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Abstract 

Lubna Far hi, "Vehicle Position Tracking using Kalman Filter and CWLS Optimization", 
MASc, Ryerson rUniversity, Toronto, 2009 

Vehicle position estimation for wireless network has been studied in many fields since it 
has the ability to provide a variety of services, such as detecting oncoming collisions and 
providing warning signals to alert the driver. The services provided are often based on 
collaboration among vehicles that are equipped with relatively simple motion sensors and 
GPS units. Awareness of its precise position is vital to every vehicle, so that it can provide 
accurate data to its peers. Currently, typical positioning techniques integrate GPS receiver 
data and measurements of the vehicles motion. However, when the vehicle passes through 
an environment that creates multipath effect, these techniques fail to produce high position 
accuracy that they attain in open environments. Unfortunately, vehicles often travel in 
environments that cause multipath effect , such as areas with high buildings, trees, or tunnels. 
The goal of this research is to minimize the multipath effe_ct with respect to the position 
accuracy of vehicles. 

The proposed technique first detects whether there is disturbance in the vehicle posi­
tion estimate that is caused by the multi ath effect using_hypothesis test. This technique 
integrates all information with the vehicle's own data and the Constrained Weighted Least 
Squares (CWLS) optimization approach with time difference of arrival (TDOA) technique 
and minimizes the position estimate error of the vehicle. Kalman filter is used for smoothing 
range data and mitigating the NLOS errors. The positioning problem is formulated in a 
state-space framework and the constraints on system states are considered explicitly. 

The proposed recursive positioning algorithm will be comparatively more robust to mea­
surement errors because it updates the technique that feeds the position corrections back to 
the Kalman Filter as compared with a Kalman tracking algorithm that estimates the target 
track directly from the TDOA measurements. It compensates the GPS data and decreases 
random error influence to the position precision. 

The new techniques presented in this thesis decrease the error in the position estimate. 
Simulation results show that the proposed tracking algorithm can improve the accuracy 
significantly. 
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Chapter 1 

Introduction 

During the last two decades, wireless network technology has progressed at a very fast rate. 

Improvements have played an essential role in opening doors for researchers to consider 

new solutions for various applications. Cellular, Ad hoc, and wireless sensor networks are 

examples of recent wireless network technologies that have been used in telecommunication, 

monitoring, remote sensing, security, position estimation, and tracking systems. The later 

two applications have attracted the attention of many governmental and non-governmental 

organizations because position awareness can be deployed in numerous services. A vehicular 

wireless network is able to provide many communication services via the collaboration of the 

vehicles in the network. However, the accuracy of its position estimation is not satisfactory 

for some applications [1]. In this thesis, a new technique for improving the position estimation 

process is proposed. 

1.1 Research Motivation 

Accurate positioning of a vehicle is one of the essential features that assist third generation 

( 3G) wireless systems in gaining a wide acceptance and triggering a large number of innova­

tive applications. Although the main driver of location services is the requirement of locating 

Emergency 911 callers within a specified accuracy, mobile position information will also be 

useful in designing intelligent transportation system [2). Global Positioning System (GPS) 

could be used to provide mobile locations. However, it would be expensive to be adopted 
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2 
in the mobile phone network because additional hardware is required in the mobile station 

(MS). 

Furthermore, using a G PS receiver as a stand-alone positioning technique has drawbacks. 

A regular GPS used without any specialized equipment can b~e less accurate, e.g., they are 

accurate only up to 5 to 10 meters in outdoor environment or open area [3]. In addition, 

GPS is not applicable in locations where no line of sight exists, e.g., in a tunnel. Therefore, 

integrating a GPS receiver with other positioning methods is well worth the efforts invested 

by many researchers [4, 5]. However, the accuracy of its position is still an unsolved problem. 

1.2 Overview of Different Position Location Methods 

There are numerous techniques that can be considered for use in wireless position location 

systems. However, we will discuss only those techniques that can be practically incorporated 

in wireless systems. Such techniques can be broadly classified into two categories as shown 

in Figure 1.1. Either the position location system requires a modification in the existing 

handsets or the system can be designed in such a way that all the modifications take place 

at the base stations or the switching center with no modifications in the existing handsets. 

1.2.1 Modified Handset Techniques 

Fro1n the technical aspect, the modified handset techniques are easy to implement and 

accurate to determine a mobile location. The GPS-based position location, mobile-assisted 

Time of Arrival (TOA) technique and mobile-assisted Time Difference of Arrival (TDOA) 

techniques fall into this category. The G PS-based position location (PL) requires installation 

of a GPS receiver in the handset and transmitting the received GPS data on the reverse link to 

the base station (BS) for further processing and position determination [14]. The drawbacks 

of this technique include an increase in the size and weight of the handsets, and additional 

drain of the batteries in the mobile phones. Moreover, a GPS receiver needs to have at least 

four satellites constantly visible. In a heavily shadowed and covered urban environment, the 

line-of-sight between the mobile station and the satellites is impeded. Therefore, the GPS 
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based solution is a feasible option for outdoor mobile units but not for indoor mobile units or 

units within urban canyons. In the mobile assisted TOA technique, the handset stamps the 

current time on any outgoing signal in the reverse channel. The base station determines the 

time required by the signal to reach the base station, and from that determines the distance 

between the base station and the mobile unit. If at least three base stations take part in 

this process then the triangulation method can be used to determine the mobile position. 

This requires that the mobile station and the base stations must be accurately synchronized. 

Although this is not impossible to achieve, it is not cost effective. 

1.2.2 Unmodified Handset Techniques 

An unmodified handset solution requires that all the modifications will be made at the base 

stations and at the switching centers, thus allowing existing terminal equipment to be used. 

Prominent options include: Angle of Arrival (AOA), Time of Arrival (TOA) or Direction 

of Arrival (DOA), and Time Difference of Arrival (TDOA) techniques. It is also possible 

to combine two or more of these techniques to achieve a more accurate position location. 

Combined methods are commonly known as Hybrid Techniques [16]. 

The AOA method utilizes antenna-arrays to estimate the direction of arrival of the signal 

of interest. A single AOA measurement constrains the source along a line. The position of 

the signal source can be located at the intersection of two lines if two DOA estimates are 

available from two separate antennas. Although the basic principle of the AOA method seems 

very simple, the method has some drawbacks. For measurement accuracy, it is important 

that the mobile unit and the participating base stations all have Line-Of-Sight (LOS) to 

the mobile. This is not the usual case in cellular systems. Cellular systems have heavily 

shadowed channels like the ones encountered in urban environments. 

In the unmodified handset TOA technique, when a base station detects a 911 user, it 

transmits a particular command or instruction signal to the user and asks the user to respond 

to that command signal. Since this method relies on a time reference, it is highly susceptible 

to the timing error due to Non-Line-Of-Sight (NLOS) between the base station and the 
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mobile unit. The unmodified handset TDOA has the relative advantage over TOA in the 

sense that the TDOA does not require any time reference for determining round trip delay. 

The TDOA technique estimates the time difference of arrival of the signal from the source 

at multiple base stations. Two versions of the received signal at pairs of the base stations 

are cross-correlated. From the peak of this cross-correlated output, the time difference of 

the signal arriving at two base stations is determined. This time difference gives rise to a 

hyperbola between the two receivers. If the base stations and the mobile user are in the same 

plane, then the mobile lies on a line of the hyperbola. If another base station takes part in 

this process, another hyperbola is defined, and the intersection of the hyperbolas results in 

the position estimate of the source. The TDOA method is also referred as the Hyperbolic 

Position Location method. The advantage of this technique is that all processing takes place 

at the base station infrastructure leveL Advantages of the method include: cost effectiveness, 

no need for an absolute time reference, capability with inexpensive antennas, and immunity 

to timing errors [15]. Any timing bias will be canceled in the time difference operation. As 

a result, the TDOA methods work better than the TOA methods in the absence of LOS 

between base stations and the mobile unit. 

In the hybrid techniques (HT), two or more of the techniques discussed earlier are com­

bined to create a more accurate position location service. When AOA and TDOA are com­

bined to form AOA-TDOA HT, multiple base stations receive signals from the mobile unit 

and the AOA estimates from each base station and the TDOA estimates between multiple 

base stations are combined to determine target location. Although this technique may not 

be as accurate as the AOA-TDOA HT, it may be the only unmodified handset PL solution 

possible when only one base station is able to receive the mobile signal [16]. 

This thesis focuses on the use of TDOA technique with optimization by using Kalman 

filter to allow efficient combining of position location data of GPS. Note that, this is more 

than simple technique used for averaging of estimates, but takes into account the quality of 

the various estimates. 
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1.3 Research Objective 

5 

The objective of this research is to improve the accuracy of positioning techniques, so that 

it can be used as a robust system during long GPS outages. To accomplish this objective, 

the following techniques have been developed: 

• The research presents a simple recursive solution to passive tracking of maneuvering 

targets using time difference of arrival (TDOA) measurements. 

• The Kalman Filter integrates the constant Inertial Navigation System with the GPS 

data (from simulation) in order to overcome most of the individual drawbacks in the 

two systems when they operate independently. 

• The CWLS optimization method minimizes Kalman Filter positioning errors by using 

information extracted from the communication among vehicles. 

• The updating technique feeds the position corrections back to the Kalman Filter, which 

compensates for the G PS data. 
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From a geometric point of view, the solution of such an optimization problem is the 

intersection point of three circles/hyperbolas. These circles signify the distances between 

the target vehicle and the reference points, the circles are centered at the locations of the 

reference points, and the radius of every circle is equal to the distance between the target 

vehicle and the center of that circle, as shown in Figure 1.2. 

1.4 Proposed Model 

For vehicle positioning, filtering techniques do have inherent problems, in term of stability, 

computational load, immunity from noise effects and observability. The performance of the 

filter is heavily dependent on the models used. In the proposed model, we concentrate on 

the ranging aspect of the vehicle transportation system. 

This thesis presents a simple recursive model by using time difference of arrival (TDOA) 

based on absolute position GPS data and incorporating state equality constraints in the 

Kalman filter. In this model, feed the position correction output back to Kalman filter, 
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it compensates the GPS data and decreases the measurement error for vehicle position 

measurement as shown in Figure 1. 3. 

From the process of Kalman filtering, the standard deviation of the observed range data 

can be calculated and then used in NLOS /LOS hypothesis testing. In the TDOA method, 

the differences in the arrival times of the MS signal at multiple pairs of BSs are measured. 

TDOA-based position systems are of more interest because of its potential for high position 

estimation accuracy. We will mainly discuss positioning algorithm including fundamental 

performance in the presence of noise and multipath effects. Furthermore we will describe 

the combination of optimization strategies which will improve the overall accuracy (24]. 
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Figure 1.3: Vehicle Positioning Model Architecture. 

The goal of this work is vehicle position optimization by constrained weighted least 

square (CWLS) approach [21]. For vehicle position optimization we use CWLS and Lagrange 

multipliers for minimizing the cost function [27]. 

The approach proposed in this model introduces an additional optimization operation to 

the traditional systems. The optimization operation is applied to the output of a Kalman 
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Filter in order to increase the accuracy of the positioning and improved TDOA estimation 

method for reducing predictable errors. 

1.5 Thesis Outline 

In the remaining of this thesis, related research and background are presented in Chapter 2, in 

which the different positioning methods are discussed. Chapter 3 describes the Kalman Filter 

and the formulation of the optimization and updating techniques that help improving the 

position estimates. Chapter 4 contains the simulation work and the results that demonstrate 

the improvements in the position estimates, using the techniques mentioned in Chapter 3. 

Finally, Chapter 5 presents the conclusions of the thesis and recommendations for future 

work. 



Chapter 2 

Background 

There are a number of different radio frequency based techniques that can be used for 

wireless position location. The issue is, how effectively and efficiently a technique can be 

implemented so that it can be incorporated in the existing system easily without making 

major changes, either at the user end or at the service providers end. Electromagnetic waves 

at radio frequency (RF) have the unique property of traveling through most objects. Position 

using radio frequency is performed by direct measurement of radio signals traveling between 

the base station and the mobile unit. The RF signal reflection and obstructed line of sight 

introduce error in the calculated position. However, only the radio frequency estimation 

systems offer the advantages of low cost, ease of integration and ability to work in harsh 

environmental conditions (3]. 

From an early work focused on analyzing and modeling the errors of associated with 

different types of GPS receivers, in (30], it was able to model most GPS global errors; 

however, it is mentioned in [31] that the multipath effect has a random behavior. Logically, 

this is true because one can not anticipate the specific environment that any vehicle may pass 

through during a 24-hour period. For example, some vehicles commute every day through 

an open area with almost no multi path effect. Another group of vehicles spend all their time 

traveling inside large cities, where satellite signals are reflected off or are blocked by high 

buildings, and therefore exposed to a multipath effect most of the time. Still other vehicles 

experience both of these cases. The local G PS receiver error is different from one vehicle to 

9 
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High buildings and trees 

Figure 2.1: Multipath effect, when satellite signals are reflected off of high buildings or trees. 
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another because it depends on the environment surrounding each vehicle as shown in Figure 

2.1. 

The approach proposed in this thesis introduces an additional optimization operation to 

the traditional systems. The optimization operation is applied to the output of a Kalman 

Filter in order to increase the accuracy of the positioning. 

2.1 Fading phenomena in wireless communication sys­
tems 

The mobile stations places some fundamental limitations on the performance of the wireless 

communication systems. In a modern urban environment, a transmission path between 

the transmitter and the receiver may vary from a simple line-of-sight scenario, to a path 

completely obstructed by buildings, natural objects, or foliage. To put it shortly, the channel 

is constituted of all the objects that directly or in- directly interact with the electromagnetic 

field created by the transmitter ( Figure 2.2). The mechanisms behind electromagnetic 

: .~· 

mobile 
receiver 

. • . . . ·::-::·:-~: :~·:·:·:·:·: :·:·: :.~ ;; ~:,::' ~~se slation 

Line-of-Sighr 

Figure 2.2: Main propagation mechanisms. 
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wave propagation are diverse, but can generally be attributed to reflection, diffraction, and 

scattering Due to the motion of either the transmitter/receiver or the objects that interact 

with the emitted signal, the electromagnetic waves travel along different paths of varying 

length. Interaction between all these waves causes the received power at a certain location 

to vary. These variations are called fading. Depending on the phases and amplitudes of the 

interacting waves, their total effect could be constructive (i.e., they sum up so that the total 

power increases), or destructive, when their interaction results in the drop of power. The 

difficulty in dealing with fading is its non-stationary behavior that strongly depends on the 

actual environment, i.e., the geometrical distribution of the interacting objects. The latter 

is itself subject to time variation, especially in mobile communications. This in turns means 

very complex and non-stationary behavior of the corresponding channel. 

It is convenient to distinguish fading caused by slowly changing factors, such as moving 

away from the transmitter, causes slow power drop, and those that vary fast on top of them, 

mostly caused by the phase variations of multi path components arriving via different paths. 

These two types of fading are known as large-scale fading and small-scale fading, respectively. 

This section introduces the basic phenomena of the radio wave propagation. The main 

propagation mechanisms include reflection, diffraction, scattering, and absorption [8). 

Reflection 

In the reflection phenomena, radio waves encounter an obstacle that is large compared 

to the wavelength of the radio wave. As a result, part of the wave energy is reflected and the 

remaining part is absorbed into the object. Reflections occur from the ground surface and 

from building walls. Radio waves can also be absorbed due to atmospheric effects or even a 

human body. 

Diffraction 

Diffraction enables the radio waves to find their way to the shadow regions behind the 

corner of a building or over the rooftops. In multiple diffraction, obstacles cause the radio 

waves to diffract from several places. 

Scattering 
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Rough and finite surfaces such as trees cause scattering. In scattering, the energy of 

the radio wave is dispersed to all directions. Scattering is sometimes referred to as diffuse 

reflection. 

2.1.1 Large-scale fading 

The name of this type of fading speaks for itself. It describes the variations of the received 

power over relatively large distances, usually from tens to thousands of meters. Large-scale 

fading effects are mainly caused by the particularities of the terrain profiles, e.g. , suburban 

areas, mountain areas, cities, etc. A significant amount of efforts has been invested in the 

development of propagation models that accurately reflect the variation of the received power 

over large distances, which is an important factor in the design of the cellular networks (8). 

Large-scale propagation models are constructed to predict the mean power for an arbitrary 

transmitter-receiver separation and to estimate the coverage area of a transmitter in a certain 

environment. 

2.1.2 Small-scale fading 

Because of the reflection, diffraction and scattering, radio waves travel different paths from 

the transmitter to the receiver, which is often called multipath propagation. Due to the 

difference in the length of travel, the arrival time and phase of the received signals are not 

identical. This leads to fluctuations in the received signal strength because at the receiver , 

the waves are combined constructively and destructively depending on their phase and arrival 

time. 

Small-scale fading, on the other hand, stems from the rapid fluctuations of the phases of 

a radio signal over very short distances (on the order of several wavelengths, i.e., centimeter 

scale for a typical wireless communication system operating in the G Hz frequency range). 

The cause of such rapid fluctuations is the interference between the multipath waves that 

arrive at the receiver at slightly different times. As the result, depending on the phases of 

the incoming wavefronts, the resulting power is either increased (maxima of the resulting 
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interference pattern), or reduced (minima of the interference pattern). There are several 

physical factors in the radio propagation channel that influence small-scale fading. Some of 

the most dominant factors are: 

• Multipath propagation - The presence of reflecting and scattering objects that 

spread the signal energy in the amplitude, phase and time. These effects produce 

multiple copies of the transmitted signal that arrive at the receiving antenna causing 

interference (see, for example, Figure 2.2, where 3 paths of different length are super­

imposed at the receiving antenna). Multipath propagation causes delay spread the 

time duration needed for all of the replicas of the emitted signal, or in other words 

echoes, to die out. If we are talking about multiple antennas, then in addition to the 

latter, the multi path propagation also induces angular spread, the spread of the angles 

of the waves that impinge on the antenna array at a certain instant of time t. 

• Speed of the mobile - The motion of the transceiver through the interference field 

pattern results is time-dependent phase variations. These variations cause a specific 

modulation of the transmitted signal, also known as the Doppler shift. 

The large-scale effects are the key factors that govern the design and planning of the cellular 

network. The small-scale fading, on the other hand, directly impacts the design of the actual 

transceiver, since this is where the knowledge of the instantaneous power is mostly needed. 

2.2 Accuracy measures 

The output of the mobile positioning procedure contains typically the geographical coor­

dinates of the estimated location together with the time stamp of the moment when the 

positioning was carried out. The coordinates of the location estimation can be either spher­

ical coordinates or local Cartesian coordinates. In addition to the time and coordinate 

information, the estimated error of the location may be included to the output of the lo­

cation procedure. The estimated error can be based on the location measurement quality 

information or it can be a fixed set of estimations for the positioning technology. 
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To be able to understand and compare the performance of the various positioning tech-

nologies and estimate the magnitude of the positioning error, it is important to know the 

most commonly used accuracy measures. In this section these measures, as well as their 

relationships to each other, are presented. 

Positioning error 

The term positioning error is generally considered as the Euclidean distance between the 

estimated location and true location 

(2.1) 

where (xi, Yi, zi) is the estimated position and (x, y, z) the corresponding true position. In 

cellular network positioning, the error in the altitude is often ignored. In addition, the true 

location might be replaced with the position calculated with the Global Positioning System 

(GPS) receiver because it is often too time-consuming and sometimes even impossible to 

determine the true position accurately. 

Circular error probability 

Circular error probability or circular error probable ( CEP) is the radius of a circle centered 

at the true position, containing the position estimate with a certain probability. Usually the 

radius of the 50% (R50) probability is used, but 67% (R67) and 95% (R95) probabilities 

are often quoted (Figure 2.3). In case of three-dimensional accuracy, a common measure is 

Spherical Error Probability (SEP), which also takes the error in the altitude into account. 

Actually, R50 equals the median of the positioning error distribution. Half the errors are 

above the median and half are below the median. A bit similar measure is the arithmetic 

mean (a.k.a. average) which equals the sum of the positioning errors of the samples divided 

by the number of samples. The median is a much better measure than the arithmetic mean 

for highly asymmetrical distributions because it is less sensitive to extreme variations. In 

mobile positioning, the error distribution is usually distorted and thus, median is usually 

more illustrative than mean. 

Cumulative distribution function 

Cumulative distribution function ( CDF) is often used in visualizing the positioning error. 
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A general impression of the error distribution can be obtained quickly by looking the CDF 

graph. The X-axis represents the positioning error in meters and the percentage of all 

samples is depicted in the Y-axis. With the cumulative distribution function, one can find 

out any desired percentile. For example, in Figure 2.4, it can be seen that 67% of the samples 

are positioned within about 150 meters. Median, R67 and R95 values can be approximated 

from the CD F graph by ocular estimation. 

Root mean square error 

Root mean square error is determined by squaring the positioning errors of the samples, 

summing up the results, dividing the sum by the number of samples, and then taking the 

square root of the division 

R.M.S = _!_ t di 
n i=I 

(2.2) 

where n is the number of positioned samples and di is the positioning error of sample of 

i. Root mean square error represents the whole error distribution with one value. Therefore, 

it is more comprehensive than R50 and R67 values. For example, if 67% of the errors were 

smaller than 50 meters but 20% of the errors were over 1000 meters, R67 value would give 

far too positive a picture of the situation. On the other hand, R67 together with R95 value 

would give more information about the distribution: most of the errors are small but there 

are also some major ones. 

In conclusion, the most illustrative measure is CDF because it shows the whole error 

distribution. Numerical values are used to simplify the representation. If the error has to be 

expressed with one value, root mean square error does it most comprehensively. 

2.3 Positioning technologies 

The position of the mobile terminal can be determined in several different ways. The most im­

portant technologies are satellite positioning, cellular network-based positioning and indQor 

positioning. This section briefly introduces these three technologies. A more comprehensive 

description can be found in [32]. 
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2.3.1 Cellular Network Positioning 

The cellular network positioning can be mobile-assisted, mobile-based, or network-based. 

Mobile-assisted positioning means that the mobile terminal performs the location measure­

ments and transfers the measurement data to a particular component called location server 

(LS). The LS calculates the location estimate and sends it back to the mobile terminal. In 

mobile-based positioning, the mobile terminal is responsible for carrying out both the loca­

tion measurements and the calculation of the location estimate, whereas in network-based 

location, the network performs the measurements and calculation. 

In the simplest case, the measurement data used in estimating the location of the mobile 

terminal contains only the identification information of the serving cell, or access point in 

case of WLAN. The information is used to find out the corresponding location of the signal 

source, which is then estimated to be the location of the Mobile Terminal. The name of this 

technique is Cell-Identification (Cell-ID) as shown in Figure 2.5 and its accuracy is directly 

proportional to the cell size in the network. For example, in the GSM network the cell size 

might vary from a couple of hundred meters to over 30 kilometers. For many location-based 

services, the accuracy of the Cell-ID technique is not sufficient. Thus, methods that are 

more complex have been developed to increase the accuracy. 

One way to improve the positioning accuracy is to utilize information about the signal 

strength. Depending on the network type and topology, the MT is capable of measuring 

signal strength values from a number of different sources. For example, in GSM, the MT 

continuously measures the signal strength of the serving and up to six neighbor cells. In free­

space propagation, the signal strength can be assumed proportional to the distance between 

the signal source and the MT. By using propagation models, the location estimation for the 

MT can be solved geometrically. However, the line-of-sight (LOS) assumption is often invalid 

due to the disturbances in the propagation environment. Non line-of-sight propagation 

environment can also be modeled to some extent, but the results are usually poorer than 

in case of LOS visibility. In addition, the number of hearable cells affects directly the 

performance of the signal strength technique. Signals from at least three cells are needed to 
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MT 

PositioninJ: error<= cell size 

Figure 2.5: Cell-ID method. 

solve the location of the MT unambiguously. The measured signal level information can also 

be compared to previously recorded or estimated values. By finding out the best matching 

sample, the location of the MT can be predicted. 

In addition to the signal strength, timing information can be utilized in mobile posi­

tioning. In GSM, a parameter called Timing Advance (TA) known by the serving cell is 

directly proportional to the distance between the serving cell and the MT so it can be used 

to enhance the accuracy of the Cell-ID method. However, the resolution of the parameter 

is poor (>550m) so it is beneficial only in case of large cells. In UMTS, Round Trip Time 

(RTT) can be used equally to enhance the Cell-ID. Because of the wider bandwidth used in 

3G networks, the resolution of RTT (80m) is much better than the resolution of TA. 

More enhanced methods that use timing information includes Time of Arrival (TOA), 

Enhanced Observed Time Difference (E-OTD) and Observed Time Difference of Arrival (OT­

DOA). All these methods are based on triangulating the propagation time delay between the 

MT and at least three base stations. To support these methods, additional hardware com-
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ponents called Location Measurement Units (LMUs) need to be installed into the network. 

TOA is a purely network-based method, whereas the E-OTD can be either mobile-based or 

mobile-assisted. TOA is used in both the GSM and UMTS networks. E-OTD is a method 

for GSM location and OTDOA is identical method for UMTS networks. As well as signal 

strength information, timing measurements could be also used in the Database Correlation 

Method. For example, the parameter Timing Advance could be used in assistance with the 

signal strength values. By equipping the base station with special antenna arrays, the angle 

of the signal arriving from the MT can be determined. Measurements from two different 

base stations are enough for locating the MT. This method requires usually changes in the 

network because the required antenna arrays are not included in the standards. On the other 

hand, the positioning accuracy of the method often decreases in non line-of-sight (NLOS) 

conditions. 

The previously presented techniques can be combined in order to get better positioning 

accuracy. In addition, various techniques can be used side by side to achieve a better 

performance in different environments. For example, a more enhanced technique could be 

applied in urban areas where there is a need for precise location and a simpler solution could 

be used in other areas to minimize the expenses. 

Accuracy of the cellular network based positioning technologies 

None of the presented cellular network positioning techniques is superior to the others. 

The achieved positioning accuracy depends highly on the network type and topology, as well 

as the propagation environment. An accuracy comparison between the different techniques 

is presented in [32]. 

2.3.2 Satellite positioning 

Two global satellite navigation systems, Global Positioning System (GPS) and Global Or­

biting Navigation Satellite System (GLONASS), are currently viable in the world. The third 

one, Galileo, is under construction. 

The Global Positioning System [34] was primarily designed for the U.S. and allied mil-



21 
itary forces but quickly became an important part of the global information infrastructure 

with wide range of applications. The GPS system is managed by the Interagency GPS Exec­

utive Board (IGEB). It provides three dimensional position, velocity, and time information, 

24 hours a day in all weather conditions, anywhere in the world. The location error varies 

from a couple of meters to several tens of meters depending on propagation environment. 

In Differential GPS (DGPS), the location accuracy is improved by determining the po­

sitioning error of the GPS system in a known location and then subtracting this error from 

the solution in an unknown location. Error correction signals are broadcasted by using FM 

radio transmissions. With DG PS, the positioning error can be diminished down the level of 

1 to 3 meters. 

Assisted GPS (A-GPS) technology uses the cellular network to assist the GPS receiver in 

the mobile phone to overcome the problems associated with the determination of the initial 

location and the low signal levels that are encountered under some situations. The assistance 

information increases the battery life and enhances the sensitivity of the GPS receiver in the 

mobile phone. A-GPS is one of the standardized location techniques in 3G networks. 

GLONASS 

The Russian Global Navigation Satellite System GLONASS was declared operational 

The Russian Global Navigation Satellite System GLONASS was declared operational in 

1993. GLONASS is managed for the Russian Federation Government by the Russian Space 

Forces. Currently, 13 satellites are in operational use and work is underway to modernize the 

system. The latest status of the satellites can be checked from the GLONASS web page [36]. 

GLONASS is available for the public use and it provides the capability to obtain horizontal 

positioning accuracy within 57-70 1neters (99. 7% probability) and vertical positioning accu­

racy within 70 meters (99. 7% probability). 

Galileo 

In year 2008, Europe's own global navigation satellite system Galileo [35] is supposed 

to be fully operational. It will be the first time when a highly accurate global positioning 

service controlled by the civilian authorities is available for the public. Galileo is a joint 
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initiative of the European Commission (EC) and the European Space Agency (ESA). It is 

planned to be inter-operable with the existing global satellite navigation systems GPS and 

GLONASS. In other words, it should be possible to use satellites from all the three different 

systems in any combination with a single receiver. 

2.4 Mobile-Based Versus Network-Based techniques 

Wireless location technologies fall into two main categories: mobile based and network based. 

In mobile-based positioning systems, the MS determines its location from signals received 

from some base stations (BSs) or from the global positioning system(GPS). In GPS-based 

estimations, the MS receives and measures the signal parameters from at least four satellites 

of the current network of 24 GPS satellites. The parameter measured by the MS for each 

satellite is the time the satellite signal takes to reach the MS. GPS systems have a relatively 

high degree of accuracy, and they also provide global location information. There is also a 

hybrid technique that uses both the GPS technology and the cellular infrastructure. In this 

case, the cellular network is used to aid the GPS receiver embedded in the mobile handset 

for improved accuracy and/ or acquisition time [3). 

Still, embedding a GPS receiver into mobile devices leads to increased cost, size, and 

battery consumption. It also requires the replacement of millions of mobile handsets that 

are already on the market. In addition, the accuracy of GPS measurements degrades in urban 

environments as well as inside buildings. For these reasons, some wireless service providers 

may be unwilling to embrace GPS fully as the sole location technology. Network-based 

location technology, on the other hand, relies on some existing networks (either cellular or 

WLAN) to determine the position of a mobile user by measuring its signal parameters when 

received at the network BSs. In this technology, the BSs measure the signals transmitted 

from an MS and relay them to a central site for further processing and data fusion to provide 

an estimate of the MS location. A significant advantage of network-based techniques is that 

the MS is not involved in the location-finding process; thus, the technology does not require 

modifications to existing handsets. However, unlike G PS location' systems, many aspects of 
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network-based location are not yet fully studied. 

For position estimation, two operations must be performed at the BSs. The BSs have 

to measure some signal parameters (such as the time or the angle of arrival) of the received 

MS signals. Then, the measured signal parameters are combined in a data fusion stage to 

provide the final estimate for position. 

2.5 Dead Reckoning Positioning System 

Another method of positioning, called Dead Reckoning System (DRS), has been adopted in 

some applications. In this technique, the new location estimation depends on how far an 

object has moved from a known place given the directions and distances traveled over small 

periods of time. Since this technique is simple and inexpensive, however, it has a crucial 

disadvantage in that the errors in the measurements of the direction and the distance affect 

the final position estimation. In other words, the measurement errors accumulate over the 

total period of time. Thus, the Dead Reckoning technique is recommended for use only over 

short periods of time. 

2.6 Ranging 

Ranging is defined as finding the distance between a target node and a reference node within 

a network. These distances are then used to determine the position of the target node. This 

is called positioning and can be seen as advanced ranging. Positioning can be sub-categorized 

in node-centered, relative and absolute positioning. Node-centered positioning is defined as 

the action of computing the positions of a set of target nodes with respect to a reference 

node. Any given node can be viewed as a reference node and the positions of the other nodes 

can be found referenced to this one. 

2.6.1 Absolute Positioning 

Absolute (geographical) positioning is a special case of relative positioning that is worth 

mentioning. The reference coordinate system coincides in this case with the global coordinate 
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system in which the coordinates are given in terms of latitude and longitude and are unique 

worldwide for each node as shown in Figure 2.6 . 

N3 • 

{-4,0.75) 

N2 

(·2,4) • 
Nl 
Reference node 

(0,0) 

Figure 2.6: Absolute Positioning. 

2.6.2 Relative Positioning 

When it comes to relative positioning the key notion is that the positions of a set of nodes 

are calculated with respect to a common system of coordinates. All nodes share the same 

reference system and each node has a unique set of coordinates within this system. The 

reference coordinate system can be placed arbitrarily but evolves typically from the node­

centered system where it coincides with the coordinate system of a given node as shown in 

Figure 2. 7. 

The terms ranging and positioning are equally important for localizing sensors in a given 

network. Accuracy in distance estimation is necessary in order to achieve accurate position­

ing [3]. There are several techniques that can help in localizing nodes accurately and they 

will be presented in this chapter. 



y Nl. 
(1,3) 

• N2 

(3,1) 

X 
Common System of Coord.inates 

Figure 2. 7: Relative Positioning. 

2. 7 Methods of Radio navigation 
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The use of radio frequency (RF) signals has become an integral part of modern day tracking 

and positioning systems. Some of these technologies, i.e, received signal strength(RSS), 

angle of arrival(AOA), time of arrival(TOA) measurement of a known burst transmitted by 

the mobile terminal (MT) to number of base stations (NBS) and these are different BSs. 

2.7.1 Time of Arrival (TOA) Technique 

The Time of Arrival technique exploits triangulation to determine positions of the mobile 

users. Position estimation by the triangulation is based on knowing the distance from the 

mobile to at least three base stations in the line of sight (LOS). The base stations determine 

the time signal takes from the source to the receiver either on the uplink or on the downlink, 

the controlling base station prompts the mobile to respond to a initial signal. The total time 

elapsed from the instant the command is transmitted to the instant the mobile responds is 

detected. This time consists of the sum of the round trip signal delay, and any processing 
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and response delay within the mobile unit . When the processing delay is subtracted from 

the total measured time, total round trip delay is found. Half of the quantity would be the 

estimate of the signal in one direction. Multiplying this time with the traveling velocity of 

the electromagnetic waves would give the approximate distance of the mobile from the base 

station. The approximate distance to the mobile determined by two additional receivers 

could be used to determine the mobile position at the intersection of circles from multiple 

TOA measurements, as illustrated in Figure 2.8. The mobile position can be determined 

accurately if there exists a complete LOS between the mobile station (MS) and the base 

stations. However the occurrence of non-line-of-sight (NLOS) propagation causes the signal 

to take a longer path to the base station receiver and the measured TOA is generally larger 

than the arrival time of an LOS signal. In such a circumstance, there is a need to detect 

NLOS and to correct the biased error in the TOA measurements before processing them. 

In TOA algorithms, which requires that all the participating BSs and MT clocks are 

synchronized and (BS ~ 3) [3]. 

Figure 2.8: TOA method. 

The TOA algorithm assumes that the burst sent by the MT takes an absolute time TBSi 

to reach the BS#i(i = 1, ... ,NBS). The BS#i is then able to measure TBSi and forward 

this information to a central server, where location estimation is performed. Due to possible 

NLOS propagation conditions, the "true" Euclidean distance di between the MT and the 
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BS#i is such that di ~ c * TN BSi, where c is the speed of light and the equality sign holds 

only if the MT is in LOS condition with the BS#i. Therefore, the MT must be located 

within a circle of radius C*TNBSi centered at the BS#i. By repeating these arguments for all 

the NBS , NBS circles are determined and their intersection MT(also called feasible region) 

defines the set of the possible location points for the MT. As a result, the MT location can 

be obtained by finding the centroid of the feasible region. 

2.7.2 Time Difference of Arrival (TDOA) PL Technique 

Next we examine the TDOA or hyperbolic PL technique. Two distinct stages are involved in 

the hyperbolic position estimation technique. In the first stage, time delay estimation is used 

to find the time difference of arrival (TDOA) of acknowledgement signals from MS to BS's 

are determined. This TDOA estimate is used to calculate the range difference measurements 

between the base stations. In the second stage, an efficient algorithm is used to determine 

the position location estimation by solving the nonlinear hyperbolic equations resulting from 

the first stage. TDOA can be estimated by subtracting the TOA measurements from the 

two BS's [28). 
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Figure 2.9: TDOA method. 
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In this research we are using the time of difference of arrival(TDOA). The TDOA algo-

rithms are based on measuring the difference in the time of reception of signals at different 

BSs, without requiring a synchronization of all the participating BSs and MT. Actually, the 

uncertainty between the reference time of the BSs and that of the MT can be removed by 

means of a differential calculation. Therefore, only the BSs involved in the location estima­

tion process must be tightly synchronized. For a couple of BSs, let say i and j, the TDOA, 

Tij, is given by Tij = TBSi - IBSJ, where TBSi and TBSJ are the absolute times taken by the 

burst to reach the BSs i and j, respectively. Assuming that the MT is in LOS with both the 

BSs, i and j, it follows that the MT must lie on a hyperbola. A second hyperbola on which 

the MT must lie can be obtained using a further TDOA measurement involving a third BS. 

The user position can therefore be identified as the interception point of the two hyperbolae, 

as shown in Figure 2.9. The solution of the relevant equation system can be found with an 

iterative method and least squares minimization. 

2.8 Optimization Approaches 

In general, the MS position is not determined geometrically but is estimated from a set of 

nonlinear equations constructed from the TOA, RSS, TDOA, or AOA measurements, with 

the knowledge of the BS geometry. Generally optimization approaches for positioning are: 

Nonlinear Least Square (NLS), Maximum Likelihood (ML), Gaussian ML (GML), Genetic 

Algorithm Method (GAM ) and Constrained Least Square method(CWLS) [21]. Basically, 

there are two approaches for solving the nonlinear equations. The NLS approach is to 

solve them directly in a nonlinear least squares (NLS) or constrained weighted least squares 

( CWLS) framework. 

Other method called Taylor-series estimation (also Gauss or Gauss-Newton interpolation) 

is an iterative scheme for solution of the simultaneous set of algebraic position equations 

(generally nonlinear), starting with a rough initial guess and improving the guess at each 

step by determining the local linear least-sum-squared-error correction. The disadvantages 

are: 
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• Method is iterative, requiring an initial guess. 

• lt is computationally complex compared to simple plotting of lines of position (LOP). 

• Being a local correction, its convergence is not assured. 

Although optimum estimation performance can be attained, it requires sufficiently precise 

initial estimates for global convergence because the corresponding cost functions are multi­

modal. The second approach is to reorganize the nonlinear equations into a set of linear 

equations so that real-time implementation is allowed. In this thesis, the latter approach is 

adopted, and we will focus on a unified development of accurate positioning algorithm, given 

TDOA measurement. 

There are several advantages of the constrained weighted least squares techniques that 

prove useful in the underlying problem. These are: 

• Simple incorporation of multiple linear constraints. 

• A simple solution that does not call for iterative techniques. 

• Geometric interpretation that brings valuable insights into the design problem. 

• Numerical stability, noise suppression, and computational savings that can be achieved 

via rank reduction and subspace splitting to dominant and subdominant subspaces. 

• Reducing complexity by converting the underlying constrained minimization problem 

to an unconstrained minimization problem. 

• Multiple measurements and mixed-mode measurements are combined properly, i.e., 

with the correct geometric factors, and can be weighted according to their a priori 

accuracies. 

• Multiple independent measurements to a single station are averaged naturally. 

• Statistical spread of the solution can be found easily and naturally. 
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• Failure to converge is easy to detect. 

• Simulation is easy, so convergence can be readily tested. 

• The initial position guess can be quite far off without preventing good convergence. 

A significant advantage is that the method leads naturally to measures of the accuracy of 

the position-location solution obtained at convergence. If information about error variance 

values is available, the terms in the matrix determine the error. Whether error variances are 

known or not, it will constitute an overall measure of the differences between the naviga­

tional measurements used as input data and the corresponding quantities obtained from the 

position solution. Further, it can indicate the occurrence of a measurement blunder and thus 

give a useful check on the validity of the solution. The CWLS method places many different 

measurements in a common mathematical framework. lt is hoped that this will encourage 

the consistent evaluation of the different measurement processes. 

2.9 Filtering for Data Smoothing 

The Kalman filter is a set of mathematical equations that implement a predictor-corrector 

type estimator that is optimal in the sense that it minimizes the estimated error covariance. 

The Kalman filter has been the subject of extensive research and application, particularly in 

the area of autonomous or assisted navigation. This is likely due in large part to advances in 

digital computing that made the use of the filter practical, but also to the relative simplicity 

and robust nature of the filter itself. Rarely do the conditions necessary for optimality 

actually exist, and yet the filter apparently works well for many applications in spite of this 

situation. 

Filtering is desirable in many applications. For example, radio communication signals 

are corrupted with noise. A good filtering algorithm can remove noise from electromagnetic 

signals while retaining the useful information. Kalman filter is a tool that can estimate the 

variables of a wide range of processes and estimates the states of a linear system. It is the 

one that minimizes the variance of the estimation error. 
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Kalman filter is very useful to solve the vehicle navigation problem. In order to control 

the position of an automated vehicle, we first must have a reliable estimate of the vehicle's 

present position. Kalman filtering provides a tool for obtaining that reliable estimate. It 

estimates a process by using a form of feedback control: the filter estimates the process 

state at some time and then obtains feedback in the form of (noisy) measurements. As 

such, the equations for the Kalman filter fall into two groups: time update equations and 

measurement update equations. The time update equations are responsible for projecting 

forward (in time) the current state and error covariance estimates to obtain the a priori 

estimates for the next time step. The measurement update equations are responsible for 

the feedback i.e. for incorporating a new measurement into the a priori estimate to obtain 

an improved a posteriori estimate. The time update equations can also be thought of as 

predictor equations, while the measurement update equations can be thought of as corrector 

equations. Indeed the final estimation algorithm resembles that of a predictor-corrector 

algorithm as shown in Figure 2.10. 

Corrector Prediction 

Figure 2.10: Kalman Filter predictor-corrector algorithm. 

A Kalman filter is recursive so that new measurements can be processed as they arrive. 

It is essentially a set of mathematical equations that implement a predictor-corrector type 
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estimator that is optimal in the sense that it minimizes the estimated error covariance. 

2.9.1 Utilization in positioning 

The Kalman filter can be utilized in mobile positioning to filter out the high frequency 

errors that are not corresponding to the vehicle dynamics [37]. This is done by combining 

the primary position estimates with knowledge about the expected speed and acceleration 

in the Kalman filter. The modified Kalman filter is used for improving the TDOA location 

estimates especially in non line-of-sight conditions. The filter is evaluated with simulations 

and the results yield significant accuracy of the positioning estimation. 

Other filtering approaches have been proposed in [38], Kalman filtering is compared to 

hidden Markov modeling. The hidden Markov model can be described as a set of states and 

state transitions, which have a certain state transition probabilities. The position estimation 

is performed by finding the optimal state sequence associated with the given observation 

sequence. Both methods are evaluated with real measurement data. In conclusion, the 

hidden Markov modeling is said to be less sensitive to errors in the model parameters and 

on the other hand, it contains fewer parameters than the Kalman filter. 

2.10 Related Research 

GPS and Dead Reckoning System (DRS) techniques are both commonly used in vehicle 

navigation systems. However, GPS and DRS suffer from different drawbacks. Integrating 

the two methods is one approach to develop an enhanced technique. Many researchers have 

been motivated by this idea and have looked at it from different point of view in [2], it was 

proposed combining the standard GPS receiver and a DRS in one navigation system so that 

the GPS fixes the accumulated error caused by the DRS. When the GPS measurement is 

not available, and the DRS estimates the position using sensors such as wheel odometers, 

flux-gate compass, gyroscope, and accelerometer. Similarly, it was stated in [17] that it is 

possible to integrate the GPS reading with the Inertial Navigation System (INS) by means 

of Kalman Filter. 
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It can thus be concluded that even with the most advanced and expensive GPS, it is 

essential to integrate G PS measurements with other measurements such those from an INS 

to improve the positioning process. None of the mentioned papers was able to overcome 

the problem of losing the satellite signals; therefore, it is better to find another source of 

information that can help with the goal of improving position estimation. 

Nowadays, the same kind of techniques are used to position and track for emerging 

application. In order to estimate the position of a single source using estimated TDOAs, 

one needs to first choose a data model which describes how a source position is related to 

TDOA observations and how noise or measurement error is introduced. If errors (that are 

possibly mutually dependent) are supposed to be additive to and independent of the TDOA 

measurements, the source would be located at the intersection of a set of hyperboloids. 

Finding this intersection is a nonlinear problem. Although such an additive model does 

not easily land it self to modification due to the nonlinearity, it describes the principal 

constraints imposed by the TDOA data in a simple way and thus is widely used in studying 

the positioning problem. 

There is a rich literature of source positioning techniques that use the additive measure­

ment error model. Important distinction between these methods include likelihood-based 

versus least-squares and linear approximation versus direct numerical optimization, as well 

as iterative versus closed-form algorithms. 

In early research of positioning with passive sensor arrays, the maximum likelihood (ML) 

principle was widely utilized because of the proven asymptotic consistency and efficiency 

of an ML estimator (MLE). However, the number of microphones in an array for camera 

pointing or beamformer steering in multimedia communication systems is always limited, 

which makes positioning a finite-sample rather than a large-sample problem. Moreover, ML 

estimators require additional assumptions about the distribution of the measurement errors. 

One approach is to invoke the central limit theorem and assumes a Gaussian approxima­

tion, which makes the likelihood function easy to formulate. It can be difficult to verify and 

the MLE is no longer optimal when sampling introduces additional errors in discrete-time 
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processing. To compute the solution to the MLE, a linear approximation and iterative numer-

ical techniques have to be used because of the nonlinearity of the hyperbolic equations. The 

Newton-Raphson iterative method, the Gauss-Newton method, and the least-mean square 

(LMS) algorithm are among possible choices. But for these iterative approaches, selecting 

a good initial guess to avoid a local minimum is difficult and convergence to the optimal 

solution cannot be guaranteed. Therefore, it is our opinion that an ML-based estimator is 

not suitable for the real-time implementation of a positioning system. 

For real-time applications, closed-form estimators are desired and appropriately, have also 

gained wider attention. Of the closed-form estimators, triangulation is the most straightfor­

ward. However, with triangulation it is difficult to take advantage of extra sensors and the 

TDOA redundancy. Nowadays most closed-form algorithms exploit a least-squares princi­

ple, which makes no additional assumption about the distribution of measurement errors. 

To construct a least-squares estimator, one needs to define an error function based on the 

measured TDOAs. Different error function will result in different estimators with differ-

ent complexity and performance. The TDOAs to three sensors whose positions are known 

provide a straight line of possible source locations in two dimensions and a plane in three 

dimensions. By intersecting the lines/plans specified by different sensor triplets. Another 

closed-form estimator, termed spherical intersection(SI), employed a spherical LS criterion. 

The SI algorithm is mathematically simple, but requires an a priori solution for the source 

range, which may not exist or may not be unique in the presence of measurement errors. 

Although the SI method has less bias, it is not efficient and it has a large standard deviation. 

With the SI estimator, the source range is byproduct that is assumed to be independent of 

the position coordinates. it [24] improved the SI estimation with a second LS estimator that 

accommodates the information redundancy from the SI estimates and updates the squares of 

the coordinates. Other is quadratic-correction least-square (QCLS) estimator. In the QCLS 

estimator, the covariance matrix of measurement errors is used. But this information can be 

difficult to properly assume or accurately estimates, which results in a performance degrada­

tion in practice. When the SI estimate is analyzed and the quadratic correction is derived in 
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the QCLS estimation procedure, perturbation approaches are employed and presumptively, 

the magnitude of measurement errors has to be small. But when noise is practically strong, 

its bias is considerable and its variance could no longer approach the stability. 

Recently a CWLS algorithm has been proposed. This method applies the additive mea­

surement error model and employs the technique of Lagrange multipliers. The idea proposed 

in this thesis is to take advantage of all the research mentioned and develope a new position 

technique that will increase the accuracy of the position estimation so that it will be pre­

cise enough for most spatial systems. Specifically, using Kalman Filter to integrate a G PS 

reading with the measurements since fusing the measurement sets overcomes the faults. In 

proposed method, first the NLOS error bias have to be detected in the TDOA data. The 

bias in the measurements can be identified if we have the a priori knowledge of the stan­

dard deviation of the standard measurement noise. In the presence of the NLOS error, the 

measured range differences would deviate from the smoothed curves so that the standard 

deviation is much greater than the standard deviation of the standard measurement noise. 

The proposed method is based on the fact that the effect of NLOS error is to positively 

bias the measured range differences. Since the standard measurement noise, hence on the 

average the measurements will have a positive bias equal to the mean of the NLOS error. 

So to reduce the effect of the bias, the raw measurements need to be shifted downward by 

the value equal to the mean of the NLOS error. 



Chapter 3 

Methodology 

The proposed formulation in this thesis introduces an additional optimization operation to 

the traditional systems. The optimization operation is applied to the output of a Kalman 

Filter in order to increase the accuracy of the position. Before the details of optimizing the 

position estimation are discussed, this thesis focus on the range-based technique of TDOA. 

Because the relative advantages of TDOA method are over other methods, this technique is 

widely used in RF PL system for the geo-position of mobile user [22). 

3.1 Positioning Measurement Models 

This section describes the TOA and TDOA measurements. Let x = [x, y]T be the MS 

position to be determined. The coordinates of the ith BS is Xi = [xi, Yi]r, i = 1, 2, · · ·, M, 

where the superscript T denotes the transpose operation and M is the total number of the 

receiving BSs. The distance between the MS and the BS, denoted by di, is given by 

i = 1, 2, · · ·, M (3.1) 

The TOA is the one-way propagation time taken for the signal to travel from the MS to 

a BS. In the absence of disturbance, the TOA measured at the BS, denoted by ti, is 

di 
ti =- i = 1,2,···,M 

c 
(3.2) 

where cis the speed of light. The range measurement based on ti in the presence of distur-
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bance, denoted by rroA,i is modeled as 

i=1,2,···,M (3.3) 

where nroA,i is the range error in rroA,i· Equation (3.3) can also be expressed in a vector 

form as 

where 

and 

rTOA = fToA(x) + llTQA, 

rToA = [ rroA,I rroA,2 · · · rroA,M ] T , 

nToA = [ nroA,I nroA,2 · · · nroA,M J T , 

[ 

j(x- xJ) 2:+ (y- Y1)2] 
fToA(x) = 

j(x- XM) 2 + (y- YM) 2 

3.2 TDOA Measurement Algorithm 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

The TDOA is the difference in TOAs of the MS signal at a pair of BSs. Assigning the first 

BS as the reference, it can be easily deduced that the range measurements based on the 

TDOAs are of the form: 

i = 2,3, · · ·, M (3.8) 

where nrnoA,i is the range error in rrnoA ,i · Notice that if the TDOA measurements are 

directly obtained from the TOA data, then 

nrnoA,i = nroA,i- nroA,I, i = 2, 3, · · ·, M . 



In vector form, (3.8) becomes 

where 

rTDOA = fTDOA(x) + llTDOA, 

rTDOA = [ TTDOA,2 TTDOA,3 · · · TTDOA,M ] T, 

llTDOA = [ nTDOA,2 nTDOA,3 · · · nTDOA,M ] T, 

fTDOA(x) = 
[ 

d2- dl l d3- dl 

dM- d1 

3.3 CWLS Optimization 
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(3.9) 

(3.10) 

(3.11) 

(3.12) 

The CWLS approach is to reorganize ·the nonlinear equations into a set of linear equations. 

In this paper, the CWLS approach is adopted and we will focus on a unified development of 

accurate position algorithms for TDOA measurement. For TDOA-based position systems, 

it is well known that for noise conditions, the corresponding nonlinear equations can be 

reorganized into a set of linear equations by introducing an intermediate variable, which 

is a function of the source position. This technique, is commonly called spherical interpo­

lation (SI) [27]. However, the SI estimator solves the linear equations via standard least 

squares (LS) without using the known relation between the intermediate variable and the 

position coordinate. To improve the location accuracy of the SI approach, it has proposed 

in [24] to use a two-stage CWLS to solve the source position, while [21] incorporates the 

relation explicitly by minimizing a constrained LS function based on the technique of La­

grange multipliers. According to [21), these two modified algorithms are referred to as the 

quadratic correction least squares (QCLS) and linear correction least squares (LCLS), re­

spectively. The quadratic-correction least -squares( QCLS) estimator and linear-correction 

least-square(LCLS) yields an unbiased solution with small standard deviation that is close 

to moderate noise level. But when noise is practically strong, its bias is considerable and 

its variance can no longer fulfill the stability criteria. In this work, we develope a unified 
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approach for mobile location by utilizing TDOA measurement and improving the ranging 

accuracy with the use of CWLS. CWLS will improve the performance of the QCLS estimator 

and LCLS estimator by introducing a weighting matrix in the optimization, which can be 

regarded as a hybrid version of the QCLS and LCLS algorithms [13]. 

The CWLS mobile positioning approach for the TDOA measurement is: without distur­

bance, (3.8) becomes: 

It can be rewritten as 

rrnoA,i + V(x- xi)2 + (y- YI)2 = V(x- xi)2 + (y- Yi)2 i = 2, 3, · · · , M (3.13) 

Squaring both sides of (3.13) and introducing an intermediate variable, RI, which has the 

form 

we obtain the following set of linear equation 

(x- xi)(xi- xi)+ (y- YI)(Yi- YI) + rrnoA,iRl 

1 [ 2 2 2 
= 2 (xi- xi) + (Yi- YI) + rTDOA,i] 

i = 2,3, · · ·, M 

Writing (3.16) in matrix form gives 

where 

G6=h 

Y2- YI 

YM- YI 

rrD:OA,2] 

rTDOA,M 

h = ~ [ (x2 - x1J2 + (Y2 :- YI)
2 
+ rhoA,2 l 

2 ( 2 . 2 2 ' 
XM- XI) + (YM- yr) + rTDOA,lvl 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

and the variable 6 = [x- xi, y- yr, RI]T, consists of the MS location as well as RI [22]. 
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In the presence of measurement errors, the SI technique determines the MS position by 

simply solving (3.16) via standard LS and the location estimate is found from 

where J = [x-x1, y-y1, 

J = argmin(GJ- h)T(GJ- h) 

= (GTG)-1GTh, 

" T 
R1] is an optimization variable vector [21]. 

(3.19) 

An improvement to the SI estimator is the linear correction least squares (LCLS) method, 

which solves the LS cost function in (3.19) subject to the constraint of (x- xi) 2 + (y- y1) 2 = 

Rr, or equivalently, 

(3.20) 

where 2: = diag(1, 1, -1). Optimum estimate of the positioning of the vehicle is computed 

by minimizing the following CWLS cost function: 

(3.21) 

where Q is the covariance matrix of TDOA's measure values, which is a function of the 

estimate of R1 , denoted by R1 (21]. 

The idea of CWLS estimator is to combine the key principles in the CWLS and LCLS 

methods that is, the MS position estimate is determined by minimizing (3.21) subject to 

(3.20). For sufficiently small measurement errors, the inverse of the optimum covariance 

matrix Q-1 for the CWLS algorithm is found using the best linear unbiased estimator (24] 

as 

(3.22) 

where 

[ ~: l [ ~: = ~: ! ~: l 
d~I dM - dl + Rl 

(3.23) 

and 0 denotes element-by-elements multiplication. Since Q contains the unknown { di}, we 

express 
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and approximate (di- d1 ) by rrnoA,i· Similar to [21], the CWLS problem is solved by using 

the technique of Lagrange multipliers and the Lagrangian to be minimized is 

(3.24) 

where 'TJ is the lagrange multiplier to be determined. The estimate of 6 is obtained by 

differentiating (3.24) £rDoA(6, ry) with respect to J and then equating the results to zero [21] 

as 

The solution is: 

(3.25) 

where 7] is real value. Put 7] in (3.25) and obtain the sub-estimates of J. Then choose the 

solution J from those sub-estimates which makes the cost function (3.21) minimum. 

3.4 Position Measurement Model and NLOS Identifi­
cation 

The range measurement between a mobile station and the mth base stations corresponding 

to TOA data can be modeled as: 

(3.26) 

where rm(ti) is the measured range at the sampling time ti, Lm(ti)is the true range, nm(ti) 

is the measurement noise and can be modeled as a zero-mean additive Gaussian random 

variable with variance (J"m (AWGS); N LOSm(ti) is the NLOS error component in the received 

signal. There is no NLOS error if the line-of-sight exists, in which case, the measurement 

error nm(ti) becomes the only source of range measurement error. To mitigate the NLOS 

errors, the existence of non-zero NLOS component needs to be identified [12]. To identify the 

change of channel situation between NLOS and LOS, the standard deviation of the estimated 

range data r m ( ti) can be calculate as 

1 N A 

N L(rm(ti)- Lm(ti)) 2 

i=l 

(3.27) 
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where Lm(ti) is the estimated range data of the mth BS at time instant ti smoothed by the 

unbiased Kalman filter. The standard deviation estimated in equation (3.27) can then be 

used in the simple hypothesis testing to determine the LOS /NLOS BSs 

Ho: a~ < {CJm · · · LOS condition (3.28) 

H1 : a~ 2:: {CJm · · · NLOS condition (3.29) 

where r is a scaling factor, and r > 1 is used to reduce the probability of false alarm due to 

small changes in variance at LOS condition. 

3.5 AWGS Model 

In all of the simulations, zero-mean additive white Gaussian noise is added to simulate the 

effect of thermal and background noise and the noise in the receivers. To add noise according 

to the desired level of Eb/ N0. In the simulation of digital communications systems, the SNR 

is commonly evaluated as Eb/ N0 , where Eb is the transmit energy per bit and N0 is a function 

of the noise power spectral density. The energy per bit in terms of the transmit signal power 

is given as 

(3.30) 

where Tbit is the duration of a bit and Ps is the signal power at the receiver input. Because 

of spreading sequence and the sampling of the signal by N 8 , the energy is spread over many 

more symbols. The noise power, assuming a AWGN channel with two-sided power spectral 

density of N0 /2, is given by 

a~= No/2 (3.31) 

Based on these assumptions, we get the variance of each noise sample to be 

(3.32) 

where A is the amplitude of the user's signal. In our simulations, we have used unity signal 

power which results in A = 1. Therefore, the noise power for a given Eb/ N0 is calculated 
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using 

(3.33) 

Hence, zero-mean Gaussian noise samples with variance given by (3.33) are added to the 

signals of all the users. 

3.5.1 NLOS Error Model 

The NLOS error can be modeled as the frequently used models for delay profiles which 

are exponential, uniform or delta random variable. The Saleh-Velenzuela (S-V) model is 

the model for multipath of an dance environment. The channel measurements showed that 

multi path arrivals in clusters rather than in a continuous form [12]. Assume that T0 is the 

arrival time of the first path in the first cluster. The arrival time T0 can be related to the 

positive NLOS error component N LOSm(ti) at the time instant ti. For the LOS cases, we 

have T0 = 0 and N LOSmti = T0 x c = 0 and c is the speed of light. The arrival time T0 

for the NLOS cases can be modeled as an exponential distribution and described by the 

following formula [5]: 

p(To) =A exp[-A(To)] (3.34) 

where A(l/nsec) is the cluster arrival rate. To mitigate the NLOS errors N LOSm(ti), the 

existence of non-zero NLOS component needs to be identified first. 

3.6 Data Smoothing by Kalman Filter 

The classical Kalman filter is suitable for real time applications. A Kalman Filter has been 

implemented in order to improve the accuracy of the position in different ways. A fixed 

speed and direction model is used here, since all the experiments are simulated model in 

MATLAB. For every vehicle that starts moving from a known position Xk E R2 at time tkl 

it is possible to estimate its position after a period of time /1t (sampling period )as follows: 

(3.35) 
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where vector Xk signifies the exact vehicle position, which will be called the state, at time 

tk, and the vector Xk E R2 signifies the vehicle velocity which is obtained from the Inertial 

Navigation System at tk as follows: 

(3.36) 

S E R signifies the vehicle speed, and e E [0, 360] signifies the vehicle direction with respect 

to the global axis. In addition, every vehicle has a location measurement obtained by means 

of its GPS receiver, which is indicated by 

YGPS,k = ( ~ ) (3.37) 
GPS,k 

where k E (0, 1, 2, ... )signifies an index of the measurement sample at tk, and x, y E R signify 

the vehicle's global coordinates. 

A Kalman filter can be used in estimating the state vector of a mobile target from the 

observed range data and therefore estimating the true range value. The state vector can be 

represented in [20] 

(3.38) 

where X(k) = [Lm(k) Lm(k)] is the state vector of the mobile related to the mth sensor. 

A= [ 1 6t] 
0 1 ' 

B = [ 6t 0 ] 
0 6t 

(3.39) 

Xk+1 is a 2 x 1 vector that signifies the state or position of the vehicle at time tk+1, given 

the position and the velocity at time tk. 

:X.(kjk-1) = AX(k-1jk-1) (3.40) 

where X(kjk-1)iS defined as an apriori state estimate at tk. 

An a priori estimate error e(k/k-1): 

(3.41) 
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and the apriori estimate error covariance is then 

(3.42) 

Process Noise Covariance 

The W(k) is the driving noise and 

(3.43) 

Process noise covariance matrix Q = a;I, and 

(3.44) 

where aw(i) = B for direction and aw(j) = s for speed. wk is a 2 X 1 vector that signifies 

the input of the Kalman Filter that is the INS measurement at time tk (vehicle velocity). 

The measurement process is 

(3.45) 

where Y(k+l) is the measured data that signifies the expected reading at tk+l· 

c = [ ~ ~ l (3.46) 

Yk+l is a 2 x 1 vector that signifies the expected reading at tk+l· The matrices A, B, 

and C are 2 x 2 transition matrices that relate the current state and current input to the 

next state, and the expected state to the next measurement, respectively. 

(3.47) 

X(kik) is defined as an aposteriori state estimate, which can be calculated given the measure­

ment at tk and an a posteriori estimate error e(k/k). 

and the aposteriori error estimate is 

(3.48) 
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Measure Noise Covariance 

U(k) is the measurement noise and 

(3.49) 

The measurement noise covariance matrix R = a~l is: 

R = diag([a~, a~]) (3.50) 

a~ is horizontal velocity components as estimated by the navigation system are used as 

observation to the filter implementation. 

Q and R are 2 x 2 matrices that signify the process noise covariance and the measurement 

noise covariance, respectively. Q and R may change over time in the real world. These two 

matrices resemble the covariance of the INS error and the error of the GPS data when no 

multipath effect is present. Thus, it is assumed that they are constant. 

The operation of the Kalman filter can be summarized as follows: 

• Kalman filter time update equations: 

The apriori and aposteriori error covariance can be defined as 

p (klk-1) = AP (k-1lk-1)A T + BQBT (3.51) 

• Kalman filter measurement update equations 

(3.52) 

The matrix K(k) is chosen to be a blending factor that minimizes the aposteriori 

estimate error covariance. This blending factor is the Kalman gain vector. 

X(klk) = X(klk-1) + K(k) [Y(k) - CX(klk-1)] 

P(klk) = P(klk-1)- K(k)CP(klk-1) 

and p (klk) is the covariance matrix of x(klk). 

(3.53) 

(3.54) 
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Figure 3.1: The Kalman Filter loop. 
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With the above equations, all the quantities required for estimating the system state at 

tk are determined. 

Figure 3.1 shows a block diagram depicting the discrete Kalman Filter loop that is used 

to estimate the systems next state in every cycle with the optimal error reduction. Two basic 

stages are described in Figure 3.1, the time update stage and the measurement update stage. 

In the first, the INS measurement is obtained and used to estimate the next location after 

!:J.t and to calculate the a priori error covariance matrix P (k/k-l). In the second, the GPS is 

obtained and fused with the result of the time update stage after calculating the Kalman 

Filter gain K. The aposteriori error covariance is also calculated in the measurement update 

stage because, it is needed in order to provide the filter with the initial state or location 

X(ojo) and the initial covariance error P (O/O), which will start the filter. Figure 3.2 shows 

the predicted, filtered and smoothed trajectory's responses of kalman filter. 

+ Predicted Position 

• Measure Position 

• Filtered Position 

.. Smoothed Position 

Predicted Trajectory 

FilteredT rajectory 

Smooth edTrajectory 

Figure 3.2: Kalman Filter Response. 



3. 7 Improving Positioning in a Multipath Environmerif 

Although the Kalman Filter estimates position with a minimum mean square error, it pro­

duces unexpected errors as a result of multi path effects or the loss of the satellite signals. The 

focus in this thesis is on minimizing the multipath effect. However, reducing the multipath 

effect is only one aspect of the problem; detecting the multipath effect is another challenge. 

The proposed technique works in conjunction with the Kalman Filter to help vehicles detect 

the presence of the multipath effect in their position estimates. The multipath effect adds 

noise to the position estimate and contaminates the randomness of the measurement error. 

Accordingly, the Kalman Filter is not optimum in cycles when the multipath effect is present. 

CWLS will help to localize the target vehicle more accurately. 

3.8 Detection of the Multipath Effect 

In this thesis, the uncertainty of a vehicles position is represented by the variation in the 

discrepancy between the time update estimate of the Kalman Filter and the GPS data as 

follows: 

Discrepancy = Y(k) - CX{klk-1) (3.55) 

Multipath effect in the GPS data will be reflected in the discrepancy value. Every vehicle 

should record the number of previous discrepancy values. The number of these values should 

be neither too small nor too large in order to well represent the uncertainty of the recent 

position estimation. 

When a vehicle does not experience any multipath effect, Gps accuracy will be good 

and the discrepancy values will be small and almost identical. As a result, the variation 

in the discrepancy values will also be small. In other words, this vehicle will have a small 

uncertainty about the position and it can therefore be used as a reference node for its 

neighbors. However, if a vehicle experiences multipath effect, the accuracy of the GPS will 

be drastically affected and the discrepancy values will be totally and randomly different. As 

a result, the variation in the discrepancy values will be large. In other words, this vehicle 
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will have a large uncertainty about the position, and it should not be used as a reference 

node for its neighbors in order to avoid misleading them. 

The discrepancy between the estimated position in the first stage and the actual mea­

surement reflects the divergence between the GPS data and the position estimate. This 

divergence can decide that whether a multipath effect is present or not. 

NLOS Error 

Y(k) - cx(klk-1) > o 

then, X(k+1) = AX(k) + BW(k) 

LOS Error 

Y(k) - cx(klk-1) < o 

then, a~(k) =a~ 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

The modified biased Kalman filter is proposed to process the range measurement accord­

ing to the feedback identification result from the previous processed data. Before computing 

kalman gain, the measurement noise covariance a~ or the range prediction covariance P (klk-1) 

is adjusted. 

3.8.1 Biasing the Kalman Filter 

The NLOS condition causes very high errors in range measurements. When the TDOA value 

is identified as NLOS, it is directed to a highly biased Kalman filter. This filter is biased in 

the sense that range error variance in the covariance matrix Q is assumed to be very high 

compared to that of the LOS case. This, in turn decreases the dependence of the output to 

the NLOS measurement. Here the filter's output follows previous outputs more closely. The 

idea in this simulation is to minimize the RMSE of the TDOA time series at the output of 

the filter by carefully selecting the best bias parameter. 

Figure 3.3 shows the flow chart of the algorithm: 
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Figure 3.3: Flow of Algorithm. 
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Chapter 4 

Simulation Results 

This chapter presents the implementation of the algorithms and theoretical work explored in 

Chapter 3. First, the implementation of the Kalman Filter for a vehicle is described. then, 

the effect of multipath signals on GPS data and the performance of the Kalman Filter are 

demonstrated. The chapter concludes with the discussion of the results and a comparison of 

the different simulated scenarios. 

4.1 Simulation Scenario 

This research uses Matlab for simulation. The developed algorithm simulates a GPS op­

eration by generating the GPS data code. In many applications, the Global Positioning 

Systems (GPS) receiver is connected to some form of intelligent electronic system which 

receives the positional data from the GPS unit and then performs the required operation. 

When developing and testing GPS-based systems, one of the problems is that it is usually 

necessary to create CPS-compatible geographical data to simulate a GPS operation. 

The simulation scenario covers a 5000 m (5 km) portion of a straight road. Vehicles 

traveling this road experience different local environments, such as an open area with no 

multipath effect, and an inner-city area where high buildings cause a severe multipath effect 

(NLOS error). The road consists of two lanes in one direction for vehicles with different 

speeds. The right lane contains the vehicles traveling at 50 km/h, and vehicles in the left 

lane are traveling at a higher speed of 60 km/h. The width of each lane is 3 meters, and 
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Figure 4.1: Simulation Scenario. 
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vehicles are assumed to move in the center of the lanes. The simulation period is equal to 

the time required for a vehicle to pass through 5 km at a speed of 50 km/h. 

As shown in Figure 4.1, on the first 2000 meters of the road the vehicles travel through 

an open-area environment. They then experience a multipath effect over a distance of 300 

meters. Another region of open area follows for 400 meters. The second multipath area 

occurs for the next 400 meters. Then the vehicles travel through an open area to the end of 

the road. 

4.2 Initialization 

In the simulation, the designed values of matrices for the process noise and measurement 

noise covariance in kalman filter are as follows: 

The error in the state is represented by the process noise covariance matrix 

Q = diag([(0.5m/s) 2
, (0.5m/s) 2

]) (4.1) 

W k is a 2 x 1 vector that signifies the input of the Kalman Filter that is the INS measurement 

at time tk (vehicle velocity). 

The local and global errors in the GPS data are represented by the measurement noise 

covariance matrix of the Kalman Filter 

R = diag([a~, a~]) (4.2) 

However, R does not represent the measurement error covariance matrix when the Kalman 

filter estimation has deteriorated because of the NLOS effect. The measurement noise is 

assumed to be AWG N and NLOS noise is added to the true calculated range to get the 

measured range data. The measurement noise is assumed to be Gaussian distributed with 

zero mean and a standard deviation as shown in table 4.1 and this random change results 

in a dramatic increase in the uncertainty in the Kalman Filter estimate. 
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Parameters Values 

Process noise covariance 0.5m 
Measurement noise covariance 

-Open Area 10-15m 
- High buildings 100-150m 

Sample data 200 
Sampling rate lsec. 

Table 4.1: Setup Kalman Filter Implementation. 

4.3 Results 

The vehicles positioning technique is based on integrating the INS measurements and the 

GPS data via the Kalman Filter. In Figure 4.2 stars show how GPS data estimate the vehicles 

position that is unreliable specially when the vehicle passes through high-building regions. 

The simulation shows that curve line represents the position estimate by the Kalman Filter 

with the integration of INS and GPS data and straight line represents the "true" position 

of vehicle. 

In the simulation, in each second, the Kalman Filter can obtain one or more measurements 

of the INS system in order to estimate the next position via its time update stage; however, 

one INS measurement per second is used in the simulation because all the vehicles are moving 

in one direction at fixed speeds. 

Figure 4.3 shows how the estimate of the vehicles position is drastically affected and 

becomes unreliable when the vehicle passes through high-building regions. But the Kalman 

filter is changing the scenario from unbiased mode to biased mode abruptly. 

The statistics related to the position error are provided in table( 4.2). These statistics 

are calculated by computing the position error PEt in every second ( t), since the position 

technique estimates positions every second. Then the mean and the standard deviation of 

the position errors are computed for different distances according to the local environments. 

t " t 
PEt =II xreal- X 112 

1 t2 

Mean Error= N t~ PEt 

(4.3) 

( 4.4) 
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Figure 4.2: Position estimation by GPS data and Kalman Filter. 

Figure 4.3: Position estimation for LOS /NLOS conditions. 
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1 t2 

Standard Deviation of the Error= (N ~(PEt- MeanError) 2
)

112 (4.5) 
t=h 

In table 4.2, the first column shows the type of environment that the vehicle experiences, 

the second column lists the length of the distance traversed in that simulation, the third 

and fourth columns give the mean error-environment and the standard deviation of the error 

in position estimate, respectively. It can be seen that the positioning techniques using the 

Kalman Filter and GPS can be reliable in the first open-area region. However, the increase in 

the standard deviation and the mean of the localization error in the first high-building region 

proves the unreliability of the location estimation technique using the GPS in the presence 

of the multipath effect. Moreover, the multipath effect still appears in the mean and the 

standard deviation of the positioning error during the second open area region even after the 

vehicle has left the first high-building region. In the second high-building region, the mean of 

the position error dramatically increases because the positioning error has been large since 

the beginning of this region. The multipath effect remaining in the positioning estimate 

from the previous open area causes an error in the position estimate at the beginning of 

this region. Again, the standard deviation of the positioning error during the second high­

building region shows the instability caused by the multipath effect. The Kalman Filter 

finally brings the position error back to almost the same accuracy as at the beginning of the 

first open-area region. However, it minimize the error in the last open area. 

Enviroment Distance(m) Mean Error ( m) Standard Deviation of the Error ( m) 
Open area 1 2000 2.33 1.35 

High buildings 1 300 30.49 19.82 
Open area 2 400 9.43 5.13 

High buildings 2 400 24.01 27.11 
Open area 3 1900 4.92 4.50. 

Table 4.2: Error Statistics for the Positioning using Kalman Filter. 

Figure 4.4 shows that the changes of the LOS/NLOS situation can be identified imme­

diately, based on feedback of LOS /NLOS status and standard deviation. When estimator 

starts the calculation, the unbiased smoothing is used and the smoothing filter immedi­

ately switches to biased mode. NLOS errors can be effectively mitigated by the modified 
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biased Kalman filter. The scaling parameter '"'( = 1.2 is chosen for the testing to reduce the 

probability of false alarm in simulation. 
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Figure 4.4: Hypothesis testing, Standard deviation for NLOS/LOS. 

It can be seen that the position technique can be reliable in the first open-area region. 

However, the increase in the standard deviation and the mean of the position error in the 

first high-building region proves the unreliability of the position estimation technique in the 

presence of the multipath effect. The problem with estimating position as discussed in this 

thesis is fundamentally caused by local and global GPS data errors. The system state will 

be affected, if there is any error in the INS measurements i.e. the vehicles speed or direction 

as shown in Figure 4.5. Acceleration of a vehicle produces changes in velocity and position, 

which results in error that should be corrected by feedback. 

Figure 4.6 shows how the Kalman Filter estimates the locations of a vehicle traveling in 

an open area for 1.8km, when mean error is 2.33 and standard deviation of the error is 1.35. 

Figure 4. 7 illustrates the application of Kalman filter when vehicle passing through the 

High buildings (NLOS), where the staright line and soild curve denote the true position and 



-2~ooL----~----~--~~--~,7oo~--72007---~2720~--~----~--~7---~ 
Time (sec) 

Figure 4.5: Vehicle Speed variation. 

-1000 
E 
g 
E 

i 

-500·0~----------------~~--------------~.007---------------~ 
Time (sec) 

Figure 4.6: Position estimation 1n Open area. 

59 



60 

Estimated position In Multlpath (NLOS) 
2000 

1800 

1600 e 
c 
0 1400 ;: 
·u; 
0 

Q. 
1200 

1000 

800 
200 210 220 230 240 250 

Time (sec) 

Figure 4. 7: Position estimation in High Building area using biased KF. 

Figure 4.8: Comparison of the average position error. 
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the estimated position respectively. 

It can be seen in Figure 4.8 that the position technique using the GPS can be reliable 

in the open-area region. However, the increase in the standard deviation and the mean of 

the position error in the first high-building region proves the unreliability of the position 

estimation technique using GPS in the presence of the multipath effect and the difference 

between the position estimates by GPS and Kalman filter is clear. 

4.4 Kalman Filter and CWLS Implementation 

In the experiment, the algorithm for improving the position estimate introduced unexpected 

errors in its position estimate. The output of the algorithm as shown in table 4.3 position 

estimate error statistics , is based on the Kalman Filter with CWLS optimization that 

minimizes the error in positioning a target vehicle since their position estimates are more 

accurate. 

During the open-area regions of the scenano, the CWLS technique outperforms the 

Kalman-Filter-only technique. Especially immediately after any high-building region, the 

position estimate error became very small. Although two poor position estimates occur in 

the second high-building region. The algorithm for improving the position estimate intro­

duced unexpected errors in its position estimate. The output of the algorithm is based on 

the optimization that minimizes the error in positioning a target vehicle. 

Environment Distance(m) Mean Error (m) Standard Deviation of the Error ( m) 
Open area 1 2000 2.21 1.25 

High buildings 1 300 16.21 9.82 
Open area 2 400 8.86 4.31 

High buildings 2 400 13.11 18.63 
Open area 3 1900 1.75 0.87 

Table 4.3: Error Statistics for the Positioning using Kalman Filter and CWLS. 

Fig.4.9 shows the range measurement which is optimized by applying CWLS optimization 

technique to improve the estimation in NLOS region. It can be observed that the estimation 

by applying CWLS technique can greatly improve the estimation accuracy. Fig.4.10 shows 
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the position estimation error with constrained and unconstrained filters represented by the 

dashed and the solid curve respectively. It can be seen that the constrained filter results 

in much more accurate estimates than the unconstrained filter. The unconstrained filter 

results in average position errors of about 5.6 m, while the constrained filter results in 

position errors of about 3.1 m. The constraints may be time-varying. At each time step 

the unconstrained Kalman filter solution is projected onto the state constraint surface. This 

significantly improves the prediction accuracy of the filter. 

4.5 Comparison of the Techniques 

Figure 4.11 shows a comparison of the two techniques. With the Kalman filter technique, the 

standard deviation becomes high in the high-building regions because of multipath effect. 

On the other hand, when using the CWLS technique with Kalman Filter, standard deviation 

has significantly low and improves the estimation accuracy. 

The algorithm for improving the position estimate introduced unexpected errors in its 
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position estimate. The output of the algorithm is based on the optimization that minimizes 

the error in positioning a target vehicle. The ideal case, in which the error in the position 

estimation is equal to zero, produces only one global minimum for the optimization problem. 

However, it is hard to find the ideal case in an experiment or even in the real world 

because every vehicle has an error in its position estimate. Such positioning errors result in 

two, three, or more local minima in the optimization problem. 
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Chapter 5 

Conclusions and Future Work 

In this thesis, new techniques have been proposed for improving the accuracy of the position 

estimate. The efficient NLOS mitigation technique has been proposed in the position esti­

mation architecture to give quite accurate results. This chapter summarizes these techniques 

and suggests the future work. 

5.1 Conclusions 

The technique and algorithm in this thesis has been developed to be used for Vehicle Posi­

tioning. Vehicles often use GPS receivers to localize themselves; however, the accuracy of 

the GPS receivers location estimate is not reliable when the satellite signal is completely 

lost or distorted by trees, high buildings, or tunnels. The absence of satellite signals has 

been studied in much of the research and a Kalman Filter has been employed in order to 

integrate the G PS measurements with other measurements, such as the INS measurements, 

and to overcome the outage of the satellite signals. However, the distortion of the satellite 

signal still causes misleading information for the positioning system in the vehicles. 

In the proposed technique, the GPS receiver measurements are integrated with the INS 

measurements using a Kalman Filter because it has been proven that the Kalman Filter 

can fuse sensed data and obtain a minimum mean square error. To avoid the distortion of 

the satellite signal caused by the NLOS effect, a classifier has been added in order to detect 

whether the satellite signal is affected by the multipath signals that the system is receiving. 
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This classifier was designed using the simple hypothesis testing to determine the 108/NLOS. 

Once the test produces a result, the proposed technique decides whether to take the output 

of the Kalman Filter as the final output or to optimize the Kalman Filters output using the 

algorithm Constrained Weighted Least Square method. 

Simulation results demonstrate the effectiveness of this method. If the state constraints 

are nonlinear they can be linearized. The proposed method gives a real-time constrained 

least squares estimation algorithm for tracking the position using TDOA measurements. 

The NLOS errors can be mitigated effectively for achieving higher accuracy in range estima­

tion and wireless location. The simulations showed great improvement in the estimate of the 

position after the modification had been implemented. 

5.2 FUture Work 

The work done in this research can be extended in many ways. The simulation results shows 

that the TDOA technique is eligible for the PL solution. The correction algorithms largely 

depend on the statistical parameters, configured at different environmental conditions. 

Another avenue of progress may be the study of different ways of combining information 

when more than one position location method is used to locate the mobile units such as the 

combination of AOA and TDOA methods. It is of importance in such hybrid systems that 

the overall PL solution should be able to combine the results from both methods in such a 

way that the inaccuracies in the results from both the methods should not add to each other, 

thus adversely affecting the overall PL solution. The resultant PL fix from the combination 

should be more accurate than the one obtained from either of the two solutions. 

Apart from the study of the TDOA method itself, research can also be directed towards 

some related technical issues. There may be some situations when only one base station 

is able to receive the signal from the 911 mobile. Such a situation may occur in rural or 

suburban areas where extensive coverage is not needed. One of the solutions proposed for 

such situations is to use a combination of AOA and TOA methods. However, if putting 

antenna arrays is not desirable in such cases, then one way to use TDOA method may 
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be the use of receivers in the cell just for the purpose of taking signal snap shots. For 

the TDOA methods, at least two additional receivers will be needed in addition to the base 

station receiver itself. A similar technical issue that can be explored is the effect of additional 

position location data on the data lines between the base stations and switching center. If 

the position location process is to be executed only for 911 calls, then the additional traffic 

may not be significant. However, if the position location is performed more often, then the 

load on the data lines may become significant. 

Implementing the proposed technique in the real world seems to be a promising possibility. 

However, a number of issues need to be addressed. 

5.2.1 Network Layers 

Although the new techniques do not require a great deal of data exchange among nodes, nor 

do they require communication that needs more than one hop, a study needs to determine 

the best communication protocols in the physical and Network layers. 

5.2.2 Embedded systems design 

The new localization algorithms are currently implemented in MATLAB. The next step is 

to convert the MATLAB codes to C in order to facilitate the use of these techniques in 

embedded systems. 



Appendix A 

List of Abbreviations and Symbols. 

Symbol 

INS 

NMEA 

lat 

long 

LOS 

NLOS 

AOA 

CWLS 

NLS 

RSS 

TOA 

TDOA 

E-OTD 

OTDOA 

GSM 

RF 

MT 

BS 

Meaning 

Inertial Navigation System 

National Marine Electronics Association 

Latitude 

Longitudes 

Line-of-sight 

Non-Line-of-sight 

Angle-of-arrival 

Constrained Weighted Least Squares 

Nonlinear Least Squares 

Received signal strength 

Time-of-arrival 

Time-difference-of-arrival 

Enhanced 0 bserved Time Difference 

Observed Time Difference of Arrival 

Global System for Mobile Communications 

Radio frequency 

Mobile terminal 

Base station 
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PL 

AT 

A-1 

0 

UMTS 

WLAN 

Position location 

Transpose of matrix A 

Inverse of matrix A 

Element-by-element multiplication 

Universal Mobile Telecommunications System 

Wireless Local Area Network 
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