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Abstract

PHASE SEPARATION BY SPINODAL
DECOMPOSITION IN POLYMER BLENDS UNDER A
SINGLE AND DOUBLE QUNECH:

A COMPUTATIONAL STUDY

Tuyet Tran
Master of Applied Science in Chemical Engineering, 2004

Ryerson University

A mathematical model and computer simulations were used to describe the
dynamics of thermally induced phase separation (TIPS) by spinodal
decomposition for polymer blends (single quench and double quench) using the
nonlinear Cahn-Hilliard theory and the Flory-Huggins-de Gennes free energy.
The importance of TIPS is to enhance material properties such as toughness,
impact resistance, and elasticity. Therefore, controlling the morphology is a
critical factor in optimizing performance. The numerical results for the single
quench are consistent with known characteristics of phase separation by spinodal
decomposition observed in polymer blends. The numerical results for double
quenching replicate recently published experimental and numerical work. Under
a double quench the numerical work shows that a critical quench depth exists
before secondary phase separation occurs, the growth rate of the primary and
secondary structures are dependent on domain size and early stage dynamics for

the secondary structures, after the second jump, appears to follow the linear Cahn-

Hilliard theory.
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Chapter 1

Introduction

A number of industrial processes use the technique of phase separation to produce
materials for everyday use [Leblond, 2002]. Applications include the formation of
membranes, for separation processes [Mulder, 1996], the formation of polymer
dispersed liquid crystal films for electro optical devices [Doane, 1989;
Nwabunma et al., 2000}, the production of high impact resistant materials [Chow,
1980; Utracki, 1991] in the plastics industry, coatings of capsules [Leblond, 2002]
in the pharmaceutical industry, and the production of low fat spreads [Harding et
al., 1995] in the food industry. Therefore, research, both experimental and
numerical, in understanding how phase separation occurs in polymer blends to

control the morphology for specific applications is important.

1.1 The Mechanisms of Phase Separation in Polymer
Blends

The mechanism of phase separation depends on the location of a polymer blend in
the phase diagram. Figure 1.1 shows a typical temperature versus composition
phase diagram labeling the different regions of interest in studying phase

separation kinetics. Figure 1.1 is called an upper critical solution temperature

-1-
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(UCST) type phase diagram. The filled black circle is the critical point Above
this point, the system is in the homogeneous one-phase region and is stable. The
solid thick black curve is the binodal (equilibrium) curve and the tvhin black line 1s
the spinodal curve. The spinodal curve separates the two known mechanisms of
phase separation namely, (i) nucleation and growth (NG), and (ii) spinodal

decomposition (SD). The regions between the bimodal

Homogeneous
One-Phase Region
Meta-stable Region
Nucleation and Growth

Crtical Point

Temperature

Spinodal

Unstable Two-Phase Region
Spinodal Decomposition

Composition

Figure 1.1: A temperature versus composition phase diagram at constant pressure
for a binary polymer mixture showing an UCST. The solid thick black line is the
binodal (equilibrium curve) and the thin black line is the spinodal curve
separating the meta-stable region and the unstable region. In the metastable
region, phase separation occurs by nucleation and growth (NG) and in the
unstable region, phase separation occurs by spinodal decomposition (SD). The
filled black circle represents the critical point.

and spinodal curve are the NG regions and the shaded grey area within the

spinodal curve is the unstable region. Different types of morphologies are
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developed for NG and SD. Figure 1.2 shows a phase diagram to illustrate these
two mechanisms. When a homogeneous polymer mixture is quenched into the
meta-stable region, this leads to the onset of nucleation and growth. The
formation of nuclei begins and gradually grows in size due to the increase in free

energy of the mixture. The resulting structure is the formation of spherical

Nucleation and Growth Spinodal Decomposition
®
° o ®
e O o L
‘e o ¢
o T
g
=
[(b]
Q
g
[P]
[_.q
T

Composition

Figure 1.2: A temperature versus composition phase diagram for a binary
polymer mixture showing the different morphologies that can be obtained
depending on the location of the quench at temperature 7). If the polymer mixture
is quenched into the meta-stable region, phase separation occurs by NG and the
droplet type structure is formed. If the polymer mixture is quenched into the
unstable region, phase separation occurs by SD and two morphologies are
developed, droplet (off critical quench) and interconnected (critical quench).
Depending on the location of the quench, the droplet type structure has a different
continuous phase (surrounding matrix) and dispersed phase as indicated by the
reversal of the black and white regions as shown in the SD structures.

droplets rich in one contained within a continuous phase rich within the other

polymer. These droplets are randomly distributed and vary in size. In the unstable

region, spinodal decomposition occurs. This is the result of a quench into the
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unstable region where the onset of small concentration fluctuations causes phase
separation. Depending on the concentration of the polymer mixture, two types of
structures can be obtained. When the concentration of the polymer mixture is
equal to the critical concentration, the structure obtained is interconnected. For
polymer concentrations not equal to the critical concentration (off-critical
quench), a droplet type structure is obtained. Also observed in Figure 1.2 is the ’
difference in the continuous and dispersed phases depending on the location of the
quench in the phase diagram as illustrated with the droplet formation by SD. On
the left hand side, the droplet type structure has a continuous phase where the
surrounding matrix is represented by white and dispersed phase by black droplets.
On the right hand side, the continuous and dispersed phases are reversed.
Therefore, depending on the desired properties for the blend, the continuous and

dispersed phases are obtained accordingly.

Figures 1.3 and 1.4 show the evolution of the one-dimensional concentration
profiles for phase separation by NG and SD respectively. In the meta-stable
region, a sufficient increase in the composition fluctuations will cause a increase
in the free energy of the mixture and cause phase separation by NG. Nuclei are
formed and grow where the diffusional flux is inward as indicated in Figure 1.3 |
by the arrows at time #. This process is an activated process in that an energy
barrier must be overcome in order for this type of phase separation to occur. The
patterns that occur as time increases for NG upon overcoming the energy barrier

are shown in Figure 1.3. In the unstable region, infinitely small concentration
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fluctuations are enough to drive the mixture to phase separate and therefore, there
is no energy barrier to overcome. The composition fluctuations occur by “uphill
diffusion” where the gradient in composition moves from low concentration to
high concentration as indicated by the arrows in the initial profile of Figure 1.4.
The different stages in the evolution of the composition fluctuations for the
unstable region shows the initial growth to the coarsening of the mixture where
the phase separated regions become larger. A detailed description of the three

stages of SD is presented in Chapter 3.

1.2 Thermally Induced Phase Separation (TIPS)

Phase separation of a binary polymer mixture may occur when rapid cooling or
heating is applied, shear is applied or the initiation of a reaction occurs. Such
methods are called thermally induced phase separation (TIPS), shear induced
phase separation‘(SIPS) and polymerization induced phase separation (PIPS),
respectively. The simplest method to induce phase separation is by rapidly
decreasing or increasing (depending on the shape of the phase diagram) the
temperature of the mixture from the one phase region into the two-phase region of
the phase diagram. The temperature is rapidly increased for the lower critical
solution temperature (LCST) phase diagram. For the UCST the temperature is

rapidly decreased to induce phase separation. Thermally induced phase
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Figure 1.3: A schematic of the evolution of phase separation by the mechanism
of nucleation and growth (NG) form the initial fluctuations at time ¢ to the
development and growth of domain sizes at time 7>. The arrows in the initial time
period indicate the direction of the diffusion (downward) typical of NG. The
upper and lower equilibrium values are labeled as ¢y and ¢, respectively. The
initial average composition is labeled as c,.
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Figure 1.4: A schematic of the evolution of phase separation by the mechanism
of spinodal decomposition (SD) from the initial fluctuations at time # to the
development and growth of domain sizes at time #;. The arrows in the initial time
period indicate the direction of the diffusion (upward) typical of SD. The upper
and lower equilibrium values are labeled as cy and ¢, respectively. The initial
average composition is labeled as c,.
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separation is commonly used in the study of phase separation in polymer systems
{Strobl, 1985; Chakrabarti et al., 1990; Takenaka et dl., 1992; Tanaka, 1993;
Zhang et al., 1995]. The TIPS method is described according to Figure 1.5. In
this method, often a temperature versus composition phase diagram is constructed
to determine where the quench conditions should be made in order to form
particular microstructures. In Figure 1.5, the system has an UCST, where the T, is
the critical point and is the highest temperature at which phase separation may
occur. Initially, a homogeneous mixture of polymer 1 and polymer 2 is obtained
at a temperature in region A. This mixture is then subjected to a rapid decrease in
temperature well into the unstable region of the phase diagram to a temperature 7
(point B). Upon decreasing the temperature, the thermodynamic driving force is
increased and in order to minimize the free energy, the mixture separates into two
phases. The tie line connects the two phases coexisting phases at equilibrium. The
resulting morphology is then a continuous phase made of polymer 1| dispersed in

the phase of polymer 2.

1.3 Two-Step TIPS method

Another technique to generate different phase separated morphologies is the two-
step or double quenching [Tanaka, 1993; Hashimoto et a/., 2000a] TIPS method.
The mechanisms of NG and SD are still applicable to this technique. Figure 1.6
shows the phase diagram for a double quench case showing the different

morphologies that are possible for the initial critical and initial off-
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A
Homogeneous
One-Phase Region
T. |
Tie line
T, L \

Unstable Two-Phase
Region

Figure 1.5: Temperature versus composition phase diagram illustrating the TIPS
method. Point A is the initial homogeneous phase. A deep quench is made into the
unstable region (at 7;) where phase separation occurs by SD as shown at point B.
The horizontal line running across this phase diagram is a tie line that relates the

composition of polymer 1 in the two coexisting phases. ¢,' and ¢,"" represents the
equilibrium compositions of polymer 1.

critical quench by SD. In Figure 1.6, there are two types of morphologies that can
be obtained by double quenching. For an initial critical quench at temperature 7},
the interconnected structure is obtained and allowed to phase separate for a period
of time. After a time, ¢, while the mixture is still within the spinodal region, the
temperature is dropped again to 7, and because the mixture is now in the off-
critical state, the morphology is of droplet type. Therefore, the resulting structure
is interconnected with small droplets dispersed within. For the initial off-critical
quench to T7, the droplet type structure is obtained and allowed to phase separate
for a period of time before quenching to T>. At this point the mixture is still off-
critical and droplets dispersed within droplets are observed as well as the

formation of droplets in the continuous phase. This two-step method is a
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Figure 1.6: A schematic of the method of double quenching and the morphology
that may develop for a critical and an off-critical initial composition. The mixture
is first quenched to 7 where it is allowed to phase separate by SD for a certain
period of time before it is quenched again to a temperature 7> (still within the
unstable region). The smaller domains represent the secondary structures that
form. On the left hand side, the critical quench case shows the interconnected
structure as the primary structure and the smaller droplets as the secondary
structure. On the right hand side, the off-critical quench shows larger droplets
being the primary structure and smaller droplets as the secondary structure.

simplified version of the continuous cooling that is commonly observed in
industrial processing and is important as a stepping stone to understand what

occurs in more complex situations [Carmesin et. al, 1986].

1.4 Thesis Objectives

The following is a list of the objectives for this thesis where phase separation by
SD is studied using mathematical modeling and computer simulations:
1. To study the single quench and two-step quench TIPS method for phase

separation by SD in a symmetrical polymer blend by developing a

-10-
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mathematical model. This model will describe the dynamics of phase
separation via spinodal decomposition for polymer blends using the
nonlinear Cahn-Hilliard theory and the Flory-Huggins-de Gennes free
energy. The mobility and the energy gradient coefficient are assumed to
be composition dependent.

2. To solve the mathematical model in one dimension and two dimensions..

3. To present the 1-D and 2-D simulation results for a single quench to
verify that this model shows the same known trends associated with
spinodal decomposition using the TIPS method.

4. To present the I-D results for a double quench to better understand the
mechanism of secondary phase separation and to verify the results from
the 1-D double quench model by comparison with published
experimental work on two-step TIPS.

5. To present the pattern formation in two-step quenching to verify the
experimental work of Hashimoto [Hashimoto ef al., 2000; Hayashi et
al., 2000a; Hayashi et al., 2000b].

6. To expand the use of this model to study phase separation in food
biopolymers by proposing possible approaches to adapting this model

for analyzing food systems.

1.5 Methodology and Approach

This thesis is concerned with mathematical modeling and computer simulation of

phase separation for polymer blends by the mechanism of SD. The objectives of

-11-
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this thesis will be completed according to the method and approach shown in the
flow chart in Figure 1.7. The flow chart can be broken down into different tasks.
The first stage involves a detailed search of the literature to determine the
different models that have been used to describe phase separation by SD for
polymer blends. The literature review will also involve reviewing published
experimental work for different analytical techniques used for studying phase
separation. The next step involves determining what is lacking in the literature
and how mathematical modeling and computer simulations can help fill these
gaps to further understand phase separation, This leads to the thesis objectives.
To answer the objectives, the model is developed and tested with published
experimental and numerical work. The model is then refined if the numerical

work does not reflect what is known to occur experimentally.

1.6 Thesis Organization

The thesis is broken down into a total of nine chapters and is organized in the

following manner:

Chapter 1: This chapter introduces phase separation and the importance of
studying it. It details the different mechanism involved in phase separation as
well as the different methods to induce phase separation. The focus is on the
method of thermally induced phase separation for a single step and a two-step

process. This leads to the thesis objectives and the methodology and approach.

-12-
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Literature Survey Thesis Objectives
e  Current work | ® Develop model to describe phase separation by SD
done expression with composition dependent mobility and
o New ideas energy gradient coefTicient
s Investigate single and double quenching

o  Flory-Huggins theory
¢ Cahn-Hilliard theory

Define ¢ Governing cquations
A Model < for composition
1-D 5 dependent mobility
-Dand 2-D and cnergy gradient

Determine valucs for the
degrec of polymerization of
each polymer and the Flory-
Huggins interaction parameter

Method of Finite clement
solution and method
simulation Sun Ultra 60
workstation

I

Interpreting numerical results by:
e  Standard analysis of phase separation by SD
o  Graphical representation of trends observed
in the single and double quenching

Model validation

e  Check for consistency with published
No experimental results

¢ s Check for consistency with published
numerical results

v

Yes —® Finish

Figure 1.7: Flowchart detailing the methods and procedures for the mat_hemgtical
modeling and computer simulation of TIPS for polymer blends undergoing single

and double quenching.
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Chapter 2: This chapter is a literature review of phase separation for the TIPS
method detailed in two sections, isothermal quench and double quenching. It
outlines the different experimental and numerical work that has been conducted

and the important findings.

Chapter 3: This chapter discusses the theoretical background needed to develop
the governing equation that describes phase separation by SD. In this chapter the
Cahn-Hilliard theory and Flory-Huggins free energy is introduced. Equations for
the concentration dependence of mobility and the energy gradient coefﬁcient are

also presented.

Chapter 4: This chapter presents the model development and the method of
solution. The model is derived in one dimension and in two dimensions. Initial

and boundary conditions are presented for solving the model.

Chapter 5: This chapter presents the one-dimensional results for the single quench
TIPS method. A critical and an off-critical quench case are evaluated. There are
three quench temperatures and three different diffusion coefficients examined.
The numerical work is validated through other published experimental and

numerical work by standard analysis methods for phase separation by SD.

Chapter 6: This chapter presents the numerical results in one-dimension for two-
step quenching. An initial critical and initial off-critical quench are studied. Two
quench depths are examined to observe the effects on morphology. The same

three different diffusion coefficients are used as in the single quench case to

-14 -
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observe the effect of driving force on double phase separation. The numerical

work is then compared with published experimental and numerical work.

Chapter 7: This chapter presents the numerical results in two dimensions where
concentration profiles for single and double quenching are discussed. Two cases
are examined, a critical and an off-critical case. Two quench depths are used to
observe the change in the pattern development. This work is validated with

published experimental and numerical work.

Chapter 8: This chapter details the possibility of extending this model developed
for studying phase separation in polymer blends to food biopolymer blends. It
includes recent literature on the evidence that phase separation in food
biopolymers may follow the same mechanism as in polymer blends. Some
suggestions are given in search of the literature that might be useful in

determining the parameters necessary for inputting into the program.

Chapter 9: This chapter concludes all the findings from the numerical results in

one and two dimensions on single and double quenching.
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Chapter 2

Literature Review

The importance of phase separation and its application in many industries is
introduced in this section. Being able to control the morphology of the phase
separating material is a critical factor in optimizing the performance of these
materials and therefore, studying the kinetics of phase separation (experimentally
and theoretically) is a vital part of the design process. This section summarizes
the research that has been conducted to study phase separation by SD under the
TIPS method for polymer blends. The first section introduces earlier studies on a
single temperature jump process. The second section describes a commonly
observed phenomenon in experimental investigations of phase separation, the
secondary phase separated structure. The process used to develop this type of
structure is what is called double quenching {Tanaka, 1993] or the two-step TIPS
process [Héshimoto et al., 2000]. Both numerical and experimental work has

been used to investigate this phenomenon to better understand the morphological

development in phase separation.

-16-



Chapter 2: Literature Review

2.1 Single Quench TIPS Studies on Polymer Systems

The interest in studying phase separation by SD is not only due to the large
number of applications it has in industry but also in helping to further understand
the non-equilibrium thermodynamics of phase separating mixtures [Hashimoto et
al., 1986; Ohnaga and Inoue, 1989; Hashimoto et al., 2000]. The simplest
method of producing phase-separated microstructures is by single quench TIPS
and is used to experimentally study phase separation phenomena in polymer
systems. From the single quench condition, the possible morphologies and the
control of their formation are well understood with the vast amount of both
experimental and numerical work that has been published. Therefore, this section
highlights the most important findings for characterizing phase separation by SD

in both experimental and numerical work.

Of particular importance to the experimental study of phase separation by SD is
the work of Hashimoto et al. [Hashimoto et al., 1983; Izumitani et al., 1985;
Izumitani and Hashimoto, 1985; Hashimoto et al., 1986a; Hashimoto et al.,
1986b; Inaba ef al., 1986; Jinnai et al., 1986; Shibayama et al., 1986; Takenaka et
al., 1987; Izumitani et al., 1990; Takenaka et al., 1990; Hashimoto et al., 1991;
Jinnai et al., 1991; Takenaka et al, 1992; Hashimoto, 1993; Takenaka and
Hashimoto, 1994; Hashimoto et al., 1994; Ribbe and Hashimoto, 1997; Yamada
et al., 1988; Takeno and Hashimoto, 1998; Vaidya et al, 2001] who used light
scattering techniques to characterize the evolution of phase separation by SD for

various polymer blends. In their work on a mixture of SBR/PB [Izumitani et al.,
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1985], they were able to do an in-depth analysis on the kinetics of phase
separation in the very early stages of SD because of the slow rate of phase
separation of this mixture. They showed that the early stages of phase separation
by SD can be described by the linearized Cahn-Hilliard theory [Cahn, 1965] and
the growth of the maximum scattering intensity in the early stages is exponential.
They also showed the limit of the early stages before nonlinear growth patterns
were observed. Following the study on of SBR/PB, they were able to characterize
the different stages of phase separation by SD into an early, intermediate and late
stage [Hashimoto et a/., 1986a] for a mixture of PS/PVME. It has been argued
that the stages can be further broken down [Strobl, 1985], however, the three
stages are most commonly presented in the literature (see Figure 1.4) and are
representative of the evolution of SD for polymer blends. In further studies, after
characterizing the three stages, attention was paid to individual stages for various
mixtures. In the early stages of phase separation by SD, for a mixture of
PS/PVME under critical quench conditions, they were able to show that the
linearized Cahn theory [Cahn, 1965] well predicted the early stages of phase
separation [Hashimoto et al., 1986a)]. A number of other studies they conducted
also show that the linearized Cahn-Hilliard theory holds for the early stages of SD
for polymer blends [Hashimoto ez al., 1983; Hashimoto et al., 1986b; Izumitani et
al., 1990; Takenaka and Hashimoto, 1994]. A later study on the early stages of
SD and the effects of molecular weight distribution was examined [Takenaka and
Hashimoto, 1994]. They found that the linear Cahn-Hilliard theory also

reasonably described the early stages of SD. The intermediate stage of phase
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separation by SD has been discussed both in the early stage and late stage
publications [Hashimoto er al., 1986a; Hashimoto ef al., 1986b; Takenaka et al.,
1990; Hashimoto, 1993]. Remarks have been made on the composition
fluctuations in the intermediate stage as well as the growth of the scaled structure
factor. 1In the intermediate stages, the wavelength and the amplitude of the
composition fluctuations continue to grow and are indicated by the new scaling
relations introduced for wave number and intensity [Hashimoto et al., 1986b].
The morphology developed in the intermediate stage upon phase separation by
SD can be described by the scaled structure factor. The scaled structure factor
was found to increase with time and is not universal [Takenaka et al., 1990]. This
indicates that phase separation has not reached thermodynamic equilibrium. In the
study of the late stages of phase separation by SD, the following results were
obtained for understanding the growth patterns [Hashimoto et al., 1986b;
Izumitam et al., 1990; Takenaka er al, 1990; Jinnai ef a/., 1991; Hashimoto ez al.,
1994]. They introduced reduced variables for the analysis of the late stages of
SD, and found scaling laws to fit the late stages of SD. These scaling laws for the
reduced wave number and reduced scattering intensity fall onto a master curve
when plotted against reduced time at different quench conditions indicating that
the late stage coarsening of SD is the same regardless of temperature [Hashimoto
et al., 1986b]. The morphology developed upon phase separation by SD was
described by the scaled structure factor for late stages. For a mixture of
PS/PVME under critical quench conditions, Hashimoto et a/. [Hashimoto ef al.,

1986a; Takenaka er al, 1992; Takenaka et al., 1990], were able to show that the
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scaled structure factor follows relatively well with the theory of late stage
dynamics in metal alloys, small molecular liquids and glasses [Hashimoto ef al.,
1986a]. Like the scaling laws for reduced scattering intensity, the scaled structure
factor also falls onto a master curve indicating that the growth of the pattern in the
late stages grow with dynamical self-similarity. Hashimoto et a/. [Takenaka et
al., 1987; Jinnai et al., 1993] also examined different parameters associated with
SD, for instance, the temperature dependence of the Onsager kinetic coefficient.
The Onsager coefficient is an important parameter that describes the mobility of
the blend. The reason for studying the temperature dependence of the Onsager
coefficient was to validate the theoretical work by Pincus [1981] and Binder

[1983] and the results were within reasonable agreement [Jinnai ef al., 1993].

Other experimental work that has been conducted in studying phase separation by
SD using the TIPS method [Gelles and Frank, 1983; Okada and Han, 1986; Strobl
et al., 1986: Schwahn et al., 1987; Bates and Wiltzius, 1989; Kyu and Saldanha,
1998 Wiltzius et al., 1988; Lee and Kyu, 1990; Schwahn et al., 1990; Kyu and
Lim, 1991; Gorga ef al., 2002]. The analysis of these mixtures also follows
closely to the observations that were made by Hashimoto et a/. except for the
work of Wiltzius et al. [1988] who observe a different scaling pattern for the late
stages of phase separation by SD in that the evolution of the scaled structure
factor does not fall onto a master curve as was observed for Hashimoto’s work.

In terms of numerical work, there have been a number of publications on
modeling and computer simulation of phase separation by SD for binary polymer

blends. The nonlinear Cahn-Hilliard (C-H) equation and the Flory-Huggins-de
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Gennes (F-H-de Gennes) free energy density are used in the model development
to describe the dynamics of phase separation by SD. The parameters contained
within the C-H and F-H-de Gennes equations, mobility (containing the transport
information of the individual polymers) and the energy gradient coefficient
(accounting for the resistance to the phase separation process due to the
development of interfaces to try and restore the system to its lowest energy level)
have been assumed to be a function of composition [Zhang et al., 1995;
Chakrabarti et al., 1990; Glotzer, 1995; Kontis and Muthukumar, 1992;
Castellano and Glotzer, 1995; Ariyapadi and Nauman, 1991; Castellano and
Corberi, 2000]. Constant mobility has been used for simplicity by various authors
in studying the dynamics of phase separation for polymer blends [Brown and
Chakrabarti, 1993a; Ohnaga ef al., 1989; Brown and Chakrabarti, 1993b; Roth et
al., 2002; Chakrabarti et al., 1989]. Other more complex studies carried out using
the nonlinear C-H and F-H-de Gennes free energy have been used to model a
ternary polymer blend undergoing phase separation by SD in two-dimensions to
observe pattern formation [Nauman and Qiwei, 1994] and SD in polydispersed

polymer mixtures [ Takenaka ef al., 1993].

Analysis from the numerical work has focused on a variety of different aspects.
A common investigation is in the evolution of the concentration profiles in one-
dimension [Ohnaga et al., 1989; Nauman and Qiwei, 2001; Castellano and
Glotzer, 1995] to further understand the mechanism of phase separation by SD.
In observing pattern formation, a two-dimensional model is used where a critical

quench produces an interconnected structure and an off critical quench produces a
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droplet type structure [Matsuoka and Yamamoto, 1995; Castellano and Glotzer,
1995; Brown and Chakrabarti, 1993b; Castellano and Corbert, 2000; Nauman and
Qiwei, 2001; Ariyapadi and Nauman, 1991]. There has also been modelling in
three dimensions to investigate phase separation [Chakrabarti et al., 1989].
Analysis of the structure obtained has been performed by evaluating the evolution
of the structure factor for critical [Chakrabarti e al, 1990; Brown and
Chakrabarti, 1993b; Kontis and Muthukumar, 1992; Zhang ef al., 1995] and off
critical quenches [Kontis and Muthukumar, 1992;, Zhang er a/l., 1995; Brown and
Chakrabarti, 1993b].  Finally, investigating the pinning of phase separated
structures has also been an area of interest for studying polymer blends
[Castellano and Corberi, 2000; Castellano and Glotzer, 1995]. The analysis ties
in very well with the experimentally observed characteristics of phase separation
by SD. For instance, the one-dimensional model [Ohnaga ef a/., 1989] has shown
the evolution of the phase separation by SD according to the three stages describe
by Hashimoto et al. [Hashimoto et al., 1986a]. In investigating the growth of the
initial composition fluctuations in the early stages of SD, a single maximum wave
number was observed and the evolution of the structure factor grow exponentially
with time [Chakrabarti et al., 1990]. This exponential growth in the structure
factor is also consistent with experimental investigations on the evolution of the
light scattering data [Okada and Han, 1986]. Also, in terms of the evolution of
pattern formation for the critical and off critical quench, the numerical two-

dimensional results show the interconnected structure for the off critical quench
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and the droplet type structure for the off critical quench case which have been

observed in experiment [Hashimoto, 1993].

2.2 Two — Step TIPS Studies in Polymer Systems

The drive for possibly obtaining more diverse morphologies to be used has
prompted new techniques to produced phase separated materials. For instance, the
introduction of a temperature gradient [Okinaka and Tran-Cong, 1995] and the
introduction a concentration gradient [Lacasta et al., 1994} to develop new
morphologies that are anisotropic in nature have found applications in holograms
and pharmaceutical products. There is then motivation to consider double
[Tanaka, 1993] or two-step phase [Hashimoto et al., 2000] separation as yet
another kind of morphology that can perhaps be put to practical use. Referring
back to Figure 1.6, the method of double quenching and the types of
morphologies that have been observed in experiment for a critical quench [Tao et
al., 1995] and an off critical quench [Tanaka, 1993} were shown. In the critical
and the off-critical quench case the method of double quenching is the same. The
mixture is quenched to 7} (within the unstable region of the phase diagram) where
phase separation by SD is allowed to proceed for a certain period of time before it
is quenched again to the second temperature 7, (the mixture is still within the
unstable region). Double quenching [Tanaka, 1993] or two-step phase separation
[Hashimoto et al., 2000] for polymer systems has been studied since the late
1980s [Carmesin et al., 1986; Ohnaga et al., 1989] to 1990s [Yang et al., 1998;

Tanaka and Araki, 1998; Clarke et al., 1995; Tao et al., 1995; Chen et al., 1994;
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Tanaka, 1994; Tanaka, 1993; Kwak et al.. 1993; Ohnaga er al., 1994]. The
majority of these studies are focused on secondary structures experimentally with
little theoretical explanation of the observations. Some numerical work has been
done in one-dimension to explore the effects of a double quench [Ohnaga et al.,
1989] and even continuous quenching [Ohnaga et al., 1994] on the concentration
profiles but again, there was no in-depth analysis based on the fundamentals of
phase separation by SD. A 2-dimensional numerical study has been performed on
fluid mixtures by Tanaka and Araki [Tanaka and Araki, 1998] but the model
development and the finding do not pertain to polymer mixtures. More recently,
double quenching was revisited experimentally by Hashimoto et al. [Hashimoto et
al., 2000; Hayashi et al., 2000a; Hayashi et al., 2000b] who examined at a

fundamental level, what was occurring under the quench conditions.

Furthermore, in industrial processing, heating and cooling are involved in a
continuous sense and therefore, the simpler two-step quenching can provide a
stepping stone for understanding more complex real systems [Carmesin ef. al,
1986]. 1t is also worth mentioning that this type of secondary structure has also
been observed in polymer solutions (binary and temary) [Tanaka, 1993;
Yamamura et al., 2002; Graca et al., 2002] and biopolymer mixtures related to
food studies [Norton and Frith, 2001]. Therefore, an in-depth analysis of
secondary phase separation in polymer blends can also provide useful information
for explaining the same phenomena that occurs in other systems. Future work, as
suggested by Hashimoto ef al. [Hayashi ef al., 2000b], would be to revisit

mathematical modeling and computer simulation of double phase separation to
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see whether their experimental observations and in depth analysis of secondary
phase separation also prevail in the modeling. A recent publication by Henderson
and Clarke [2004] followed the method of Hashimoto et al. very closely [Hayashi
et al., 2000b] to model double phase separation for polymer blends. Their
numerical results on the investigation of double quenching at an initial critical
composition were in agreement with the work of Hashimoto. Some important
questions about the formation of secondary structures are how it develops, when it
develops and what effects it has on the final product formed. To answer some of
these questions, a summary of some of the key works in the literature on thé study
of double quenching and the formation of secondary structures is provided in
chronological order. Ohnaga and Inoue [1989] performed the first numerical
study of double quenching and their study aimed at providing a framework for
designing materials (polymers) that required continuous thermal treatment. They
studied polymer mixtures of polystyrene/poly(vinyl methyl ether) and
polybutadiene/poly(styrene co-butadiene) undergoing a double quench by
mathematical modeling using the nonlinear C-H equation and computer
simulations. The numerical results were presented in one-dimension for the
polymer mixtures, one exhibiting a lower critical solution temperature (LCST)
(polystyrene/poly(vinyl  methyl ether)) and the other an UCST
(polybutadiene/poly(styrene co-butadiene)) for an off-critical quench. Their
investigation was split into two sections. First, the concentration fluctuations for
an isothermal quench from the one-phase to the two-phase region were examined.

They showed that their model of the time evolution of the concentration
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fluctuations was consistent with the observed characteristics of phase separation
by SD for the early to late stages [Hashimoto, 1993]. The second test was for a
double quench where the first quench was allowed to progress for a certain period
of time in the two-phase region before the second quench took place. They
investigated the effects of a shallower and deeper quench and concluded from

their simulations that when the second quench depth, AT, is less than half of the

1 :
first quench depth, EATI , the concentration fluctuations decay from the original

concentration fluctuations of A7;. When A7, is between A7} and %ATI , there

is an initial decay in the concentration fluctuations for a short period of time
before it gradually grows and when A7, is greater than A7), the concentration
fluctuations originally from the first quench appear to show additional smaller
waves (crests) forming in between the troughs. They also found that the smaller
waves occurred only when the initial concentration fluctuations were well
developed. Ohnaga and Inoue [1989] were able to determine the effects of deeper
and shallower quenches for a polymer blend through observations of the
concentration profiles and the effects of quenching at an earlier time or later time

to see the effects on the phase separation process.

Experimental work is necessary to determine whether observations from
simulation hold true for polymer systems as there are still many uncertainties in
understanding double phase separation. In terms of equilibrium thermodynamics,
experimental work helps to answer many questions. For example, what changes

are occurring when double phase separation is observed or when the growths of
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the amplitude of the concentration fluctuations are just magnified, is there any
relationship that can be made between the growth rates of the initial wavelengths
and the secondary wavelengths, how is the development of the initial wavelength
affected by the rising of the second wavelengths, and how significant a value for
the second wavelength is required before there is a significant change in the
pattern formation (i.e. secondary structure forming within already initial phase
separating structure)? Some of these questions were qualitatively answered
though the experimental investigations of forming secondary structures using both
polymer blends and solutions in the work by Tanaka. [1993]. Tanaka
experimentally studied a mixture of polystyrene (PS) /poly (vinyl methyl ether)
(PVME) and PVME/water undergoing a double quench to examine the evolution
of the morphology using phase-contrast microscopy. The composition used in
this study for PS-PVME was 50-50 wt% mixture, and that for PVEM-water was
5-95 wt% mixture. For both systems, a two-step quench was initiated and the
formation of the droplet type secondary structures was observed. Three trials
performed on the PS-PVME mixture to observe what occurs at different quench
depths. Figure 2.1 ‘shows a schematic representation of the quench sequence used
in Tanaka’s work. The first case was from point I to point B (first temperature
jump) and then from point B to point C (second temperature jump). The second
case the PS-PVME mixture was subjected to a shallower quench at A and then a
deep quench into the unstable region to observe the pattern formation (point I to

point A and then point C). Finally, the third trial was reversed from a deeper
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quench to a shallower quench from point I to point C (first temperature jump) and

then point C to point B (second temperature jump).

In the first case (I to B to C), double phase separation was observed and small
domains appeared within the large domains that were continuously phase
separating. After the second temperature jump to T, the secondary droplets
appeared after a certain period of time. The small droplets eventually disappeared
as they combined and diffused towards the interface of the large domains. In the
second case, for the same mixture at the same composition, there was a change in
the initial temperature to a higher initial value and then quenched to 7> (I to A to
C). The resulting morphology observed was very different from the first case.
Double phase separation was observed at a much earlier time, almost immediately
after the second jump. Rather than the large droplets observed in case one, the
phase separated structure appeared like long round rods shifting in position before
it became of droplet type at a later time. The last case of a deep quench to a
shallow quench (I to C to B) showed large droplets in the initial quench and after
the second quench interface instability was observed because of the diffusion of
PVME through the interface towards the exterior of the droplets causing the
interface to deform. One trial was performed for the polymer solution
PVME/water and double phase separation was observed much more readily as the
diffusion process is much more rapid. Form these experimental observations,
Tanaka coﬁcluded that in all cases, the variables that affect secondary phase
forination are the initial and final quench temperatures (AT, and A7) and the time

taken before the first phase separation process to occur before making the second
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Figure 2.1: A temperature versus composition phase diagrams for a binary
mixture of PS-PVME showing the different test conditions in the double-quench
experiment. The first test performed was from point I to point B (first temperature
jump) and then from point B to point C (second temperature jump). The second
test was from point I to point A and then point C. The third trial was a reversed
from a deeper quench to a shallower quench from point T to C point (first
temperature jump) then point C to point B (second temperature jump). [Adapted
from Tanaka, 1993]

temperature jump. A schematic of a phase diagram was constructed by Tanaka to
qualitatively explain the possible mechanisms that may be occurring to form
secondary structures. Figure 2.4 shows the same asymmetric phase diagram with
the possible mechanisms proposed by Tanaka excluding the reverse case from a
deeper to a shallower quench [Adapted from Tanaka, 1993]. The location of the
initial starting point for the second quench has a large impact on the possible

formation of the secondary phase separated regions. In his qualitative analysis, he

points out that the growth of the secondary structures may be a result of NG for
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both phases, SD for both phases or a combination of NG for one phase and SD for
the other.

More experimental work was performed on different polymer mixtures to observe
pattern formation by Kwak er al. [1993]. They experimentally investigated the
emerging morphology during a two-step phase separation process for a mixture of
polystyrene/poly(2-chlorostyrene)/n-butyl phthalate blend exhibiting a LCST
using an initial off critical composition for the temperature jump. Like Tanaka
[1993], Kwak ef al. examined the effect of increasing the driving force on phase
separation. An scanning electron microscope and light scattering apparatus was
used to capture images and data of double phase separation and from the time
evolution of their images, they were able to observe the same characteristics as
Tanaka did for the PS-PVME mixture [Tanaka, 1993]. After the second jump,
small domains started to appear and grew within the already existing domains
until the small domains eventually stopped growing and gradually decreased in
number. Finally, the small domains disappeared and only the large domains
continued to grow. Light scattering (which has not yet been used as a method of

analysis for double phase separation) was used to determine the change in the

2 .
characteristic length (defined as 4 = _Z) before and after the second temperature
q

jump. A is the wavelength or the characteristic length and ¢ is the scattering
vector. A plot of the growth rate of the characteristic length with time before and
after the second quench showed that the characteristic length of the large
domains, after the second quench, continued to grow but at a substantially slower

rate than for a single quench. This piece of information provides a deeper insight
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into how the growth of the primary phase separating domains is affected by the
second quench and by the formation of the secondary domains. An attempt was
made by Kwak et al. [1993] to formulate an empirical expression to describe the
change in the domain size upon making the second temperature jump. Their

expression was only good for the early period of the second jump.

Following previous work by Ohnaga and Inoue [1989] on modeling and computer
simulation of phase separation at different quench depths, Ohnaga et al. [1994]
used the same ideas to study reaction induced phase separation in
monomer/polymer mixtures, in this case, poly(ether sulfone) (PES)/ diglycidyl
ether of bisphenol A (epoxy), by mathematical modeling and computer simulation
in one-dimension under continuous quench conditions. A shift of the phase
diagram as the molecular weight of the epoxy increased thrusted the system into
the unstable region of the phase diagram. This continuous quenching process was
used to mimic the changes that occurred upon the shift of the phase diagram,
towards higher critical solution temperatures, resulting in the mixture moving
deeper and deeper into the unstable region. This study provided an analysis of the
evolution of the concentration profiles upon a continuous change in temperature.
The nonlinear C-H equation was used to describe the effects of polymerization-
induced phase separation by SD. The interest in that research was to determine
whether reaction-induced phase separation follows the structure formation of the
single quench case by SD. The System was allowed to phase separate
isothermally for a period of time before an additional quench was made and this

was continuous for about four to five successive quenches deeper into the
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unstable region (given by f). This profile reflects the observations made by
Tanaka [1993] and Kwak et a/. [1993] where the secondary structures were
observed almost instantly after the second quench. Ohnaga ef al. [1994] proposed
a diagram of the constructive and destructive interference that may be occurring
between the initial development of the concentration profile with that in the
second quench to explain the formation of the concentration profile observed.
The following schematic is a reconstruction of the one shown by Ohnaga et al.
[1994]:

Concentration profile at temperature 7

AV A VA |
I Y I W
VAV ARV ENAA T A
\/ N/ > N \/U
ZX {N /\ Zi Zs /\ Combined concentration profile
of Tyand 7>

Concentration profile at temperature />

Figure 2.2: Schematics of the constructive and destructive interferences that may
be occurring between the initial development of the concentration profile at T}
and that in the second quench at 7>. [Adapted from Ohnaga ef al., 1994]

Further evidence of double phase separation, after the one-dimensional
simulations by Ohnaga ef al. [1994], was presented by Clarke e/ al. [1995] who
studied the phase behaviour of linear/branched polymer blends using the Flory-
Huggins (F-H) free energy expression. They presented experimental evidence of
double phase separation of an epoxy/polysulfone blend where the interconnected

structure was formed by primary phase separation and droplet type structures

formed from secondary phase separation, using scanning electron microscopy.
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Although they were able to induce secondary phase separating structures, they
were only able to give qualitative reasons for the appearance of these structures.
They surmised that the secondary domains may be due to the location of the
system in the phase diagram (i.e. in the meta-stable region before it proceeds into
the unstable region such that nucleation and growth takes place first before
spinodal decomposition) or that cross-linking occurs in the coexisting phases
vduring the phase separation process leading to further instability within the

coexisting phases (secondary phase separation).

Tao et al. [1995] studied two-step phase separation for a mixture of
polystyrene/poly(2-cholorostyrene) having a LCST phase diagram using light
scattering and scanning electron microscopy. Their images of double phase
separation were similar to those presented by [Clarke er al., 1995] with the
interconnected structure from primary phase separation and droplet type
morphology from secondary phase separation. The purpose of their study of the
two-step process was to give a basis for understanding more complex behaviour
under continuous quench conditions that are often found in industrial processing.
Like Tanaka [1993] and Kwak et al., [1993], they experimentally observed the
effect of increasing the thermodynamic driving force on phase separation with the
two-step method. However, a new focus in their paper was on the evolution of
the emerging morphology after the second jump while making the second jump at
the intermediate stages of phase separation. Something to note is that their system
was not strictly binary in that they added di-n-butyl phthalate (DBP) to the

mixture to extend the experimental temperature range in studying phase
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separation. Their analysis looked at the growth of the characteristic length of the
primary interconnected structure during the first temperature jump and after the
second temperature jump. To investigate this, the characteristic length was
calculated using the light scattering data from the secondary quench. They
noticed that the growth of the characteristic length increased for the primary
mterconnected structure when secondary droplets appeared. This observation is
consistent with the initial work of Kwak et al. [1993]. They then altered the
nitial quench depth while keeping the second quench temperature constant to
observe effects on the characteristic length, and found that droplets observed
within the interconnected structure decreased when increasing the initial
temperature. In terms of the characteristic length, they saw no obvious changes in
the growth rate of the primary structures. An empirical scaling law was
developéd for determining the evolution of the characteristic length by the
addition of a term accounting for the difference in time from the initial
temperature jump to the second jump. But that expression was not derived from
basic principles [Hashimoto et al., 2000], and was only good up to the end of the

early stages before it diverged when comparing with the data they obtained.

Yang et al. [1998] looked at a mixture of diallyl phthalate (DAP)/poly (2,6-
dimethyl-1,4-phynylene ether) (PPE) having an UCST phase diagram. The focus
of their work was on the morphology developed during curing using light
scattering, Fourier transform infrared spectroscopy, and transmission electron
microscopy for polymerization induced phase separation, where by they found

secondary phase separation in the final structure. They showed that the primary
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and secondary structure were of the droplet type, and proposed a possible
explanation for this phenomenon. Figure 2.3 shows the evolution of the
concentration profile for the secondary structure formation they proposed. This
development of the concentration profile is similar to the ones observed by
Ohnaga and Inoue [1989] in the one-dimensional numerical results of double
quenching. However, the amount of interference to the initial concentration
profile from the secondary temperature jump was not as dramatic as shown here
in the figure. Also, the system under study by Ohnaga and Inoue [1989] was not

reaction-induced phase separation.

Up to this point, most of the work done on double phase separation has been
based on the formation of secondary structures and image analysis. There has
been very little work or in-depth quantitative analysis of the mechanism of double
phase separation in the literature [Hayashi et al., 2000a]. The first in a series of
papers written by Hashimoto et a/. [2000; Hayashi et al., 2000a and 2000b] have
recently revisited the two-step phase separation phenomena to further understand,
on a quantitative level based on light scattering data, the morphological
development of secondary phase separated 1'egioﬁs within a polymer blend of
deuterated polybutadiene (DPB), and protonated polyiosprene (HPI) having an
mitial composition close to the critical composition for the initial quench. The
polymers used in this study have very similar properties (i.e., Very narrow
molecular weight distributions, nearly symmetrical in terms of density, statistical
segment length, monomeric friction coefficient and glass transition temperature).

The system has a LCST phase diagram and the mixture was subjected to a critical
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Secondary Phase Separated Droplet Formation by SD for an Off-Critical Quench

Concentration

Distance x

Figure 2.3: A proposed 1-D concentration profile showing the evolution of the
concentration fluctuations for an off critical quench under a single quench (dashed
lines) and a double quench (solid line). The introduction of multiple little peaks
and troughs upon the second quench represents the formation of secondary
structures. The picture above the concentration profile illustrates a 2-D picture of
the resulting morphology from this concentration profile. [Adapted from Yang et
al., 1998]. .
quench. A number of concerns were posed in trying to gain a better
understanding of the mechanism for secondary structure formation within an
already phase separated regime. In the attempt to answer these questions,
Hashimoto et al. [2000] have been able to fill in the gaps between what has been
experimentally observed and how the process can be explained at a fundamental
level. Their concerns were:

e  To determine whether there were scaling laws that could be used as a

tool to predict the change from the initial structure (first quench) to the

final structure at the second quench.
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o If the formation of secondary structures may be limited to a certain
conditions (a critical time i.e. the early, intermediate and late stage of
development)

e To be able to describe, quantitatively, the evolution of the growth of
both primary and secondary structures as described in previous studies

e To determine the theories that best describe the double quenching
process (i.e. Is the C-H nonlinear equation applicable for double

quenching?)

The procedure taken after the first temperature jump was to allow the system to
phase separate until the equilibrium compositions of the two phases were reached
before the second quench was made. The second quench was still within the
unstable region of the phase diagram and therefore phase separation would be
characterized by SD. From a set of experiments the size of the initial structure
was varied before making the second quench and the light scattering profiles
described the evolution of pattern formation for double quenching distinguishing
three regimes [Hashimoto et al., 2000]. The three stages are as follows, first, after
the second temperature jump, there was a broad peak (secondary peak) that forms
and grows with time. Second, this broad peak increased in intensity with time and
third, the peak eventually decreased at longer times but the original peak intensity,
from the first quench, continued to grow. The data was then used to develop new
scaling laws to describe the spatial and temporal changes that occur in double
quenching. An interesting result from the new scaling laws showed that after the

second quench, the initial structure was relaxed and transformed into a new
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structure and grew according to the scaling laws of a single quench into the
unstable region by SD at the second temperature. The next paper written by
Hayashi ef al. [2000a], tackles the other questions regarding the evolution of the
structure of the primary and secondary domains by examining the evolution of the
structure factor. The same two-step quench process, and the same mixture of
deuterated polybutadiene (DPB) and protonated polyiosprene (HPI) was
investigated. They examined the effect of the initial domain size on the formation
of secondary structures and found that at early stages of the initial quench where
the initial domain size is not too large, secondary structures do not occur and the
initial structures continued to grow after the second temperature jump. With
larger domain sizes for the initial structure, secondary structures were observed.
From their light scattering data used to evaluate the evolution of the structure
factor, they found that initial domain size played a major role in the development
of secondary structures. Also, they were able to characterize the development
into three stages like in the single quench case [Hayashi ef al., 2000a]. In stage
one, the secondary structures formed and grew inside the primary structures. The
growth of the secondary structures was similar to that of the early stage in a single
quench case at the second temperature jump and was very evident. Also, the peak
intensity of the primary structures grew alongside the secondary ones. In stage
two, both the primary and secondary structures grew together at relative rates to
each other and the secondary structures are still present in the initial structures.
Finally, in stage three the secondary structures start to disappear and the time

evolution of growth of the structures approach the single quench values in the late
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stage at the second temperature. The results suggest that the growth of the
secondary structures was affected by the size of the initial structures as was
mentioned in their first paper [Hashimoto et al., 2000]. Evaluation of the
structure factor then answers the questions they pose on the development of the
secondary structure within the primary structure being nonlinear in nature. The
final paper was written to investigate the validity of linearized C-H theory for the
early stage SD after the second temperature jump on the development the
secondary structures [Hayashi et al., 2000b]. For the same mixture studied in
their previous two papers and applying the same methods [Hashimoto et al., 2001;
Hayashi et al., 2000a] they found that the linear theory for the single quench SD
process holds for the early stages in the formation of the secondary structures at
the second jump. In this work, Hayashi et al. {2000b] also discussed the concept
of confinement effect on the early stages of phase separation by SD noting that it
has not been addressed by Kwak et a/. [1993], Tanaka [1993], nor Tao et al.
[1995] in their experimental work of double phase separation. They introduce the
concept of a free-SD process and confined-SD process [Hayashi et al., 2000b].
They define confined-SD as the development of secondary structures in the
primary structures where the primary structure acts as a new medium in which the
secondary phase separation takes place and free-SD is the typical SD of a regular
single quench process. Another idea that was presented was the concept of
“superposed SD” [Hayashi et al., 2000b]. This superposed SD is the result of
taking the individual composition just before the second temperature jump and

quenching them to the second temperature as if they were single quenches. The
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result of superposed SD would then be a combination of the two individual cases
of free SD to describe the double quenching process of confined SD because in
theory, the process may be a linear combination of the individual quenches at the
early stages of SD. Early stages of SD on the evolution of the composition
fluctuations do not affect the characteristic wave number of the dominant mode of
the concentration fluctuations and affect only the values of the diffusion
coefficients. They argue that on a qualitative level, these values are reasonable
with their assumptions stated earlier about the early stages for the confined and
free SD. Comparing confined-SD with superposed-SD they found major
differences in the values for the diffusion coefficients. The values of the diffusion
coefficient in the confined-SD were roughly half that of the superposed-SD
process. This leads them to believe that the differences in the diffusion
coefficients stems from the idea of the confinement effect that the large domains
have on the growth of the small domains. Therefore, from their analysis of light
scattering data for the confined-SD, free-SD and superposed-SD, they conclude
that small domains are not spatially affected (the scattering vector remained
relatively constant) provided there was enough space for them to be generated.
Growth rate of the composition fluctuations of the secondary structures was be
coupled with the growth of the interface of the large domains (at a certain
characteristic length) and therefore, slowed down compared to its growth rate ina
free SD process. Upon analysis using the linear C-H theory, they found that the

effect of space confinement in the SD process. This reasoning was used to explain
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the discrepancies in the mutual diffusion coefficient for the confined and the

superposed SD process.

An important final note made in the paper by Hayashi et al. [2000b] was the
limitations of the time resolved light scattering apparatus in observing the effects
of using smaller domains sizes immediately before the second-step phase
separation. To do t‘his, they proposed the use of time resolved neutron scattering
[Hayashi et al., 2000b]. In this respect, modeling and computer simulation would
be of a powerful means of studying the effects of having small domains sizes
developed in the early stages of SD under a single quench before a second quench

is made and observing the effects on structure development.

Recently, a publication by Henderson and Clarke {2004] followed the method
presented by Hashimoto et al. [2000] to model double phase separation for
‘polymer blends. They examined a critical mixture and the second temperature
jump was made at the late stages of phase separation by SD. Their model
consisted of the nonlinear C-H equation and the F-H-de Gennes free energy
expression. The mobility was assumed to be constant. They examined pattern
formation for a critical quench in 2-D, the growth of the structure factor and the
effect of quench depth on the formation of secondary structures. What they
observed was similar to the experimental work of Hashimoto [2000; Hayashi et
al., 2000a and 2000b], however, their work was on the early stages of phase
separation by SD showed discrepancies in the calculation of amplification factor

and maximum wave number.
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Chapter 3

Theoretical Background

This section presents the necessary theory in describing phase separation of
polymer blends. The nature of phase separation in a two-component system
involves changes in energy, namely, Gibbs free energy. This chapter begins with
thermodynamics where the process of phase separation from an initially
homogeneous mixture is examined. It involves discussing mixing behaviour and
the construction of the phase diagram using the Flory-Huggins (F-H) theory.
Subsequently, the nonlinear Cahn-Hilliard (C-H) theory is presented which is
used to describe the dynamics of phase separation by SD. In early studies of
metal alloys using the C-H theory, the mobility and the coefficient of the energy
gradient were assumed to be constant [Langer et al., 1975; Copetti and Elliot,
1990]. In some polymer studies, the mobility was assumed to be constant and the
energy gradient coefficient was assumed to be a function of composition [Ohnaga
et al., 1989; Chakrabarti et al., 1989; Chakrabarti et al., 1990; Brown and
Chakrabarti, 1993a; Matsuoka and Yamamoto, 1995, Henderson and Clarke,
2004]. In other polymer blend studies, the mobility was assumed to be a function

of composition in the form of M(c)= NDc(l-c) where D is the self-diffusion

coefficient, ¢ is composition, and N is the degree of polymerization of the
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polymer. The energy gradient was also assumed to be a function of composition
[Ariyapadi and Nauman 1991; Kontis and Muthukumar, 1992; Glotzer, 1995;
Aksimentiev et al., 2000; Castellano and Glotzer, 1995; Castellano and Corberi,
2000]. Both mobility and the coefficient of the energy gradient are known to be
composit'ion dependent for polymer blends. The last section in this chapter will

then present the development of the expressions for composition dependent

mobility and gradient energy.

3.1 Thermodynamics of Phase Separation in Polymer
Blends

The governing equation that describes the thermodynamic stability of a mixture is
the change in Gibbs free energy. Under constant temperature and pressure th¢
change in Gibbs free energy is defined as:

AG,, = AH,, —TAS,, (3.1)
where 4Gy, is the Gibbs free energy of mixing, AHy is the enthalpy of mixing, T
is the absolute temperature of mixing and ASy, is the entropy of mixing. Stability
(i.e. whether or not the system is miscible or immiscible) depends on the value of
AHpy and ASy. When AG,, <0, a homogeneous solution exists. This means that
the Gibbs free energy of the mixture is less than the Gibbs free energy of the sum
of the pure components. This condition is necessary but not enough to ensure

stability of a system [Van Dijk and Wakker, 1997]. To ensure stability, the sign

of the second derivative of AG,, with respect to the composition must to be

evaluated. For ideal mixtures it is assumed that AHpy= 0, therefore, only ASy is
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left in the free energy expression. However. for polymer mixtures, which are

non-ideal, both the AH}; and AS),; must be considered.

3.1.1 The Flory-Huggins Theory

The F-H theory can be used to describe the free energy of mixing for a polymer
mixture. As mentioned earlier, polymer mixtures are non-ideal and therefore, the
enthalpy of mixing cannot be ignored. The free energy of mixing for polymer
blends contains two parts, an entropic contribution and an enthalpic contribution.
The entropic contribution is associated with the configuration of polymers within
the mixture and the enthalpic contribution is associated with the interactions
between different segments. in the mixture. The free energy is determined through
the assumption of an athermal polymer mixture (i.e. Ay = 0 and A4Sy is not
ideal) [Van Dijk and Wakker, 1997]). A lattice model is used to describe the
possible arrangements that can be obtained for binary polymer mixtures [Cowie,
1998]. Since polymer chains are long segments, the number of arrangements
possible is less than that for smaller molecules and therefore, the entropy of
mixing is much smaller. The lattice model for polymer mixtures is based on
Boltzmann’s law of entropy. Boltzmann’s law is:

AS,, =k, InQ (3.2)
where kg is the Boltzmann’s constant and £21s the number of ways that N, and N,
segments can be arranged in the lattice [Van Dijk and Wakker, 1997]. After some

mathematical manipulation the change in entropy due to mixing of two polymers

is given by:
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é—SM=|:—c-lnc+Q——clln(1—c)} (3.3)
kL, | N, N,

B
¢ is the volume fraction of polymer 1. This term describes the arrangement of the
polymer segments within the mixture and is relatively small for large degree of
polymerization. The enthalpy of mixing is given by:

AH,, =k, Tyc(1-c) (3.4)
The y parameter is a measure of the effective interactions between polymer

segments. From this arrangement and through some mathematical manipulation,

the F-H free energy for a polymer mixture can be described by the following

equation;
kg c (1—0)
¢)=-L~| —Inc+~——=In{(1-c)+ yc(l-c (3.5)
7©=5 e Lo Ding-e)e ze(1-0
~ _J N ‘(—j
Entropic Enthalpic
contribution contribution

where f{c) is the free energy density, y is the F-H interaction parameter [Flory,

1953}, v is the volume of a segment, and ¢ is the composition of one polymer.

3.1.2 The Phase Diagram for Polymer Blends

Polymer blend phase diagrams can be determined experimentally or constructed
using the F-H free energy expression. In Figure 3.1, some common phase
diagrams for binary polymer mixtures are shown [Tanaka, 2000]. Figure 3.1 a)
has an upper critical solution temperature UCST temperature type phase diagram.

- The UCST is the highest temperature at which first sign of phase separation can
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be observed. Figure 3.1 b) shows a lower critical solution temperature (LCST)
type phase diagram. This point corresponds to the lowest temperature at which
the first sign of phase separation occurs. Finally, in Figure 3.1 ¢), the temperature
versus composition phase diagram shows a mixture where both the UCST and the
LCST exist.  Graphically, the relationship between the free energy Vversus
composition and temperature versus composition is shown in Figure 3.2. In the
free energy phase diagram, as the temperature is decreased from 73 to 7, the free
energy changes. 7 is taken as the example to show how the temperature versus
composition phase diagram is constructed using the free energy plot. The binodal
is also known as the equilibrium curve and is constructed through the
corresponding points of tangency on the free energy diagram. The condition for
equilibrium between the two coexisting phases is when the chemical potential of
component i, in one phase (1) is equal to the chemical potential of component ¢

in the coexisting phase (2). This leads to the condition that the total change in

. cF
free energy of component / is zero a—-:(,u,.“’— w'?
C.

!

)=O. The tangent line

]

labelled B'-f"gives this condition where the chemical potential of the

coexisting phases is equal. The spinodal curve is constructed through the use of

A ..
Lalj =0) in the free energy diagram. The second derivative
c

the inflection points (

of free energy with respect to composition determines the drive for phase

"
"
pd v

o°F ) o°F oy
separation around the inflection (a—z—:O) points where —a?>0, stability or
c

2

meta-stability are possible and —aa—fzi<0 results in instability for the binary
c
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- Two-Phase

One-Phase Region
Region

Region

One-Phase Region

Temperature

One-Phase Region ,
a & Two-Phase:

Composition Composition Composition
a) b) c)

Figure 3.1 Typical temperature versus composition phase diagrams for binary
polymer systems showing a) upper critical solution temperature, b) lower critical
solution temperature or c) a combination of upper and lower critical solution
temperature [Adapted from Tanaka, 2000].

mixture. For meta-stability, the second derivative of free energy with respect.to
composition is greater than zero and if the composition fluctuations are small, the
energy barrier will not be crossed and the blend will be restored to its original
composition. For instability, the second derivative of free energy with respect to
composition is less than zero and small composition fluctuations are enough to
create instability. The curvature of the second derivative of free energy with
respect to composition (change in sign) can then detail the degree of stability,
alongside the knowledge of the first derivative of free energy with respect to
composition, with concave downwards (local maximum) being unstable and
concave upwards (local minimum) can be meta-stable or stable. At the spinodal
points, there is no thermodynamic driving force to cause the mixture to phase

separate or to restore the blend to its original composition upon small fluctuations.

The spinodal then separates the meta-stable from the unstable region.’
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Theoretically, to determine the equilibrium (binodal curve) compositions, the F-H
free energy is used to find chemical potential of each component in their
respective phases. Equations (3.6 a) through (3.6 d) are the chemical potentials
for the two equilibrium phases of components 1 and 2. At equilibrium, the

chemical potential is the same everywhere in the two phases of components 1 and

2 (i.e. for component 1 4 ; =y . ). Equating equations (3.6 a) with (3.6 b) and

(3.6 ¢) with (3.6 d) the system of equations can be solved for the values of ¢’ and
¢ [Kurata, 1982] which represent the coexisting phases in equilibrium. The

subscripts 1 and 2 for ¢ and c' identify the component in the mixture.

ln(c;){ _.].VN_LJ(I_CQ)WN‘ (1-c/Y G62)
Higr = Hygn

m(clﬂ)+(l_.jf\v’_l](1_c,**)+zN, (1-c) (3.6b)

1n(1—c;)+( —%’:—](czf)wzvz(cj)z (360
oot =t |

In (1—c2”)+(1—7vN—‘J(ch)+zN, (02”)2 (3.6 d)

The spinodal curve is obtained by taking the second derivative of the F-H free

energy and setting it equal to zero.

C

2

Equation (3.7) is a quadratic equation that can be solved to find the compositions

at the spinodal.
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The F-H interaction parameter is needed in order to evaluate equations (3.6) to
(3.7). It is commonly assumed to be a function of temperature and is expressed as -

a combination of both enthalpic and entropic contributions.
B
=4 + — (3.8)
d T

A and B are determined experimentally and represent the entropic and enthalpic
contributions, respectively. The entropic contribution accounts for the segment-
segment interactions between the polymers within the mixture. The enthalpic
terms ac.counts for the change in energy upon mixing of the polymers as a result

of the interactions between segments.

The critical point in the phase diagram can be calculated by setting the second and

. i . . of Of
third derivatives of the F-H free energy expression to zero P :—6—3_: 0}.
c* c

There are several critical values associated with the critical point and they are

given below. The critical concentration is given as:

¢ =41 (3.9)
c = 5 T Nz :
1+ [-Ai)
[ M) ]
The critical F-H interaction parameter is given by:
R
X.=5 W“LW | (3.10)
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=

———— ————— — —_———— e —_ e —_—_—— e —

|
|
To Lo . I |

0 r.. : ..... E ...... —
g | |
g | |
E | !
: : :

Ty r__ ........ | =N ..I ..... -

Spinodal

Binodal Unstable

Composition

Figure 3.2: A plot of the relationship between the free energy versus composition
and temperature versus composition for a binary polymer mixture. The binodal is
the equilibrium curve and is constructed by the tangent line labelled AB'- /"
where the change in the chemical potential of the coexisting phases is equal The
spinodal curve is constructed through the use of the inflection points in the free
energy diagram. As T decreases, the miscibility decreases, representative of the

UCST only.
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Phase separation occurs for values of the F-H interaction parameter greater than

the critical value y > y.. This increases the value of the enthalpy of mixing such

that the change in free energy is now positive and therefore the system is unstable.
. . 2 i
For a symmetrical blend, the critical value y, reduces to v The critical value

of x.can also be used to determine the critical temperature. The critical
temperature is given by:
r=_25 5 (3.11)

x=4 Wy Y
2w

3.2 Spinodal Decomposition

3.2.1 Early, Intermediate and Late Stages of Spinodal
Decomposition

The mechanism of spinodal decomposition can be broken down into three stages,
early, intermediate and late. Each stage has distinct characteristics describe by
sinusoidal waves of the changes in concentration as a function of position in one
dimension. This is shown in Figure 1.4. In the initial stage, the concentration
fluctuations are small at 4 and as time increases to t;, the amplitude of the
concentration increases but the wavelength remains constant. The depletion and
migration of one of the polymers towards an increasingly rapid growth of the
concentration fluctuation is shown with arrows moving from low concentration to

high concentration. This is characteristic of the SD process to have uphill
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diffuston [Cahn, 1965; Chan, 1998]. The initial stage is usually the most difficult
to visualize since it happens at a fast rate. In the intermediate stage, Figure 1.4
(1), the concentration fluctuations are still increasing with time from ¢ to &,
showing an increase in the amplitude of the concentration fluctuations. However,
there is an increase in the wavelength of the concentration fluctuation spatially.
Finally, in Figure 1.4 (ii1), the late stage of SD, the concentration fluctuations
increase until they reach their respective equilibrium concentrations (constant
amplitude), labelled cy (upper concentration) and ¢, (lower concentration). The

wavelength increases with time due coarsening.

3.2.2 The Cahn-Hilliard Theory

Cahn [1965] was the first to describe the kinetics of phase separation by SD for
metals and glasses and has since been éxtended to study phase separation in
polymer solutions and blends [de Gennes, 1980]. The nonlinear C-H equation
describes the spinodal process as a series of sinusoidal waves that govern the
spatial and temporal evolution of the concentration fluctuations. It was developed
from the continuity equation of mass where the diffusional flux is related to the
driving force for phase separation (the chemical potential).

The continuity equation is given as:

% -v-J (3.12)
ot

where c is the composition , and J is the interdiffusional flux of the components.

J is related to the gradient in chemical potential by the following expression:
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J=-MV(u,- 1) (3.13)
M is a proportionality factor called the mobility and is known to be composition
dependent. In the development of the C-H equation, the mobility is assumed to be
constant. The composition dependence of mobility will be examined in another
section below. 4, and u, are the chemical potentials of components 1 and 2. The
concentration fluctuations in a polymer mixture are related to the change in the
total free energy and can be broken down into two parts, a homogenous free
energy term and a term to take into account the increase in

free energy due to concentration fluctuations. The total free energy is then given

as [Cahn, 1965]:
F=j’[f(c)+x(\7c)2]d1/ (3.14)
where flc) is the free energy of the homogeneous polymer mixture and
K(Vc)ztakes into account the increase in free energy. « is a positive constant

but is known to be a function of composition. It will be treateci as a constant in
deriving the C-H equation. The concentration dependence of x will be discussed
in another section. The homogeneous free energy term can be obtained from the
F-H theory (equation 3.5). To insert equation (3.14) into the continuity equation
the change in the chemical potential needs to be evaluated. The change in

chemical potential is defined as:

_OF of 2
yz—M——a?_%—ZKVC (3.15)

The net flux of the binary polymer mixture is related to total free energy in the

following expression:
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J:—MV(uz—',u) —MV( f(c)—2x\7:c} (3.16)

By inserting equation (3.16) into the continuity equation (3.12) one obtains the
nonlinear C-H equation:

%~V{ V(afa(c)—zwzcﬂ (3.17)

C

For the early stage of SD, the C-H equation is linearized about an average
concentration ¢,. The linearized C-H equation is valid for the early stage because
the initial concentration fluctuations are small (weakly nonlinear), therefore, the

linear C-H equation is:

%:M{”@\ Vie - 2xV'e } (3.18)

VERAGE

cc

—2 2745 known as a collective diffusion coefficient [Cahn, 1965]. The

collective diffusion coefficient is negative (uphill) when the first term of equation
(3.18) is less than zero and this is the case in the unstable SD region. The solution

to equation (3.18) uses Fourier series. The general solution for equation (3.18) is

given as:

c(r,f)—c, = A(k,t)e"” (3.192)
k

A(k,1)e"" = A(k,0)e" (3.19 b)

R(k)=-MK* (?_2— . J - (3.19¢)

oc
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2 . . .
where 4 = % and J; is the wavelength for fluctuation i. R(k) is known as the

i

o°f (0)‘

. >|21ck2‘ meaning that concentration
e

amplification factor. For R(k)>0,

fluctuations only occur under this condition from equations (3.19 a) through (3.19

c). This inequality is satisfied for the wave number range of 0 <k < k.. k. isthe

critical wave number and is defined as:

e

In equation (3.19 b) the exponent contains the amplification factor, therefore, the
concentration fluctuations that grows the fastest is:

k - L (3.21)

L \/Ec

3.2.3 Concentration Dependent Mobility and Mutual Diffusion

As mentioned above the mobility is known to be a function of composition. It can
be expressed as a function of the mutual diffusion coefficient, which measures the
rate at which the composition of the mixture is dispersed. According to equation
(3.13) the diffusional flux was given as:

y=-m 2L ({C ) e~ _pye (3.22)
In equation (3.14) the mutual diffusion coefficient is the product of the mobility

and the second derivative of the free energy with respect to composition.

Rearranging equation (3.22), the total mobility as a function of composition is:
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M(c)= ; 1‘(2) (3.23)

n

oc”

There are two theories used to describe the mobility of polymers upon mixing, the
slow mode theory and the fast mode theory [Kramer et al., 1984]. The slow mode
themy predicts that mutual diffusion of the binary polymer blend is limited by the
slower component in the mixture {Kramer ef al., 1984]. On the other hénd, the
fast mode theory predicts that the diffusion rate is limited by the faster
component. The expression for mutual diffusion in the slow and fast mode
theories is made up of a thermodynamic term y and a kinetic term X [Jilge ef al.,
1990; Akcasu et al., 1995]:

D(c)=yX (3.24)
The thermodynamic factor is associated with the static arrangement of the
polymer segments and the kinetic factor is associated with the self-diffusion of the
polymer segments [Akcasu et al, 1995]. The composition dependent total
mobility for a polymer system was introduced by de Gennes [de Gennes, 1980]

and as a ratio of transport properties to that of the driving force for phase

separation (chemical potential). The expression is:

= RAUSE (3.25)
Al‘ + A'_)_

Where A;(c) ~DiNi i the Onsager coefficient of the individual component
¢

describing the diffusion in a polymer system with D; and Nj; as the self-diffusion

coefficient and degree of polymérization for the individual components. The
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component Onsager coefficient is related to the individual mobility, M; (c) , of the

component by:
A;(¢)=kpTM; (c) (3.26)
Equation (3.25) can be rewritten in terms of total mobility to give the slow mode

theory [Kramer et al., 1984]:

1, (3.27)

1,1t
M M, M,
Where M is the total mobility and M; and M, are the individual mobilities of

components 1 and 2 respectively. The individual mobilities of each component

are expressed in terms of a self-diffusion coefficient:

_ D) _ De)
M, (c)— azf, (c) = el 1 (3.28 a)
o T[EV;J
_ Di(e) _ D, (c)
Mz (c)_ azfz (C) - kBT 1 (3-28 b)
ac? v [Nz(l-—c))

In equation (3.27), if it was assumed that component 2 had a larger mobility
(D, < D,)than component 1, M, would be very large and therefore, the total

mobility would be controlled by the mobility of component 1 (the slower moving

component)

For the fast mode theory, the total mobility of the mixture is written as [Kramer et

al., 1984]:

M =M, (1-c)+ My (3.29)
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Again if it was assumed that the faster component in the mixture was component
2 then M, would be much larger in value than M, and therefore, the total

mobility will be controlled by the faster moving component. Inserting equations

(3.28 a) and (3.28 b) into the slow and fast mode theories and rearranging the

expression, the total mobility becomes:

[N,Dc][ N.D, (1-¢) ]

M(c)= (slow mode) (3.30)
E‘il[NlDic +N,D,(1-c)]
N,De(1-c)v+N,Dyev(i-
M(c):[ Die c)‘k - Sl C)] (fast mode) (3.31)
B

Whether the slow mode theory or the fast mode theory best describes the
interdiffusion of the polymer segments is still a topic of debate amongst
researchers. There have been publications that are in favour of using the slow
mode theory [de Gennes, 1980; Green et al., 1985; Binder, 1983] while others
believe the fast mode theory is a better prediction [Kramer ef al., 1984; Composto
and Kramer, 1988]. The rest of the derivation for the total mobility will use the
slow mode theory following the work of de Gennes [1980] in describing the
dynamics of phase separation in polymer blends as it well describes phase

separation by SD [Pincus, 1981 Binder, 1983].

3.2.4 Reptation Theory and the Self-Diffusion Coefficient

The self-diffusion coefficients measure the rate at which individual components
of the mixture diffuse and are determined experimentally using labeling

techniques to identify the components. There are two theories to describe the self-
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diffusion coefficient, the Rouse theory [Rouse, 1953] and the reptation theory [de
Gennes, 1971]. Both theories describe the self-diffusion coefficient in terms of
physical properties of the polymer. The Rouse model describes a polymer chain
as a spring and bead model where the chains are considered flexible repeating
units moving freely in a medium. There exists a resistance force caused by the
interaction between the medium and the coil of the spring called a frictional force
and is incorporated into the self-diffusion coefficient of the polymer [Rouse,

1953]). The self-diffusion coefficient using the Rouse model is:

kT
DRnuse-seIf = 752_ (3.32)

Where N is the degree of polymerization and £ is monomer friction coefficient.

The reptation model describes the motion of a long polymer chain as a snake-like
motion traveling through a constrained area [de Gennes, 1971]. The constraints
are due to the entangled polymer coils in the mixture (unable to cross over another
polymer chain) such that the only motion can be of a sliding or a creeping effect
along the contours of the polymer length [de Gennes, 1971]. The self-diffusion

coefficient described by the reptation model [Doi and Edwards, 1986] is:

5 _ &l
reptation-selt 2 2
INED

(3.33)
Where a is the step length of a primitive chain, and & is the bond length. The
difference in both theories lies in the dependence of D, on N, where in Rouse the
dependence is N ! and in reptation it is NZ. Equation (3.33) can be further
simpliﬁg;cl by the :fgl)l.c)wing relationship between a and b [Doi and Edwards,
1986]. o T
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P

2 4Nbl-

e

a = SN2 (3.34)

Where N, in equation (3.34) is the degree of polymerization between

entanglements. Inserting (3.34) into (3.33), the self-diffusion coefficient becomes:

4k, T N,
rep-self’ — 156 o

NZ (3.35)

There exists a crossover between Rouse to reptation dynamics [de Gennes, 1971;
Klein, 1978; Brochard ef al., 1983]. Experimentally, there is a critical polymer
length, N., where the physical property (viscosity) of the polymer changes
significantly as a function of N. The value of N, is approximately 300-600
monomer units [Klein, 1978; Brochard et al., 1983]. Brochard ef al. [1983] used
this critical value in their development of an expression for the mutual diffusion
coefficient for N < N, (the non-entanglement regime) and for N > N, (the
entanglement regime). The non-entanglement regime can be well described by
the Rouse model and the entanglement regime the reptation model [Klein, 1978].
Therefore, the total mobi]ity for the non-entanglement regime (N < N,) using the

slow mode theory is:

ve(l-c) X
OB o2

If we assume that the monomeric friction coefficient is the same for both

polymers& =&, =&, then equation (3.36 a) becomes:

M(c)= {15(—2;6—)} | | (3.36 b)
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For the entanglement regime (N > N,) again using the slow mode theory, the total

mobility is:

4vN, N, c(1-c) .
- el Te2 (3.37 a)
M (c) {lS(sze‘Nzc +&N,,N, (1 —c))}

If we assume that £ =¢ =¢, and N=N, =N, (degree of polymerization

between entanglements of polymer 1 and 2 respectively) equation (3.37 a)

becomes:

B 4vc(1~c)
M) —{15§(N2C+N, (1 —c))jl , G379)

In studying phase separation by SD for polymer blends the reptation theory has

been used to describe the self-diffusion [de Gennes, 1980; Pincus, 1981].

3.2.5 Concentration-Dependent Gradient Energy

The energy gradient in the nonlinear C-H equation is the contribution to the free
energy resulting from concentration fluctuations (non-homogeneous) and is
related to the formation of interfaces between the two polymers. x is assumed to
be always greater than zero. de Gennes [1980] proposed that the gradient energy
coefficient was made up of both enthalpic and entropic contributions and later
discussed in a review paper on phase separation by Nauman and Qiwei [200 1]:
K=Ky +K (3.38)
The entropic effect is due to the connectivity of monomer units and therefore is

only applicable to polymer systems [Hashimoto et al., 1983). This additional term

into the free energy takes into account the changes in energy upon the spatial
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variations in the composition when phase separation occurs [de Gennes, 1980]. 1t

is expressed as a function of composition in a variety of torms:

i (c) = {360 36(512_ )}rﬂ =[3—60[('1;_5} (3392)
| N — \_Y_J

Entropic Enthalpic
contribution  contribution

o -

rf(c):é[RGf + R, |+~ N[RGV (fﬂ c)} | (339 ¢)

(e )_ﬂ[(l 70)} (339 dy

In equation (3.39 a) [Castellano and Glozter, 1995] under conditions of extreme

incompatibility Ay (y very small) is approximately zero and [_—36;(’1—0)]

dominates. a is the statistical length and A is the effective interaction distance
between monomers and is assumed to be equal to the Kuhn length §. The Kuhn

length is related to the radius of gyration R, by the following expression:

52 = Ra (3.40)

Therefore, from equation (3.40) a = & Note that the entropic term is a function of
the relative size of the polymer. The different arrangements of the polymer
segments in the mixture are limited by the size of the polymer chains and

therefore, increase the free energy and opposing phase separation. Therefore, the
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value coefficient of the energy gradient, x, renders a resistance to the phase
separation process due to the development of interfaces to try and restore the
system to its lowest energy level. Equations (3.39 b) [Lee ef al., 1999], (3.39 ¢)
[Ariyapadi and Nauman, 1991] and (3.39 d) [Jones and Richards, 1999] can also
be simplified in the following manner. The difference in the coefficients comes
from using the random phase approximation (RPA), the Deybe function and
placing restrictions on the range where the expression is valid (Equation (3.39 d))
[Jones and Richards, 1999]. Equation (3.39 a) is often used in computer
simulations for studying phase separation by SD as it is assumed that the polymer
mixture undergoing phase separation is highly incorﬁpatible [Zhang et al., 1995;

Chakrabarti ef al., 1990; Glotzer, 1995; Matsuoka and Yamamoto, 1995].
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Chapter 4

Model Development and Method of
Solution

This section presents the model development and the method of solution for the
one-dimensional and two-dimensional study of phase separation by SD for a
single quench and a double quench. The governing equations used in the model
development will be presented to obtain a general spatial, time dependent,
differential equation. From this, through algebraic simplification and
rearrangement, the dimensionless equation describing the dynamics of phase
separation by SD will be presented. The following conditions and assumptions
have been applied in the model developed to describe phase separation of
chemically identical polymer blends [de Gennes, 1980; Glotzer, 1995]:
e Phase separation occurs by the method of TIPS

e Polymer blend is of identical chemical structure (N; = N, = N = 1000)

e Entanglement properties are also identical (£ =¢, =¢,, N=N, =N, 4

= 6)
e 7is a function of temperature only

e xand M are a function of composition
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The method used to solve the model is the Galerkin finite element (GFE) method
with Hermitian basis functions. The following procedure was used for the GFE
method in solving the dimensionless differential equation [Huebner et al., 1995]:

1. Choose elements, basis functions and mesh

2. Write equation in Galerkin form

3. Lower the order of the differential equation

4. Apply conditions

5. Write out equation set

6. Assemble matrix and residual vector

7. Solve resulting system
Only the implemented GFE method, the nondimensionalized eﬁuations, the initial

and boundary conditions will be discussed.

4.1 Governing Equations Used to Describe Phase
Separation by Spinodal Decomposition for a
Polymer Blend

The model development is based on the fundamental equations introduced in
Chapter 3. The concentration fluctuations in a polymer mixture are related to the

change in total free energy in the form [Cahn, 1965]:

F=| [f(c)+1c(Vc)2}z’V | (4.1)

The total free energy is broken down into two parts, a homogenous free energy of
mixing term and a term to take into account the increase in free energy due to

concentration fluctuations. The homogeneous free energy of mixing can be
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described by the F-H free energy expression containing the enthalpic and entropic
contributions of mixing in polymer blends described below [Flory, 1953]:

L .
fe)= VT(N Inc+ (INC) ln(l—c)+zc(l—c)] 4.2)

The term that takes into account the increase in free energy due to composition
fluctuations and formation of interfaces between the two polymers has a

composition dependent term x described by [de Gennes, 1980]:

ot

The dynamics of the concentration fluctuations is represented by the continuity
equation containing the driving force for phase separation (the chemical potential)
within the diffusional flux:

oc
a

=-V-J (4.5)

The gradient in chemical potential is defined as the change in the total free energy

with respect to composition and therefore, taking the derivative of equation (4.1)

arrives at:
J=-MV (1~ 1)= —Mv(afa( °) 2KV2c) (4.6)

M is a proportionality factor called mobility and is known to be composition-

dependent. To determine an expression for the total mobility, the slow mode

theory is applied [de Gennes, 1980]:

L S ' (4.7)
M M, M,
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This expression for total mobility relates the individual mobilities of the polymers -
and states that the slowest moving component is rate-controllng. To express the
mobility in terms of diffusive transport properties, the reptation theory [Doi and
Edwards, 1986] was applied to describe the self-diffusion of the polymers in the

blend and the total mobility becomes:

~ 4ve(1-c)

M(c)‘[lsf(NzﬁNl (l‘c))J

Inserting equations (4.1) to (4.8) into the continuity equation, the following

(4.8)

expression is used to describe the dynamics of phase separation by SD:

15/ 2
_a; = V{MV [qag‘:—) _ 2V cﬂ (4.10)

Substituting equations (4.5) to (4.6), rearranging and collecting like terms
equation (4.10) is then transformed into the following fourth order partial

differential equation for the further development of 1-D and 2-D models:
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1
LNZ H1=c)N CANHI=)N

& _| ANKT " 1 Tet e 2
a { 15£ } N HI-ON | o (I- _)NZJ(VC)

-2 w __l_n, l 3
- N e

4.2 The One -Dimensional Model

.11

In the 1-D model, 256 elements were used. The governing equation, transformed

from equation (4.11) into dimensionless form in one dimension is:
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The dimensionless terms in equation (4.12) are dimensionless time, temperature,

space and diffusion coefficient. The dimensionless terms are expressed in the

order stated above as:
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= ser | (4.13 a)
. T

r== (4.13 b)

c =c (4.13 ¢)
V' =VL | o (4.13 d)
. k,T.L?

D =| % (4.13 ¢)

4.3 Two-Dimensional Model

In the 2-D mbdel, 20 by 20 elements mesh was used. The governing equation,

transformed from equation (4.14) into dimensionless form in the two-dimension

model is:
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The dimensionless terms in the 2-D model are the same as those presented in the

o|m

+

(4.14)

1-D model.

4.4 Initial and Boundary Conditions

To solve the one-dimensional and two-dimensional model, initial and boundary
conditions are applied. The development of the program for the initial condition
is detailed in a paper by Chan and Rey who looked at phase separation in polymer

solutions [Chan and Rey, 1995a]. The homophase thermal fluctuations are used
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as an Initial condition because the concentration is not uniform even in the
homogeneous one phase region. There exists infinitesimal deviations from the
average concentration called homophase thermal fluctuations so that the initial
condition is an average concentration plus a very small value, &, where the
Monte Carlo scheme is employed to determine the value of §. Mathematically,

the initial condition expressed in dimensionless form is [Chan and Rey, 1995a]:
c*(t* :O):co*—i—é' (4.15)
The boundary conditions in this model are the zero mass flux and the natural
boundary conditions. Zero mass flux is applied to the system where no mass is
exchanged with its surroundings [Novick-Cohen and Segel, 1984; Elliot and
Songmu, 1986]:

J:—M(C)V(yz—y,):O (4.16)
The natural boundary condition [Novick-Cohen and Segel, 1984] states that there
is no spatial variation of concentration at the boundaries:

(Ve)n=0 | (4.17)
The zero mass flux boundary condition in dimensionless form for the 1-D and 2-
D study is [Chan and Rey, 1995a]:

In the one one-dimensional study

&c’
*3

ox

=0 at £ >0, and x =0and x =1 (4.18)

In the two-dimensional study

E ]
&t ¢
«3

+ -0 atf>0, and x =0 and x =1 (4.19 a)
& ax*@*l-
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3 '\’3 * . .
2;3 + f.z: _=0 att >0, and v =0and » =1 (4.19 b)
ax' oy

Natural boundary conditions in dimensionless form for the I-D model contain
equation (4.20) and the 2-D model contain equation (4.20) and (4.21) [Chan and

Rey, 1995a}:

80‘ -0 a (>0, and x'=0 and x =1 (4.20)
Ox

oc’ . . . _

. =0 a ¢>0, and y =0 and y =1 (4.21)

4.5 Method of Solution: The Galerkin Finite Element

Method

The Galerkin finite element (GFE) method is a method of weighted residuals. It
is a useful technique in solving equations whether they are partial differential
equations, ordinary differential equations or integral equations by approximating
it at discrete points [Huebner er al., 1995]. This technique is advantageous
because it can be used to solve systems of any geometry and complexity by
dividing the system into subunits called elements, and allowing computational
approximations to the solution at nodal points that link the elements. The divided
solution region is called the element mesh and in the case of a one-dimensional
study the mesh is a line and in a two-dimensional study the mesh is a plane. The
following development of the general procedure to solving partial differential

equations in two-dimensions is based on the developments given in finite element

S-T3-



Chapter 4: Model Development and Method of Solution

texts [Lapidus and Pinder, 1982; Chung. 1978]. To obtain the solution for the

one-dimensional case, the two-dimensional case can be simplified to v space and

will not be presented.

Consider the following equation in two dimensions with the following

boundaries:

L@u)=f(x,y,1)=0 a<x<bh as<y<b (4.22)
In the Galerkin method, the solution to the equation above assumes that u can be
represented by an approximation of the form:

u (x,y,t)= iuj ()¢’ (x,») (4.23)

The approximate solution, #_ (x, y,t), is then a finite series approximation where
¢’ (x,y) are the basis functions (weighted residuals) and  (¢) are the unknown
coefficients. Placing equation (4.23) into equation (4.22) yields:

R=L(u)#0 (4.24)

The residual, R, is nonzero. If the approximate solution u, was zero (having a

zero residual) then it would be the true analytic solution to L(x). The objective

then is to find a set of # (¢) such that the approximate solution is forced to zero

and this will provide the best fit to the exact solution:
L(ua) =0 (4.25)

To do this, the residual is multiplied by a weighting function (equal to the basis

functions in the GFE method), set to zero and integrated over the element:
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F = J.J.RW[ (x,v)dxdy = J:[L (u,)¢' (x,y)dxdy =0

fori=12,....N (4.26)

where F, is the residual vector, w; is the weighting function and M is the number
of nodal points in the mesh. From equation (4.20), a system of N non-linear
equations is obtained and the 3-point Gauss quadrature method is used to evaluate

the integrals. The system of equations can be arranged in the form:
[J1{u}= [F] (4.27)

) ok

where [J] is the Jacobian matrix defined by J, :-al—’, u; are the unknown
i.
J

coefficients of interest and [F] is the residual vector. The Newton-Raphson
iteration scheme is used to solve the set of equations obtained from equation
(4.27) simultaneously and the convergence criterion is such that the difference of
the length of the solution vector between two successive vectors is computed to

be less than 10°°.

So far, the development of the system of equations used a general expression for
the basis function ¢’(x,y). The choice of basis functions to be inserted into

equation (4.26) is Hermitian bicubic basis functions. These basis functions
interpolate values of the function and the derivative at the nodes and are useful for
solving the fourth order partial differential equation because the lowering of the
order of the partial differential equation can be minimized [Lapidus and Pinder,
1982]. For detailed development of the Hermitian basis functions other sources

can be referred to [Chung, 1978]. The Hermitian basis functions take the form:
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h=a+bE+ct +d & function
¢ =a,+bl+c P +d, & slope
¢ =a,+b&+c, P +d,E’ function
¢, =a,+bE+c,EP+d, & slope

(4.28)

In a one-dimensional study each element has 2 double nodes (one for the function
and one for the slope) and four basis functions. In the two-dimensional case, each
element has nodes 4 double nodes and 16 basis functions. The two-dimensional
case 1s a product of the one-dimensional basis functions. See Appendix A for the

list of Hermitian basis functions.

To lower the order of the partial differential (in this case the model equation being

fourth order) the divergence theorem can be used:

j j aVeVvdA = jan-vdr _ ”Va-de (4.29)
0 I Q

where « is any scalar, v is any vector, I” is the boundary of domain 2and # is the

unit normal vector. The terms in residual vector containing -.-IV3C¢"dxdy and

([ V#cé'dxdy can be broken down to:

([ V*ep dedy = [ pnevicdl - [ #ne(Viev 4 )ar + j j VieViddQ  (430)
. J ' b

([ veegiaxdy = | gmeviedr - IV¢$" V2edQ 4.31)
v e .r‘ .n
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4.6 Program Summary

The program developed for solving the 1-D and 2-D models was based Chan’s
program [Chan, 1997] for studying phase separation by SD in polymer solutions
where the mobility and interfacial parameters were kept constant. In the 1-D
study, 256 elements were used to form the mesh size and in the 2-D model a 20
by 20 element mesh was used. After employing the GFE method and setting up
the set of equations in matrix form, the set of equations were solved using the
Newton-Raphson iteration scheme. For time integration, the finite difference
method and the Euler predictor corrector method was used [Chan, 1997]. An
adaptive step size controller was also used to save on computing time [Chan,
1997]. When there is little variation in the function a large time step it taken and

when there is more variation small time steps are used.

-t
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Chapter 5

Results and Discussion: 1-D TIPS Single
Quench

This section presents the numerical results from the one-dimensional TIPS study
with a single quench. The focus is in the formation of phase-separated structures
and therefore studying the early and beginning of the intermediate stages is
sufficient. The model parameters are listed in Table 5.1. The model is based on a
symmetrical blend with degree of polymerization of Ny = N, = 1000. There are
two initial average compositions that will be investigated, a critical quench (c, =
0.5) and an off-critical quench (c, = 0.6). The study also uses three different
values for the dimensionless diffusion coefficient. The order of magnitude for the
dimensionless diffusion coefficient directly reflects the parameters taken from
experimental studies on the properties of polymers [Daould ef al., 1975]. Key
" features are examined for a critical and an off-critical quench case to ensure that
the one-dimensional model exhibits the same known trends for the early to the
beginning of the intermediate stage typical of phase separation by SD:

(1) The evolution of the concentration fluctuations

(ii)  The evolution of the dimensionless structure factor

(iii)  The effect of a shallow and deeper quench -
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Additional analysis will be to investigate the effect of increasing the
dimensionless diffusion coefficient D, the change in the chemical potential and
the change in the second derivative of free energy with respect to composition

upon phase separation by SD.

Table 5.1: Summary of the dimensionless parameters used in the 1-D TIPS study
for a single quench.

Parameter Value

Co 0.5,0.6

Ny, N, 1000

D' 200 000, 500 000, 800 000
Tu‘ 0.25 (quench temperature)
Tz* 0.2 (deeper quench)

The results presented in this chapter for the critical and off-critical quench case
are for a value of the dimensionless diffusion coefficient D" = 200 000 unless
otherwise specified. The results for D* = 500 000 and 800 000 are shown in

Appendix B

Note in a [-D study, it is not possible to determine the type of structure that is
obtained (interconnected or droplet type). The 1-D study can only well describe
the characteristics pertaining to the kinetics of SD. Generally, a 1-D model can be
used to fully describe the mechanism of phase separation by SD and a 2-D model

is used to determine the type of microstructure obtained. .
B R T
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5.1 Symmetrical Phase Diagram

The temperature versus composition phase diagram for a symmetrical polymer
blend used in this study is shown in Figure 5.1. The solid curve represents the
binodal (equilibrium curve) and the dashed curve is the spinodal curve. The two
filled circles represent the two test conditions for a critical and an off-critical
quench with composition of ¢, =05 and ¢ =0.6, respectively. The
composition shown in the phase diagram represents polymer 1. The degree of

polymerization for the symmetric blend is Ny = N, = 1000 with a critical

temperature of 7. = 0.333, a critical composition of ¢, = 0.5, and a critical value

for the F-H interaction parameter of ,1",*= 0.002. The expression for the F-H

interaction parameter used in this study originally came from a mixture of
deuterated polybutadiene/protonated polybutadiene [Jinnai ef al., 1993]. It was
then nondimensionalized to the following form:

0.000844

=-534x10" + (5.1)

For the single quench a dimensionless temperature of T, = 0.25 was chosen and
will be used as the reference point for the double quenching to be discussed in the

next chapter.

5.2 Spatial Concentration Profiles

Figure 5.2 shows the evolution of the dimensionless spatial concentration profiles

for a single quench at the critical composition of ¢. = 0.5, a dimensionless -
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0.35

0.30

0.25
0.20
0.15
0.10 fi | | | | | 1 Y
00 01 02 03 04 0.2 06 0.7 08 09 1.0

C

Figure 5.1: A model symmetrical phase diagram for a polymer blend of degree of
polymerization N, = N, = 1000. The dimensionless critical composition and

temperature for this blend are ¢,” = 0.50 and TC* = 0.333 respectively. The binodal
(equilibrium curve) is represented by the solid curve and spinodal with the dashed
curve. The two circles represent the locations of investigation (a critical co* =05

and off-critical ¢,” = 0.6 quench) at a dimensionless temperature of 7," = 0.25.

The upper and lower equilibrium values at 7" = 0.25 are 0.912 and 0.0877
respectively.

diffusion coefficient of D" =200 000 and a dimensionless temperature of 7} =
0.25. Recall that in Chapter 3, the evolution of concen_tration profiles were
explained in terms of waves. In the early stage, the initial concentration
fluctuations appear due to the growth of the most dominant wavelength and are
weakly nonlinear. The wavelength remains constant while the amplitude changes.
In the beginning of the intermediate stage, the: concentration fluctuations continue
to increase and into the intermediate stage the wavelength starts to change. All

three figures for the critical quench are consistent with the known evolution of the
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concentration fluctuations that are typical of phase separation by SD for the early
to beginning of the intermediate stages [Hashimoto er al., 1986a]. The
dimensionless spatial concentration fluctuations increase with increasing
dimensionless time as they approach the equilibrium values while maintaining
constant position. Numerically, the results shown here are also consistent with
other 1-D studies conducted for polymer blends [Ohnaga and Inoue, 1989;
Takenaka ef al., 1995]. However, the model and the method of solution differ
from the numerical work in this thesis. Figures 5.3 shows the evolution of the
dimensionless spatial concentration profiles for a single off-critical quench with
an initial average composition of ¢, = 0.6 at a dimensionless quench temperature
of T, = 0.25 and a dimensionless diffusion coefficient of D” = 200 000. These
concentration profiles are also consistent with the trends typical of phase
separation by SD for the early to beginning of the intermediate stages [Hashimoto
et al., 1986a]. A comparison between the dimensionless times for the critical and
off-critical quench shows that for the critical quench (f"=3.527 10 0.220 for D" =
200 000 to 800 000), phase separation occurs at earlier times than the off-critical
case (f = 4.898 to 0.22878 for D" =200 000 to 800 000). This can be explained
by referring back to the phase diagram in Figure 5.1. The two filled circles
indicate the locations of the quench at 7,” = 0.25 for the critical and off-critical
quench case. It is known that the driving force for phase separation is directly
related to the distance of the temperature within the confines of the spinodal line
[Tao ef al., 1995]. It can be observed that the distance from the spinodal curve at

T1* = 0.25 for the critical case is much farther inward than for the off-critical
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quench case. Recall from Chapter 3 that the location of the spinodal points are at

O°F

cc”

the inflection points ( =0) in the change in free energy curve. At these

points, there is no influence on the composition fluctuations to overcome energy
barriers or to drive phase separation by SD therefore, there will be a smaller
driving force for phase separation for the off-critical quench case since it is
located closer to the spinodal curve. This explains the reason for the time
differences in the critical and off-critical quench and was also observed in the a

numerical study for polymer solutions [Chan, 1997].

5.3 The Evolution of the Dimensionless Structure Factor

The structure factor is an important parameter that is often used to characterize
the shape of phase-separated domains by SD and relates numerical and
experimental studies [Glotzer, 1995]. The numerical data of the computed
composition fluctuations are used to calculate the structure factor by taking the
fast Fourier transform [Glotzer, 1995]. The relationship between experimental
(the scattering intensity from light scattering experiments) and numerical work
(the structure factor) is of the following form [Strobl, 1985; Copetti and Elliot,

1990; Skripov and Skripov, 1979]:
1(g.1) o Sk 1) :<|A(k,t)2‘> for k=g (5.2) I

is the scattering intensity, g, is the scattering wave vector, S is the structure factor,

k is the wave number in Fourier space and A(k,t)is the fast Fourier
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Figure 5.2: The evolution of the dimensionless spatial concentration profile fqr a
single quench into the unstable region' of the phase' diagram at the fc:l]owmg
dimensionless times: (a) £ = 3.527, (b) £’ =3.843, (c) ¥ =4.014, and (d) ¢ =4.57.
The dashed line through the center of the graph represents the initial average
concentration co'= 0.5 The dimensionless diffusion coefficient for this case is

D" =200 000.
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Figure 5.3: The evolution of the dimensionless spatial concentration profile for a
single quench into the unstable region of the phase diagram at the following
dimensionless times: (a) 1 = 4.898, (b) £ = 5.092, (c) £ = 5.292, and (d) / =
3.703. The dashed line through the center of the graph represents the initial
average concentration ¢, = 0.6. The dimensionless diffusion coefficient for this
case is D" = 200 000,
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transform of the composition fluctuations ¢(r.1). The experimental light

scattering data is then directly proportional to the structure factor and a detailed
discussion of the development of this expression can be found elsewhere [Skripov
and Skripov, 1979]. The following summarizes characteristics of the early to the
intermediate stages of phase separation by SD from light scattering data
[Hashimoto, 1993]:

i.  Early Stages: The scattering intensity grows exponentially and the
scattering vector, g, is independent of time. The growth of the composition
fluctuations is weakly nonlinear and the plotting the natural log of the
evolution of the scattering intensity /(q.f)=17(q,t= O)exp(ZR(q)t)
should produce a straight line for the early stages of SD.

ii..  Intermediate Sfages: The scattering intensity continues to increase but at a
slower rate than in the early stages of phase separation by SD and g

decreases and A (wavelength) increases. The relation between g and 4 is

q:_,1_'

A typical plot of the scattering intensity in the early to the beginning of the

intermediate stages for phase separation by SD is shown in Figure 5.4.

Recall 4(k,t)is the Fourier transform of the composition fluctuations, ¢(#,7).

Following Equation (5.2), at the early and intermediate stages of phase separation

by SD, the concentration fluctuations in Fourier space, 4(k,!), should then also

describe the same characteristics as discussed above regarding the development of

- 86 -



Chapter 5: 1-D TIPS Single Quench

Intensity

Figure 5.4: Typical light scattering profile showing the evolution of phase
separation by SD in the early to the beginning of the intermediate stages. Each
profile represents the intensity at a certain time 7. The increase in time is indicated
by the arrow in the up direction. The scattering intensity is increasing with time
while the position is constant, characteristic of the early stages of SD.

the scattering data (the visual representation is shown in Figure 5.4). To ensure
that the numerical work in this study is in agreement with the known evolution of
scattering profiles as related to the structure factor, the dimensionless structure
factor was calculated at different dimensionless times. MATLAB was used to
calculate the dimensionless structure factor where a small algorithm was written
to determine the fast Fourier transform of the sample data at a specific time and

the square of the magnitude of this result to determine the value of the structure

factor. Figures 5.5 and 5.6 show the evolution of the dimensionless structure

factor as a function of dimensionless wave number, 4", and dimensionless time
for the critical quench case and the off-critical quench case with D" = 200 000. It

can be observed that the value of the dimensionless structure factor increases
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exponentially with time in the early stages of phase separation by SD and begins
to slow down as it approaches the beginning of the intermediate stages where
nonlinear effects come into play. Also, during the early to the beginning of the
intermediate stages, the wave number is constant and this is typical of what
should be observed [Hashimoto, 1993]. Therefore, the evolution of the
dimensionless structure factor (exponential growth and fixed wave number) for
the critical quench and the off-critical quench case show the same trends that have
been reported both in experiment [Okada and Han, 1986; Wiltzius et al., 1988,
Hashimoto ef al., 1986a] and numerical work [Chan, 1998; Chakrabarti et al.,

1990; Zhang et al., 1995]. Recall that the wave number 1s related to the

wavelength by £, = ?:1—7[ From this, the maximum value of the wavelength (the

dominant wavelength of the concentration fluctuations) or the characteristic
length for the early stages of phase separation by SD can be determined. The
characteristic length is a common definition used to express the domain size of
the phase-separated regions by SD, A[Hashimoto, 1993]. It is defined as the

inverse of the wave number and in dimensionless form the expression is:

=2z .3)
k.

T

For the critical and off-critical quench case, it can be observed that as the
dimensionless diffusion coefficient increases, the value of the maximum wave
number also increases (k,,,* = 4 to 7 refer to appendix B for D" = 500 000 and

800000) meaning a decrease in the characteristic length (smaller domain size)
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Figure 5.5: The evolution of the dimensionless structure factor for a single
critical quench (¢," =0.5, D" =200 000 and 1" =0.25) into the unstable region of

the phase diagram at the following dimensionless times: = 3*.527 (thick grey
line), £’ = 3.843 (dash with two dotf,), ! = 4.014 (dash-dot line), t = 4.186 (dotted
line), ' = 4.57 (long dashed line), 7" = 5.026 (solid line).
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Figure 5.6: The evolution of the dimensionless structure factor for a single off-
critical quench (¢, =0.6, D" =200 000 and 7" =0.25) into the unstable region

qf the Phase diagram at .the following gimensionless times: 1 = 4.579 (thick grey
lfne), ! =4.137 (dash with two dotsz, 1 = 5.898 (dash-dot line), 1 = 5.092 (dotted
line), # = 5.292 (long dashed line), " = 5.703 (solid line).
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since 1t has an i 'se relati i S § :
e an mverse 1elat10nsh1p. Table 3.2 summarizes the calculated values of

the dimensionless characteristic lengths for the critical and off-critical quench
case. 4 denotes the dimensionless characteristic length for the single quench

case. Later, for the double quench case the subscript 2 will be used to identify the

secondary characteristic length that forms.

Table 5.2: Dimensionless characteristic lengths in the early stages of SD for the
structures formed at 7 =0.25 with increasing D

Quench Temperature 7, =0.25 A
¢, =0.5, D" =200 000 1.570
Critical ¢, =0.5, D" =500 000 1.047
¢, =05, D =800 000 0.897
¢, =0.6, D" =200 000 1.570
Off-critical ¢, =06, D" =500 000 1.256
¢, =0.6, D" =800 000 0.897

5.3.1 The Growth of the Dimensionless Structure Factor in the
Early Stages of SD

From experimental observation of the early stages of phase separation by SD in
the work of Hashimoto et al. [1983; 1986b), the growth of the scattering intensity
is exponential in the early stage and taking the natural log of these values should
produce a straight line. Into the later stages of phase separation by SD, the
growth rate slows down and nonlinear effects take place. This was thought to be
due to the coarsening of the mixture [Hashimoto et al., 1986b]. For the early

stages from the linear theory, the following relation can be obtained to describe

the light scattering data [Hashimoto et al., 1983]:
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I(g.1)=1{q.c = 0)exp(2R(q)1) | (5.4)
Taking the natural log of equation (5.4) gives:
In/(q,0)=2R(g)t+Inl(g,1=0) (5.5)

Equation (5.5) is the equation of a line in the form y = mx + & where m is the slope
and b is the intercept. The slope is 2R({q). Since /(q.,t) a S(k.?) :<IA(/(,I)2'>

for k = ¢ [Okada and Han, 1986], the evolution of the structure factor also follows
the form of equation (54) and (5.5) and taking the natural log of the
dimensionless structure factor should also show the same trends as the scattering
intensity. Figure 5.7 and 5.8 show the plots of the natural log of the maximum
value of the dimensionless structure factor versus dimensionless time for the

critical and off-critical quench case with D" = 200 000, respectively.
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Figure 5.7: The evolution of the dimensionless maximum structure factor with
dimensionless time from ¢ = 3.879 to /' = 5.212 for a single quench (¢," = 0.5,

D" =200 000 and 7;* =0.25) into the unstable region of the phase diagram. At the

early stages pf phase separation by SD, the initial increase is linear and gradually
slows down !nto-the beginning of the intermediate stage where coarsening occurs.
The dashed line indicates the linearity for the early stages before it deviates.
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5.8 5.9 6.0

Figure 5.8: The evolution of the dimensionless maximum structure factor with
dimensionless time from # = 5164 to 1’ = 5.864 for a single quench (¢," =0.6, D’

= 200 000 and Tl* =0.25) into the unstable region of the phase diagram. At the

early stages of phase separation by SD, the initial increase is linear and gradually
slows down into the beginning of the intermediate stage where coarsening occurs.
The dashed line indicates the linearity for the early stages before it deviates.

From Figure 5.7 to 5.8, it can be observed that the evolution of the natural log of
the dimensionless structure factor at the maximum wave number is linear for the
early stages before nonlinear effects begin. The trends observed in experimental

work [Hashimoto et al., 1986b; and 1983] and numerical work by Henderson and

Clarke [2004].

5.4 The Dimensionless Diffusion Coefficient

The extent of phase separation observed for the critical quench in Figures 5.2, B.1
and B.2 and for the off-critical quench in Figures 5.3, B.4 and B.5 show a gradual
increase with increasing dimensionless diffusion coeficient, D", This increase in

the amount of phase separation can be explained in terms of the definition of the
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dimensionless diffusion coefficient, D". The dimensionless diffusion coefficient
is defined as the ratio of the driving force for phase separation versus the resisting

force and is expressed as:

D - kyI.L'  driving force for phase separation (5.6)
- 7 v[ k_g_T) - resisting force
v

The term in the numerator comes from the change in the free energy density (the
chemical potential) which is the driving force for phase separation (refer back to
equation 3.16) and the term in the denominator is attributed to the square gradient
energy (the interfacial energy) that acts to minimize the total free energy of the
phase separating mixture by creating interfaces. As the value of D (200 000, 500
000, 800 000) increases, the driving force for phase separation is larger and
therefore, more phase separated regions will develop. The increase in the number
of crests and troughs in the concentration profile for the critical quench from
Figures 5.2, B.1 and B2 and the off-critical quench from Figures 5.3, B.3 and B.4
show this observation, For instance, in the critical quench case, Figure 5.2 shows
three crests evident at a dimensionless diffusion coefficient of D* = 200 000 and
in Figure B.1 there are five crests at a dimensionless diffusion coefficient of D™ =
500 000. Also, note that the dimensionless time at which the first sign of phase
separation occurs decreases for the critical quench case from ¢ = 3.527 to 0.220
and for the off-critical quench case from ¢* = 4.898 1o 0.22878 with increasing D",
Therefore, by increasing the driving force for phase separation, the amount and

the rate of phase separation increases.
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3.5 Quench Depth

From the theory of phase separation for the early to the beginning of the
intermediate stages of phase separation by SD, it is known that as the temperature
is decreased (for the case of a system exhibiting an UCST type phase diagram),
the system becomes increasingly unstable due to the increase in the free energy
and therefore more phase separated regions should appear [Ohnaga et al, 1989;

Izumitani ef al, 1990].

In this section, r_esults will be shown for the off-critical quench case at two values
of dimensionless temperature 7;" = 0.25 and 7>" = 0.1 and a dimensionless
diffusion coefﬁciént of D" =500 000. The trends for the critical quench case are
the same and therefore are not shown. The quench depth can is used to determine
how deep a quench is relative to another. It is defined with reference to the

critical temperature in the following dimensionless form:

T,

o =L —T . | (5.7)

For the shallow quench case, at T," = 0.25, the value of the quench depth is TQJ' =

0.08293 and for the deeper quench, at T, " = 0.2, the quench depth is TQJ.=

0.13293. Figure B.3 and Figure 5.9 shows the evolution of the concentration
fluctuations for the shallow off-critical quench and the deeper off-critical quench,
respectively. By comparing the number of crests that are present in Figure B.3
and Figure 5.9, it can be observed that there are more phase-separated regions. In
the shallower quench, there are four crests and for the deeper quench there are 14

crests. This has been observed in experiment by Izumitiani et al. [1990] for a
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mixture of polybutadiene (PB)/poly(styrene-r-butadiene) (SBR), where the

amount of phase separated regions increased with increasing quench depth.

5.6 The Change in the Dimensionless Spatial Chemical
Potential

The chemical potential, s, is used to describe chemical equilibrium involving the
diffusive transport of matter [Van Dijk and Wakker, 1997]. Au for a polymer
mixture in mathematical form for component ; is defined as:

Dl = fhii = B (5.8)

From the development of the general equation to describe phase separation by SD
(—Z£+ Vj=0), the diffusional flux contains the thermodynamic driving force, the
t

change in the chemical potential, for the binary polymer mixture. Therefore, the
plots of the change in the chemical potential will provide useful information about
the mixture in terms of equilibrium thermodynamics. The change in the chemical
potential of polymer 1, 4, in a mixture relative to its pure component, 4’ , written

in terms of enthalpic and entropic contributions [Kurata, 1982; Van Dyk and

Wakker, 1997]:

Ay =gy — 1" = ln(c)+(1— al

Y ](l—C)le (1-¢) (5.9)

The above equation can be written in dimensionless form as follows:

My =g - = T":ln(c')+(1—-]]\\;—'J(l—c’) +x'N, (1—0')2 (5.10)

2
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Figure 5.9: The evolution of the dimensionless spatial concentration profile for a
single quench into the unstable region of the phase diagram at the following
dimensionless times: (a) f = 0.2128, (b) { =0.2221, (c) £ = 02323, and (d)
£ =0.2533. The dashed line through the center of the graph represents the initial
average concentration ¢, =0.6. The dimensionless diffusion coefficient for this

case is D’ = 500 000 and the dimensionless temperature is 7,"=0.2.
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Equation 5.10 is used to calculate the change in the dimensionless spatial
chemical potential of polymer 1 at different dimensionless times. Figure 5.10 and
5.11 show the plots of the evolution of the change in the dimensionless spatial
chemical potential for a single critical quench and a single off-critical quench at
D" = 200 000. The discussion is divided into two aspects, one being the
discussion of evolution of the spatial chemical potential at a fixed D" and the
other in discussing how the increase in D" affects the change in the chemical

potential.

Figure B.14 for the critical quench case (D" = 800 000) will be used as an
example for the discussion of the change in the dimensionless spatial chemical
potential of polymer 1. The same general trends are observed for the off-critical

quench case at the same value of D". From the profiles in Figure 5.10, B.13 and

B.14, it can be observed that there are regions where Ay, increases with

- . . . - - . *
increasing dimensionless time to reach a local maximum and regions where Az

decreases with increasing dimensionless time to reach a local minimum. This can
be explained by combining the spatial chemical potential with the spatial
concentration profile at a given dimensionless time. In Figure 5.12, a combined
plot is shown for a dimensionless time of ¢ = 0.2733, which corresponds to the
last profile in Figure B.2 of the dimensionless spatial concentration profile and the
dimensionless spatial chemical potential. In Figure 5.12, as the composition
fluctuations approach the upper equilibrium value, the change in the
dimensionless chemical potential decreases to a minimum (local minimum). In

other words, the chemical potential of polymer 1 in the mixture is less than that of
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its pure phase, £ mis <4 puw and the change in free energy is being minimized.
At the limit when ¢ approaches 1 (rich in polymer 1), A,U,‘: 0, meaning the
chemical potential of polymer 1 in the mixture, ul’,m-_l , equals the value of the pure

component, £ pure. At the positions of the local maxima in Figure 5.12 b), the

composition of polymer 1 approaches the lower equilibrium value and these
regions are rich. in polymer 2. Eventually, the local maximum values will
decrease and Az~ will approach zero. This being the condition for equilibrium
where the change in the chemical potential of the coexisting phases becomes
equal [Van Dijk and Wakker, 1997]. Going back to Figures 5.10, B.13 and B. 14,
the effect of increasing the value of the dimensionless diffusion coefficient on the'
evolution of the change in the dimensionless spatial chemical potential for a
single critical quench and a single off-critical quench can be observed. Notice as
D" increases from 200 000 to800 000, the rate of change in the dimensionless
chemical potential also increases. At D" = 200 000 to 500 000, for the critical

quench, the evolution of the dimensionless spatial chemical potentials reach the

local maximum and local minimum values and approach equilibrium, AM"—' 0, at
times of £ = 4.57 and £ = 0.6946 respectively. At D" = 800 000, towards the end
of the profile, the local maximum areas start to decrease towards lower values of
A,u,* and similarly, the local minimum values increase towards zero at a much

faster rate (= 0.2733). Therefore, the increase of D" can be interpreted as

stimulating a faster rate of separation and move towards stabilization of the
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Figure 5.10: The evolution of the change in the dimensionless spatial chemical
potential for a single quench into thq unstable regiog of the phase diagram at the
follo‘wing dimensionless times: (a) /' = 3.527, (b) ' = 3.843, (c) £ =4.014, and
(d) ¢ =4.57. The change in the dimensionless chemical potential is defined as the
difference between the chemical potential polymer 1 in the mixture to that of its
pure phase. The dimensionless initial concentration is co*= 0.5 and the
dimensionless diffusion coefficient is D' = 200 000.
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Figure 5.11: The evolution of the change in the dimensionless spatial chemical
potential for a single quench into the unstable region of the phase diagram at the
following dimensionless times: (a) £ = 4.898, (b) 1 = 5.092, (¢) " = 5.292, and
(d) £ = 5.703. The change in the dimensionless chemical potential is defined as
the difference between the chemical potential polymer 1 in the mixture to that of

its pure phase. The dimensionless initial concentration is c,’= 0.6 and the
dimensionless diffusion coefficient is D" = 200 000.
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Figure 5.12: A comparison between the dimensionless spatial concentration
profile (a) to the change in the dimensionless spatial chemical pote\ptial (b) for a
single critical quench with D" = 800 000 at a dimensionless time of #* = 0.2733.

polymer blend. The same can be said for the off-critical quench case. Lee et al.
[2002] showed the same trends in their numerical work for polymer solutions on
the investigation of the change in the dimensionless spatial chemical potential.
The second derivative of free energy with respect to composition of polymer 1 in
dimensionless form is:

F" =T'[;l;—zx'N, (1-c*)j| (5.11)
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The second derivative of free energy with respect to composition determines the

drive of the composition fluctuations around the inflection ((' ,,vf()) points
'Q “
ac

2 "I

where >0 stabilit -stabili g I <
P ity or meta-stability are possible and

cc

<0 results in

instability for the binary mixture. Recall that for instability, the second derivative
of free energy with respect to composition must be less than zero and small
composition fluctuations are enough to create instability. The curvature of the
second derivative of free energy with respect to composition (change in sign)
details the degree of stability, alongside the knowledge of the first derivative of
free energy with respect to composition, with concave downwards (local
maximum) being unstable and concave upwards (local minimum) can be meta-
stable or stable. Figures 5.13 and 5.14 show the evolution of the second
derivative of the free energy with respect to composition spatially. The critical
and off-critical quench are at 7, "= 0.25 with D™ = 200 000, respectively. From
the plots for the critical and off-critical quench case for the change in the second
derivative with respect to composition, it can be observed that the steepness in the
rate of change increases with time and with increasing D" (see Figures B.17 to
B.20 in Appendix B). This indicates an increase in the instability with time as the

system phase separates [Hashimoto et al., 1983]. The values at which second

derivative of free energy with respect to composition is zero, £ " =0, reflect the
points of inflection in the free energy curve at the positions where the curvature
changes sign and also at the critical point (Chapter 3). Therefore, the

observations of the profiles for the second derivative with respect to composition
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match the thermodynamic in describing instability of phase separating mixtures

[Van Dijk and Wakker, 1997].

Also referring back to the explanation given for the time discrepancy for the
occurrence of phase separation by SD for the critical and off-critical quench, it
can be observed that this explanation is valid. By comparing the plots of the
second derivative of free energy with respect to composition for the case where
D" =200 000, it can be observed that the rate of change in the free energy is much
faster for the critical quench than for the off-critical quench case. This indicates

higher instability for the critical quench case.
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L T

Figure 5.13: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component 1 for a
single quench into the unstable region‘ of the phase*diagram at the fgllowing
dimensionless times: (a) /' =3.527, (b) /' =3.843, (c)/ =4.014, and (d) 1 =4.57.
The change in the dimensionless second derivative of free energy is used to
determine the conditions of stabihty (F " > 0), meta-stability (17" >0), and
instability (F* <0). The dimensionless initial concentration is ¢, = 0.5 and the

dimensionless diffusion coefficient is D’ =200 000.
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Figure 5.14: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composttion of component 1 for a
single quench into the unstable region of the phase dlagram at the following
dxmensmnless times: (a) f = 4898, (b) 1 = S, 092, (c) 1 = 5292, and (d)
= 5.703. The change in the dimensionless second derivative of free energy 1s

used to determine the conditions of stability (F" >0), meta-stability (F" >0),

and instability (F* <0). The dimensionless initial concentration is ¢, = 0.6 and
the dimensionless diffusion coefficient is D” = 200 000,
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Chapter 6

Results and Discussion: 1-D TIPS Double
Quench

This chapter presents the 1-D numerical results of phase separation by double
quenching (within the unstable region of the phase diagram) of a polymer mixture
to observe whether secondary phase separated regions are produced inside the
already phase separating regions from the initial quench. Double quenching
involves a two-step process whereby the initial quench is allowed to phase
separate for a certain period of time before the next quench takes place. In
experimental work, the second quench has been made at the intermediate stages
[Tanaka, 1993; Tao et al, 1995] and the late stages [Tanaka, 1993; Tao ef al.,
1995; Hashimoto et af., 2000] of phase separation after the first quench. In the
method used by Hashimoto ef al. the second quench was restricted to the unstable
region such that the blend still phase separated by SD [Hashimoto et al., 2000].
In numerical studies Ohnaga et a/. [1989], made the second quench at different
specifications. There are three distinct time periods they quenched at, the early
stages of phase separation by SD, when the concentration fluctuations were well-
developed and when the concentration fluctuations reached their respective

equilibrium values [Ohnaga et al., 1994]. Henderson and Clarke [2004] made
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their second jump at the late stage of phase separation by SD following the work
of Hashimoto et al. very closely [2000]. In this study, the second jump is made at
the beginning of the intermediate stages and the technique to determine the time
for the temperature jump is based on the results presented by Hashimoto [1986b]
in their experimental work on the different stages of phase separation by SD. The
second quench will still remain in the unstable region so that phase separation is
still occurring by SD. The parameters used in this section are summarized in
Table 6.1.

Table 6.1: Summary of the dimensionless parameters used in the 1-D numerical
study for double quenching

Parameter Value

¢, 0.5 (critical), 0.6 (off-critical)
Ny, N, 1000

D’ 200 000, 500 000, 800 000

Tl* 0.25 (initial quench temperature)
T, (temperature jump) | 0.2 (shallow quench)

T, (temperature jump) | 0.1 (deeper quench)

An initial critical and an initial off-critical quench case are studied with different

values of the driving force, D". The dimensionless temperature chosen for the

initial quench is 7, = 0.25 and two dimensionless temperatures are chosen for the

second temperature jump 7, = 0.2 (shallow quench) and 7, = 0.1 (deeper
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quench). In order to be able to mimic real systems that have been studied for

double quenching in experiments, the values chosen for this study reflect the
order of magnitude of the parameters used in experiment. In Hashimoto’s work

[2000], for a critical quench, the dimensionless quench depth for the initial

temperature jump was calculated to be 7, "=0.1667 and at the second

temperature jump, the dimensionless quench depth was T, "=09444. In
Tanaka’s work [1993], a shallow and a deeper quench were examined. The
shallow dimensionless quench depth for the initial temperature jump was

calculated to be T 0 "=0.01667 and at the second temperature jump, the

4

dimensionless quench depth was 7, "=0.1298. For a deeper quench, the initial

dimensionless quench depth was calculated to be 7, " =0.040476 and at the

o

second temperature jump, the dimensionless quench depth was 7, " =0.1274.

The reason that the quench depth for the second jump is roughly the same in
Tanaka’s work is because he examined the effect of making the initial quench
depth larger (i.e. a deeper initial quench). The values used in this study are
comparable to the experimental values. In this study, for the shallow quench from

an initial quench temperature of T,” = 0.25 to the second quench at Tz~ =0.2,

the quench depth for the initial temperature jump is TQJ' =0.08295 and at the

second quench 7, * —=0.13295. For the deeper quench to T: " = 0.1 the quench

depthis 7, *=0.2330.
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The method used for double phase separation was shown in Figure 1.6. The
double quenching process takes place within the unstable region of the phase
diagram so as to ensure that the system is still phase separating by SD. The initial
quench is made and the system is allowed to phase separate for a certain period of
time, 4 , before the second quench. The time t, is the dimensionless transition
time which corresponds the transition from the early to the beginning of the
intermediate stages of phase separation. In the literature, the criterion for the
second quench is based on the stage of SD (i.e. early, intermediate and late stage)

[Tanaka, 1993; Tao et al., 1995; Hashimoto et al., 2000].

The overall direction of the numerical work presented in this section will examine
the following points to provide a better understanding of the mechanism behind
double phase separation by SD:
(1) Does the evolution of the concentration fluctuations follow the same
trends that are observed for a single quench?
(i) How is the structure factor affected by the double quench and how can
it be used to describe the appearance of secondary structures?
(1) How does the driving force (increase in the dimensionless diffusion
coefficient D) affect the formation of secondary structures?
(iv) How does quench depth affect the formation of secondary structures
(shallow and deeper quench)?
(v)  Are there any significant differences that appear between a critical and

an off-critical quench in terms of growth dynamics for secondary

phase separation?
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(vi) At what point after the second temperature jump do the secondary

structures start to form?
(vii)  How does the growth of the primary and secondary structures evolve
during the second temperature jump?
(vii)) Does the secondary phase separation follow the linear C-H theory in
the early stages of phase separation?
The mterest of this thesis still lies in the formation of the phase-separated
structures and therefore only the early to the intermediate stages will be
examined. The results presented in this chapter for the critical and off-critical
quénch case are for a value of the dimensionless diffusion coefficient D™ = 200
000 unless otherwise specified. The results for D* = 500 000 and 800 000 are

shown in Appendix C.

6.1 Dimensionless Transition Time (t, ) for the Second
Quench

Before the second quench is applied, it is necessary to use a consistent method for
determining at what point a second temperature jump should be applied in all the
simulations.  From the dimensionless spatial concentration profiles, the
composition fluctuations represented the early to intermediate stages of phase
separation by SD. The transition point from the early to the intermediate stages
can be determined through the evolution of the dimensionless structure factor at
the maximum wave number, k.., with time. In the work by the Hashimoto et al.

'y

[1986b] the growth of the scattering intensity is exponential in the early stage and
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taking the natural log of these values should produce a straight line. Into the later
stages of phase separation by SD, the growth rate slows down where nonlinear
effects take place. This was thought to be due to the coarsening of the mixture
[Hashimoto et al., 1986b]. The dimensionless transition time, 1, is defined as the
time at which phase separation moves away from the early stage dynamics and
enters into the beginning of the intermediate stages. How this time is determined

is shown in Figure 6.1 for the critical quench case.

2.4 I |

22 9’__—-—-— -
201 —_—7

1.8
1.6 B
141
1.1 N
N ]
0.7 7]
051 7

0.3
0.1 ' ~
v

B I I

)

*

InStk,”, t

—
|

3.80 4.22 4.65 5.07 5.50

Figure 6.1: The evolution of the dimensionless maximum structure factor with
dimensionless time from /" = 0.8594 to £ = 1.00 for a single quench (¢," =0.5, D"

= 200 000 and 7, =0.25) into the unstable region of the phase diagram. The
dimensionless transition time is 4.720. At the early stages of phase separation by
SD the initial increase is linear and gradually slows down into the beginning of

the intermediate stage where coarsening occurs. The transition point occurs where
the two tangent lines intersect.
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From the plot of the maximum values of the dimensionless structure factor a
given dimensionless times for the single quench, the dimensionless transition time
can be obtained by making two tangent lines where the change in the growth rate
is obvious. In Figure 6.1, the two tangent lines are drawn and the point of

intersection is where the transition time is located. Figure 6.1 is an actual plot for
the critical quench case at ¢,”=0.5, D" = 200 000 and T =0.25. The values

correspond to the plot of the structure factor shown in Chapter 5 (Figure 5.3.).
Since one of the interests in this section is to determine how driving force affects
the formation of secondary structures, a summary of the transitions times at each
given condition to be tested is summarized in Table 6.2.

Table 6.2: A summary of the dimensionless transition times (at Tl' =0.25)

determined from plotting the maximum values of the dimensionless structure
factor with dimensionless time.

Dimensionless Transition
Quench Parameters Time t;
¢, =0.5, D' =200 000 4.720
Critical ¢’ =05, D' =500 000 0.650
¢,"=0.5, D" =800 000 0.256
¢, =0.6, D" =200 000 5.520
Off-critical ¢, =06, D' =500 000 0.903
¢," =0.6, D" =800 000 0.323

From Table 6.2, the trend observed with the increase in the dimensionless
diffusion coefficient is a decrease in the dimensionless transition time. This

should be expected since phase separation occurs at a much faster rate with
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increasing D" and therefore, should reach the beginning of the intermediate stage

much faster.

The plots to determine the dimensionless transition time for all other cases will
not be shown since the evolution of the maximum value of the dimensionless

structure factor with dimensionless time show the same general trend.

There is now a consistent method of determining when the second temperature
jump should take place and in the analysis, the jump will be made at the transition

time.
6.2 Dimensionless 1-D Spatial Concentration Profiles

Figure 6.2 shows the evolution of the dimensionless spatial concentration profile
(for an initial critical) quench after the second temperature jump. The initial
phase separation temperature is 7 = 0.25 and the second temperature jump 1s
T, “= 0.2 at the transition time. The transition times is " =4.72 for D" = 200
000. For each case (also referring also to Figures C.1 and C.2 in appendix C),
after the second temperature jump, there is no evidence of double phase
separation. What is observed in the evolution of the spatial concentration profiles
is a continuous growth of the already growing initial profiles presented in Figures
5.2, B.1 and B.2 for D" = 200 000 to 800 000. Hashimoto ef al. [2000; Hayashi et
al., 2000a] have observed this continuous growth in their experimental work
when investigating the effect of initial domain size on secondary phase separation.

Numerically, Henderson and Clarke [2004] have also observed this in their 2-D
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study on double quenching in the late stages of phase separation by SD at a
shallower quench depth. After the second temperature jump, there is a lag time

that exists before a significant increase is observed in the growth of the

concentration profiles approaching the new upper (c(_,. =0.9695) and lower

(¢, =0.03049) equilibrium composition values at T “ = 0.2. This lag time

appears because the mixture, upon subjection to a change in conditions, requires
time to adjust to the new environment and therefore, experiences a lag or a
transition period before reaching the new state. For the initial critical quench
case, the lag times decrease from 0.014 to 0.0006 as D increases. The decrease
in the lag time as D’ increases is expected since D’ increases the rate of phase

separation.

Figure 6.3 shows the evolution of the dimensionless spatial concentration profiles
(for an initial off-critical quench) after the second temperature jump. Again the
initial temperature jump is at a temperature of Tl* = (.25 and the second
temperature jump is 72" = 0.2 at the transition times. The transition time in this
case for D” = 200 000 is #, = 5.52. The observations made for the critical quench
case can also be applied to the off-critical quench case in that the growth of the
concentration fluctuations from the initial quench are amplified by the second
temperature jump with no sign of double phase separation present. However,
there is a slight difference in the concentration profile at D’ = 500 000 and 800
000 (See Figures C.3 and C.4 in Appendix C). In Figures C.3 and C.4 there is a

slight destructive interference that can be observed in peak 3
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Figure 6.2: The evolution of the dimensionless spatial concentration profile for a
double quench from 73 "= 0.25 to T3 "= 0.2 at the transition time of #,/= 4.72 at
the following dimensionless times: (a) /' = 4.731, (b) ' = 4.745, (c) /' = 4.798,
and (d) £’ = 4.861. The dashed line through the center of the graph represents the
initial average concentration ¢, = 0.5. The dimensionless diffusion coefficient for
this case is D" = 200 000.
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(Figure C.3) and peak 1 (Figure C4). However, this increase in D is not
sufficient to cause the mixture to reach a new instability as it appears to restore
itself to match the evolution of the other peaks in the profile. A lag time also
exists for the off-critical quench case after the second quench before a significant

growth of the concentration fluctuations is observed. The lag times decrease from

0.041 to 0.0063 as D" increases.

Figure 6.4 shows the evolution of the dimensionless spatial concentration profiles
(for the initial critical quench) after the second temperature jump at a deeper
quench depth of 7;" = 0.1. The second quench is made at the same transition
times shown in Table 6.2. The initial temperature was kept constant at 7} = 0.25
to be consistent with the shallower quench to observe the effect of making a
deeper second quench. The concentration profiles in this case look different from
the single quench and the shallower quench at 7, = 0.2. In Figure 6.4, at £ =
4.748, there are noticeable obstructions in the peaks and troughs of the
concentration profile. The obstructions gradually increase with time as the
primary peaks approach the new equilibrium values at the second temperature and
they decrease at the troughs as the lower equilibrium values are approached.
These profiles are similar to the ones generated by Ohnaga et al. [1994], in their
investigation of reaction induced phase separation (see Chapter 2 for details). A
lag time exists after the second quench before the first sign of double phase
separation is observed. The lag times are 0.02, 0.0041 and 0.0011 and decreases

with increasing D". This is consistent the increase in the rate and
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Figure 6.3: The evolution of the dimensionless spatial concentration profile for a
double quench from 7; "= 0.251t0 75 * = 0.2 at the transition time of # = 5.52 at
the following dimensionless times: (a) /' = 5.534, (b) " = 5.575, (c) 1 = 5.625,
and (d) £ = 5.671. The dashed line through the center of the graph represents the

initial average concentration ¢, = 0.6. The dimensionless diffusion coefficient for
this case is D" = 200 000.
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amount of phase separation with increasing D*. The same trends hold for 2"

500 000 and 800 000 shown in Appendix C.

Figure 6.5 shows the evolution of the dimensionless spatial concentration profiles
(for the initial off-critical quench) after the second temperature jump to a deeper
quench depth of 7" = 0.1 for the same transition times in Table 6.2. The initial
temperature was kept constant at 7" = 0.25. The effect of making a deeper
second quench showed noticeable obstructions on the concentration profiles in the
peaks and troughs as in the case of the critical quench similar to the ones
generated by Ohnaga er al. [1994]. The obstructions to the peaks of the
composition fluctuations are larger compared to the critical quench case. The
troughs in the composition profiles show almost no secondary obstructions. This
is attributed to the location of the compositions in the phase diagram before the
second quench is made and will be discussed later on. The lag times before the
appearance of double phase separation after the second quench are 0.025, 0.0047,
and 0.0017 for increasing D". This lag time decreases with increasing D", The
lag times are larger for the initial off-critical quench than for the critical quench.
This observation made for the single quench case and was shown to be dependent

on the location of the quench as compared to the spinodal curve.
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Figure 6.4: The evolutlon of the dlmensmnless spatial concentration proﬁle for a
double quench from T, "=025t0 73 =0.1 at the transmon time of t, =472 at
the following dimensionless times: (a) £ = 4.726, (b) ' = 4.740, (c) ¢ = 4.748,
and (d) 1 = 4.769. The dashed line through the center of the graph represents the

initial average concentration ¢,"=0.5. The numbers on top of the graph are used

to identify the number of peaks for a dimensionless diffusion coefficient D* = 200
000.
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Figure 6.5: The evolution of the dimensionless spatial concentration profile for a
double quench from 7; *=0.25 to 72 "= 0.1 at the transition time of £, = 5.52 at
the following dimensionless times: (a) I’ = 5.526, (b) ¢ = 5.545, (c) " = 5.549,
and (d) /' = 5.565. The dashed line through the center of the graph represents the

initial average concentration ¢, = 0.6. The dimensionless diffusion coefficient for
this case is D" = 200 000.
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6.3 The Evolution of the Dimensionless Structure Factor
After the Second Temperature Jump

This section is split into two parts to describe the observations of the evolution of
the dimensionless structure factor after the second quench to T 2* = (0.2 and Tz* =
0.1 for the initial critical and initial off-critical quench case. Analysis of the
growth rates of the primary and secondary peaks (if they form) will be discussed
in a later section. Here, the focus is on physical observations and relating what is
observed here to the observations made for the evolution of the dimensionless
spatial concentration profiles. The dimensionless structure factor is calculated in
the same way as described in Chapter 5 for the single quench case. The evolution
of the dimensionless structure factor for each case is shown right after the second
quench is made at the specified dimensionless transition times in Table 6.2.
Unfortunately, it was not possible to examine the entire process of the growth and
decay of the secondary structures (when they occurred), which has been done
experimentally, due to numerical problems encountered as the mixture reached

the equilibrium compositions at 7,". Referring to Chapter 4, in the 1-D model, as

¢’ > 0andc - | the terms in the model with i and —— approached infinity

(! —C)

respectively.

To relate the numerical results to experimental results, the numerical work should
reflect the same evolution in pattern formation detailed in the structure factor as in
the work of Hashimoto et al. [Hayashi et al., 2000a)] and in the 2-D numerical

study by Henderson and Clarke [2004]. In the experimental work after the second

-121-



Chapter 6: 1-D TIPS Double Quench

quench at a certain domain size formed from the first quench, there appeared a
second broad peak that grew with time in the light scattering protile. This
observation from the light scattering data was a result of the formation of
secondary domains. The structure factor from the numerical work should also
show the emergence and growth of a broad peak. Henderson and Clarke [2004]
have observed the appearance and growth of a second broad peak in the evolution
of the structure factor after a second quench at the late stages of phase separation
by SD in their numerical study. This is the basis of comparison for the numerical

work presented in the next two sections.

6.3.1 Second Temperature Jump to 75 = 0.2

Figure 6.6 shows the evolution of the dimensionless structure factor after the
second quench to T2*= 0.2 from the initial critical quench at Tl* =025 for D" =
200 000. Recall from the evolution of the concentration profiles for the initial
critical quench, (Figures 6.2), after the second quench, the concentration profiles
were amplified from the initial single quench profiles. There was no sign of
double phase separation present and therefore, the growth of the structure factor
should also show an increase in the intensity of the primary peak but no
occurrence of a secondary peak forming. This result is in accordance to the
definition of the structure factor (Chapter 5) and is observed in the evolution of
the dimensionless structure factor for the initial critical quench case at all values
of D’ investigated. A similar trend was observed experimentally in Hashimoto’s

work, where there was no appearance of the second broad peak in at the condition
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of a smaller domain size before making the second temperature jump [Hayashi et
al., 2000a]. However, the difference in their work and the work presented here 1s
that the dependent variable is the value of the second temperature jump that takes
place and not the different domain sizes. Numerically, Henderson and Clarke
[2004] also observed the same continuous growth for a shallow quench following
Hashimoto’s work. The reason that there is no occurrence of a second peak is
because the quench depth at Tz* = (.2 was not significant enough to cause the
mixture to destabilize in a secondary sense. This will be explained through the
investigation of the change in the chemical potential and the second derivative of
the free energy with respect to composition in a later section. A comparison of
the structure factor presented here and for the single quench at T "= (.25 show the
same values for &, for each case, indicating that there is no change in the
maximum value of the wave number which encompasses the dominant mode of
the composition fluctuations, for the primary structures, in the early period of the
second quench. The second quench does not have an effect on the maximum
wave number of the primary structure, just the intensity of the phase separation
process in the early period after the second quench. This is consistent with the
work by Hayashi et al. [2000a] and Henderson and Clarke [2004]. In terms of the
relative size of the phase-separated regions after the second quench, the
information of constant & e signifies that the primary structure does not change
in size in the early period. Recall the relationship between k*,,,,u. and
dimensionless characteristic length which measures the relative size of the phase-

. « 2z . )
separated domains, A'=-T—. This observation is consistent with the

max
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experimentally observed evolution of the light scattering data in the work by
Hashimoto ef al. [2000] when investigating the growth ot the primary structure
after the second quench. Furthermore, the growth of the dimensionless structure
factor with time looks the same as for a single quench case in the early stages of
SD. After the second quench, the growth of the dimensionless structure factor
continues as if in the early stages of SD and proceeds to take the same course as a
single quench into the intermediate stages (composition reaching the upper and
lower equilibrium values). Hashimoto et a/. [2000] also confirmed this
experimentally for the case where no broad secondary peak was observed and
only the primary peak continued to grow. Table 6.3 summarizes the values for
the characteristic length for the critical quench at a second temperature jump of

Tz* =0.2.

Figure 6.7 shows the evolution of the dimensionless structure factor after the
second quench to 7, = 0.2 from the initial off-critical quench at T} *=0.25 for D
= 200 000. In the off-critical quench case, the results are different from the
evolution of the dimensionless structure factor observed for the critical quench
case. There appears to be a secondary broad peak forming in the evolution of the
dimensionless structure factor. In Figure 6.7, the peak is extremely small and
broad. This small broad peak does not reflect in the evolution of the
dimensionless spatial concentration profile in Figure 6.7 and a continuous
increase of the original growth of the concentration fluctuations is observed.
This secondary peak is more obvious and increases as D" increases (see Figure

C.11 and C.12 in Appendix C). The effect of increasing the dimensionless
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Figure 6.6 The evolution of the dimensionless structure factor for a double
quench from 7; "= 0.25to 7, * = 0.2 (second temperature jump made at transition
time of 7, = 4.72) at the following dimensionless times: " = 4.731 (light grey solid
line), I = 4.745 (dash-dot line), /' = 4.798 (dashed line), and ¢ = 4.861 (solid

black line). The initial average concentration ¢, = 0.5. The dimensionless
diffusion coefficient is )" = 200 000.

diffusion coefficient (increasing the driving force for phase separation) with the
second temperature jump causes the formation of the secondary peak for the
initial off-critical quench case and will be discuss.ed in a later section. The growth
rate of the primary and secondary peaks is consistently increasing with time.
How they grow relative to each other will be explored in a later section. Note that
the appearance of a secondary peak was not sufficient enough to cause the
mixture to develop secondary structures. However, small destructive interference
was observed in the concentration profiles (see Figure C.3 and Figure C.4 in
Appendix C). The structure factor for the double and single quench show the

same values for k.. for each case, indicating that there is no change in the
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maximum value of the wave number in the early period of the second quench.
The second quench does not have an effect on the maxinum wave number for the
initial off-critical quench case either, just the mtensity of the phase separation
process in the early period after the second quench. The relative size of the
primary phase-separated regions after the second quench does not change in size

in the early period. The characteristic lengths of the primary and secondary peaks

after a second quench to 7, =0.2 for initial off-critical case are summarized

below in Table 6.3.

In summary, the shallower second quench does not show secondary phase
separation in the initial critical or off-critical quench case. There is only an
amplification of the dimensionless structure factor. The maximum wave number
remains constant with the same value as the initial quench case in the early period

after the second quench.

6.3.2 Second Deeper Temperature Jump to T, =0.1

A deeper quench was made to test for secondary structure formation. Figure 6.8
shows the evolution of the dimensionless structure factor after the second quench
to T, = 0.1 from the initial critical quench at 7, = 0.25 for D'= 200 000. Recall
that in the dimensionless spatial concentration profiles (Figures 6.4) for the initial
critical quench at 7 "= 0.25 and then to a second quench at 7T’ y = 0.1, there was
the appearance of constructive and destructive interferences. The interference
patterns were more obvious in the evolution of the dimensionless spatial

concentration profiles as the value of D" increased (see Figures C.5 and C.6).
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Figure 6.7: The evolution of the dimensionless structure factor for a double
quench from 7} "=025t0 Ty = 02 (second temperature jump made at a
transition time of #, = 5.52) at the following dimensionless times: ' =5.534 (light
grey solid line), 1" =5.575 (dash — two dots line),  =5.625 (dotted line), and # =

5.671 (solid black line). The initial average concentration c0*= 0.6. The
dimensionless diffusion coefficient for this case is D° = 200 000.

Table 6.3: Dimensionless characteristic lengths for the primary structures
(" =0.25) and the secondary peaks (7,” = 0.2) formed

Initial Quench Parameter
Teinperature Jur?p from A A
7 =025t0 1, =02

¢, =0.5 D" =200 000 1.57 NA

Critical ¢, =0.5 D"=500 000 1.047 NA
¢, =0.5, D'=800 000 0.897 NA

¢, =06, D =200 000 1.57 NA
Off-critical | ¢* =06 D" =500 000 1.256 0.698
¢, =0.6, D" =800 000 0.897 0.523
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These observations are in agreement with the evolution of the dimensionless
structure factor. There are obvious secondary peaks that form right after the
second quench at 75" = 0.1. In the profile, both the primary and the secondary
peak grow with time. This reflects in the growth of the concentration fluctuations
with time as the primary peaks and troughs start to approach the upper and lower
equilibrium values and the secondary peaks and troughs start to increase in value
as well at 7," = 0.1. Hayashi et al. [2000a] and Henderson and Clarke [2004]
have observed the same effects to the growth of the structure factor when
secondary structures form. Note that the intensity of the primary peak decreases
with increasing D* when comparing Figure 6.8 to Figure C.13 and C.14. This
may be due to the fact that the formation and the increase in growth rate of the
secondary peaks 1s affecting the growth of the primary peaks with time as it
approaches the new equilibrium values at T,;" = 0.1. Also, the value of the
maximum wave number for the primary peak does not shift when the quench
depth is lowered. There is only an increase in the intensity of the primary peak
and the appearance and growth of a secondary peak. The interferences observed
in the dimensionless spatial concentration profiles where secondary phase

separation is observed can be explained by evaluating the dimensionless

* 3

characteristic length, /1':-21 which is equal to the wavelength of the

dominant wave in SD. As & me gets larger (smaller), 4* gets smaller (larger) and
therefore, the result of adding the two wavelengths together from the initial
quench and the second quench will cause the interferences in the concentration

profiles. This expianation was also given by Ohnaga ef al. [1989] and Yang et
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al. [1998]. The characteristic lengths of the primary and secondary structures
after a second quench to 7,” =0.1 for the critical case are summarized in Table

6.4. As the dimensionless diffusion coefficient increases, both the primary and
secondary characteristic lengths decrease. This should be expected since D

increases the amount of phase separation.
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Figure 6.8: The evolutlon of the dlmensmnless spatial concentration proﬁle for a
double quench from T°=025t0 7 =01 (at the transition tlme oft, 4.72) at
the followmg dimensionless times: 1 = =4 726 (light grey line), 1" = 4.740 (dash-
dot line), ¢ = 4. 748 (dotted line), and /= 4.769 (solid line). The initial average

concentration ¢, =0.5. The dimensionless diffusion coefficient is D* = 200 000.

Figure 6.9 shows the evolution of the dimensionless structure factor after the
second quench to 7, = 0.1 from the initial off-critical quench at 7," = 0.25 for D
= 200 000. Like the initial critical quench case, the dimensionless spatial
concentration profiles in Figures 6.5 shows an increasing amount of constructive
and destructive interferences for the initial off-critical quench case. These

interferences increase as D" increases (see Figures C.7 and C.8 in Appendix C).
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In the evolution of the dimensionless structure factor, this is reflected in the
formation of secondary peaks which can be observed to increase in intensity as D’
increases (see Figures C.15 and C.16). Comparing back to the case where the
second quench was to 7; = 0.2, the intensity of the secondary peak is higher here
for all three plots. This can be explained by comparing the location of the quench
with respect to the spinodal at 75" = 0.2 as opposed to 73" = 0.1 and will be
examined in the next section on quench depth and double phase separation. The
value of the maximum wave number for the off-critical initial quench and for the
second quench does not change for the primary peak in the structure factor plots

even with a deeper quench. The characteristic lengths of the primary and
secondary structures after a second quench to 7,  =0.1 for the off-critical case are

summarized in Table 6.4. The characteristic lengths also decrease with increasing

D" as in the critical quench case.

Overall, the same trends hold for the initial critical and off-critical quench case in
the evolution of the dimensionless structure factor after the second deeper quench.
The deeper second quench shows secondary phase separation with the formation
and growth of a secondary peak. The primary peak also grows after the second

quench in intensity but the maximum wave number remains constant in the early

period after the second temperature jump.
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Figure 6.9: The evolutlon of the dlmensmnless spatial concentration proflle for a
double quench from 77" = 0.25 to 75" = 0.1 (at the transition t1me of t,=5.52) at
the following dimensionless times: 1 = = 5.526 (dash-dot line), ' = 5.545 (light
grey line), /' = 5.549 (dotted line), and ¢ = 5.565 (solid line). The dashed lme

through the center of the graph represents the initial average concentration co =
0.6. The dimensionless diffusion coefficient for this case is 2 =200 000.

Table 6.4: Dimensionless characteristic lengths for the primary structures
(7[*:0.25) and the secondary structures (7;*:0.1) formed upon further
quenching from after the determined dimensionless transition times.

Parameter
Initial quench Tet*nperature junjp from A A
7, =025t0 1, =0.1

¢, =0.5, D" =200 000 1.57 0.628

Critical ¢, =0.5, D" =500 000 1.047 0.393
¢,'=0.5 D' =800 000 0.897 0.349

¢, =0.6, D" =200 000 1.57 0.897

Off-critical ¢,'=0.6, D'=500 000 1.256 0.698
¢, =0.6, D" =800 000 0.897 0.523
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6.4 Quench Depth and Secondary Phase Separation

The dimensionless spatial concentration profiles for the shallower and deeper
second quench showed a difference in the evolution of phase separation. At the
second jump of 73 = 0.2, the evolution of the spatial concentration profiles were
amplified from the original quench at 7} = 0.25, eventually approaching the new
equilibrium values at the second temperature. At the second jump of 75 = 0.1,
the evolution of the spatial concentration profiles showed the formation of troughs
(crests) within the crests (troughs) of the original phase separating profile. This
change in the concentration profile can be attributed to the formation of the
secondary phase separated regions. Also, for the initial off-critical quench, after
the second jump to 73" = 0.1, the obstructions were more evident in the peaks of
the composition fluctuations rather than at the troughs. To examine why these
differences occur in the dynamics of phase separation between the two quench

depths requires examining the phase diagram. The quench depths are

TQJ

"=0.13295 for the shallower quench and 7, "=02330 for the deeper
quench. Figure 6.10 shows the phase diagram for the symmetrical blend studied
showing the specific regions of interest for the two quench depths at the critical
and the off-critical quench case using the case where D" =500 000 to explain the
observations (see Figure B.1 and Figure B.3 in Appendix B). The same trends

hold for the other values of D°. This provides information about the mechanism

of phase separation. Tanaka [1993] proposed similar mechanisms where by the
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Figure 6.10: A model symmetrical phase diagram for a polymer blend of degree
of polymerization N, = N, = 1000. The two open triangles represent the

locations of investigation (a critical ¢," = 0.5 and off-critical ¢,” = 0.6 quench) at

the initial dimensionless temperature jump of 7]* = 0,25 with D" = 500 000. The
open circles represent the locations of the phase separating system when it has
reached the transition time 4 = 0.65 (critical quench) and the open squares
represent the phase separating system when it has reached the transitions time # =
0.903 (off-critical quench) where the second temperature jump is made. The
filled circles show the location of the system at the start of the second shallower
temperature jump (7 = 0.2) and the deeper temperature jump (7” = 0.1) for the
critical quench case. The filled squares show the location of the system at the start
of the second shallower temperature jump ( 7" =0.2) and the deeper temperature
jump (7" = 0.1) for the off-critical quench case.

location of the compositions before and after the second quench made a

significant impact on the formation of secondary phase-separated regions.

In Figure 6.10, the unfilled triangles denote the locations of the initial critical and

off-critical quench compositions at 7," = 0.25. The unfilled circles represent the
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compositions of polymer 1 right before the second quench is made 1o 727 = 0.2
and 7,” = 0.1 for the initial critical quench. The unfilled squares represent the
compositions of polymer [ right before the second quench is made to 7" = 0.2
and Tz* = (.1 for the initial off-critical quench. The filled circles and squares then
represent the position of the initial composition for the second quench within the
phase diagram for each temperature jump (7" = 0.2 and 7" = 0.1). From the
phase diagram, two distinct observations can be made. First, the locations of the
compositions for the critical and the off-critical quench at the transition times are
slightly different. For the critical quench, the two phase-separated compositions
are equidistant from the initial value of 0.5 and are located at approximately the
same locations on opposite ends close to the spinodal line. For the off-critical
quench case, the two phase-separated compositions are shifted in that one is still
located within the spinodal while the other is located beyond the spinodal into the
meta-stable region. The second observation is the new location of the
composition in the phase diagram after the jump to the second temperature in

relation to the position of the spinodal curve (filled circles and squares). For the
shallower second quench (7, " =0.13295), the location of the initial starting
point at 75" = 0.2 is much closer to the spinodal curve for both the critical and the

off-critical quench case than compared to the quench at T, =0.1. Recall from

Chapter 3 that the location of the spinodal points are at the inflection points

( O*F
oc?

=0) in the change in free energy curve. At these points, there is no

influence on the composition fluctuations to over come energy barriers or to drive
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phase separation by SD. These two observations can be used to explain
differences in the interferences in the spatial concentration profiles for the initial
off-critical quench case, at a second temperature jump of T," = 0.1, where the
peak positions have more obstructions than at the trough positions. Because there
is this difference in the locations of the composition for the second quench, the
instability at each composition is different and therefore, the difference in the
intensity of the obstructions observed. In terms of the two quench 'depths, it is
known that the driving force for phase separation is directly related to the distance
of the temperature within the confines of the spinodal curve [Tao ef al., 1995).
For the second quench made not too far from the spinodal curve at Ty = 0.2 there
will be a smaller driving force for phase separation. A deeper quench to T, =0.1
has a larger driving force (further inward into the unstable region) where a new
instability is observed and double phase separation occurs. Therefore, the deeper
the quench depth and the further inward it is into the unstable region, the more
likely a new instability will occur and cause double phase separation. Perhaps
there is a critical quench depth that must be attained before a new instability will
form and cause double phase separation. To investigate this, more simulations

will have to be performed and is beyond the scope of this thesis.

6.5 Change in the Dimensionless Spatial Chemical
Potential and the Second Derivative of Free Energy
For Double Quenching

Figure 6.11 and Figure 6.12 show the evolution of the dimensionless spatial

chemical potential after the second quench to 7" = 0.2 at the transition time
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corresponding to D" = 200 000 for the mitial critical and initial off-critical quench
case, respectively. Recall, the diffusional flux within the governing equation that
describes phase separation by SD contains the thermodynamic driving force, the
change in the chemical potential, for the binary polymer mixture. Diffusion
occurs to minimize the free energy and therefore, as the mixture separates and
approaches equilibrium, the gradient in the free energy (change in the chemical

potential) should eventually approach zero, as defined in Chapter 3,

oF .
_é?:(#’_“)—u[(z’):O. In Figure 6.11 and Figure 6.12, after the second

temperature jump, the same trends are observed. The only difference is the rate at
which the blend approaches stability because of the difference in the values of D°
(see Figures C.17 and C.20 in Appendix C). The profiles look the same as the
ones observed for a single quench. However, the rate of change in the chemical

potential is much faster than in the single quench case because of the increased
quench depth. There are regions where Ay, increases with increasing

dimensionless time to a local maximum and regions where Az decreases with

increasing dimensionless time to a local minimum. As the composition
fluctuations approach the new upper and lower equilibrium values after the
second quench, the change in the dimensionless chemical potential plateaus
before it starts to move towards equilibrium. At the local minimum positions,

when the blend is stabilizing and at the limit when ¢" approaches 1 (rich in

polymer 1), A/u,*= 0, meaning the chemical potential of polymer 1 in the

mixture, 4, mix, equals the value of the pure component, 4, e . At the positions of

-136 -



Chapter 6: 1-D TIPS Double Quench

the local maximums. the composition of polymer 1| approaches the lower

equilibrium value and these regions are rich in polymer 2. Eventually, the local
maximum values will decrease and Ay, will approach zero. This being the

condition for equilibrium where the change in the chemical potential of the

coexisting phases becomes equal [Van Dijk and Wakker, 1997].

Figures 6.13 and Figure 6.14 show the evolution of the dimensionless spatial
chemical potential after the second deeper quench to 7 ," = 0.1 (at the transition
times corresponding to D" = 200 000) for the initial critical and initial off-critical
quench case, respectively. For D" =500 000 and 800 000 refer to Figures C.21 to

C.24. The profiles after the second temperature jump show the same trends but
are slightly different than the shallower second quench case. Au, shows a

plateau after the second quench and flattens out at the local maxima and minima.
The flattening of the local maxima and minima can be attributed to the adjusting
of the blend to the change in quench conditions. The introduction of the smaller
obstructions that are occurring within the peaks and troughs of the concentration
profiles are new instabilities and create a small change in the chemical potential
around the local maxima and minima, hence, the flattening at these areas. If
allowed to proceed further, until the secondary phase separation disappears
(merging with the primary structures), the change in the dimensionless spatial
chemical potential should follow the same trend as observed for the shallower
second quench case. As the secondary phase separation occurs, the primary peaks

and troughs approach the new equilibrium values and the chemical
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Figure 6.11: The evolution of the change in the dunenswnless spatial chemical
potentlal for a double quench from 7, = 0.25to 7" 2, = 0.2 at the transition time of
=472 at the followmg dimensionless times: (a) (=4, 731, (b) £ =4, 745, (¢) £
= 4 798, and (d) /" = 4.861. The change in the dimensionless chemical potentxal is
defined as the difference between the chemical potential polymer 1 in the mixture

to that of its pure phase. The dimensionless initial concentration is ¢, = 0.5 and
the dimensionless diffusion coefficient is D” = 200 000.
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Figure 6.12: The evolution of the change in the dimensionless spatial chemical
potential for a double quench from 73" = 0.25 to 75" = 0.2 at the transition time of
1= 5.52 at the following dimensionless times: (a) 7 = 5.534, (b) ' =5.575, 17
=5.625, and (d) ' = 5.671. The change in the dimensionless chemical potential is
defined as the difference between the chemical potential polymer 1 in the mixture
to that of its pure phase. The dimensionless initial concentration is c, = 0.6 and
the dimensionless diffusion coefficient is D" = 200 000
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potential of polymer 1 in the mixture. z7, .. approaches the value of the pure

* *
component, /4 qr. and Az, approaches zero.

Figures 6.15 and 6.16 show the evolution of the second derivative of the free
energy with respect to composition spatially after the second quench to 73" = 0.2
from the initial critical and off-critical quench, respectively. Recall in the
unstable region, infinitesimally small composition fluctuations are enough to
create instability. The second derivative of free energy with respect to

composition determines the drive of the composition fluctuations around the

2 ~2

inflection (—- =0 points where CC; — > stability or meta-stability are possible
2
, _
and <0 results in instability for the binary mixture. The curvature of the

C2

second derivative of free energy with respect to composition can then detail the
degree of stability, alongside the knowledge of the first derivative of free energy
with respect to composition, with concave downwards (local maximum) being
unstable and concave upwards (local minimum) can be meta-stable or stable. The
additional increase in the free energy and thus the amount of instability will
depend on how far away the system is from the spinodal curve. From the plots of
the second derivative of the free energy with respect to composition for the initial
critical and initial off-critical quench case, second quench where the impact of the
second quench has not fully affected the phase separation rate of the mixture
(adjustments to new conditions take into effect). There is a significant increase in

the steepness of the curve after the second temperature jump and this increase in
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the steepness (increasing the thermodynamic driving force Figures C.25 to C.28)
then results in the amplification of the phase separation occurring in the
compdsition profiles where the initial primary fluctuations are amplhified and

approach the new equilibrium values at the second temperature.

Figures 6.17 and Figures 6.18 show the evolution of the second derivative of the
free energy with respect to composition spatially after the second deeper quench
to T," = 0.1 form the initial critical and off-critical quench, respectively. For the
deeper quench, the profiles show the same trend for the second derivative of the
free energy with respect to composition for the initial critical and initial off-
critical quench case. The second derivative of free energy with respect to
composition in this case looks much different than the plots for the shallower
quench case. Notice that shortly after the second deeper jump there is a dip in the
local maximums and gradually grows. In the local minimums, shortly after the
second jump, the emergence and growth of a peak occurs and further divides into
a double well shape. The formation of this new double well within the already
existing double well becomes more defined as D" is increased (see Figures C.29
to C.32). This new double well can account for the new instability that occurs
when secondary phase separated regions form. The steepness of the curve after
the second temperature jump increases (increasing the thermodynamic driving
force) in both double well-shaped instabilities. This reflects in the shorter time
periods taken for the primary composition fluctuations from T," = 0.25 to reach
the new equilibrium values at 7" = 0.1 and for the growing of the new secondary

structures. This additional increase in the free energy relating to distance
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Figure 6.13: The evolution of the change in the dlmenswnless spatial chemical
potent1al for a double quench from 77 = 0.25 to Tz = 0.1 at the transition time of
=4.72 at the followmg dimensionless times: (a) £ =4, 726, (b) £ =4, 740, (¢) £
= 4 748, and (d) £ = 4.769. The change in the dimensionless chemical potential is
defined as the difference between the chemical potential polymer 1 in the mixture

to that of its pure phase. The dimensionless initial concentration is ¢, =0.5 and
the dimensionless diffusion coefficient is D* = 200 000.
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Figure 6.14: The evolution of the change in the dlmensmnless spatial chemical
potentlal for a double quench from 7,"=025to T, = 0.1 at the transmon time of
t;=5.52 at the followmg dimensionless times: (a) ¢ = 5.526, (b) {=5.545 (c) ¢

=5.549, and (d) f = 5.565. The change in the dimensionless chemical potential is
defined as the difference between the chemical potential polymer 1 in the mixture

to that of its pure phase. The dimensionless initial concentration is co'= 0.6 and
the dimensionless diffusion coefficient is D* = 200 000.
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from the spinodal curve shows that there exists a point where the instability
crosses over from just a further amplification of the composition fluctuations to

creating a new instability that renders new fluctuation patterns.

6.6 Growth of Primary Structures After the Second
Temperature Jump to 7, = 0.2

Earlier on in the discussion of the shallower quench from T, =0.25 to T, =02,
the dimensionless structure factor from the original quench grew with time and at
the same constant wave number as at 7) = 0.25. How the second quench affected
the growth rate of the primary and the secondary structures (if formed) was not
discussed. In this section the analysis will be on the affect of the second quench
on the growth rates of thé maximum values of the primary and secondary
structure factors (peak values) formed during phase separation by SD. The

growth rate of the maximum value of the structure factor after the second quench
is plotted against a reduced time, tR', which is defined ‘as [Hashimoto et al.,

1986a; Chan, 1998]:

R

(=L | (6.1)
t/

The reduced time is used so that a general analysis can be made over all the
different transition times used from Table 6.2. The maximum values of the
dimensionless structure factors remain unchanged. Figure 6.19 shows the growth
of the maximum value of the dimensionless structure factor with dimensionless

reduced time after the second shallower quench for the initial critical quench case.
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The values plotted are taken right after the second quench is made and there are
three regions that can be identified for the growth of the primary structure. In the
stage 1, right after the second quench, there is a steady increase in the growth rate,
meaning that the primary structures are further separating as the new conditions
are imposed, 7> = 0.2. Stage I can also be considered the early stages of SD at
the primary structure is slowing down and there is a slight dip in the growth rate
before it starts to increase again into stage III. The growth rate is nonlinear and
can be attributed to the change in the composition fluctuations towards the new
equilibrium values at T, = 0.2. In this stage, the blend is adjusting to the new
conditions while still phase separating. Finally, in stage III the growth rate
increases again and plateaus as the blend has reached the new equilibrium values
at the new conditions. The evolution of the growth of the dimensionless structure
factor is very similar to the plot for the single critical quench case shown in
Figure 6.1 where the dimensionless transition time was determined. The
difference in the profiles lies in stage II where the composition starts to adjust to
the new conditions of the second quench before further separating into their
respective phases. The late stages of phase separation was not examined for the
single quench case because the interest was in forming the phase separated
morphology and not to examine the coarsening dynamics. Overall, the three
stages in the growth rate of the maximum value of the dimensionless structure
factor after the second quench takes roughly the same form as a single quench
case when there is no appearance of the secondary peak and only an amplification

of the primary peak from the initial critical quench. As D* increase, the same
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Figure 6.15: The evolution of the change in the dimensionless spatial second
derivativé of the free energy with respect to composition of component 1 for a
double quench from T,"=0.25to 7> = 0.2 at the transition time of /, = 4.72 at the

following dimensionless times: (a) £ =4731, ()1 = 4.74-5, (?) {F = 4.798, and
(d) 1 = 4.861. The change in the dimensionless second derivative of free energy

is used to determine the conditions of stability (F"" > 0), meta-stability (¥~ >0),
and instability (F * <0). The dimensionless initial concentration is ¢,”=0.5 and
the dimensionless diffusion coefficient is D" =200 000.
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Figure 6.16: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component 1 for a
double quench from 77"=0.25 to 75" = 0.2 at the transition time of z,'= 5.52 at the
following dimensionless times: (a) /' = 5.534, (b) £ = 5.575, (¢) { =5.625, and
(d) I = 5.671. The change in the dimensionless second derivative of free energy

is used to determine the conditions of stability ( F TS 0), meta-stability ( Y > 0),

and instability (F - 0). The dimensionless initial concentration is co*= 0.6 and
the dimensionless diffusion coefficient is D* = 200 000.

- 147 -



Chapter 6: 1-D TIPS Double Quenci

0.22 . , , |
0.02 F
-0.19
-0.39
-0.60
-0.80

% /
F

0.22 l ; : ,
0.02 i
-0.19
-0.39
-0.60
-0.80

b)

% /
F

0.22 T — — I
0.02
-0.19
-0.39
-0.60
-0.80

x /
F

0.22
0.02
-0.19
-0.39
-0.60
-0.80

0.0 0.2 0.4 0.6 0.8 1.0

X /7
F

Figure 6.17: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component 1 for a
double quench from 7; =025 to 72 =0.1 at the transmon time oft, 4.72 at the

followmg dimensionless times: (a) [ =4726, (b) [ =4.740, (c) { = 4.748, and
(d) £ =4.769. The change in the dimensionless second derivative of free energy

is used to determine the conditions of stability (F > 0), meta-stability (F* > 0),
and instability (F" <0). The dimensionless initial concentration is ¢,”=0.5 and
the dimensionless diffusion coefficient is D = 200 000.
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Figure 6.18: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component 1 for a
double quench from 7,"=0.25to 75" = 0.1 at the transmon time oft, =5.52 at the
followmg dimensionless times: (a) ' = 5.526, (b) = 5.545, (c) 1 = 5.549, and
(d) £ =5.565. The change in the dxmensxonless second derlvatlve of free energy

1s used to determme the conditions of stablllty (F >0), meta—stablllty (F" >0),

and instability (F <0). The dnmensnonless initial concentration is c = 0.6 and
the dimensionless diffusion coefficient is D* = 200 000.
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Figure 6.19: The evolution of the maximum value of the dimensionless structure
factor of the primary structure formed just after the second temperature jump to
T, = 0.2, plotted against dimensionless reduced times for a critical quench case.
The second jump was made at a transition time of #,” = 4.72 with a dimensionless
diffusion coefficient D" = 200 000.

trends as those observed (see Figures C.33 and C.34). The only difference being

the steepness of the growth rate as the value of D" increases.

Figure 6.20 shows the growth of the dimensionless structure factor with
dimensionless reduced time after the second shallower quench for the initial off-
critical quench case. The values plotted are taken right after the second quench is
made and as in the case of the initial critical quench, there are three regions that
can be identified for fhe growth of the primary structure. For D" =500 000 and
80 000, Figures C.35 and C.36 in Appendix C, there is the emergence of
secondary peaks (refer back to Figures C.11 and C.12) in the growth of the
maximum value of the dimensionless structure factor that have a very small
impact on the evolution of the original composition fluctuations as discussed

previously in section 6.2. The trends in Figure 6.20 will be discussed separately
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from those in Figures C.35 and C.36. In Figure 6.20, the three different growth
regions are similar to those observed for the initial critical quench case. In the
stage I, right after the second quench, there is a steady increase in the growth rate
and the primary structures are further separating as the new conditions are
imposed, 7 ," = 0.2. In stage II, the growth of the primary structure is slowing
down and again there is a slight dip in the growth rate before it starts to pick up
again into stage III. The nonlinear growth rate is a result of the adjustments in the
composition fluctuations from the initial quench condition at T," = 0.25 towards
the new equilibrium values at T, =0.2. Finally, in stage III the growth rate
increases again and starts to level off as the blend reaches the new equilibrium
compositions. In Figures C.35 and C.36 there are two graphs plotted, one for the
growth of the primary peak (top graph) and one for the secondary peak observed
in the plot of the dimensionless structure factor (bottom). Both are plotted against
reduced times so that a comparison can be made between the growth rates of the
two peaks simultaneously. As D’ increases, the growth of the secondary peak was
more obvious and its effect on the growth rate of the primary structure should
have a larger impact. This can be observed when comparing Figures C.35 and
C.36 where D" increases from 500 000 to 800 000 respectively. In Figure C.35,
the introduction and the growth of the secondary peak does not seem to have
much impact on the growth of the primary peak as can be observed from the
_profile of the primary peak growth rate. The growth of the primary peak seems to
be identical to the growth of the dimensionless structure factor for a single quench

case. There are still three distinct regions that can be observed for both the
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primary and secondary peak growth. Initially in stage 1, the growth of both
primary and secondary peak increases steadily and the blend is still phase
separating under the new conditions. In stage II, the growth of the primary peak
slows down as the composition fluctuations are approaching the new equilibrium
values and the secondary peak still continues to grow but at a slower rate. The
growth of the primary peak is dominating and therefore, the growth of the
secondary peak has little effect on the composition fluctuations. In stage III, the
primary peak plateaus in growth rate and the secondary peak continues to grow
steadily. To determine the full evolution of the secondary peak growth, the late
stages need to be evaluated and does not fall into the scope of this thesis. In
Figure C.36, the effect of the growth of the secondary peak is more obvious.
Again, the profile has been broken down into three regions. The top graph
represents the growth of the dimensionless structure factor of the primary peak
and the bottom graph for the growth of the secondary peak at the same reduced
times. In stage I, there is only a short period of steady increase in growth of both
the primary and secondary peaks. This is because as D" is increased, the rate of
phase separation increases and therefore, the blend is quick to respond to the
change of conditions to the new temperature. In stage II, there is a steeper
increase in the growth rate for both the primary and secondary peaks as the blend
approaches the new equilibrium values at T, However, the growth of the
secondary peak has only a slight effect on the growth of the primary peak and this
is reflected in the dimensionless spatial concentration profiles shown in section

6.2. In stage I, the growth of the primary peak levels off while the secondary
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peak continues to grow. There is a slight dip in the growth of the secondary peak
before it starts to increase again. The reason for this in stage III is not certain. At
this point for the off-critical quench case, although there is the appearance of a
secondary peak growing and forming, its growth does not significantly affect the

growth of the primary structures that form.

6.7 A Comparison of the Growth of Primary and
Secondary  Structures  After the  Second
Temperature Jump to 7, =0.1

A deeper second quench from T "=025t0 T2 = 0.1 shows secondary phase
separation as observed in the dimensionless spatial concentration profiles. The
dimensionless structure factor from the original quench grew with time and at the
same constant wave number as at 7, = 0.25. The emergence and growth of a
secondary peak after the second temperature jump was observed in the evolution
of the dimensionless structure factor. The second deeper quench and its effects on
the growth rate of the primary and the secondary struct;lres can be broken down
into three regions as in the shallower quench case. The growth rate of the

maximum value of the dimensionless structure factor after the second quench is
plotted against a reduced time, ¢, . Figure 6.21 shows the growth rate of the

primary (top) and secondary (bottom) peaks of the maximum structure factor after
the second deeper quench at the transition times for the initial critical quench case
for D" =200 000. Figure 6.21 shows slightly different evolutions in the growth

rate of the primary and secondary peaks due the increase in value of the
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Figure 6.20: The evolution of the maximum value of the dimensionless structure
factor of the primary structure formed just after the second temperature jump to
T, = 0.2, plotted agamst dimensionless reduced times for an off-critical quench
case. The second jump was made at a transition time of " = 552 with a
dimensionless diffusion coefficient D" = 200 000.

dimensionless diffusion coefficient (see Figures C.37 and C.38 in Appendix C for
D" =500 000 and 800 000, respectively). Generally, the trends seem to be pretty
consistent for the three stages in all cases of D" studied. In the stage I, right after
the second quench, there is a steady increase in the growth rate of the primary
peak. The emergence and the growth of the secondary peak starts out at a slower
rate than the primary peak in stage I. In stage II, the growth of the primary peak
increases slightly and steadily and the growth of the secondary peak increase at a
much faster rate having a steeper slope. In stage III, both the growth of the
primary and secondary peaks slow down and are roughly at the same rate. At this
point, the primary structures have reached the equilibrium compositions at the

new temperature while the secondary phase is still developing.  These

observations are different from those observed experimentally by Hayashi ef al.
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[2000a] for the growth of the maximum scattering intensity with time. Their three
stages differ from the one in this study. In stage I, they observe a faster increase
in the secondary peak intensity than the primary peak intensity. In stage II, both
the growth of the primary and secondary peaks intensities grow at the same rate
and in stage 111, the growth of the primary peak intensity becomes larger that the
secondary peak intensity. The reason for the discrepancy between the
observations in this study and in Hashimoto’s work maybe due to the time that the
second jump was made. Also, stage III describes the late stages in Hashimoto’s
work and is omitted from this numerical work. Perhaps the evolution of the
secondary structures is dependent on the domain size. Hayashi et al. [2000a]
have suggested this possibility and also introduced the confinement effect where
the size of the primary structure acts as a new medium for the growth of the
secondary structures. The smaller the domain size of the primary structures, the
less room for growth of the secondary structures to form and therefore, different
growth rates will be observed for the primary and secondary structures. By
comparing the two different observations from making a temperature jump at the
beginning of the intermediate stages (in the numerical work of this thesis) and the
late stages (experimental work by Hashimoto) shows that the domain size has an

effect on the growth patterns.

Figure 6.22 shows the growth rate of the primary (top) and secondary (bottom)
peaks of the structure factor after the second deeper quench at the transition times
for the initial off-critical quench case for D” = 200 000. In the dimensionless

maximum structure factor profiles after the second quench, the peak from the
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original initial quench grew with time and at the same constant wave number as at
T," = 0.25 and there is the emergence and growth of the secondary peak at a larger
wave number. The second deeper quench for the initial off-critical quench case
and its effects on the growth rate of the primary and the secondary structures can

be broken down into three regions. The growth rate of the maximum structure
factor after the second quench is plotted against a reduced time, tR‘. Figure 6.22

and Figure C. 39 (D" = 500 000) show similar evolutions in the growth rate of the
primary and secondary peaks and Figure C.40 (D* = 800 000) shows the same
trend as Figures C.37 and C.38 in stages I, 1I and 111. In the stage I, right after the
second quench, there is a steady increase in the growth rate of the primary peak
for all values of D investigated. The emergence and the growth of the secondary
peak starts out at a slower rate than the primary peak in stage I with a smaller
slope. In stage II, the growth of the primary peak increases slightly and steadily
and the growth of the secondary peak increase at a much faster rate having a
steeper slope. There is slight curvature in all three plots of stage II. This may
possible be due to the reorganizing of the phase separating mixture to the neQ
composition fluctuations present. In stage III, for Figure 6.22 and C.39, both the
growth of the primary and secondary peaks continue to increase with the
secondary peak increasing at a much faster rate. At this point, the primary and
secondary structures are still developing. In stage III for Figure C.40, both the
growth of the primary and secondary peak starts to level off, indicating that the
| primary structures have reached their equilibrium values while the secondary

peaks have grown to a sufficient size. Perhaps, further investigation would lead
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to the decrease in the growth of the secondary peak when the composition
fluctuations from the primary and secondary structures merge together at later
stages. This has been observed experimentally by Hayashi ef al. [2000a] and
numerically by Henderson and Clarke [2004] for an initial critical quench and a
second jump at the late stages of phase separation by SD and not at the beginning

of the intermediate stages as described here.

6.8 Remarks on the Early Stages of Phase Sepgration
After the Second Temperature Jump to 7, = 0.1
where Secondary Structures are Observed

In the experimental work by Hashimoto ef al. [2000] anci numerical work by
Henderson and Clarke [2004] the evolution of the secondary phase separation,
after the second quench, was found to reasonably follow the linear theory in the
early stages of phase separation by SD for a single quench case. To determine if
the numerical work presented in this section on the formation of secondary
structures also follows the linear theory in the early stages right after the second
quench to 7 = 0.1, the plots of the natural log of the dimensionless structure
factor versus dimensionless reduced time is presented in Figures 6.23 and 6.24 for
the initial critical and initial off-critical quench case for D° = 200 000,
respectively. Recall that the plot of the natural log of the dimensionless maximum
structure factor versus dimensionless time should have a linear region in the early
stages of phase separation by SD. As observed for all the profiles, there exists a

small linear region after the second quench when the secondary structures are
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Figure 6.21: The evolution of the dimensionless structure factor of the (a)
primary and (b) secondary structures formed just after the second temperature

jump to T>' = 0.1 plotted against dimensionless redu
quench case. The second temperature jump was ma

dimensionless diffusion coefficient is D" =200 000.
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forming. Therefore, the numerical work presented here is consistent with what
has been observed by Hashimoto ef al. [2000] in experiment and by Henderson
and Clarke [2004] in their numerical study on double quénching. Furthermore, it
can be observed that in the early stages, the growth of the secondary structures
appears to be steeper for D" =200 000 than 500 000 and 800 000 (refer to Figures
C.41 to C.44 in Appendix C). Perhaps, the larger domain size provides a better
medium to create new instabilities for phase separation for the secondary
structures to form more readily. It has been suggested that the primary structure
acts as an individual phase where phase separation occurs as if in a single quench,
but within the already separating initial structures [Norton and Frith, 2001]. The
observations presented here are consistent with the work by Hayashi et al. [2000a
and 2000b], when investigating the initial domain size and its effects on double
phase separation. They observed that if the size of the initial structure is large,
then the growth rate of the secondary structure is faster than for an initial smaller
domain size. The critical size to which double phase separation is observed is not

known and further analysis both experimentally and numerically is required

[Hayashi et al., 2000a).
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Flgure 6.22: The evolution of the dimensionless structure factor of the (a)
prmlary and (b) secondary structures formed just after the second temperature
jump to 75" = 0.1 plotted against dimensionless reduced times for an off-critical

quench case. The second temperature jump was made at t" = 5.52. The
dimensionless diffusion coefficient is D" = 200 000.
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Chapter 7

Results and Discussion:
2-D TIPS Single and Double Quench

In Chapter 5 and 6, the results from the one-dimensional model was presented and
discussed based on the nonlinear C-H theory and the F-H-de Gennes free energy
for a single and a double quench respectively. The results replicated frequently
observed trends of phase separation by SD in experimental and numerical work.
Recall that in analyzing SD, the one-dimensional model provides the detail
necessary to describe the dynamics of phase separation with the exception of
detailing the type of structure formed. This section presents the results of pattern
formation for a critical and off-critical quench and a brief discussion on the 2-D
numerical work. The patterns formed are typical of those formed by SD for the
single and double quench. For the single quench, the dimensionless temperature
and diffusion coefficient are adjusted to observe the effects on pattern formation
and its consistency with the predictions from the 1-D model. For double
quenching, the patterns formed from an initial critical and an initial off-critical
quench are presented. With the double quench, in order to verify the pattemn
formation predicted from experimental work by Hayashi et al. [2000a], the

second quench was made at the late stages and not at the beginning of the
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intermediate stage as in the 1-D study. Because of the amount of time required to
run the 2-D simulations, only selected runs were made for the analysis. Table 7.1

summarizes the dimensionless parameters used in this 2-D study.

Table 7.1: Summary of the dimensionless parameters used in the 2-D numerical
study for a single critical and off-critical quench

Parameter Value

¢, 05,06

N, N, 1000

D' 200 000, 500 000
T’ 0.25 and 0.2

7.1 Single TIPS Critical Quench

Figure 7.1 shows a 2-D structure development (left) and a profile of the
concentration fluctuations (right) for a critical quench, co =05, at a single
temperature jump of T, = 0.25, with a dimensionless diffusion coefficient of D*=
200 000. The grey scale at the bottom right hand corner of Figure 7.1 shows the
different levels of the concentration ranging from ¢*=0.0to ¢* = 1.0. It has been
determined in experiments that the critical quench produces the interconnected
structure and the off-critical quench produces the droplet type structure
[Hashimoto, 1993]. The structure development on the left shows that the model
in this thesis is able to predict the same interconnected structure known for critical

quench conditions. Note the change in the color intensity of the structure
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development as the concentration fluctuations increase upon phase sceparation

(right).

In order to test the effect of D" on the critical quench, the value of D" was
increased from 200 000 to 500 000. Figure 7.2 shows the evolution of pattern
fbrmation at D" = 500 000 for the critical quench while maintaining all other
parameters the same as in Figure 7.1. From the 1-D model, it was observed that
increasing the dimensionless diffusion coefficient increased the rate as well as the
amount of phase separation that occurred. Therefore, this trend should also be
observed in the 2-D structure development. When comparing the results of
Figure 7.1 and Figure 7.2 it is clear that the rate as well as the amount of phase
separation increased with increasing dimensionless diffusion coefficient. The 1-D
and 2-D models are in agreement with each other for the critical quench case in

examining the properties of interest.

7.2 Single TIPS Off-Critical Quench

Figure 7.3 shows a 2-D structure development (left) and a profile of the
concentration fluctuations (right) for an off-critical quench, co =06, ata single
temperature jump of 7," = 0.25, with a dimensionless diffusion coefficient of D=
200 000. The grey scale in the bottom right hand corner in Figure 7.3 shows the
different levels of the concentration ranging from ¢ =00toc =10. The off-
| critical quench produces the droplet type structure from experimental
observations. The evolution of structure development on the left shows the same

droplet structure known for an off-critical quench conditions indicating that the
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model developed is in good agreement with experimental work. Notice that as the
concentration fluctuations increase (right) the structure development profile
shows a range of shades, indicating the change in concentration, as the mixture is
phase separating. One more feature that is captured in the 2-D structure evolution
is the spatial distribution of the composition fluctuations are fairly uniform, which
is expected in phase separation by SD. In order to test the effect of D" on the off-
critical quench, the value of D" was increased from 200 000 to 500 000. Figure
7.4 shows the evolution of pattern formation at D" = 500 000 for the critical
quench while maintaining all other the same as in Figure 7.3. From the 1-D
model, it was observed that increasing the dimensionless diffusion coefficient
increases the rate as well as the amount of phase separation that occurs.
Therefore, this trend should also be observed in the 2-D structure development.
When comparing the results of Figure 7.3 and Figure 7.4 it is clear that the rate as
well as the amount of phase separation increased with increasing dimensionless
diffusion coefficient. In the formation of the droplet type structure, another
parameter was tested to verify the agreement of the results from the 1-D study and
the 2-D study. The dimensionless temperature was decreased from T, = 0.25 to
T, =02 keeping all other parameters the same as in Figure 7.4. By comparing
both profiles generated in Figure 7.4 and Figure 7.3, it can be observed that the
amount of phase-separated regions increased with time. This was consistent with
the observations in the 1-D model when tested for an off-critical quench case. 1-D
and 2-D models are in agreement with each other for the off-critical

quench case in examining the properties that were of interest.
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a) t =3.267

b) 1 =3.633

c) ¢ =3.869

d) 1 =4.931

Figure 7.1: A plot of the 2-D dimensionless spatial concentration profiles,
¢’ (x*, y'), showing the evolution of structure development (left) and the growth
of the concentration fluctuations (right) for a single critical (¢o. = 0.5) quench to
T, = 0.25 with D" = 200 000 at the following dimensionless times: (a) t' =3.267,

(b) t* =3.633, (c) t = 3.869, and (d) " = 4.931. The grey scale represents the
compositions of the phase separating blend on the bottom right.
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Figure 7.2: A plot of the 2-D dimensionless spatial concentration profiles,
¢ (x', y'), showing the evolution of structure development (left) and the growth
of the concentration fluctuations (right) for a single critical (¢, = 0.5) quench to
T;" = 0.25 with D" = 500 000 at the following dimensionless times: (a) t =

0.5053, (b) 1 = 0.5317, (c) '=0.5965, and (d) ¢ = 0.6552. The grey scale
represents the compositions of the phase separating blend on the bottom right.
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7.3 Two-Step Phase Separation: Critical Quench

The two-step process used for the 2-D study is different from that used in the 1-D
analysis. The 2-D analysis here was done to observe pattern formation as
predicted from the experimental work by Hashimoto et al. [2000] and Hayashi et
al. [2000a and 2000b] in their 2-step phase separation process to see whether the
secondary structures can be observed numerically under the same quenching
methods. Recall in the 1-D study, the second temperature jump was made at a
dimensionless transition time, which characterized the end of the early stages and
the beginning of the intermediate stages of SD for the single quench. In this
section, the second temperature jump was made in the late stages of phase
separation by SD where the mixture has reached their respective equilibrium
compositions. This method was also used by Tanaka [1993] and Tao et al,
[1995] in their experimental study of double quenching. Furthermore, to follow
closely to Hashimoto’s work [2000], the second quench was made such that the
mixture was still within the unstable region and therefore, was still phase
separating by SD. As mentioned in the previous section on the single quench
conditions, due the amount of computing time required for one 2-D simulation,
the results shown here are restricted to certain values of T" and D" that best reflect

the objectives of this thesis. In Figure 7.6 the dimensionless spatial concentration
profiles, ¢"(x",)"), show the evolution of structure development for a double

critical (c,” = 0.5) quench from 7;” = 0.25 to 7" = 0.1 with D" = 200 000.
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Figure 7.3: A plot of the 2-D dimensionless spatial concentration profiles,
¢ (x', y‘), showing the evolution of structure development (left) and the growth
of the concentration fluctuations (right) for a single off-critical (c,” = 0.6) quench
to T," = 0.25 with D" = 200 000 at the following dimensionless times: (a) t =

4.416, (b) 1" =4.619, (c) £'=5.048, and (d) * = 5.292 The grey scale represents
the compositions of the phase separating blend on the bottom right.
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a)+r =0.6711
b) ¢ =0.7055
c) 1 =0.7744
d) r =0.8451

Figure 7.4: A plot of the 2-D dimensionless spatial concentration profiles,
c (x', y‘) , showing the evolution of structure development (left) and the growth

of the concentration fluctuations (right) for a single off-critical (co = 0.6) quench
to T," = 0.25 with D" = 500 000 at the following dimensionless times: (a) ¢t =

0.5053, (b) ¢ = 0.5317, (c) £'=0.5965, and (d) ¢ = 0.6552. The grey scale
represents the compositions of the phase separating blend on the bottom right.
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a) 1 =0.1812

b) ¥ =0.2029

c) " =0.2133

d) ' =0.2187

Figure 7.5: A plot of the 2-D dimensionless spatial concentration profiles,
¢"(x",»"), showing the evolution of structure development (left) and the growth
of the concentration fluctuations (right) for a single off-critical (c,” = 0.6) quench
to T;" = 0.2 with D” = 500 000 at the following dimensionless times: (a) t =

0.1812, (b) ¢ = 0.2029, (c) ¢'= 0.2133, and (d) ¢’ = 0.2187. The grey scale
represents the compositions of the phase separating blend on the bottom right.
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The dimensionless times correspond to profiles made after the second jump at a

dimensionless time of £* = 4.931 (a) ' = 4.935, (b) ¢' = 4.941, (c) ¢' = 4.950,
and (d) ¢ = 4.952 (e) £ = 4.953 and (f) 4.9531. For a critical quench, the
interconnected structure is formed. Upon making the second quench, at the late
stage of SD, the initial composition for the second quench corresponds to the
values just before the second quench and are off-critical. Off-critical quenches
result in droplet type morphologies. In Figure 7.6 this interconnected structure is
the result of the primary quench and the droplet type structure is the result of the
secondary quench. This pattern formation is consistent with the patterns formed
experimentally by Tao et al. [1995] and Tanaka [1993] and numerically with the
work of Henderson and Clarke [2004]. In Figure 7.6 b), shortly after the second
quench, the phase separating regions are shifting and changing in shape as well as
concentration (color intensity). This is consistent with what has been observed by
Tanaka in his experimental work where the initial phase separated structure was
reorganized when the second quench was made [Tanaka, 1993]. This reorganizing
of the primary structures continues with time and is not so obvious to the naked
eye once the secondary structures start to appear. The first sign of secondary
phase separated regions occurs in Figure 7.6 c) at t"= 4950 and gradually
increases in number as shown through Figures 7.6 d) to f). The amount of
secondary droplets formed after the second quench were few in number which can
be explained by the location of the second temperature jump relative to the
spinodal curve. The second quench made in this study was not too far from the

spinodal curve, and since the driving force for phase separation is directly related
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to the distance of the temperature within the confines of the spinodal curve [Tao
et al., 1995], there will be a smaller driving phase separation force. Figure 7.7
shows the evolution of the concentration fluctuations for the same conditions as in
Figure 7.6. After the second quench, the composition fluctuations are still rather
smooth until #* = 4.950, where the first sign of secondary phase separated regions
occur. The profile becomes rough and continues to develop this way for the rest
of the structure development. From these profiles, especially from a bird’s eye
view, the dipping of the crests in certain regions are very noticeable, indicating
the occurrence of the constructive and destructive interferences that are occurring

from the second quench.

7.4 Two-Step Phase Separation: Off-critical Quench

In the oft-critical double quench case, the method for double phase separation is
the same as described for the critical quench case. The second quench is made in
the late stages of phase sepafation by SD and lies within the unstable region to

ensure phase separation still occurs by SD. Figure 7.8 shows thé 2-D
dimensionless spatial concentration profiles, ¢’ (x*, y*), of the evolution of
structure development for a double off-critical (¢, = 0.6) quench from 7;" = 0.25
to T;" = 0.1 with D" =200 000. The dimensionless times correspond to profiles
made after the second jump at ¢* = 5.292: (a) ' = 5.294, (b) +* = 5.307, (c) £ =
5.313, and (d) 1" =5315() ' =5317 and (f) 5.320. For an off-critical double

quench, both the primary and secondary structures developed should be of droplet

type and this can be observed in Figure 7.8. Tanaka [1993] and Tao et al. [1995]
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have also observed this pattern formation for the off- critical double quench
experimentally. Shortly after the second quench in Figure 7.8 b), there is a
noticeable change in the pattern and concentration of the primary structures.
Again, like in the critical double quench case, the contours seem to be rougher as
the blend adjusts to the new conditions. There is also a noticeable increase in the
contrast as the blend evolves with time indicating that the blend is approaching
the new equilibrium conditions of the second quench. The first sign of secondary
phase separation occurs in Figure 7.8 ¢) at ¢ = 5.313 and the amount of secondary
droplet type structures gradually increases with time. Again, the amount of
secondary droplets formed after the second quench is related to location of the
temperature for phase separation within the confines of the spinodal curve [Tao es
al., 1995). Figure 7.9 shows the evolution of the concentration fluctuations for
the same conditions as in Figure 7.8. After the second quench, the composition
fluctuations are still rather smooth until = 5313, where the first sign of
secondary phase separated regions occur. ~ The profile becomes rough and
continues to develop this way for the rest of the structure development. From
these profiles, after ¢ = 5.313, there is noticeable occurrence of constructive and

destructive interferences that are occurring from the second quench.
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b)

Figure 7.6: A plot of the 2-D dimensionless spatial concentration profiles,
¢’ (x",»"), showing the evolution of structure development for a double critical
(¢o = 0.5) quench from 7)" = 0.25 to 7, = 0.1 with D" = 200 000. The following
dimensionless times correspond to profiles made after the second jump at £ =
4.931: (a) 1 =4.935, (b) ' =4.941, (¢) "= 4.950, and (d) ' = 4.952 (e) t' =
4.953 and (f) 4.9531. The first sign of secondary phase separation occurs in ¢) at

1"= 4.950. The grey scale represents the compositions of the phase separating
blend on the bottom right.
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Figure 7.7: A plot of the 3-D dimensionless spatial concentration profiles,
¢'(x",y"), showing the evolution of concentration fluctuations for a double

critical (¢,” = 0.5) quench from 7, = 0.25 to 7" = 0.1 with D" = 200 000. The
following dimensionless times correspond to profiles made after the second jump

at 1" =4.931: (a) +* =4.935, (b) 1" =4.941, (c) £'=4.950, and (d) 1* = 4.952 (e)
t" =4.953 and (f) 4.9531. The first sign of secondary phase separation occurs in
c) at t*=4.950.
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d)

Figure 7.8: A plot of the 2-D dimensionless spatial concentration profiles,
¢"(x",»"), showing the evolution of structure development for a double off-
critical (c,” = 0.6) quench from ;" = 0.25 to T," = 0.1 with D" = 200 000. The
followmg dimensionless times correspond to proﬁles made after the second jump
att =5.292: (a) ¢ =5.294, (b) " =5.307, (c) £ = 5.313, and (d) " =5.315 ()

=5.317 and (f) 5.320. The first sign of secondary phase separation occurs in c)

at £ = 5.313. The grey scale represents the compositions of the phase separating
blend on the bottom right.
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b) *.

Figure 7.9: A plot of the 3-D dimensionless spatial concentration profiles,
c’ (x*, ¥"), showing the evolution of concentration fluctuations for a double off-

critical (c,” = 0.6) quench from 7," = 0.25 to 7;" = 0.1 with D" = 200 000. The
following dimensionless times correspond to profiles made after the second jump
at 1* =5292: (a) " =5.294, (b) ¢ =5.307, (c) "= 5.313, and (d) " = 5.315 (e)
t" =5.317 and (f) 5.320. The first sign of secondary phase separation occurs in c)

at 1"=5.313.
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Chapter 8

Conclusions

A mathematical model and computer simulations were used to describe the
dynamics of phase separation by spinodal decomposition for the TIPS method
(single quench and a double quench) using the nonlinear Cahn-Hilliard theory and
the Flory-Huggins-de Gennes free energy. The composition dependent mobility
was t reated us ing t he s low m ode t heory and the r eptation t heory was used to
describe the self-diffusion coefficient of the individual polymers in the blend.
The composition dependent energy gradient coefficient was treated with the
introduction of an additional entropic term into the F-H free energy, due to the
connectivity of monomer units, to take into account changes in energy due to the

creation of interfaces upon phase separation.

In the first part of this thesis, for the single critical and off-critical quench case,
the numerical results in one and two dimensions replicated frequently observed

trends of phase separation by spinodal decomposition in published experimental

and numerical work.
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In the one-dimensional model, in the early stages of phase separation by SD, the
composition fluctuations grew with time at fixed wavelength and the evolution of
the structure factor was exponential. In the beginning of the intermediate stages,
the composition fluctuations were still increasing and nonlinear effects started to
take place. This was evident in the evolution of the structure factor. It was found
that in the critical quench, phase separation occurred earlier than that for the off-
critical quench case at a fixed temperature, and this was due to the location of the
quench within the spinodal. The further away (inward) the quench was from the
spinodal curve, the more unstable the mixture was with a faster the occurrence of
phase separation. In the investigation of the quench depth, from a shallower to a
deeper quench, the degree of phase separation observed in the spatial composition
profiles increased due to the increase in the driving force for phase separation.
The time it took to observe the first sign of phase separation decreased with an
increase in quench depth. The dimensionless diffusion coefficient showed an
increase in the rate as well as the degree of phase separation in the range of
D" =200 000 to 800 000. Also, the increase dimensionless diffusion coefficient
showed a decrease in the characteristic length (domain size), which was
calculated from the plots of the structure factor using the maximum values of the
wave number. From a thermodynamic point of view, the plots of the change in
the spatial chemical potential, the driving force for phase separation, showed how
equilibrium conditions were approached. The second derivative of the free
energy with respect to composition showed the relative steepness in the curvature

of the change in free energy (stability, instability and meta-stability) and the
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increase in the value of D showed and increasing steepness. This reflects the

increasing rate of phase separation observed in the spatial concentration profiles

with increasing D",

In the two-dimensional study, the interest was in observing the pattern formation
for the critical and off-critical quench was examined. The patterns formed are
typical patterns observed in experimental and numerical work. The c1'iticai quench
case showed the interconnected type structure, while the off-critical quench case

showed the droplet type structure.

In the second part of this thesis, for the two-step quenching with an initial critical
and an initial off-critical quench case, the numerical results in one and two
dimensions replicated the observed trends of double phase separation by spinodal

decomposition in recently published experimental and numerical work.

In the one-dimensional model, the evolution of the spatial concentration profiles
showed two different trends depending on the quench depth. For the shallower
second quench to T»" = 0.2, the original composition fluctuations from T} "=0.25
continued to increase to the new equilibrium compositions with time and no sign
of secondary phase-separated regions occurred. At a deeper second quench to £y
= 0.1, the original composition fluctuations from T," = 0.25 continued to increase
to the new equilibrium compositions with time. However, the composition
fluctuations started to show the appearance of constructive and destructive

interference as time increased.” Therefore, between the two quench depths
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investigated, it was suggested that there existed a critical quench depth in order
for double phase separation to occur where secondary structures are formed.
Furthermore, the structure factor for the shallower quench case showed a
continuous increase from the original plot of the structure factor at 7) "= (.25 with
no evidence of a secondary peak forming and for a deeper second quench, the
evolution of the structure factor showed an increase in the original peak observed
in the initial quench with the introduction of a secondary peak that continued to
increase with time. The effect of the increase in the dimensionless diffusion
coefficient showed an increase the rate as well as the amount of phase separation
for both the shallower and deeper quench. A lag time was observed before the
occurrence of secondary phase separation and it decreased with increase
dimensionless diffusion coefficient. It was found that the growth rate of the
secondary structures was faster with lower D", This was considered to be due to
the larger domain size formed at lower D of the primary structure providing a
larger confinement for the growth of the secondary structures. The growth of the
primary and secondary structures after, the second temperature jump, for a
shallow quench case was similar to the growth rate of the single quench case. The
growth of the primary and secondary structures after, the second temperature
jump, for the initial critical and initial off-critical quench case showed different
growth dynamics. The growth rates of the primary and secondary peaks were
broken down into three stages. The difference in the time at which the first sign of
phase separation occurs and the growth dynamics was determined to be dependent

on the location of the first and second quench within the spinodal and the value of
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D’.  For the initial critical quench, phase separation occurs at carlier and the
formation of secondary structures is faster than for the initial oft-critical quench
case. In terms of evolution of the secondary structures and the linear C-H theory,
it was found that the early stages of the formation of the secondary structures
followed the linear C-H theory shown through plots of the natural log of the
structure factor with time similar to the single quench profiles. From a
thermodynamic point of view, the shallower second quench showed similar
results in the change in chemical potential and second derivative as for a single
quench case. The only difference being at an increased rate. For the second
deeper quench case, the change in the chemical potential showed a plateau when
double phase separation was observed. This fattening of the change in chemical
potential w as t hought to b e due to the reorganizing o ft he composition int he
mixture as subjected to the new imposed conditions. In the plot of the second
derivative with respect to composition for the second deeper quench, cvidence of
the formation and evolution of a new instability was observed shortly after the
second deeper jump where the local maximum between the two local minimums
further divided into a double well shape. This new double well within already

existing double well became more defined as D" was increased.

In the two-dimensional study, the interest was in observing the pattern formation
for a double quench with an initial critical quench to see if the model developed
was able to predict the experimental work of Hashimoto and in the numerical
work p ublished by H enderson and C larke in t heir s tudy of do uble que nching.

Therefore, the second quench was made in the late stages. The observed pattern
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formation was consistent with that predicted by Hashimoto and in the numerical
work of Henderson and Clarke where the second jump after the initial critical
quench showed the interconnected structure with droplet type secondary
structures forming. In addition to the work of Hashimoto and Henderson and
Clarke, the second jump (late stages) after an initial off-critical quench was also
presented where the observed pattern was droplet type for both the primary and
secondary structures. This morphology is consistent with the experimental work

of Tanaka.

The model using the nonlinear C-H and the F-H-deGennes free energy provided a
better understanding of the formation and evolution of phase separation by SD for
the single and double quench. In particular, for the formation of secondary phase-
separated stmétures, with the limited amount of both experimental and numerical
work published, the numerical work in this thesis provides a better understanding
of the evolution of secondary phase separation and how the following areas are
affected, the composition fluctuations, the structure factor, quench depth,
dimensionless diffusion coefficient, evolution of the growth rate of primary and
secoﬁdary structures, and the change in chemical potential and the second

derivative of free energy.
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Appendix A

Galerkin  Finite Element Method:
Hermitian Basis Functions

In the method of solution for the fourth order partial differential equation, the
Galerkin Finite Element Method was employed. Hermitian basis functions were
used as the interpolating functions and are listed in this appendix for the one-

dimensional and two-dimensional study.

In a one-dimensional study, each element has 2 double nodes (one for the function

and one for the slope) and four basis functions. The basis functions are:

¢ =1-3&"+2&° (A.1)
$=£-25"+& (A2)
¢, =3E% -28° (A.3)
g =4 ¢ | (A4

For the two-dimensional study, each element has nodes 4 double nodes and 16
basis functions. The two-dimensional case is a product of the one-dimensional

basis functions in the x and y direction. In the 2-D model, the x, y coordinates are

represented by new coordinates in &,7 space. The four nodes in £,7 space are:

-192 -



Appendix A

F(&)=(1-32"+287) . (A.5)
F(¢)=(¢-28+¢&) | . (A.6)
F(£)=(3¢"-2&) (A7)
F(&)=(£-¢) | (A8)
F(n)=(1-3n"+27) | .; | (A.9)
F,(n)=(n-2n"+n) I (A.10)
Fy(n)=(3n"-27) (A.11)
F,(n)=(n"-7") | (A.12)

The 16 basis functions are obtained from the product of the one-dimensional basis

functions £, 77 space:
¢ =(1-3¢" +28 ) (1-37" +277°) | (A.13)
b, =([£-28" +& ax)(1-377 +27°) (A.14)
g, =(1-3¢ +2§3)([7j-2n2+n3]Ay) (A.15)
bo=([6-26+& ax)([m-20" + 7] y) (Al6)
g =(1-3¢" +2¢*)(3n* - 277°) (A.17)
o=([£-22 " Jax) 3 20 ()
¢ =(1-3¢"+22°) ([ -n" &y ) (A.19)
t=([£-22 +& Jax) ([ -n* ] ) (A20)
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¢9:(3§2—2§3)(1—3T72+2773)
#o =([£7 - Jax)(1-37 +2)
b = (38 28" )([n-27" + 7 | y)

|ax)([n-27"+7])

pa=([

# =(3¢" -2¢7) (37 - 27)
([¢7-¢ Jax)(3n" -27)

b5 = (382 =228 ) ([’ -7 | y)

#o=([¢"-¢" Jax)([7" -7 %)
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Appendix B

Single Quench:
Dimensionless 1-D Critical and Off-
Critical Quench Results

1-D Dimensionless Spatial Concentration Profiles

Figures B.1 and B.2 show the evolution of the dimensionless spatial concentration
profiles for a single quench at the critical composition of ¢, = 0.5, a dimensionless
temperature of )" = 0.25, and dimensionless diffusion coefficients of D* = 500
000 and 800 000, respectively. Figures B.3 and B.4 show the evolution of the
dimensionless spatial concentration profiles for a single quench at an off-critical
composition of ¢, = 0.6, a dimensionless temperature of T/* = (.25, and
dimensionless diffusion coefficients of D™ = 500 000 and 800 000, respectively.
For all four figures the evolution of the one-dimensional dimensionless spatial
concentration profiles show the same trends as observed in experiment. In the
early stage, the initial concentration fluctuations appear due to the growth of the
most dominant wavelength and are weakly nonlinear. The wavelength remains
constant while the amplitude changes. In the beginning of the intermediate stage,

the concentration fluctuations continue to increase and into the intermediate stage

-195-



Appendix B

the wavelength starts to change. The only difference in the composition
fluctuations is the effect of increasing D". As the value of D* (200 000, 500 000,
800 000) increases, the driving force for phase separation is larger and therefore,

more phase separated regions are developed as discussed in the Chapter 5.

Evolution of the Dimensionless Structure Factor
Figures B.5 and B.6 show the evolution of the dimensionless structure factor as a

function of dimensionless wave number, % , and dimensionless time for the
critical quench case with D" =500 000 and 800 000, respectively. Figures B.7

and B.8 show the evolution of the dimensionless structure factor as a function of

dimensionless wave number, &k, and dimensionless time for the off-critical
quench case with D" = 500 000 and 800 000, respectively. In all four figures, the
quench temperature is 7" = 0.25. The critical and off-critical quench case show
that the value of the dimensionleés structure factor increases exponentially with
time in the early stages of phase separation by SD the wave number is constant
and begins to slow down as it approaches the beginning of the intermediate stages
where nonlinear effects come into play. These results are c onsistent w ith the

observations made in Chapter 5.
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| Figure B.1: The evolution of the dimensionless spatial concentration profile for a
single quench into the u{lstable region ?f the phase diagram at the followi‘ng
dimensionless times: (a) ¢ = 0.552, (b) ¢ = 0.5956, (¢) ¢t = 0.6252,and (d) ¢ =
0.6946. The dashed line through the center of the graph represents the initial
average concentration cO‘ = 0.5. The dimensionless diffusion coefficient for this

case is D" = 500 000.

-197 -



Appendix B

b)

d)

0.0 0.2 04 _* 06 0.8 1.0

Figure B.2: The evolution of the dimensionless spatial concentration profile for a
single quench into the unstable region of the phase diagram at the following
dimensionless times: (a) 1’ = 0.22, (b) 1" = 0.2278, (c) ¢’ = 0.2479, and (d) 1’ =
0.2733. The dashed line through the center of the graph represents the initial

average concentration ¢, = 0.5. The dimensionless diffusion coefficient for this
case is D" = 800 000.
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Figure B.3: The evolution of the dimensionless spatial concentration profile for a
single quench into the unstable region of the phase diagram at the followi.ng
dimensionless times: (a) { = 0.7519, (b) £ = 0.7775, (c) t = 0.842, and (d) ¢ =
0.914. The dashed line through the center of the graph represents the initial
average concentration co' = 0.6. The dimensionless diffusion coefficient for this

case is D = 500 000.
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Figure B.4: The evolution of the dimensjonless spatial concentration profile for a
single quench into the unstable region of the phase diagram at the following
dimensionless times: (a) £ = 0.2878, (b) 1" = 0.3068, (c) " = 0.3312, and (d) /=
0.3453. The dashed line through the center of the graph represents the initial
average concentration co‘ = 0.6. The dimensionless diffusion coefficient for this
case is D" = 800 000.
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Figure B.5: The evolution of the dimensionless structure factor for a single
critical quench (c,,‘ =0.5,D" =500 000 and 7" = 0.25) into the unstable region of

the phgse diagram at the following dime?sionless times: /= 0.552 (thick grey
line), t = O.SZO9 (dash with two dots), 1 = 0.5956 (dash-dot line), 1 = 0.6252
(dotted line), r = 0.6548 (long dashed line), 1 = 0.6946 (solid line).

Figure B.6: The evolution of the dimensionless structure factor for a single
critical quench (c”' —=0.5, D" =800 000 and 7" =0.25) into the unstable region of

the phase diagram at the following dimensionless times: £ = 0.22 (dash with two
dots), I’ = 0.2278 (dash-dot line), ' = 0.2377 (dotted line), ' = 0.2479 (long

dashed line), £ = 0.2733 (solid line).
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ST (k"D

Figure B.7: The evolution of the dimensionless structure factor for a single off-
critical quench (¢, = 0.6, D" =500000and T° =0.25) into the unstable region

of the phase diagram at the following dimensionless times: ¢ = 0.7*5 19 (thick grey
line), t = 0.7775 (dash with two dots), (= q.842 (dash-dot line), r = 0.8748
(dotted line), 1 =0.914 (long dashed line), r = 0.9292 (solid line).

STkt

Figure B.8: The evolution of the dimensionless structure factor for a single off-
critical quench (c,,' =0.6, D" = 800 000 and T" =0.25) into the unstable region

of the phasq diagram at the following dimensionless times: ¢’ = 0.*2959 (dash with
two dots), + = 0.3068 (dash-dot line), ¢ =0.3195 (dotted line), ¢ = 0.3312 (long
dashed line), ¢ = 0.3453 (solid line).
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The Growth of the Dimensionless Structure Factor in the Early
Stages of SD

Figures B.9 to B12 show the plots of the natural log of the maximum value of the
dimensionless structure factor versus dimensionless time for the critical and off-
critical quench case with D° = 500 000 and 800 000, respectively. For all four
cases, the natural log of the dimensionless structure factor at the maximum wave

number is linear for the early stages before nonlinear effects begin.
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Figure B.9: The evolution of the dimensionless maximum structure factor with
dimensionless time from /" = 0.5579 to ¢ = 0.7104 for a single quench (c,,' =0.5,

D" =500 000 and 7" = 0.25) into the unstable region of the phase diagram. At the

early stages of phase separation by SD, the initial increase is linear and gradually
slows down into the beginning of the intermediate stage where coarsening occurs.
The dashed line indicates the linearity for the early stages before it deviates.
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Figure B.10: The evolution of the dimensionless maximum structure factor with
dimensionless time from /" = 0.2382 to ¢ = 0.2771 for a single quench (c(,' =0.5,

D" =800 000 and Tl =0.25) into the unstable region of the phase diagram. At the
early stages of phase separation by SD, the initial increase is linear and gradually
slows down into the beginning of the intermediate stage where coarsening occurs.
The dashed line indicates the linearity for the early stages before it deviates.
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Figure B.11: The evolution of the dimensionless maximum structure factor with
dimensionless time from /" = 0.8594 to 1* = 1.00 for a single quench ( cn' =06,D

= 500 000 and 7, =0.25) into the unstable region of the phase diagram. At the

early stages of phase separation by SD, the initial increase is linear and gradually
slows down into the beginning of the intermediate stage where coarsening occurs.
The dashed line indicates the linearity for the early stages before it deviates.
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Figure B.12: The evolution of the dimensionless maximum structure factor with
dimensionless time from " = 0.296 to 1" = 0.344 for a single quench (¢,” = 0.6, D"

= 800 000 and T; =0.25) into the unstable region of the phase diagram. At the

early stages of phase separation by SD, the initial increase is linear and gradually
slows down into the beginning of the intermediate stage where coarsening occurs,
The dashed line indicates the linearity for the early stages before it deviates.

The Change in the Dimensionless Chemical Potential

Figures B.13 to B.16 show the plots of the evolution of the change in the
dimensionless spatial chemical potential for a single critical quench and a single
off-critical quench at D* = 500 000 and 800 000, respectively. Increasing the
value of the dimensionless diffusion coefficient on the increases the rate of
change in the evolution of the dimensionless spatial chemical potential for a

single critical quench and a single off-critical quench. Refer back to Chapter 5

for the discussion of the observations.
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Figure B.13: The evolution of the change in the dimensionless spatial chemical
potential for a single quench into the unstable reglon of the phase dlagram at the
following dimensionless times: (a) £ =0.552, (b) I = 0.5956, (c) ¢ =0.6252, and
(d) ¢ =0.6946. The change in the dlmensmnless chemical potential is defined as
the difference between the chemical potential polymer 1 in the mixture to that of
its pure phase. The dimensionless initial concentration is ¢, = 0.5 and the
dimensionless diffusion coefficient is D" = 500 000.
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Figure B.14: The evolution of the change in the dimensionless spatial chemical
potential for a single quench into the unstable region of the phase diagram at the
following dimensionless times: (a) £ =022, (b) F=0.2278, (c) £ =0.2479, and
(d) £ = 0.2733. The change in the dimensionless chemical potential is defined as
the difference between the chemical potential polymer 1 in the mixture to that of

its pure phase. The dimensionless initial concentration is ¢, = 0.5 and the
dimensionless diffusion coefficient is D" = 800 000.
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Figure B.15: The evolution of the change in the dimensionless spatial chemical
potential for a single quench into the unstable region of the phase diagram at the
following dimensionless times: (a) t = 0.7519, (b) t = 0.7775, (c) " = 0.842, and
(d) £ = 0.914. The change in the dimensionless chemical potential is defined as
the difference between the chemical potential polymer 1 in the mixture to that of
its pure phase. The dimensionless initial concentration is ¢, = 0.6 and the

dimensionless diffusion coefficient is D" = 500 000.
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Figure B.16: The evolution of the change in the dimensionless spatial chemical
potential for a single quench into thq unstable region’of the phase diag,ram at the
following dimensionless times: (a) ¢ = 0.2878, (b) r = 0.3068, (c) 1 = 0.3312,
and (d) r = 0.3453. The change in the dimensionless chemical potential is
defined as the difference between the chemical potential polymer | in the mixture
to that of its pure phase. The dimensionless initial concentration is ¢, = 0.6 and

the dimensionless diffusion coefficient is D° = 800 000.
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The Second Derivative of Free Energy with Respect to
Composition

Figures B.17 to B.20 show the evolution of the second derivative of the free
energy with respect to composition spatially the critical and off-critical quench
73" = 0.25 with D" = 500 000 and 800 000, respectively. As D" increases, the
steepness in the profiles also increases. This indicates an increase in the

instability with time as the system phase separates.
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Figure B.17: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component 1 for a
single quench into the unstable region of the phase dlagram at the followmg
dimensionless times: (a) £ =0.5520, (b) 1" = 0.5956, (c) " =0.6252, and (d) (=
0.6946. The change in the dimensionless second derivative of free energy is used

to determine the conditions of stability (F " 0), meta-stability ( F >0), and
instabilitly (F "< 0). The dimensionless initial concentration is ¢, = 0.5 and the
dimensionless diffusion coefficient is D" = 500 000.
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Figure B.18: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component 1 for a
single quench into the unstable region of the phase diagram at the following
dimensionless times: (a) ' = 0.22, (b) 1 = 0.2278, (c) f = 0.2479, and (d) ¢ =
0.2733. The change in the dimensionless second derivative of free energy is used

to determine the conditions of stability (F "> 0), meta-stability (F TS 0), and

instability ( F "< 0). The dimensionless initial concentration is co‘ = 0.5 and the
dimensionless diffusion coefficient is D° = 800 000.
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Figure B.19: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component | for a
single quench into the unstable region of the phase diagram at the followmg
dimensionless times: (a) " =0.7519, (b) £ =0.7775, (c) ¢ = 0.842, and (d) i =
0.914. The change in the dimensionless second derivative of free energy is used to

determine the conditions of stability (F " >0), meta-stability (F " >0), and
instability ( F "< 0). The dimensionless initial concentration is ¢, = 0.6 and the
dimensionless diffusion coefficient is D" = 500 000.
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Figure B.20: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component 1 for a
single quench into the unstable region of the phase diagram at the following
dimensionless times: (a) 1" = 0.2878, (b) £’ = 0.3068, (c) ¢ = 0.3312, and (d) ¢ =
0.3453. The change in the dimensionless second derivative of free energy is used

to determine the conditions of stability (F TS 0), meta-stability ( F' Y 0), and

instability (F'" <0). The dimensionless initial concentration is cO' = (.6 and the
dimensionless diffusion coefficient is D* = 800 000.
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Appendix C

Double Quench:
Dimensionless 1-D Critical and Off-
Critical Quench Results

1-D Dimensionless Spatial Concentration Profiles After the
Second Quench

Figures C.1 to C.4 show the evolution of the dimensionless spatial concentration
profile (for an initial critical and an initial off-critical quench) after the second
temperature jump. The initial phase separation temperature is 7, = 0.25 and the
second temperature jump is 75 ~ = 0.2 at the transition time. The dimensionless
diffusion coefficients are D* = 500 000 and 800 000. The transitions times are
summarized in Table 6.2. There is no sign of double phase separation in Figures
C.1 to C.4. However, notice that in Figures C.3 and C.4, for the initial off-critical
quench, there is slight constructive and destructive interference in peak three and
peak one for D™ = 500 000 and 800 000, respectively. Figures C.5 to C.8 show
the evolution of the dimensionless spatial concentration profile (for an initial
critical and an initial off-critical quench) after the second temperature jump to 7 :

= 0.1 at the transition times for D* = 500 000 and 800 000, respectively. There
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are noticeable constructive and destructive interferences observed for the deeper

quench attributed to the formation of secondary structures. Refer to Chapter 6 for

discussion.

Evolution of the Dimensionless Structure Factor After the Second

Quench

Figures C.9 and C.10 show the evolution of the dimensionless structure factor
after the second quench to 73" = 0.2 from the initial critical quench at T\ =0.25
for D = 500 000 and 800 000, respectively. Figures C.11 and C.12 show the
evolution of the dimensionless structure factor after the second quench to Tz* =
0.2 from the initial off-critical quench at T\"=0.25 for D" = 500 000 and 800 000,
respectively. The box in the right hand corner of Figure C.11 and Figure C.12
shows an enlarged plot o f the growth of the secondary peak. The results are
different from the evolution of the dimensionless structure factor observed for the
critical quench case and for the initial off-critical quench case. There was no sign
of double phase separation present and for the initial critical quench case and the
growth of the structure factor showed an increase in the intensity of the primary
peak but no occurrence of a secondary peak forming. For the intial off-critical

quench case, a slight secondary peak was observed to form with increasing D",

However, the impact was minimal and no secondary phase separated regions

formed.
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Figure C.1: The evolution of the d1mensnonless spatial concentration proﬁle for a
double quench from 7} =0.25t0o 7, = 0.2 at the transition time of t, 0.650 at

the followmg dimensionless times: (a) { =0.6509, (b) " = 0.656, () ' = 0.6602,
and (d) +" = 0.6795. The dashed line through the center of the graph represents the

. . . ’ p . . ’ . .
initial average concentration c, = 0.5. The dimensionless diffusion coefficient for

this case is D’ = 500 000.
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Figure C.2: The X evolutlon of the

dlmensmnless spatial concentration proﬁle for a double quench from T| =0.25
to Ty = O 2 at the transmon time of ¢,'= 0.256 at the followmg dimensionless
times: (a) £* = 0.2561, (b) ¢ = 0.2596, (c) £ =0.2619, and (d) ¢ = 0.2656. The
dashed line through the center of the graph represents the initial average

concentration ¢, = 0.5. The dimensionless diffusion coefficient for this case is D"
= 800 000.
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Figure C.3: The evolutlon of the d1men510nless spatial concentration proﬁle for a
double quench from T; *=025t0 T, ~=0.2 at the transntlon time of l, = (0.903 at
the followmg dimensionless times: (a) " =0.9057, (b) £ =0912, (c) £ =0. 9172,
and (d) £ = 0.9421. The dashed line through the center of the graph represents the

initial average concentration c =(.6. The dimensionless diffusion coefficient for
this case is D* = 500 000.
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Figure C.4: The evolution of the dimensionless spatial concentration profile for a
- double quench from 77 "= 0.25 to T, "= 0.2 at the transition time of t,*= 0.323 at
the following dimensionless times: (a) t = 0.3235, (b) " = 0.325, (c) £ =0.3298,
and (d) ' = 0.3345. The dashed line through the center of the graph represents the

initial average concentration ¢, = 0.6. The dimensionless diffusion coefficient for

0.2

this case is D" = 800 000.
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Figure C.5: The evolution of the dimensionless spatial concentration pfoﬁle fora
double quench from 7} *= 0.25 to 7 * = 0.1 at the transition time of t,= 0.650 at

the following dimensionless times: (a) {=0.6511, (b) £ =0.6541, () = 0.6562,
and (d) " =0.6584. The dashed line through the center of the graph represents the

initial average concentration ¢, = 0.5. The dimensionless diffusion coefficient for
this case is D" = 500 000.

-221-



Appendix C

b)

d)

0.0 0.2 0.4 0.6 0.8 1.0

Figure C.6: The evolutiton of the dimgnsionless spatial concentration p}'oﬁle for a
double quench from 77 =0.25to 7> = 0.1 at the trarlsition time of = 0.256 at
the folloyving dimensionless times: (a) " = 0.256, (b) { = 0.2571, (c) ¢ = 0.2577,
and (d) + =0.2587. The dashed line through the center of the graph represents the
initial average concentration ¢, = 0.5. The dimensionless diffusion coefficient for

this case is D" = 800 000.
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Figure C.7: The evolution of the dimgnsionless spatial concentration p_roﬁle for a
double quench from 7, "= 0.25 to T> = 0.1 at the tran§ition time of 4= 0.903 at
the following dimensionless times: (a) ¢ = 0.9045, (b) = 0.9077, (c) ¢t = 0.9082,
and (d) t'=0.9106. The dashed line through the center of the graph represents the
initial average concentration ¢, = 0.6. The dimensionless diffusion coefficient for

this case is D’ = 500 000.
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Figure C.8: The evolutlon of the dlmensmnless spatial concentration proﬁle fora
double quench from T,"=025t0 1> =0.1 at the transmon time of t, 0.323 at
the followmg dimensionless times: (a) 1’ = 0.3235, (b) £ = 0.3247, (c) 1 =0.3257,
and (d) # =0.3265. The dashed line through the center of the graph represents the
initial average concentration ¢, = 0.6. The dimensionless diffusion coefficient for
this case is D* = 800 000.
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Figures C.13 and C.16 show the evolution of the dimensionless structure factor
(initial critical and initial off critical quench) after the second quench to 72" = 0.1
from the initial critical quench at 7, = 0.25 for D" = 500 000 and 800 000.
respectively. There are obvious secondary peaks that form right after the second
quench at 75" =0.1. In the profile. both the primary and the secondary peak grow
with time. This reflects in the growth of the concentration fluctuations with time
as the primary peaks and troughs start to approach the upper and lower
equilibrium values and the secondary peaks and troughs start to increase in value

as well at 7> = 0.1. See Chapter 6 for discussion of results.

Figure C.9: The evolution of the dimensionless structure factor for a double
quench from T} "= 025t 7» = 0.2 (second temperature jump ‘made at a
transition time of f, = 0.650) at the following dimensjonless times: 1 = 0.6509
(light grey solid line), /' = 0.656 (dash-two dot line), /" = 0.6602 (dash-dot line),
and I = 0.6795 (solid black line). The initial average concentration ¢, =0.5. The

dimensionless diffusion coefficient is D° = 500 000.
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Figure C.10: The evolution of the dimensionless structure factor for a double
quench from 7 =025t 75 = 02 (second temperature jump made at a
transition time of 7,'= 0.256) at the following dimensionless times: I = 0.2561
(light grey solid line), /" = 0.2596 (dotted line), ¢ = 0.2619 (dashed line), and ¢ =

0.2656 (solid black line). The initial average concentration c0*= 0.5. The
dimensionless diffusion coefficient for this case is D = 800 000.
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Figure C.11: The evolution of the dimensionless structure factor for a double
quench from 7y "= 025 to T, * = 0.2 (second temperature jump made at a
transition time of £, = 0.903) at the following dimensionless times: £ = 0.9057
(dash-dot line), £’ = 0.912 (dotted line), £ = 0.9172 (dashed line), and £ = 0.9421

(solid black line). The initial average concentration c, = 0.6. The dimensionless
diffusion coefficient for this case is D" = 500 000.
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Figure C.12: The evolut1on of the dimensionless structure factor for a double
quench from T,"=025t0 T5 =0.2 (second temperature Jump made at a transition
time of £, = 0 323) at the following dlmensmnless times: 1 = 0.3235 ([1ght grey
solid line), £ = 0.325 (dotted line), r = 0.3298 (dashed line), and ¢ = 0.3345
(solid black line). The initial average concentration co = 0.6. The dimensionless

diffusion coefficient for this case is D* = 800 000.
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Figure C.13: The evolutlon of the dlmensmnless spatial concentration proﬁle for
a double quench from T, =025 to0 Tz = 0.1 (at the transition time of t, = 0.650)
at the following d1mensnonless times: 1 = 0.651 1 (dash-two dots line), t* = 0.6541
(dash-dot line), r = 0.6562 (dotted line), and 1" = 0.6584 (solid line). The initial
average concentration ¢, = 0.5. The dimensionless diffusion coefficient for this
case is D" = 500 000.
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Figure C.14: The evolutlon of the dlmensmnless spatial concentration proﬁle for
a double quench from 7, =0.25 to 7, "=0.1 (at the transition t1me of t/= 0. 256)
at the followmg dimensionless times: £ = 0.256 (dotted line), t = 0.2571 (dash-
dot line), £’ = 0.2577 (dashed line), and £ = 0.2587 (solid line). The initial average

concentration ¢, = 0.5. The dimensionless diffusion coefficient for this case is D"
= 800 000.
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Figure C.15: The evolutlon of the dlmensmnless spatial concentration proﬁle for
a double quench from T,"=0.25to T2 = (.1 (at the transition tlme of t,=0.903 at
the followmg dimensionless times: £ = 0.9045 (dash-dot line), + = 0.9077 (light
grey line), £ = 0.9082 (dashed line), and = 0.9106 (solid line). The initial

average concentration ¢, = 0.6. The dimensionless diffusion coefficient for this
case is D" = 500 000.
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Figure C.16: The evolutlon of the dxmensmnless spatial concentration proﬁle for
a double quench from T| =0.25t0o T, =0.1 (at the transition time of t, = 0.323)
at the followmg dimensionless times: 1 = 0. 3235 (light grey line), 1" = 0.3247
(dash-dot line), (=0, 3257 (dashed line), and 1~ = 0.3265 (solid line). The initial

average concentration ¢, = 0.6. The dimensionless diffusion coefficient for this
case is D" = 800 000.

Change in the Dimensionless Spatial Chemical Potential

Figures C.17 to C.20 show the evolution of the dimensionless spatial chemical
potential after the second quench to 75" = 0.2 at the transition time corresponding
to D' = 500 000 and 800 000 for the initial critical and initial off-critical quench
case, respectively. The evolution of the change in the dimensionless spatial
chemical potential shows the same trends as for the single quench case. Figures
C.21 to C24 show the evolution of the dimensionless spatial chemical potential
after the second quench to 73" = 0.1 at the transition time corresponding to D' =
500 000 and 800 000 for the initial critical and initial off-critical quench case,
respectively. New trends are observed upon a deeper quench into the unstable

region as discussed in Chapter 6. The observation of the flattening of the local
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maxima and minima can be attributed to the adjusting of the blend to the change

in quench conditions.

Change in the Dimensionless Spatial Second Derivative of Free
Energy with Respect to Composition After the Second Quench

Figures 6.25 to C.28 show the evolution of the second derivative of the free
energy with respect to composition spatially after the second quench to T, =02
from the initial critical and off-critical quench with D" =500 000 and 800 000,
respectively. The evolution of the change in the dimensionless spatial second
derivative of free energy with respect to composition shows the same trends as for
the single quench case. Figures 6.29 to C.32 show the evolution of the second
derivative of the free energy with respect to composition spatially after the second
quench to 7, = 0.1 from the initial critical and off-critical quench with D™ = 500
000 and 800 000, respectively. New trends are observed upon a deeper quench
into the unstable region as discussed in Chapter 6. The observation of the
formation o f ne w ins tabilities is o bserved int he form o f a double well s hape

within the existing maxima and minima locations.
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Figure C.17: The evolution of the change in the dimensionless spatial chemical
potential for a double quench from 7, = 0.25 to T, = 0.2 at the transition time of
1= 0.650 at the following dimensionless times: (a) t’ = 0.6509, (b) " = 0.656, (c)
{ = 0.6602, and (d) £ = 0.6689. The change in the dimensionless chemical
potential is defined as the difference between the chemical potential polymer 1 in
the mixture to that of its pure phase. The dimensionless initial concentration is

co* = 0.5 and the dimensionless diffusion coefficient is D" = 500 000.

-231-



Appendix C

)
(o))
T T

Figure C.18: The evolution of the change in the dlmensmnless spatial chemical
potentlal for a double quench from 7," = 0.25 to 75" = 0 2 at the transmon time of
t'= O 256 at the followmg dimensionless times: (a) ¢ = 0.2561, (b) t = 0.2596,

(c) i =0.2619, and (d) + = 0.2656. The change in the dimensionless chemical
potential is defined as the difference between the chemical potential polymer 1 in
the mixture to that of its pure phase. The dimensionless initial concentration is

¢, = 0.5 and the dimensionless diffusion coefficient is D" = 800 000,
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Figure C.19: The evolution of the change in the dimensionless spatial chemical
potential for a double quench from 7} "= 0.25 to 75" = 0.2 at the transition time of
1= 0.903 at the following dimensionless times: (a) £ = 0.9057, (b) " = 0.9172,
(c) £ =0.9260, and (d) £ = 0.9421. The change in the dimensionless chemical
potential is defined as the difference between the chemical potential polymer | in
the mixture to that of its pure phase. The dimensionless initial concentration is

c,”= 0.6 and the dimensionless diffusion coefficient is D" =500 000.
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Figure C.20: The evolution of the change in the dlmensmnless spatial chemical
potentlal for a double quench from 7', = 0.25 to 7, =02 at the transmon time of

=(.323 at the followmg dimensionless times: (a) * = 0.3235, (b) ” = 0.325, (c)
t = 0.3298, and (d) # = 0.3345. The change in the dimensionless chemical
potential is defined as the difference between the chemical potential polymer 1 in
the mixture to that of its pure phase. The dimensionless initial concentration is

cD' = 0.6 and the dimensionless diffusion coefficient is D" = 800 000.
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Figure C.21: The evolution of the change in the dlmensmnless spatial chemical
potent1a1 for a double quench from 7| =0.25 to Tz = 0 | at the transmon time of
= O 650 at the followmg dimensionless times: (a) £ =0.6511, (b) £ = 0.6541,

(c) £ = 0.6562, and (d) + = 0.6584. The change in the dimensionless chemical
potential is defined as the difference between the chemical potential polymer 1 in
the mixture to that of its pure phase. The dimensionless initial concentration is

¢."= 0.5 and the dimensioniess diffusion coefficient is D" = 500 000.
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Figure C.22: The evolution of the change in the dlmensmnless spatial chemical
potentlal for a double quench from 7,"=0.25to T, = 0.1 at the transmon time of

= (.256 at the followmg dimensionless times: (a) ¢ =0.256, (b) t = 0.2577, (c)
t = 0.2580, and (d) " = 0.2587. The change in the dimensionless chemical
potential is defined as the difference between the chemical potential polymer 1 in
the mixture to that of its pure phase. The dimensionless initial concentration is

¢, =0.5 and the dimensionless diffusion coefficient is D" = 800 000,
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Figure C.23: The evolution of the change in the dimensionless spatial chemical
potential for a double quench from 7; "= 0.25 to T, = 0.1 at the transition time of
t,'= 0.903 at the following dimensionless times: (a) £ =0.9045, (b) ¢ = 0.9077,
(c) £ = 0.9082, and (d) / = 0.9106. The change in the dimensionless chemical
potential is defined as the difference between the chemical potential polymer 1 in
the mixture to that of its pure phase. The dimensionless initial concentration is

co‘ = 0.6 and the dimensionless diffusion coefficient is D" = 500 000.
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Figure C.24: The evolution of the change in the dimensionless spatial chemical
potential for a double quench from 7, = 0.25 to 73" = 0.1 at the transition time of
I= 0.323 at the following dimensionless times: (a) 1 = 0.3235, (b) £’ = 0.3247,
(c) t =0.3257, and (d) t = 0.3265. The change in the dimensionless chemical
potential is defined as the difference between the chemical potential polymer 1 in
the mixture to that of its pure phase. The dimensionless initial concentration is

co' = 0.6 and the dimensionless diffusion coefficient is D" = 800 000.
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Figure C.25: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component | for a
double quench from 7,"=025t0 75" = 0.2 at the transition time of t, 0.650 at
the followmg dimensionless times: (a) £ =0. 6509, (b) ¢ = 0.656, (c) (=0. 6602,
and (d) £ = 0.6689. The change in the dimensionless second derivative of free

® /
F

] L 1 '

energy is used to determine the conditions of stability (F >0), meta-stability

(F . 0), and instability (F <0). The dimensionless initial concentration is
¢, =0.5 and the dimensionless diffusion coefficient is D" = 500 000.
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Figure C.26: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component 1 for a
double quench from T,"=025t0 T = 0.2 at the transition time of 1= 0.256 at
the following dimensionless times: (a) I” = 0.2561, (b) 1" = 0.2596, (c) ¢ = 0.2619,
and (d) £ = 0.2656. The change in the dimensionless second derivative of free

T,

energy is used to determine the conditions of stability ( F T 0), meta-stability
(F " >0), and instability (F < 0). The dimensionless initial concentration is
¢, = 0.5 and the dimensionless diffusion coefficient is D" = 800 000.
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Figure C.27: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component | for a
double quench from 7,"=0.25to 7" = 0.2 at the transmon time of t, 0.903 at
the followmg dimensionless times: (a) (" =0.9057, (b) £ =0.9172, (c) i =0. 9260,
and (d) " = 0.9421. The change in the dimensionless second derivative of free

* /
F

energy is used to determine the conditions of stability (F "> 0), meta-stability
(F g >0), and instability (F *'<0). The dimensionless initial concentration is
¢, = 0.6 and the dimensionless diffusion coefficient is D" =500 000.
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Figure C.28: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component 1 for a
double quench from 7,"=025t0 7" = O 2 at the transmon time of t, = (.323 at
the followmg dimensionless times: (a) 1" = 0.3235, (b) £ = 0.325, (c) f = 0.3298,
and (d) I* = 0.3345. The change in the dimensionless second derivative of free

x /
F

energy is used to determine the conditions of stability (F > (), meta-stability

(F "> 0), and instability (F " <0 ). The dimensionless initial concentration is
¢, = 0.6 and the dimensionless diffusion coefficient is D" = 800 000.
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Figure C.29: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component | for a
double quench from T,*= 0.25 to Tz* = (.1 at the transition time of t,'= 0.650 at
the following dimensionless times: (a) £ = 0.6511, (b) £’ = 0.6541, (c) { = 0.6562,
and (d) ¢ = 0.6584. The change in the dimensionless second derivative of free

x //
F

energy is used to determine the conditions of stability (F g~ 0), meta-stability

(F " 0), and instability (F " <0 ). The dimensionless initial concentration is
¢,”= 0.5 and the dimensionless diffusion coefficient is D" =500 000.
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Figure C.30: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to composition of component 1 for a
double quench from T,' =0.25 10 Tz* = 0.1 at the transition time of t,*= 0.256 at
the following dimensionless times: (a) f = 0.256, (b) £ =10.2577, (c) i =0.2580,
and (d) { = 0.2587. The change in the dimensionless second derivative of free
energy is used to determine the conditions of stability (F" >0), meta-stability

(F'" >0), and instability ( F <0). The dimensionless initial concentration is
¢, = 0.5 and the dimensionless diffusion coefficient is D" = 800 000.
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Figure C.31: The evolution of the change in the dimensionless spatial second
dertvative of the free energy with respect to composition of component 1 for a
double quench from Tl =(0.25to Tg = 0.1 at the transmon time of t, = (0.903 at
the followmg dimensionless times: (a) = 0.9045, (b) " =0.9077, (c) ¢ = 0.9082,
and (d) " = 0.9106. The change in the dimensionless second derivative of free

* /
F

energy is used to determine the conditions of stability (F "> 0), meta-stability

(F Y 0), and instability (F Y <0 ). The dimensionless initial concentration is
¢, = 0.6 and the dimensionless diffusion coefficient is D’ =500 000.
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Figure C.32: The evolution of the change in the dimensionless spatial second
derivative of the free energy with respect to component 1 for a double quench
from T} =025 to T, = 0.1 at the transition time of ,'= 0.323 at the following
dimensionless times: (a) 1" = 0.3235, (b) ¢* = 0.3247, (c) ' = 0.3257, and (d) £ =
0.3265. The change in the dimensionless second derivative of free energy is used

to determine the conditions of stability (F* > 0), meta-stability (F “>0), and

instability ( F "< 0). The dimensionless initial concentration is cot = 0.6 and the
dimensionless diffusion coefficient is D" = 800 000.
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?Jg;;ttl:) ;{* l:'(i)l.lzlary Structures After the Second Temperature
Figure C.33 to C36 shows the growth of the maximum value of the dimensionless
structure factor with dimensionless reduced time after the sccond shallower
quench for the initial critical quench and initial off-critical quench case for D* =
500 000 and 800 000, respectively. The values plotted are taken right after the
second quench is made and there are three regions and discussed in Chapter 6.
Figures C.35 and C.36 shows the growth rate of the primary (top) and secondary
(bottom) peaks of the maximum structure factor after the second shallow quench.
The difference in the profiles for the initial critical and initial off-critical quench

cases were also discussed in Chapter 6.

A Comparison of the Growth of Primary and Secondary
Structures After the Second Temperature Jump to 7, =0.1

Figure C.37 to C.40 shows the growth rate of the primary (top) and secondary
(bottom) peaks of the maximum structure factor after the second deeper quench at
the transition times for the initial critical and initial off-critical quench case with
D" =50 0000 and 800 000, respectively. T he growth w as divided into t hree

stages. Generally, the trends are consistent for the three stages and were

discussed in Chapter 6.
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Figure C.33: The evolution of the dimensionless structure factor of the primary
structure formed just after the second temperature jump to 7> = 0.2, plotted
against dimensionless reduced times for a critical quench case. The second jump
was made at a transition time of ¢, = 0.650 with a dimensionless diffusion
coefficient D" = 500 000.
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Figure C.34: The evolution of the dimensionless structure factor of the primary
structure formed just after the second temperature jump to 75 = 0.2, plotted
against dimensionless reduced times for a critical quench case. The second jump
was made at a transition time of f, = 0.2560 with a dlmensmnless diffusion
coefficient D" = 800 000.
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Figure C.35: The evolution of the dimensionless structure factor of the (a)
primary and (b) secondary peaks formed just after the second temperature jump to
T, = 0.2 plotted against dimensionless reduced times for an off-critical quench
case. The second temperature jump was made at t," = 0.903. The dimensionless
diffusion coefficient is D" = 500 000.
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Figure C.36: The evolution of the dimensionless structure factor of the (a)
prlmary and (b) secondary peaks formed just after the second temperature jump to
T, =02 plotted against dimensionless reduced tlmes for an off-critical quench
case. The second temperature jump was made at t, = 0.323. The dimensionless
diffusion coefficient is D" = 800 000.
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Figure C.37: The evolution of the dimensionless structure factor of the (a)
primary and (b) secondary structures formed just after the second temperature

jump to '
quench case. The second temperature jump was made at t

dimensionless diffusion coefficient is D" =500 000.
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Figure C.38: The evolution of the dimensionless structure factor of the (a)
primary and (b) secondary structures formed just after the second temperature
jump to T;" = 0.1 plotted against dimensionless reduced times for a critical
quench case. The second temperature jump was made at f, = 0.256. The
dimensionless diffusion coefficient is D" = 800 000,
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Figure C.39: The evolution of the dimensionless structure factor of the (a)
primary and (b) secondary structures formed just after the second temperature
jump to T3 = 0.1 plotted against dimensionless reduced times for an off-critical
quench case. The second temperature jump was made at t," = 0.903. The
dimensionless diffusion coefficient is D" = 500 000.
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Figure C.40: The evolution of the dimensionless structure factor of the (a)
primary and (b) secondary structures formed just after the second temperature
jump to T, = 0.1 plotted against dimensionless reduced times for an off-critical
quench case. The second temperature jump was made at ¢, = 0.323. The

dimensionless diffusion coefficient is D" = 8§00 000.
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Remarks on the Early Stages of Phase Separation After the
Second Temperature Jump to 7, = 0.1 where Secondary
Structures are Observed

Figures C.41 to C.44 show the plots of the natural log of the dimensionless
structure factor versus dimensionless reduced time for the initial critical and
initial off-critical quench case with D™ = 500 000 and 800 000, respectively.
These plots were used to determine if the numerical work presented in this section
on the formation of secondary structures also follows the linear theory in the early
stages right a fter the second quenchto 7, =0 .1. Al I four Figures s how the
existence of a small linear region after the second quench when the secondary

structures were forming.
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Figure C.41: The evolution of the growth of the dimensionless structure factor of
the secondary structure formed at the second temperature jpmp,‘Tz = (.1, plotted
against dimensionless reduced times for a critical quench with D" = 500 000
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Figure C.42: The evolution of the growth of the dimensionless structure factor of
the secondary structure formed at the second temperature jump,*Tz = 0.1, plotted
against dimensionless reduced times for a critical quench with D" = 800 000
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Figure C.43: The evolution of the growth of the dimensionless structure factor of
the .secon.dary structure formed at the second temperature jump, 75" = 0.1, plotted
against dimensionless reduced times for an off-critical quench with D* = 500 000
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Figure C.44: The evolution of the growth of the dimensionless structure factor of
the secondary structure formed at the second temperature jump, T>" = 0.1, plotted
against dimensionless reduced times for an off-critical quench with D’ =800 000
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