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Abstract 

Measuring the Power Efficiency of Subthreshold FPGAs for 

Implementing Portable Biomedical Applications 

Shahin Sanayei Lotfabadi 

Master of Applied Science 

  Department of Electrical and Computer Engineering 

Ryerson University, 2011 

 

 Power is a significant design constraint for implementing portable applications. 

Operating transistors in the subthreshold region can significantly reduce power consumption 

while reducing performance. The low frequency nature of biosignals makes a FPGA operating 

subthreshold region a good candidate. In this work, I investigate the feasibility of designing such 

a device and the trade-off between power consumption and performance for FPGA routing 

resources operating in the subthreshold region. For the 32nm Predictive Technology Model 

studied in this work, it was observed a power reduction of 197.7 times (or power-delay-product 

reduction of 3.3 times) for operating under a supply voltage of 0.4 volts (as compared to normal 

operation in the saturation region using a 0.9V). Under a supply voltage of 0.4 volts, the FPGA 

can operate at 2.0 MHz while allowing signals to propagate unregistered through 20 routing 

tracks which meets the real-time requirement for processing 20000 samples per second. 
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Chapter 1 

Introduction 

1.1 Motivation 

 Digital signal processing has played a significant role in the diagnostic and research 

activities in the health care field. Field Programmable Gate Arrays (FPGAs) are an important 

platform for implementing a variety of digital applications due to their short time to market, re-

programmability and low non-recurring engineering costs. While FPGAs have been successfully 

used in many applications including digital signal processing, aerospace, medical imaging, 

computer vision, speech recognition, and ASIC prototyping, they have not been widely used in 

portable applications. FPGAs are not widely used in portable applications primarily due to their 

significant power consumption. In particular, previous studies [1], [2] have shown that 

applications implemented on FPGAs can consume significantly more power than the same 

applications implemented on ASICs. Portable applications, however, demand long battery life 

and consequently require an ultra low power implementation platform. 

 One way to extend the battery life of portable applications is to design digital systems 

that operate in the subthreshold region. Previous works have shown that, by operating in the 

subthreshold region, digital circuits often achieve minimum power-delay product thus 
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minimizing their overall energy consumption [3]. Operating circuits in the subthreshold region, 

however, does significantly reduce their performance. This reduction in performance limits the 

applicability of subthreshold design in many applications. Performance reduction, however, has 

significantly less impact on biomedical applications due to the low frequency nature of 

biosignals. In this research, I investigate the feasibility of designing a specialized FPGA that 

operates in the subthreshold region in order to reduce the power consumption of biomedical 

applications while still maintaining real-time signal processing capabilities. 

 This research is based on a case study of the Burg algorithm [4], a widely used signal 

processing algorithm in biomedical applications. I first implemented a scalable RTL 

implementation of the Burg algorithm targeting Autoregressive (AR) modeling applications [5], 

[6], which is not possible using automated  tools such as C-to-FPGA [22], Stateflow diagram to 

VHDL (SF2VHD) [23], or Simulink-to-FPGA [24].  

 Based on the design, the maximum operating frequency that guaranties the real-time 

processing of biosignals is calculated. This maximum operating frequency is then used as the 

performance constraint in the design of FPGA routing resources that operate in the subthreshold 

region. The power efficiency of the subthreshold design is then measured by determining the 

minimum supply voltage that is required to meet the real time performance constraint. These 

performance and power consumption figures are compared to the performance and power 

consumption of the conventional FPGA routing resources to quantify power efficiency. 

   

1.2 Research Objectives 

 The objective of this research is to employ Burg algorithm [4], a widely used signal 

processing algorithm in biomedical applications, and to investigate subthreshold circuit design 

for an FPGA that result in reduction of its power-delay product and ultimately longer battery life 
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of the device. Figure 1.1 indicates the overview of the design. This design assumes that non-

stationary biomedical signals have already been converted into stationary frames through an 

adaptive segmentation filter. The AR modeling generates processes stationary signals to generate 

coefficients which could co-relate to the physiological sources of the signal.  

 

              Figure1.1: System Level Block Diagram of the Research 

 

This design is capable of storing parameters generated by AR modeling for up to 24 hours 

collection of non-stationary signals on a hand held device. The design is also facilitated with the 

capability to select the number of stages of the filter and hence increase number of parameters 

generated per input frame. Hence the design caries the same flexibility of a microprocessor based 

designs, and offers better energy efficiency. 

 

1.3 Original Contributions 

The main contributions of this research are described as follows: 

Autoregressive Modeling  

 Proposing the architecture for a generic Burg-lattice algorithm that can programmed to 

set the desired stages of the model and to generate AR coefficients.   
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 Using the proposed model to reduce the area and increase performance of design.  

 Developing the required software using Very High Speed Description Language 

(VHDL), simulating and implementing the design on a Xilinx Virtex 5 FPGA 

(XC5VLX110-3FF676C). 

Subthreshold Circuit Design  

 Developing an HSPICE simulation model for the FPGA routing track to find the power-

delay product. 

 Investigating the performance of the circuit in subthreshold region and the effect of 

transistor sizing to achieve the desired performance.  

   

1.4 Thesis Organization 

This thesis consists of five chapters: 

 Chapter 1 introduces the significance of biomedical signal analysis and suggests a design 

methodology as well as subthreshold design to improve power efficiency of the design. It 

also states the objectives of the research, the contribution of the author and how the thesis 

is organized. 

 Chapter 2 starts with a review the method of processing biomedical signals presented in 

this thesis and advantages of this method of implementation. It provides an overview of 

parametric modeling, particularly AR modeling and the advantages of Burg-lattice 

algorithm for hardware implementation. It also presents a review of subthreshold circuit 

design and a study of the power-delay product for this application.  
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 Chapter 3 presents the design specification and design methodology including details of 

the architecture implementation, simulation, synthesis, and place and route. It also 

provides a discussion of advantage of sequential design versus structural designs offer by 

automated tools such as Simulink-to-FPGA. 

 Chapter 4 presents the architecture of routing tracks of an FPGA designed for biomedical 

signal processing. It also presents simulation of an HSPICE model of this architecture to 

determine minimum power consumption of the routing track while performance 

constraint is met. 

 Chapter 5 presents a discussion of the acquired results of this research project and offers 

conclusion and future work for the thesis. 
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Chapter 2 

Review 

  

 The main focus in this research is to investigate ways to reduce total power consumption 

of biomedical applications. As it was discussed earlier low power consumption is a crucial factor 

in designing devices to process biosignals. For example the battery life of a permanent pacemake 

lasts 5-15 years and a surgical procedure is required to replace the battery. Hence reduction in 

power consumption for such devices results in longer battery life that eliminates the burden of a 

surgical procedure for a patient to replace the battery. In this research it is shown that parametric 

modeling that is often considered for feature extraction can also be used to compress the 

biomedical signal. This reduces the size of required memory and ultimately results in less power 

consumption. Selecting an appropriate algorithm that is less computationally extensive may also 

optimize the dynamic power consumption of a device. However, in chapter 3, it will be shown 

that a significant amount of power consumed by a device is static. To reduce the static power 

consumption of a device subthreshold circuit design is investigated in this research. A review of 

parametric modeling and subthreshold circuit design is presented in the following sections. 
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2.1  Parametric modeling  

 Signals and systems can be concisely and efficiently represented using parametric 

modeling technique. Parametric modeling is a technique to find the parameters of a mathematical 

model which describes a signal or a system [4]. The aim of the parametric modeling is to 

analysis the biosignal of interest, because modeling of biomedical signals provides parameters 

which could co-relate to the physiological sources of the signal. In parametric modeling the 

present value of the output is the sum of linear combination of several past output values and 

present and past values of the input as it shown in the following equation [4]:  

                                                                                 (2.1) 

where =1,  is the input to the system, and  is the output of the system. The transfer 

function of the equation 2.1 can be obtained applying z-transform: 

                  (2.2) 

In most cases the system can be fully characterized by parameters  and , and not by the gain 

[4]. Hence from these two parameters it can be determined if the system is an all-pole system, an 

all-zero system or a pole-zero system. The main modeling methods are: AR (Autoregressive), 

MA (Moving average), and ARMA (Autoregressive moving-average) modeling. If the values for 

in Equation (2.2) are all equal to zero, an autoregressive models is formed [4]. In this research 

we are interested in AR modeling because of the following properties of an AR model: 

 Biomedical signals such as speech signal have an underlying autoregressive structure. 
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 Any signal can be modeled as an AR process provided that an appropriate model order is 

selected. 

 There are efficient algorithms available to compute the solution of a linear system of 

equations to estimate parameters of the model. 

2.1.1  AR Modeling  

 The autoregressive (AR) spectral estimation method has a better predictive power and 

result in higher resolution spectral estimation in comparison with the Fast Fourier Transform 

(FFT) method. The autoregressive (AR) modeling is also computationally efficient and requires 

less memory for implementation. These advantages have convinced researchers to use parametric 

spectral analysis methods in biomedical signal processing [4], [5], [6].  

AR modeling can be classified as a time-series analysis which is based on modeling a signal as a 

linear combination of its  past values and the present input to a system whose output is the 

given signal. 

 

                          (2.3) 

 

The AR transfer function can be found applying the z-transform to the above equation as follow: 

 

                            (2.4) 

 

In many biomedical signals, a hypothetical input  is considered since the input is actually 

unknown. Hence, a linear combination of past values of the output can be used to predict the 

approximate value of current output . Therefore the equation 2.3 may be written for 

approximate predicted output  as: 
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                            (2.5) 

 

The error in the predicted value can be determined as: 

 

                   (2.6) 

 

Figure 2.1 indicates the signal flow diagram of the AR model. 

 

  

   Figure 2.1: Signal-flow diagram of the AR model 

 

 There are various techniques that can be used to compute model coefficients (or poles), 

directly or iteratively. Iterative methods are more computationally intensive to achieve a desired 

degree of convergence with respect to the direct methods [14]. The most commonly used 

approaches for direct estimation of model parameters are: the autocorrelation method, the 

covariance method, the square-root (Cholesky decomposition) method, and the Burg method. In 

these methods the objection is to solve the normal equations, a set of  equations for the 

predictor coefficients , 1 . Autocorrelation or covariance methods computationally 

intensive and require large storage. Square-root (Cholesky decomposition) method has less 
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computation compared with the two previous methods; however the more computationally 

efficient method with less storage requirement can be achieved by using Levinson-Durbin 

algorithm. This recursive method provides solution of the set of normal equations [14]. The Burg 

algorithm is a popular method to process biomedical signals in which the AR parameters satisfy 

the Levinson-Durbin recursion. Using Burg algorithm the estimate of autoregressive (AR) model 

can be computed to fit the model to the input data. This algorithm involves by minimizing least 

squares of the forward and backward prediction errors.  

Obtaining the solution of AR parameters of order M using Burg algorithm, it is possible to add 

one more stage without affecting the earlier computations for previous stages. This is an 

advantage of Burg method over the Levinson-Durbin algorithm which makes it more suitable for 

hardware implementation using Field Programmable Logic Arrays (FPGA) or Very Large Scale 

Integrated Circuit (VLSI) design [14]. 

 

2.1.2 Burg Algorithm 

 The Burg algorithm is based on minimizing least squares of the forward and backward 

prediction errors. The cost function is given as [4] 

 

                        (2.7)  

 

where  is the order of filter,  and  are forward and backward predication errors 

respectively, and N is the length of the input data. The forward and backward prediction error 

updates are recursively using the lattice structure as follow: 

 

            (2.8) 
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    )         (2.9) 

 

where  is the reflection coefficient of Burg algorithm that can be calculated as: 

 

           (2.10) 

 

Figure 2.2 indicates the lattice structure of the recursion equations for one stage of Burg 

algorithm to update forward and backward prediction errors. 

 

             

     Figure 2.2: The lattice structure of the recursion equations for forward and backward prediction errors 

 

Knowing the reflection coefficient, the AR model parameters for iteration  can be computed by 

following relationship:  

 

           (2.11) 

 

The value for the initial AR parameter is always equal to 1, and the  parameter can be 

calculated using following matrix operation:  
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                    (2.12) 

 

The least square lattice structure provides stability for real-time estimation of the AR 

coefficients. Hence a recursive AR model allows for estimation of the AR model coefficients in 

real time which allows predicting ahead. Burg algorithm is not an adaptive algorithm, since it 

does not update parameters on sample-by-sample basis (but on block-by-block basis). Equation 

(2.10) suggests that with increase in system order, the length of data required for calculating 

reflection coefficient decreases and the number of calculated AR coefficients increases. Hence 

hardware implementation of the Burg algorithm cannot be accomplished by a structural design 

approach since the architectures of adjacent stages are not exactly the same. In order to overcome 

this problem, a sequential data-flow design is suggested in this work as it will be discussed in 

next chapter. 

 

2.2  Threshold Voltage Effects  

 AR modeling with Burg algorithm helps to reduce dynamic power consumption. 

However, as it will be shown in chapter 3 that dynamic power consumption only accounts for 

about 20% of the total power consumption for this design. Hence reducing static power 

dissipation can significantly increase the battery life of the device. To accomplish this task the 

effect of threshold voltage on power-delay product (PDP) of a device is investigated in this 

research. The threshold voltage is the gate voltage at which an inversion layer is formed in a 

MOS transistor. Threshold voltage is not constant; it increases with the source voltage and 
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channel width, and decreases with the body voltage and the drain voltage. Threshold voltage is 

also depends on the type and thickness of the oxide used in the process, and is directly related to 

the temperature of a CMOS device. 

 

2.2.1  Body Effect  

 The transistor is a four-terminal device with gate, source, drain, and body as an implicit 

terminal. Applying a voltage between the source and body  increases the amount of charge 

required to invert the channel and hence increases the threshold voltage   . Equation 2.13 

shows how threshold voltage can be modeled: 

   

    )                    (2.13) 

 

where  is the threshold voltage when source and body have the same voltage.   is the 

surface potential that can be calculated as it is shown in equation 2.14.   is the body effect 

coefficient that  depends on doping  level   ,  and oxide capacitance   as it is shown in 

equation 2.15: 

                          (2.14) 

     

           (2.15) 

For a small voltage applied to the source and body, the relationship between the threshold voltage and  

can be simplified to (2.16): 

 

                     (2.16) 
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where  depends on the body effect coefficient and the surface potential. 

  

2.2.2  Subthreshold Leakage 

 The transistors leak a small amount of current even when the gate voltage is less than the 

threshold voltage. This leakage is significant for processes less than 90 nm. In this subthreshold 

region of operation, current drops off exponentially as gate voltage falls below  (weak 

inversion). This region can be used for low power circuit design at the cost of reduced 

performance [3]. Subthreshold regime can be used for low power circuits at the cost of 

performance reduction as it will be discussed later in this chapter. 

 

2.2.3  Subthreshold Circuit Design 

 In subthreshold region, total power consumption reduces with decreasing supply voltage. 

Delay, on the other hand, increases. Consequently, the power-delay product (PDP) should be 

used to find the minimum energy operating point for the supply voltage. According to [3], the 

minimum energy operating point typically occurs at a supply voltage close to 300-500 mV and to 

reduce both switch capacitance and leakage, all transistors should be initially designed as 

minimum width. Once the minimum energy operating point is determined, transistor sizing 

should then be used to trade power to improve performance. In this work, we observe that in the 

design of FPGA routing tracks, with minimum width transistors, the delay of a track in the 

subthreshold region is mainly caused by the wiring capacitance and the slow response of the 

multistage buffers. The issue is examined in detail in chapter 4.  
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2.3  Related Work 

 

Subthreshold circuit design for low power application has been investigated previously. It 

has been shown in [7] that operating in the subthreshold region minimizes energy per operation 

and that the minimum energy-delay product occurs at supply voltage of 3Vt. In [8] an analysis of 

operating both CMOS and pseudo NMOS logic families in the subthreshold region and a 

comparison with normal operation in strong inversion region is presented. The results of this 

research reveal operating in subthreshold region reduces the energy per switching of an 8X8 

carry save array multiplier by a factor of two. In [9] different leakage components have been 

modeled to estimate and reduce the leakage power for low-power applications. In [27] the 

leakage power consumption of the components which make up the FPGA fabric is studied. They 

found that about 55% of the total leakage power is consumed by the interconnect multiplexes, 

26% by the LUTs and 19% by the flip-flops and other components with the assumption that the 

leakage of SRAM cells are optimized by using high threshold voltage, and thick oxide 

transistors. It has been shown in [28] that the used multiplexers in the interconnect fabric are less 

than 5% of the total multiplexers and the unused multiplexers cause a significant portion of the 

FPGA leakage power.   

There also have been a number of studies to reduce the power consumption of the 

interconnect fabric on the FPGAs. Some of these studies are focused on the subthreshold design 

and body biasing techniques. In [10] a subthreshold FPGA that uses a low-swing dual-VDD 

global interconnect fabric was implemented on a 90nm device.  This implementation resulted in 

4.7X energy reduction and 14X improvement in speed as compared to a subthreshold FPGA 

using conventional interconnect. The energy reduction for this implementation was 22X as 

compared to an FPGA with transistors operating in saturation region. In [11] a stack of half-
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width transistors in conjunction with adaptive body biasing has been proposed to reduce the 

leakage power for a switch block and a switch matrix on an FPGA. In [12] body biasing 

technique is used at a coarse grained architecture level to reduce leakage power and a clock skew 

scheduling scheme offered to improve performance. It required 3.35% area overhead to 

implement clock skew control blocks which are placed at every configurable logic block (CLB). 

None of the above studies, however, has investigated the performance requirement of biomedical 

applications on FPGAs.  

 

 

 

 

 

 

 

 

 

 

 



17 
 

 

 

 

 

Chapter 3 

FPGA Implementation of AR Burg Algorithm 

  

 Biomedical signal processing involves the collection and analysis of signals generated by 

human and other living organisms for medical diagnosis purposes. In portable applications, these 

signals often need to be processed in real time. For example, Autoregressive (AR) modeling [4]-

[6] is a widely used feature extraction method that is used in biomedical applications to extract 

key diagnostic features from a range of biomedical signals such as knee joint vibroarthrographic 

(VAG) signals [5], pathological voice signals [13] and polysomnographic sleep data. 

Extracting key features from signals also reduces the amount of memory that is required to 

store these signals. For portable applications, AR modeling performed in real time can be used to 

reduce their memory requirements. In particular, instead of directly storing VAG signals from 

the output of an Analog to Digital Converter (ADC), AR modeling can be used to extracts key 

features, called Autoregressive (AR) parameters, from the digitized version of these signals and 

stores only the AR parameters [5], [13] in memory for later diagnostic use [5].  
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In particular, with 16 KHz sampling rate, 16 gigabits of memory is required to directly store 

an uncompressed stream of biomedical signals (for an ADC with 12-bit output) for 24 hours. 

Using a 32-stage AR model, the required memory can be reduced by a factor of 184 to around 90 

megabits. This reduction in memory can be extremely important in the design of portable 

medical devices for monitoring patient activities for an extended period of time.  

 The AR Burg algorithm has been previously implemented by researchers. Majority of 

researchers have used a microprocessor base design and some have attempt to use FPGAs or 

design a custom Integrated Circuits (ASIC), with their attentions mainly focused on improving 

performance. However, not much attention has been given to low power design. In this thesis a 

parametric architecture has been designed, suitable to be implemented on an FPGA or an ASIC 

chip, with the focus on reducing the total power consumption of the device. Although the low 

frequency nature of biomedical signals (kilohertz range) makes microprocessors a cost-efficient 

choice to implement AR Burg algorithm, the microprocessors in general provide less control 

over the power consumption as compare to FPGAs or ASICs. One significant weakness in 

processor-base design is that it requires an external (off-chip) memory device. Adding an extra 

device obviously increases the total power consumption of the system. This problem is 

diminished significantly for FPGAs and ASICs, because of their capability to facilitate an on-

chip memory of relatively decent size. 

 

3.1 Implementation of Burg Algorithm 

 As it was mentioned in previous chapter, the Burg algorithm is based on minimizing least 

squares of the forward and backward prediction errors. These steps are computed using equations 

2.8 to 2.10. Using these equations the reflection coefficient can be calculated and used to first 
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update the forward and backward prediction errors and then to find the AR Burg model 

parameters with the aid of equation 2.11. The recursive nature of AR Burg implies that there 

should be feed-backs in data path. The parameters should be stored to be used later to find the 

next set of parameters, hence the design requires a memory management unit. It is also required 

to allocated input and output buffers to read in and send out the data.  These buffers can also be 

used to adjust the data format as well as data rate to match the format and frequency of the units 

it interfaces with. The Burg algorithm has been previously implemented using MathWorks® 

FPGA Design Solutions. In the next section this methodology will be discussed. 

  

3.2 Previous Implementation of Burg Algorithm 

 The Burg algorithm has been previously implemented using Simulink® with Xilinx® 

System Generator. This is a block level design methodology that generates a VHDL code which 

produces a structural RTL level design. Figure 3.1 indicates the block diagram of this design 

[25]. 

 

         

Figure 3.1: Block diagram of previous implementation for 3 stages using MathWorks®  FPGA Design Solutions 
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As it can be seen from the design block diagram only 3 stages has been implemented which can 

only generate 8 AR model coefficients. In this method each stage has one additional 40-bit data 

bus with respect to previous stage. Figure 3.1 shows the block diagram of previous 

implementation for 3 stages using MathWorks® FPGA Design Solutions If this method was 

used to design an AR model of order 32 or higher,   the last stage would have 32 or more 40-bit 

data bus. Hence the number of required adders and multipliers to complete the computations 

would increase respectively. Figure 3.2 indicates the design of the first stage of the design.  

 

 

Figure 3.2: Block diagram of the first stage for Burg algorithm using MathWorks® FPGA Design Solutions 

 

Figure 3.2 indicates that this methodology requires dedicated adders and multipliers for each 

stage and the complexity of the design increase for each additional stage. This design is not 

parameterized and does not provide flexibility to be able to change the model order or data bus 

width. Hence it should be designed separately for every desired model order. The power 

consumption of the device increases as the model order increases. The significance of the 

limitations of this methodology was the motivation to design an appropriate architecture to 
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overcome these limitations. More importantly, the design should provide variables to find ways 

to reduce the power consumption of the device. In the next section the architecture designed in 

this project is presented. 

 

3.3 A Parameterized Architecture for Implementation of Burg Algorithm 

 Automated RTL code generators aid to reduce the time to market of a design, however 

they do not provide an optimized design in terms of area, performance, and power consumption. 

The alternative is to design a custom architecture. Figure 3.3 is the block diagram of the 

implementation of the Burg algorithm introduced in this thesis. 

 

       

      Figure 3.3: Block diagram for the implementation of the Burg algorithm   

 

This architecture offers number of advantages. It is programmable; hence the data bus width and 

the AR model order can be changed as needed without any limitation. By allocating appropriate 

number of functional units, it can be configured as a pipelined architecture (temporal parallelism) 

to minimize the design area, or as a full parallel architecture (spatial parallelism) to improve 

performance at the cost of area, or a combination of both. The design also maximizes the reuse 
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of the resources. Finally, it can be mapped to any FPGA or ASIC. Thus this architecture (as it 

was planned) provides required variables to investigate and determine ways to improve energy 

efficiency of the design without having any impact on the performance. 

 Figure 3.4 shows the schematic symbol of the top-level module which includes the IOs. 

        

       Figure 3.4: Schematic symbol of the top-level module 

The top-level module has a simple interface which requires a triggering signal (GetSample) only 

to start the operation. A typical timing diagram for this design is shown in Figure 3.5. 

 

 

    Figure 3.5: Timing diagram of the design  

 

3.3.1 Data Capture Module 

 This module was designed to read in the data and latch the input data to produce X(n) as 

well as delayed version of the input data X(n-1) which are required for the computation of a new 

set of AR coefficients. For non-stationary biosignals the design assumes that data is already 



23 
 

organized into frames by a Recursive Least Square Lattice (RLSL) filter. This stage of filtering is 

required prior to computation of the AR coefficients to convert non-stationary biosignals into 

stationary frames. For stationary biosignals the sampled data can be directly sent without passing 

through RLSL filter.  

 

3.3.2 Memory Management Unit (MMU) 

 Each stage of the computation algorithm requires storage of the interim results. The final 

AR coefficients are also needed to be stored in an on-chip memory before an external device (or 

module) could read them out. The size of the memory should be adjusted depending on data bus 

width and model order which in turn defines the number of computational stages. In this design 

each memory unit is configure as dual port ram using block Rams of Virtex 5.  In Virtex 5 

FPGAs each block Ram can store up to 32K bits of data. Figure 3.6 depicts the data flow of a 

dual port ram with 32K bits of storage capacity [26].      

               

    Figure 3.6: Data flow of a Dual Port Ram  
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The timing diagram of the dual port rams are shown in figure 3.7 [26]. 

        

    Figure 3.7: Block Ram timing diagram   

 

3.3.3 Functional Units (FUs) 

 Equations 2.8 to 2.11 suggest that this implementation requires a combination of adders 

(or subtarctors), multipliers, and dividers. For a pipelined architecture at least one adder, one 

multiplier and one divider should be allocated. These functional units are designed to perform 

either fixed point or floating point operations. For spatial parallelism the number of functional 

units increases as the order of the AR model increases. Increasing the number of functional units 

results in increase in power composition of the device. Hence in this research more attention is 

given to a combination of both temporal and spatial parallelism. The objectives of this design 

could be achieved by allocating three multipliers, three adders, and one divider.  In fact the low 

frequency nature of biosignals allows minimizing number of functional units without any 

performance penalty. 
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3.3.4 Output Buffer  

 This module was designed to send out the data and set the appropriate flag to indicate to 

an external device (or module) that a new set of AR coefficients is available. The size of this 

buffer also depends on the order of the AR model. The output clock can be adjusted to match the 

external device (or module) when a different frequency boundary is required.  

 

3.3.5 Control Unit 

 This module generates all control signals required by other modules and controls data 

traffic between them. It includes a Final State Machine (FSM) to generate the control signals as 

well as multiplexors to select the appropriate data in or out of modules. The FSM has two main 

loops to control functional units, data path, and memory units to implement equations 2.8 to 

2.11. The two loops are quite similar except that the first loop occurs only once per frame, and 

the second loop may repeat as many times as the order of AR model defines.  Figure 3.4 shows 

this loop. 

 

   

  Figure 3.8: The block diagram of the AR coefficients computation loop 

 

Figure 3.9 is the flow chart of the control unit which shows the sequence of activities based on 

conditions occurs in the state machine. 
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    Figure 3.9: Flow chart of the control unit 
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The first iteration takes the sampled data and produces the first set of forward and backward 

prediction errors as well as the first reflection coefficient. The loop from state 5 to state 10 

consumes previously generated forward and backward prediction errors and the reflection 

coefficient computed in first iteration to produce AR coefficients and update forward and 

backward prediction errors as well as the reflection coefficient for next iteration. This loop stops 

when it has completed the required cycles set by model order. This loop has a significant impact 

on area reduction as compared with the structural design offered by automated software. The 

area allocated for the second loop and for functional units remains fixed, hence increase in model 

order does not cause an increase in resources. Therefore the power consumption remains 

relatively fixed.  

 

3.4 Results  

 A comparison between previous implementation and the method suggested in this project 

reveals a significant improvement in terms of area and performance. Improvements also made in 

terms of flexibility and functionality of the design. In order to make an accurate comparison this 

design was mapped into the same FPGA (XC2VP1006FF1704) used in previous implementation. 

Previous implantation requires a 20 MHz operating clock frequency to generate coefficient for 

an AR model of order 3. It will be shown that this design at maximum requires a 2 MHz 

operating frequency to generate coefficient for an AR model of order 32. The design offers 

flexibility to reduce the operating frequency for lower model orders. Table 3.1 indicates a 

comparison of resource utilization between the two methods. 
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Resources Vs. 

Implementation Method 

AR 

Order 

Flip 

Flops 

 

LUTs 

Occupied 

Slices 

Bounded 

IOBs 

Block 

RAMs 

18x18 

Multipliers 

Previous Design using 

Simulink-to-FPGA 
3 18% 20% 25% 11% 20% 32% 

 

Current Design 

 

3 6% 10% 12% 11% 17% 3% 

 

Current Design 

 

32 6% 10% 12% 11% 17% 3% 

    Table 3.1: A comparison of resource utilization between two implementation methods: The method using  

          Simulink-to-FPGA tool and the one suggested in this thesis   

 

It can be seen that the implementation method suggested here improves resource utilization from 

15% to 90%. The results are specifically significant in terms of using multipliers because in this 

project the reusability of the resources has been increased. It should be also noted that the data 

for higher order implementation of the method using Simulink® with Xilinx® System Generator 

is not available; however the method suggested here requires the same resources for any model 

order.  

 According to (3.1) dynamic power consumption of an FPGA can be limited by 

reducing the operating frequency: 

                 (3.1) 

 

The variation of supply voltage and capacitive load that requires architectural change will be 

discussed in next chapter. 

  In order to find minimum operating frequency, cycle count for various numbers of 

samples was extracted and collected in Table 3.2. 

 

Number of samples     20     100     200      400     2000 8000 

Number of Cycles for 

AR8 

   554   2474   4874   9674    48074 192074 

Number of Cycles for 

AR16 

  1114   5014   9814 19414    98014 392014 

Number of Cycles for 

AR32 

  2214  10014  19614 38814   196014 760414 

    Table 3.2: Number of cycles required per frame for various model orders  
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It can be seen from table 3.2 that a fixed 14 cycle overhead is required for processing of each 

frame. The number cycles increase linearly with an increase in AR model order or an increase in 

the number of samples per frame.  Figure 3.5 is a graphical representation of the data provide in 

table 3.2: 

 

       

 

 

  Figure 3.10: Number of cycles vs. number of samples for various AR model orders 

 

Note that biomedical signals are analog signals of relatively low frequency that require 

digitization. The bandwidth of biomedical signals is limited to a few tens to a few thousand 

Hertz. According to Nyquist Sampling theorem a signal must be sampled at a rate at least twice 

the rate of the highest-frequency component present in the signal. Hence the sampling rates for 

the digital processing of biomedical signals range from 100 Hz to 20 kHz [4].  

The actual data processed for AR modeling in this design is organized into frames of maximum 

8000 samples. For real time operation, a maximum of 8000 samples must first be acquired and 

stored in memory. These samples are then processed to generate the AR coefficients while a new 
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frame of data is being sampled by an Analog to Digital Converter. The maximum operating 

frequency required to process the data in real-time can therefore be calculated as:  

 

                            (3.2) 

          (3.3) 

 

 Referring to Table 3.2, for an AR model with order of 32 the design requires 760414 

cycles. The above equation shows that for a maximum sampling frequency of 20 KHz (worst-

case design), to process 8000 samples per frame an operating frequency of 2MHz is required. 

Figure 3.6 shows that the operating frequency and sampling frequency are linearly related. This 

figure can be used to predict the operating frequency with respect to sampling frequency used for 

any type of biosignals. 

  

    

 

   Figure 3.11: Graph of Sample Rate vs. Minimum Operating Frequency 
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The operating frequency can be reduced to half by doubling the processing module. Since it was 

shown that this design requires relatively small area of an FPGA, it is feasible to place two units 

to reduce the frequency of operation. According to equation 3.1 adding additional units will not 

increase dynamic power consumption because increase in overall switching capacitors due to 

increase in area will be compensated by reduction in frequency. This leads to next issue which is 

measuring the total power consumption of the design.  

 As it was mentioned before, this design was implemented on a device of Virtex II Pro 

family of Xilinx FPGAs (XC2VP1006FF1704) to compare this design with previous 

implementation method. In order to study the total power consumption of the design a more 

advanced device from Virtex 5 family (XC5VLX110-3FF676C) was selected. Two variation of 

the design was placed and routed on this device in separate steps to investigate the power 

consumption for a 32-bit single precision floating point implementation versus a 64-bit double 

precision floating point implementation. I used XPower Estimator tool included in ISE Design 

Suite provided by Xilinx to measure the power consumption of the design. Figure 3.7 shows the 

total power consumption for the 32-bit floating point and the 64-bit floating point 

implementations over a range of operating frequencies from 0 Hz to 10MHz. As shown, for both 

implementations, reducing operating frequency proportionally reduces power consumption, 

which is the result of reduction in dynamic power dissipation as dynamic power scales 

proportionally with clock frequency [3]. Figure 3.7 also shows that both implementations still 

consume a significant amount of static power even when operating at very low frequencies. 
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 Figure 3.12: Comparison of power estimation for 32-bit and 64-bit floating point implementations  

 

The graphs for both implementations linearly increase for operating frequencies over 1 MHz, 

however 64-bit floating point implementation has higher slope. Nevertheless what is significant 

in this figure is the large amount of static power consumption as compared to dynamic power 

consumptions. This experiment indicates that although it is possible to reduce the amount of 

dynamic power consumption of an FPGA by applying low power design techniques, yet a 

significant amount of static power is consumed by the device. This is true because most FPGAs 

available in the market are SRAM based, and the SRAM cells require power to maintain their 

values whether they are utilized in the design or not. All other transistors used in routing track 

architecture and logic blocks also introduce leakages power. One viable remedy for this problem 

is reducing the power supply as it has been practiced in at least past two decades. Latest 

technologies are now utilizing 0.9 volts supply voltage. However, the decrease in power supply 
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is limited by the threshold voltage of a transistor (typically 0.4 volts). Hence further power 

reduction requires investigation in subthreshold regime. In next chapter a study of subthreshold 

design and power-delay product for an FPGA is presented. 
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Chapter 4 

Subthreshold Circuit Design 

  

 The main focus in this research is to investigate ways to reduce total power consumption 

for implementation of biomedical applications. The results of the study of power consumption on 

our FPGA implementation in previous chapter indicated that a significant amount of power 

consumed in an SRAM based FPGA is static power. Reducing static power dissipation can 

significantly improve battery life of a device. To accomplish this task, the effect of threshold 

voltage on the power consumption of FPGAs is investigated in this work. Threshold voltage is 

the gate voltage at which an inversion layer is formed in a MOS transistor. Threshold voltage is 

not constant; it increases with the source voltage and channel width, and decreases with the body 

voltage and the drain voltage. Threshold voltage also depends on the type and thickness of the 

oxide used in the process, and is directly related to the temperature of a CMOS device [3]. 

 In order to conduct this research a Simulation Program with Integrated Circuit Emphasis 

(SPICE) model was designed and simulated. The results of this simulation are discussed in this 

chapter. 
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4.1  FPGA Architecture 

 As in most commercially available SRAM based FPGAs, we assume an  Island-style 

architecture consist of arrays of logic blocks connected together and separated by horizontal and 

vertical programmable routing channels.  Figure 4.1.depicts an island-style FPGA in which logic 

block are surrounded by routing channels.   

                                  

    Figure 4.1: Island-Style FPGA Architecture 

The routing channels consist of pre-fabricated wiring segments. The horizontal and vertical 

channels are connected through programmable switches which are called switch blocks [16]. 

There are multiple wire segments between the switch blocks depends on the architecture of 

particular FPGA. In this architecture, most of the area of an FPGA is consumed by the routing 

channels which are also responsible for most of the circuit delay.  To investigate power-delay 

product of an FPGA, it is required to make an accurate simulation model of the routing channels. 

In next section the architecture of the routing channel will be discussed in details. 
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4.2  Routing Channel and Delay Path Model 

 Figure 4.2 depicts the routing channel structure adapted in this research. Each routing 

track is assumed to be connected to a set of multiplexor 4-to-1 in series with a multistage buffer 

at both ends. For the conventional routing architecture, for each logic block one isolation buffer 

is placed to electrically isolate the routing tracks from the input connections of a logic block 

[16]. Each logic block was modeled as a buffer driving a capacitive load. Wiring capacitors were 

also considered and placed. 

 

    

        Figure 4.2: Routing track and delay path model 

4.2.1  Multiplexers 

 Multiplexers are implemented in form of a binary tree of pass transistors with SRAM 

cells controlling the selection of the input data. All transistors are of minimum width size. The 

schematic of a 4-to-1 multiplexer is shown in Figure 4.3 [16]. 
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        Figure 4.3: A 4-to-1 multiplexer implemented with pass transistors 

 

 

4.2.2  Buffers 

 Multistage buffers and isolation buffers are widely used in FPGAs to drive a larger load 

and to electrically isolate the routing tracks from the input connections of logic blocks. Isolation 

buffers are simple made of two COMS inverter with minimum-width size transistors connected 

in series. Multistage buffers however require higher drive strengths that can be accomplish by 

chaining buffers of gradually increasing size. The multi stage buffers used here are 4X of 

minimum strength. Figure 4.4 depicts schematic diagram of such buffers. 

                

          Figure 4.4: A multistage buffer with 4X drive strength 
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4.2.3 Gate Boosting    

 An nMOS pass transistor degrades a logic high value by a threshold voltage [16]. The 

structure of multiplexers used in this work is organized in a binary tree of pass transistors. The 

logic high value appears at the output of a multiplexer can be significantly degraded (depends on 

the number of stages of the multiplexer). We boost the gate voltage of a pass transistor by a 

value equal to threshold voltage. The boost in voltage is applied to pass transistors at each stage 

of the multiplexer to compensate the voltage drop caused by each pass transistor. Figure 8(a) 

shows for a supply voltage of 0.9 volts and a threshold voltage of 300 to 400 millivolts the 

output could be reduced to logic low value where a logic high value is expected. Boosting the 

gate voltage of the pass transistor by a threshold voltage overcomes the problem as it is shown in 

Figure 8(b) [16]. 

 

a) Pass transistor degrades a logic high value                 b) Gate boosting to solve voltage degrading of pass transistor 

 

Figure 4.5: (a) Potential problem with pass transistor; (b) Solution for voltage degrading of pass transistor 

 

4.2.4  Transistors and Interconnect Models 

 In this work, 32nm technology was used. Accurate and customizable model files for 

NMOS and PMOS transistors that are compatible with HSPICE circuit simulators, were taken 

from the Predictive Technology Model (PTM) website [17] (which is developed by the 
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Nanoscale Integration and Modeling (NIMO) Group at Arizona State University). This website 

also provides RLC values for interconnects by setting the appropriate values as it is shown in 

Table 4.1. 

 

Metal Type   Cu 

Width of the Trace 0.064μm 

Separation Between Traces 0.064μm 

Length of the Trace 30μm 

Thickness of the Trace 0.14μm 

Height From Ground 0.14μm 

Dielectric Constant    2.2 

          Table 4.1: Parameters used to determine interconnect capacitance 

 

The wiring capacitance for the routing track model was found to be 4.63fF for a wire length of 

30μm that is the equivalent to the length of a side of a tile (a square area containing a logic block 

and the area occupied by routing tracks). The information related to area of a tile was taken from 

Intelligent FPGA Architecture Repository (IFAR) website [18]. A typical FPGA has 2 or 4 of 

such blocks hence the total wiring capacitance is adjusted accordingly.  

 

4.3  Simulation Results 

 The performance and power consumption of the routing track shown in Fig. 6 were 

measured over a range of supply voltages. Two types of buffers are considered – the 

conventional and the Swapped Body Biasing (SBB) [19] buffers – for implementing the 4x 

buffers shown in the figure.  

 According to (2.16), the threshold voltage can be adjusted by applying a body bias 

voltage [3]. In a conventional inverter, the substrate bias voltage  is set to zero for both nMOS 
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and pMOS transistors as it is shown in Fig. 4.6(a). Setting   to zero forces the pn junction 

between the source and body as well as pn junction between the drain and body to be reverse 

biased. This causes a reduction in the leakage current which is the driving current in the 

subthreshold region. Hence the performance of the transistor is degraded in subthreshold 

operations [20], [21]. 

 As shown in Fig. 4.6(b), the source-to-body and drain-to-body pn junctions are forward 

biased (by applying ) in an SBB inverter in order to increase the subthreshold current. 

Typically, in both the subthreshold and saturation regions, the SBB inverters introduce less 

propagation delay than the conventional inverters. 

 

                   

 Figure 4.6:   (a) A conventional inverter; (b) An inverter with swapped body biasing (SBB) voltage  

   

Using the SBB technique, the conventional 4x buffers shown in Figure 4.2 were substituted by 

SBB buffers at the output of each multiplexer. Figure 4.7 depicts the structure of this buffer, 

which is designed by connecting an SBB inverter (to reduce the propagation delay) to a 

conventional inverter of size 4x (to provide the desired drive strength).  
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   Figure 4.7:  Multistage buffers with variable threshold voltage  

 The PDP graph of the various buffer sizes shows that the optimum size of the secondary 

stage inverter is four times the minimum size transistors as it is shown in Figure 4.8.  Hence the 

secondary stage inverter of size 4X is used to build the buffers.  

 

            

   Figure 4.8:  Power-Delay Products for various buffer sizes 

 The average power dissipation and the delay of both buffers for various supply voltages 

in subthreshold region, near subthreshold region, and saturation region were extracted using the 
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SPICE model.  These measurements are shown in Table 4.2. In this table subthreshold region is 

marked with (*). 

 

Supply 

Voltage (V) 

Average Power (μW) Delay (nS) 

Conventional 

Buffer 

SBB 

Buffer 

Conventional 

Buffer 

SBB  

Buffer 

0.9 29.58 93.068 0.40 0.14 

0.8 19.665 53.161 0.58 0.27 

0.7 11.668 30.513 0.92 0.54 

0.6 5.5642 9.0586 1.81 1.10 

0.5* 1.5643 1.9623 4.56 3.48 

0.45* 0.54538 0.64034 12.96 8.59 

0.4* 0.1303 0.14963 41.93 24.5 

0.35* 0.024716 0.02836 143 75.5 

       Table 4.2: Average power dissipation and delay of both buffer types for various values of supply voltages 

 

 In this table delay is measured as the difference between the time that the output reaches 

50% of its final value and the time that the input reaches 50% of its final value [3]. It should be 

also mentioned that the wiring resistance for the routing track model in this project was 

measured as 73.66 Ω; however the wiring resistance was not considered for the delay path 

modeling of the routing track. This was due to the fact that at low frequency the capacitive 

reactance is significantly larger than the resistance of the circuit. Hence the impedance of the 

circuit is predominantly capacitive and the wiring resistance can be ignored. For example for our 

model the total wiring capacitance is 4.63 fF for 30 μm of the routing track. This capacitance at 

our target frequency of 20 KHz results in a capacitive reactance of approximately 1720 MΩ, 
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which is much greater than the 73.66 Ω wiring resistances. Therefore the wiring resistance of the 

routing tracks can be ignored for measurement of the delay of the circuit. Figures 4.9 through 

4.15 are the HSPICE plots for delay measurements of routing tracks with conventional buffers 

and SBB buffers for subthreshold supply voltages of 0.4V, 0.45V, and 0.5V. 

            

 Figure 4.9: Plot of Input vs. Output of the routing track using conventional buffers with 0.4 V supply 

 

  

     Figure 4.10: Plot of Input vs. Output of the routing track using SBB buffers with 0.4 V supply 
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 Figure 4.11: Plot of Input vs. Output of the routing track using conventional buffers with 0.45 V supply 

 

 

 

       Figure 4.12: Plot of Input vs. Output of the routing track using SBB buffers with 0.45 V supply 
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 Figure 4.13: Plot of Input vs. Output of the routing track using conventional buffers with 0.5 V supply 

 

 

 

 

       Figure 4.14: Plot of Input vs. Output of the routing track using SBB buffers with 0.5 V supply 
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 In the table 4.2 power and delay figures are shown for supply voltages ranging from 0.9 

volts to 0.35 volts below which the outputs of both circuits (with conventional buffers and SBB 

buffers) become distorted for the 2.0 MHz operating frequency. The model with SBB buffers has 

lower power-delay product for supply voltages of less than 0.6 volts as it is shown in Figure 

4.15. 

    

    Figure 4.15: Power-Delay Product vs. Supply Voltage for Models with SBB Buffers and Conventional Buffers 

 

 Note that this simulation is conducted for only one routing track; however the several 

routing tracks typically are chained together to connect a signal from its source to its destination 

on an FPGA. Since the routing tracks investigated in this work are buffered at each end, a linear 

delay model can be used to calculate the delay of a set of chained routing tracks as shown in 

Equation 4.1 [16], where  is the intrinsic delay of the buffer,  is the equalized 

pull-up/pull-down resistance of the buffer and  is the total capacitances that are needed to 
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be driven by the buffer. Note that the delay values shown in Table 4.2 corresponds to the sum for 

. 

                                        (4.1) 

As shown, the total routing delay increases linearly with a factor of M.  For example, with a 

supply voltage of 0.35 V and SBB type buffers, the delay for a single track is 75.5 ns. Hence the 

total routing delay for 20 tracks would be 1510 ns which is greater than the 500 ns clock period 

(2.0 MHz). Using a supply voltage of 0.4V reduces the delay for a single track to 24.5 ns, thus 

the delay for 20 tracks would be 490 ns. Consequently, a signal with a 10 ns logic delay can still 

meet the timing constraint of 2.0 MHz operating frequency. Finally, as shown in Table III, using 

SBB buffers with 0.4V supply voltage improves the power consumption of the circuit by a factor 

of 197.7 and the power-delay product by a factor of 3.3, as compared to using the conventional 

buffer at the 0.9 V supply voltage. 
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Chapter 5 

Conclusion and Future Work 

 

 The main focus in this research was to investigate ways to reduce total power 

consumption of biomedical applications, since low power consumption is a crucial factor in 

designing devices to process biosignals.  It was shown that parametric modeling that is often 

considered for feature extraction can also be used to compress the biomedical signal. This 

reduces the size of required memory and ultimately results in less power consumption.  The AR 

Burg algorithm has been previously implemented by researchers. Majority of researchers have 

used a microprocessor base design and some have attempt to use FPGAs or design a custom 

Integrated Circuits, with their attentions mainly focused on performance. However, not much 

attention has been given to low power design. In this thesis a custom architecture has been 

designed, suitable to be implemented on an FPGA or an ASIC chip, with the focus on reducing 

the total power consumption of the device.  The estimated power consumption extracted from the 

design revealed that a significant amount of power consumed by a device is static. To reduce the 

static power consumption of a device subthreshold circuit design was investigated in this 

research. Interconnect power dominates the total power consumption of an FPGA hence the 

power efficiency of the routing resources is crucial for low-power applications. In this thesis 

power requirement for implementing a computationally intensive algorithm used for processing 
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biosignals on an FPGA was investigated.  A model for routing tracks of an FPGA was suggested 

which is able to operate in the subthreshold region while still meeting the timing constraint. In 

particular, it is shown that using SBB buffers, it is possible to achieve power reduction by a 

factor of 197.7 and power-delay product reduction by a factor of 3.3 as compared to normal 

operation in the saturation region using a 0.9 volt supply voltage. The power reduction can 

significantly increase the battery life of portable devices utilizing FPGAs for biomedical 

applications. 

 It should be noted that this work has only considered subthreshold design using 32 nm 

technology for the routing tracks of an FPGA. In the future, subthreshold design should also be 

investigated for Logic Blocks, Block RAMs, Functional Units, and other elements that make up 

the architecture of an FPGA.  
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