of number of classes. As with ordinary Neural Networks and as the name

implies, each neuron in this layer will be connected to all the numbers in the previous volume [123]

[124]. The Convolutional Layer plays an important role in CNN architecture and is the core building

block in this network. The CONV layer’s parameters consist of a set of learnable filters. Every filter is

spatially small but extends through the full depth of the input volume. During the forward pass, each

filter is convolved across the width and height of the input volume, producing a 2D activation map of
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that filter. During this convolving, the network learns filters that activate when they see some specific

type of feature at some spatial position in the input. Next, these activation maps are stacked for all

filters along the depth dimension forms the full output volume. Every entry in the output volume can

thus also be interpreted as an output of a neuron that looks at only a small region in the input and

shares parameters with neurons in the same activation map [123] [124] [125].

A Pooling layer is usually inserted in-between successive Conv layers in ConvNet architecture. Its

function is to reduce (down sample) the spatial size of the representation in order to reduce the amount

of network hyper parameters, and hence to also control over-fitting. The Pooling Layer operates inde-

pendently on every depth slice of the input and resizes it spatially, using the MAX operation. Recently,

more successful CNN have been developed such as LeNet, AlexNet, ZF Net, GoogleNet, VGGNet and

ResNet. The major bottleneck of constructing ConvNet architectures is the memory restrictions of GPU

[123] [124] [125].

3.4.2 Popular Deep Learning Networks

Several network architectures are more common in the field of Convolutional Neural Networks:

• LeNet: The first successful applications of Convolutional Networks were developed by Yann

LeCun[124]. Of these, the best known is the LeNet architecture that was used to read zip codes,

digits, etc.

• AlexNet. The first work that popularized Convolutional Networks in Computer Vision was the

AlexNet, developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton[126]. The AlexNet was

submitted to the ImageNet ILSVRC (ImageNet Large Scale Visual Recognition Competition)

challenge in 2012[127] and significantly outperformed the second runner-up (top 5 error of 16%

compared to runner-up with 26% error). The Network had a very similar architecture to LeNet,

but was deeper, bigger, and featured Convolutional Layers stacked on top of each other (previously
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it was common to only have a single CONV layer always immediately followed by a POOL layer).

• ZF Net: The ILSVRC 2013 winner was a Convolutional Network from Matthew Zeiler and Rob

Fergus[128]. It became known as the ZFNet (short for Zeiler & Fergus Net). It was an improvement

on AlexNet by tweaking the architecture hyper-parameters, in particular by expanding the size of

the middle convolutional layers and making the stride and filter size on the first layer smaller.

• GoogLeNet: The ILSVRC 2014 winner was a Convolutional Network from Szegedy et al[129].

from Google. Its main contribution was the development of an Inception Module that dramat-

ically reduced the number of parameters in the network (4M, compared to AlexNet with 60M).

Additionally, this paper uses Average Pooling instead of Fully Connected layers at the top of the

ConvNet, eliminating a large amount of parameters that do not seem to matter much. There are

also several follow-up versions to the GoogLeNet, most recently Inception-v4[130].

• VGGNet: The runner-up in ILSVRC 2014 was the network from Karen Simonyan and Andrew

Zisserman that became known as the VGGNet[131]. Its main contribution was in showing that

the depth of the network is a critical component for good performance. Their final best network

contains 16 CONV/FC layers and, appealingly, features an extremely homogeneous architecture

that only performs 3x3 convolutions and 2x2 pooling from the beginning to the end. Their pre-

trained model is available for plug and play use in Caffe. A downside of the VGGNet is that

it is more expensive to evaluate and uses a lot more memory and parameters (140M). Most of

these parameters are in the first fully connected layer, and it was since found that these FC layers

can be removed with no performance downgrade, significantly reducing the number of necessary

parameters.

• ResNet: Residual Network developed by Kaiming He et al[132]. was the winner of ILSVRC 2015.

It features special skip connections and a heavy use of batch normalization. The architecture is

also missing fully connected layers at the end of the network. ResNets are currently by far state
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of the art Convolutional Neural Network models and are the default choice for using ConvNets in

practice.

3.4.3 LeNet

As you can see in the Figure 3.7, LeNet was firstly designed by Y. LeCun et Al. [124] and this famous

network successfully classified digits and was applied to hand-written check numbers. The application

of this network was expanded to more complicated problems and their hyper parameters adjusted for

new issues. However, more developed versions of LeNet have been successfully tested. In this work, we

dealt with a binary but very complicated binary classification of Alzheimer’s and Normal data. In other

word, we needed a complicated network but for two classes which was leading us to choose LeNet and

adjust this architecture for binary image data.���������	��
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Figure 3.7: Architecture of LeNet-5, a convolutional neural network

The implemented network is shown in Figure 3.8 in details.

3.5 Summary

This chapter contains basic information about two important classifiers, SVM, and Convolutional Neural

Network, and also feature reduction method (Principal Component Analysis (PCA)) which are used in

our proposed methods. We have also presented Finite State Machines and different definitions for our
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application. After a short review of each concept, we propose our approach and configurations in the

following chapters.
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Figure 3.8: LeNet network implemented for binary image classification



Chapter 4

The Proposed Technique
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CHAPTER 4. THE PROPOSED TECHNIQUE 4.1. OUR APPROACH

4.1 Our Approach

For hand gesture and posture recognition, we have presented a framework that initially detects user’s

engagement and afterwards employs related classifiers for posture or gesture classification. Figure 4.1

depicts the framework of our approach.

Feature	Extraction	and	Selection

Hand	Posture	Classes

Hand	Posture	Classifiers

Human	Skeleton	Extraction	and	Tracking
From	Depth	images	using	combination	OpenNI	and	NiTE	SDK

or	Microsoft	Kinect	SDK

Engagement	State	Detection	
Using	Finite	State	Machine

Add	frame	to	
Attention	frame	set

state?
Intention

Feature	Extraction	and	Selection

Hand	Gesture	Classes

Hand	Gesture	Classifiers

Multiple	Binary	Classifiers	for		
all	channels	of	data

Engagement	Data
(Skeleton,	Voice,	Facial	Data,	etc)

Intention	To	Act	Classifier

Engagement	Metrics
Human	State	
Transitions

Context	
Information

Add	frame	to	
Action	frame	set

Hand	Localization

State	change?

Initialize	Attention	
and	Action	buffers	

Hand	Posture	
DetectionAction

Attention

Gesture	Detection	
from	Action	and	

Attention	frame	set

Yes

No

No

Yes Disengagement?

Figure 4.1: Engagement Detection Framework for hand gesture and posture recognition

Engagement Detection Framework: Context Information

Context information in Figure 4.1 refers to those facts we have from literature reviews regarding impor-

tant factors in engagement detection, especially based on studies of engagement metrics in real world

applications such as video games, virtual reality and people’s interaction in meeting rooms. This knowl-
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edge helps us in designing effective classifiers that extract patterns of engagement for the purpose of

hand posture and gesture recognition. Also, it helps us to understand how engagement changes during

time to design suitable framework for human state transitions.

Engagement Detection Framework: Terms and Definitions

Engagement metrics and states is discussed in previous sections in details. We can categorize different

states of engagement as it is presented in state machine of Figure 4.2. This state machine is discussed

in details in section 4.3.6 and consists of four different distinguishable mental states. We proposed

these states as Disengagement, Attention, Intention, and Action. Disengagement occurs when user is

disengaged from target object. Attention happens when user has attention to the target, but doesn’t

have intention to perform any actions. For instance, user is observing the objects without any intentions

to manipulate them. In Intention state, user intends to perform an action, but still not doing it.

For example, user is showing an ASL sign or pointing to an object to select it, but not performing

any manipulative actions yet. These static hand postures in Intention state could be classified using

hand posture classifiers which is discussed in section 4.4. Finally, in Action state, user is performing a

manipulative action with hand. Those consecutive frames in Action state could be imported to hand

gesture classifier which is in our future research.

Engagement Detection Framework: Training

In training part of Figure 4.1, binary classifiers are designed based on upper-body postures. The output

of these binary classifiers are used to design the most important classifier in engagement detection

framework which is Intention to Act classifier, and plays essential role for distinguishing different states

of engagement in Figure 4.2. Training section in Figure 4.1 also shows classifiers for hand posture and

gesture recognition. In this research, classifiers for hand posture classification is proposed and discussed

in section 4.4. Hand posture classifiers are based on single frames. For hand gestures such as raising
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Figure 4.2: Engagement Detection State Machine for Hand Posture and Gesture Recognition

hand or swiping from right to left, we need a extract features from sequence of frames in Action state.

Hand gesture recognition is in our future research.

Engagement Detection Framework: Detection

Detection part of Figure 4.1 starts with extracting human skeleton and important joints using depth

images. OpenNI and Nite SDK provide human skeleton from depth data for each frame. The human

skeleton is provided by detection of 15 important joints in human body which are world locations of

head, neck, left and right shoulders, left and right elbows, left and right hand, torso, left and right hips,

left and right knees, and left and right feet. Among all these joints, upper-body joints play important

role in engagement detection which is comprehensively discussed in section 4.2. The binary classifiers

trained in Training section of the framework also used this joint information.

The joints location provided by OpenNI and Nite SDK is not stable all the time and could be

misleading. The joints also could be provided by Microsoft Kinect SDK, which provides more stable

joints, but also with some errors. Because our engagement classifiers are highly dependent to this

information, we have to design a system that provides minimum error. The classification of engagement
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state is frame-based and frames are classified independently. When we are processing 30 frames per

second for our real-time application, it should considered that states couldn’t transit to each other

immediately. This comes from our knowledge of human state transition which is a continuous process

and two consecutive frames tend to be in the same state for a very short amount of time between two

frames. For a normal human being it takes more than hundred milliseconds to change body posture

and therefore engagement state. But when we are just looking each frame independently, and the

joints provided by the SDKs are noisy, our engagement classifiers may report wrong state for a frame.

Therefore, there should be a minimum number of frames that each state contains to transit to the

next state. Furthermore, the user may show some engagement postures for a short amount of time

unintentionally, and we can’t figure out it’s a meaningful engagement or not unless we look at the

sequence of frames. These considerations lead us to propose a finite state machine with transition and

guard criteria to improve engagement state classification. One of the immediate results of proposed

finite state machine implementation is gesture segmentation. Gesture segmention helps us to improve

results of hand posture and gesture classifiers and speed up the algorithm. For example, hand posture

classifiers are just used when we are in Intention state. In the same way, gesture classifiers are used at

the end of Action state when state is transiting from Action to another state. The Action state frames

could be gathered in a buffer to be used for gesture classification. Also we can have Attention buffer

to gather those continuous frames related to Attention state. Attention frames could be used for other

types of meaningful gestures in Attention state. For example, in a meeting room scenario, we can see

how much user is involved in discussions by analyzing and classifying face expressions, gaze and nodding

of the user in Attention buffer frames. Both Action and Attention classifiers are in our future research.

Hand Posture Classification

For real-time performance, our approach for posture classification is based on 2D appearance-based

approach. Earlier in this research, we talked about a new dataset presented for training and testing
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the system and will be presented in details in section 4.4.1. In section 4.4.3, preprocessing steps, such

as background subtraction for preparing images for feature extraction, is discussed. In section 4.4.4,

a method for extracting features from hand postures is introduced. Section 4.4.5 details dimension

reduction of extracted features using PCA. Afterwards, deep learning-based approach for hand posture

recognition is presented.

4.2 Engagement Modeling and Metrics

User mental status detection has variety of applications in human activity recognition systems. Without

a proper algorithm for detecting human intention to interact, the vision-based system is always on,

therefore any kind of activity may interpreted as an interaction [133]. Group meetings which are frequent

business events is modeled as a case study. In this case study, among all available data streams, a

combination of tracking 3D gesture data is combined for user engagement detection with the vision-based

screen in meetings. Multiple binary classifiers are implemented to detect user intention for performing

an action. The output of these binary classifiers are used to create transition and guard conditions

in FSM. Characteristics of engagement will be discussed and biometric data which can be used for

this purpose will be introduced. 3D skeleton tracking will be introduced as one of the channels of

biometric information for engagement detection. Although we just use this only channel of biometric

data, experiment results show we still can predict engagement with high accuracy.

In addition, DAIA, the Finite State Machine (FSM) of engagement detection helps system to flow

among states smoothly. FSM is a predefined structure based on our knowledge of human activities that

helps system predict engagement state more accurately. Furthermore, FSM algorithm is computational

efficient. This property of FSM allows achievable on-line and real-time performance.

In this section, we proposed a multi-modal engagement state detection process. In our intended

scenario, multiple people are within the operating range of the sensor, e.g. field of view of a depth

71



CHAPTER 4. THE PROPOSED TECHNIQUE4.2. ENGAGEMENT MODELING AND METRICS

camera. For the purpose of this research, we have just monitored one user’s biometric information to

for engagement detection. The same procedure could be processed in parallel to detect engagement

state of other participants. In our proposed framework, user’engagement scales from disengaged up to

performing an action.

4.2.1 Engagement Modeling: DAIA

Figure 4.3 shows user’s engagement scale. From left to right, the level of engagement increases. For hand

gesture and posture classification, we can quantize the spectrum of this mental state in finite number

of states as it is shown in Figure 4.3. We called this model of engagement DAIA which quantized

engagement in four different states which are Disengagement, Attention, Intention, and Action.

Figure 4.3: Engagement scales from Disengagement to Action. Engagement is quantized in four different
states which are Disengagement, Attention, Intention, and Action.

4.2.2 Engagement Metrics

From literature survey, we know Upper-body joints play important role in engagement detection. Mul-

tiple classifiers are designed to detect and classify upper-body direction. In addition, hand movements
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such as raising hand, pointing, swiping, pushing or pulling are used to manipulate in vision-based in-

terfaces. Therefore, different classifiers are designed to detect various hand movements such as raise

hand above waist and also different levels of hand speed. These classifiers help to detect user intention

for performing an action. Furthermore, leaning forward when observing is an important sign for higher

engagement. Also, the direction of body shows the direction that user intends to engage. Obviously,

for hand posture and gesture recognition, location and speed of hands are important factors. Based on

these assumptions, a set of binary classifiers are designed.

Binary Classifiers

Binary classifiers are mostly designed based on heuristic information extracted from 3D joints location.

For example, by knowing the location of hand joint and head joint we can easily say the hand is above

head or not. Another example is body direction classifier which is made using the normal vector of the

plane containing right and left shoulder and torso joint.

Using the biometric information, the engagement detection framework identifies if the user exhibits

a specific combination of classifiers. The analysis is occurring on a frame-by-frame basis. Each frame

is analyzed regarding all classifiers. The classifiers, e.g. body posture components, are chosen based on

literature review.

Table 4.1 shows binary classifiers which are designed for important engagement metrics. For each

engagement metrics, multiple binary classifiers are designed. The 0 or 1 output of these 37 classifiers

are used to make our feature vector for intention to action classifier.

Classifiers are evaluated as being exhibited or not exhibited in a specific frame as a binary value.

Among all available biometric information such as gaze, voice and gesture to extend the proposed

framework to detect engagement state of the user, we just used 3D joint information provided by a

depth camera (Asus Xtion Pro) and NiTE SDK by Primesense. However, we believe using more biometric

channels of information will make system more accurate, our experiment results showed even use this
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Table 4.1: Binary classifiers based on engagement metrics

Engagement Metric Binary Classifiers

Hand Horizontal Right of Body, Close to Body, Left of Body
Hand Vertical Below Hip, Below Torso, Below Shoulder, Below Head
Hand Depth Back of Body, Close to Body, Front of Body
Hand Speed Stopped, Slow, Fast, Too Fast
Body Direction Facing Sensor
Leaning Lean back, No Lean, Lean Forward
Special Postures Hands folded, Hands on Head, Hands on Torso

only channel of information could result in a high performance user engagement detection system.

3D Skeleton Data

An action video with T frames and N joints in each frame can be represented as a set of 3D points

sequence, written as p = {xt
n ∈ R3|n = 1, .., N, t = 1, 2, ..., T}. The 3D sensor provides us fifteen joints,

and T varies for different sequences. However, in our system N = 10, because our classifiers only use

ten upper-body joints from this set which are head, left and right shoulders, left and right elbows, left

and right hand, torso and left and right hips. Figure 4.4 shows all joints provided by NiTE SDK by

Primesense. Upper-body joints which are used to design our classifiers are shown as filled circles.

For each joint in volume of interest, 3 dimensional position X,Y,D is obtained. X and Y are

horizontal and vertical distances of the joints from the center of sensor. D is the distance of the joint

from sensor in Z direction as it is shown in Figure 4.5.

Upper-body 3D Joint Time Series

The output of sensor could provides a time series of 3D Joints. In equation 4.1, 3D joint time series,

P3×N×T is presented. For upper-body, N = 10, and T (frame number in time sequence) varies for
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Figure 4.4: Fifteen joints provided by Nite SDK. Joints which are depicted by filled circles are upper-body
joints which are used in binary classifier design

different sequences.

P3×N×T = {


X1 X2 ... XN

Y1 Y2 ... YN

D1 D2 ... DN


t

= ptn ∈ R3| n = 1, .., N and t = 1, 2, ..., T} (4.1)

Equation 4.2 shows matrix which contains N different joints in t = t0, and is called Framet0 .

Framet0 =


X1 X2 ... XN

Y1 Y2 ... YN

D1 D2 ... DN


t=t0

(4.2)

The first basic step of feature extraction is computing basic feature for each frame, which describes the
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Operation	Range	of	Sensor

Operator

Depth	Sensor

Field	of	View

Volume	of	interest	(Upper-body)

Y

X

Z

Figure 4.5: Operator in the range of operation and field of view of a depth sensor. The volume of interest
is the volume that track joints world locations are tracked

pose information of every of these ten joints in a single frame. These feature extractions are performed

using binary classifiers. All the binary classifiers at time t = t0 is calculated based on matrix operations

on Framet0 itself.

The second step is calculating of left and right hand speed information. This features are obtained

by calculating 3D distance that each hand moves in two consecutive frames, namely Frametk and

Frametk+1
.

Classification Based on Engagement Score

One way for evaluating the level of engagement is calculating an engagement score based on the features

of each frame. The binary values for the individual binary classifiers are weighted based on the relative

influence in the training data and summed up to. The relative influence is applied using a weight factor

for the output of the classifier. After normalization, the engagement score could have a value between 0
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Table 4.2: Binary classifiers for engagement score calculation. Model weights are calculated based on
statistical analysis and applies to the output of binary classifiers.

Binary Classifier Model Weight

Engaged stance 0.67
Hand lifted above waist 0.15
Looking at screen 0.12
Waving 0.11
Hand raised above head 0.08
Body facing screen -0.05

and 1.

Figure 4.6 shows how our system extract features from users and calculate engagement levels of each

users.

Figure 4.6: Engagement score calculation. Using this approach we can select the most engaged person
among other participants. Furthermore, by setting thresholds on engagement score, we can classify
engagement states.

Similar but fewer binary classifiers are presented by [19] and engagement score is calculated based

on the output of classifiers. These binary classifiers are shown in table 4.2.

In that approach, the engagement score is calculated using W ′.G which W is vector of weights

[w1, w2, w3, ..., wn], and G is the vector of binary classifiers [g1, g2, g3, ..., gn] such that g1, g2, g3, ..., gn

are 0 or 1 based on the output of the binary classifiers. There are several problems if we use this

approach. First of all, weights should be defined to apply on each binary classifiers. In addition, we have
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to define several thresholds for engagement scores to find engagement state. In [19], statistical approach

for defining weights is presented and calculated weights are gathered in table 4.2 .

There are some drawbacks in using engagement score for engagement detection. First of all, if a

new channel of biometric data will be added for better engagement detection, a whole new statistical

analysis is necessary for different weights assignment. In addition, new thresholds for state changes

should be calculated. To overcome these problems, instead of calculating engagement scores, we have

trained classifiers to directly detect the engagement states which are important to us. For training a

classifier, we need a feature vector. We have defined Engagement Feature Vector for this purpose.

4.3 Engagement Detection Framework

4.3.1 Engagement Feature Vector

Classifiers depicted in Table 4.1 provide 0 and 1 outputs. For each frame, we can define an Engagement

Feature Vector which is called E.

Instead of calculating weights that should be applied to the outputs, we have used SVM classifiers

for engagement state prediction. Therefore, weight are assigned based on training over ground truth

data. The details of our classification approach is presented in the following sections.

Engagement Feature Vector Time Series

Engagement feature vectors during time creates a time series. Equation 4.3 shows this time series. In

this equation, C is the number of binary classifiers. In our research, binary classifiers are just based

on Upper-body 3D joint data, however, the feature vector could be extended for binary classifiers from

other modalities. For instance, we can design binary classifiers based on other biometric information

such as gaze, weight sensors on chair, voice levels and its direction toward the target, etc. Therefore,
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our approach suggests a paradigm for multi-modal information fusion for engagement modeling.

EC×T = {



b1

b2

b3

.

.

.

bC−1

bC


t

= et ∈ {0, 1}C |c = 1, ..., C and t = 1, 2, ..., T} (4.3)

Multi-modal Data To Binary Classifiers

Our proposed method maps 3D joint time series,P3×N×T to engagement vector time series, EC×T .

Equation 4.4 shows this mapping.

f : P3×N×T 7−→ EC×T (4.4)

Figure 4.7 shows how 3D joints location are mapped to binary classifiers for a user. As it is already

mentioned, biometric information that could extend engagement feature vector is not limited to 3D

joints.

Binary Classifiers Based on Hand Location

Hand spatial location is one of the most important parameters in engagement detection for hand posture

and gesture recognition. The spatial location is categorized in three space direction which are horizontal,

vertical and depth location in 3D space. For each direction, the location of hand versus other parts of

the body gives of information about engagement. The summary of these binary classifiers are as follows:

1. Hand’s horizontal location
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Figure 4.7: 3D Joint Time Series Mapping To Engagement Vector Time Series

• Right of body

• Close to body

• Left of body

2. Hand’s vertical location

• Below Hip

• Below Torso

• Below Shoulder

• Below Head

3. Hand’s depth location versus the center of depth sensor

• Back of body

• Close to body

• Front of body

For these binary classifiers, several thresholds are defined. For example, in horizontal location clas-

sifiers for each hand, if the location of hand joint is right of the torso point and horizontal distance is

80



CHAPTER 4. THE PROPOSED TECHNIQUE4.3. ENGAGEMENT DETECTION FRAMEWORK

grater than a predefined threshold, that Right of body binary classifier is 1 and Close to body and Left

of body binary classifiers are 0.

Binary Classifiers Based on Hand Speed

Speed of each hand plays important role for classification between Action and Intention states. Real

hand speed value is calculated from simple matrix operation between two consecutive frames. We have

defined several levels for speed of each hand which helps us to extract useful information. In this

approach, the speed of each hand is quantized in four different states which are Stopped, Slow, Fast and

Too Fast. For this purpose, three thresholds are applied to hand speed value based on experimental

results.

Facing Classifier Based on Body Direction Vector

Another important classifier is Facing target classifier which gives us information about engagement of

the body with target object. This classifier tells us if the direction of body is toward target object. Body

direction vector could help us in calculating the output of facing classifier. Figure 4.3.1 shows how we

calculated body direction.

Equation 4.5 shows how body normal vector is calculated for body direction estimation at frame t.

Vectors in Figure 4.3.1 are used in equation 4.5 as follows:

• Left Shoulder joint to Right Shoulder joint vecor:
−−−−−→
LS2RS = −→prs −−→pls

• Left Shoulder joint to Torso joint vecor:
−−−−−→
LS2TO = −→pls −−→pto

• Body Normal Vector,
−→
N , which is made from cross product between

−−−−−→
LS2RS and

−−−−−→
LS2TO. On the

other hand,
−→
N is normal vector of the plane consisting of left and right shoulders and torso joints
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Figure 4.8: Normal vector of the plane consisting of left and right shoulders and torso joints makes Body
Direction Vector

−−−−−→
LS2RSt =

−→
ptrs −

−→
ptls

−−−−−→
LS2TOt =

−→
ptls −

−→
ptto

−→
N t =

−−−−−→
LS2RS ×

−−−−−→
LS2TO

(4.5)

Facing classifier at frame t is defined in equation 4.6. In this equation, Body Normal Vector is

projected in horizontal and vertical direction parallel to the target. Two predefined thresholds, MaxDe-

viationH and MaxDeviationV, denote maximum horizontal and vertical deviation respectively to make

the output of facing binary classifier one.

FacingClassifiert =


1 if |proj−→x

−→
N t| ≤ MaxDeviationH ∧ |proj−→y

−→
N t| ≤ MaxDeviationV

0 if otherwise

(4.6)
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Leaning Classifiers Based on Body Direction Vector

Leaning directions towards target gives us important information about the level engagement towards

a target. Based on this engagement metric, we have designed Lean back, No Lean, and Lean Forward

binary classifiers. We could also add two more classifiers namely Lean left and Lean right in the same

manner.

Equations 4.7, 4.8 and 4.9 show how we have calculated the output of these classifiers. Similar to

other classifiers in these section, we set LeanBackTh and LeanFwdTh thresholds based on analyzing real

data.

LeanBackClassifiert =


1 if |proj−→y

−→
N t| ≥ LeanBackTh

0 if otherwise

(4.7)

LeanFwdClassifiert =


1 if |proj−→y

−→
N t| ≤ LeanFwdTh

0 if otherwise

(4.8)

LeanForwardClassifiert = ¬(LeanBackClassifiert ∨ LeanFwdClassifiert) (4.9)

Special Postures Binary Classifiers

Several special postures are defined as important engagement metrics. For the current research we have

limited special postures to Hands folded, Hands on Head, and Hands on Torso. These postures indicate

disengagement from the target and mostly are used in meeting room scenario. For example, hand on

head posture could imply the user is thinking and not intending to perform an action with hand. Hands

folded and Hands on Torso postures also could imply disengagement of the user towards target.
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4.3.2 Disengagement Classifier

Disengagement classifier detects transition of engagement states between Disengagement and Attention

as it is shown in Figure 4.9. Equation 4.10 shows how DisengagementClassifier at time t is calculated

using binary operations of several binary classifiers in Table 4.1. The output of DisengagementClassifier

is 1 if FacingClassifier is 0 or one of the special posture classifiers in section 4.3.1 is activated. On the

other hand, if the user is in Disengagement state if not facing the target or is showing a special posture

which implies disengagement.

DisengagementClassifiert = ¬(FacingClassifier)t ∨ (HandFoldedClassifier)t∨

(HandsOnHeadClassifier)t ∨ (HandsOnTorsoClassifier)t

t = 1, 2, ..., T

(4.10)

Figure 4.9: Disengagement Classifier
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4.3.3 Intention To Act Classifier

The most important transition in DAIA is transition between Attention state to Intention state as is

shown in 4.3.3. For designing this classifier, we have developed a game to capture user Engagement

Feature Vector Attention and Intention states, and also transitions between these two. The game is

called Catch The Box!, and automatically captures the frames with their Engagement Feature Vector

and assigns attention (0) or intention (1) label to them.

Figure 4.10: Intention To Act Classifier

Catch The Box!

The main purpose of designing this game is creating a dataset of labeled frames for two states of engage-

ment which are Attention and Intention. These labeled frames help us to design Intention Classifier.

Intention Classifier plays essential role in designing Intention To Act and Action classifiers. For the

purpose of classifier design, the frames are labeled as attention (0) or intention (1). Therefore, players

are supposed to be in of these two states when they are playing the game. Figure 4.11 shows different

modes of the game.
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Figure 4.11: ”Catch The Box!” Game: a) Getting Ready mode b) Play mode c) Stop mode

In this game, we used hand tracking algorithm implemented in NiTE middle-ware by Primesense [88]

to move the cursor on screen. The game has 3 modes which are ”Getting Ready”, ”Play” and ”Stop”. In

”Getting Ready” mode, user sees the countdown counter for 5 seconds following by 5 seconds of ”Play”

mode. At the end of play mode, ”Stop” sign appears for 2 seconds on screen to ask user to disengage

from screen. After ”Stop” mode, ”Getting Ready” starts again and game continues in a repetitive loop.

In ”Getting Ready” mode of the game we have asked user to observe the screen, but do not perform

any actions until the countdown reaches 0 and ”Play” mode starts. These frames in ”Getting Ready”

are automatically labeled as attention. When ”Play” mode starts, a solid rectangle randomly appears

on the screen and user should move the cursor towards the rectangle. As soon as the cursor touches the

edge of rectangle, the position of rectangle changes randomly to force the user showing ”Intention” or

”Action” postures. The frames in ”Play” mode are labeled as intention. In 2 seconds ”Stop” mode we

have asked user to disengage from screen as soon as possible. The frames in first second of ”Stop” mode

is labeled as intention and the rest of frames in the second second are labeled as attention. However

the game assists in labeling the frames automatically, we manually reviewed all frames after capturing

them to correct the ground truth labels. If the game mistakenly labeled a frame as a wrong state, we

have changed it to the right label.
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Intention Classifier

Ground truth data captured in Catch The Box! game is divided to training and testing data. Figure 4.12

shows 3-fold cross validation method is employed for training this classifier using SVM. 23,210 frames

labeled from five different subjects played the game separately. 18,000 frames were used as training data

and the rest were for testing data. This average validation accuracy based on 3-fold cross validation for

SVM with linear kernel was 86.38% and the test accuracy was 84.74%.

Equation 4.12 shows how we trained our SVM classifier with linear kernel.

Figure 4.12: 3-fold cross validation

EC×T = {
[
b1, b2, b3, ., ., ., bC−1, bC

]′

t

= et ∈ {0, 1}C |c = 1, ..., C and t = 1, 2, ..., T}

EC×T (traingData) = {et|Framet is labeled as intention (1) or attention (0) and

t = 1, 2, ..., TtraingData}

IntentionClassifier = svmTrain(EC×T (traingData), Linearkernel)

(4.11)

Now, based on IntentionClassifier, we can define our IntentionToActClassifier as it is shown in
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equation 4.12. In this equation, when DisengagementClassifier is 0 and IntentionClassifier is 1 and

both hands are stopped as we check with leftHandStoppedClassifier and rightHandStoppedClassifier, the

output of IntentionToActClassifier becomes 1.

IntentionToActClassifiert = ¬DisengagementClassifiert ∧ IntentionClassifiert∧

(leftHandStoppedClassifiert ∧ rightHandStoppedClassifiert)

t = 1, 2, ..., T

(4.12)

4.3.4 Action Classifier

Action Classifier detects the transition from Intention to Action as it is shown in Figure 4.3.4. Action

classifier is similar to Intention To Act Classifier except that at least one of the hands should not be

stopped. Equation 4.13 shows the binary operations for Action classifier output calculation.

ActionClassifiert = ¬DisengagementClassifiert ∧ IntentionClassifiert∧

¬(leftHandStoppedClassifiert ∧ rightHandStoppedClassifiert)

t = 1, 2, ..., T

(4.13)
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Figure 4.13: Action Classifier

4.3.5 Attention Classifier

The output of Attention Classifier is simply 1 when all other three classifiers are 0. Equation 4.14 shows

binary operations for calculating the output of this classifier.

AttentionClassifiert = ¬DisengagementClassifiert

∧ ¬IntentionToActClassifiert

∧ ¬ActionClassifiert

t = 1, 2, ..., T

(4.14)

4.3.6 Engagement Finite-state Machine

When we are just looking each frame independently, the output of classifier for engagement could be

wrong for several reasons.

First of all, it could be hard or impossible to classify engagement state or a gesture that is related to
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a series of frames. Suppose we want to classify raising hand gesture by just looking at a single frame.

If we just see the hand position in one frame at the middle of raising hand, we may classify it to one of

many different gestures such as putting hand down or swiping.

Secondly, The the joint locations provided by the SDKs are noisy. The joints are even more noisy if

an occlusion exists.

In addition, presence of some body postures that means engagement should be meaningful. A

user may show some postures that interpreted as intention to interact for a short amount of time

unintentionally. However, can’t figure out if it is a meaningful engagement unless we look at the sequence

of frames. For instance, the user may face the target for some milliseconds, but does not have any

intentions for interaction.

Finally, our engagement classifiers may classify a frame falsely, as their accuracy rate is not 100%.

Therefore, a series of previous frames should be analyzed together to classify a frame more accurately.

On the other hand, engagement state classifiers are memoryless and may report wrong engagement state

based on the current biometric properties of human body. For addressing these issues, we have designed

an Engagement Finite-state Machine that keeps record of engagement states based on some hypotheses:

• Engagement Finite States: This property describes the FSM design. It starts with disengagement

(Initial State). There should be a chain of conditions for engagement state change. State machines

are the description of a life cycle of a system. They can describe the different states of the lifeline,

the events which influence it, and what it does when a particular event is detected at a any states

as the transition condition for particular state change. They offer the complete specification of the

dynamic behavior of the system.

• Engagement Inertia: We are analyzing frames in real-time. This means we are classifying about

30 frames per second for engagement state detection and time interval for analyzing each frame

is about 33ms. For the purpose of engagement detection based on human body postures, it is a
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very short amount of time. Human body does not move too fast and intends to stay in previous

position. Therefore, it’s more likely that user is staying in detected state at last frame. For this

purpose, we have designed our Guards of FSM. Figure 4.3.6 shows how Guard conditions assists

in keeping the state. In this figure, the output of engagement classifiers are shown in first row for

16 frames for a waving gesture. Waving gesture in our example consists of 3 continuous actions of

hand which are Moving Right, Moving Left, and another Moving Right. Because the speed of hand

becomes close to zero and classified as Stopped with our HandSpeed binary classifier, the output of

engagement classifier becomes Intention at each end. However we know this a continuous gesture,

therefore, Guard condition should prevent state change from Action to Intention for these frames.

Second row in Figure 4.3.6 shows a segment of waving action that could be sent to our Hand

Gesture Classifier. We can also concludes engagement states should transit smoothly that means

for each state, we have a minimum number of frames.

Figure 4.14: Waiving hand example that could be misclassified with swiping right or left in first row.
Second row shows how FSM helps in segmenting waving action correctly.

Mathematical model for Engagement FSM

It is noted earlier that a finite state machine is a quintuple (Σ, S, s0, δ, F ), where:

• Σ is the input alphabet (a finite non-empty set of symbols).

• S is a finite, non-empty set of states.

91



CHAPTER 4. THE PROPOSED TECHNIQUE4.3. ENGAGEMENT DETECTION FRAMEWORK

• s0 is the initial state, an element of S.

• δ is the state-transition function: δ : S × Σ → S.

• F is the set of final states, a subset of S

In our Engagement FSM, S is set of S1, S2, S3, S4 such that S1 is Disengagement, S2 is Attention, S3

is Intention, and S4 is Action. s0 in this FSM is Disengagement as we always start our system supposing

the user is not engaged with any targets. δ are set of rules called Transition Conditions. These set of

rules are presented in Table 4.3.6. Because our system could change among all states and there is no

final state, F is empty set in our Engagement Finite-state Machine.

Figure 4.15 presents Engagement Finite-state Machine and its transition conditions. A state is a

description of the mental state or engagement of the user that is anticipated to change over time. A

transition is initialized by a change in condition that results in a change of state. In this research, we

have modeled engagement states as a finite state Machine with four different states:

• Disengagement: User is disengaged from screen or the target object.

• Attention: User has attention such as observing the target, but doesn’t have any intentions to

perform an actions.

• Intention: User has intention to do some action, but still not performing it. For example, user is

pointing a target for selection.

• Action: User is performing an action.

Guard Condition For Sn

Guard conditions are simply for preventing state transition. These guard conditions are defined based

on the output of classifiers in previous frames. Suppose we are at state Sn, because the output of

engagement classifier is 1 for Sn. If the output of engagement classifier changes for multiple frames, we
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Figure 4.15: Engagement Finite-state Machine
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concludes the state also should change. For this purpose, we counted how for many frames the output of

engagement classifier is not 1 for Sn as it is shown in equation 4.15. ClassifierDelaytn in this equation

is the number of consecutive frames that engagement classifier for Sn (Classifiern), is not 1.

ClassifierDelaytn =


0 if Classifiern = 1

ClassifierDelayt−1
n + 1 if otherwise (4.15)

Guardtn is defined as guard condition for Sn at frame t. Guardtn is 1 if the absence of Classifiern

remains for a predefined number of frames which is called MaxGracen for Sn. Based on our experiments,

we have set MaxGracen = 10 for all of states, which means we let 10 frames as grace period for absence

of Classifiern.

Guardtn =


1 if ClassifierDelaytn ≤ MaxGracen

0 if otherwise

(4.16)

Transition Condition For Sn

In state Sn at frame t, we use binary operations between output of engagement classifiers and Guardtn to

decide about state transition as it is shown in equation 4.17. Ct
nm in this equation is transition condition

from Sn to Sm. This equation indicates if we are in Sn, and Guardn at frame t is 0 and engagement

classifier for State m, Sm is 1, the state transition will occur from Sn to Sm.

Ct
nm =


Classifierm ∧ ¬Guardtn if n ≠ m

Guardtn if n = m

(4.17)
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Table 4.3: Transition table
State S1 S2 S3 S4

S1 C11 C12 C13 C14

S2 C21 C22 C23 C24

S3 C31 C32 C33 C34

S4 C41 C42 C43 C44

Table 4.3.6 describes these Transition Conditions, Cnm, for these state changes. For example, C21,

C31, and C41 describe Transition Conditions from Attention, Intention or Action to Disengagement. The

interpretation of the equation provided in this section indicates that the state transition from any of these

three states to Disengagement occurs when their Guard conditions are 0 and the engagement classifier

is 1 for Disengagement classifier. For instance, if we are in Attention state, the output of engagement

classifier for Attention has been absent for several frames and also body direction is not facing target

or a special posture hand folded exists which indicates disengagement. Similar interpretations for other

state changes could be written.

4.3.7 Complexity Analysis

The complexity of our algorithm is mostly bounded by the number of binary classifiers we design for

Engagement Feature Vector creation. This comes from the fact that binary classifiers are created using

matrix operations on frames generated by the software SDK in real-time which each can be done in

O(1). Therefore, if we have n binary classifiers, the complexity of our algorithm is O(n). Furthermore,

the complexity of FSM calculations is O(1). Therefore, the total complexity of the system is O(n).

95



CHAPTER 4. THE PROPOSED TECHNIQUE 4.4. HAND POSTURE RECOGNITION

4.4 Hand Posture Recognition

In our previous work [134], the global features of hand such as edge contour and convex hull are employed

for posture detection. In this research, we use a very basic, yet powerful, global feature of hand shape that

allows detecting postures in real-time and with high accuracy by learning a limited number of training

samples for each posture. We extend our pixel-wise hand posture classification using Convolutional

neural networks.

4.4.1 HandReader Dataset

There are a limited number of datasets for training and testing hand posture recognition. Unfortunately,

these datasets are not useful for our purpose since they do not have enough hand posture images with

dark background. Hence, we have created a new dataset, i.e., HandReader dataset, for this research.

This dataset consists of 500 images from 10 different hand postures. These postures are 10 American

Sign Language alphabets. The dataset was created by capturing images of 50 individuals, both males

and females, performing the 10 postures in front of a camera. This dataset is publicly available [91].

Figure 4.16shows all the alphabets used in this paper. These are the alphabets A, B, C, D, G, H, L, I,

V, and Y from American Sign Language.

Although all images in this dataset have a dark background, the level of illumination differs among

the images. Figure 4.17 shows a set of 50 different images of letter V from HandReader dataset.

4.4.2 HandReader2 Dataset

As it is mentioned before, Trieschs static hand posture dataset[33] as a benchmark. Trieschs dataset

consists of 10 hand postures (A, B, C, D, G, H, I , L, V, Y ) from 24 people with 3 different backgrounds

(light, dark, complex) (Figure 4.18). Most real time approaches, after some preprocessing steps convert

a hand shape to a 2D binary image called silhouettes, and extract features from these black and white
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Figure 4.16: Ten different American Sign Language alphabets

Figure 4.17: A set of 50 different images of V from HandReader dataset.
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binary images.

Figure 4.18: Triesch hand posture database from some alphabets of ASL

In addition, as mentioned earlier, after introducing RGB-D sensors, the complex background will not

be one of the main challenges for extracting hand from the background. Hence, among all these images,

those with dark or light background carry distinct information about the hand shape and posture for

different people and are useful for the purpose of hand shape modeling. We chose the images with dark

background for extracting the hand shapes. We also extended Trieschs static hand posture dataset by

creating HandReader static hand posture dataset. Our dataset consists of 500 images from 10 different

hand postures showing 10 different alphabets in American Sign Language. The dataset was created

by capturing images from 50 people, both males and females, performing the 10 postures in front of a

camera. After some preprocessing steps, we extracted binary images from Trieschs static hand posture

dataset with dark background and our own dataset to create a new static hand posture dataset, called

HandReader2. Figure 4.19 illustrates 74 different V postures from 74 different people which are used in

creation of HandReader2.
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Figure 4.19: HandReader2 is made from 10 RGB hand postures from 74 different people. This figure
illustrates 74 different V postures which are used in creation of HandReader2.

HandReader2 is a new dataset of hand-shape silhouettes which contains 128 × 128 binary square

images with the actual shape of hands exactly centered in the squares. This dataset consists of 740

square silhouettes from 10 different hand postures performed by 74 different people. From these 740

images, 500 are extracted from our HandReader dataset and 240 from Trieschs static hand posture

dataset. These postures are 10 American Sign Language alphabets (A, B, C, D, G, H, L, I , V, and

Y). Creating this dataset allows us to make a more realistic hand shape model based on considerably

different hand shapes. HandReader2 is publicly available and can be used by anyone who is interested

in hand posture modeling or other related areas.
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4.4.3 Preprocessing

After converting all images in the dataset to gray-scale, hand postures should be extracted from the

background. Since all images have dark backgrounds, it is possible to subtract the background from the

image using image histogram.

Background Subtraction Using Histogram

Suppose histogram of gray-scale image f(x, y) is shown in Figure 4.20 and this image contains a light

colored object on a dark background. In this condition, gray-scale pixels of the object and background

are separated into two dominant modes. One of the most obvious methods for background subtraction in

such conditions is choosing a threshold value, T , which separates these modes. Therefore, if f(x, y) > T ,

then (x, y) are objects pixels; otherwise they are background pixels [135].

In equation 4.18, f(x, y) is gray-scale image and T is the threshold value and the result is a binary

image, g(x, y).

g(x, y) =


1 if f(x, y) > T

0 otherwise

(4.18)

To find the threshold, T , first the maximum value in the histogram distribution is calculated,

because we know a major section of the image is background. Then, the closest point on the x axis of

the histogram which is greater than the maximum point and has a value of less than 5% of the maximum

value for histogram is chosen as the threshold point. Figure 4.21 shows two samples of finding threshold

using histogram.

100



CHAPTER 4. THE PROPOSED TECHNIQUE 4.4. HAND POSTURE RECOGNITION

Figure 4.20: Histogram of a gray-scale image which contains a dark background and a light colored
object

Figure 4.21: Finding Threshold Using Histogram.

Removing Noise and Smoothing Edges

Applying a sharp threshold such as what is done in section 4.4.3 can be quite noisy. It causes a rough

edge and maybe some holes in the hand section. To remove holes and some scattered noisy pixels of the

background which are remained after applying threshold, a combinations of morphological operations

are applied.

A morphological closing operation of A by a structuring element B is obtained by the dilation of A

by B, followed by erosion of the result by B as it is shown in equation 4.19:

A •B = (A⊕B)⊖B, (4.19)
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where ⊕ and ⊖ denote dilation and erosion, respectively. For the purpose of this research, a 5× 5 pixel

rectangle structuring element has been employed. This operation smoothens edges and removes any

holes from the structure.

To further smoothen the rough edges, Gaussian blur has been employed. The Gaussian blur is a type

of image-blurring filter that uses a Gaussian function to calculate the transformation to be applied to

each pixel of the image. The equation of a Gaussian function in one dimension is:

G(x) =
1√
2πσ2

e−
x2

2σ2 (4.20)

In two dimensions, the equation is the product of two such Gaussians, one in each dimension:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (4.21)

Figure 4.22 shows these steps. A Gaussian filter with kernel size of 21× 21 and σ = 0.3(n/2− 1) + 0.8

which n = 21, the size of kernel, works better based on the performance of the system.

4.4.4 Feature Extraction

In section 4.4.3, a binary image for each instance in our dataset has been created. All binary images

should be normalized. Figure 4.23 shows the normalization steps. The binary image is shown in Figure

4.23-a. The main idea behind normalization is centering the hand in a square. To find the best size of

this square, the bounding box of the main section in the binary image has been found (Figure 4.23-b).

Then the width or height of the bounding box, whichever is greater, is selected as the side size of the

square of normalized image. Afterwards, we create a black square with this size and copy the main

section, which is hand posture, in the center of this square (Figure 4.23-c). To have normalized images

of the same size, we scale all normalized images to 128× 128 pixels (Figure 4.23-d).
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Figure 4.22: Preprocessing steps: (a) Background subtraction (b) Morphological operations (c) Gaussian
Blur (d) Binary image by applying a threshold

Figure 4.23: Normalization steps: a)Binary image b)Finding bounding box c)Normalization d)Scaling.

Figure 4.24 shows normalized images for V postures.

We have not used any descriptor for extracting features from hand posture images. Instead of using

a descriptor, we have just converted 2D matrix of our normalized image to vector and used it as our

feature vector.

On the other hand, we converted the matrix of image, which is a 128×128 square matrix to 1×16384

vector by putting rows in the vector according to their order in matrix as it is shown in Figure 4.25.
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Figure 4.24: Normalized images for V postures: a) Main postures b) Normalized postures.

4.4.5 Dimension Reduction Using PCA

The 1×16384 feature vector is huge. It can be reduced using the PCA, which is one of the most common

dimension reduction methods. PCA is mathematically defined as an orthogonal linear transformation

that transforms the data to a new coordinate system such that the greatest variance by any projection

of the data lies on the first coordinate, called the first principal component, and the second greatest

variance on the second coordinate, and so on [105]. Suppose we have a data matrix XT , with zero

empirical mean; i.e., the mean of the distribution has been subtracted from the data set. In this matrix,

each of the n rows represents a different repetition of the experiment, and each of the m columns gives a

particular kind of datum. The singular value decomposition ofX isX = WΣV T , where them×mmatrix
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Figure 4.25: Converting an image to a vector

W is the matrix of eigenvectors of the covariance matrix XXT , the matrix Σ is an m × n rectangular

diagonal matrix with nonnegative real numbers on the diagonal, and the n× n matrix V is the matrix

of eigenvectors of XTX. The PCA transformation that preserves dimensionality is then given by:

Y T = XTW = V ΣTWTW = V ΣT (4.22)

For dimension reduction, X should be projected down into the reduced space defined by only the first L

singular vectors, WL: Y = WT
L X = ΣLV

T where ΣL = IL×mΣ with IL×m the L×m rectangular identity

matrix. If there is a set of points in Euclidean space, the first principal component corresponds to a

line that passes through the multidimensional mean and minimizes the sum of squares of the distances

of the points from the line. The second principal component corresponds to the same concept after all

correlation with the first principal component has been subtracted from the points.

As mentioned earlier, the PCA transformation preserves dimensionality. This means the original data

can be reconstructed if we have the mean of the distribution and its PCA transformation. In general, we

should maintain all principal components in PCA transformation to be able to reconstruct the original
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data. However, when the size of feature vectors are greater than the number of feature vectors used for

training the system, the best principal components for reduction is the number of feature vectors used

for training the system minus One. Sections 4.4.5 and 4.4.5 clarify the reason.

The PCA Subspace

The direction of maximum separation is the first principal component of a dataset. The direction with

the next largest separation, which is perpendicular to the first principal component is the second principal

component. In a dataset of 2D vectors, at most two principal components exist. The dimensionality is

much higher for images. For example, in a dataset of 128×128 images, 1×16384 vectors exist. Therefore,

there are more principal components in a dataset made up of images. However, the number of principal

components we can find is also limited by the number of data points. Consider a dataset consisting of

just one point. Since there is nothing to separate from, there is not a direction of maximum separation

for this dataset. Now, suppose a dataset with just two points. The line connecting these two points is

the first principal component, and there is no second principal component because there is nothing more

to separate from. In this situation, both points are fully on the line.

This idea can be extended indefinitely. Three points define a plane, which is a 2D object. Therefore,

a dataset with three data points can never have more than two principal components, even if it consists

of 1× 16384 vectors.

Computing the eigenvectors

Performing PCA directly on the covariance matrix of images is often computationally expensive. For

example, if 128 × 128 gray-scale images are used, each image is a point in a 16384-dimensional space

and the covariance matrix is a matrix of 16384 × 16384 elements. However the rank of the covariance

matrix is limited by the number of training examples. This means if there are N training examples,

there will be at most N − 1 eigenvectors with non-zero eigenvalues. Turk and Pentland[104] showed
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that if the number of training examples is smaller than the dimensionality of the training images, the

principal components can be computed as follows.

Let T be the matrix of preprocessed training images, where each column contains one mean-subtracted

image. The covariance matrix can be computed as S = TTT and the eigenvector decomposition of S

will be:

Svi = TTTvi = λivi (4.23)

However TTT is a large matrix, and if instead we take the eigenvalue decomposition of

TTTui = λiui (4.24)

then we notice that by pre-multiplying both sides of the equation with T , we will obtain:

TTTTui = λiTui (4.25)

It means if ui is an eigenvector of TTT , then vi = Tui is an eigenvector of S. In our dataset, each

128 × 128 posture image is treated as one data point in a 16384 dimensional space. Therefore, the

number of principal components which could be found will never be more than the number of posture

images for training minus one. Since our classifier is using 10 images from 5 different posture classes,

fifty 1×16384 feature vectors exist. Thus, the best principal components for reducing the dimensionality

is 50− 1 or 49.

4.4.6 Deep Learning-based Approach

Convolutional Neural Networks requires a large dataset for training the network. In HandReader2 we

just have 740 samples for each 10 different posture classes. Furthermore, a posture classifier which is

rotation sensitive but insensitive to small deviations is desired. For this purpose, we rotated each sample
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in HandReader2 45 times from -22 to 22 degrees. We call this new dataset the Extended HandReader2

dataset. Figure 4.26 shows how a V sample in Extended HandReader2 is rotated 45 times.

Figure 4.26: 45 degrees rotation from -22 to 22 for a V sample in Extended HandReader2 dataset

By rotating each 740 samples in HandReader2 dataset for 45 times, we have created a new dataset

for train and validation which consists of 3330 samples for each 10 postures.

We used 3-fold cross validation for comparing the classifiers. In this research, we have used LeNet

and GoogleNet networks for training and validation.

For training, we used about two-third of data and for validation one-third is used. The training and

validation repeated 3 times as it is shown in Figure 4.27 for calculating the average accuracy of each

method.

It should be noted in each split of data, for training and validation, the subjects of hand postures for

training and validation are different. On the other hand, the hand postures for training are from different

people rather than validation. Further details about network parameters and average accuracy of each
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Figure 4.27: 3-fold cross validation

method is presented in experimental results section. Figure 4.28 depicts LeNet architecture adopted for

hand posture classification.

Input
Conv1 Pool1 Conv2 Pool2

FC1 FC2
Binary  
Output

Figure 4.28: LeNet architecture adopted for hand posture classification

4.5 Summary

In the previous chapters, we introduced the general steps of the proposed engagement detection for hand

posture and gesture recognition technique. In this chapter, these steps are explained extensively.

109



Chapter 5

Experimental Results

110



CHAPTER 5. EXPERIMENTAL RESULTS 5.1. EXPERIMENTAL RESULTS FOR DAIA

5.1 Experimental Results for DAIA

DAIA framework was implemented in Visual C++ on Windows workstation.We used ASUS Xtion Pro

to capture depth images and track skeletons using Primesense OpenNI and NiTE SDK and OpenGL.

Finite State Machine is implemented using Boost Meta State Machine (MSM) Library. The system can

process each classify each frame in less than 10ms. Therefore, the method can be used in real-time

applications.

5.1.1 Standard Setup For Training and Test

During the train, test and data collection, subjects were standing in front of the screen shown in Figure

5.1.2. 3D skeleton data and was captured by the depth sensor on top center of the screen as it is shown.

5.1.2 Test Data Collection

Thirty different subjects (12 females, 18 males) with engineering background are asked to hear random

order of commands from a list of actions such as ”raising hand” or ”swiping right to left from A to B”

and perform them in front of a screen depicted in Figure 5.1.2. In this figure, we have five blue points

with numbers 1 to 5 and four red points with letters A, B, C and D. The epicure shown in Figure 5.1.2

was in front of the subjects and they heard and performed the commands individually. The depth sensor

which recorded the frames was located on the top center of the screen.

Activity Commands

There are 25 different activity commands based on the signs in Figure 5.1.2. We wrote a small program

to randomly select several commands from the set of commands and generate a voice media file reading

those commands. List of random commands was generated using a text to speech program that converts

our written commands to voice. Subjects heard these commands using a media player and ear-bud. An
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Figure 5.1: The screen is used to guide users in performing actions in front of the depth sensor

example some voice media commands which is generated for one of the subjects includes the following

commands:

• Please lean back relax and look at ceiling

• Please point to number 1

• Please push button A

• Please put your hand under chin

• Please raise your hand to ask a question
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• Please swipe right from A to B

• Please take some pages from desk and read them

• Please turn chair and look at the person besides you for some seconds

• Please point number 1 and continue pointing to number 4

• Please point number 1 and continue pointing to number 5

• Please stretch both your hands above your head

5.1.3 Test Results

Figure 5.2 shows two different activities that user performed in front of the depth sensor. Figure 5.2.a

illustrates the trace of raising hand and 5.2.b depicts swiping activity.

Figure 5.2: Two different example activities: a) Raising hand b) Swiping

An example of state change using Engagement FSM is shown in Figure 5.3. Graphs in 5.3 are for

the activity of raising and putting down hand during 20 seconds or about 600 frames.
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Figure 5.3: Engagement state detection using FSM for raising and putting down right hand in 600
frames: a) Facing classifier b) Hand speed value c) Intention to Act Classifier d) Engagement states for
raising and putting down hand

Table 5.1: Performance of FSM

State FSM Performance

Disengagement 97.3%
Attention 87.2%
Intention 90.8%
Action 94.2%
Average 92.3%

Each recording consists of about three minutes of activities that goes through all the engagement

states. The results are gathered in Table 5.1.

5.1.4 Comparison and Discussions

Schwarz et al. [19] used a linear regression approach to calculate weight factors to evaluate the relative

importance of five binary classifiers and defined a threshold for the sum of the classifiers to evaluate

intention to act. Their statistical approach engagement detection is not clear.

We propose the implementation of the classifiers as a feature vector containing the binary values.

114



CHAPTER 5. EXPERIMENTAL RESULTS 5.1. EXPERIMENTAL RESULTS FOR DAIA

Depending on the available sensors the feature vector consists of features from different modules. The

feature vector is fed to a Support Vector Machine with a linear kernel as a machine learning algorithm

to evaluate the important classifiers and cluster the emerging pattern in the Engagement Framework

states. Our approach is based on LIBSVM. LIBSVM implements the Sequential minimal optimization

(SMO) algorithm for kernelized SVMs, supporting classification and regression.

As it is mentioned in Table 4.1 we created 37 binary classifiers. For each engagement metrics, multiple

binary classifiers are designed. The 0 or 1 output of these 37 classifiers are used to make our feature

vector, G, for intention to action classifier. Furthermore, we need to define W or vector of weights

to calculate engagement score and afterwards we should define a threshold to classify the frame as

intention to act or disengagement similar to the procedure proposed in [19]. It needs extensive research

on different body postures to calculate these weights. Furthermore, putting constant weight values for

different classifiers may result in wrong classification for complex body postures. Therefore, instead of

defining constant values for the weight vector, we used SVM[116] with linear kernel for training our

intention to act classification. We used G as the feature vector for training and testing our SVM.

115



CHAPTER 5. EXPERIMENTAL RESULTS 5.2. HAND POSTURE RECOGNITION

5.2 Hand Posture Recognition

5.2.1 SVM-based results

For testing and evaluating our system, SVM and k-NN classifier with different configurations have been

employed. We also trained and tested the system when PCA is not used. k-NN works fine with low

numbers of data-point, but with a huge number of data-points it starts to slow down. Applying PCA

has no effect on the results of k-NN classifier. Experiments show that k = 5 is the best value for this

problem. Figure 5.4 shows this result. SVM is a better alternative, which yields better performance in

Figure 5.4: Results of classification with k-NN (k = 5) classifier and with or without using PCA

classification time and also accuracy. When PCA is employed, RBF kernel can not classify the postures

correctly. Figure 5.5 shows this effect. When PCA is not employed, SVM classifier with RBF kernel

accomplish similar results in comparison with linear kernel. But the RBF kernel requires the optimization
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Figure 5.5: Results of classification using SVM with RBF Kernel and PCA

of its parameters (c, γ) . These extra parameters require more work during the training phase, so the

linear kernel is preferred. In our experiments, optimum values for theses parameters are c = 1.56 and

γ = 1.5−5. Figure 5.6 shows results of classification using SVM with RBF or linear Kernel and without

using PCA. Using SVM with linear kernel after applying PCA yields best results for classification of our

postures. Figure 5.7 shows results of classification using SVM with linear Kernel and PCA.

For training and testing the system, multi-class Support Vector Machine (SVM) with linear kernel

produces best results. Table 5.2 summerises our experimental results. Our dataset for this test is

HandReader2 which consists of 740 samples. 30% of images are used for training and the rest are used

for test. We have used 3-fold cross validation approach and Table 5.2 shows the average accuracy in our

experiment for each method. Best results are produced when we are using SVM classifier with linear

kernel after applying PCA. Maximum of error occurred for letter G and H. It is because letter G and
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Figure 5.6: Results of classification using SVM with RBF or linear Kernel and without PCA

H in American Sign Language are very close to each other as it is shown in Figure 5.8. Hence, for

improving the performance, some methods should be used to extract more discriminating features. In

our future work, we will use contour features for extracting these features.
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Figure 5.7: Results of classification using SVM with linear Kernel and PCA

Figure 5.8: letter G and H in American Sign Language.

5.2.2 Deep Learning-based Results

As it is presented in section 4.4.6 we used rotation matrix to generate 45 rotated samples for each sample.

This step produced a total number of 33,300 images, with 3,300 belonging to the each of 10 posture
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Table 5.2: Average 3-fold cross validation detection accuracies with different classifiers and configura-
tions.

Classifier PCA Detection Rate
k-NN (k = 5) no 93.0%
k-NN (k = 5) yes 93.0%
SVM RBF no 95.75%
SVM RBF yes 11%
SVM Linear no 95.75%
SVM Linear yes 98.25%

classes in our HandReader2 dataset, called the Extended HandReader2 dataset. The data were next

converted to the LMDB format and resized to 28×28 pixels. The adopted LeNet model was set for 100

epochs and initiated for Stochastic Gradient Descent with γ = 0.1, momentum = 0.9, base learning rate

= 0.01, and weight decay = 0.0005, and a step learning rate policy dropping the learning rate in steps

in each 1/3 of the number epochs by factor of γ = 0.1 as it is depicted in Figure 5.9.
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Figure 5.9: Learning rate drops in each 1/3 of the number epochs by factor of γ = 0.1 .

Next, the model was trained and validated by 67% and 33% of the data for Extended HandReader2

dataset. The training and verifying processes were repeated three times based on 3-fold cross validation

on Amazon AWS Linux g2.2xlarge to ensure the robustness of the network and achieved accuracy. The

average of accuracies was obtained for each experiment separately, as shown in Table 5.3.
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Table 5.3: The accuracy of verification datasets is demonstrated below for 10800 test data. As it is
shown, a very high level of accuracy in verification datasets was achieved for both LeNet and GoogleNet
on Extended HandReader2 dataset

Accuracy of Verification (%)
Dataset Architecture 1 2 3 Average
Extended HandReader2 Adopted LeNet 96.57 96.59 96.66 96.61
Extended HandReader2 Adopted GoogleNet 98.35 98.36 98.35 98.35

The results demonstrate that a high level of accuracy was achieved in all of the experiments, with the

average accuracy rate of 96.6102% achieved based on adopted LeNet on Extended HandReader2 dataset

as it is shown in Figure 5.10. The accuracy level converged to its final value around epoch 10 and more

training epochs based on this network did not increase the accuracy. Therefore, for achieving a higher

accuracy we have also employed GoogleNet architecture. The confusion matrix for LeNet is presented

in Figure 5.11.
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Figure 5.10: Accuracy results after 30 epochs for GoogleNet

For GoogleNet training and verification, the preprocessed datasets were converted to LMDB format
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A B C D G H I L V Y
A 1080 0 0 0 0 0 0 0 0 0
B 0 1067 13 0 0 0 0 0 0 0
C 0 0 1080 0 0 0 0 0 0 0
D 0 0 33 940 13 0 49 29 0 16
G 0 0 0 0 1044 36 0 0 0 0
H 0 0 0 0 1 1078 0 0 0 1
I 12 0 15 60 0 0 936 0 18 39
L 0 0 0 0 0 0 0 1080 0 0
V 0 4 0 0 0 0 9 17 1050 0
Y 4 0 0 0 0 0 0 1 0 1075

Ac
tu
al
	C
la
ss
es

Predicted Classes

Figure 5.11: Confusion matrix for LeNet

and resized to 224×224. The model was adjusted for 30 epochs using Stochastic Gradient Descent with

γ = 0.1, momentum = 0.9, base learning rate = 0.01, and a step learning rate policy.

The GoogleNet model resulted in a higher level of accuracy than the LeNet model, with the highest

average accuracy rate of 98.3531% achieved for Extended HandReader2 dataset. The confusion matrix

for GoogleNet is presented in Figure 5.14.
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Figure 5.12: Accuracy results after 30 epochs for GoogleNet



Figure 5.13: A closer look at accuracy results after 5 epochs for GoogleNet
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A 1080 0 0 0 0 0 0 0 0 0
B 0 1080 0 0 0 0 0 0 0 0
C 0 0 1080 0 0 0 0 0 0 0
D 0 1 0 982 0 0 97 0 0 0
G 0 0 0 0 1080 0 0 0 0 0
H 0 0 0 0 11 1069 0 0 0 0
I 0 0 0 48 0 0 1014 0 0 18
L 0 0 0 0 0 0 0 1077 0 3
V 0 0 0 0 0 0 0 0 1080 0
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Figure 5.14: Confusion matrix for GoogleNet
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To achieve a natural human-computer interaction for virtual environment applications, the human

hand could be considered as an input device. Hand gestures are frequently used in everyday life. They

also an important component of body language. There has been extensive research on rapid hand posture

recognition focusing on the appearance-based models of hand.

In this research, as our first contribution, a novel multi-modal model for engagement detection,

Disengagement, Attention, Intention, Action (DAIA) framework is presented. Disengagement happens

when user is disengaged from target object. Attention occurs when user has attention to the target, but

doesnt have intention to do any actions. In Intention state, user intends to perform an action, but still

not doing it. Finally, in Action state, user is performing an action with hand. Using DAIA, the spectrum

of mental status for performing a manipulative action is quantized in a finite number of engagement

states. The second contribution of this research is designing multiple binary classifiers based on upper-

body postures for state detection. 3D skeleton data is extracted from depth image and is used to extract

body posture information. One of these binary classifiers is Facing classifier, and designed based on body

direction towards the target object. This classifier is used to detect transition between Disengagement

and Attention states. In addition, combining the output of all binary classifiers makes engagement

feature vector. This feature vector could be extended using other channels of biometric information

such as voice or gaze. Using engagement feature vector, an SVM classifier is trained to detect the

most important transition in mental state which is Intention to Act, and indicates the transition from

Attention to Intention or Action. However these classifiers recognize the state change with acceptable

accuracy, minor changes in body postures for some milliseconds may result in transition to other states.

For removing this unwanted noise and increasing the accuracy of system, an FSM is designed based on

the properties of human activities. The design of Engagement FSM is third major contribution of this

research.

Different hand postures in Intention state provide useful information for the system. For recognizing

different hand postures in this state, a novel algorithm for hand-shape modeling is proposed which is
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the forth major contribution of this research. Another contribution is introducing a new hand posture

dataset, HandReader dataset, which consists of 724 RGB images from 10 different hand postures of 74

individuals. These postures are 10 ASL alphabets; namely A,B,C,D,G,H,L, I, V, and Y .

Experimental results for FSM which classifies each frame into one of four different engagement states

is 92.3% true detection rate in total. Results also show FSM can segment user hand gestures more

robustly. The processing time for each frame is less than 10ms which indicates real-time usability of

the algorithm since system processes 30 frames per second. For hand posture recognition, we used ten

different classes of posture in the HandReader dataset. After preprocessing, 45 instances from each

sample in the dataset are made using rotation matrix and created 33,300 samples in total. two-third of

these samples are used for training and one-third is used for validation based on k-fold cross-validation

method. In order to train the system, k-NN, SVM classifiers with linear and RBF kernel and Deep

Convolutional Neural Network have been employed to find the best classifier. Deep Convolutional Neural

Network based on GoogleNet outperforms the other classifiers with average validation accuracy of 98%.

The future works for this research are designing classifiers for hand and body gesture recognition and

extending the system for multi-user engagement detection. Because we offered a novel time-series for

engagement, Recurrent Neural Networks seems to be a promising approach for engagement and gesture

recognition in future research.

6.1 Contributions

6.1.1 Multi-modal Engagement Detection Framework

For hand gesture and posture recognition, we have presented a framework that initially detects user’s

engagement and afterwards employs related classifiers for posture or gesture classification. Figure 6.1

depicts the framework of our approach.

DAIA framework consists of four distinguishable mental states which are Disengagement, Attention,
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Feature	Extraction	and	Selection

Hand	Posture	Classes

Hand	Posture	Classifiers

Human	Skeleton	Extraction	and	Tracking
From	Depth	images	using	combination	OpenNI	and	NiTE	SDK

or	Microsoft	Kinect	SDK

Engagement	State	Detection	
Using	Finite	State	Machine

Add	frame	to	
Attention	frame	set

state?
Intention

Feature	Extraction	and	Selection

Hand	Gesture	Classes

Hand	Gesture	Classifiers

Multiple	Binary	Classifiers	for		
all	channels	of	data

Engagement	Data
(Skeleton,	Voice,	Facial	Data,	etc)

Intention	To	Act	Classifier

Engagement	Metrics
Human	State	
Transitions

Context	
Information

Add	frame	to	
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Attention

Gesture	Detection	
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Yes

No

No

Yes Disengagement?

Figure 6.1: Engagement Detection Framework for hand gesture and posture recognition

Intention and Action. These four states and their relations are presented in Figure 6.2. From left to

right in Figure 6.2, the engagement level is increased.

Disengagement happens when user is disengaged from target object. Attention occurs when user has

attention to the target, but doesnt have intention to do any actions. In Intention state, user intends

to perform an action, but still not doing it. Finally, in Action state, user is performing an action with

hand. Using DAIA, the spectrum of mental status for performing a manipulative action is quantized in

a finite number of engagement states.
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Figure 6.2: Engagement scales from Disengagement to Action

6.1.2 Upper-body Binary Classifiers

The second contribution of this research is designing multiple binary classifiers based on upper-body

postures for state detection (Table 6.1). 3D skeleton data is extracted from depth image and is used

to extract body posture information. One of these binary classifiers is Facing classifier, and designed

based on body direction towards the target object. This classifier is used to detect transition between

Disengagement and Attention states. In addition, combining the output of all binary classifiers makes

engagement feature vector. This feature vector could be extended using other channels of biometric

information such as voice or gaze. Using engagement feature vector, an SVM classifier is trained to detect

the most important transition in mental state which is Intention to Act, and indicates the transition

from Attention to Intention or Action.

6.1.3 Engagement FSM

Although binary classifiers recognize the state change with acceptable accuracy, minor changes in body

postures for some milliseconds may result in transition to other states. For removing this unwanted noise
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Table 6.1: Binary classifiers based on engagement metrics

Engagement Metric Binary Classifiers

Hand Horizontal Right of Body, Close to Body, Left of Body
Hand Vertical Below Hip, Below Torso, Below Shoulder, Below Head
Hand Depth Back of Body, Close to Body, Front of Body
Hand Speed Stopped, Slow, Fast, Too Fast
Body Direction Facing Sensor
Leaning Lean back, No Lean, Lean Forward
Special Postures Hands folded, Hands on Head, Hands on Torso

and increasing the accuracy of system, an FSM is designed based on the properties of human activities.

The design of Engagement FSM is third major contribution of this research depicted in Figure 6.3.

This engagement framework helps in gesture segmentation and providing sequences of frames for hand

posture and gesture classifiers.

Figure 6.3: Engagement Detection State Machine for Hand Posture and Gesture Recognition

6.1.4 HandReader Datasets

We created HandReader dataset for some alphabets of American Sign Language (ASL). This dataset

contains 500 RGB color images of 10 different letters of ASL performed by 50 different people (both
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males and females). The dataset has a black background. We also want to create HandReader2 dataset

which contains 740 128 × 128 square hand silhouettes. Five hundred of these images are originally

from HandReader dataset, and the rest are obtained from Triesch Static Hand Posture Database. We

subtracted the dark background from hand shapes and scaled and centered them inside a 128 × 128

square. After applying a threshold, we converted these hand postures into binary images, i.e., hand

silhouettes. This is helpful in feature extraction as any feature extracted from these images would be

scale and translation invariant.

Figure 6.4: HandReader2 Dataset

Afterwards, we combined HandReader dataset with Triesch dataset to create HandReader2. Han-

dReader2 is made from 10 RGB hand postures from 74 different people. Figure 6.5 illustrates 74 different

V postures which are used in creation of HandReader2.

6.1.5 Rotation Sensitive Descriptor For Hand Postures

We have normalized hand silhouette into a 128× 128 square (HandReader2 dataset). In contrast to all

current approaches which are rotation invariant, our shape descriptor is sensitive to rotation; however, it

is scale and translation invariant. The rotation sensitive shape descriptor is useful in some applications
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Figure 6.5: HandReader2 is made from 10 RGB hand postures from 74 different people. This figure
illustrates 74 different V postures which are used in creation of HandReader2.

such as ASL recognition because some letters such as “I” and “J” have similar postures in different

orientations. Although our shape descriptor is rotation sensitive, we accept postures with 22 degrees

deviation from the model postures to avoid slight differences. We used the rotation matrix to create

samples from -22, to 22 degrees deviation from the main posture sample and label all of them for the

same class in training. Please note this configuration even helps to achieve a rotation invariant descriptor

for any posture in the test stage of the system. Using the rotation matrix, if we rotate any test posture

four times, each time for 45 degrees, it should align once to a posture class since we had trained the

system for 45 degrees deviation (-22 to 22) of each class sample in the training step.

6.1.6 Features Reduction

Performing PCA directly on the covariance matrix of the images is often computationally infeasible. If

small, say 100×100, gray-scale images are used, each image is a point in a 10,000-dimensional space and

the covariance matrix S is a matrix of 10000×10000 = 108 elements. However, inspired by Eigenfaces[104]
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method, the rank of the covariance matrix is limited by the number of training examples: if there are

N training examples, there will be at most N − 1 eigenvectors with non-zero eigenvalues. Therefore,

in the pilot project with fifty 128 × 128 training examples (N = 50, 5 posture classes with 10 different

samples for each class), we can reduce the dimensionality from 16384 to N − 1 = 49. This reduction is

performed in real-time and increases Signal-to-noise ratio (SNR).

6.2 Future Works

Future works for this research include designing classifiers for hand and body gesture recognition and

extending the system for multi-user engagement detection. Because we offered a novel time-series for

engagement, Recurrent Neural Networks seems to be a promising approach for engagement and gesture

recognition in future research.

Figure 6.2 shows outline of our extended system in our future research.
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classifiers

…

Figure 6.6: Outline of our extended system in our future research.

Summary of our future works are as follows:
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• Multi-modal approach: Using other channels of biometric information such as voice direction,

gaze, facial expressions. We expect as much as more related classifiers we will have for extracting

meaningful information from users, we can predict the engagement more precisely.

• Multi-user platform: Designing multi-user platform for engagement detection is one of our

future goals.(Figure 6.2). For this purpose, an engagement feature vector and a separate FSM for

each user should be extracted to segment gestures of users in front of the sensors. This will help

in creating a multi-user platform such as smart meeting rooms.

• Gesture Recognition: Designing hand gesture classifiers based on Engagement Feature Vector

and binary classifiers. Recurrent Neural Networks seems to be a promising approach for engage-

ment and gesture recognition as they are well-known for time-series analysis.

Figure 6.7: Multi-user engagement detection system
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Glossary

Compound Annual Growth Rate The year-over-year growth rate of an investment over a specified

period of time. The compound annual growth rate is calculated by taking the nth root of the total

percentage growth rate, where n is the number of years in the period being considered.. 5

Degrees of Freedom In statistics, the number of degrees of freedom is the number of values in the

final calculation of a statistic that are free to vary. The number of independent ways by which

a dynamic system can move, without violating any constraint imposed on it, is called number of

degrees of freedom.. 4
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Acronyms

ASL American Sign Language. 3, 127

DAIA Disengagement, Attention, Intention, Action. iii, 126

FSM Finite State Machine. iv

HCI Human-Computer Interaction. iii, 2, 13, 16

PCA Principal Component Analysis. 63

SNR Signal-to-noise ratio. 133

SVM Support Vector Machine. 46, 63

ToF Time-of-flight. 3

VR Virtual Reality. 8
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