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Abstract

MULTICHANNEL SPECTRUM SENSING OVER

CORRELATED FADING CHANNELS WITH DIVERSITY

RECEPTION

c©Salam Al-Juboori, 2017 Doctor of Philosophy

Electrical and Computer Engineering

Ryerson University

Accurate detection of white spaces is crucial to protect primary user against interference

with secondary user. Multipath fading and correlation among diversity branches

represent essential challenges in Cognitive Radio Network Spectrum Sensing (CRNSS).

This dissertation investigates the problem of correlation among multiple diversity

receivers in wireless communications in the presence of multipath fading. The work

of this dissertation falls into two folds, analysis and solution. In the analysis fold,

this dissertation implements a unified approach of performance analysis for cognitive

spectrum sensing. It considers a more realistic sensing scenario where non-independent

multipath fading channels with diversity combining technique are assumed. Maximum

Ratio Combining (MRC), Equal Gain Combining (EGC), Selection Combining (SC)

and Selection and Stay Combining (SSC) techniques are employed. Arbitrarily,

constant and exponentially dual, triple and L number of Nakagami-m correlated

fading branches are investigated. We derive novel closed-form expressions for the

average detection probability for each sensing scenario with simpler and more general

alternative expressions. Our numerical analysis reveals the deterioration in detection

probability due to correlation especially in deep fading. Consequently, an increase in

the interference rate between the primary user and secondary user is observed by three
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times its rate when independent fading branches is assumed. However, results also

show that this effect could be compensated for, through employing the appropriate

diversity technique and by increasing the diversity branches. Therefore, we say that

the correlation cannot be overlooked in deep fading, however in low fading can be

ignored so as to reduce complexity and computation. Furthermore, at low fading, low

false alarm probability and highly correlated environments, EGC which is simpler

scheme performs as good as MRC which is a more complex scheme. Similar result are

observed for SC and SSC. For the solution fold and towards combatting the correlation

impact on the wireless systems, a decorrelator implementation at the receiver will

be very beneficial. We propose such decorrelator scheme which would significantly

alleviate the correlation effect. We derive closed-form expressions for the decorrelator

receiver detection statistics including the Probability Density Function (PDF) from

fundamental principles, considering dual antenna SC receiver in Nakagami-m fading

channels. Numerical results show that the PDF of the bivariate difference could be

perfectly represented by a semi-standard normal distribution with zero mean and

constant variance depending on the bivariate’s parameters. This observation would

significantly help simplifying the design of decorrelator receiver. The derived statistics

can be used in the problem of self-interference for multicarrier systems. Results also

show the outage probability has been improved by double, due to the decorrelator.
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Chapter 1

Introduction

1.1 Background

The radio frequency spectrum is a precious resource to enable communications among

wireless devices. This resource is increasingly facing a big challenge through the

huge demand on allocating frequency bands for communication devices. For example,

the current Federal Communications Commission (FCC) regulations adopt a static

spectrum allocation policy to the licensed users on a long-term basis and over large

geographical areas. However, recent studies revealed that less than 20% of the allocated

spectrum is actually utilized[1–6]. An effective solution to address this huge demand

must be proposed; consequently, the static allocation policy must be changed to take

advantage of the under-utilized spectrum.

A Cognitive Radio Network (CRN) approach is considered as a promising solution for

solving the radio spectrum scarcity resulting from the unprecedented widen growth. J.
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Figure 1.1: Cognitive radio spectrum sensing cycle.

Mitola [7] first proposed the concept of CRN where, a communication device is aware

of its surrounding radio environment and has the ability to adjust its parameters

such as: transmit power, carrier frequency and modulation strategy. The CRN device

adapts these adjustable parameters in real time in order to achieve two objectives:

1. Reliable communication

2. Efficient utilization of the radio spectrum.

Since CRN devices must co-exist with licensed primary users, dynamically sensing

the radio spectrum to decide the presence or absence of the primary users is a very

important function of a CRN device. Accurate sensing will ensure no interference on

the primary users from the secondary users who use the same frequency band while

ensuring high throughput to the secondary users [8],[9] which is done through so-called

cognitive cycle (Figure. 1.1) and its components (Figure. 1.2).

2



Figure 1.2: Cognitive radio components.

1.2 Cognitive Radio Spectrum Sensing (CRSS)

Techniques

In general, spectrum sensing could be divided into three main categories (Figure. 1.3):

1. Transmitter detection

Detecting if the primary signal transmitter is locally present in a certain spectrum

band or not.

2. Cooperative detection

Information from multiple sensors are combined together to detect the presence

of the primary user.

3. Interference based detection

The cognitive node coexists with primary user and is allowed to transmit with

low power but is restricted by the interference temperature level in order not to

cause harmful interference to primary user.

In fact, the core of cognitive spectrum sensing is detecting a signal in noisy channel

which is traditionally referred to as signal detection theory. There are several methods

3



Spectrum
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Transmitter
Detection
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Feature

Centralized

Distributed

Relay-assisted

Figure 1.3: Few Cognitive radio spectrum sensing techniques.

of spectrum sensing; signal detection, based on the type of available sensing parameters

information, such as frequency, modulation, signal and noise variances, collected about

the primary user [10]. However, the most important aspect of the primary user signal

detection is the binary hypothesis test in order to declare the presence or the absence

of the primary user signal.

Different spectrum sensing techniques have been proposed depending on different

available sensing parameters information such as detected signal structure, noise

statistics and Channel State Information (CSI). Some of these information represent

serious challenges which affect the spectrum sensing as we will see in Sec. 1.3.

1.3 Spectrum Sensing Challenges

Some technical challenges of cognitive radio spectrum sensing make it a difficult and

even unreliable task unless precautions and measures are taken.

The main reason for these challenges is that there is no signaling (communication)

4



Figure 1.4: Hidden terminal problem in Cognitive Radio Spectrum Sensing.

between the cognitive sensor and the licensed primary user. As a result, the cognitive

node must rely on detecting a weak signal coming from the primary user, which is

the main task of the cognitive radio concept. Therefore, the cognitive sensor must

be equipped with a receiver with high sensitivity margin compared with the primary

user receiver.

The inherit hidden terminal problem in wireless communication [11] is another challenge

in the spectrum sensing process (Figure. 1.4). It is defined as the failure of the

secondary user to sense the primary user signal due to either receiver uncertainty or

severe fading environment. Consequently, the secondary user will assume the absence

of the signal of the licensed primary user and start access the spectrum by transmitting.

Another serious challenge for reliable spectrum sensing is the multipath fading, the

main concern and focus of this thesis.

Typically in a multipath fading or shadowing channel, the propagating signal experiences

sharp fluctuations and might become weak. However this does not necessary mean

5



that the primary user is not active or located out of the cognitive interference zone

[12]. Hence, the knowledge of the fading envelop statistics is necessary to combat

its harmful impact against any interference and to maximize the spectrum usage,

especially when the signal power becomes comparable with the noise power [13].

Correlation among multiple receiving antennas is another issue impairs spectrum

sensing when independent fading branches are assumed. This issue arises when

diversity combining technique is employed to combat the multipath fading impact

[14–16]. Considering independent antenna branches is often an invalid assumption,

especially, with the increasingly closely spaced antennas in small mobile units [17].

However, the effect of correlation among antenna branches depends on the type of

deployed diversity combining technique.

Sensing time is another issue in cognitive spectrum sensing. While accessing the

vacant spectrum, the cognitive sensor must keep sensing the spectrum in order to

exit once the primary user starts transmitting to avoid any interference with it [12].

Typically, a cognitive radio unit cannot sense and transmit simultaneously, therefore

it has to periodically sense and transmit in a time slotted manner. Consequently, this

switching between sensing and transmitting modes results in throughput reduction

and inefficient spectrum usage.

Due to these challenges, it becomes clear that sensing is highly restricted and limited.

Accordingly, these challenges need to be addressed since reliable and high efficiency

performance is of the top priority of spectrum sensing process.
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1.4 Motivation

Developing an accurate model for detection probability in realistic sensing environments

is vital in cognitive radio network in order to prevent the secondary user from

harmfully interfering with the primary user while not missing out potential spectrum

opportunities. Multipath fading and correlation among receiving antenna branches

are the major cause of the sensing impairments.

Diversity combining is usually implemented in advanced wireless communication so as

to address the multipath fading issue. In this technique, two or more copies of the

desired signal are appropriately combined to maximize the Signal-to-Noise-Ratio (SNR)

or some other figure of merit. This approach effectively mitigates the impairments of

multipath fading and yields the best possible benefit when the time varying multipath

channel seen by each antenna branch is independent [18]. However, this is not often the

practical case and the maximal theoretical diversity gain is not attainable. Assuming

independent antenna branches is often invalid where correlation coefficients in range

(0.6-0.8) were observed. This observation were confirmed for multipath diversity over

frequency-selective fading scenarios, especially, with the increasingly closely spaced

antennas in small mobile units [19]. Thus, it is important to examine and combat the

correlation impact on the diversity performance.

Furthermore, it is well-known that diversity combining techniques are different in their

optimality and complexity[19]. Therefore, a tradeoff between these two issues needs

to be achieved in order to maximize the performance of the diversity technique while

keeping the add-on complexity of the wireless communication system at the minimum.

Motivated by these objectives, we study different diversity combining techniques and
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compare their performances in different fading and correlation sensing scenarios.

Decorrelation is one of the effective techniques employed to combat the correlation

adverse impact in wireless communications. Karhunen-Loeve Transformation (KLT)

is often employed in this technique, consequently, the covariance matrix knowledge

is required to perform the diagonalization [20]. In some special cases when the dual

diversity is employed, decorrelation can be performed easily by adding and subtracting

the diversity branches. However, this requires the evaluation of the statistics of the

sum and the difference of correlated bivariate due to the random nature of the wireless

channel. This also motivates us to study the decorrelation technique and to propose

an effective and simple diversity decorrelator.

1.5 Related Work

In this section, we review the up-to-date work of the spectrum sensing in correlated

multipath fading environments. We also review the work related with decorrelation as

an effective solution for combating the correlation among multipath diversity branches.

To ensure a better detector performance, hence, a high probability of detection and low

false alarm, the sensing process has to take into account the real signal propagation

environment, thus the effect of the multipath fading. Usually, this is done by averaging

the detection probability over the PDF of the corresponding fading channel and

employing the appropriate diversity combining technique. Furthermore, the correlation

among diversity fading branches in multi-receiving antennas is another issue impairs

sensing process[19]. Therefore, it has to be considered in the investigations of the

signal detection towards more realistic and accurate in the spectrum sensing.
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The core of CRNSS is the classic signal detection theory which is extensively investigated

in literature. Urkowitz [21] was the first to investigate the unknown deterministic

signal detection in a flat band-limited Gaussian noisy channel employing an Energy

Detector (ED). In this technique, the received energy samples are squared, integrated

and then compared with the decision threshold. This detection problem has been

revisited for the first time by Kostylev [22] for more realistic situations of averaging the

detection probability over fading channels. In this work, the Rayleigh, Nakagami and

Rician fading distributions were considered and closed-form expressions for probability

of detection (PD) and probability of false-alarm (P F ) were derived for the Rayleigh

fading channel. However, a numerical integration for Nakagami-m fading channel and

an infinite summation for the Rician fading channel were needed for PD calculation.

Furthermore, only Nakagami-m integer parameter values were considered.

In [23] and [24], alternative analytic approaches to that in [22] were introduced

and extended work considering some diversity combining techniques were employed.

In [23], independent and identically distributed (i.i.d.) L number of Rayleigh fading

branches with EGC, SC and SSC were considered and corresponding average detection

probabilities were derived. However, dual branches were considered for SSC diversity

technique. In [24], the authors extended their work for i.i.d. L number of Additive

White Gaussian Noise (AWGN) and Rayleigh with Square-Law Combining (SLC)

and Square-Law Selection Combining (SLS). Furthermore, L non-independent and

identically distributed (n.i.i.d.) with SLS was considered. In fact the derived detection

probabilities are limited to an integer-valued shape parameter (m) and to unity Time

Bandwidth Product (TW) in the decision variable u = TW . In [25], closed-form

expressions were presented for PD and P F for multiple antenna spectrum sensing

employing MRC and SC techniques assuming L-i.i.d. Rayleigh branches fading.
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In [26], an Orthogonal Frequency-Division Multiplexing (OFDM) based Cognitive

Radio Sensor (CRS) equipped with multiple antenna and employing SLC was investigated

assuming i.i.d. fading branches and alternative approach to that in [27] was introduced.

Investigation demonstrated improved detection compared with single antenna reception.

Again, assuming i.i.d., a novel spectrum sensing technique was proposed in [28]. This

technique consists of multiple antenna CRS which are equipped with multiple ED

devices and work collaboratively to perform spectrum sensing. Numerical analysis

for Suzuki fading channel showed improved detection probability compared with the

conventional sensing technique. Spectrum sensing with multiple antenna exponentially

correlated in Rayleigh fading channel was investigated in [29]. Detection parameters

were derived employing Central Limit Theorem (CLT) in order to approximate the

ED statistics. Investigation showed the degradation in sensing performance due to

the correlation among the antennas. The drawback of this approach is that CLT may

not hold due to unavailability of large number of signal samples.

In [30–34] closed-form expressions for average detection probability (PD) were introduced

for i.i.d. Nakagami-m and Rician fading branches employing different diversity combining

techniques. In these works, SSC (L = 2), EGC (L = 2, 3 and L ≥ 4), SC (L ≥ 2),

and for MRC, SLC and SLS, L number of diversity branches were investigated.

For MRC, authors employed both PDF and Moment Generating Function (MGF)

approaches. Again, using MGF approach for L-Nakagami-m correlated branches

with SLC, closed-form expressions were derived for constant, exponentially and a

linear array of 2, 3 and 4 arbitrarily correlated antennas [35]. Investigations including

correlation degree, TW, number of antennas and the fading severity and their impact

on detection were done. ED cooperative spectrum sensing over i.i.d. Nakagami-m

frequency-selective fading channel was investigated in [36] and corresponding average
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detection probability was evaluated. Investigation results showed improved detection

performance compared to a flat-fading scenario due to both the additional multipath

L and the parameter m.

In [37], i.i.d. L Nakagami-m lognormal composite 1 channel branches was investigated

without and with SLC and SLS diversity, and MGF based approach was derived.

The author claimed that the proposed approach could be employed for correlated

Nakagami-lognormal composite channel, however, he didn’t show how this would

be possible. In [38], detection performance was investigated over generalized fading

environment employing the MGF approach and independent but not identically

distributed (i.n.i.d.) branches were assumed with SLC, SLS and MRC diversity

schemes. However, only MRC with constant correlated branches scenario was considered

and closed-form approximations were derived in these investigations. In [39], spectrum

sensing employing p-norm Detector2 was investigated for a single and multiple CRS in

path-loss, shadowing, multipath fading and random network interference environments

assuming i.i.d. fading branches.

In [40], an expectation-maximization based cooperative spectrum sensing approach

[41,42] was proposed considering cognitive secondary users equipped with multiple

antenna. Decision statistics and then corresponding detection probabilities were

derived assuming independent antennas reception. In [43], a cooperative spectrum

sensing employing ED and named as multi-selective scheme was proposed. Assuming

i.i.d. Rayleigh fading branches, detection probabilities were derived and improved

performance compared with other diversity techniques such as SLS and SC was shown.

1Nakagami-lognormal composite channel model results from the combination of Nakagami-m
fading and lognormal shadowing.

2p-norm Detector is a generalized version of the classical ED where the squaring operation is
replaced by a power p > 0, thus y = 1

N

∑N
i=1 |xn|

p
.
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In [44], i.i.d. L Mixture Gamma Distribution (MG) fading channel branches 3 was

investigated with MRC, SLC and SLS diversity and corresponding average detection

probability expressions were derived.

To the best of our knowledge, reviewing the literature reveals that most previous

works which investigated the detection probability in fading channels assumed i.i.d.

diversity branches. In many cases, the assumption of uncorrelated branches is not

valid, specifically, in massive antenna systems, where insufficient antenna spacing

in small-size mobile units equipped with space and polarization antenna diversity

are employed. For multipath diversity over frequency-selective channels, correlation

coefficients up to 0.6 between adjacent paths were observed [19].

Consequently, towards more realistic sensing scenario, more accurate detection and

better primary user protection against interference, we consider correlated Nakagami-m

fading branches in our investigations of the spectrum sensing in this thesis. We

implement a unified approach of performance analysis employing MRC, EGC, SC and

SSC diversity combining techniques. We derived closed form expressions for detection

probability considering this more realistic sensing scenario with some more general and

simpler alternative expressions. Through numerical analysis, we show the invalidity of

assuming independent fading branches, especially in deep fading and high correlation

sensing scenarios. Furthermore, a comparison of performance analysis between closely

combining techniques shows that in deep fading and high correlation regimes, simpler

technique could replace the more complex one. Thus, reducing the cost and complexity

while maintaining the same performance.

3MG distribution[45,46] has been proposed as an alternative model to various generalized and
composite fading channels, such as, lognormal, Weibull, Rayleigh-lognormal, Nakagami-lognormal, K,
KG, η-µ, κ-µ, Hoyt, and Rician channels.

12



In order to combat the correlation among diversity branches, most recent studies

that address correlation describe various methods for improving efficiency of diversity

branches. Decorrelation receivers have been studied in the literature. KLT is often

employed for this purpose. In [47], decorrelation of MRC diversity branches was studied

but, results showed no improvement compared with correlated one. Considering

Rayleigh fading channels, authors in [48] employed KLT of N × N dimensional

channel correlation matrix (and dual correlation in [49]) to create uncorrelated virtual

antennas for SC and SSC techniques. Simulation-based analysis showed an enhanced

performance in terms of decreasing outage probability and switching rate, while

increasing the average SNR. In [50] also, KLT-based decorrelation was employed for

SC and EGC in Rayleigh fading channels and MRC error analysis was applied easily

to the decorrelator outputs. However, in general, knowledge of the covariance matrix

is required to diagonalize it using KLT approach [20] which in turn requires CSI.

However, when only dual diversity (L = 2) is employed, decorrelation can be performed

easily by adding or subtracting the signals received by correlated branches [51]. This

yield to a relatively simple, feasible solution. Nevertheless, an evaluation of the

statistics of the sum and the difference of a correlated bivariate is required to implement

this stochastic dual decorrelator receiver due to the random nature of the wireless

channel. In [51], decorrelation was done through adding and subtracting the diversity

branches. It was performed for dual SC, and SSC diversity branches in Rician and

Rayleigh fading channels and improvement was observed in Bit Error Rate (BER),

average SNR and outage probability. However, no improvement observed for EGC

and SLC techniques. In [52], a similar approach to that in [51] was used for a dual

branch MRC receiver operating in correlated Hoyt fading channels. Then results

were employed to simplify computation of the Symbol Error Rate (SER) in the
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investigated problem. In [53], decorrelation was employed to simplify the SLC-based

energy detection analysis in correlated Rayleigh and Rician fading channels. In

papers [54–57], dealing with decorrelation, numerical analysis showed improved

Signal-to-Interference-Noise-Ratio (SINR) and system capacity.

Our approach in combating the correlation among fading branches employs the

same decorrelation concept as in [51], however, it considers Nakagami-m distribution,

the more universal fading distribution. More importantly and in contrast to the

work in [51], our approach derives the statistics necessary for decorrelation form

fundamental principles by deriving the PDF and the CDF of the difference of correlated

Nakagami bivariate. Numerical analysis shows that the derived PDF could be perfectly

represented by a semi-standard normal distribution, thus eliminating future derivations.

Furthermore, our derived statistics can be used to solve the problem of self-interference

in multicarrier systems as well.

The next section demonstrates our contributions in this thesis.

1.6 Contributions

The contributions of this thesis fall into two folds, analysis and solution (Figure 1.5).

From an analysis point of view, this thesis investigates the impact of multipath fading

and correlation among diversity branches problems on the performance of cognitive

spectrum sensing. It implements a unified approach of performance analysis for

spectrum sensing in correlated multipath fading branches. For a solution perspective,

a decorrelator implementation at the receiver is proposed to combat the correlation

among diversity branches. In particular:
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Figure 1.5: Summary of thesis contributions.
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1. Analysis Fold

• We investigate a more realistic sensing scenario through considering correlated

Nakagami-m fading branches

• We implement a unified framework of performance analysis for cognitive spectrum

sensing with different diversity combining techniques including:

– Constant and exponentially correlated L-Nakagami-m fading branches with

MRC technique

– Exponentially correlated triple Nakagami-m fading branches with SC

technique

– Arbitrarily correlated dual Nakagami-m fading branches with EGC, SC

and SSC techniques

– We derive corresponding closed-form expression for average detection

probability with some alternative, more general and simpler expressions for

each sensing scenario

– We derive a corresponding closed-form expression for optimal threshold for

SSC diversity case

– We perform a triple-level of analysis: individual, dual and comprehensive

comparison performance analysis in order to verify the derived expressions

and analyse the results
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2. Solution Fold

– We propose a decorrelated SC receiver for identical and correlated dual

Nakagami-m fading branches

∗ We derive expressions for the statistics of normalized difference of

identical and correlated Nakagami-m bivariate in order to facilitate

the design of proposed receiver

∗ Our derived statistics can be used in the problem of self-interference

for multicarrier systems

– To the best of our knowledge, we believe that the derived expressions are

novel in the literature

1.7 Thesis Outline

The remainder of this thesis is organised as follows. In the next chapter, we review

some sensing techniques, namely, signal detection techniques with focusing on the

widely used ED technique. Furthermore, we review the two wireless channels models,

the ideal and multipath fading models. We next describe the correlation among

multi-antenna receivers resulting from employing diversity technique in order to

combat multipath fading impact on detector performance. We conclude the chapter

by describing the ED system model employed in this thesis under our more realistic

sensing scenario through considering non-independent fading diversity branches. In

chapter 3, we investigate constant and exponentially L correlated Nakagami-m fading

branches with MRC diversity. We derive an exact closed-form expression for the

17



average detection probability of each sensing scenario. We describe the performance

analysis using Complementary Receiver Operating Characteristics (CROC) graphs

to evaluate the derived expressions by studying the fading and correlation impact on

the detection probability. In chapter 4, we consider a detection scenario when EGC

diversity technique is employed with dual correlated Nakagami-m fading branches. We

derive an exact closed-form expression for the average detection probability of each

sensing scenario. We do performance analysis using CROC graphs to evaluate the

derived expressions by studying the fading and correlation impacts on the detection

probability. In chapter 5, we consider a detection scenario when SC diversity technique

is employed for dual and triple diversity branches. For triple case, an exponentially

correlated branches are considered. We derive the average detection probability

for dual and triple Nakagami-m correlated fading branches with SC diversity. We

do performance analysis using CROC graphs to evaluate the derived expressions

by studying the correlation impact on the detection probability. In chapter 6, we

consider a detection scenario when SSC diversity technique is employed for dual

diversity branches. We derive the average detection probability for dual Nakagami-m

correlated fading branches with SSC diversity. We do performance analysis using

CROC graphs to evaluate the derived expressions by studying the correlation impact

on the detection probability. In chapter 7, we propose a decorrelated-based SC receiver.

We do so through investigating the problem of decorrelating SC receiver in identical

and correlated dual Nakagami-m fading branches. We derive the expressions for

statistics of the normalized difference of Nakagami-m bivariate which represent the

foundation of our presented decorrelator. In chapter 8, we perform two levels of

performance comparison, namely dual and comprehensive comparison in order to

study the impact of multipath fading and correlation among antenna branches on the
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detection probability. Finally, we conclude this thesis in Chapter 9 and present some

directions for future work.
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Chapter 2

Spectrum Sensing in Correlated

Multipath Fading Channels

In this chapter, we review some sensing techniques, namely, signal detection techniques

with focusing on the widely used ED technique. Furthermore, we review the two

wireless channels models, the ideal and multipath fading models. We next describe

the correlation among multi-antenna receivers resulting from employing diversity

technique in order to combat multipath fading impact on detector performance. We

conclude the chapter by describing the ED system model employed in this thesis

under our more realistic sensing scenario through considering non-independent fading

diversity branches.

20



Figure 2.1: Energy detection spectrum sensing technique.

2.1 Signal Detection Techniques

Many signal detection techniques have been proposed in literature. The complexity

level, implementation, advantages and drawbacks are described next.

2.1.1 Energy Detection

A non-coherent ED (with no synchronization) is a widely used and easiest sensing

technique due to its robustness to unknown dispersive channel and fading. In this

technique, no priori information about the detected signal is needed and it is optimal

for detecting i.i.d. signals [10, 21, 22, 24, 58, 59]. These features (especially, no priori

information about the detected signal is needed ) make ED an attractive and perfect

candidate for CRNSS since there is no signaling between the primary user and

secondary user. However, the knowledge of noise statistics is still required for setting

the threshold for hypothesis testing or these statistics must be estimated.
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Typically, in ED (Figure. 2.1), the received samples are filtered and passed to a

squaring unit followed by integrator. The output is compared with a predefined

threshold which is usually the noise power to make a decision of the presence or

absence of the primary user signal.

ED Drawbacks

Since ED requires the knowledge of the noise statistics, its performance is vulnerable

to noise uncertainty. To circumvent this problem, a pilot tone from the primary

transmitter may be used to improve the ED accuracy. Furthermore, ED can only

detect the presence of the signal, it cannot differentiate its type. Therefore, it is prone

to the false detection triggered by unintended signals [60]. Another drawback of ED

is that at low SNR spectrum sensing scenarios, ED is inefficient to discriminate the

interference from the primary signal. In fact, ED’s noise estimator is not good for

small samples number (N) in low SNR regimes. Hence, large number of samples is

needed, consequently longer detection time.

A Generalized Likelihood Ratio (GLR) detector is proposed in [61] to improve ED

performance and overcome some or all unknown parameters needed for optimal energy

detection such as noise uncertainty, channel gain and primary user variance.

In our investigation in this thesis, we employ ED as a sensing technique in spite of

its some aforementioned drawbacks since it is perfect candidate for CRNSS as we

mentioned earlier.
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Figure 2.2: Matched filter detector block diagram.

2.1.2 Matched Filter

Matched filter is a coherent detector. It is optimal for detecting the priori known

waveform information (such as: modulation type and order, pulse shape, and packet

format) since it maximizes SNR and it has less required time to achieve high processing.

A standard matched filter block diagram is shown in Figure. 2.2

Matched Filter Detection Drawbacks

Since matched filter depends on a prior knowledge of the detected signal, inaccurate

signal waveform information results in poor detector performance, making it prone

to detection errors. Consequently, this results in either low primary user protection

against interference or low throughput which are both of high concern in a CRNSS

process.

23



2.1.3 Cyclostationary Feature

The main difference between the noise and the sensed primary user signal is that the

latter has some non-random features such as double-sided (sinewave carrier), data rate

(symbol period) and modulation type. Among these, the modulation which results in

Cyclostationary feature due to built-in periodicity. Hence, the detected modulated

signal has periodic autocorrelation and mean which can be detected by analyzing the

spectral correlation function.

In fact, the noise is a wide-sense stationary signal with no correlation, while the

modulated signal is Cyclostationary with spectral correlation due to the embedded

redundancy of signal periodicity. Consequently, primary signal can be differentiated

from the noise. Hence, the non-coherent (no synchronization required) Cyclostationary

feature detector outperforms ED in differentiating noise from the primary user signal

for its robustness against the noise power uncertainty [60,62,63].

Cyclostationary Feature Detection Drawbacks

This technique requires a priori knowledge about the detected signal. Furthermore, it

is computationally complex and requires significantly long observation time. Hence, it

makes it impractical for many situations of cognitive spectrum sensing.

2.2 Wireless Channel

Typically, the channel between the transmitter and receiver has a great impact on the

propagated signal. Depending on its type whether ideal or non-ideal, it may change
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the signal characteristics such power, phase and others. In general, there are two

scenarios of wireless system modeling.

2.2.1 Free-Space Model

In this model, the channel is considered ideal if its characteristics are not specified

[64]. Accordingly the ideal channel means the following:

1. It is free of any object that might absorb or reflect the propagated signal energy,

hence, only one Line-of-Sight (LOS) path.

2. The channel atmosphere behaves perfectly uniformly and the medium is nonabsorbent.

3. Earth reflection coefficient is negligible as it is considered far away from the

propagated signal.

Actually, in most cases this idealized channel is not realistic especially when signal

propagates in the atmosphere, close to the ground and in congested medium where

many obstacles are there such as hills, vegetation or building. Consequently, the

transmitted signal will arrive the receiver via multiple paths which is called multipath

propagation. Accordingly, it is necessary to consider a more comprehensive model

that takes into account these considerations since free-space model is insufficient to

describe the real channel behavior as we will see in the next section.

2.2.2 Multipath Fading Model

Usually, the transmitted signal degrades during its prorogation from the transmitter to

the receiver due to mainly the time-variant impulse channel response. Moreover, the
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Figure 2.3: Fading in wireless communication channel.

objects close to the signal such us the ground and in the space between the transmitter

and the receiver cause the signal to reflect, scatter, diffract and be absorbed during

its propagation in the channel (Figure 2.3). Consequently, the multiple copies of the

transmitted signal arrive at the receiver in addition to the direct path LOS.

When there is No-LOS, the received signal will be just multipath replica of the

transmitted signal. In both cases, fading will occur to the received signal causing

fluctuating in its amplitude, phase and arrival angle, however, in No-LOS is more

severe. This degradation in the transmitted signal manifests as distortion and loss

SNR , giving rise to socalled multipath fading [64]. Typically, limited number of paths

(4 - 24) are used to model the radio channel.
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2.3 Spectrum Sensing with Diversity Combining

To combat the loss of SNR, different diversity techniques include time diversity,

frequency diversity, spatial diversity and polarization diversity. Among them is the

spatial diversity technique which will be our focus since we basically consider a multiple

antenna spectrum sensing.

Typically, multiple antenna are spaced (ideally separated by one half wavelength or

more) and connected to a common receiving system so-called, SIMO as shown in

Figure 2.4. In this receiving system, when one antenna sees a signal very week or

even null, another antenna may see a signal peak. Consequently, the receiver is able

to select the antenna with the best signal or combine all branches or perform any

appropriate decision depending upon the employed diversity technique as we will see

later.

The equivalent low pass of the received signal of lth branch could be expressed as

rl (t) = αl e
−j θl δ (t− τ l) s (t) + nl (t) , l = 0, 1, 2 · · ·LP (2.1)

where nl (t) , LP , l and δ(.) denote noise, number of resolvable paths1, channel index

and Dirac delta function, respectively. Also the random fading parameters {αl}LPl=1,

{θl}LPl=1 and {τl}LPl=1 are respectively; amplitude, phase and time delay where the first

path of the signal replica has (τ = 0) and is related to the ratio of maximum delay

spread τmax to the symbol time Ts. Due to LOS, the first arriving path in the impulse

response may experience lower amount of fading than the subsequent paths. While

1Here LP = N , number of diversity receiving antennas.
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Figure 2.4: SIMO system.

the last arriving paths experience higher fading amounts due the decrease in specular

power component with respect to the delay. Hence, out of LP -branches, LP -replicas

of the transmitted signal are obtained

r = [r1 (t) , r2 (t) , · · · , rLP (t)] (2.2)

In diversity combining application, a multilink channel model is introduced where an
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L replicas of the transmitted signal propagated in the fading channel are combined in

order to increase the overall SNR. Hence, compensating the loss in SNR occurred due

to time-variant impulse channel response and due to other causes as we mentioned

earlier.

For a multicopy of received signal, the instantaneous SNR is γl =
α2
l Es
N l

where αl, Es,

and N l are; fading amplitudes of the l-th tap, energy per symbol and the one-sided

noise power spectral density respectively. The average SNR per symbol is γ̄l =
Ω2
l Es
N l

where Ωl denotes the mean-square of the random variable channel amplitude Ωl = ᾱ2

[19]. Regarding the type of the employed channel, consequently, the distribution of the

corresponding channel gain coefficient, we will consider in this thesis the Nakagami-m

distribution fading channel. Furthermore, MRC, EGC, SC and SSC will be employed

in our investigations as combining diversity techniques.

Diversity combining techniques differ in their optimality and complexity. Some

combining techniques process all diversity branches such as MRC and EGC techniques.

Others, such as SC and SSC techniques process only one diversity branch. For

MRC, it has the optimal performance in combating the multipath fading in wireless

communication systems. However, it is the most complicated diversity technique

since the full knowledge about the received signal is required for maximizing the

total SNR. The suboptimal EGC is less complicated since less knowledge about the

received signal is required as we will see later in discussing the detection probability

with EGC diversity technique. SC combiner selects only the highest SNR branch,

therefore, it has less complexity and performance than the two previous techniques

since it processes only one branch. Likewise, SSC processes one branch only, however

it holds on this branch until its SNR drops below a predetermined threshold then it
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switches to another branch. Therefore, it is the least complicated technique since no

continuous monitoring for the SNR’s branch is required as in SC. However, it has the

lowest combiner performance.

2.4 Correlation in Wireless Channels

Channels due to scattering in the propagation paths in multipath wireless communication

environment are often not independent from each other. Consequently, these channels

are related to each other with different degrees which gives rise to socalled, correlation

or more specifically, spatial correlation. Furthermore, especially in cognitive spectrum

sensing, the large distance between the primary user transmitter and the CRS

receiver (typically d > 100 km in IEEE 802.22 WRAN systems) generates a small

received-channel angular spread value at the CRS receiver [65] resulting in highly

correlated channels. Due to the random nature of the wireless communication channel,

random variables are good representation for its parameters.

The correlation coefficient between two random variables X and Y is defined as

ρX,Y =
COV (X, Y )√

σ2
Xσ

2
Y

=
E[XY ]− E[X]E[Y ]√

σ2
Xσ

2
Y

, −1 ≤ ρX,Y < 1, (2.3)

where COV (., .) denotes the covariance, E[.] the expectation and σ2 the variance.

The covariance is zero for independent random variables, hence, they are orthogonal.

According to the antennas geometric distribution, spatial correlation between each pair

of antennas could be modeled as a constant, exponential or linear array of arbitrary

correlation [66,67].
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For constant correlation matrix model, antennas are closed enough and geometrically

distributed in a circular array resulting in equal correlation between each pair of

antennas. Consequently, for N -correlated antennas, the entries of the corresponding

correlation matrix ΣConst = [ci,j] will be ci,j = 1 for i = j, and ci,j = ρ for i 6=

j[66].While exponential correlation model represents equispaced antennas, consequently,

correlation between antenna pair decreases as the separation between them increases

[68]. Therefore, the corresponding correlation matrix entries will be ΣExpon = [ρ|i−j|].

In fact, exponential correlation is more general and realistic than constant correlation

model and has wide successful applications in wireless communications [16, 66,69,70].

The third model is the linear array of arbitrary correlation where antenna elements are

situated in a linear configuration. In this model, the correlation is said to be arbitrary

depending on some factors such as incident angle, antennas spacing or height, hence,

the correlation matrix is Toeplitz [35].

2.5 Signal Detection in Correlated Multipath

Fading

Cognitive radio spectrum sensing aims to detect reliably the hole (unused band) in

the spectrum to opportunistically reuse it in the absence of the licensed primary user.

Primary user is defined as the licensed user that owns that detected band, while the

secondary user who senses the spectrum to find that vacant band in order to reuse it

in the absence of the licensed primary user.

In fact, the core of the cognitive radio spectrum sensing is the classical problem of

detecting a signal in a noisy channel [21] which has been researched extensively. The
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system model of this signal detection problem will be discussed in details in the next

section.

2.5.1 System Model

We consider the classic problem of detection theory [21] which is that of unknown

deterministic signal over flat bandlimited AWGN channel in cognitive radio spectrum

sensing environment. Typically, an ED is employed since it is the simplest detection

technique and more convenient to fit CRNSS systems where the secondary user (i.e.

CRS) has no knowledge about the sensed primary user signal. For the sake of brevity,

we refer the reader to Sec. 2.1.1 where the ED’s principle of operation has been

described. However, more details regarding the decision statistics will be given in this

section.

Let x (t) be the received data vector as

x (t) = h s (t) + n (t) (2.4)

where h, s (t) and n (t) denote the complex channel gain amplitude coefficient and is

assumed constant during sensing time, detected signal and AWGN respectively. The

noise is a low-pass AWGN process with zero mean and variance N0W where, N0 and

W denote Power Spectral Density (PSD) of the Gaussian noise and signal bandwidth,

respectively. The noise is assumed to be i.i.d. and uncorrelated with transmitted

signal.

Two hypothesis are defined, namely H0 and H1 for the absence and the presence of
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the detected signal respectively, as follows

x (t) =


n (t) if H0

h s (t) + n (t) if H1.

(2.5)

The decision statistics of the energy detector is the output of the integrator over T

time interval and as follows [24]

y ,
2

N0

∫ T

0

|x (t) |2 dt. (2.6)

Therefore, the PDF of the decision statistics y in (2.6) is [23,24]

pY (y) =


1

2u Γ(u)
yu−1 e

y
2 , if H0

1
2

(
y

2 γ

)u−1
2
e−

2 γ+y
2 Iu−1

(√
2 γ y

)
if H1,

(2.7)

where Iν (.) denotes the νth-order of modified Bessel function of the first kind.

In (2.7), it is clear that the decision statistics has a central Chi-square distribution with

2u degrees of freedom χ2u
2 in the absence of the primary user signal, i.e. the received

samples are noise only. While it has a non-central Chi-square distribution with 2u

degrees of freedom χ2u
2 and ψ non-centrality parameter χ2u (ψ) in the presence of

the primary user signal.

Defining λ as a decision threshold, the performance of ED is measured in terms of the

33



detection probability PD and false alarm probability PF , as follows

P F = Pr (y > λ | H0) , (2.8)

PD = Pr (y > λ | H1) , (2.9)

Consequently, the false alarm and detection probabilities in AWGN channel are given

respectively by [23],

P F =
Γ
(
u, λ

2

)
Γ(u)

, (2.10)

PD = Qu

(√
2 γ,
√
λ
)
, (2.11)

where Γ(., .) andQu (., .) denote the upper incomplete Gamma function and Generalized

Marcum Q-function, respectively.

Note that the detection probability expression in (2.11) is restricted to only integer

values of u since the probability of the decision statistics in (2.7) is derived only for

even numbers, i.e. 2u as stated in [23]. However, when the alternative Marcum-Q

function is employed, u could be half-odd integer (u ∈ {0.5, 1, 1.5, 2, 2.5, 3, ...}, i.e. not

restricted to integer values) [71]. Furthermore, the fading parameter m in Nakagami

channels might also be not restricted to integer values depending on the mathematical

method employed to solve the integral in (2.12). This highlights the advantage of the

alternative expressions which we derive later using alternative Marcum-Q function.
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2.6 Problem Formulation

The detection probability parameters (Sec. 2.5.1) are conditioned on a channel

realization, i.e. they represent instantaneous detection probability since the sensing

channel is considered ideal AWGN channel. Consequently, multipath fading is not

considered. To remove this condition, we need to integrate this instantaneous detection

probability 2 over the PDF of the corresponding diversity fading channel distribution

as follows:

PD,Div =

∫ ∞
0

Qu

(√
2 γ,
√
λ
)
pγDiv (γ) dγ. (2.12)

The expression PD,Div, (2.12) will serve as a general average detection probability

expression for corresponding diversity fading channel.

Few work has been done to address this problem, namely signal detection in correlated

multipath fading, however, in most cases, independent fading branches are assumed.

Thus, ignoring correlation between fading paths making this assumption unrealistic

too, as we indicated in Sec 1.5.

In fact, assuming independent branches is often invalid, especially, with the increasingly

closely spaced antennas in small mobile units. Furthermore, the effect of correlation

among antenna branches depends on the type of diversity combining technique

employed to combat multipath fading impact. Actually these two above assumptions,

namely, considering independent and AWGN channels do not reflect the real situation

of the spectrum sensing process since multipath fading and correlation among receiving

2False alarm probability is not a function of SNR since it is for no signal transmission, therefore
it will remain unchanged as in (2.10).
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antenna branches are the major cause for sensing impairments.

Motivated by these facts, hence, more primary user’s protection against interference

and maximum secondary user throughput, we will address these issues in CRNSS in

the analysis fold of our work in this thesis.

In the following chapters, we will investigate the primary user signal detection

problem considering a system model with constant and exponential correlation among

L-Nakagami-m fading branches employing PDF approach with MRC diversity.

Furthermore, we extend the investigations by considering identically and arbitrarily

correlated branches for EGC, SC and SSC techniques in Nakagami-m multipath fading

channels. Due to the complexity of the output SNR’s PDF of suggested diversity

techniques, we restrict our work with dual branches diversity. However, a triple

identically and exponentially correlated fading branches with SC diversity is also

considered and the corresponding closed-from expressions are derived.
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Chapter 3

L Correlated Nakagami-m

Branches with MRC Diversity

Few important issues are considered in our study; maximizing the dynamic spectrum

sensing accuracy, maximizing secondary user throughput and reducing interference

to the primary user. Typically, the throughput can be maximized by minimizing the

false alarm probability since this indicates falsely that a vacant band (hole) of the

spectrum is occupied. In other words, the real vacant band is mistakenly declared as

an occupied band. As a result, secondary user throughput is decreased since not all

the vacant bands are exploited.

On the other hand, protecting the licensed primary user’s transmission from any

interference with the secondary users transmission is achieved by reducing the missed

detection probability (PDm). Since this mistakenly indicates no active primary user

while actually there is. Consequently a vacant band is mistakenly declared. Minimizing

this harmful interference is done by maximizing the detection probability which also
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will reduce missed detection probability since PDm = 1− PD.

Typically, channel propagation between the transmitter and receiver has a great impact

on the propagated signal. Multipath fading and shadowing are well known factors

that they significantly impair sensing performances. These are typically addressed by

diversity technique where, two or more copies of the desired signal are combined to

maximize the average SNR. With spatial diversity, however, maximum diversity gain

is attainable when the signals from multiple channels are independent (or orthogonal)

[18]. The independency assumption among reception channels is often invalid due

to the insufficient antenna spacing in ever shrinking mobile units. Therefore, it is

important to examine the correlation impact on diversity performance. That is the

focus of this work.

In this chapter, we investigate constant and exponentially L correlated Nakagami-m

fading branches with MRC diversity. We derive an exact closed-form expression for the

average detection probability of each sensing scenario. We describe the performance

analysis using CROC graphs to evaluate the derived expressions by studying the

fading and correlation impact on the detection probability.

3.1 MRC Diversity

In MRC technique as shown in Fig. 3.1, the received signals from all L branches

{yl (t)}Ll=1 are weighted (scaling factor) based on their individual SNRs, cophased and
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Figure 3.1: Maximal Ratio Combining Technique (MRC).

then summed, resulting in a new combined signal

Y (t) =
L∑
l=1

yl (t) =
L∑
l=1

Φl rl (t) (3.1)

where, Φl denotes the lth assigned weight and rl is the received signal of lth branch

given in (2.1). The effect of these scaling factors is that a strong signal carries a larger

weight than a weak signal [4]. Therefore, MRC technique requires the knowledge of the

channel amplitude and phase, making it the most complicated combining technique.

This complexity comes from the assumption that the weighting factors and phase

shifts are known exactly, which is not an easy task to implement in a digital receiver,

since these weighting factors and phase shifts change in real-time. Moreover, receiver

complexity depends on the number of resolvable paths. However it provides the

maximum performance improvement in comparison with other diversity combining

techniques through maximizing SNR at the combiner output[19, 72], hence known

CSI will be assumed. This CSI knowledge is justifiable since it may be available for
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the cognitive sensors over a control or broadcast channel [34]. Another assumption is

that L fading paths are n.i.i.d., i.e. correlated with equal average SNR γ with specific

PDF (pγl(γl)) depends on the statistics of complex gain channel.

In this thesis, we consider Nakagami-m distribution in our investigations since this

distribution is well suited to model both indoor and outdoor multipath fading channels.

In fact, Nakagami-m comprises, the one-sided Gaussian distribution (m = 0.5), the

Rayleigh distribution (m = 1) and for (m→∞), it converges to a non-fading AWGN

channel [73].

The PDF of the individual complex gain channel corresponds to the PDF of Nakagami-m

univariate given [74] by

f (α) =
2

Γ(m)

(m
Ω

)m
α2m−1e−

mα2

Ω , α ≥ 0 (3.2)

where, Γ(.) denotes the Gamma function, Ω = E[α2]/m = ᾱ2

m
is the mean value of the

variable α and m (m ≥ 1/2) is the inverse normalized variance of r2 which describes

the fading severity. For L MRC branches, the received signals are {yl (t)}Ll=1, therefore,

the total effective SNR, γ is obtained as [19]

γ =
Es

N0

L∑
l=1

|αl| 2, (3.3)

where, Es denotes the signal power.

In multi-antenna reception, the correlation matrix depends on the geometric distribution

of these antennas. For instance, a constant correlation model refers to closely placed

diversity antennas. While an exponential correlation model refers to equispaced
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antennas. In the following sections, we will consider in our investigation both constant

and exponential correlation models.

3.2 Constant Correlation

In this section, we will investigate constant L correlated Nakagami-m fading branches

with MRC diversity. Assume equal correlation coefficient ρ; equal average SNR γ̄

and same fading parameter value (m) among L MRC Nakagami-m fading branches.

Then, the PDF of the total SNR γ for closely placed diversity antennas under constant

correlation is given [66]

pγMRC:Const (γ) =
1( γ̄

m

)
(1− ρ)m(L−1) (1− ρ+ Lρ)m Γ(Lm)

(
γ m

γ̄

)Lm−1

× exp

{
− γ m

γ̄ (1− ρ)

}
1F1

(
m,Lm;

Lmργ

γ̄ (1− ρ) (1− ρ+ Lρ)

)
, 0 ≤ ρ < 1.

(3.4)

where 1F1 (., .; .) denotes the Confluent Hypergeometric function and is defined in [

[75], Eq. (15.1.1)] as

1F1 (a1, b1;x) =
Γ(b1)

Γ(a1)

∞∑
n=0

Γ(a1 + n)xn

Γ(b1 + n)n!
. (3.5)

For simplicity, we can write (3.4) as

pγMRC:Const (γ) =
A

D
γLm−1e−B γ 1F1 (m,Lm;C γ) , (3.6)
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where the constants A,B,C and D are respectively defined as follows:

A =

(
m

γ̄

)Lm
, (3.7)

B =
m

γ̄ (1− ρ)
, (3.8)

C =
Lmρ

γ̄ (1− ρ) (1− ρ+ Lρ)
, (3.9)

D = (1− ρ)m(L−1) (1− ρ+ Lρ)m Γ(Lm). (3.10)

Therefore, the average detection probability for L MRC correlated Nakagami-m

branches with equal m, ρ, and γ̄ could be obtained by substituting (3.6) in (2.12)

yields

PDMRC:Const =
A

D

∫ ∞
0

Qu

(√
2 γ,
√
λ
)
γLm−1e−B γ 1F1 (m,Lm;C γ) dγ. (3.11)

Using the alternative expression of Marcum Q-function for not restricted to u integer

values given in [[76], Eq. (4.63)], Qu

(√
2 γ,
√
λ
)

in (3.11) could be written as

Qu

(√
2 γ,
√
λ
)

= 1− e−
2 γ+λ

2

∞∑
n=u

( √
λ√

2 γ

)n

In

(√
2λ γ

)
, (3.12)

where Iν (.) denotes the νth-order of the modified Bessel function of the first kind.

Substituting (3.12) in (3.11) and using the definition of the PDF as

∫ ∞
0

pγ (γ) dγ = 1, (3.13)
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therefore, (3.11) becomes

PDMRC:Const = 1− A

D
e−

λ
2

∞∑
n=u

(√
λ√
2

)n ∫ ∞
0

γLm−1−n
2 e−γ(1+B) In

(√
2λ γ

)
×1F1 (m,Lm;C γ) dγ.

(3.14)

Using (3.5), the series representation of the Confluent Hypergeometric function, (3.14)

becomes

PD :MRC:Nak = 1− A

D

Γ(Lm)

Γ(m)
e−

λ
2

∞∑
n=u

∞∑
k=0

(
λ

2

)n
2 Γ(m+ k) Ck

Γ(Lm+ k) k!

×
∫ ∞

0

γLm−1−n
2

+k e−γ(1+B) In

(√
2λ γ

)
dγ.︸ ︷︷ ︸

IA

(3.15)

To solve the integral IA in (3.15), we use [[77], Eq. (6.643/2)] given as

∫ ∞
0

xµ−
1
2 e−αx I2 ν

(
2 β
√
x
)

dx =
Γ
(
µ+ ν + 1

2

)
Γ(2 ν + 1)

β−1 e
β2

2α α−µM−µ,ν

(
β2

α

)
[
Re

(
µ+ ν +

1

2

)
> 0

] (3.16)

where Mµ,ν (.) denotes the Whittaker function given by [[75], (13.1.32)] as

Mµ,ν (z) = zν+ 1
2 e−

z
2 1F1

(
ν − µ+

1

2
; 1 + 2 ν; z

)
. (3.17)
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Now, by choosing appropriate parameter values to satisfy the condition within, the

solution of (3.15) is [78,79]

PDMRC:Const = 1− A

D

Γ(Lm)

Γ(m)
e−

λ
2

∞∑
n=u

∞∑
k=0

(
λ

2

)n
Γ(m+ k) Ck

Γ(n+ 1) (1 +B)Lm+k k!

×1F1

(
Lm+ k;n+ 1;

λ

2 (1 +B)

)
.

(3.18)

Note that PDMRC:Const expression in (3.18) is not restricted to integer m or u values.

For i.i.d. diversity branches, (3.18) reduces to [[34], Eq. (24)]. The infinite series in

(3.18) are upper bounded by the monotonically decreasing 1F1 (.; .; .) [80] for fixed

values of m, ρ, λ, γ̄, hence it converges rapidly. Consequently, the number of N -terms

required for five digit accuracy could be found using this constraint as shown in Table

3.1.

3.2.1 Alternative Expression for PDMRC:Const

An alternative canonical Marcum Q-function representation where, u is not restricted

to positive integer values (i.e. u ∈ {0.5, 1, 1.5, 2, 2.5, ...}) was introduced in [71] as

Qu

(√
2 γ,
√
λ
)

=
∞∑
n=0

γn e−γ Γ
(
u+ n, λ

2

)
Γ(u+ n) n!

. (3.19)
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We derive an alternative closed-form expression for the PDMRC:Const given in (3.18)

by substituting (3.19) and (3.6) into (2.12) as

PDMRC:Const =
A

D

∞∑
n=0

Γ
(
u+ n, λ

2

)
Γ(u+ n) n!

∫ ∞
0

γn+Lm−1 e−γ (B+1)
1F1 (m,Lm;C γ) dγ.︸ ︷︷ ︸

IA

(3.20)

To solve the integral IA in (3.20), we use [[77], Eq. (7.621/4)], this can be written as

∫ ∞
0

e−s t tb2−1
1F1 (a2; d2; k t) dt = Γ(b2) s−b2 F

(
a2, b2; d2; k s−1

)
,

[|s| > |k|] , b2 > 0, s > 0,

(3.21)

where F (a3, b3; c3; z) = 2F1 (a3, b3; c3; z) denotes the Gaussian Hypergeometric function

given in ([75], (15.1.1)). Then by choosing appropriate parameters values, we solve

the expression in (3.20) to satisfy the condition within as [78,79]

PDMRC:Const =
A

D

∞∑
n=0

Γ
(
u+ n, λ

2

)
Γ(Lm+ n)

Γ(u+ n) (1 +B)Lm+n n!
2F1

(
m,Lm+ n;Lm;

C

1 +B

)
,

(3.22)

where A,B,C and D are given in equations (3.7), (3.8), (3.9) and (3.10) respectively.

Note, both PD:Const expressions in (3.18) and (3.22) are not restricted to integer values

of u and m. However, the expression in (3.22) is more desirable since it has only one

infinite series term, hence, less complicated mathematically.
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3.3 Exponential Correlation

In this section, we will investigate exponentially L correlated Nakagami-m fading

branches with MRC diversity. The PDF of the output SNR’s for L MRC Nakagami-m

branches with exponential correlation is given by [66] as

pγ MRC:Exp (γ) =
1

Γ
(
mL2

δ

) ( δ γ̄
Lm

)mL2

δ

γ
mL2

δ
−1 exp

(
−Lmγ

δ γ̄

)
, (3.23)

where:

δ = L+
2 ρ

1− ρ

(
L− 1− ρL

1− ρ

)
, 0 ≤ ρ < 1. (3.24)

It is convenient to write (3.23) as

pγ MRC:Exp (γ) =
1

Γ(a) ba
γa−1 e−

γ
b , (3.25)

where, a and b are given by (3.26) and (3.27) respectively,

a =
mL2

δ
, (3.26)

b =
δ γ̄

Lm
. (3.27)

The average detection probability is obtained by substituting (3.25) into (2.12). This

yields

P̄D:MRC:Exp =
1

Γ(a) ba

∫ ∞
0

Qu

(√
2 γ,
√
λ
)
γa−1 e−

γ
b dγ. (3.28)
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By changing the variable x =
√

2 γ and with some manipulation, yields

P̄D:MRC:Exp =
1

2a−1 Γ(a) ba

∫ ∞
0

Qu

(
x,
√
λ
)
x2 a−1 e−

x2

2 b dx.︸ ︷︷ ︸
I

(3.29)

Using Nuttall integrals and by satisfying the inner conditions by choosing appropriate

parameter values as given in [[81], Eq. (29)], this can be written as

∫ ∞
0

Qu (αx, β) xq e−
p2 x2

2 dx ≡ Gu

= Gu−1 +
1

2 (u− 1)!
(
p2+α2

2

) q+1
2

Γ

(
q + 1

2

) (
β2

2

)u−1

× e−
β2

2 1F1

(
q + 1

2
;u;

β2

2

α2

p2 + α2

)
, q > −1.

(3.30)

we can solve I by evaluating Gu recursively for q > −1 and restricted u integer values

as

Gu = Gu−1 + Au−1 F u

= Gu−2 + Au−2 F u−2 + Au−1 F u−1

...

= G1 +
u−1∑
n=1

An F n+1,

(3.31)

where An and F n are given respectively by

An =
1

2 (n!)
(
p2+α2

2

) q+1
2

Γ

(
q + 1

2

) (
β2

2

)n
e−

β2

2 ,
(3.32)
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F n = 1F1

(
q + 1

2
;n;

β2

2

α2

p2 + α2

)
. (3.33)

Hence, we can solve P̄D:MRC:Exp in (3.29) as [78,79]

P̄D:MRC:Exp = ζ

[
G1 +

η

2

u−1∑
n=1

(
λ

2

)n
1

n!
1F1

(
a;n+ 1;

λ b

2 (1 + b)

)]
, (3.34)

where, ζ and η are given, respectively, by

ζ =
1

2a−1 Γ(a) ba
, (3.35)

η = Γ(a)

(
2 b

1 + b

)a
e−

λ
2 . (3.36)

Here, a and b are given in (3.26) and (3.27) respectively. Then we can obtain G1

by evaluating the following integral containing the first order of Marcum Q-function

Q(., .) as

G1 =

∫ ∞
0

Q
(
x,
√
λ
)
x2 a−1 e−

x2

2 b dx. (3.37)

Using [[81], Eq. (25)], we evaluate G1 for integer values of (a) as [78,79]

G1 =
2a−1 (a− 1)!(

1
b

)2 a

(
b

1 + b

)
e−

λ
2(1+b)

[(
1 +

1

b

)(
1

1 + b

)a−1

La−1

(
− λ b

2 (1 + b)

)

+
a−2∑
n=0

(
1

1 + b

)n
Ln

(
− λ b

2 (1 + b)

)]
. (3.38)

Here, Ln (.) denotes Laguerre polynomial of n-degree [77]. Please note, without

diversity (L = 1), the correlation is zero (ρ = 0), then (3.34) and (3.38) reduce to,

(20) and (23) in [23] respectively, serving as a proof.
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3.3.1 Alternative P̄D:MRC:Exp Simple Expression

The expression in (3.34) is restricted to integer u and (a) values. However, we included

that in our derivation to show that it reduces to the corresponding expression of a

single antenna receiver derived in [23]. We can also derive a more general expression

for P̄D:MRC:Exp by inserting (3.12) in (3.28) and by using the definition of the PDF

in (3.13) with some simplifications. This yields

P̄D:MRC:Exp = 1− 1

Γ(a) ba
e−

λ
2

∞∑
n=u

(
λ

2

)n
2
∫ ∞

0

γa−
n
2
−1 e−γ(

b+1
b ) In

(√
2λ γ

)
dγ.

(3.39)

Following the same procedures as in (3.18), using (3.16) and (3.17) while choosing

appropriate parameters values to satisfy the conditions, we can show [78,79]

P̄D:MRC:Exp = 1− 1

(1 + b)a
e−

λ
2

∞∑
n=u

(
λ

2

)n
2 1

Γ(n+ 1)
1F1

(
a;n+ 1;

λ b

2 (1 + b)

)
,

(3.40)

where, a and b are given by (3.26) and (3.27), respectively.

Clearly, (3.40) is less complicated mathematically than (3.34) since it does not contain

the first order of Marcum Q-function and both m and u are not restricted to integer

values. For i.i.d L-fading branches (ρ = 0), (3.40) reduces to [[34], Eq. (24)].

Again, we can easily show the rapid convergence of the infinite series in (3.40) is

upper bounded by the monotonically decreasing 1F1 (.; .; .) since both a and λ b
2 (1+b)

are

constants for fixed m, ρ, λ, γ̄ and L values. Therefore, the number of N -terms required

for five digit accuracy could be found using this constraint as shown in Table 3.1.
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Table 3.1: Terms required for five digits accuracy

PD:Const :
∣∣∣ẼN

∣∣∣ , u = 2, γ̄ = 20 dB, m∈ {1, 2, 3, 4} andL∈ {2, 3, 4}
ρ Nn, Nk

0 10,1
0.2, 0.4, 0.6, 0.8 10,5

P̄D:Exp

∣∣∣ẼN

∣∣∣ , u = 2, γ̄ = 20 dB, m∈ {1, 2, 3, 4} andL∈ {2, 3, 4}
ρ Nn

0, 0.2, 0.4, 0.6, 0.8 5

3.3.2 Arbitrary Real u-values Alternative

P̄D:MRC:Exp Expression

Expression in (3.34) is restricted to integer u values. Recently, for arbitrary real

u-values, an analytic solution in terms of a closed-form expression for the integral in

(3.29) was introduced in [82] as

∫ ∞
0

Qu (αx, β) x2 k−1 e−p x
2

dx =
∞∑
n=0

α2n 2k Γ(k + n) Γ
(
u+ n, β

2

2

)
Γ(u+ n) (α2 + 2 p)k+n n!

. (3.41)

Hence, by using (3.41) we can express the P̄D:MRC:Exp in (3.29) as [78,79]

P̄D:MRC:Exp =
2

Γ(a) ba

∞∑
n=0

Γ(a+ n) Γ
(
u+ n, λ

2

)
Γ(u+ n)

(
1 + 1

b

)a+n
n!
, (3.42)

where, a and b are given in (3.26) and (3.27), respectively. Interestingly, (3.42) is less

complicated mathematically than both (3.34) and (3.40) since it does not contain first

order of Marcum Q-function or hypergeometric function.
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3.4 Performance Analysis

In this section, we verify the derived closed-form expressions for different cases of

interest for spectrum sensing models with MRC diversity technique. The impact of

multipath fading and correlation on average detection probability P̄D (as a performance

factor) is analyzed and investigated. To this end, we produce the corresponding CROC

graphs, (PDm versus PF ) for MRC diversity technique in correlated Nakagami-m fading

channel as follows.

We calculate the threshold λ for u = 2, γ̄ = 20 dB, m ∈ {1, 2, 3, 4} and, ρ ∈

{0, 0.2, 0.4, 0.6, 0.8} for different values of PF with the aid of (2.10). It’s worthwhile to

mention that we produced figures for two m values, m ∈ {1, 4}, in order to reduce the

number of figures to the minimum, however, our derived expressions can be evaluated

for any corresponding values.

In Figure. 3.2, numerical results obtained from Monte-Carlo simulation almost match

that derived closed-form expressions, therefore, this validates the derived expressions.

Figures 3.3 and 3.4 depict the detection performance for constant and exponential

correlations respectively, for MRC with L-correlated Nakagami-m fading branches

using the derived closed-form expressions in Section 3.2 and Section 3.3. Comparing

each graph in Figure 3.3a with its corresponding one in 3.3b, we notice that the

detection probability PD increases (equivalently missed-detection probability PDm

decreases) as the fading parameter m increases (low fading), hence, improving the

detection performance. This is as expected. Similar results could be inferred when

a comparison of the corresponding graphs is done between Figures 3.4a and 3.4b in

exponentially correlated branches. However, for each value of ρ in Figures 3.3 and 3.4,
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Figure 3.2: Analytic (solid) versus simulation (dashed) results for MRC with L = 2,
m = 4 and ρ = 0.8.

one can notice clearly the degradation in detection probability due to the increment

in correlation values among diversity branches. However, as the number of diversity

branches L increases, correlation impact is compensated for, resulting in improved

detection probability. Note, a difference in the performance of the two investigated

correlation models is observed. We observe that constant correlation model shows

minor performance degradation in terms of decreasing PD compared to exponential

correlation model. In fact, performance difference is more pronounced for high L, m

and ρ values. We observe that the separation among the adjacent curves for each case

in Figures 3.3 and 3.4 increases as L increases indicating that achieving the same PD

values for different L will increase the corresponding P F values, which we try to keep

the latter as low as possible (IEEE 802.22 standard specifications require P F ≤ 0.1).

However, this is not the case for the same detection scenario if the uncorrelated

52



10-4 10-3 10-2 10-1 100

False Alarm Probability  "P
F
"

10-12

10-10

10-8

10-6

10-4

10-2

100

M
is

s-
D

et
ec

tio
n 

P
ro

ba
bi

lit
y 

" 
P D

m
"

 

L = 2
L = 3
L = 4
 = 0
 = 0.2
 = 0.4
 = 0.6
 = 0.8

L = 2

L = 3

L = 4

(a) m = 1 (Rayleigh: deep fading)

10-4 10-3 10-2 10-1 100

False Alarm Probability  "P
F
"

10-14

10-12

10-10

10-8

10-6

10-4

M
is

s-
D

et
ec

tio
n 

P
ro

ba
bi

lit
y 

" 
P D

m
"

 

L = 2
L = 3
L = 4
 = 0
 = 0.2
 = 0.4
 = 0.6
 = 0.8L = 2

L = 4

L = 3

(b) m = 4 (Low fading)

Figure 3.3: Constant correlated Nakagami-m branches with MRC diversity; γ̄ = 20
dB, L = 2, 3 and 4 for different ρ values.
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Figure 3.4: Exponentially correlated Nakagami-m branches with MRC diversity;
γ̄ = 20 dB, L = 2, 3 and 4 for different ρ values.
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diversity fading branches are assumed. Figure 3.5 shows this behavior1. Therefore, we

say that constant correlation model shows minor performance degradation in terms

of decreasing PD compared to exponential correlation model. In fact, performance

difference is more pronounced for high L,m and ρ values. In other word, MRC with

constant correlation model is clearly less affected by correlation when it is low and

also, to some extent, by high correlation environment compared with exponential

correlation model. Consequently, MRC with constant correlation results in relatively

higher throughput compared with corresponding exponential model.

1In order to visualize clearly the behavior difference between the two correlation models, we
connected the corresponding points of each case in 3.5a and 3.5b with straight lines as in 3.5c and
3.5d.
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Figure 3.5: Correlation impact on probability of false alarm in correlated Nakagami-m
branches with MRC diversity; γ̄ = 20 dB, L = 2, 3 and 4 for different ρ values, (a) and
(b) represent the exact points while in (c) and (d), corresponding points are connected
with straight lines for better visualization of the performance difference. Constant
correlation (solid), exponential correlation (dashed).
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Chapter 4

Dual Correlated Nakagami-m

Branches with EGC Diversity

In this chapter, we consider a detection scenario when EGC diversity technique is

employed with dual correlated Nakagami-m fading branches. We derive an exact

closed-form expression for the average detection probability of each sensing scenario.

We do performance analysis using CROC graphs to evaluate the derived expressions

by studying the fading and correlation impacts on the detection probability.

4.1 EGC Diversity

Equal Gain Combining is a suboptimal, reduced complexity and limited with coherent

detection technique. Unlike MRC, EGC weights each branch equally before combining,

57



Figure 4.1: Equal Gain Combining (EGC).

then cophased and summed as shown in Figure 4.11, resulting in a new combined

signal

Y (t) =
L∑
l=1

rl (t) , (4.1)

where rl is the received signal of lth branch given in (2.1). Therefore, EGC doesn’t

necessitate channel amplitude estimation for each branch. The EGC’s conditional

SNR per symbol is given as [[19] Eq. (9.51)]

γEGC =

(∑L
l=1 αl

)
2Es∑L

i=lN l

, (4.2)

where αl denotes the fading envelope amplitude which is a random variable that

controls the SNR.

1EGC combiner diagram is similar to that for MRC as in Figure3.1 with only the exception
mentioned above.
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4.2 PD:EGC,2 Expression

In this section, we will investigate arbitrarily dual correlated Nakagami-m fading

branches with EGC diversity.

For dual identical and arbitrarily correlated Nakagami-m fading channels with EGC

combiner, the PDF of the output SNR could be obtained by changing variables in [

[83], Eq. (1)] yields

pγEGC (γ) =
(1− ρ)m

Γ(m)

∞∑
k=0

B
(
2 (m+ k) , 1

2

)
c2(m+k)ρk

k!Γ(m+ k)22(m+k−1)

×γ2(m+k)−1e−2cγ
1F1

(
2(m+ k); 2 (m+ k) +

1

2
; cγ

)
, γ ≥ 0

(4.3)

where, c = m
γ̄ (1−ρ)

and B (α, β) = Γ(α) Γ(β)
Γ(α+β)

denotes Beta function and 1F1 (., .; .) as

defined in (3.5).

We derive the average detection probability by substituting (4.3) into (2.12) and using

(3.5), (3.12) and (3.13) with some simplification yields

PD:EGC,2 = 1− (1− ρ)m

Γ(m)
Γ

(
1

2

)
e
−λ
2

∞∑
n=u

∞∑
k=0

∞∑
i=0

(
λ

2

)n
2

× Γ(2 (m+ k) + i)c2(m+k)+iρk

Γ(m+ k)Γ
(
2 (m+ k) + i+ 1

2

)
22 (m+k−1) k!i!

×
∫ ∞

0

γ2(m+k)+i−n
2
−1 e−γ (2 c+1)In

(√
2λ γ

)
dγ︸ ︷︷ ︸

I

.

(4.4)

Following the same procedures as in (3.18), using (3.16), then choosing appropriate

parameters’ values to satisfy the condition in order to solve the integral I, then using
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(3.17) we can further simplify this expression. Note, here u and m are not-restricted

to integer values.

Using mathematical manipulation, we derive the final expression for PD:EGC,2 as [79]

PD:EGC,2 = 1− 4
√
π (1− ρ)m

22mΓ(m)
e−

λ
2

∞∑
n=u

∞∑
k=0

∞∑
i=0

(
λ

2

)n
× Γ2(2 (m+ k) + i) c2 (m+k)+iρk

Γ(m+ k)Γ
(
2 (m+ k) + i+ 1

2

)
(2c+ 1)2(m+k)+i 22kn!k!i!

× 1F1

(
2 (m+ k) + i+ 1; 1 + n;

λ

2 (2c+ 1)

)
. (4.5)

Note that, for i.i.d branches, (4.5) reduces to [[34], Eq. (35)].

Like earlier, the infinite series in (4.5) is upper bounded by the monotonically decreasing

Confluent Hypergeometric function in i, k and n for given values of m, λ, γ̄ and ρ.

Hence, the number of N -terms required for five digit accuracy could be found using

this constraint as shown in Table 4.1.

4.3 Alternative PD:EGC,2 Expression

In this section, we derive an alternative more simple expression for the average

detection probability. Using (3.19) and substituting (4.3) into (2.12) yields

PD:EGC,2 =
(1− ρ)m

Γ(m)

∞∑
n=0

∞∑
k=0

Γ
(
u+ n, λ

2

)
Γ(u+ n)

B
(
2 (m+ k) , 1

2

)
c2(m+k)ρk

Γ(m+ k)22(m+k−1)n!k!

×
∫ ∞

0

γ2(m+k)+n−1e−γ(2c+1)
1F1

(
2(m+ k); 2 (m+ k) +

1

2
; cγ

)
dγ.

(4.6)
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Table 4.1: Terms required for five digits accuracy

PD,EGC,2 :
∣∣∣ẼN

∣∣∣ , u = 2, P F = 0.01, γ̄ = 20 dB

ρ
m = 1
Nn, Nk, N i

m = 2
Nn, Nk, N i

m = 3
Nn, Nk, N i

m = 4
Nn, Nk, N i

0 13,1,9 10,1,9 5,1,9 3,1,9
0.2 12,3,9 11,3,9 8,3,9 5,3,9
0.4 12,3,9 10,3,9 5,3,9 3,3,9
0.6 15,3,9 10,3,9 4,3,9 3,3,9
0.8 18,3,9 8,3,9 3,3,9 2,3,9

Following the same procedure as in (3.22) by using (3.21) and satisfying the condition

therein, the average detection probability as [79]

PD:EGC,2 =
4
√
π (1− ρ)m

2mΓ(m)

∞∑
n=0

∞∑
k=0

Γ
(
u+ n, λ

2

)
Γ(u+ n)

Γ(2 (m+ k))c2(m+k)ρk

Γ(m+ k)22kn!k!

× Γ (2 (m+ k) + n)

Γ
(
2 (m+ k) + 1

2

)
(2c+ 1)2(m+k)+n

×2F1

(
2(m+ k); 2 (m+ k) + n; 2 (m+ k) +

1

2
;

c

2c+ 1

)
,

(4.7)

where 2F1 (a2; b2; c2; z) denotes the Gaussian Hypergeometric function given in ([75],

(15.1.1)).

4.4 Performance Analysis

In this section, we verify the derived closed-form expressions for different cases of

interest for spectrum sensing model with EGC technique. The impact of multipath

fading and correlation on average detection probability P̄D (as a performance factor)

is analysed using CROC.
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Figure 4.2: Analytic (solid) versus simulation (dashed) results for EGC with L = 2,
m = 4 and ρ = 0.8.

We follow the same procedures as we did in Sec. 3.4 to calculate the corresponding

threshold for the assumed detection parameters to produce corresponding EGC’ CROC

graphs. In Figure. 4.2, numerical results obtained from Monte-Carlo simulation almost

match that derived closed-form expressions. Reader may observe only a small difference

(≈ 0.03) between analytical and simulation curves for very low PF values. This is

due to the inaccuracy arising from rounding off the infinite series. This validates the

derived expressions.

Figure 4.3 shows the CROC graphs for dual correlated Nakagami-m fading branches

with EGC diversity form ∈ (1, 4) and ρ ∈ (0−0.8) values. Form = 1, examining Figure

4.3a, one can clearly observe the deterioration in the cognitive detector performance

(PDm increases) with the increment in the correlation coefficient ρ values.

Similar results could be observed for m = 4 in Figure 4.3b. However, as m increases
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Figure 4.3: Arbitrarily correlated Nakagami-m branches with EGC diversity:
L = 2, γ̄ = 20 dB for different ρ values.
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(low fading) as in Figure 4.3b, detection performance improves in spite of the correlation

impact.

Examining both above figures carefully, one can observe an interesting joint impact of

both correlation and fading on detection. For deep fading (e.g.m = 1), the correlation

is less adverse. As m increase, correlation is relatively more adverse. However, the

detector performance is much better since the detection probability is much higher than

that for deep fading. Therefore, we say that for deep fading environment, correlation

must be considered for accurate cognitive detection, while for low fading environment

its effect can be ignored.
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Chapter 5

Correlated Nakagami-m Branches

with SC Diversity

In this chapter, we consider a detection scenario when SC diversity technique is

employed for dual and triple diversity branches. For triple case, an exponentially

correlated branches are considered. We derive the average detection probability for

dual and triple Nakagami-m correlated fading branches with SC diversity. We do

performance analysis using CROC graphs to evaluate the derived expressions by

studying the correlation impact on the detection probability.
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Figure 5.1: Selection Combining Technique (SC).

5.1 SC Diversity

Basically, the concept of SC is to select the best (largest magnitude) signal among all

the signals received from different branches at the receiving end

r = max {rl, l = 1, 2, ... L} . (5.1)

Unlike MRC diversity technique where full knowledge of CSI is required, SC processes

one branch. Therefore, it is less complicated diversity technique than both MRC and

EGC, since the receiver selects just one branch at a time, namely the branch with

the highest channel envelope value as shown in Figure 5.1. Moreover, SC can be

used for both coherent and noncoherent modulation since no need for signal phase
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on each branch. However, SC is impractical for continuous transmission system since

continuous monitoring is necessary to pick up the branch with highest SNR [19][84].

5.2 Dual Arbitrarily Correlated Branches

In this section, we will investigate SC with dual arbitrarily correlated Nakagami-m

fading branches. Using [[85], Eq. (20)] by assuming identical diversity branches and

introducing changing variable with some mathematical simplification, the PDF of the

output SNR for dual correlated Nakagami-m fading channels with SC combiner can

be obtained as

pγSC (γ) =
2

Γ(m)

(
m

γ̄

)m
γm−1 exp

(
−mγ

γ̄

)[
1−Qm

(√
2 a ρ γ,

√
2 a γ

)]
, γ ≥ 0,

(5.2)

where a = m
γ̄ (1−ρ)

and ρ, denotes the correlation coefficient between the two fading

envelopes.
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5.2.1 Average Detection Probability

We derive the average detection probability for dual correlated SC’s diversity branches

by substituting (5.2) into (2.12) and rearranging yields

PD,SC,2 =
2

Γ(m)

(
m

γ̄

)m 
∫ ∞

0

Qu

(√
2 γ,
√
λ
)
γm−1 exp

(
−mγ

γ̄

)
dγ︸ ︷︷ ︸

IA

−
∫ ∞

0

Qu

(√
2 γ,
√
λ
)
γm−1 exp

(
−mγ

γ̄

)
Qm

(√
2 a ρ γ,

√
2 a γ

)
dγ︸ ︷︷ ︸

IB

 .
(5.3)

Note this lengthy expression consists of two integrals, IA and IB. We solve them

separately.

Evaluation of Integral IA

Let x =
√

2 γ , by changing variables, γ = x2

2
, and d γ = x dx, hence IA in (5.3)

becomes

IA =
1

2m−1

∫ ∞
0

Qu

(
x,
√
λ
)
x2m−1 exp

(
−mx2

2 γ̄

)
dx︸ ︷︷ ︸

I

.
(5.4)
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Using (29) given in Nuttall integrals [81] as

∫ ∞
0

Qu (αx, β) xq e−
p2 x2

2 dx ≡ Gu

= Gu−1 +
Γ
(
q+1

2

) (
β2

2

)u−1

e−
β2

2

2 (u− 1)!
(
p2+α2

2

) q+1
2

1F1

(
q + 1

2
;u;

β2

2

α2

p2 + α2

)
, q > −1,

(5.5)

we can solve I by evaluating Gu recursively for q > −1 and restricted u integer values

as

Gu = Gu−1 + Au−1 F u

= Gu−2 + Au−2 F u−2 + Au−1 F u−1

...

= G1 +
u−1∑
n=1

An F n+1,

(5.6)

where An and F n are given respectively, as

An =
1

2 (n!)
(
p2+α2

2

) q+1
2

Γ

(
q + 1

2

) (
β2

2

)n
e−

β2

2 ,
(5.7)

F n = 1F1

(
q + 1

2
;n;

β2

2

α2

p2 + α2

)
, (5.8)

where, 1F1 (., .; .) as defined in (3.5). Hence, the solution of (5.4) is given as [86,87]

IA =
1

2m−1

[
G1 +

η

2

u−1∑
n=1

1

n!

(
λ

2

)n
1F1

(
m;n+ 1;

λ γ̄

2 (m+ γ̄)

)]
, (5.9)
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where η = Γ(m)
(

2 γ̄
m+γ̄

)m
e−

λ
2 and G1 can be obtained by evaluating the following

integral containing the first order of Marcum Q-function Q(., .) for integer m values as

G1 =

∫ ∞
0

Q
(
x,
√
λ
)
x2m−1 e−

mx2

2 γ̄ dx. (5.10)

Using [[81], Eq. (25)], we evaluate G1 for integer m values as [86, 87]

G1 =
2m−1 (m− 1)!(

m
γ̄

)2m

(
γ̄

m+ γ̄

)
e−

λ
2

m
m+γ̄

×

[(
m+ γ̄

γ̄

)(
m

m+ γ̄

)m−1

Lm−1

(
− λ γ̄

2 (m+ γ̄)

)

+
m−2∑
n=0

(
m

m+ γ̄

)n
Ln

(
− λ γ̄

2 (m+ γ̄)

)]
. (5.11)

Here Ln (.) denotes Laguerre polynomial of n-degree [77].

Evaluation of Integral IB

The integral IB in (5.3) is

IB =

∫ ∞
0

Qu

(√
2 γ,
√
λ
)
γm−1 exp

(
−mγ

γ̄

)
Qm

(√
2 a ρ γ,

√
2 a γ

)
dγ︸ ︷︷ ︸

IB

.
(5.12)

Using the alternative representations for Qu

(√
2 γ,
√
λ
)

given in (3.19) and the
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alternative representation given in [[19], Eq. (4.74)] for restricted m integer values as

Qm (α1, β1) =
∞∑
i=0

exp

(
−α

2
1

2

) (α2
1

2

)i
i!

i+m−1∑
k=0

exp

(
−β

2
1

2

) (β2
1

2

)k
k!

, (5.13)

therefore, Qm

(√
2 a ρ γ,

√
2 a γ

)
could be written as

Qm

(√
2 a ρ γ,

√
2 a γ

)
=
∞∑
i=0

i+m−1∑
k=0

ai+k ρi

i! k!
e−a γ (ρ+1) γi+k. (5.14)

Then by substituting into (5.12) with some simplification and rearranging, we can

show

IB =
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(u+ n) n!

ai+k ρi

i! k!

×
∫ ∞

0

γi+k+m+n−1 exp

[
−γ

(
1 + a (ρ+ 1) +

m

γ̄

)]
dγ︸ ︷︷ ︸

I

.
(5.15)

Now, the next task is solving the integral I in (5.15). For this we use [[77], Eq.

(3.351/3)] and satisfying the condition therein

∫ ∞
0

xp1 e−µ1 x dx = p1!µ1
−p1−1 [Reµ1 > 0] . (5.16)

Hence (5.15) becomes [86,87]

IB =
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(u+ n)

ai+k ρi

n! i! k!

(i+ k +m+ n− 1)!(
1 + a (ρ+ 1) + m

γ̄

)n+i+k+m
. (5.17)

Substituting (5.9) and (5.17) into (5.3), hence, the average detection probability for
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dual correlated identical Nakagami-m fading branches with SC diversity restricted to

integer u and m values is [86, 87]

PD,SC,2 =
2

Γ(m)

(
m

γ̄

)m [
1

2m−1

{
G1 +

η

2

u−1∑
n=1

1

n!

(
λ

2

)n
1F1

(
m;n+ 1;

λγ̄

2 (m+ γ̄)

)}

−
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(u+ n) n!

ai+k ρi (i+ k +m+ n− 1)!(
1 + a (ρ+ 1) + m

γ̄

)i+k+m+n

i! k!

]
.

(5.18)

For m = 1, (5.18) reduces to dual correlated Rayleigh fading branches.

It’s worthwhile to mention that for i.i.d. fading diversity branches, (5.18) reduces

to [[24], Eq. (7), [23], Eq. (20)) multiplied by 2, which is equivalent to double

(not exceeding unity) value of the average detection probability in flat fading, hence

improved detection performance. We derive (5.18) to serve as a proof.

5.2.2 PD,SC,2 Alternative Expression

Despite the fact that the part Qu

(√
2 γ,
√
λ
)

of the second integral IB in (5.3)

is evaluated for non-restricted u integer values, however still we consider (5.18) is

restricted for integer values since the first integral IA in (5.3) is evaluated for integer

u and m values. In this section we will derive a more general and simpler alternative

expression for (5.18) which is not restricted to integer u values.

Using the series representation of Marcum-Q function where u is not restricted to

integer values in (3.12) and (5.2) and, substituting into (2.12) and using the definition
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of the PDF in (3.13), yields

PD,SC,2 = 1−
∫ ∞

0

e−
2γ+λ

2

∞∑
n=u

( √
λ√
2γ

)n

In

(√
2λγ

) 2

Γ(m)

(
m

γ̄

)m
γm−1 exp

(
−mγ
γ̄

)
dγ︸ ︷︷ ︸

IA

+

∫ ∞
0

e−
2γ+λ

2

∞∑
n=u

( √
λ√
2γ

)n

In

(√
2λγ

) 2

Γ(m)

(
m

γ̄

)m
γm−1 exp

(
−mγ
γ̄

)
︸ ︷︷ ︸

IB

×Qm

(√
2aργ,

√
2aγ
)

︸ ︷︷ ︸
IB

dγ, γ ≥ 0.

(5.19)

Evaluation of Integral IA

Simplifying and rearranging the integral IA in (5.19), yields

IA =
2

Γ(m)

(
m

γ̄

)m
e−

λ
2

∞∑
n=u

(
λ

2

)n
2
∫ ∞

0

γm−
n
2
−1 e−γ (1+m

γ̄ )In

(√
2λ γ

)
dγ︸ ︷︷ ︸

Ia

.
(5.20)

Using (3.16) and (3.17) and satisfying the condition in (3.16), hence, the solution of

the integral Ia in (5.20) is

Ia =
Γ(m)

Γ(n+ 1)

(
λ

2

)n
2

d−m 1F1

(
m; 1 + n;

λ

2 d

)
(5.21)

Substituting (5.21) in (5.20) with some simplification, the solution of IA is [87]

IA =
2

dm

(
m

γ̄

)m
e−

λ
2

∞∑
n=u

(
λ

2

)n
1

Γ(n+ 1)
1F1

(
m; 1 + n;

λ

2 d

)
, (5.22)
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where d =
(
γ̄+m
γ̄

)
.

Evaluation of Integral IB

The integral IB in (5.19) is

IB =

∫ ∞
0

e−
2 γ+λ

2

∞∑
n=u

( √
λ√

2 γ

)n

In

(√
2λ γ

) 2

Γ(m)

(
m

γ̄

)m
γm−1 exp

(
−mγ

γ̄

)
︸ ︷︷ ︸

IB

×Qm

(√
2 a ρ γ,

√
2 a γ

)
dγ︸ ︷︷ ︸

IB

.

(5.23)

Using the alternative representation for Qm

(√
2 a ρ γ,

√
2 a γ

)
given in (5.14) then

simplifying and rearranging, IB in (5.19) becomes

IB =
2

Γ(m)

(
m

γ̄

)m
e−

λ
2

∞∑
n=u

∞∑
i=0

i+m−1∑
k=0

(
λ

2

)n
2 ai+k ρi

i! k!

×
∫ ∞

0

γm−
n
2

+i+k−1 e−γ (d+a (ρ+1))In

(√
2λ γ

)
dγ︸ ︷︷ ︸

Ib

.
(5.24)
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Following same procedures as in (5.22) and satisfying the condition therein to solve

the integral Ib in (5.24), yields [87]

IB =
2

Γ(m)

(
m

γ̄

)m
e−

λ
2

∞∑
n=u

∞∑
i=0

i+m−1∑
k=0

(
λ

2

)n
ai+k ρi

i! k!

Γ(m+ i+ k)

Γ(n+ 1) qm+i+k

×1F1

(
m+ i+ k; 1 + n;

λ

2 q

)
,

(5.25)

where a = m
γ̄ (1−ρ)

, d =
(
γ̄+m
γ̄

)
and q = d+ a (ρ+ 1).

Substituting (5.22) and (5.25) into (5.19), hence, for u is not-restricted while m is

restricted to integer values, the average detection probability is [87]

PD,SC,2 = 1− 2

(
m

γ̄

)m
e−

λ
2

[
1

dm

∞∑
n=u

(
λ

2

)n
1

n!
1F1

(
m; 1 + n;

λ

2 d

)

− 1

Γ(m)

∞∑
n=u

∞∑
i=0

i+m−1∑
k=0

(
λ

2

)n
Γ(m+ i+ k)ai+kρi

qm+i+kn!i!k!
1F1

(
m+ i+ k; 1 + n;

λ

2 q

)]
,

(5.26)

For m = 1, (5.26) reduces to dual correlated Rayleigh fading branches and for i.i.d

multipath fading reduces to [[34], Eq. (59)] with dual diversity branches.

Fortunately, the error results from truncating the infinite series in (5.26) is upper

bounded by the Confluent Hypergeometric functions defined in (3.5). Since this

function is monotonically decreasing [80] in i, k and n for given values of m, λ and

γ̄, hence, the number of N -terms required for five digit accuracy could be calculated

using this constraint as shown in Table 5.1.
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5.3 Triple Exponentially Correlated SC

In this section, we extend the derivations of the average detection probability to

triple correlated diversity branches. For triple exponentially correlated Nakagami-m

branches with SC, the PDF of the output SNR can be obtained from the corresponding

trivariate Nakagami-m’s PDF of the fading envelope given by [[88], Eq. (8)]. Therefore,

by changing variable and assuming identical branches (γ̄ = γ̄1 = γ̄2 = γ̄3, and the

same fading parameter m) this output SNR’s PDF is,

pγSC,3 (γ) =

∣∣Σ−1
∣∣m

Γ(m)

∞∑
i=0

∞∑
j=0

|p1,2 |2 i |p2,3|2 j

pi+m1,1 pi+j+m2,2 pj+m3,3

[Θ1 + Θ2 + Θ3]

Γ(m+ i) Γ(m+ j) i! j!
, (5.27)

where Σ−1 is the inverse of the correlation matrix, pi1,j1(i1, j1 = 1, 2, 3) being its

entries and Θ1,Θ2 and Θ3 are respectively

Θ1 =

(
p1,1m

γ̄

)i+m
γi+m−1 e−

p1,1 m

γ̄
γγ

(
i+ j +m,

p2,2m

γ̄
γ

)
γ

(
j +m,

p3,3m

γ̄
γ

)
,

(5.28)

Θ2 =

(
p2,2m

γ̄

)i+j+m
γi+j+m−1 e−

p2,2 m

γ̄
γγ

(
i+m,

p1,1m

γ̄
γ

)
γ

(
j +m,

p3,3m

γ̄
γ

)
,

(5.29)

Θ3 =

(
p3,3m

γ̄

)j+m
γj+m−1 e−

p3,3 m

γ̄
γγ

(
i+m,

p1,1m

γ̄
γ

)
γ

(
i+ j +m,

p2,2m

γ̄
γ

)
.

(5.30)

Here γ (a, x) denotes the lower incomplete gamma function defined as
∫ x

0
e−tta−1dt in

[[77], Eq. (8.350/1)].
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In exponentially correlation model, the diversity antennas are equispaced, and the

correlation matrix can be written as Σi1,j1 ≡ ρ|i1−j1| [66]. Hence, it easy to show that

the inverse correlation matrix Σ−1 is tridiagonal and can be written as

Σ−1 =
1

ρ2 − 1


−1 ρ 0

ρ −(ρ2 + 1) ρ

0 ρ −1

 , (5.31)

where, ρ denotes the correlation coefficient.

The assumption we made above that identical average SNRs in all three branches is

reasonable if the diversity channels are closely spaced and the gain of each channel is

such that all the noise powers are equals [19].

5.3.1 Average Detection Probability, PD,SC,3

Using (5.13) and substituting (5.27) into (2.12), the average detection probability is,

PD,SC,3 =

∣∣Σ−1
∣∣m

Γ(m)
e−

λ
2

∞∑
n=0

n+u−1∑
k=0

∞∑
i=0

∞∑
j=0

|p1,2 |2 i |p2,3 |2 j
(
λ
2

)k
pi+m1,1 pi+j+m2,2 pj+m3,3 Γ(m+ i) Γ(m+ j) i! j! k!n!

×
∫ ∞

0

γn e−γ [Θ1 + Θ2 + Θ3] dγ︸ ︷︷ ︸
IA

.

(5.32)
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Substituting (5.28), (5.29) and (5.30) into (5.32) and simplifying, the integral part IA

in (5.32) becomes

IA =

(
p1,1m

γ̄

)i+m
Ia1 +

(
p2,2m

γ̄

)i+j+m
Ia2 +

(
p3,3m

γ̄

)j+m
Ia3, (5.33)

where,

Ia1 =

∫ ∞
0

γi+m+n−1e−γ ( p11 m
γ̄

+1)γ

(
i+ j +m,

p2,2m

γ̄
γ

)
γ

(
j +m,

p3,3m

γ̄
γ

)
dγ.

(5.34)

Ia2 =

∫ ∞
0

γi+j+m+n−1e−γ(
p2,2 m

γ̄
+1) γ

(
i+m,

p1,1m

γ̄
γ

)
γ

(
j +m,

p3,3m

γ̄
γ

)
dγ.

(5.35)

Ia3 =

∫ ∞
0

γj+m+n−1e−γ(
p3,3 m

γ̄
+1)γ

(
i+m,

p1,1m

γ̄
γ

)
γ

(
i+ j +m,

p2,2m

γ̄
γ

)
dγ.

(5.36)

Each integral in (5.33) could be written as

I =

∫ ∞
0

xae−bxγ (d1, c1x) γ (d2, c2x) dx. (5.37)

Using [[89], Eq. (10)], and after lengthy simplification and rearrangement, the solution

of (5.33) is

IA =
( γ̄
m

)n pi+m1,1 pi+j+m2,2 pj+m3,3 Γ(2i+ 2j + 3m+ n)(
p11 + p2,2 + p3,3 + γ̄

m

)(2i+2j+3m+n)
(Ξ1 + Ξ2 + Ξ3) , (5.38)
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where Ξ1, Ξ2 and Ξ3 are defined below in (5.39), (5.40) and (5.41) respectively.

Ξ1 =
F 2

(
2i+ 2j + 3m+ n; 1, 1; i+ j +m+ 1, j +m+ 1; p2,2

p11+p2,2+p3,3+ γ̄
m

, p3,3

p11+p2,2+p3,3+ γ̄
m

)
(i+ j +m) (j +m)

,

(5.39)

Ξ2 =
F 2

(
2i+ 2j + 3m+ n; 1, 1; i+m+ 1, j +m+ 1; p1,1

p11+p2,2+p3,3+ γ̄
m

, p3,3

p11+p2,2+p3,3+ γ̄
m

)
(i+m) (j +m)

,

(5.40)

Ξ3 =
F 2

(
2i+ 2j + 3m+ n; 1, 1; i+m+ 1, i+ j +m+ 1; p1,1

p11+p2,2+p3,3+ γ̄
m

, p2,2

p11+p2,2+p3,3+ γ̄
m

)
(i+m) (i+ j +m)

,

(5.41)

where F 2

(
α3; β3, β

′
3; γ3, γ

′
3;x, y

)
denotes the Hypergeometric function of two variables

defined in ([77], (9.180.2)).

Substituting (5.38) in (5.32) hence, the average detection probability for triple

Nakagami-m correlated branches with SC diversity for u is restricted while m is

not restricted to integer values could be obtained as [86,87]

PD,SC,3 =

∣∣Σ−1
∣∣m

Γ(m)
e−

λ
2

∞∑
n=0

n+u−1∑
k=0

∞∑
i=0

∞∑
j=0[(

λ

2

)k ( γ̄
m

)n |p1,2|2 i |p2,3|2 j

pi+m1,1 pi+j+m2,2 pj+m3,3 Γ(m+ i)Γ(m+ j)

×
pi+m1,1 pi+j+m2,2 pj+m3,3 Γ(2i+ 2j + 3m+ n)(
p11 + p2,2 + p3,3 + γ̄

m

)(2i+2j+3m+n)
i!j!k!n!

(Ξ1 + Ξ2 + Ξ3)

]
. (5.42)

Here Ξ1,Ξ2 and Ξ3 are defined in (5.39), (5.40) and (5.41) respectively. For m = 1,

(5.42) reduces to triple correlated Rayleigh fading branches.
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5.3.2 Alternative PD,SC,3 Expression

In this section, we derive a general and simpler alternative expression to (5.42) where

both u and m are not restricted to integer values. Using (3.19) and substituting (5.27)

into (2.12) with rearranging, yields,

PD,SC,3 =

∣∣Σ−1
∣∣m

Γ(m)

∞∑
n=0

∞∑
i=0

∞∑
j=0

Γ
(
u+ n, λ

2

)
Γ(u+ n)

|p1,2|2 i |p2,3 |2 j

pi+m1,1 pi+j+m2,2 pj+m3,3 Γ(m+ i) Γ(m+ j) i! j!n!

×
∫ ∞

0

γn e−γ [Θ1 + Θ2 + Θ3] dγ︸ ︷︷ ︸
IA

.

(5.43)

Following same procedures in (5.33)-(5.38), then substituting (5.38) into (5.43), hence,

the average detection probability for triple Nakagami-m correlated branches with SC

diversity for not restricted u or m integer values can be obtained as [86,87]

PD,SC,3 =

∣∣Σ−1
∣∣m

Γ(m)

∞∑
n=0

∞∑
i=0

∞∑
j=0

( γ̄
m

)n Γ
(
u+ n, λ

2

)
Γ(u+ n)

|p1,2|2 i |p2,3 |2 j Γ(2i+ 2j + 3m+ n)

Γ(m+ i) Γ(m+ j) i! j!n!

× (Ξ1 + Ξ2 + Ξ3)(
p11 + p2,2 + p3,3 + γ̄

m

)2i+2j+3m+n .

(5.44)

where, Ξ1,Ξ2 and Ξ3 are defined in (5.39), (5.40) and (5.41) respectively. Similarly, for

m = 1, (5.44) reduces to triple correlated Rayleigh fading branches. It’s worthwhile to

mention that the Hypergeometric function of two variables F 2

(
α3; β3, β

′
3; γ3, γ

′
3;x, y

)
appears in (5.42) and (5.44) converges for |x|+ |y| < 1[77], which is the case in our

above derived equations.
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Table 5.1: Terms required for five digits accuracy

PD,SC,2 :
∣∣∣ẼN

∣∣∣ , u = 2, P F = 0.01, γ̄ = 20 dB

ρ
m = 1
Nn, N i

m = 2
Nn, N i

m = 3
Nn, N i

m = 4
Nn, N i

0 15,1 15,1 15,1 15,1
0.2 15,3 15,3 15,2 15,1
0.4 15,3 15,2 15,1 15,1
0.6 15,3 15,5 15,4 15,4
0.8 15,4 15,5 15,6 15,7

5.4 Performance Analysis

In this section, we verify the derived closed-form expressions for different cases of

interest for spectrum sensing model with SC technique. The impact of multipath

fading and correlation on average detection probability (as a performance factor) is

investigated.

We follow same procedures as we did in Sec. 3.4 to calculate the corresponding

threshold for the assumed detection parameters to produce corresponding SC’ CROC

graphs. Table 5.1 is constructed to demonstrate the number of terms required for five

digit accuracy for the infinite series truncations.

In Figure. 5.2, numerical results obtained for analytic and simulation are almost in a

perfect match. This validates the derived expressions.

CROC curves for dual correlated Nakagami-m fading branches with SC diversity are

shown in Figure 5.3. The performance variation has to be observed with respect fading

parameter m and correlation ρ values. One can clearly observe the deterioration in

the performance as ρ increases.
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Figure 5.2: Analytic (solid) versus simulation (dashed) results for SC with L = 2,m =
1, γ̄ = 20 dB and ρ = 0.8.

For instance, let us consider the case m = 1 and constant PF = 0.01 as in Figure

5.3a. The corresponding PDm for ρ = 0.8 is almost four times its value for ρ =

0, no correlation. Similar result could be observed in Figure 5.3b, however, the

increment ratio is now much more larger. However, as m increases (low fading

environment), correlation effect is compensated for, resulting in higher detection

probability (equivalently, low miss detection probability). Thus, the rate of correlation

compensation due to good channel is higher than the correlation impact on detection

probability. Therefore, we can conclude, for deep fading environment, correlation must

be considered for accurate cognitive detection, while for low fading environment, its

effect may be ignored.
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(a) m = 1 (Rayleigh: deep fading)
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(b) m = 4 (Low fading)

Figure 5.3: SC dual correlated Nakagami-m branches with γ̄ = 20 dB for different ρ
values.
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Chapter 6

Dual Correlated Nakagami-m

Branches with SSC Diversity

In this chapter, we consider a detection scenario when SSC diversity technique is

employed for dual diversity branches. We derive the average detection probability for

dual Nakagami-m correlated fading branches with SSC diversity. We do performance

analysis using CROC graphs to evaluate the derived expressions by studying the

correlation impact on the detection probability.

6.1 SSC Diversity

For a predetermined threshold, SSC’s receiver selects a particular diversity branch

until it’s SNR drops below this predetermined value, then the receiver switches to
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Figure 6.1: Switched and Stay Combining Technique (SSC).

another branch as shown in Figure 6.11.

In fact, SSC receiver monitors the level of the incoming signal using logic switch.

When the signal level drops below a predefined threshold, a switch changes the path

to another branch (antenna) and so on. Therefore, SSC has less complexity than that

for its counterpart SC since SSC does not continuously connect the diversity path

with the best quality [19]. The drawback of selection SSC is that the switching process

does not occur unless the fade occurs first. Moreover, it is possible that the signal

at the other antenna will be at an even lower signal level. However, SSC is also less

complicated than the two previous techniques, MRC and EGC since it just processes

one branch with the highest SNR. Moreover, unlike MRC where full knowledge of

CSI is required, SSC requires only the knowledge of the amplitude on the branches in

1SSC combiner diagram is similar to that for SC as in Figure5.1 with only the exception mentioned
above.
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order to select the highest one [19]. Finally, SSC can be used for both coherent and

noncoherent modulation since no need for signal phase on each branch.

6.2 Dual Arbitrarily Correlated Branches

In this section, we will investigate arbitrarily dual correlated Nakagami-m fading

branches with SSC diversity. For dual and identical correlated Nakagami-m fading

channels with SSC combiner, the SNR’s PDF is given by [[19], p.437, Eq. (9.334)] as

pγSSC (γ) =


A (γ) γ ≤ γT

A (γ) +
(
m
γ̄

)m
γm−1

Γ(m)
exp

(
−mγ

γ̄

)
γ > γT ,

(6.1)

where γT denotes a predetermined switching threshold and A (γ) is given by [[19],

p.437, Eq. (9.335)] as

A (γ) =

(
m

γ̄

)m
γm−1

Γ(m)
exp

(
−mγ

γ̄

)[
1−Qm

(√
2 a ρ γ,

√
2 a γT

)]
, (6.2)

where a = m
γ̄ (1−ρ)

and Qm (., .), the Generalized Marcum Q-function. The average

detection probability for dual correlated Nakagami-m fading branches with SSC

diversity (PD,SSC,2) is obtained by substituting (6.1) in (2.12) and then using the

definition
∫∞
a
f(x) dx =

∫∞
0
f(x) dx−

∫ a
0
f(x) dx with some simplification and rearranging
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yields

PD,SSC,2 =
1

Γ(m)

(
m

γ̄

)m 2

∫ ∞
0

Qu

(√
2 γ,
√
λ
)
γm−1 exp

(
−mγ

γ̄

)
dγ︸ ︷︷ ︸

IA

−
∫ ∞

0

Qu

(√
2 γ,
√
λ
)
Qm

(√
2 a ρ γ,

√
2 a γT

)
γm−1 exp

(
−mγ

γ̄

)
dγ︸ ︷︷ ︸

IB

−
∫ γT

0

Qu

(√
2 γ,
√
λ
)
γm−1 exp

(
−mγ

γ̄

)
dγ︸ ︷︷ ︸

IC

)

 .

(6.3)

Before deriving an expression for the detection probability PD,SSC,2, it is worthy to

investigate (6.3) for the following two special cases of threshold values.

6.2.1 Case: γT = 0

If γT = 0, hence Qm

(√
2 a ρ γ,

√
2 a γT

)
= 1 and the third term IC vanishes,

consequently (6.3) reduces to a single branch detection given as

PD,SSC,2 =
1

Γ(m)

(
m

γ̄

)m ∫ ∞
0

Qu

(√
2 γ,
√
λ
)
γm−1 exp

(
−mγ

γ̄

)
dγ. (6.4)

6.2.2 Case: γT →∞

If γT →∞, hence Qm

(√
2 a ρ γ,

√
2 a γT

)
= 0, consequently IB vanishes and only IC

is subtracted from IA. This results in a single branch detection too, as in (6.4). In

the forthcoming writing, we will evaluate PD,SSC,2 in (6.3).
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6.2.3 Integral IA in (6.3)

The integral IA in (6.3) is

IA = 2

∫ ∞
0

Qu

(√
2 γ,
√
λ
)
γm−1 exp

(
−mγ

γ̄

)
dγ. (6.5)

Using Marcum Q-function alternative representation (5.13) with some simplification

and rearranging, (6.5) becomes,

IA = 2 e−
λ
2

∞∑
j=0

j+u−1∑
k=0

(
λ

2

)k
1

j! k!

∫ ∞
0

γj+m−1 exp

{
−γ(1 +

m

γ̄
)

}
dγ. (6.6)

Using (5.16) and satisfying the condition therein, the solution of (6.6) is [87]

IA = 2 e−
λ
2

∞∑
j=0

j+u−1∑
k=0

(
λ

2

)k
(j +m− 1)!

j! k!

(
γ̄

γ̄ +m

)j+m
. (6.7)

6.2.4 Integral IB in (6.3)

The integral in IB in (6.3) is

IB =

∫ ∞
0

Qu

(√
2 γ,
√
λ
)
Qm

(√
2 a ρ γ,

√
2 a γT

)
γm−1 exp

(
−mγ

γ̄

)
dγ. (6.8)
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We follow the same procedures as in (6.7) to evaluate both Qu

(√
2 γ,
√
λ
)

and

Qm

(√
2 a ρ γ,

√
2 a γT

)
with some simplification and rearranging. Then (6.8) becomes,

IB = e−
λ
2

∞∑
n=0

j+u−1∑
q=0

∞∑
i=0

i+m−1∑
k=0

(
λ

2

)q
ai+k ρi

i! k!n! q!
e−a γT γkT

×
∫ ∞

0

γm+n+i−1 exp

{
−γ
(
a ρ+

m

γ̄
+ 1

)}
dγ.

(6.9)

Similarly, using (5.16) and satisfying the condition therein, the solution of IB is [87]

IB = e−
λ
2

∞∑
n=0

j+u−1∑
q=0

∞∑
i=0

i+m−1∑
k=0

(
λ

2

)q
ai+k ρi

i! k!n! q!

(m+ n+ i− 1)!(
a ρ+ m

γ̄
+ 1
)m+n+i e

−a γT γkT . (6.10)

6.2.5 Integral IC in (6.3)

The Integral IC in (6.3) is

IC =

∫ γT

0

Qu

(√
2 γ,
√
λ
)
γm−1 exp

(
−mγ

γ̄

)
dγ. (6.11)

Similarly, using (5.13), with some simplification and rearranging, (6.11) becomes,

IC = e−
λ
2

∞∑
n=0

n+u−1∑
q=0

1

n! q!

(
λ

2

)k ∫ γT

0

γm+n−1 exp

{
−γ
(
m

γ̄
+ 1

)}
dγ. (6.12)

Using [[77], Eq. (3.351/1)] given as

∫ z

0

xn e−µx dx =
n!

µn+1
− e−µ z

n∑
k=0

n!

k!

zk

µn−k+1
= µ−n−1 γ(n+ 1, µ z),

[z > 0,Reµ > 0, n = 0, 1, 2, · · ·] ,

(6.13)
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and satisfying the conditions therein, hence, the solution of (6.12) is [87]

IC = e−
λ
2

∞∑
n=0

n+u−1∑
q=0

1

n! q!

(
λ

2

)q (
γ̄

γ̄ +m

)m+n

γ

(
m+ n, γT

(
γ̄ +m

γ̄

))
. (6.14)

Substituting (6.7), (6.10) and (6.14) in (6.3) and rearranging, hence, the average

detection probability for dual correlated Nakagami-m fading branches with SSC where

u and m are restricted to integer values is [87]

PD,SSC,2 =
1

Γ(m)

(
m

γ̄

)m
e−

λ
2

[
2
∞∑
j=0

j+u−1∑
k=0

(
λ

2

)k
(j +m− 1)!

j! k!

(
γ̄

γ̄ +m

)j+m

−
∞∑
n=0

n+u−1∑
q=0

∞∑
i=0

i+m−1∑
k=0

(
λ

2

)q
ai+k ρi (m+ n+ i− 1)!(
a ρ+ m

γ̄
+ 1
)m+n+i

i! k!n! q!
e−a γT γkT

−
∞∑
n=0

n+u−1∑
q=0

(
λ

2

)q
1

n! q!

(
γ̄

γ̄ +m

)m+n

γ

(
m+ n, γT

(
γ̄ +m

γ̄

))
.

]
(6.15)

Note that for m = 1, (6.15) reduces to dual Rayleigh correlated fading branches, and

for ρ = 0 reduces to dual i.i.d. Nakagami-m fading branches detection.

6.3 Alternative PD,SSC,2 Expression

The expression PD,SSC,2 in (6.15) involves many infinite series representations. Some

of their upper bounds (number of terms) are dependent on the preceded one. As an

example, the upper bound of the second sum (
∑j+u−1

k=0 (.)) depends on the number of

terms (N) needed for convergence of the previous series. Consequently, it will not be

very difficult to find the number of terms for convergence (with five digit accuracy).

However, time for numerical implementation will be rather long. Therefore, we will
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derive an alternative more general and simpler expression PD,SSC,2 with less number

of infinite series representations within the expression.

6.3.1 Evaluation the integral IA in (6.3)

Let x =
√

2 γ , we rewrite IA in (6.3) as

IA =
4

2−m

∫ ∞
0

Qu

(
x,
√
λ
)
xm−1 exp

(
−mx2

2γ̄

)
dx. (6.16)

Using the following integral solution given by [82] as

2

∫ ∞
0

Qu (αx, β) x2m−1 e−p x
2

dx = 2
∞∑
j=0

α2 j 2m Γ(m+ j) Γ
(
u+ j, β

2

2

)
Γ(u+ j) (α2 + 2 p)m+j j!

, (6.17)

hence, the solution of (6.16) for real u-values is given as [87]

IA = 4
∞∑
j=0

Γ(m+ j)Γ
(
u+ j, λ

2

)
Γ(u+ j)

(
1 + m

γ̄

)m+j

j!
. (6.18)

6.3.2 Evaluation the integral IB in (6.3)

Similarly, using (3.19) and (5.13) for Qu

(√
2 γ,
√
λ
)

and Qm

(√
2 a ρ γ,

√
2 a γT

)
respectively, with some simplification and rearranging, (6.8) becomes

IB =
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(u+ n) n!

ai+k ρi

i! k!
γkT e

−a γT
∫ ∞

0

γm+n+i−1 e−γ (mγ̄ +a ρ+1) dγ.

(6.19)
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Using (5.16) and satisfying the condition, the solution of (6.19) can be written as [87]

IB =
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(m+ n+ i)ai+kρi

Γ (u+ n)
(
m
γ

+ a ρ+ 1
)m+n+i

n! i! k!
γkT e

−aγT . (6.20)

6.3.3 Evaluation the integral IC in (6.3)

Using (3.19) with some simplification, (6.11) becomes

IC =
∞∑
p=0

Γ
(
u+ p, λ

2

)
Γ(u+ p) p!

∫ γT

0

γm+p−1 e−γ(
γ̄+m
γ̄ ) dγ. (6.21)

Using (6.13) and satisfying the condition therein with some simplification, hence, for

m ≥ 1 the solution of (6.21) is [87]

IC =
∞∑
p=0

Γ
(
u+ p, λ

2

)
Γ(u+ p) p!

(
γ̄ +m

γ̄

)−(m+p)

γ

(
m+ p, γT

(
γ̄ +m

γ̄

))
. (6.22)

Substituting (6.18), (6.20) and (6.22) into (6.3), hence, the average detection probability

for u is not restricted while (m ≥ 1) is restricted to integer values as [87]

PD,SSC,2 =
1

Γ(m)

(
m

γ̄

)m 4
∞∑
j=0

Γ
(
u+ j, λ

2

)
Γ(m+ j)

Γ(u+ j)
(

1 + m
γ̄

)m+j

j!

−
∞∑
n=0

∞∑
i=0

i+m−1∑
k=0

Γ
(
u+ n, λ

2

)
Γ(m+ n+ i) γkT e

−aγT ai+k ρi

Γ(u+ n)
(
m
γ

+ aρ+ 1
)m+n+i

n! i! k!

−
∞∑
p=0

Γ
(
u+ p, λ

2

)
Γ(u+ p) p!

(
γ̄ +m

γ̄

)−(m+p)

γ

(
m+ p, γT

(
γ̄ +m

γ̄

))]
.

(6.23)
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Note, for m = 1, (6.23) reduces to dual Rayleigh correlated fading branches, and for

ρ = 0 it reduces to dual i.i.d. Nakagami-m fading branches detection.

Interestingly, the three terms in (6.23) contain the upper incomplete gamma function

in addition to the lower incomplete gamma function in the last term. In fact,

we can represent both these functions by the monotonically decreasing confluent

hypergeometric function using [[75], Eq. (6.5.12)] and [[90], Eq. (1.6)) for lower and

upper incomplete gamma functions, respectively. Consequently the infinite series

terms in (6.23) converges rapidly.

6.4 Optimum Threshold (γ∗T)

Optimum threshold could be obtained by differentiating PD,SSC,2 in (6.3) with respect

to γT and solving ∂
∂γ∗T

PD,SSC,2 = 0 for γ∗T as follows.

Employing Leibniz’s rule [[75], Eq. (3.3.7)] with the aid of following identity given in [

[81], Eq. (9)] as

∂

∂β
Qu (α, β) = −β

(
β

α

)u−1

exp

(
−α

2 + β2

2

)
Iu−1 (αβ), (6.24)
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hence, (6.3) becomes

∂

∂γ∗T
PD,SSC,2 =

1

Γ(m)

(
m

γ̄

)m [
ρ

1−m
2

√
2a γ∗T

1−m
2 e−aγ

∗
T

×
∫ ∞

0

Qu

(√
2 γ,
√
λ
)
γ
m−1

2 e−aγIm−1

(
2a
√
ργ∗Tγ

)
dγ︸ ︷︷ ︸

I

− Qu

(√
2 γ∗T ,

√
λ
)
γ∗T

m−1 exp

(
−mγ∗T

γ̄

)]
.

(6.25)

To simplify solving the integral I in (6.25), we perform changing variable along with

the aid of the series expansion of the modified Bessel function given in [[77], Eq.

(8.445)] as

Iν (z) =
∞∑
k=0

1

Γ(ν + k + 1) k!

(z
2

)ν+2 k

. (6.26)

Then, after lengthy simplification (6.25) becomes

∂

∂γ∗T
PD,SSC,2 =

1

Γ(m)

(
m

γ̄

)m [
ρ

1−m
2

√
2a γ∗T e

−aγ∗T
∞∑
k=0

1

Γ(m+ k)2m+k k!
(a
√
ρ)m+2k−1 γ∗T

k

×
∫ ∞

0

Qu

(
x,
√
λ
)
x2(m+k)−1e−

a
2
x2

dx︸ ︷︷ ︸
I

− Qu

(√
2 γ∗T ,

√
λ
)
γ∗T

m−1 exp

(
−mγ∗T

γ̄

)]
.

(6.27)

Using [[81], Eq. (29)] by following same procedures as in (5.9), we can solve the

integral I in (6.27) as

IA = G
′

1 +
1

2

u−1∑
n=1

(
λ

2

)n
Γ (m+ k)(
a+1

2

)m+k
n!

1F1

(
m+ k;n+ 1;

λ

2 (a+ 1)

)
, (6.28)
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where G
′
1 can be obtained by evaluating the following integral containing the first

order of Marcum Q-function Q(., .) for integer m values as

G
′

1 =

∫ ∞
0

Q
(
x,
√
λ
)
x2(m+k)−1 e−

a
2
x2

dx. (6.29)

Using [[81], Eq. (25)], we evaluate G
′
1 for integer m values as

G
′

1 =
2m+k−1 (m+ k − 1)!

a2(m+k)

(
1

a+ 1

)
e−

λ
2

a
a+1

×

[
(1 + a)

(
a

1 + a

)m+k−1

Lm+k−1

(
− λ

2 (1 + a)

)
+

m+k−2∑
n=0

(
a

a+ 1

)n
Ln

(
− λ

2 (a+ 1)

)]
.

(6.30)

Here Ln (.) denotes Laguerre polynomial of n-degree [77].

Substituting (6.28) into (6.27) with simplifying, yields [87]

∂

∂γ∗T
PD,SSC,2 =

1

Γ(m)

(
m

γ̄

)m [√
2a γ∗T e

−aγ∗T
∞∑
k=0

am+2k−1ρk

Γ(m+ k)2m+k k!
γ∗T

k

×

{
G
′

1 +
1

2

u−1∑
n=1

(
λ

2

)n
Γ (m+ k)(
a+1

2

)m+k
n!

1F1

(
m+ k;n+ 1;

λ

2 (a+ 1)

)}

− Qu

(√
2 γ∗T ,

√
λ
)
γ∗T

m−1 exp

(
−mγ∗T

γ̄

)]
.

(6.31)

Finally, by solving ∂
∂γ∗T

PD,SSC,2 = 0 for γ∗T numerically in (6.31), we can obtain the

optimum threshold.
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Figure 6.2: Analytic (solid) versus simulation (dashed) results for SSC with L =
2,m = 1, γ̄ = 20 dB and ρ = 0.8.

6.5 Performance Evaluation

In this section, we verify the derived closed-form expressions for different cases of

interest for spectrum sensing model with SSC technique. The impact of multipath

fading and correlation on average detection probability P̄D (as a performance factor)

is investigated.

We follow same procedures as we did in Sec. 3.4 to calculate the corresponding

threshold for the assumed detection parameters to produce corresponding SSC’ CROC

graphs. In Figure. 6.2, numerical results obtained for analytic and simulation are

almost in a good match. However, reader may observe a very small difference between

analytic and simulation curves. This is due to the inaccuracy arising from rounding

off the infinite series and optimum threshold calculation.
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In Figure 6.3, and for each value of fading severity m, one can notice clearly the

degradation in detection probability due to the correlation among diversity branches.

However, as m increases, correlation effect is compensated, resulting in higher detection

probability. Similar observations as in SC diversity technique in Sec. 5.4 are obtained

here for SSC. Therefore, we can conclude that for deep fading environment, correlation

must be considered for accurate cognitive detection, while for low fading environment,

its effect may be ignored.
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(a) m = 1 (Rayleigh: deep fading)
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(b) m = 4 (Low fading)

Figure 6.3: Dual correlated Nakagami-m branches with SSC diversity; γ̄ = 20 dB,
L = 2 and for different ρ values.
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Chapter 7

Decorrelation-Based SC Receiver

in Nakagami-m Fading Channel

Multipath fading and correlation among reception branches are of a great source of

sensing impairment due to the nature of the signal propagating medium and insufficient

spacing antenna spacing in small-size mobile unites. Consequently, assuming independent

branches is invalid for many real sensing scenarios. Employing diversity technique

to maximize the SNR helps mitigate the destructive effect of the multipath fading.

However, maximal theoretical diversity gain is unattainable [18] with correlated

branches. Thus, it is important to combat the correlation impact on diversity

performance.
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Figure 7.1: MIMO system.

Decorrelation is one of the techniques employed to mitigate effectively the correlation

adverse impact in wireless communications. Covariance matrix transformation such

as KLT [20,91] is often employed in this technique, consequently, the knowledge of

the covariance matrix is necessary to perform the diagonalization [20].

In general, the received observation vector for MIMO shown in Figure 7.1 is given as

x = Hs + n, (7.1)

where H (N ×M) , s (M × 1) and n (N × 1) denote channel matrix, received signals

vector and noise vector, respectively. Hence, for K correlated observations from the

100



model (7.1) to N ×K matrix X = [x1, · · ·,xK ], the corresponding covariance matrix

RX = E[XXT]1 is N × N symmetric matrix with diagonal elements represent the

variances and the off-diagonal elements represent the covariances. For i.i.d. random

variables, the off-diagonal elements are zeros and RX becomes diagonal matrix.

To diagonalize RX, there is a matrix P satisfies [20]

PTRXP = Λ, PTP = I, (7.2)

where Λ is a diagonal matrix and I is the identity matrix. KLT is often employed to

find P for this diagonalization.

In some special cases where dual diversity is employed, decorrelation can be performed

easily by adding and subtracting the diversity branches. However, this requires the

evaluation of the statistics of the sum and the difference of correlated bivariate, due

to the random nature of the wireless channel.

In this chapter, we propose a decorrelated-based SC receiver. We do so through

investigating the problem of decorrelating SC receiver in identical and correlated

dual Nakagami-m fading branches. We derive the expressions for statistics of the

normalized difference of Nakagami-m bivariate which represent the foundation of our

presented decorrelator. To the best of our knowledge, we believe that these derived

expressions are novel in the literature.

1T denotes transpose of a matrix
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7.1 System Model

Assuming dual identical and correlated antenna branches in Nakagami-m channels,

we can write

x1 = r1 s+ n1, (7.3)

x2 = r2 s+ n2, (7.4)

where, s denotes the data signal samples, ri = αi e
j θi , i = 1, 2, is the slow varying

complex channel gain coefficient with amplitude αi and phase θi and, ni, i = 1, 2, is

the additive white Gaussian noise (AWGN) with zero mean and variance N0/2 per

dimension. The instantaneous and average SNR are denoted by γ and γ̄, respectively.

Following [74], the corresponding PDF of a univariate α-Nakagami-m variable is given

by

pα (α) =
2α2m−1

Γ(m)

(m
Ω

)m
e−

mα2

Ω , α ≥ 0, (7.5)

where, Γ(.) denotes the Gamma function, Ω = E[α2]/m = ᾱ2

m
is the mean-square value

of the variable α and m (m ≥ 1/2) is the inverse normalized variance of α2 which

describes the fading severity. The envelope α of the Nakagami-m distribution could

be represented by the square root of the sum of squares of Lm independent complex

Gaussian variates [74,88,92] given as

gki =
(√

1− ρXki +
√
ρX0i

)
+ j

(√
1− ρY ki +

√
ρY 0i

)
, (7.6)
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where, L is the number of paths, k = 1, · · ·, L; i = 1, · · ·,m; 0 ≤ ρ ≤ 1; j =
√
−1 and;

Xki and Y ki ∼ N
(
0, 1

2

)
, k = 0, · · ·, L; i = 1, · · ·,m are independent Gaussian random

variables.

Therefore, the summation of the absolute squares of gki is given as

Gk =
m∑
i=1

|gki|2 . (7.7)

Consequently, αk =
√
Gk is a set of identically and equally correlated Nakagami-m

fading envelopes. The decorrelator outputs are U1 and U2 respectively as

U1 =
x1 + x2√

2
=
r1 + r2√

2
s+

n1 + n2√
2

= σ s+ ν1, (7.8)

U2 =
x1 − x2√

2
=
r1 − r2√

2
s+

n1 − n2√
2

= δ s+ ν2, (7.9)

where σ and δ are two random variables denote the normalized sum and normalized

difference of the correlated branches, respectively. Furthermore it is easy to show that

σ and δ are uncorrelated. Terms ν1 and ν2 represent the noise which is also easy to

show they are mutually independent Gaussian random variables with zero mean, and

unity variance.

We are more interested in U2, which is the difference. Next, we will evaluate the PDF

and CDF of the normalized difference δ in (7.9) which represent the foundation of our

proposed decorrelator.
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7.2 Statistics of Normalized Difference of Identical

and correlated Nakagami-m Bivariate: δ = r1−r2√
2

7.2.1 PDF’s Expression: f∆ (δ)

Let r1, r2 ≥ 0 be Nakagami-m correlated bivariate with pR1R2 (r1, Ω1, r2, Ω2 | m, ρ)

denoted as the joint PDF. By definition, the CDF of the difference δ = r1−r2√
2

is

F∆ (δ) = P
(
r1−r2√

2
≤ δ
)

, hence

F∆ (δ) =

∫ ∞
0

∫ √2δ+r2

0

fR1R2 (r1, r2) dr1dr2, (7.10)

where fR1R2 (r1, r2) denotes the joint pdf. Due to the complexity of solving the double

integral in (7.10) analytically for δ 6=, we will evaluate the corresponding PDF as

follows.

Applying Leibniz’s theorem of differentiation of an integral rule given in [[75], Eq.

(3.3.7)] as

d

dc

∫ b(c)

a(c)

f(x, c)dx =

∫ b(c)

a(z)

∂

∂c
f(x, c)dx+ f(b, c)

db

dc
− f(a, c)

da

dc
, (7.11)

the corresponding PDF could be obtained by differentiating (7.10) yields

f∆ (δ) =
√

2

∫ ∞
0

fR1R2

(√
2δ + r2, r2

)
dr2. (7.12)
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We must consider separately the following two cases

f∆ (δ) =


√

2
∫∞

0
fR1R2 (r2, r2) dr2 δ = 0.

√
2
∫∞

0
fR1R2

(√
2δ + r2, r2

)
dr2 δ 6= 0.

(7.13)

For correlated Nakagami-m bivariate r1 and r2, their joint PDF is given by [[19], Eq.

(6.1)] as

fR1R2 (r1, r2) =
4mm+1

Γ(m) Ω1 Ω2 (1− ρ)
(√

Ω1 Ω2 ρ
)m−1

× (r1 r2)m exp

[
− m

1− ρ

(
r2

1

Ω1

+
r2

2

Ω2

)]
Im−1

(
2m
√
ρ r1 r2√

Ω1 Ω2 (1− ρ)

)
, r1, r2 ≥ 0,

(7.14)

where Iν (.) denotes modified Bessel function of ν-kind and ρ =
cov(r2

1,r
2
2)√

(var(r2
1) var(r2

2))
denotes the power correlation coefficient (0 ≤ ρ < 1).

Using the series expansion of the modified Bessel function in (6.26) with some

simplification and rearranging, hence, for identical bivariate (Ω1 = Ω2 = Ω), (7.14)

becomes

fR1R2 (r1, r2) =
4

Γ(m)

∞∑
k=0

ρk

Γ(m+ k) (1− ρ)m+2k k!

(m
Ω

)2(m+k)

× (r1r2)2(m+k)−1 exp

[
− m

Ω (1− ρ)

(
r2

1 + r2
2

)]
.

(7.15)

Substituting r1 =
√

2 δ + r2 into (7.15), we can write the joint PDF of normalized
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difference of identical and correlated Nakagami bivariate as

fR1R2 (r1, r2)
4

Γ(m)

∞∑
k=0

ρk

Γ(m+ k) (1− ρ)m+2 k k!

(m
Ω

)2(m+k)

×
[
r2

(√
2 δ + r2

)]2 (m+k)−1

exp

[
− m

Ω (1− ρ)

{(√
2 δ + r2

)2

+ r2
2

}]
.

(7.16)

Therefore, the corresponding PDF could be obtained by substituting (7.16) into (7.12)

yields

f∆ (δ) =
4
√

2

Γ(m)

∞∑
k=0

ρk

Γ(m+ k) (1− ρ)m+2 k k!

(m
Ω

)2(m+k)

×
∫ ∞

0

[
r2

(√
2 δ + r2

)]2 (m+k)−1

exp

[
− m

Ω (1− ρ)

{(√
2 δ + r2

)2

+ r2
2

}]
dr2.

(7.17)

As we pointed out, we will solve (7.17) for the following two cases given in (7.13).

A. Case 1: δ = 0

Substituting δ = 0 into (7.17), changing variables and using [[77], Eq. (3.381/4)] given

as

∫ ∞
0

xν−1 e−µx dx =
1

µν
Γ(ν) <µ > 0,< ν > 0, (7.18)

and satisfying the conditions therein with some simplification, the PDF for δ = 0 is

given as [93]

f∆ (0) =
4 (1− ρ)m

Γ(m)

(
m

Ω (1− ρ)

) 1
2
∞∑
k=0

Γ
[
2 (m+ k)− 1

2

]
ρk

Γ(m+ k) 22(m+k) k!
. (7.19)
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B. Case 2: δ 6= 0

With some simplification and mathematical manipulation, (7.17) becomes

f∆ (δ) =
4
√

2

Γ(m)

∞∑
k=0

ρk

Γ(m+ k) (1− ρ)m+2 k k!

(m
Ω

)2(m+k)

×e−
m

Ω(1−ρ) δ
2

∫ ∞
0

[
r2

(√
2 δ + r2

)]2 (m+k)−1

exp

[
− m

Ω (1− ρ)

(√
2r2 + δ

)2
]
dr2.

(7.20)

Using changing variable, y = m
Ω(1−ρ)

(√
2r2 + δ

)2
and modifying the integral limits

with some math work and simplification yields

f∆ (δ) =
2

Γ(m)
e−

m
Ω (1−ρ) δ

2
∞∑
k=0

ρk (1− ρ)m

Γ(m+ k) 22 (m+k)−1k!

(
m

Ω (1− ρ)

) 1
2

×
∫ ∞

m
Ω(1−ρ) δ

2

y−
1
2

[
y − m

Ω (1− ρ)
δ2

]2 (m+k)−1

e−ydy.︸ ︷︷ ︸
I

(7.21)

We solve (7.21) by evaluating the Integral I using [[77], Eq. (3.383/4)] given as

∫ ∞
u

xν−1 (x− u)µ−1 e−β xdx = β−
(µ+ν)

2 u
µ+ν−2

2 Γ(µ)e−
β u
2 W ν−µ

2
, 1−µ−ν

2
(β u) ,

[<µ > 0, < βu > 0] ,

(7.22)

where W a,b (z) denotes Whittaker function. Satisfying the conditions therein, hence,

the PDF of normalized difference of identical and correlated Nakagami bivariate for
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δ 6= 0 and not restricted to m integer values could be written as [93]

f∆ (δ) =
4 (1− ρ)m

Γ(m)

∞∑
k=0

Γ[2 (m+ k)]ρk

Γ(m+ k) 22 (m+k)−1k!

[
m

Ω (1− ρ)

]m+k− 1
4

×δ2(m+k)− 3
2 e−

3
2

m
Ω(1−ρ) δ

2

W 1
4
−(m+k), 1

4
−(m+k)

(
m

Ω (1− ρ)
δ2

)
.

(7.23)

7.2.2 Alternative PDF’s Expression

In this section, we provide an alternative and simpler PDF expression f∆ (δ) to that

in (7.23) which is applicable only integer and half-odd integer values of m.

Using [[77], Eq. (1.111)] given as

(a+ x)β =

β∑
l=0

(
β

l

)
xl aβ−l, (7.24)

where
(
β
l

)
= β!

(β−l)! l! denotes the binomial coefficient, the term
[
y − m

Ω(1−ρ)
δ2
]2 (m+k)−1

in (7.21) and for natural β = 2(m + k) − 1 values, could be expanded. Hence the

integral part I in (7.21) becomes

I =

β∑
l=0

(
2 (m+ k)− 1

l

) [
− m

Ω (1− ρ)
δ2

]l ∫ ∞
m

Ω(1−ρ) δ
2

y2 (m+k)−l− 3
2 e−ydy. (7.25)

To solve (7.25), we use [[77], Eq. (3.381/3)] given as

∫ ∞
u

xν−1e−µxdx = µ−ν Γ(ν, µu), [< ν > 0, u > 0], (7.26)
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and satisfying the conditions therein yields

I =

2(m+k)−1∑
l=0

(−1)l
(

2(m+ k)− 1

l

) (
m

Ω (1− ρ)

)l
δ2l Γ

(
2(m+ k)− l − 1

2
,

m δ2

Ω(1− ρ)

)
,

(7.27)

where Γ (a, x) denotes incomplete upper gamma function defined in [[77], Eq. (8.350/2)].

Substituting (7.27) into (7.21) with simplification and rearrangement, the PDF of

normalized difference of identical and correlated Nakagami bivariate for integer and

half-odd integer m values as [93]

f∆ (δ) =
4 (1− ρ)m

Γ(m)

∞∑
k=0

2(m+k)−1∑
l=0

(−1)l
(2(m+ k)− 1)!ρk

Γ(m+ k)(2(m+ k)− l − 1)! 22 (m+k)k! l!

×
(

m

Ω (1− ρ)

)l+ 1
2

δ2le−
m

Ω (1−ρ) δ
2

Γ

(
2(m+ k)− l − 1

2
,

m

Ω(1− ρ)
δ2

)
.

(7.28)

Note that both expressions in (7.23) and (7.28) converge rapidly as shown in Table 7.1.

Also note that we derived the expression in (7.23) since it is a little bit more general2

than (7.28) in studying the PDF’s behavior of the bivariate normalized difference.

However, using it to derive the corresponding CDF, will result in an intractable and

not simple closed-form expression due to the presence of the Whittaker function.

Therefore, we will use the expression in (7.28) in this derivation.

2Not restricted to m integer values
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7.2.3 CDF Expression

In this section, we will evaluate the corresponding CDF for normalized difference of

identical and correlated Nakagami bivariate for the two investigated cases mentioned

before.

Case I: δ = 0

By setting δ = 0 in (7.16) and substituting the result into (7.10), then solving the

double integral by changing variables with some algebraic work and simplification

yields [93]

F∆ (0) =
(1− ρ)m

Γ(m)

∞∑
k=0

Γ(2 (m+ k))ρk

Γ(m+ k) (m+ k) 22(m+k)k!
2F1

(
1, 2 (m+ k) ;m+ k + 1;

1

2

)
,

(7.29)

where 2F1 (a, b; c; z) denotes Gaussian Hypergeometric function defined in [[75], Eq.

(15.1.1)]

Case II: δ 6= 0

By definition, the corresponding CDF could be obtained by integrating (7.28) as

F∆ (δ) =
4 (1− ρ)m

Γ(m)

∞∑
k=0

2(m+k)−1∑
l=0

(−1)l
(2(m+ k)− 1)!ρk

Γ(m+ k)(2(m+ k)− l − 1)!22(m+k)k! l!

×
(

m

Ω (1− ρ)

)l+ 1
2
∫ δ

0

α2 le−
m

Ω(1−ρ)α
2

Γ

(
2(m+ k)− l − 1

2
,

m

Ω(1− ρ)
α2

)
dα.

(7.30)
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To facilitate the solution of (7.30), we use the integral representation of the upper

incomplete gamma function given by [[77], Eq. (8.353/5)] as

Γ(a, xy) = yae−xy
∫ ∞

0

e−ty(t+ x)(a−1)dt,

[Re (y) > 0, x > 0,Re a > 1],

(7.31)

with multiple simplification and rearranging yields

F∆ (δ) =
4 (1− ρ)m

Γ(m)

∞∑
k=0

2(m+k)−1∑
l=0

(−1)l
(2(m+ k)− 1)!ρk

Γ(m+ k)(2(m+ k)− l)!22(m+k) k!l!

×
[

m

Ω(1− ρ)

]2(m+k) ∫ ∞
0

(t+ 1)2(m+k)−l− 3
2dt

∫ δ

0

α4(m+k)−1e−
m

Ω(1−ρ)α
2(t+2)dα.︸ ︷︷ ︸

I

(7.32)

To solve the integral I in (7.32), we use [[77], Eq. (3.381/8)], hence, the CDF of the

difference of identical and correlated Nakagami bivariate as [93]

F∆ (δ) =
2 (1− ρ)m

Γ(m)

∞∑
k=0

2(m+k)−1∑
l=0

(−1)l
(2(m+ k)− 1)!ρk

Γ(m+ k)(2(m+ k)− l − 1)! 22 (m+k) k! l!

×
∫ ∞

0

(t+ 1)2(m+k)−l− 3
2 (t+ 2)−2(m+k) γ

(
2(m+ k),

m

Ω(1− ρ)
(t+ 2)δ2

)
dt,

(7.33)

where γ (a, x) denotes incomplete lower gamma function defined in [[77], Eq. (8.350/1)].

Note that it is easy to solve the above numerical integration using a commercial

mathematical softwares such as Mathematica or Matlab. Furthermore, the infinite

series converges rapidly as shown in Table 7.1, hence, it’s not really worthwhile

to simplify this integral. We’d like to point out that, in addition to decorrelation
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application, the derived expressions can also be used to solve the problem of self-interference

in multicarrier systems. [94, 95].

7.3 The CDF of the Decorrelator

Selection combining diversity technique is less complicated technique since the receiver

selects the branch with the highest channel envelope value

U = max {U l, l = 1, 2, ... L} . (7.34)

As we stated in Sec. 7.1, the outputs of the decorrelator, U1 and U2, are independent

that can be the input to the SC diversity combiner. Hence, for i.i.d. U1 and U2, the

CDF of the combiner output is the product of their individual CDF’s. That is

FDecor(α) = FΣ(σ)F∆(δ), (7.35)

where σ denotes the sum of the normalized identical and correlated Nakagami-m

bivariate given in (7.8). The resulting CDF of the sum σ is3

FΣ (σ) =
4
√
π (1− ρ)m

Γ (m)

∞∑
k=0

∞∑
n=0

ρk

24 (m+k)+n k!n!

× Γ(2 (m+ k) + n)

Γ(m+ k) Γ
(
2 (m+ k) + n+ 1

2

)γ (2 (m+ k) + n,
2mσ2

Ω (1− ρ)

)
.

(7.36)

Therefore, by changing variable δ2 = Ω γ/γ̄ and σ2 = Ω γ/γ̄ in (7.33) and (7.36),

respectively, and by substituting the results in (7.35), we derive the output CDF of

3Note, this is similar to the case where the output is of an EGC combiner for the same bivariate
sum given in [[96], Eq. (4)].
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Table 7.1: Terms required for five digits accuracy

f∆ (δ) :
∣∣∣ẼN

∣∣∣Ω = 1

ρ
m = 1
Nk

m = 2
Nk

m = 3
Nk

m = 4
Nk

0 1 1 1 1
0.3 4 6 8 10
0.6 10 10 18 22

F∆ (δ) :
∣∣∣ẼN

∣∣∣Ω = 1

ρ
m = 1
Nk

m = 2
Nk

m = 3
Nk

m = 4
Nk

0 1 1 1 1
0.3 8 8 10 10
0.6 15 15 18 22

FDecorr (γ) :
∣∣∣ẼN

∣∣∣ γ̄ = 0 dB

ρ
m = 1
Nk1 , Nk2 , Nn

m = 2
Nk1 , Nk2 , Nn

m = 3
Nk1 , Nk2 , Nn

m = 4
Nk1 , Nk2 , Nn

0 1, 1, 10 1, 1, 15 1, 1, 20 1, 1, 25
0.3 10, 8, 15 20, 8, 25 20, 10, 25 17, 10, 40
0.6 15, 15, 25 20, 15, 40 15, 18, 50 17, 22, 60

the decorrelated receiver as [93]

FDecorr (γ) =
8
√
π (1− ρ)2m

Γ2 (m)

∞∑
k1=0

∞∑
n=0

Γ(2 (m+ k1) + n)ρk1

Γ(m+ k1) Γ
(
2 (m+ k1) + n+ 1

2

)
k1!n!

×
∞∑
k2=0

2(m+k2)−1∑
l=0

(−1)l
(2(m+ k2)− 1)!ρk2

Γ(m+ k2)(2(m+ k2)− l − 1)! 24(m+k1)+2(m+k2)+n k2! l!

× γ
(

2 (m+ k1) + n,
2m

γ̄ (1− ρ)
γ

)∫ ∞
0

(t+ 1)2(m+k2)−l− 3
2 (t+ 2)−2(m+k2)

× γ
(

2(m+ k2),
m

γ̄(1− ρ)
γ(t+ 2)

)
dt.

(7.37)
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Figure 7.2: The PDF of the normalized difference of correlated Nakagami-m bivariate,
analytical versus simulation for m = 1 and Ω = 1 and ρ = 0.3.

It’s worthy to mention that all infinite series in (7.37) converge rapidly as shown in

Table 7.1 and the numerical integration can be implemented easily using commercial

software.

7.4 Outage Probability

Outage probability (Pout) is a key performance metric employed for testing the

performance diversity techniques over fading channels. Typically, Pout is defined as

the probability of the output SNR (γ) falls below a certain threshold, γth given as

Pout = P (γ < γth) =

∫ γth

0

fγ(γ)dγ. (7.38)
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Equivalently, it represents the CDF of the decorrelator evaluated at γ = γth. In the

following section, we will employ the outage probability as a performance metric to

examine the proposed decorrelator in combating correlation among diversity branches.

7.5 Numerical Analysis

In this section, numerical analysis is performed to evaluate the derived expressions.

First, the derived PDF expression are tested by comparing them with detailed

simulation results. Then, using the outage probability as a performance metric,

the effectiveness of the proposed decorrelator in combating the correlation among SC

diversity branches is evaluated.

In order to compare between the analytical and simulated PDF of the difference of

identical and correlated Nakagami-m bivariate, Figure 7.2 is produced for m = 1, Ω = 1

and ρ = 0.3. In this figure, analytical and simulation are in good agreement, however,

there is a slight difference between the two graphs. This can be attributed to a few

reasons such as infinite series approximation, employed MATLAB simulation code

for generating correlated Nakagami-m random variables and PDF graph estimation.

However, the graphs shapes are perfectly similar, indicating the validity of the derived

expressions in describing the PDF.
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(a) ρ = 0.3
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(b) ρ = 0.6

Figure 7.3: The PDF of normalized difference of correlated Nakagami-m bivariate for
m = 1, ρ = 0.3, 0.6 and Ω ∈ (1− 5).
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To gain more insight on the behavior of the derived PDF expression, different fading

and correlation environments are considered next. For ρ = 0.3 and 0.6, Figures 7.3

and 7.4 are generated for Ω ∈ [1 − 5] and m = 1, and for Ω = 1 and m ∈ [1 − 4],

respectively. These two figures reveal couple of interesting behavior.

First observation is that the produced PDF has a symmetrical bell shape, thus the

PDF can be approximated to a normal distribution curve with a mean, µ and a variance,

ψ2. Another interesting observation from Figures 7.3 and 7.4 is that this mean is

constant (µ = 0) and independent of m,Ω and ρ values. However, these values affect

the variance and the scale of the graph. The same observations are seen clearly for

i.i.d. bivariate. Also excellent agreement between the analytical and simulation results

is achieved as shown in Figure 7.5. Therefore, we say that the PDF of the difference

of identical Nakagami bivariate (δ) could be represented by a semi-standard normal

distribution ∼ N(0, ψ2) given as

f (δ) =
1√

2πψ2
exp

(
− 1

2ψ2
δ2

)
, (7.39)

with zero mean and variance ψ2 that depends on m,Ω and ρ.

Secondly, Figure 7.6 clearly shows an improvement on the outage probability Pout

with the decorrelated SC receiver by double compared to its value in conventional

(correlated) SC receiver. This is especially obvious in the low SNR regime. Furthermore,

in low SNR regime and for constant correlation values among the fading branches, we

observe that as m increases (fading decreases), the decorrelator performs better.

117



-1.5 -1 -0.5 0 0.5 1 1.5
Bivariate Normalized Difference "  "

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
ro

ba
bi

lit
y 

D
in

si
ty

 F
un

ct
io

n 
 "

f
(

)"

m = 1
m = 2
m = 3
m = 4

(a) ρ = 0.3
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Figure 7.4: The PDF of normalized difference of correlated Nakagami-m bivariate for
Ω = 1, ρ = 0.3, 0.6 and m ∈ (1− 4).
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Figure 7.5: The PDF of the normalized difference of i.i.d. Nakagami-m bivariate,
analytical (flat) versus simulation (with marker) for m ∈ (1− 4) and Ω = 1.
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Figure 7.6: Outage probability comparison between correlated (dashed) and
decorrelated (solid) SC diversity receiver in Nakagami-m channel for γ̄ = 0 dB.
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Chapter 8

Comparison of Different Schemes

In this chapter, we perform two levels of performance comparison, namely dual and

comprehensive comparison in order to study the impact of multipath fading and

correlation among antenna branches on the detection probability. To this end, we

use the derived closed-form expressions in previous chapters to produce the CROC

for MRC, EGC, SC and SSC diversity combining techniques in Nakagami-m fading

channel. Detection performance for both constant and exponential correlation models

are studied employing different L number of diversity branches. We follow same

procedures as we did in Sec. 3.4 to calculate the corresponding threshold for the

assumed detection parameters to produce corresponding CROC graphs.

8.1 MRC/EGC Comparison

In Figure 8.1, we compare between MRC and EGC diversity techniques and their

performance in combating the correlation. Results in this figure show clearly that
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(a) m = 1 (Rayleigh)

(b) m = 4

Figure 8.1: Comparison of correlated Nakagami-m branches with both MRC and EGC
diversity techniques for γ̄ = 20 dB, L = 2 with ρ = 0 (solid) and 0.8 (dashed).
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MRC is the optimal diversity combining technique compared to the suboptimal EGC

technique. This is a well proven fact in the literature. This fact is more pronounced

for high fading and high correlation values among diversity branches. However, a

small deviation from this rule can be seen in case a good channel (m = 4) as shown in

Figure 8.1b where their performance becomes comparable. Furthermore, for low values

of probability of false alarm PF , high correlation (ρ = 0.8), the EGC and MRC curves

almost overlap. Therefore, at low fading, low PF and highly correlated environments,

EGC which is a simpler scheme performs as good as MRC which is a more complex

scheme.

8.2 SC/SSC Comparison

For easy and better comparison between the two investigated techniques (namely SC

and SSC) and their performance in combating the correlation, we produce Figure 8.2.

As before, one can notice the correlation impact on the detection probability with

the increment in correlation between fading branches for SSC and how this impact

is compensated for, due to the good fading, with almost same results as we noticed

in SC. Furthermore, results in Figure 8.2 show that SC outperforms SSC. This is a

well proven fact in the literature. In fact, performance difference is more pronounced

for uncorrelated (ρ = 0) and high m values. However, we may notice that as the

correlation increases between the branches, the performance of both SC and SSC

becomes more comparable especially for high m values.

Another interesting behavior could be observed in Figure 8.3 for both SC and SSC

diversity techniques. In fact, as m increases (equivalently, fading decreases), less
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Figure 8.2: SC and SSC dual correlated Nakagami-m branches comparison with γ̄ = 20
dB for ρ = 0 (solid) and 0.8 (dashed).
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significant deterioration in detection probability is observed due to correlation. In

other words, the difference between the values of PD is getting smaller corresponding

to different correlation values between the branches which is equivalent to the loss in

the diversity gain.

To gain better insight about this behavior, let us discuss it with more details. Figure

8.3a shows clearly this interesting behavior. As an example, the curve for m = 1

in Figure 8.3a has an average high positive slope. Consequently, the detection

probability degrades rapidly as correlation among fading branches increases. As m

increases, corresponding curves get flattened (slope decreases). Consequently, detection

probability degrades slowly as correlation among fading branches increases. This can

be attributed to already high detection probability PD values due to low fading. On

the other hand, for small m-values (deep fading), correlation significantly deteriorates

the detection probability which is already poor. Similar above behavior could be

observed in case SSC as in Figure 8.3b. Therefore, we can conclude that for deep

fading environment, correlation must be considered for accurately modeling cognitive

radio detection, while for low fading environment (large m-values), the correlation

effect may be ignored. Thus, reducing the complexity of calculations.

Furthermore, our investigation reveals that at low fading and highly correlated

environments, SSC which is simpler scheme performs as good as SC which is a

more complex scheme.
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Figure 8.3: Probability of miss detection versus correlation with γ̄ = 20 dB and
different fading severity for SC and SSC.
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8.3 Comprehensive Comparison

For easy and better comparison among different diversity techniques and their

performance in combating the correlation, we produce Figure 8.4 and Figure 8.5.

Results in above figures show that MRC is the optimal diversity combining technique

compared to EGC, SC and SSC. This is a well proven fact in the literature. However,

some irregularity for this rule can be seen in case of SC and SSC with m = 3 and 4

as in Figure 8.5 (a) and (b) where SSC curve for (ρ = 0.8) is shifted slightly below

it’s counterpart for SC which can be attributed to numerically calculated optimum

threshold value (which may not be very accurate).

Furthermore, as m increases, less significant deterioration due to correlation in PD

is observed. In other words, the difference between corresponding correlated and

uncorrelated graphs which is equivalent to the loss in the diversity gain is getting

smaller. This can be attributed to already high PD values due to low fading. On

the other hand, for small m-values, correlation significantly deteriorates PD which

is already poor. Consequently, an increased in the interference rate between the

primary user and secondary user is observed by three times its rate when independent

fading branches is assumed. Therefore, we can conclude, for deep fading environment,

correlation must be considered for accurately modeling cognitive radio detection, while

for low fading environment, the correlation effect may be ignored.

127
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Figure 8.4: MRC, EGC, SC and SSC correlated Nakagami-m branches comparison
for L = 2, γ̄ = 20 dB and ρ = 0 (solid) and 0.8 (dashed).
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Figure 8.5: MRC, EGC, SC, and SSC correlated Nakagami-m branches comparison
for L = 2, γ̄ = 20 dB and ρ = 0 (solid) and 0.8 (dashed).
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8.4 Decorrelator Performance

In the previous chapter, we verified our proposed decorrelated SC receiver. We showed

in Figures 7.3 and 7.4 that the PDF of the difference of identical and correlated

Nakagami-m bivariate has a symmetrical bell shape. Thus, this PDF can be represented

by a normal distribution with constant zero mean and variance depends on m, ρ and Ω.

Furthermore, Figure 7.6 showed clearly the enhancement in Pout for different correlation

and normalized threshold SNR. Investigations showed also that in low SNR regime

and for constant correlation values and as fading decreases, the decorrelator performs

better.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

This dissertation investigated some important challenges in CRNSS over multipath

fading channels. Most previous works assumed independent fading branches, where this

invalid assumption does not reflect the real wireless communication scenario, especially

with the increasingly closely spaced antennas in small mobile units. Moreover, maximal

theoretical diversity gain is not attainable. Therefore and towards maximizing the

dynamic spectrum sensing accuracy, maximizing secondary user throughput and

reducing interference with the primary user signal, we shed light on two important

relevant issues. The work of this dissertation has two aspects; multipath fading and

correlation analysis; and decorrelation-based receiver solution.

Firstly, in the analysis aspect, we considered multipath fading and correlation among

diversity channels, namely, n.i.i.d. branches. We implemented a unified approach
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of performance analysis for CRNSS among multiple paths in Nakagami-m fading

channels with arbitrary, constant and exponential correlation environment employing

energy detection technique. We investigated the detection problem with MRC, EGC,

SC and SSC diversity techniques for L ≥ 2 fading branches. We derived closed-form

expressions for the average detection probability for each sensing scenario with simpler

and more general alternative expressions. Furthermore, we derived an expression to

evaluate the optimal threshold for SSC diversity technique.

In order to gain more insight on the performance of each investigated diversity

combining technique, we performed triple-levels of analysis; individual, dual and

comprehensive performance analysis. We did an individual performance analysis

for each employed diversity so as to evaluate and verify our derived expressions.

Consequently to prove the invalid assumption of independent fading branches in sensing

scenario adopted widely by the previous works in literature. As a second level, we did

a performance comparison between closely similar characteristics diversity techniques,

MRC/EGC and SC/SSC. As a comprehensive comparison, we did a thorough

comparison between all four employed diversity techniques. Our investigations reveal

the followings interesting results.

Deep fading deteriorates spectrum sensing performance results in low probability

of detection values. Also, correlation among fading branches deteriorates sensing

performance, especially in high fading environments. Therefore, an increased in the

interference rate between the primary user and secondary user has been observed

by three times its rate when independent fading branches is assumed. Therefore, in

deep correlation and high fading scenarios, correlation cannot be ignored for accurate

spectrum sensing. Employing diversity techniques helps mitigate both these adverse
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impacts. As fading decreases (good channel), correlation impact, relatively increases,

however, sensing improves since the detection probability is already high due to good

channel. In other word, the effect rate of channel improvement is higher than the

correlation adverse impact, results in improved detection probability. Consequently,

ignoring correlation in good channels is justifiable in order to increase the number of

receiving antennas and to reduce computations complexity. This interesting results

applied to all four diversity technique investigated in this thesis.

Regarding correlation model, our results investigating MRC with constant correlation

model revealed better performance over exponential correlation model. In other

word, MRC constant correlation model is clearly less affected by low correlation and

also, to some extent, by high correlation environment compared with exponential

correlation model. Consequently, results in relatively higher throughput compared

with its counterpart exponential model.

Dual comparison of the performance analysis for MRC versus EGC confirmed, as

well-known in literature, the superiority of MRC over EGC, especially in high fading

and high correlation values among diversity branches. However, at low fading, low

PF and highly correlated environments, EGC which is simpler scheme performs as

good as MRC which is a more complex scheme. Similarly, SC outperforms SSC as it

is well proven fact in the literature, too. However, our investigation revealed that at

low fading and highly correlated environments, SSC which is simpler scheme performs

as good as SC which is a more complex scheme. Comprehensive comparison revealed

that MRC is the optimal diversity technique, then EGC, SC and SSC, respectively.

However, some irregularity could be observed in the behavior of SSC due to numerically

calculated optimum threshold value (which may not be very accurate) as we pointed
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out earlier.

Secondly, in the solution aspect and towards combatting the correlation impact on

wireless systems, we have proposed a decorrelated Nakagami-m SC receiver with

dual branches. For such decorrelator, the necessary statistics including the PDF

of the normalized difference of identical and correlated Nakagami-m bivariate have

been derived. Numerical analysis showed some interesting results. The PDF’s of

the correlated bivariate could be represented by a semi-standard normal distribution

with constant zero mean and a variance that depends on bivariate’s parameters.

This observation might be helpful in constructing the decorrelators in order to

eliminate detailed derivation process. The analysis showed also improvement in

outage probability by double due to the decorrelation process, especially in low SNR

regime. Furthermore, our derived statistics can be used to solve the problem of

self-interference in multicarrier systems as well.

9.2 Future Work

This thesis contributed in narrowing the gap in CRNSS challenges by addressing

multipath fading and correlation issues aiming high accuracy and more protection for

primary users against interference. However, as a future work, still more investigations

are necessary to include other diversity techniques, involve more diversity branches

and to consider different fading distributions. More importantly, is addressing the

correlation issue especially with the advance in wireless communications and the

current trend to use massive MIMO. As we mentioned and proved in this thesis,

decorrelation is among known techniques used to mitigate or cancel the correlation
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impact among antennas completely. As another future work, we suggest to generalize

employing this technique by considering MIMO systems. However, this task will be

challenging since it needs using KLT technique which necessities CSI knowledge in

order to diagonalize the covariance matrix.
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