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Abstract 

Bayesian Crime Investigations: Integrating Actuarial and Expert Models 

Doctor of Philosophy, 2017, Jared C. Allen, Psychology, Ryerson University 

 

In response to concerns that some of the most methodologically rigorous predictive 

studies of criminal offender characteristics may yet be less generalizable and applicable than 

advertised or assumed, this research first tests how well seven regression analysis models 

(represented by 28 equations) predict characteristics across three conditions: familiar cases 

(used to create the regressions), less familiar cases (native to the sample used to create the 

regressions) and foreign cases (from a similar but novel sample). Here a linear trend shows 

overfitting of the models to their own sample: a drop-off in prediction accuracy relative to 

simple mean-based prediction as cases become more foreign (ηp
2  = .646). In response to hopes 

that subjective input from expert police investigators could be integrated into the models to 

correct for this overfitting bias, this research also tests an algorithm combining expert ratings 

with the regression equations. Here moderate and significant improvement in novel-case 

prediction is observed overall (p = .036, r = .44) and equations for all twelve expert participants 

are shown to improve prediction to varying degrees. These results suggest that current best 

methods would perform poorly in the field, but can be improved by expert insight. 
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Introduction 

 The field of Forensic Psychology consists of two core questions that motivate respective 

areas of research. The first question asks what psychological knowledge can be applied to 

interpreting evidence, handling witnesses and juries, and understanding court systems. This 

question motivates the majority of research in Forensic Psychology (if introductory textbooks 

are any guide to the priorities of the field—e.g., Davis & Beech, 2012; Pozzulo, Bennel, & Forth, 

2009; Wrightsman & Porter, 2006). The second core question asks what psychological 

knowledge can be applied to understanding crime and criminals. This second question 

motivates two overlapping subfields of research: Clinical research focusing on assessment and 

rehabilitation of crime offenders, and investigations research focusing on pre-trial issues of 

solving cases and apprehending suspects and offenders.  

 This last subfield of research concerning pre-trial issues is largely overshadowed by its 

fictitious representations in television shows and science fiction novels. The reality of 

investigations is much less interesting as there are no Minority Report “precognitive” experts 

seeing crimes before they occur, no Numb3rs savants deducing guilty parties from abstract 

formulae, and no systems of artificial intelligence tracking and profiling all humans on “the 

grid”. These depictions of pre-trial Forensic Psychology are current entries into the ever-

growing compendium of mythologies precipitated by what society wants and fears.  

Yet each myth is predicated in some part upon reality. Complex Bayesian Network 

models are being run that mimic the action of intuitive minds making decisions and predictions 

(Baumgartner et al., 2005; 2008; Canter, 2011; Gottschalk, 2006; Kruschke, 2012; Perry et al., 
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2013; Stahlschmidt et al., 2011; Sullivan & Mieczkowski, 2008; Tartoni et al., 2006), quantitative 

models of crimes are being used to turn abstract formulae into statements that link crimes to a 

common offender and project where the offender may be (Burrell et al., 2012; Canter, 2009; 

Canter & Hammond, 2006; Rossmo, 1999; 2009; Snook et al., 2005), and the pending 

combination of two new fields—Evolutionary Computation and Big Data—holds promise of 

creating self-learning algorithms processing more information than was previously thought 

would ever exist (Back, Fogel, & Michalewicz, 2000a; 2000b; Domingos, 2015).  

These headline-garnering advancements occur when new and increasingly sophisticated 

tools are created or applied. The question of what psychological knowledge can be applied to 

understanding crime and criminals can then easily be overshadowed by the question of what 

can the newest software do. That is, in the excitement of quantitative advancement it may be 

forgotten that the vast majority of criminal investigations are resolved through following 

procedure and the insights of professional investigators. 

The small corner of Forensic Psychology with which the present research is concerned, 

referred to as Investigative Psychology (Canter & Youngs, 2009), Criminal Investigative Analysis 

(Serin et al., 2013),  or Behavioural Investigative Advising (Alison & Rainbow, 2011), may be 

divided into two research camps, the first involving use of expertise (e.g., how to understand 

the criminal mind) and the second involving the development and use of quantitative tools 

(e.g., how to use regression analysis to predict an offender’s conviction history or a geographic 

information system to determine crime “hot spots”).  

The primary aim of the present research programme is to bring the two camps together 

in a formal Bayesian paradigm that quantifies the expert insight to combine it with the 
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advanced statistical tools. This anticipates a coming paradigmatic shift, namely, the breakdown 

of the division of research camps with the advent of more user-friendly software interfaces and 

better big-data organization. The test of interest will be whether the integration of expert input 

with quantitative methods can improve prediction in investigations. 

       

Investigative Prediction 

One of the primary goals of Forensic Psychology is to make accurate predictions or good 

decisions. In the context of the law and policing it is often the case that good decisions are 

intended to make accurate predictions that turn into inaccurate ones (e.g., correctly predicting 

a parole applicant will likely reoffend, leading to denial of parole, leading to prevention of said 

reoffending). Predictive policing is an example of this. It follows a three-point theoretical 

framework acknowledging that 1) overlapping patterns of offender and victim behaviour can 

lead to increased risk of offences occurring, 2) time and geography can determine or constrain 

these patterns, and 3) within such patterns the decisions of offenders are presumably 

somewhat pragmatic or rational (Perry et al., 2013). Based on this three-point rationale, 

relative risks are computed from prior crime data and “hot spots” are targeted for preventive 

policing action (e.g., increased uniformed or plain-clothed officer presence at a certain location 

and time). Police action is intended to assure that where the model predictions of risk are 

accurate they are combatted and reduced.  The experts hope that their actions will make these 

predictions incorrect. 
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An area of Forensic Psychology where this is not the case, i.e., where the experts hope 

to see all of their predictions proven correct, is Behavioural Investigative Advising (BIA). Here 

the aim is for experts (e.g., consulting academics, law enforcement officers) to take optimal 

approaches to the resolution of difficult investigations (Cole & Brown, 2011). Behavioural 

Investigative Advisers (BIAs) may perform multiple tasks. One of the most important is suspect 

prioritisation: “narrowing down” or ranking an existing pool of suspects so that investigators 

may concentrate on the most probable or dangerous suspects (Alison & Rainbow, 2011). BIAs 

may be academics, police officers, or other professionals. They use their knowledge and 

expertise to choose and follow the important leads and suspects in a case. Part of the advising 

process involves making probabilistic judgements about the likely characteristics of the 

offender. BIAs and investigators need for these judgements to be accurate (Almond, Alison, & 

Porter, 2011). 

The most useful predicted details are those that can be used to narrow suspect lists, to 

help police identify the suspect on the street, or to inform how they approach suspects when 

executing warrants (Cole & Brown, 2011). These predictions, even when correct, will generally 

not be considered evidence in court or generalizable findings, but rather are case-specific tools 

used to focus resources on the most likely suspects (Muller, 2011). A good set of predictions 

(see Table 1) is therefore likely to stress characteristics such as prior offence history, age, 

proneness to violence, and any differentiating features that the offender may be expected to 

have (Rainbow & Gregory, 2011). The efficacy and efficiency of many investigations largely 

depends upon the accuracy of these (explicitly or implicitly made) predictions.  
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Generally, such prediction is performed in one of two ways: Either investigative 

professionals use their expertise and intuition, or (in limited cases) databases and sophisticated 

models are consulted to quantify the relevant predictions. The latter (actuarial) method has a 

long history but only a recent rise in interest.  

Table 1: Examples of investigative problems and predictions made to address 
them. 
Example Need Example Prediction 

To find, narrow, or prioritize suspects Likely prior offences 

To identify offender Offender age 

To approach offender Trait anger or impulsivity 

 

Actuarial science began with life insurance (or death pension) calculations: previous 

lifespans were used to predict lifespans of the living to determine fair payment rates for plan 

members of given ages. In investigations, actuarial methods predict characteristics or facts 

about real or potential offenders from existing cases of previous crimes. The investigation 

commences with the question “Who would commit this crime?” and ends when answers to this 

question sufficient to act upon are determined.  

An actuarial approach may, for example, take counts of all similar crime cases and look 

for modal characteristics (i.e., the quantitative “usual suspects” from the usual variables). 

Another such approach may take a trained model (e.g., a regression equation) and predict 

some value (e.g., number of prior offences) from known values (e.g., weapon used and various 

conditions of the crime scene). This actuarial approach is valuable for its capacity to faithfully 

consider many variables and arrive at quantified predictions based on prior relevant cases. 
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An expert approach, on the other hand, may be to interpret the circumstances of the 

crime through a theory or relevant experience and generate hypotheses. This approach is 

valuable for its flexibility and the space it permits for consideration of rarities and details (e.g., 

bizarre characteristics of a crime scene or word selections in threats). Scientifically, the expert 

method is essential due to the uniqueness (“phenomenology”) of each potential crime (West, 

2000). The expert complements the artificial intelligence of the actuarial methods by being able 

to spot novel elements not recorded in previous cases (and therefore not interpretable or 

modelled by the actuarial method). 

Expertise may also be referred to as intuition, insight, clinical judgment, or simply 

knowledge of context. Investigators use this expertise to arrive at the hypotheses that drive 

most investigations. In one experimental test, forty police detectives predicted offender 

characteristics (e.g., relationship to victim) based on crime scene photos with 67% accuracy 

(Wright, 2013). Regardless of whether this is a high or good degree of accuracy (or whether this 

result is typical, biased, or representative) it is such intuition or insight that drives typical 

investigations. For this reason investigators are encouraged in their training to attend to their 

“gut feelings” about a case (Pinizzotto, Davis, & Miller, 2004). 

In some contexts the actuarial method has been found to outperform clinical judgment 

(e.g., predicting diagnoses of individuals) by making the most correct predictions (e.g., Grove et 

al., 2000; Meehl, 1954). This is accomplished through raw analytic power (i.e., the capacity to 

consider many covariates) and the tendency of observed values of a variable to regress to its 

mean or mode (which is the basis of actuarial prediction). The strength of each method (expert 

and actuarial) may seem to be its exclusion of the other, but since there is (in reality) an answer 
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that both the novel case elements and analytical power (if the two are indeed useful) ought to 

converge upon, there ought to therefore be ways to combine the two methods to better 

converge upon correct predictions. The primary goal of this research is to improve prediction of 

useful offender characteristics from available features of the crime. An estimated 30% of 

violent homicides require more than standard procedure to solve (Innes, 2003), and these are 

the investigations that would most benefit (or most require) the type of secondary integrative 

analysis considered. 

 

Theories and Signals 

 In general, whether expert or actuarial approaches are being used, there are three 

theories supporting the predictive approach to investigative decisions. These theories are what 

replace the fatalistic or relativistic stance that every criminal and every crime is simply so 

unique, complex, or aberrant that no forward-looking approach could ever accurately aid or 

increase the understanding of a given case. The theories, often used in combination, are 

routine activity theory, rational choice theory, and crime pattern theory. They posit that crimes 

occur in relation to opportunities, cost-benefit analyses by offenders, and spatial or temporal 

deviations, respectively.  

To further unpack the theories and provide examples of their use in the field, one of the 

models to be later used for prediction will now be evaluated based on existing literature. As 

seen in Table 2, the model seeks to predict whether the offender has trait impulsivity (for details 

of all seven models, see Appendix A). The predictors include details that could likely be known 
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during investigation of a non-lethal sexual offence: Whether the offender had a weapon, 

whether the offender had planned the offence (e.g., brought restraints or a mask), whether the 

offender stole items from the victim, whether the offence occurred in a private residence, the 

age of the victim, whether the offender or victim used drugs or alcohol prior to the crime, 

whether the crime occurred during the day, and whether the offender engaged in sadistic 

aggression or mutilation against the victim. 

 
Table 2: Outcome and predictor variables for Model 1 and the general direction of the relation 
of the predictors to the outcome as interpreted from empirical findings in the BIA literature. 
Outcome (O) Predictor (P) Relation* Source 

Offender 
Impulsivity 

Offender had weapon Negative Melnyk et al., 2011 
Fox & Harrington, 2012 

Planning demonstrated (e.g., a kit) Negative  Melnyk et al., 2011 

Offender stole items Positive Bennett & Wright, 1984 
Beauregard & Leclerc, 2007 

Assault location a residence Negative Beauregard & Leclerc, 2007 

Age of victim Positive Harry et al., 1993;  
Goodwill & Alison, 2007 

Offender drug use just prior to crime Unknown  

Offender alcohol use just prior to crime Positive Ward et al., 1998 

Victim drugs or alcohol just prior to crime Unknown  

Crime occurred during the day/daylight Positive Beauregard & Leclerc, 2007 

Sadistic aggression/mutilation Positive Ward et al., 1998 

*Relation summaries may be generalized from diverse sources, including multivariate thematic analyses, 
and not necessarily investigations of the relations in isolation. 

 

 The BIA literature was referenced to predict the general direction of each relation. If the 

occurrence of a predictor (e.g., a “yes” value for assault occurred in a residence) generally 

increases the likelihood of the offender being impulsive, then the relation between the two is 

positive. If the non-occurrence of a predictor (e.g., a “no” value for assault occurred in a 

residence) increases the likelihood of the offender being impulsive, then the relation is 
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negative. Likewise if the non-occurrence of a predictor decreases the likelihood the relation is 

positive and if the occurrence of a predictor decreases the likelihood the relation is negative.  

This approach greatly oversimplifies the many moderating relations (Goodwill & Alison, 

2007) likely to be present in the current model predictors, the BIA literature, and real-world 

cases. That is, the model considers these relations all-at-once, sacrificing signal precision and 

nuance for shotgun-like bandwidth. Yet this may be viewed another way, namely as risking 

fewer ecologically invalid assumptions (e.g., of collinearity and moderation) and diversifying the 

model to be useful in a wider range of case situations. The shotgun-like approach here 

considered may, in real investigations, often be necessary or preferable where the relations of 

the known case variables to each other remain uncertain. Regardless of these considerations, 

all that is needed for illustration of the three theories are predictions of the relations from the 

literature and how in the literature these were determined.  

The first relation predicted is that the offender bringing a weapon reduces the 

probability that the offender is impulsive. This relation can be predicted from Melnyk and 

colleagues (2011) who tested behavioural stability. They assessed consistency of the choices of 

serial offenders (rational choice theory) and found that some consistent offender themes could 

be hierarchically organized. Their study can be read as supporting a negative relation between 

offender impulsivity and offender bringing a weapon through two lines of reasoning. First, their 

general offence behaviour hierarchy suggests that improvised weapons (e.g., a cord or 

candlestick) are associated with impulsive offenders (which they also class as a subtype of 

disorganized offenders). Second, the act of bringing a weapon is highly associated in the 

hierarchy with having planned the offence. Planning and impulsivity are distinct in the 
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hierarchy, suggesting that the second relation in Model 1 is also negative. That is, the offender 

having demonstrated planning of the offence reduces the probability that the offender is 

impulsive. This is based upon the rational choice theory that a given offender will tend to make 

similar or consistent choices according to what they (perhaps uniquely) feel is rational or 

appropriate in any given moment (Cornish & Clarke, 1986).  

The next relation predicted is that the offender stealing items from the victim increases 

the probability that the offender is impulsive. This relation can be predicted based on 

Beauregard and Leclerc (2007) who investigated rational choice theory in the context of offense 

opportunities (i.e., the intersection of rational choice theory and routine activity theory). 

Specifically, the implication is that those offenders who are impulsive would be less likely to 

miss the opportunity to take objects of value from the victim. In other words, impulsive 

offenders would be more likely to consistently interact with theft opportunities by stealing 

items. The opportunity for crime determines behaviour (Cohen & Felson, 1979) but only in 

interaction with the unique psychology of the offender. Put another way, and in the form of 

Beauregard and Leclerc’s (2007) study, the psychology of the offender (e.g., his impulsiveness) 

determines behaviour, but only in interaction with opportunities presented. Attending to such 

interactions by integrating routine activity theory and rational choice theory is increasingly 

being urged in the BIA literature and more basic instructional texts (e.g., Canter & Youngs, 

2009).   

A similar argument can be made from Beauregard and Leclerc (2007) to predict that the 

offence occurring in daylight increases the probability that the offender is impulsive, and to 

predict that the offence occurring in a residence decreases the probability the offender is 
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impulsive. Specifically, the risk of being seen or caught is greater during the day or in a more 

public space (a routine activity theory observation) so the affirmative decision to offend would 

more likely be made by an impulsive offender (a rational choice observation). These predictions 

would extend to the third basic theory (crime pattern theory) to suggest that more offences 

that occur in daylight or in public spaces may occur in compensatory (risk-mitigating) situations 

or interactions. That is, to balance increased risk to the offender of being seen or heard, a 

daylight or public crime-provoking situation may need to be somehow more tempting or less 

risky. This presents a three-way interaction (psychology by opportunity by risk) that 

demonstrates the difficulty of making straightforward predictions of relations. 

Predicting how victim age relates to offender impulsivity also demonstrates this 

difficulty. It can be assumed that younger offenders are also more impulsive, and this can be 

combined with the finding that younger offenders are more likely to target adults than youths 

(Harry et al., 1993). These broad generalizations lead to the prediction that victim age has a 

positive relation to offender impulsivity (i.e., as victim age increases, the probability of the 

offender being impulsive also increases). If it is further considered that older offenders tend to 

plan more and choose younger victims (Goodwill & Alison, 2007) the conclusion can be similarly 

made that as victim age decreases, the probability of an impulsive offender decreases (i.e., the 

relation is positive). Interpreting these sources leads to convergence on a single prediction, but 

none of the relations drawn upon for the conclusion are straightforward. Planning and rather 

large (categorical) victim age differences moderate the relations drawn upon for this simple 

directional prediction. 
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Two relations are too general or unspecified to predict. Namely, how the offender’s use 

of drugs prior to the crime relates to offender impulsivity and how the intoxication of the victim 

before the crime relates to offender impulsivity. Firstly, the type of substance or drug used is 

not specified in either case. It may be the case that the offender is more likely to be impulsive 

because he took the drug (which is an impulsive action) or that the drug altered the offender’s 

normal behaviour (which may or may not be impulsive). The intoxicated state of the victim 

similarly may indicate (or may have motivated) planning on the part of the offender or may 

simply have provided an opportunity that was responded to impulsively.    

The final two relations may be predicted via the self-regulation model of Ward, Hudson, 

and Keenan (1998). This approach suggests that the rational responding of offenders follows a 

chain of reasoning that may be logical to the offender at a given time but provide poor 

behavioural regulation in the longer term. An example is using alcohol to control mood or 

behaviour: An offender with self-regulation difficulties may be more likely to seek refuge from 

deviant desires or the conflicting emotions to which they give rise by indulging in alcohol, 

meanwhile the disinhibiting or intoxicating effects of alcohol are increasing the probability of 

the offender acting on those desires. In this sense the impulsive offender may be more likely to 

both drink alcohol initially and offend under its influence. A less impulsive offender may neither 

be as motivated to alter their consciousness nor as at risk of offending once under the 

influence. This particular application of rational choice theory would then predict that the 

offender having drunk alcohol before the offence increases the probability that the offender is 

impulsive.    
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The same self-regulation approach may be used to predict that if the offender 

demonstrates excessive violence (e.g., sadism, mutilation) in the course of the sexual offence 

then the probability is greater that the offender is impulsive. Violence in general does not 

predict how impulsive or how well-regulated the offender may be (e.g., violence may be 

planned and instrumental), but excessive violence can indicate poor self-regulation and impulse 

control. Those offenders with greater self-regulation and control are more likely to be inhibited 

from excessive violence by the goals of the sexual offence itself (e.g., positive emotions). This 

relation would not hold where the goal is to do greater violence, but arguably that is not the 

primary intent of offenders in the majority of non-lethal sexual offences.    

As these examples of theory applications demonstrate, the relations utilized in the 

prediction of outcome variables are complex and in some cases highly interdependent. It is the 

intent of this research to inform and improve several rather unsophisticated actuarial models 

(such as the one just described) using subjective estimates of relations from investigative 

experts. That is, expert input will be used to modify the high-bandwidth “shotgun” approach to 

see if prediction of individual cases can be improved. This will involve a novel method of 

quantified integration. 

 

Integration 

This research tests a particular algorithmic method for combining expert and actuarial 

prediction to inform decisions in police investigations. These decisions are diverse and must 

predominantly be made by subjective processes. Investigative decisions include choosing the 
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criteria for inclusion on a suspect list, selecting which suspects (or which type of suspects) to 

prioritize from that list, determining the optimum strategy for gathering information (e.g., 

canvassing the neighbourhood, genetic testing, media statements), determining the best 

content with which to populate that strategy (e.g., which questions to ask neighbours, what 

information to release), and deciding which pieces of evidence or which leads to assign priority 

or give greater weight. As mentioned, expert prediction and actuarial prediction refer to two 

different (but non-exclusive) methods by which investigative decisions may get made. The 

circumstances of the investigation may largely determine whether actuarial prediction methods 

are consulted. 

Expert prediction occurs in real-world investigations when predictions are explicitly or 

implicitly made by investigators (e.g., detectives) making large numbers of decisions during the 

course of a given investigation. In particular, expert predictions are those that occur when 

insight or experience (academic, professional, or both) with investigations is the basis for the 

decisions being made. Expert prediction thus accounts for the vast majority of decisions being 

made in investigations. The sheer number of decision points arrived at and navigated by 

investigators assures that investigators will not be replaced by powerful programs or logic trees 

in the foreseeable future, but the development of such powerful programs is increasingly 

providing opportunity for investigators to increase their decision-making power. Investigators 

may now access and utilize important contextualizing data with (as Bayesian search software 

improves) increasing ease of use and (as population and time increase) increasing sizes of 

reference datasets. When such contextualizing data is utilized to improve prediction, the 

predictions made may be called actuarial. 



15 
 

Actuarial predictions are informed through deliberate “crunching” of numbers. This 

includes simple quantitative methods such as using base rates from relevant datasets to 

determine characteristics of the majority of offenders who commit a certain type of crime (e.g., 

to “look-up” whether the majority of local home invasion assaults are perpetrated by offenders 

with prior theft or mischief convictions). Actuarial prediction also includes more complex 

multivariate modelling to ask similar or more complex questions (e.g., to correlate case 

information to determine whether multiple cases were committed by the same offender, to 

determine where such an offender might live or work, or to create an offender profile from 

limited information with the aid of validated types or themes).  

The work to follow selects regression-based prediction as its actuarial tool. Regression 

analysis predicts a singular “outcome” variable (e.g., whether offender has prior sexual crime 

convictions) from a number of “predictor” variables (e.g., offender brought a weapon or rape 

kit to the offence) by assigning the latter coefficient values in a simple algebraic equation. 

Regression equations will be tested by having them predict offender information from real 

cases. Expert input will then be considered by first obtaining subjective expert ratings of how 

related certain predictors (e.g., mutilation of the victim) are to certain offender characteristics 

(e.g., offender trait impulsivity or anger). These expert ratings will be integrated with (i.e., used 

to modify) the regression equations. The initial least-squares regression “backbone” therefore 

represents the initial empirical context (the Bayesian prior) that contextualizes the case 

information and expert weightings. The predictive accuracy of this initial actuarial tool will be 

compared to its accuracy when integrated with the expert ratings to determine whether the 

integration method can improve prediction.   
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The test is formally of whether expert input can improve actuarial predictions, but the 

algorithm tested is rather neutral to such directional construal. That is, it tests a certain method 

of integration (where data-driven priors contextualize case-specific insights and information) 

which can be said to “work” whether it improves upon either actuarial or expert prediction on 

its own. The primary pragmatic motivation is to improve expert prediction by integrating data-

driven methods, but there is also an implication in the academic literature that actuarial 

methods could be used as the starting point (or even the only point) and conditioned (or not) 

by expert weightings. For the latter case the present test would be a rather direct assessment 

of whether such prediction could be improved by expert input. Regardless of whether one 

starts with a dataset or with an expert prediction, the algorithm may be used identically. The 

same algorithm applies, for example, whether one is a detective starting from an expert 

estimate and conditioning it with database information or a consulting academic starting from a 

database estimate and conditioning it with expert insight.  

This approach is Bayesian-but-not-fully-Bayesian in the sense that it involves 

specification, priors, and updating but not simulation of joint conditional probabilities. Bayesian 

analysis involves use of data to obtain the probability of one or more causes producing the data 

(de Morgan, 1838). Formal Bayesian theorems are not utilized in the analysis but a Bayesian 

approach of specification, quantification, and distinction of prior and case-specific information 

guide the research design. Such an approach is becoming increasingly popular. That is, the use 

of Bayesian “frameworks” to understand formal stages of analysis and motivate or necessitate 

the quantification of estimates is being increasingly recognized in forensic circles as valuable for 

more than mere computational purposes (e.g., Smit et al., 2016).   
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It is believed that a successful demonstration of expert and actuarial prediction can 

address several notable issues becoming salient in the field of BIA. Two of these issues will be 

directly assessed by the first two phases of analysis. 

 

Issues in BIA 

The specific form of the present research is primarily motivated by two initial concerns: 

The first is an apparent problem in the BIA literature of poor cross-validation or untested 

prediction accuracy of actuarial methods and the second is a perceived gap between what is 

done by experts “on the front lines” and what is done by experts in the academic literature.  

The former (untested cross-validation) refers to sophisticated statistical models of 

relations being tested on the same cases used to create them or on novel cases that are yet 

from the same dataset. In either case the data is from the same place and subject to the same 

sample bias, so the result of either such test should arguably be inflated, showing that the 

model performs much better at signal detection (or is much more generalizable) than it would 

be in actuality.  

The other concern (the perceived expert gap) refers to academic literature increasingly 

using models and software that are unavailable or obscure to investigators while neglecting to 

offer pragmatic translations, suggestions, or summaries. This gap is not pragmatically 

sustainable if the field is to progress. Advancement of abstract and data-driven methods will 

eventually be met by the advancement in programing user-interface technology. A question of 

primary importance will then be how to integrate the expert’s case insight with the analytical 
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power of the academic tools. This and other integration questions will replace such red herring 

generalizations as “which is better” (experts or models) or “which is the future” (or just a 

phase). These two concerns (untested cross-validation and the perceived expert gap) will be 

referred to below as overfitting and the expert gap, respectively.   

Overfitting  

There are many sources in the forensic and investigative literature of subjective wisdom 

and advice based on clinical judgment, but the current state of the art is in actuarial rather than 

expert prediction, and for good empirical reasons. 

Lilienfeld and Landfield (2008), for example, argue that much of the forensic “profiling” 

literature is pseudoscience that could have been pre-empted by frank acknowledgement of the 

superiority of actuarial over clinical prediction. Indeed, simple base rates may predict better 

than (or as well as) relevant experts (Grove et al., 2000; Meehl, 1954), atheoretical modelling 

can further improve this accuracy (Allen et al., 2014), and modelling from raw data may initially 

predict better than construct-driven modelling (Goodwill et al. 2009). This is why the “cutting 

edge” of predictive investigative methods is found not in the manuscripts of revered experts 

but in the arcana of multivariate methods papers. Yet this seeming defeat of expertise via 

experimentation is neither the end nor the ambit of the prediction story.   

The current “gold standard” of prediction in investigations is the tool of regression 

analysis. It is used to predict a single investigative unknown from multiple known crime details 

using an equation constructed from a database of relevant cases. Each predictor variable is 

“weighted” by a coefficient proportional to its influence on the variable being predicted. It 
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earns its gold standard status by obtaining the highest predictive accuracy rates when 

predicting offender characteristics (e.g., Fujita et al., 2013).  

Predictive accuracy in these cases is generally assessed either by predicting the same 

sample cases used to create the regression model or by leaving half of the sample cases out 

during construction and then predicting them using the model.  The latter is certainly more 

rigorous or conservative, but still has the limitation of testing prediction within the same 

sample used to create the model: Any bias in the sample will likely still be present in half of the 

sample, and predictive accuracy scores may still simply reflect a fitting of the model to the 

(possibly esoteric and certainly not in reality random) sample. Referring to such results as cross-

validated may be technically correct but is certainly not in the spirit of cross-validation—i.e., of 

assessing model quality “across” some empirical boundary such as that of the sample (Cohen, 

1990; 1994).  

As its users know, regression will perform very well at prediction within a sample 

because it functions by creating the smallest distances between each value and its respective 

estimated value: If the sample has any unique characteristics (e.g., a sample from a maximum 

security prison that has especially violent offenders) the regression will “over-fit” to best 

predict for this unique sample, resulting in better prediction for the overly violent sample but 

worse prediction for offenders who do not fall within the modal deviations of the sample (see 

Babyak, 2004). In other words, even so-called “cross-validated” results may be yielding inflated 

predictive accuracies and exaggerating the real-world usefulness of regression-based 

prediction. If the aim is to estimate how well the gold standard can perform in reality, then 



20 
 

cross-validation must assess sample-to-different-sample prediction accuracy rather than 

sample-to-same-sample accuracy. 

Another relevant question is how well regression does in such prediction conditions 

compared to the regression sample’s mean. This issue is addressed less often than would be 

desired. For example, Fujita and colleagues (2013) noted “moderate and sufficient accuracy” in 

a split-half predictive test of a large-sample regression model predicting categorical outcomes 

(e.g., whether the offender had a criminal record). Yet the sensitivity and specificity results for 

the study (the percentage accuracy in predicting “yes” and “no” respectively) are both lower 

than the outcome variable frequencies (or 1 minus the frequencies) for 4 of the 7 outcome 

variables. This means that simply predicting the cases based on the dataset modes (rather than 

the sophisticated regression model) would have yielded a greater number of accurate 

predictions. 

Important limitations of the regression approach include the necessity of having fairly 

large samples from which to create models and the question of content validity. The latter 

refers to utilizing and controlling for relevant variables and eliminating irrelevant ones from the 

predictive model (e.g., Goodwill & Alison, 2007). These are important elements of regression-

based BIA. Fujita and colleagues (2013) distinguish content validity from predictive validity in 

the context of BIA. However, it is the enhanced predictive validity of the content that must 

determine the content validity (e.g., Pinizzotto & Finkel, 1990). Hence, content validity need not 

refer to theory-based contributions or explanations but must, in any case, refer to 

improvement of case prediction.  
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Content validity is therefore measured by improvement in predictive accuracy. 

Predicting outcome variables (e.g., offender characteristics) from a novel database is likely to 

provide a fair approximation of the external validity of a prediction method, but only real-world 

prediction of on-going cases would provide ideal and indubitable estimates of the utility of the 

model for BIA prediction. Such real-world prediction could also directly test whether there is 

any utility or usefulness in having accurate predictions from the models.  

Regression studies in BIA have shown that, with sufficient sample size, predictive power 

may be acquired preceding an analysis of content validity. This initial “uninformed” baseline of 

predictive power is what BIA as a science must take as its initial point of reference. That is, any 

theoretical approach attempting to predict offender information must outperform a more 

atheoretical (high bandwidth, shotgun-like) predictive model given the same raw data. The 

degree to which the theoretical model matches or outperforms the raw data at predicting 

offender information is therefore a fair or objective measure of what the theory contributes to 

predictive BIA. In the analysis to come, this will determine the contribution of expert ratings 

(provided the algorithm for integrating the expert input with the regression equations is 

effective at retaining the information provided by the experts).  

Regression analysis is currently the most powerful basic predictive tool for use in BIA, 

and its capacity for modification makes regression analysis adaptable for use in theory testing 

and real investigations. Barriers to implementation of regression analysis as a standard 

multivariate tool for BIA contribute to the expert gap. These barriers include the knowledge and 

software required to compute, interpret, and adapt the results for prediction, and the quantity 
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and cleaning of data required to make effective models and valid predictions (which increases 

with the number of predictors being utilized). 

The first phase of this research seeks to more rigorously quantify (before attempting to 

improve) the real-world predictive accuracy of the gold standard regression analysis support 

tool in police investigations. To accomplish this, the proposed work will use multiple databases 

to reduce sample-to-same-sample bias in results and better estimate the external (sample-to-

different-sample) predictive validity of regression methods.  

The cross-validation problem is not merely a criticism of the BIA literature and its 

limitations. It is a (hypothesized) problem or difficulty with the material being studied. 

Offenders in one locale, for example, may be motivated or limited by different pressures, 

needs, or values than those in other locales and therefore have a unique group profile for any 

set of relations. That is, these offenders may share behavioural patterns with each other that 

differ from those shared in another group of offenders at another locale. Both groups of 

offenders would also likely be as varied within themselves as any other non-random group of 

people.  

This makes the cross-validation problem two-fold: 1) A model based on one group of 

offenders may be over-fit to the nuances of that group, making it less generalizable to the true 

average offender and less likely to be as accurate for an average case as the model was for its 

own sample. 2) The model is also not likely to be applied to such an average case but rather an 

individual of a different group (with its own pressures and patterns), possibly further decreasing 

the applicability (not just the generalizability) of the model for use—even for simple conceptual 

use—for that individual case. Admitting this challenge does not discount the possible 
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usefulness of studies across samples. The guiding BIA theories still posit similarities across 

different groups of offenders (at the very least they have a single behaviour in common and 

whatever capacity is needed to enact it). There is plenty of room for improvement in finding 

such similarities across similar and diverse populations. Acknowledging the challenge and 

seeking improvement in cross-validation testing and performance are two ways to improve the 

knowledge and usefulness of the field of BIA. 

The Expert Gap 

A second emerging challenge is the appearance of a widening gap between publications 

describing actuarial or data-driven approaches to BIA and the pragmatic concerns of experts 

whose task it is to translate this knowledge into useful tools, facts, or approaches for the field. 

Applications of powerful multivariate tools to complex, thematic, and multifactorial designs are 

increasingly present in the scientific BIA literature, but despite this the training in the field has 

yet to move far beyond improving the use of one’s own reasoning and deductive skills, 

analytical abilities, and thematic or narrative insight approaches. Arguably, both approaches are 

evidence-based, as their common goal is to inductively (or “hypothetico-deductively”) find 

generally useful models or methods (subjective or objective) for understanding, explaining, and 

predicting crime and criminal behaviour. It may be the case that some academics are in fact not 

interested in pragmatic application of proposed relations, or that some experts have no interest 

in general inductive statements, but presumably the majority of both would benefit from 

understanding each other’s outcomes, limitations, and needs.  

 The challenge is then to close this gap between data-driven and expert approaches. 

This research takes up this challenge by testing a method for combining the vast computing 
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power of raw statistical modelling tools with skilled, complex, and nuanced expert insight. This 

is not to test which is “better” or which should have primary consideration: Arguments can be 

made for giving either data-driven or the expert insight approaches primacy. The situation is 

that data-driven approaches rule the BIA literature and expert insight rules the majority of 

police services. Rather than declaring a “winner” (or “slight advantage”) the aim should be to 

calibrate approaches to integration of these two knowledge sources based on tests of 

predictive accuracy.  

Investigations require human expertise—their responsibility is not likely to be handed 

over to IBM’s Watson or Microsoft’s Cortana in the near future—but some cases also require 

additional statistical support (and it is unknown how many unsolved cases could have 

benefitted from it). Both the data-driven models and the experts will tend to be biased and 

limited in different ways. Closing the gap between them may allow for corrections and 

improvement, strengthening weaknesses and attenuating biases. The challenge is to combine 

both sources of analysis and information optimally. This means optimizing integration in the 

most empirically valid way and the most user-friendly way.  

It is hypothesized that the modification and integration method tested in the present 

study will help to “pull” the regression estimates toward more accurate external predictions 

(or, put another way, keep the predictions from overfitting to the regression’s own sample). 

The field of BIA needs to know whether its findings apply outside of their own samples, and the 

modest tests conducted in phase 1 of this research will take what is arguably the first look at 

this important question. 
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Methods 

 Three phases of analyses are to be conducted to answer the three large questions of 

this research (overfitting, expert integration, and common signals). Phase 1 consists of 

determining how well regression equations predict at different levels of difficulty. This is 

intended to A) provide a comparison of cross-validation approaches and B) establish a general 

baseline of expectable performance levels to which the results of subsequent Phase 2 analyses 

can be compared.  

 Phase 2 consists of integrating subjective expert insight with the regression equations of 

Phase 1. Estimates provided by investigative professionals will be used to modify the regression 

equations which will then be used to once more predict the same outcome variables as in 

Phase 1. This is intended to A) test the specific proposed algorithm for integrating expert input 

with data-driven prediction, and B) assess possible prediction improvement at different levels 

of cross-validation, especially in the most difficult (sample-to-novel-sample) condition.  

 Phase 3 consists of unpacking the performance of the Phase 2 approach provided the 

results obtained. In this phase expert performance, model differences, and expert-by-model 

interactions are explored. Of primary interest is the performance of regression versus expert-

modified regression in the sample-to-novel-sample prediction condition. In addition, the 

datasets used to build the predictive models used for Phases 1 and 2 are to be combined, then 

regression models are to be again computed to determine relational strengths within the 

combined dataset. This is intended to A) assess the potential ceiling of predictive performance 

of the integrative Phase 2 approach (i.e., to observe what signals were present across datasets 
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for the expert inputs to utilize), and B) bookend the research with a comparison of the overall 

signals in the datasets with potential signals that could have been present in the expert input. 

 

Dataset Preparation 

 In preparation of the three phases, two large datasets were considered containing data 

from solved cases of sexual assaults. A third dataset was also considered, but as it exclusively 

contained sexual murders it was deemed too unlike the other datasets to be of use. From these 

two datasets N = 145 cases were acquired. These were all of the cases fitting the description of 

a non-lethal sexual assault, committed by a male, against a singular victim that was a stranger 

(i.e., not known or known for a very brief time) to the offender. These 145 selected cases 

remained separated in their two initial datasets (referred to as dataset1 and dataset2), with N = 

60 cases in dataset1 and N = 85 cases in dataset2, for phases 1 and 2. The two datasets were 

later combined for the third and final phase of analysis.  

Dataset1 consisted of (N = 60) cases with offenders serving sentences in a Quebec 

Correctional Service of Canada penitentiary. These offenders committed sexual offences 

between 1994 and 2005. Offense information was collected through police reports in addition 

to semi-structured interviews. Offenders who participated were not given compensation for 

their time, as per Correctional Services of Canada guidelines. Dataset2 consisted of (N = 85) 

cases with offenders serving sentences in the United Kingdom. These offenders committed 

sexual offences between 1997 and 2002. Offence information was collected from prison 

services and police services files. Options for statistical modelling were limited to variables 
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contained in both datasets. For a breakdown of these variables and their means and modes in 

each dataset, see Table 3. 

Table 3: Descriptions, values, and modes (or means) for variables used in analyses.  

Description Values 

Dataset1 Dataset2 

# of 
cases 

Mode 
(mean) 

# of 
cases 

Mode 
(mean) 

Predictor Variables 

Offender had weapon 0 = no, 1 = yes 60 0 (.200) 85 0 (.365) 

Planning demonstrated (e.g., a kit) 0 = no, 1 = yes 60 0 (.050) 85 1 (.541) 

Forensic awareness demonstrated 0 = no, 1 = yes 60 0 (.217) 28 0 (.036) 

Offender stole items 0 = no, 1 = yes 60 0 (.112) 85 0 (.306) 

Assault location a residence 0 = no, 1 = yes 60 0 (.300) 85 0 (.353) 

Victim female 0 = no, 1 = yes 60 1 (.780) 28 1 (.929) 

Age of victim # in years 60 (17.17) 85 (28.19) 

Offender drug use just prior to crime 0 = no, 1 = yes 60 0 (.383) 85 0 (.282) 

Offender alcohol use just prior to crime 0 = no, 1 = yes 60 0 (.367) 85 1 (.518) 

Victim drugs or alcohol just prior to crime 0 = no, 1 = yes 60 0 (.217) 85 0 (.318) 

Crime occurred during the day/daylight 0 = no, 1 = yes 60 1 (.500) 85 0 (.071) 

Victim resisted verbally 0 = no, 1 = yes 60 1 (.720) 28 1 (.750) 

Offender deterred by resistance 0 = no, 1 = yes 60 0 (.170) 28 0 (.107) 

Sadistic aggression/mutilation 0 = no, 1 = yes 60 0 (.017) 85 0 (.247) 

Outcome Variables 

Offender age # in years 60 (30.58) 85 (27.94) 

Offender impulsive 0 = no, 1 = yes 60 1 (.600) 85 0 (.376) 

Offender has anger/temper 0 = no, 1 = yes 60 0 (.333) 85 0 (.176) 

Sexual crime convictions 0 = no, 1 = yes 60 1 (.650) 85 0 (.447) 

Number of sexual crime convictions # total 60 (3.533) 85 (.906) 

Any convictions/a record 0 = no, 1 = yes 60 1 (.900) 85 1 (.835) 

 

Preparations before analysis were also made in order to A) accommodate the mixture of 

predictor variable scales (i.e., categorical and continuous) and B) address significant skewness 

of two continuous variables. A) Since the expert and empirical modifications implicitly assume 

equal initial importance of each predictor variable, regression inputs should in this case be 

rescaled by dividing non-binary variables by two standard deviations (Gelman, 2007). This was 

done to the Victim Age predictor variable data to assure that the obtained coefficients of the 
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predictor variables are comparable despite their different scales. This transformation ensures 

each coefficient of the regression equation is altered similarly according to the magnitudes 

intended by the expert modifications, without influencing the accuracy of baseline regression 

prediction. In other words, this correction prevents expert modifications from unduly 

interacting with the scale of each coefficient’s variable. B) Two positively skewed variables, 

Offender Number of Previous Convictions and Victim Age, were each log-transformed to reduce 

the extreme positive skew (skewness ps < .001) found in both datasets to non-significant values 

(ps > .05). No further operations were conducted on the variables (e.g., any outlying values 

were retained) before analysis. As the term “model” is used in many diverse contexts (to refer 

to different objects), Table 4 specifies that “model” in this document refers to the initial seven 

regression templates and “regression equation” refers to computational results completed 

following those templates.     

Table 4: Terms used in this section, their meaning, and the objects to which they refer. 
Term Meaning Quantity 

“Model” A regression template with 
specific outcome and predictor 
variables 

There are 7 models 
(5 with categorical outcome variables + 2 with 
continuous outcome variables) 

“Regression 
Equation” 

An equation (that follows a model 
template) specified for a given 
database and cross-validation 
category (i.e., split-half or not) 

There are 28 regression equations 
(7 models x 2 databases x 2 cross-validation 
categories) 

“Expert-
modified 
Regression” 

The result of taking a computed 
regression equation and 
integrating expert coefficients  

There are 336 expert-modified regressions (28 
regression equations x 12 experts). These are 
combined for comparison by taking the mean of all 
12 expert accuracy results for each regression 
equation  
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Phase 1: Testing Overfitting 

The first phase of analysis involves testing the predictive performance of twenty-eight 

unaided regression equations. Here a “model” refers to a set of one dependent and several 

predictor variables. There are seven unique models. Each of the seven models has separate 

versions computed from dataset1 and dataset2 (2 x 7 = 14 regression equations for seven 

models). There is also for comparison a split-half version computed for each of the fourteen 

regression equations (which makes 2 x 14 = 28 regression equations total).  

Conditions 

These twenty-eight regression equations are the tools for obtaining prediction accuracy 

in three different conditions that represent three levels of increasing prediction difficulty: 

Condition 1: Regression equations predicting the same values that were used to create 

the equations. 

Condition 2: Split-half regression equations created from (a randomly selected) half of a 

dataset and used to predict the values of the other half of that same dataset. 

Condition 3: Regression equations predicting values of a dataset that was not used to 

create the equations (i.e., a regression equation made from dataset1 values used to 

predict values from dataset2). 

 As condition number increases, so does the stringency of the cross-validation test. That 

is, Condition 1 can generally be expected to produce the highest percentage of prediction 

accuracy and be a notable improvement over a simpler mean-based prediction model; 
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Condition 2 ought to comparatively result in a performance decrement but potentially still be 

an improvement over mean-based prediction, and Condition 3 ought to yield the poorest 

results and perhaps perform worse than the mean (that is, the mean of one dataset predicting 

values of the other). It would in this way be much more impressive for a model to predict well 

(i.e., with high accuracy) in Condition 3 than in the other conditions. It is in this sense that 

Condition 3 is the most stringent test of the validity of each model.  

This stringency argument may be put another way: an equation that can predict the 

values used to create it may or may not generalize and predict novel values well; an equation 

that can predict novel cases that are yet from the same dataset used to build model similarly 

may or may not generalize to predict novel external values well; but an equation that can 

predict cases from a novel dataset has at least shown some usefulness in predicting novel 

external cases. The latter is the pragmatic test of data-driven prediction: assessing the 

usefulness of the model signal rather than the nuance and detail with which the model 

captures the signal of its own data or dataset.  

 
Table 5: Breakdown of the three prediction conditions being tested in the 
first phase of analysis. 

Sample Used to 
Build Regression 

Model 

1 2 3 

Predicting same 
data, same 
database 

Predicting novel 
data, same 
database 

Predicting novel 
data from a novel 
database 

Dataset1 (d1) d1  d1 (.5)d1  (.5)d1 d1  d2 

Dataset2 (d2) d2  d2 (.5)d2  (.5)d2 d2  d1 

 

Results in the form of predictive accuracy are to be compared across the three 

conditions (see Table 5). The reason there are 28 regression equations (7 models x 2 databases x 
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2 cross-validation categories) rather than 42 regression equations (7 models x 2 databases x 3 

cross-validation categories) is that for each dataset Conditions 1 and 3 are tested using the 

same regression equation. That is, for dataset1 the regression equation used in Condition 1 is 

both made from and used to predict the values of dataset1 in Condition 1 and also used to 

predict the values of dataset2 in Condition 3.  Likewise for dataset2 (i.e., for dataset2 the 

regression equation used in Condition 1 is both made from and used to predict the values of 

dataset2, and also used to predict the values of dataset1 in Condition 3). Conditions 1 and 3 

test the two extremes of cross-validation: Condition 1 conducts the “easy” test most likely to 

yield impressive predictive accuracy results (and arguably be unrepresentative of real-world 

application), and Condition 3 conducts the “hard” test least likely to yield impressive results 

(and likely to be a good, if conservative, test of real-world model application). Condition 2 

results are intended to provide a middle ground between these easy and hard prediction 

conditions.    

Testing for Condition 2 involves creating regression equations that are only to be used in 

that split-half cross-validation condition (unlike the fourteen regression equations created for 

Condition 1, which are also to be used in Condition 3). For computation of these equations, 

randomly selected halves of each dataset are used. The remaining (unselected) halves are then 

predicted from the regression equations created. That is, for dataset1 half of the cases from 

dataset1 are randomly selected to build a regression equation for the prediction of the other 

half of cases from dataset1 (and for dataset2 half of the cases from dataset2 are randomly 

selected to build a regression equation for the prediction of the other half of cases from 

dataset2). At no point do the split-half regression equations predict cases from novel datasets 
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(e.g., dataset1 Condition 2 equations predict only cases from dataset1). Split-half sampling is 

performed once in SPSS (i.e., no resampling is conducted).   

A general decrease in accuracy (for both mean and regression-based prediction) across 

conditions is expected, with prediction accuracy being highest for Condition 1, middling for 

Condition 2 (largely due to small split-half sample sizes), and lowest for Condition 3 (see Table 

6). This testing of predictive accuracy differences between same-data, split-half, and sample-to-

novel-sample cross-validation of regression equations may yield several results. The prior 

presumed theoretical and practical significance of these results is as follows. 

 
Table 6: Breakdown of comparisons to be made in the first phase of 
analysis. These compare basic regression equations across the three 
conditions of cross-validation.  

What is being 
compared? 

 

Condition 1 vs 
Condition 2 

Cross-validating 
in the same 
dataset by 
predicting cases 
used to make the 
model vs novel 
cases 

Condition 2 vs 
Condition 3 

Cross-validating 
by using novel 
cases from the 
model dataset vs 
a different dataset 

 

Condition 1 vs 
Condition 3 

Cross-validating 
by predicting 
cases used to 
make the model 
vs novel cases 
from a novel 
dataset 

Hypothesis 

Prediction will be 
significantly more 

accurate for 
Condition 1 

Prediction will be 
significantly more 

accurate for 
Condition 2 

Prediction will be 
dramatically more 

accurate for 
Condition 1 

 

For comparing predictive accuracy difference between Conditions 1 and 2: If Condition 1 

accuracy is higher, then validating a regression equation on the same data used to create the 

regression equation in this case overestimates the predictive strength of regression equation. If 

A) Condition 2 accuracy is higher, or B) results show wildly inconsistent values across the 
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regression equations tested, then either A) validating a regression equation on the same data 

used to create the regression equation is a fine method of validation (or at least comparable to 

split-half cross-validation), or B) there may be no common finding across each model, so 

efficacy of validating using the model-creating data may depend on circumstance.   

For comparing predictive accuracy difference between either Condition 1 or 2 and 

Condition 3: If accuracies for Condition 1 and 2 are higher (as hypothesized) than accuracy for 

Condition 3, then validating a regression equation using the data that created it and validating a 

regression equation using half of the sample used to create it (arguably) overestimate the 

predictive strength of the regression equation. Even if it were granted that the samples were 

“too different” or that differences between the samples may be creating “under-fitting” that 

exaggerates the hypothesized decrement in accuracy, it could still be said (given this 

hypothetical result) that the accuracy results of Conditions 1 and 2 are not representative of 

sample-to-other-sample predictive accuracy. Even this modest claim would be a particularly 

relevant piece of information for police professionals and academics intending to apply 

research from one sample or region to the challenges of another. If A) predictive accuracy for 

Condition 3 is higher than for another condition, or B) wildly inconsistent differences are found 

across the regression equations, then either A) the validation methods in Conditions 1 and 2 are 

fine methods for determining how a regression equation will perform in the real world (or 

across datasets), or B) there may be no common finding across each model, so efficacy of 

validating using the model-creating database may depend on circumstance.   
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For all three of the Conditions there are also, within the seven general models being 

tested, two types of outcome (or “dependent”) variables (see Table 7). Specifically, five of the 

general models have categorical or ordinal outcome variables and only two have interval or 

ratio variables. The models with categorical-ordinal outcome variables will be assessed for 

predictive accuracy in terms of correct or incorrect predictions (reported as integers and 

percentages) with probabilities of .5 or higher predicting y = 1 (or “yes”) values. The models 

with interval-ratio outcome variables will be assessed for predictive accuracy in terms of the 

mean of the absolute values of prediction residuals—i.e., the mean of absolute differences 

between the predicted value and the actual value, so that higher values indicate worse 

prediction (unlike in the categorical outcome variable case, where higher values indicate better 

prediction).  

Table 7: Model dependent variables and their levels of measurement. 

Model Outcome Variable Measurement Level Accuracy Recorded As 
 

1 Offender impulsive Categorical (Yes/No) # or % Correct 

2 Offender has anger/temper Categorical (Yes/No) # or % Correct 

3 Offender sexual crime preconvictions1 Categorical (Yes/No) # or % Correct 

4 Offender sexual crime preconvictions2 Categorical (Yes/No) # or % Correct 

5 Offender any preconvictions Categorical (Yes/No) # or % Correct 

6 Offender age Continuous (Years) Mean of absolute residuals 

7 Offender number of preconvictions Continuous (Number) Mean of absolute residuals 

   

Phase 2: Expert Integration 

 The second phase of analysis involves testing modified versions of all twenty-eight 

regression equations created in Conditions 1 and 2 of Phase 1. First, expert survey results are 

evaluated for consistency between experts. The regression equations are then modified 

according to an algorithm designed to integrate the subjective estimates of the investigative 
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professionals. These professionals agreed to provide ratings of predictor variables as they 

pertain to given outcome variables in single-victim, single-perpetrator, non-lethal stranger 

sexual assaults. These ratings are used to condition each of the twenty-eight regression 

equations created in Conditions 1 and 2 of Phase 1. Once the regression equations are modified 

by the expert input, then the same cases that were predicted in Phase 1 are predicted in Phase 

2 with the newly-conditioned equations. Results will be compared across the same three 

conditions considered in phase 1 (see Table 8).  

Table 8: Breakdown of the three prediction conditions being tested in the 
second phase of analysis (same as in phase 1). 

Sample Used to 
Build Regression 

Model 

1 2 3 

Predicting same 
data, same 
database 

Predicting novel 
data, same 
database 

Predicting novel 
data from a novel 
database 

Dataset1 (d1) d1  d1 (.5)d1  (.5)d1 d1  d2 

Dataset2 (d2) d2  d2 (.5)d2  (.5)d2 d2  d1 

 

 Expert Input   

For the subjective expert modifications, experts (e.g., detectives, behavioural 

investigative advisors) are asked to assign weights to predictor variables based on their 

assessment of the importance or relevance of each predictor variable to the determination of 

each outcome variable. Specifically, experts were presented with an outcome variable in green 

and several predictor variables in red and are asked to “Consider the context of a non-lethal 

sexual assault with one victim. The assault was committed by one offender that (prior to the 

attack) was unknown to the victim. On a scale of 1 to 10, rate each detail in red according to 

how relevant it may be for determining the detail in green.”   
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 Experts were recruited by emailing police services representatives the study information 

and requesting that a link to the online survey be forwarded to investigators in the behavioural 

sciences unit. Police services in three cities agreed to participate. This resulted in twelve surveys 

completed by professional police investigators. Identities of respondents were anonymous. 

Demographic questions included years of practical investigative experience, law enforcement 

agency worked for, highest acquired education, rank/job title, and country of employment.  

To obtain coefficients for phase 2 analysis, each investigator’s model estimates (i.e., 

their ratings from 1 to 10) are divided by their mean (that is, the mean of predictor estimates 

for that model’s outcome variable). The resulting number, computed uniquely for each expert 

for each predictor for each model, is used as a coefficient to modify (i.e., is multiplied by) each 

respective original (phase 1) regression equation coefficient for that model. In this way each 

expert rating number is “standardized” and used to modify four regression equations (as each 

model has 2 datasets x 2 cross-validation categories = 4 regression equations).   

Each expert’s subjective estimate for each predictor (divided by the mean of that 

expert’s estimates for that outcome variable) is multiplied by the (Phase 1) regression 

coefficient for that predictor to obtain the subjectively modified regression weights for each 

expert participant for each regression equation. Dividing the predictor estimates by their mean 

is intended to assure that each expert coefficient does not wildly “pull” or over-influence 

predicted values. The same expert-modified regression equations are to be used for prediction 

in Conditions 1 and 3 of Phase 2 (as was done in Phase 1). 
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For the purposes of overall assessment, the mean prediction accuracy for all twelve 

experts (in each respective Condition for each model) is what is used for primary comparison. 

That is, the input from each individual expert is first integrated (individually) with all twenty-

eight regression equations, predictions are then made, and the mean results (28 means, each 

consisting of performance results from 12 different expert-modified models) are compared to 

basic regression (or other) results. Further analyses of individual experts may be conducted in 

phase 3 but are not of central interest in phase 2. 

These results, in the form of number of accurate predictions, are compared to assess 

whether the modifications improved prediction.  Of most interest in this case is the comparison 

of accuracy results from Phase 1 Condition 3 to results from Phase 2 Condition 3 (see Table 9). 

This is the area (sample-to-novel-sample prediction) where it is hypothesized the expert 

modifications can be of most benefit (i.e., “pulling” over-fit estimates from their sample bias to 

a more generalizable estimate).  

Table 9: Breakdown of comparisons to be made in the second phase of 
analysis. These compare basic regression equations to their expert-
modified versions.  

What is being 
compared? 

 

Phase 1 Condition 
1 vs Phase 2 
Condition 1 

Regression vs 
expert-modified 
regression, both 
predicting same 
data, same 
database 

Phase 1 Condition 
2 vs Phase 2 
Condition 2 

Regression vs 
expert-modified 
regression, both 
predicting novel 
data, same 
database 

Phase 1 Condition 
3 vs Phase 2 
Condition 3 

Regression vs 
expert-modified 
regression, both 
predicting novel 
data from a novel 
database 

Hypothesis 

Regression will 
predict 

significantly 
better 

Regression will 
predict 

moderately better 

Expert-modified 
regression will 

predict 
significantly better 

 



38 
 

It is also possible (but not expected) that expert modifications could improve split-half 

(Condition 2) prediction accuracy. Also of potential interest are the accuracies of Phase 2 

Condition 1 compared to Phase 1 Condition 1: Here it is highly improbable that the expert 

modifications would improve the same-data prediction accuracy of the regression equations, 

and quite likely that same-data prediction will worsen. If expert-modified equations predict 

better than regression in Condition 1, then the hypothesis of overfitting (namely, that 

regressions fit their own data too well to predict well outside of them) will be in jeopardy.  

It is hypothesized that regression equations will outperform expert-modified regressions 

in Conditions 1 and 2 (sample-to-same-sample predictions) and expert-modified regression will 

outperform in Condition 3 (sample-to-novel-sample prediction). If the latter is the case (i.e., if 

prediction accuracy is higher for expert-modified regression than simple regression in sample-

to-novel-sample prediction) then it can be inferred that expert modification corrects for the 

overfitting of regression models.   

  

Phase 3: Assessing Signals 

 The third and final phase of analysis involves determining the signals and relations 

present in both the overall data and the expert ratings. For this purpose three main analyses 

are to be conducted: Test of individual expert performance, tests of model differences, and 

tests of model-by-expert interaction.  

The general theory (or supposition) is that better signals are to be considered present in 

the expert input where better performance improvements were seen in expert-modified 
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prediction. Phase 3 is not to be considered a test of hypotheses (aside from the hypothesis that 

interesting moments will be found in the phase 2 results) but rather an exploration of any 

moments of interest found in such a large and multifaceted analysis.  

Variability is expected in Phase 2 in the accuracy scores of individual expert-modified 

models. To assess individual (as opposed to mean) expert performance, significance tests are to 

be conducted for each individual expert’s performance. This provides an estimate of how many 

(and which) experts are improving (or harming) prediction consistently enough to have a 

statistically significant effect across the diverse models. It is hypothesized that A) not all experts 

will have a statistically significant individual effect, and B) no experts will worsen prediction to a 

statistically significant extent.   

Finally, to explore the overall signals that were present in the datasets used for the 

predictive tests, datasets 1 and 2 are combined and all seven models used in prior phases are 

created again (i.e., seven regression equations with N = 145 are computed following the model 

templates) with the combined data. It is expected that the combined dataset regression 

equations will have beta and significance values similar to those of the dataset1 and dataset2 

regression equations, especially where the latter indicated stronger signals (e.g., higher 

statistical significance or larger relative coefficient values). The general theory regarding the 

combined regression results is that areas of stronger signal in the combined dataset are where 

the expert input could have had the most impact on predictive performance in phase 2.   
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Results 

Phase 1: Testing Overfitting 

 First, seven models were created using available variables (coded or recoded to be 

identical in both datasets). For these models twenty-eight regression equations were 

computed. See Appendices C through F for details of all twenty-eight regression equations 

created for the seven models. Second, predictions at all three levels of cross-validation (see 

Table 10) were made using A) the means of the outcome variables in the model-building 

datasets, and B) the twenty-eight computed regression equations. 

 
Table 10: Reminder of the breakdown of the three cross-validation 
conditions being tested in the first phase of analysis. 

Sample Used to 
Build Regression 

Model 

1 2 3 

Predicting same 
data, same 
database 

Predicting novel 
data, same 
database 

Predicting novel 
data from a novel 
database 

Dataset1 (d1) d1  d1 d1  d1 d1  d2 

Dataset2 (d2) d2  d2 d2  d2 d2  d1 

 

 Mean-based prediction is used as a simple baseline against which to compare the 

regression equations. This approach always predicts that the value obtained will be the mean 

value of the model-building dataset. For example: Mean-based prediction in model 5 

(predicting whether the offender has any preconvictions) would take the following values: 

Dataset1, in which 90% of offenders have a record, would predict “yes” for all cases. This is 

similar for Dataset2, in which 83.5% of offenders have a record. Mean-based prediction would 

then see the Dataset1 mean predicting 90% of cases correct in Condition 1 and 83.5% of cases 

correct in Condition 3. These values would be reversed for the performance of the Dataset2 
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mean: The mean from Dataset2 would predict “yes” for all cases, obtain 83.5% prediction 

accuracy for Condition 1, and 90% prediction accuracy for Condition 3. For Condition 2 

predictions, the mean of one half of the dataset is used to predict values of the other half of the 

same dataset. In the case of model 5, Dataset1, the model-making half of Dataset1 has 86.7% 

offenders with records, so it will predict “yes” for all cases in the other half of Dataset1 (which 

results in 93.33% accuracy for mean-based prediction by Dataset1 model 5 in Condition 2. For 

Dataset2 (model 5, Condition 2), the reference mean from the model-making half of Dataset2 is 

also “yes”, which results in 73.81% accuracy in predicting the other half of Dataset2. 

Regression-based prediction involves use of all betas computed from the reference 

dataset, combined with predictor variable values from the case to be predicted. When 

predicting categorical outcome variables this also involves reverse-transforming the regression 

equation result from its logit value to arrive at the probability of outcome “yes” before using 

this probability to predict the case. For example, Dataset1 has the following regression 

equation for model 4, Conditions 1 and 3 (recall that the same regression equations are used to 

predict Condition 1 and Condition 3): transformed(Probability of one or more prior sexual crime 

convictions) = (Forensic awareness demonstrated)(-1.759) + (Victim gender)(-1.422) + (Victim 

verbal resistance)(0.946) + (Offender deterred by resistance)(-.598) + 1.634. Randomly selecting 

case #11 from Dataset1 reveals that the model would predict: transformed(Probability of one 

or more prior sexual crime convictions) = (0)(-1.759) + (1)(-1.422) + (0)(0.946) + (0)(-.598) + 

1.634 = transformed(0.212). The estimate is then reverse-transformed: 

exp(0.212)/(1+exp(0.212)) = .553. This indicates that the model estimates a 55.3% probability of 

the offender having one or more prior sexual crime convictions and the model therefore 
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predicts “yes”. In this case the prediction is incorrect (i.e., the offender in case #11 did not have 

prior sexual crime convictions). When predicting in Condition 3 (for model 4) this same 

Dataset1 equation will be filled-in with Dataset2 case information to (case-by-case) create 

predictions and test the predicted against the actual outcome variable values (recording the 

results for later comparisons).    

Categorical Outcome Variables 

The phase 1 results for the five categorical outcome models, which compose twenty 

different regression equations (5 models x 2 datasets x 2 cross-validation levels) and twenty 

different predicting means (5 models x 2 datasets x 2 cross-validation levels), supported several 

hypotheses.  

Figure 1: Average of mean versus regression-based prediction (percentage 
accuracy) for all five categorical outcome models.  
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First, a repeated measures ANOVA assessing regression model performance across 

levels of prediction revealed a significant main effect of cross-validation level, F(2, 18) = 7.915, p 

= .003, ηp
2  =.468. Planned within-subjects contrasts revealed a significant linear trend, F(1, 9) = 

16.400, p = .003, ηp
2  = .646, indicating that the downward trend observable in Figure 1 (of a 

decrease in accuracy as cross-validation level increases) is a statistically significant one. This 

means the regression models are performing worse (as predicted) according to the “more 

difficult” cross-validation conditions.  

Table 11: Categorical model outcome comparisons for first phase of 
analysis. These compare basic regression equations across conditions.  

What is being 
compared? 

 

Condition 1 vs 
Condition 2 

Cross-validating 
in the same 
dataset by 
predicting cases 
used to make the 
model vs novel 
cases  

Condition 2 vs 
Condition 3 

Cross-validating 
by using novel 
cases from the 
model dataset vs 
a different dataset 

 

Condition 1 vs 
Condition 3 

Cross-validating 
by predicting 
cases used to 
make the model 
vs novel cases 
from a novel 
dataset  

Pairwise 
comparison result 

Significant mean 
difference 
(15.744, SE = 
3.182, p = .002, d 
= 1.70) with 
model cases 
being predicted 
more accurately 

No significant 
difference (9.007, 
SE = 8.455, p = 
.943, d = .53) 

Significant mean 
difference 
(24.752, SE = 
6.112, p = .009, d 
= 1.56) with 
model cases being 
predicted more 
accurately 

Hypothesis 

Prediction will be 
significantly more 

accurate for 
Condition 1 

Prediction will be 
significantly more 

accurate for 
Condition 2 

Prediction will be 
dramatically more 

accurate for 
Condition 1 

Was hypothesis 
correct? 

Yes. 

No. Not to a level 
of Bonferroni-

adjusted statistical 
significance. 

Yes. 
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After Bonferroni adjustment for multiple comparisons (reported in Table 11), planned 

pairwise comparisons revealed significant differences between Conditions 1 and 2 (Mean 

Difference = 15.744, SE = 3.182, p = .002, d = 1.70) and Conditions 1 and 3 (Mean Difference = 

24.751, SE = 6.112, p = .009, d = 1.56), as predicted, but no significant difference between 

Conditions 2 and 3 (Mean Difference = 9.007, SE = 8.455, p = .943, d = .53).   

These comparisons support the hypothesis that overfitting would be observed. 

Specifically, they demonstrate that the regression equations are performing significantly better 

when predicting the cases used to create the equations. This is the case when same-data 

prediction is compared to split-half prediction of novel cases in the same dataset (as is shown in 

the Condition 1 vs Condition 2 comparison) and it is the case when same-data prediction is 

compared to novel-sample prediction (as is shown in the Condition 1 vs Condition 3 

comparison). In other words, the regression equations appear to be too well-conformed (over-

fit) to the cases used to create them. This is harming not only out-of-sample prediction, but 

prediction of novel cases within the same sample (used to create the equation) as well.  

Table 12: Tests (for categorical outcome models) of general regression performance 
against mean-based prediction performance at each of the three levels of cross-
validation (1 = predicting same data used to create the model, 2 = predicting novel 
data from the same dataset used to create the model, 3 = predicting novel data from 
a novel dataset) 

Level Mean, SE 
Mean 

Mean, SE 
Regression 

t-score p-value 
(df = 9) 

Wilcoxon z, p Effect Size 
(z/√(n1+n2)) 

1 68.5, 3.90 78.3, 2.44 -3.890 .004** -2.803, .005** r = .66b 

2 64.8, 6.72 62.5, 3.61 .287 .781 .771, .441 r = .18 

3 56.0, 7.03 53.5, 7.08 .451 .663 .764, .445 r = .18 

*p < .10, ** p < .05. All significance tests two-tailed. 
a medium effect size (>.3), b large effect size (>.5) 
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To further unpack the phase 1 results, paired-sample t-tests were conducted comparing 

prediction performance of regression models to mean-based prediction at each level of cross-

validation (reported in Table 12). Regression performed significantly better than mean-based 

prediction in the same-data condition (Condition 1), with a “large” effect size of r = .66, but 

regression did not significantly outperform mean-based prediction at higher levels of cross-

validation.  

This may be interpreted as further evidence of overfitting (i.e., regression equations 

performing similarly to the means of their own datasets) or as evidence that overfitting is not as 

extreme as may have been hypothesized (i.e., the mean is only “non-significantly” 

outperforming regression equations at novel-sample prediction). Under either interpretation 

there is room for improvement of the regression models, so a sound groundwork is laid for 

expert improvement in the phase 2 analyses.  

In addition to this room for improvement there is diversity in the prediction 

performance of the regression equations, as shown in Figure 2. It can be seen that some 

equations (e.g., those for models 2 and 3) are on average showing sharper declines in accuracy 

than others across cross-validity levels, and some equations (e.g., those for models 1 and 5) are 

on average showing novel-sample prediction accuracies that are somewhat closer to their 

same-data prediction accuracies (when compared with the variegated split-half accuracies). 

This diversity in combination with the observed overfitting should provide ideal testing 

conditions for the expert-modified equations in phase 2 of the analyses.    
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Figure 2: Regression prediction accuracy by cross-validation level for each model (the 
“unpackaged” version of Figure 1 above). Note the diversity of model performance  

 
 

Continuous Outcome Variables 

The five models with categorical outcome variables were assessed in terms of 

categorical results of prediction (i.e., correct or incorrect). The two models with continuous 

outcome variables (offender age and offender’s number of previous convictions) were 

evaluated based on the residuals between the predicted and actual values (specifically the 

mean of absolute residual values).  

For regression-based prediction of the two continuous outcome variables, repeated 

measures ANOVA revealed no significant main effect for cross-validation level, F(2, 6) = .143, p 

= .869, ηp
2 = .046. After Bonferroni adjustment for multiple comparisons, planned pairwise 

comparisons (as seen in Table 13) also revealed no significant differences between Conditions 1 
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and 2 (Mean Difference = 0.048, SE = 0.566, p > .05, d = .014) and Conditions 1 and 3 (Mean 

Difference = 0.555, SE = 1.042, p > .05, d = .164), and no significant difference between 

Conditions 2 and 3 (Mean Difference = 0.508, SE = 1.599, p > .05, d = .147). 

Figure 3: Prediction residuals for both continuous variables (combined) across the 
levels of cross-validation. The predicted results found for the categorical models were 
not found for the two continuous models. 

 
 

This lack of effect can also be observed in Figure 3. Mean residual values were expected 

to rise as cross-validation level increased. Contrary to this, no linear trend of significant 

differences between the levels of cross-validation are seen. This is unexpected in the context of 

the previous (categorical outcome model) results. It appears that for these two continuous 

variables the equations from the two datasets predict each other (novel-sample condition) as 

accurately as they predict themselves (Conditions 1 and 2).  
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Table 13: Continuous model outcome comparisons for first phase of 
analysis. These compare basic regression equation performance across 
conditions.  

What is being 
compared? 

 

Condition 1 vs 
Condition 2 

Cross-validating in 
the same dataset by 
predicting cases 
used to make the 
model vs novel 
cases 

Condition 2 vs 
Condition 3 

Cross-validating 
by using novel 
cases from the 
model dataset vs 
a different dataset 

 

Condition 1 vs 
Condition 3 

Cross-validating 
by predicting 
cases used to 
make the model 
vs novel cases 
from a novel 
dataset  

Pairwise 
comparison 

result 

No significant 
difference (0.048, SE 
= 0.566, p > .05, d = 
.014) 

No significant 
difference (0.508, 
SE = 1.599, p > 
.05, d = .147)  

No significant 
difference (0.555, 
SE = 1.042, p > 
.05, d = .164) 

Hypothesis 

Prediction will be 
significantly more 

accurate for 
Condition 1 

Prediction will be 
significantly more 

accurate for 
Condition 2 

Prediction will be 
significantly more 

accurate for 
Condition 1 

Was 
hypothesis 

correct? 
No.  No.  No.  

 

Testing for differences between mean-based and regression-based prediction across 

levels of cross-validation revealed similar results to those found for the categorical outcome 

models (see Table 14). That is, differences were non-significant with the exception of an effect 

size (r = .57) indicating better regression-based prediction performance than mean-based 

performance in the same-data condition (Condition 1). The lack of statistical significance for 

even this latter result is somewhat unexpected given that better same-data prediction is a basal 

requirement of a functioning regression equation. It may in part be due to the limited number 

of observations in each group (i.e., there were 2 models x 2 datasets = 4 observations in each 

group). Individual model tests (1 model x 2 datasets) can be seen in Appendix G. 
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Table 14: Tests (for continuous outcome models) of general regression performance 
against mean-based prediction performance at each of the three levels of cross-
validation (1 = predicting same data used to create the model, 2 = predicting novel 
data from the same dataset used to create the model, 3 = predicting novel data from 
a novel dataset) 

Level Mean, SE 
Mean 

Mean, SE 
Regression 

t-score p-value 
(df = 3) 

Wilcoxon z, p Effect Size 
(z/√(n1+n2)) 

1 3.98, 2.08 3.70, 1.93 1.477 .236 1.604, .109 r = .57b 

2 3.04, 1.61 3.65, 2.02 -1.176 .324 1.095, .273 r = .39a 

3 3.52, 1.87 3.14, 1.98 .389 .723 .184, .854 r = .07 

*p < .10, ** p < .05. All significance tests two-tailed. 
a medium effect size (>.3), b large effect size (>.5) 

 

 

Taken together, these results indicate that tests of the continuous outcome models in 

phase 2 will be underpowered. That is, there may (within the continuous outcome models) 

exist A) very little regression over-fitting for which to correct, B) very little possible (or practical) 

improvement over mean-based prediction, or C) both A and B simultaneously, which would 

doubly indicate very little “room” or possibility for expert-based signal improvement (and its 

observation).    

 

Phase 2: Expert Integration 

In the second phase the expert input is introduced and integrated with the regression 

equations. Twelve investigators provided complete responses to the online survey (see 

Appendix H for the survey). Demographic question responses indicated that the majority (8 of 

12) were from the same police service (service A). Experts represented a range of positions, 

experience levels, and educational backgrounds (see Table 15).  

 



50 
 

Table 15: Demographic information from expert respondents. Police 
service information omitted to maintain anonymity of experts. 
Expert Police 

Service 
Rank or Job Title (as provided by 
respondent) 

Years of 
Experience 

Level of 
Education 

1 A Sexual Assault Section Staff 
Sergeant 

11 Master’s  

2 A Police Officer Detective in Sexual 
Assault Section 

8 College 

3 A Detective 29 High 
School 

4 A Detective - Sexual Assault 
Section 

13 College 

5 A Detective Sexual Assault Section 21 High 
School 

6 A Criminal Intelligence Analyst, 
Civilian 

2 Master’s 

7 A Criminal Intelligence Analyst 3 Bachelor’s 

8 C Detective 28 High 
School 

9 B Geographic and criminal profiler 8 College 

10 B Criminal and geographic profiler 7 College 

11 A Sexual Assault Section - 
Detective 

10 Bachelor’s 

12 C Detective 7 College 

 

Reliability analyses were conducted to determine the consistency of responses to the 

expert survey (e.g., to address whether the items were being understood similarly across expert 

participants). Seven subsections of questions asked experts to quantify (from 1 to 10) the 

degree of relation between several predictor variables (ranging from 3-10 items) and the seven 

outcome variables. Reliability results indicated acceptable to good reliability performance for all 

seven models (see Table 16). 
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Table 16: Reliability analysis results for expert survey. 

Model Outcome Variable # of 
Items 

Reliability 
(α) 

1 Offender impulsive 10 0.786b 

2 Offender has anger/temper 8 0.728b 

3 Offender sexual crime preconvictions 7 0.904b 

4 Offender sexual crime preconvictions 4 0.71b 

5 Offender any preconvictions 10 0.943b 

6 Offender age 4 0.668a 

7 Offender number of preconvictions 3 0.861b 

a acceptable reliability, b good reliability (Kline, 1999) 

 

Integrating Expert Input  

Expert-modified regression prediction is conducted similarly to the regression-based 

prediction in phase 1 (e.g., it involves use of all betas computed from the reference dataset, 

combined with predictor variable values from the case to be predicted, and when predicting 

categorical outcome variables output is reverse-transformed from a logit value to a probability 

of outcome “yes” that is used to predict the case). The expert modification is a multiplication of 

each original regression beta by an expert weighting value. These weights condition the 

regression equation by increasing or decreasing the influence of each beta (regardless of its sign 

or original value) according to the subjective importance assigned to it by the expert.  

Continuing the example used to explain regression-based prediction in phase 1, the 

regression equation for Dataset1, model 4, Conditions 1 and 3 is: transformed(Probability of 

one or more prior sexual crime convictions) = (Forensic awareness demonstrated)(-1.759) + 

(Victim gender)(-1.422) + (Victim verbal resistance)(0.946) + (Offender deterred by resistance)(-

.598) + 1.634. For this model, expert 5 provided the following estimates (from a scale of 1 to 10) 

for the predictor variables: Forensic awareness demonstrated = 7, Victim gender = 6, Victim 
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verbal resistance = 4, Offender deterred by resistance = 2. This means, for example, that this 

expert believes that evidence of forensic awareness is highly relevant to predicting prior sexual 

crime convictions, as is victim gender, while the offender’s response to resistance is comparably 

less relevant. These estimates are transformed into weights by dividing each estimate by the 

mean of all four (4.75), resulting in the following: Forensic awareness demonstrated = 1.47, 

Victim gender = 1.26, Victim verbal resistance = 0.84, Offender deterred by resistance = 0.42 

(these results for all experts can be seen in Appendix I). This expert-modified regression will 

therefore weight more heavily the demonstration of forensic awareness and less heavily the 

offender’s response to victim resistance.  

For Dataset1, Conditions 1 and 3, the resulting expert-modified equation (for expert 5) is 

then: transformed(Probability of one or more prior sexual crime convictions) = (Forensic 

awareness demonstrated)(-1.759)(1.47) + (Victim gender)(-1.422)(1.26) + (Victim verbal 

resistance)(0.946)(0.84) + (Offender deterred by resistance)(-.598)(0.42) + 1.634. Cases can now 

be entered and predicted. To predict in Condition 3 (novel-sample condition), case #11 is this 

time taken from Dataset2 (not Dataset1). For this case, the model would predict: 

transformed(Probability of one or more prior sexual crime convictions) = (0)(-1.759)(1.29) + 

(1)(-1.422)(0.65) + (0)(0.946)(1.03) + (0)(-.598)(1.03) + 1.634 = transformed(-0.157). Making the 

reverse-transformed estimate exp(-0.157)/(1+exp(-0.157)) = .461. This indicates that the model 

estimates a 46.1% probability of the offender having one or more prior sexual crime convictions 

and the model therefore predicts “no”. In this case the prediction is correct (i.e., the offender in 

case #11 did not have any prior sexual crime convictions). 
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The above example is interesting for two reasons. First, because rather improbably, the 

five model 4 variable values for case #11 in Dataset1 and the five model 4 variable values for 

case #11 in Dataset2 turn out to be identical (this is, of course, a mere coincidence). Second,   

because the different (heavier) weighting of the Victim gender variable in this case changes the 

initial regression prediction from an incorrect to a correct one. The un-modified regression 

predicts for this case: transformed(Probability of one or more prior sexual crime convictions) = 

(0)(-1.759) + (1)(-1.422) + (0)(0.946) + (0)(-.598) + 1.634 = transformed(0.212), with 

exp(0.212)/(1+exp(0.212)) = .553. That is, a 55.3% probability of the offender having one or 

more prior sexual crime conviction (i.e., “yes”), which was incorrect.  

 

Categorical Outcome Variables 

 To commence analysis of regression and expert-modified regression prediction 

accuracies, a factorial, repeated-measures ANOVA was conducted assessing prediction across 

all three levels of cross-validation by both prediction methods (regression and expert-modified 

regression). A main effect was found for cross-validation condition, F(2, 18) = 7.002, p = .006, 

ηp
2  = .438, with a significant linear trend as in phase 1, F(1, 9) = 17.423, p = .003, ηp

2  =.631. This 

indicates that the overall prediction accuracies (as in phase 1) significantly decrease as level of 

cross-validation increases (see Figure 4).  
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Figure 4: Mean percent accuracy of regression versus expert-modified regression prediction 
across levels of cross-validation for all five categorical outcome models. 

 
 

A significant interaction effect was also found for cross-validity condition and prediction 

method, F(2, 18) = 6.683, p = .007, ηp
2  = .426. This indicates that as level of cross-validation 

increases, the accuracy of expert-modified prediction (relative to regression-only prediction) 

tends to increase (and as level cross-validation decreases, the accuracy of expert-modified 

prediction relative to regression tends to decrease) to a statistically significant degree (this is 

also observable in Figure 4).  

No main effect for prediction method (i.e., expert-modified versus regression-only) was 

found, F(1, 9) = .071, p = .796, ηp
2  = .008. This is to be expected as regression-only prediction 

outperforms expert-modified prediction in Condition 1 (same-data prediction) and expert-

modified regression outperforms regression-only prediction in Condition 3 (novel-sample 

prediction), leading to a non-significant mean difference overall. 
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Table 17: Comparisons made in the second phase of analysis. These compare predictive 
accuracy of the five categorical outcome regression equations to their expert-modified 
versions.  

What is being 
compared? 

 

Phase 1 Condition 1 vs 
Phase 2 Condition 1 
Regression vs expert-
modified regression, 
both predicting same 
data, same database 

Phase 1 Condition 2 vs 
Phase 2 Condition 2 
Regression vs expert-
modified regression, both 
predicting novel data, 
same database 

Phase 1 Condition 3 vs 
Phase 2 Condition 3 
Regression vs expert-
modified regression, 
both predicting novel 
data from a novel 
database 

Results of 
paired t-test 
(two-tailed) 

Number of correct 
predictions was 
significantly lower for 
expert-modified 
regression models (M = 
74.7, SE = 2.48) 
compared to non-
modified ones (M = 78.3, 
SE = 2.44), t(9) = 2.781, p 
= .021, r = .49 

No significant difference 
for expert-modified 
regression models (M = 
64.1, SE = 3.44) compared 
to non-modified ones (M 
= 62.5, SE = 3.61), t(9) = -
1.413, p = .191, r = .39 

Number of correct 
predictions was 
significantly greater for 
expert-modified 
regression models (M = 
56.0, SE = 6.80) 
compared to non-
modified ones (M = 53.5, 
SE = 7.08), t(9) = -2.283, p 
= .048, r = .45 

Results of 
Wilcoxon 

Signed Rank 
test 

Same as above: 
z = 2.701, p = .007, r = .60 

Same as above: 
z = 1.244, p = .214, r = .28 

Same as above: 
z = 1.988, p = .047, r = .44 

Hypothesis 
Regression will predict 
significantly better 

Regression will predict 
moderately better 

Expert-modified 
regression will predict 
significantly better 

Was 
hypothesis 

correct? 
Yes. 

No. Expert-modified 
predicted moderately 

better 
Yes. 

 

To test for differences between regression-only prediction and expert-modified 

prediction, paired t-tests (and nonparametric equivalent Wilcoxon Signed Rank tests) were 

conducted for each level of cross-validation. Results (seen in Table 17) were as predicted for two 

of three tests. Namely, in the same-data condition (Condition 1) regression-only prediction 

significantly outperformed expert-modified regression prediction (p < .05, r = .49), and in the 

novel-sample condition (Condition 3) expert-modified regression prediction significantly 

outperformed regression-only prediction (p < .05, r = .45). In Condition 2 (split-half prediction) it 
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was hypothesized that regression-only prediction would significantly outperform expert-

modified prediction, but results show that (contrary to this) the expert-modified equations non-

significantly improved split-half prediction.  

Of most interest in this phase is the comparison of accuracy results from Phase 1 

Condition3 to results from Phase 2 Condition 3. This is the area (sample-to-other-sample 

prediction) where it is hypothesized that the expert modifications can be of most benefit, 

adjusting over-fit estimates to correct for their sample bias and make them more useful for 

predicting novel cases (i.e., to create more generalizable estimates from potentially over-fit 

ones). Prediction accuracy is indeed higher for expert-modified regression than regression-only 

prediction in the novel-sample condition. It can therefore reasonably be inferred that this 

particular algorithm for expert modification of regression estimates has worked to correct some 

of the overfitting of the regression models. This also appears to be the case (though to a non-

significant degree) in Condition 2, where expert modification—contrary to expectations—has 

modestly improved accuracy.   

 

Continuous Outcome Variables 

As in phase 1, the models with continuous outcome variables (offender age and 

offender’s number of previous convictions) were evaluated based on the residuals between the 

predicted and actual values (specifically the mean of absolute residual values). 
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Figure 5: Expert-modified and regression-only prediction residuals for both continuous variables 
(combined) across the levels of cross-validation. Despite a trend of improvement of the expert-
modified model as cross-validation level increased, the expert modification did not improve 
upon regression-only prediction (which, recalling phase 1 analysis, did not significantly improve 
upon simple mean-based prediction).   

 
 

Factorial repeated-measures ANOVA revealed no statistically significant main effects for 

cross-validation level, F(2, 6) = .224, p = .806, ηp
2  = .07; prediction method, F(1, 3) = 1.043, p = 

.382, ηp
2  = .258; or level-by-prediction method interaction, F(2, 6) = 2.945, p = .129, ηp

2  = .495. 

The linear trend of poorer accuracy across increasing cross-validation levels (found in the 

categorical analysis) was not reproduced, F(1, 3) = .484, p = .537, ηp
2  = .139. In fact, as seen in 

Figure 5, prediction overall visually appears to improve (i.e., the residuals get smaller) as cross-

validation level increases.    

To compare expert-modified to regression-only prediction, paired t-tests (and 

nonparametric equivalent Wilcoxon Signed Rank tests) were conducted at each level of cross-

validation (see Table 18). Despite two of three differences being in the predicted directions, 
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none of the results were statistically significant (i.e., all ps > .05), with the exception of one 

effect size (r = .65) indicating better regression-only prediction performance than expert-

modified regression performance in the same-data condition (Condition 1). These results by 

condition are nearly identical to the continuous outcome model results from phase 1 

(comparing mean-based to regression-based prediction). Results for each individual model (1 

model x 2 datasets) can be seen in Appendix J. 

Table 18: Comparisons made in the second phase of analysis. These compare predictive 
accuracy of the continuous outcome variable regression equations to their expert-modified 
versions.  

What is being 
compared? 

 

Phase 1 Condition 1 vs 
Phase 2 Condition 1 
Regression vs expert-
modified regression, 
both predicting same 
data, same database 

Phase 1 Condition 2 vs 
Phase 2 Condition 2 
Regression vs expert-
modified regression, both 
predicting novel data, 
same database 

Phase 1 Condition 3 vs 
Phase 2 Condition 3 
Regression vs expert-
modified regression, 
both predicting novel 
data from a novel 
database 

Paired t-test 
(two-tailed) 

 

No significant difference 
for expert-modified 
regression model (M = 
4.0, SE = 2.08) compared 
to non-modified ones (M 
= 3.7, SE = 1.93), t(3) = 
1.671, p = .193, r = .60 

No significant difference 
for expert-modified 
regression models (M = 
3.7, SE = 2.00) compared 
to non-modified ones (M 
= 3.7, SE = 2.02), t(3) = 
0.032, p = .977, r = .10 

No significant difference 
for expert-modified 
regression models (M = 
3.0, SE = 1.94) compared 
to non-modified ones (M 
= 3.1, SE = 1.98), t(3) = -
1.665, p = .194, r = .60 

Wilcoxon 
Signed Rank 

test  

Same as above: 
z = 1.826, p = .068, r = .65 

Same as above: 
z = 0.535, p = .593, r = .19 

Same as above: 
z = 1.095, p = .273, r = .39 

Hypothesis 
Regression will predict 
significantly better 

Regression will predict 
moderately better 

Expert-modified 
regression will predict 
significantly better 

Was 
hypothesis 

correct? 

No. But regression did 
predict non-significantly 

better  
No. 

No. But expert-modified 
did predict non-

significantly better 

 

There are several possible explanations of the underwhelming prediction performance 

of the continuous outcome models. In phase 1, results indicated the regression equations were 
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barely (and non-significantly) outperforming mean-based prediction in Condition 1 (same-data 

prediction), and performing similar to the mean in Conditions 2 and 3. In phase 2, results again 

indicate regression equations barely (and non-significantly) outperforming expert-modified 

prediction in Condition 1 (same-data prediction), and performing similar to the expert-modified 

prediction in Conditions 2 and 3. It may be that the regression equations are poor models (i.e., 

they hardly improve on the mean even when expert-modified); it may be that the mean-based 

prediction approach is so effective that anything added (e.g., least squares modelling) simply 

adds noise to a good signal; or there may be another confounding factor differentiating results 

found in the categorical outcome analyses from the continuous outcome analyses (e.g., the 

greater number of predictions made for categorical models, the exponentiation of the 

categorical model logit, or the tighter range of possible outcome values in categorical models). 

Some combination of these explanations is likely correct.  

Regarding the bearing of the continuous outcome results on the tests being conducted 

(i.e., on whether expert modification improves prediction or corrects overfitting), it is important 

that initial conditions were not ideal for the continuous outcome tests. That is, neither 

overfitting nor strong signal detection was evident in the continuous outcome models (as 

compared with mean-based prediction and as compared to the categorical outcome models). 

This makes the test imperfect and underpowered, but not necessarily meaningless. That is, it 

may in fact be the case that continuous outcome regressions would generally benefit less from 

expert modification than would categorical outcome regressions (for certain reasons). The 

present tests, however, do not isolate the cause of the difference between the significantly 

improved categorical models and the evidently unaffected continuous ones.    
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Phase 3: Assessing Signals 

The third and final phase of analysis explores signals and relations apparent in the 

combined datasets and expert ratings. For this purpose three main analyses are conducted: 

Tests of individual expert performance, model differences, and model-by-expert interactions.  

Individual Expert Performance 

First, to compare results of all twelve experts, paired t-tests are conducted comparing 

each expert’s performance in Condition 3 against regression-only prediction. Mean number of 

correct predictions across all categorical models is the unit of comparison. In this way it can be 

read from Table 19, for example, that on average expert #1 is making roughly two more correct 

predictions than expert #3 per outcome variable (with 39.9 and 38.0 average correct 

predictions, respectively).   

From Table 19 it can be seen that the expert-modified regression equations for each 

individual expert are averaging better prediction accuracy than regression-only prediction. That 

is, all experts are improving upon regression. The poorest performing expert (#9) is improving 

upon regression-only prediction by an average of only 0.2 predictions per outcome variable 

(which means this expert’s modifications resulted in only two more correct predictions than the 

regressions), while the highest performing expert (#7) is improving upon regression by an 

average of 3.7 more correct predictions per outcome variable (for 37 total). 
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Table 19: Tests of individual expert performances versus non-modified regression. 
Each expert improved upon regression overall, three did so to a level of statistical 
significance, and seven of twelve yielded medium or large positive effects on 
accuracy. 

Expert Mean, SE 
expert 

Mean, SE 
regression 

t-score p-value 
(df = 9) 

Wilcoxon z, p Effect Size 
(z/√(n1+n2)) 

1 39.9, 6.08 37.7, 6.14 1.695 .124 1.556, .120 r = .35a 

2 38.4, 6.07 37.7, 6.14 .771 .460 .704, .481 r = .16 

3 38.0, 6.30 37.7, 6.14 .474 .647 .425, .671 r = .10 

4 39.8, 5.98 37.7, 6.14 1.678 .128 1.559, .119 r = .35a 

5 39.3, 5.67 37.7, 6.14 1.432 .186 1.549, .121 r = .35a 

6 38.4, 6.37 37.7, 6.14 1.413 .191 1.276, .202 r = .29 

7 41.4, 5.10 37.7, 6.14 2.275 .049** 2.552, .011** r = .57b 

8 39.4, 6.71 37.7, 6.14 1.926 .086* 1.682, .093* r = .38a 

9 37.9, 6.29 37.7, 6.14 .429 .678 .557, .577 r = .12 

10 38.0, 6.17 37.7, 6.14 .419 .685 .496, .620 r = .11 

11 38.4, 6.27 37.7, 6.14 1.561 .153 1.511, .131 r = .34a 

12 39.2, 6.60 37.7, 6.14 2.002 .076* 1.802, .072* r = .40a 

Mean0 39.0, 6.10 37.7, 6.14 2.456 .036** 1.989, .047** r = .44a 

*p < .10, ** p < .05. All significance tests two-tailed. 
a medium effect size (>.3), b large effect size (>.5) 
0 mean of expert accuracies. The same t-test was conducted in phase 2 with mean 
percent accuracy rather than (as here) mean number of correct predictions.  

 

In terms of unadjusted two-tailed significance, it appears that 3 of the 12 experts are 

improving prediction consistently enough to have a statistically significant effect across the five 

diverse models. In terms of effect size, 7 of the 12 experts had a medium or (in one case) large 

effect upon prediction accuracy. It was hypothesized that not all experts would have a 

statistically significant individual effect, and that no experts would worsen prediction to a 

statistically significant extent. These predictions are upheld, with the added detail that no 

expert on average worsened (even non-significantly) regression-based prediction.    
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Model Differences 

From Table 19 it can be seen that the mean of expert performance has higher 

significance and effect size scores than most of the individual experts of whom it is comprised. 

This may indicate that (because averages were taken for each regression model) one or more of 

the five models may be interacting with the experts to produce notably higher or lower relative 

expert-modified accuracy scores that are pulling up the mean of expert performance or pulling 

down some individual expert numbers relative to the unmodified regression equations. 

First, to see whether performance differs overall by model, expert-modified regression 

performance can be compared to (unmodified) regression performance by model.  

Table 20: Tests of mean expert versus non-modified regression performance by 
model. Experts on average had large overall positive effects on four of five models 
(but a large negative effect on model 3). Results should be read with caution as each 
group has only two observations (i.e., performance where dataset1 models predict 
dataset2 values and performance where dataset2 models predict dataset1 values) 

Model Mean, SE 
expert 

Mean, SE 
regression 

t-score p-value 
(df = 1) 

Wilcoxon z, p Effect Size 
(z/√(n1+n2)) 

1 48.1, 10.25 47.0, 10.00 4.333 .144 1.342, .180 r = .67b 

2 46.9, 9.29 44.5, 10.50 1.966 .300 1.342, .180 r = .67b 

3 26.8, 5.83 28.0, 7.07 -1.400 .395 -1.342, .180 r = -.67b 

4 13.5, 6.21 10.5, 5.50 4.176 .150 1.342, .180 r = .67b 

5 59.8, 5.63 58.5, 7.78 10.333 .061* 1.342, .180 r = .67b 

*p < .10, ** p < .05. All significance tests two-tailed. 
a medium effect size (>.3), b large effect size (>.5) 

 

 

The means presented in Table 20 indicate that experts most improved model 4 

prediction (improving accuracy by 3 more correct predictions on average per equation) and 

model 2 prediction (improving accuracy by 2.4 predictions on average per equation) but in fact 

harmed prediction of model 3 (reducing accuracy by 1.2 predictions on average per equation). 
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Table 20 test results should be read with caution as each group in these significance and effect 

size tests contains only two observations (i.e., performance where dataset1 models predict 

dataset2 values and performance where dataset2 models predict dataset1 values). These tests 

are also therefore relatively underpowered. 

Given the high reliability of expert input for model 3 (Cronbach’s α = .904) and the 

consistency of improvements made by experts across models 1, 2, 4, and 5, several possible 

explanations exist for the poor performance of expert-modified models in predicting model 3 

cases. These condense summarily into two: A) the regression equations for model 3 may be 

poor to begin with (such that adding expert input adds to noise rather than to signal), B) the 

experts may share erroneous theories regarding the relation of the sexual crime preconvictions 

variable to its predictor variables (or at least may share theories that do not conform to signals 

within the two specific datasets being used). These explanations will be further spoken to in the 

final subsections of phase 3 analyses.  

Expert-by-model Interactions         

To test for expert-by-model interactions, a factorial repeated-measures ANOVA was 

conducted on percentage accuracy difference scores (accuracy of regression was subtracted 

from accuracy of expert-modified regression). Percentage differences were chosen over 

prediction number differences to standardize across the different numbers of predictions made 

(due to different numbers of sample cases for prediction) for some of the models. Main effects 

were found for expert and the expert-by-model interaction (ps < .05), but no main effects were 

found for model (p = .072). 



64 
 

Main effects for expert F(11, 11) = 4.321, p = .011, ηp
2  = .812, were followed with 

planned deviation contrasts and pairwise comparisons. The former (tests of within-subjects 

contrasts) suggest that the accuracies of experts 3, 6, and 9 may significantly differ from mean 

expert accuracy, with contrast scores of F(1, 1) = 1536.852, p = .016, ηp
2 = .999; F(1, 1) = 

1001.818, p = .020, ηp
2 = .999; and F(1, 1) = 1065.953, p = .019, ηp

2 = .999 respectively. That is, 

these three experts may have provided significantly poorer regression modifications (despite 

slightly improving upon regression prediction) when compared to all twelve experts as a group. 

These contrast results should be read with caution as the contrast significance values appear to 

be more determined by the relatively small standard errors of the improvement score means 

for experts 3, 6, and 9 than their actual mean improvement scores (expert 10, for example, has 

a lower mean improvement score than expert 6, but the standard error of expert 10’s mean 

improvement score computed by the contrast is thirty-five times larger than that of expert 6, 

keeping expert 10’s poorer mean performance non-significant, p = .340). This observation may 

also explain why expert 7 is not identified as exceptional by these contrasts. The pairwise 

comparisons of all twelve experts showed that percent accuracy improvement (all categorical 

models included) was not significantly different between any two experts after sizeable 

Bonferroni adjustment for multiple comparisons (all p > .10).  

Main effects for model were not statistically significant to the p < .05 level F(4, 4) = 

5.088, p = .072, ηp
2 =.836. This analysis was also followed with planned contrasts and pairwise 

comparisons. None of the former (tests of within-subjects contrasts) were statistically 

significant at the p < .05 level. Pairwise comparisons of models showed no significant 

differences in accuracy scores between any two models after Bonferroni adjustment for 
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multiple comparisons. If a more relaxed criterion is used (Tukey’s Least Significant Difference, 

equivalent to no adjustment), then percent accuracy across experts for model 3 (Mean = -

1.859, SE = 1.471 was significantly different (lower) compared to (the higher) model 4 (Mean = 

7.070, SE = 0.963), p = .036. This is the result one might expect after reading Table 20 and 

recalling that this particular unadjusted pairwise comparison is conducted on percent accuracy 

difference rather than difference in average number of correct predictions.   

Figure 6: Mean percent improvement scores (i.e., expert-modified regression accuracy minus 
regression-only accuracy) for Condition 3 (novel-sample condition), plotted for each expert by 
each categorical model. 
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The interaction effect between expert and model was statistically significant F(44, 44) = 

2.732, p = .001, ηp
2 = .732. As seen in Figure 6, plotting expert-by-model improvement scores 

reveals fairly consistent modest improvement in percent accuracy with the exception of models 

3 (as discussed) and 4 (where experts 1, 4, 5, and 7 dramatically improved prediction).  

As model 4 had the fewest predicted cases, this percentage difference is less dramatic 

or impressive than its appearance might suggest. That is, since fewer than half as many 

predictions were made for model 4 than model 5, an additional correct prediction for model 4 

would result in more than double the percent improvement (and resulting graphed ordinate 

distance) of a correct prediction for model 5. 

Returning to model 3 in Figure 6, it can be seen that all experts failed to increase the 

accuracy of model 3 prediction (with the exception of expert 7, who improved it by a singular 

correct prediction) and variability of expert influence was similar to (if overall less than) that of 

other models. It appears the experts are affecting prediction minimally, negatively, and 

consistently. This may be consistent with either a poor initial regression model or a poor shared 

theory by the experts, but arguably the small magnitude of change is more consistent with a 

poor regression model (e.g., as in a condition where the coefficient inputs have less relative  

influence on the initial intercept estimate than in other models). 

Post-hoc tests assessing expert and model interactions were conducted. Specifically, 

one-sample t-tests were run comparing notable scores (e.g., the 35.949% improvement score 

of expert 7 on model 4 as seen in Figure 6) to the distribution of all 60 expert-by-model mean 
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scores. P-value significance cut-offs were adjusted to account for the number of post-hoc tests 

conducted using Bonferroni adjustment (i.e., .05/7 and .01/7).   

Reading the Table 21 results with those of Table 19, it can be seen that 5 of the 7 experts 

with medium or large improvement effect sizes (experts 1, 4, 5, 7, and 8) also have significant 

interactions with specific models. The other two (experts 11 and 12) appear to have improved 

prediction more modestly and consistently across the five models. 

Table 21: Post-hoc one-sample t-tests assessing the seven largest expert-
by-model mean accuracy improvement scores 

Expert Model Percent 
Accuracy 
Improvement 

t-statistic 
(df = 59) 

p-value 
(<.007 needed 
for alpha <.05)  

Effect size 
(Cohen’s d) 

7 4 35.949 44.742 .000** 5.82b 

1 4 14.521 16.138 .000** 2.10b 

4 4 14.521 16.138 .000** 2.10b 

5 4 14.521 16.138 .000** 2.10b 

8 2 7.937 7.349 .000* .96a 

10 2 4.506 2.768 .008 .36 

12 1 5.189 3.680 .001 .48 

* p < .05, ** p <.01 
a large effect size, b very large effect size 

 

Combined Dataset Signals 

Finally, to explore the overall signals that were present in the datasets used for the 

predictive tests, datasets 1 and 2 were combined and all seven models used in prior phases 

were created again (i.e., seven regression equations with N = 145 were computed following the 

same model templates as previously). Details of these regressions are presented in Appendix K.  
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To determine the strongest signals in the combined dataset, predictors with the highest 

significance values were sought. The t-values to which these significance values refer indicate 

the extent to which each predictor determined the regression line as it was computed. From 

the 46 beta values created from the combined data, the fifteen with t-value significances ≤ .25 

were selected and appear in Table 22. These represent the fifteen strongest relations with 

respect to the initial regression templates (i.e., the strongest model signals in the regressions 

computed with the combined data). 

Table 22: The statistically strongest relations found when the combined dataset was used to 
create the regressions for the seven models. 

Model Relation p-value 
1 If offender had weapon, then offender is less likely to be impulsive 

If planning is apparent, then offender is less likely to be impulsive 
If offender stole items, then offender is less likely to be impulsive 
If assault location was a residence, then offender is less likely to be impulsive 

.146 

.002 

.094 

.003 

2 If planning is apparent, then offender is less likely to have a temper 
If offence occurs in a residence, then offender is less likely to have a temper 
If offender on drugs during crime, then offender is more likely to have temper 
If victim under influence, then offender is less likely to have temper 

.115 

.252 

.005 

.235 

3 (no predictors with p-values ≤.25)  

4 If victim is male, then offender is more likely to have prior sexual convictions .087 

5 If offender on drugs during crime, then offender is more likely to have a record 
If offender on alcohol during crime, then offender is more likely to have a record 
If victim under influence during crime, then offender is more likely to have a record 

.239 

.004 

.166 

6 If offender on alcohol during crime, then offender likely to be younger .033 

7 If offence occurred in residence, then offender likely to have more prior convictions 
If offender on drugs during crime, then offender is likely to have fewer convictions 

.010 

.232 

 

Before analysing these signals, it is worth noting that model 3 (the only categorical 

model to resist expert improvement) appears to have no statistically significant relations in the 

combined dataset. Closer inspection reveals for this model no beta t values above 0.84 and no 
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beta significance values below .40. It appears that there were no meaningful signals across the 

two datasets relating the model 3 predictors to their outcome variable. 

Returning to Table 22, if the expert input utilized these particular signals to improve 

prediction, then the expert coefficients (used to modify the regression equations) should 

positively correlate with the t-values that these significance values represent. To compute the 

original t values for the fifteen beta coefficients, the beta values were divided by their 

respective standard errors. A correlation was then computed relating the expert coefficients to 

the obtained t-values. Results showed a significant positive correlation (r = .451, p = .046, one-

tailed, r2 = .203) indicating that as the importance of the predictor for determining the 

regression line increased, the weight placed on the relation by the experts also increased. This 

represents a modest effect size (indicating only 20.3% shared variance) but demonstrates how 

the (also modest) expert improvement of regression equations occurred. Namely, expert 

coefficient weightings corresponded to actual signals in the data for (what turned out to be) the 

stronger cross-dataset relations.   

 

Results Summary 

 The three big questions of these analyses were: whether model overfitting could be 

observed across different levels of cross-validation, whether expert input can pull model 

estimates to improve novel-case (and novel sample) prediction, and how the signals of such 

experts might compare or relate to actual signals existing across the different data samples.   
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The initially hypothesized results are shown in Figure 7. Anticipated were excellent 

regression performance predicting the sample used to create the regression equations (and 

poor relative performance by the means and expert-modified versions of the regressions) and 

poor regression performance predicting novel cases from a novel sample (with regression being 

outperformed by the means and expert-modified regression further outperforming both).  

Figure 7: Hypothesized mean prediction accuracy results by the three levels of cross-validation 
(i.e., predicting the same data used to make the equation, predicting novel data from the same 
sample used to make the equation, and predicting novel data from a novel sample) and the 
three different types of equations used for prediction (i.e., means, regression equations, and 
expert-modified regression equations). 
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These hypothesized results can be directly compared to the summary graph in Figure 8, 

displaying the observed percentage accuracy means for all nine prediction accuracy conditions 

(3 cross-validation levels x 3 types of prediction) for the five categorical models.  

Figure 8: Mean prediction accuracies (from phases 1 and 2) by the three levels of cross-
validation (i.e., predicting the same data used to make the equation, predicting novel data from 
the same sample used to make the equation, and predicting novel data from a novel sample) 
and the three different types of equations used for prediction (i.e., means, regression equations, 
and expert-modified regression equations). 

 

 

The line most similar to what was predicted is the line for mean-based prediction 

performance. As hypothesized, mean-based prediction was greatly outperformed by regression 

in the same-data condition yet notably outperformed regression in predicting novel data from a 

novel sample. Relations at the centre of Figure 8, depicting the split-half prediction condition, 
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are much less differentiated and visually distinguishable than those of the hypothesized 

relations in Figure 7. A closer look at these results (Figure 9) reveals that, contrary to hypothesis, 

mean-based prediction is outperforming the split-half regression models. This is likely due to 

the considerably smaller sample sizes (without complementary reduction of the number of 

predictors) of the split-half regression models. Also contrary to prediction is the observation 

that, at the split-half level, the expert-modified regressions can be seen improving prediction. It 

was hypothesized that at this level of cross-validation the experts would still be hampering 

regression performance as they were at the same-data level. It appears that the split-half 

computed regressions were more in need of help (and more amenable to help) than was 

anticipated. 

Figure 9: A closer look showing mean prediction accuracies (from phases 1 and 2) by the three 
levels of cross-validation (i.e., predicting the same data used to make the equation, predicting 
novel data from the same sample used to make the equation, and predicting novel data from a 
novel sample) and the three different types of equations used for prediction (i.e., means, 
regression equations, and expert-modified regression equations). 
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Another unrealized prediction is the anticipated outperformance of mean-based 

prediction by the expert-modified regressions in the novel-sample condition. It was predicted 

that A) the regressions would perform somewhat worse than they did relative to the expert-

modified regressions, and B) that mean-based prediction performance would fall equidistant 

between regression and expert-modified regression performance. Contrary to this, mean-based 

prediction is performing nearly identically to expert-modified prediction in the novel-sample 

condition. More precisely, in the novel-sample condition, the mean performed with 55.96% 

accuracy, regression with 53.54% accuracy, and expert-modified regression with 56.39% 

accuracy. This amounts to experts on average improving regression equation accuracy by 27.3 

more correct predictions each, but still outperforming the mean by only 4.1 more correct 

predictions each. 

The two largest differences between the predicted and obtained results are 1) the 

unexpected drop in accuracy of regression-based prediction going from same-data to split-half 

levels of prediction, and 2) the much “tighter” relation between regression and expert-modified 

regression performance than anticipated.  

Regarding the first, the considerable drop-off of regression-based prediction is likely due 

to a decrease in sample size for the split-half models. This creates a problem for model 

construction (e.g., not enough cases to distinguish the important relations) and for the quality 

of the sample. For model 4, for example, the random selection of cases for the dataset2 split-

half model construction did not contain any male victims, and similar sampling risks were 

present for other variables with very high or low frequencies.   
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Regarding the second, the expert-modified accuracies are much closer to the regression 

accuracies than predicted at all three levels of cross-validation. This appears to indicate that the 

integration algorithm did not influence the regression equations to the desired extent (despite 

its modest success in the novel-sample condition). The expert coefficients may have performed 

better in the novel-sample condition (and presumably worse in the same-data condition) if an 

algorithm that produces greater variation in the coefficient values had been used.     

Figure 10: Overlaid hypothesized and actual mean prediction accuracy results by the three levels 
of cross-validation (i.e., predicting the same data used to make the equation, predicting novel 
data from the same sample used to make the equation, and predicting novel data from a novel 
sample) and the three different types of equations used for prediction (i.e., means, regression 
equations, and expert-modified regression equations). 
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Hypothesized and observed results are overlaid in Figure 10. The hypothesized 

percentage accuracy rates for regression-based prediction were taken from BIA studies such as 

those in Appendix B, which generally report near 70% accuracy in predicting offender 

characteristics in regression paradigms. From the overlay (Figure 10) image it can be seen that 

prediction performance was better than anticipated (i.e., accuracy percentages were higher 

than hypothesized) for seven of nine prediction conditions. The one condition where accuracy 

was lower than predicted is regression-based prediction at the split-half level of cross-

validation. The one condition where the predicted accuracy was roughly identical (or at least 

not notably higher than anticipated) was expert-modified regression prediction at the novel-

sample level of cross-validation. Accuracy observed in this condition may not be as high 

compared to the other observed conditions as initially anticipated, but it is as high compared to 

the hypothesized conditions as initially anticipated. In other words, the algorithm is doing 

precisely as well as desired, but nearly everything else is doing better than expected.    

Resolving the Three Main Questions 

1) Can overfitting be observed across different levels of cross-validation? Yes. 

Overfitting was observed in the form of a downward linear trend showing that regression-based 

prediction accuracy decreased (and decreased relative to mean-based prediction accuracy) as 

the predicted data became more foreign to the regression’s own source data. This was seen for 

the five categorical but not the two continuous outcome variable models. Figure 11 displays the 

percent accuracy results for the novel-sample prediction condition. These show the decrement 

in regression performance relative to the mean-based prediction accuracies. This represents 

the strongest evidence of overfitting for two reasons. The first reason is that the split-half 
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condition was confounded by differing sample sizes that very likely harmed regression-based 

prediction. The second is that the test of overfitting was highest powered in this condition. That 

is, the cases used for prediction were most foreign to the regression models.  

Figure 11: Mean percent accuracies for novel-sample condition by prediction equation type. 

 

 

 2) Can expert input improve novel-sample regression prediction? Yes. Expert 

improvement of regression prediction was observed in the form of significant accuracy 

increases of novel-sample prediction (as seen in Figure 11) and non-significant accuracy 

increases of split-half sample prediction. This was seen for four of the five categorical models 
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and was not seen (to a statistically significant degree) in the two continuous models. Perhaps 

the strongest evidence for a positive impact of expert input is the observation that all twelve of 

the twelve experts individually improved regression prediction (see Table 23). Three of these 

experts improved prediction to a statistically significant degree and seven had medium or large 

positive effects on prediction accuracy.  

Table 23: Experts and the difference between their number of correct case 
predictions and those of unaided regression in the novel-sample condition. 

 
Expert 

Prediction Improvement 
(#Correct Expert - #Correct Regression) 

 

 1 +22  

 2 +7  

 3 +3  

 4 +21  

 5 +16  

 6 +7  

 7 +37  

 8 +17  

 9 +2  

 10 +3  

 11 +7  

 12 +15  

 Mean +13  

 

3) How do the expert signals compare or relate to the signals in the datasets? 

Corresponding signals appear in both. The datasets used in phases 1 and 2 were combined to 

determine common relations that the experts may have utilized. Expert ratings corresponded 

to relations found in the combined data. This modest correlation of roughly 20% shared 

variation may or may not be enough to explain the modest and consistent expert 

improvements observed in four of five categorical models. It is in either case the strongest 

evidence specifically that there were signals common to the input of the twelve experts.  



78 
 

That is, for the fifteen strongest relations found in the combined datasets, the expert 

weightings of the relative importance of relations shared one fifth of the variation of their 

actual relative influence scores. While experts likely differed in terms of their individual insights 

and model improvements (as shown in Figure 6 and Table 21), this relation of their means to 

signals in the combined data assures some common insights as well.  
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Discussion 

When initially conceived, it was desired that the present research would impact the BIA 

literature in two ways. First, it was thought that a demonstration of overfitting (Babyak, 2004) 

in samples and models relevant to the field could change how past and present research in the 

field is read. Second, it was thought that a successful demonstration of bridging the expert gap 

(between academic models and expert insight) could change how future research is conducted 

and reported by bringing attention to this gap as both a problem and an avenue of untapped 

potential for advancement. The focus of the discussion below will be how these desires may be 

met, tempered, or frustrated by the methods used and the results obtained above.  

 

Impact: Reading Research 

If the results of this work should change how present research is read, it should be by 

changing or tempering the perceived applicability, generalizability, and meaning of studies in 

the BIA literature.  

Applicability 

Applicability here refers to whether or how any given results possessed “in-hand” (e.g., 

prediction sensitivities and specificities for a local model) would be of use predicting cases local 

or native to that model. For example, an expert making their own model with local cases might 

expect the same prediction efficacy results as they have seen for a similar model in the 

empirical BIA literature. The motivation for this research to be relevant to such a context is one 

reason that the regression equations that were used were rather less cultivated or curated than 
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the ones typically seen in the BIA literature (e.g., non-significant predictors were left in the 

models, leaving some models with an unadvisedly large number of predictors for the sample 

sizes). This less curated approach is arguably more representative of how real-world models for 

prediction will look. That is, the imperfect nature of the regression equations used for the 

analyses is in part what makes the equations representative of the relevant data and models 

that a local police service or individual academic expert may have available for use. This 

similarity to anticipated models in practice (rather than similarity to some of the “better” 

published models) is in pursuit of generalizability of results to real-world contexts. There, for 

example, smaller and more selective regression models (e.g., “wasting” information) may be a 

luxury experts are unwilling to afford themselves.  

The curating process could also be seen as more directly or deliberately overfitting the 

model to its sample. In this way a statistically or formally “better” initial regression model (e.g., 

with more significant beta weights) may in fact indicate a model that is worse for novel-sample 

prediction. Whether one agrees with this would depend upon how one views the process of 

making a regression “better” (i.e., whether the formal improvements in a given condition make 

the equation more over-fit or more generalizable as the signal is more specified). 

The specific question of applicability is generally whether the expert computing their 

own model can expect performance (with the imperfectly curated version they have) to 

resemble that of the literature models. Experts ask such questions both about the short-term, 

as when predicting local crime hot spots for the coming week (e.g., Perry et al., 2013), and 

about the longer-term, as when predicting year-long trends in crime types and rates (e.g., 
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Taylor, Ratcliffe, & Perenzin, 2015). This was assessed by the present research most directly in 

the split-half regression condition, where the results appear to indicate what most statistical 

textbooks would plainly caution, namely: Even when predicting within the confines of one’s 

own quirky locale it is much more difficult (i.e., prediction accuracies are much worse) to 

predict a novel case than one from which the model was built.  

Specifically, it can be cautioned based on these results that sophisticated modelling in 

this condition may make prediction worse than simple prediction based on one’s sample mean 

or mode. This is not a conclusion based solely on the poor performance of the split-half models. 

Key to this conclusion is the fact that the same model templates that did so well in the same-

data condition are the ones that were being (on average) non-significantly outperformed by the 

mean in the split-half condition (i.e., the same-data reference point is important). That is, even 

with a good model and very local or similar cases to predict, one’s local sample size or data 

representativeness may not be up to the challenge of performing (any better than a base-rate 

informed guess) when predicting an ostensibly similar case that just happens to not belong to 

the model-creating dataset. 

Generalizability 

Generalizability here refers to whether a model (locally created or otherwise) will do 

well predicting outside of its wheelhouse. For example, an expert may expect published models 

based on UK offenders to be useful for predicting cases from Japan. There are two extreme 

arguments for and against such generalizability (i.e., on the one hand cultural differences are 

considerable, on the other hand the offenders are similarly human and have in common the 
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fact that they all performed the same illegal act). As generalizability is an even more precarious 

proposition than applicability, it is little surprise that the results of the present work caution 

even more strongly against assuming generalizability or general usefulness of published model 

relations. 

The international and collaborative nature of much of the BIA research is in part what 

motivated the tests of novel-sample prediction. This aspect of the test may have been 

underpowered (in comparing UK to Quebec offences), at least compared to the many possible 

scenarios involving cross-cultural application of the BIA literature. Despite this the results 

clearly showed overfitting and implied a lack of generalizability of models that performed well 

when predicting familiar cases.  

The finding of overfitting for novel-sample prediction is perhaps the least surprising 

finding of the study. Yet it appears that this may be the first time such a test was conducted, 

and the statement of the overfitting conclusion (despite the conclusion not being a surprise) is 

still somewhat jarring: Empirically-derived models based on a given sample may be of highly 

constrained usefulness, or (compared to simple mean-based prediction) potentially harmful 

when applied to a sample that is different. In other words a model (locally created or 

otherwise) should not be expected to be informative or helpful when applied outside of its 

sample.  

Meaning of Studies 

Meaning of studies here refers to what an expert perceives can be obtained from a 

reading of the research. This is more abstract but is a logical consequence of learning the 
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cautions of applicability and generalizability. For example, an expert may come across a study 

reporting a relation that resonates with an intuition they had about a case or about the nature 

of the criminal mind. The question arises as to what extent the reported relation can be applied 

in the expert’s casework, given the cautions about applicability and generalizability. The specific 

reported values may not generalize, and even a locally run version of the analysis to obtain 

more relevant estimates may not (especially if one’s dataset is limited) be any more powerful or 

applicable than simply referring to base rates. Experts may feel they are then left to return to 

the state at which actuarial science found them: Investigating based on their expert insight 

without the help of quantitative models.  

The present research, however, does not support that conclusion. A more hands-on 

study following investigators as they either consult or do not consult statistical models may 

(somehow) be capable of isolating the effect of statistical consultation versus its absence, but 

this was not done in the present work. That is, none of the conditions showed experts 

independent of a statistical model (and arguably any attempt to do so with experimental rigor 

would either be unethical or would not even approach being representative of a real-world 

investigation).  

The baseline of predictive power against which the experts and regression models were 

pitted was not the absence of modelling but rather use of the simplest and most accessible 

model: the mean or mode. This research may just as easily be interpreted as a paean to the 

referencing of base rates as (by initial design) a caution about overfitting and how to correct it.  
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Specifically, readers may just as accurately learn from the results that use of the base 

rate rather than regression corrects for overfitting. None of this speaks to whether actuarial 

approaches or their absence should be preferred or derided.   

Any change resulting from this work to the perceived meaning of studies for individual 

experts would depend on what the expert initially expected to get from the studies. If the 

intention is to engage based on the study in more sophisticated types of modelling, then the 

expert may simply be reminded by the present work to be cautious and pragmatic. The 

possibility exists that a simpler base rate approach may, after subtracting the real-world 

accuracy tax that is apparent for models predicting novel-sample or novel case application, be 

as or more effective than the more complex approaches.    

 

Limitations 

The predictive accuracy of mean or mode-based prediction is only one way of assessing 

the usefulness of what is being done. Predicting the same value for all cases and finding that, 

over the course of many cases, prediction has been fair is not representative of the BIA context 

or its needs. Investigations do not deal with overall numbers, they deal with individual cases. 

This requires much more than the gloss of a mean-based prediction. It is the deviation (from 

modal values) of an offender’s details (and the deviation of one’s prediction of offender details) 

that make them useful for any investigation. Likewise it is the potential for deviation (i.e., 

flexibility) of one’s predictive approach that makes it valuable for understanding and predicting 

individuals (Molenaar & Campbell, 2009). 
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This emphasis on overall prediction accuracy is a limitation of the present work in two 

ways. First, prediction accuracy is just one measure of how a model performs but it was used 

exclusively to determine relative performance of models. Other options exist that may have 

shed different light on the present results. For example, in the categorical outcome model tests, 

not measured was whether the regressions or expert-modified equations pulled the probability 

estimates closer to accuracy in cases where the decision threshold of .5 was not crossed.  

This distance information was not considered and not saved, but it could have been 

used to further assess the performance of regression relative to the mean and performance of 

expert-modifications relative to regression. Another example is sensitivity and specificity 

analysis (i.e., keeping track of how well positive cases and negative cases are respectively 

predicted). This could also have informed the interpretation of prediction accuracies, 

particularly in light of arguments that either a false negative (incorrectly choosing not to 

prioritize a suspect) or a false positive (incorrectly prioritizing a suspect) may be more damaging 

or consequential to an investigation or society. 

The second limitation that the emphasis on overall prediction accuracy demonstrates is 

the prioritizing of overall effects rather than an interest in individual cases. Overall “betting 

odds” may be beneficial in the longer term, but it can be difficult to see their value in the 

context of an individual case. The individual case, despite the betting odds, could be exception 

to every rule and probability heretofore recorded. This is not likely, but with a sample size of 

one the likelihoods may provide cold comfort. Yes, having baseline or base rate information can 

prevent a great deal of judgment errors in the abstract, but this is likely to be demonstrable 
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only across many cases, and there is potential that correcting an investigator’s insight or hunch 

by referring to long-run probabilities will seem silly in the context of one case (which in a 

pragmatic sense simply may or may not be an outlier possessed of less probable relations).  

Betting on the more probable outcome may lead an expert to be correct more often, 

but it is still an incorrect bias when working on the improbable cases. When one’s scope is to 

improve investigations generally, the actuarial approach is the pragmatic choice: Bet on the 

more probable, be right more often. When the scope is a single case, the pragmatist may be 

wary of the gambler’s fallacy: The case is independent of others, proceed without bias. In 

considering long-run accuracy changes and ignoring more subtle deviations in predictions of 

individual cases, the present research removed itself somewhat from the n = 1 condition of the 

real-world investigator (and inadvertently participated in maintaining the expert gap between 

the results of this study and their applicability to real-world cases). 

The ecological validity of this test is limited by the limited richness of case details. This 

investigation takes only a small and necessary step toward answering the question of will 

actuarial approaches perform well in the hands of experts. It does not, for example, take 

actuarial models and apply them with experts to ongoing cases (with all of their nuance, 

narrative, and uncertainty). Rather than having an actuarial model solve specific problems with 

real investigators, this project had real investigators solve general problems (i.e., how to weight 

regressions) with an actuarial model. This had the advantage of permitting a large-scale test of 

predictive accuracy in a relatively short frame of time. Yet it assured that this project fell short 

of testing actuarial and expert integration in the most desired real-world way.  
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A further limitation is that the test of improvement is somewhat artificial. The present 

work does not determine whether actuarial tools as they are used in the field actually help 

investigators make more correct decisions (or, whether investigators in the field help actuarial 

tools to make more correct decisions). That is, the artificiality of the integration algorithm 

presents a similar limitation of ecological validity as is presented by the limited case 

information.  

The present work spoke to the question of improvement only by addressing whether 

expert responses to a survey can make actuarial models more generalizable from the datasets 

used to create them. This is arguably a more abstract or academic representation of the 

situation than would be desired (yet the test is still important provided it is even minimally 

representative of what may occur in the field). It also places the experts at a considerable 

disadvantage when compared with the different sources and quantities of information from 

which they can draw in a real-world investigation. In experimental terms the expert 

“manipulation” was considerably underpowered by the artificiality of their contribution’s 

context and format.   

Finally, rather than asking if actuarial models improve expert decisions, it was asked in 

this research whether expert estimations improve actuarial models. This limitation (to the 

extent that it can be considered separate from the others) does not present much of a problem. 

This is because answering either question would address whether integration can work, and the 

burning question of whether actuarial methods would be any good given a formal method for 

integration. It was a near certainty that actuarial models would perform much more poorly on 
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novel cases than cases local to the dataset from which they were created, but it was not at all 

certain that integration with expert insight would reduce this performance degradation. The 

latter provided a positive avenue for future research 

 

Future Research  

The work conducted in phase 2 of this research appears to be the first example of BIA 

research that formally and quantitatively tests integration of expert insight and actuarial 

prediction. Examples of research exist testing the perceived benefits of expert advice, the 

epistemic contribution of advisers, and the formal usefulness of introducing base rates into 

investigative decision-making (Alison & Rainbow, 2011; Canter & Youngs, 2009), but it is hoped 

that this work will inspire further quantitative tests of integration algorithms and creative 

designs.     

This research barely scratched the surface of what expert insight may be able to add to 

actuarial approaches. It would be easy, for instance, to exaggerate the extent to which expert 

success in phase 2 is attributable to expert ratings agreeing with the largest signals in the 

combined dataset. In cases where expert-by-model interactions occurred, for example, the 

individual expert improvement was in some cases due to that expert’s going against such a 

signal and against the majority of experts.  

One example of this may be specified for illustration: For Dataset1, Conditions 1 and 3, 

the expert-modified equation for expert 8, model 4, is: transformed(Probability of one or more 

prior sexual crime convictions) = (Forensic awareness demonstrated)(-1.759)(1.29) + (Victim 
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gender)(-1.422)(0.65) + (Victim verbal resistance)(0.946)(1.03) + (Offender deterred by 

resistance)(-.598)(1.03) + 1.634. If case #13 from dataset2 is predicted (making it a Condition 3 

or novel-sample prediction), the expert-modified equation predicts: transformed(Probability of 

one or more prior sexual crime convictions) = (0)(-1.759)(1.29) + (1)(-1.422)(0.65) + 

(0)(0.946)(1.03) + (1)(-.598)(1.03) + 1.634 = transformed(0.0938). Making the reverse-

transformed estimate exp(0.0938)/(1+exp(0.0938)) = .523. This indicates that the model 

estimates a 52.3% probability of the offender having one or more prior sexual crime convictions 

and the model therefore predicts “yes”. In this case the prediction is correct (i.e., the offender 

in case #13 did, as predicted, have one or more prior sexual crime conviction). 

The above example is noteworthy because the different (reduced) weighting of the 

Victim gender variable changes the initial regression prediction from an incorrect to a correct 

one. The un-modified regression predicts for this case: transformed(Probability of one or more 

prior sexual crime convictions) = (0)(-1.759) + (1)(-1.422) + (0)(0.946) + (1)(-.598) + 1.634 = 

transformed(-0.386), with exp(0.0938)/(1+exp(0.0938)) = .405. That is, a 40.5% probability of 

the offender having one or more prior sexual crime conviction (i.e., “no”), which is incorrect.  

But what is much more interesting is the fact that the expert weighting was contrary to 

the signal in the dataset. That is, Victim gender is more strongly related to the outcome yet the 

expert weighted it as much less important (and much less than the other experts did at 0.65) 

yet outperformed them in predicting multiple cases with identical values to case #13 largely by 

virtue of a “poor” variable weighting. As can be seen in Figure 6, expert 8 did not outperform 

regression (or the majority of fellow experts) for this model, but from the perspective of an n = 
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1 investigation, the unique combination of weightings by expert 8 was uniquely correct for 

several cases. Future research should seek to capture such complexities of the different expert 

contributions and signals. 

The Future is More Bayesian 

The work presented above was Bayesian in its motivation and approach but not in its 

computation. There are many Bayesian approaches one could take to integrating expert input 

with regression analysis. The first could be to conduct a regression analysis with Bayesian 

parameters. That is, structure a simulation to iterate all parameter values using MCMC methods 

with Gibb sampling to incorporate prior estimates of the distributions. This approach is 

Bayesian in construction (but not Bayesian in use assuming the model would be used as an 

equation with values “plugged in” once the parameter means have been calculated).  This 

would effectively be very much like the analysis done in phase 2, with the added benefit of 

simulated distributions to aid in understanding the ranges of values. A second approach would 

be to treat the complete model calculated as a prior value (the previous priors then become 

“hyperpriors”). Its credibility estimate then provides a prior proportion x. A model using the 

case values can then be used as the “data” y, with a normalizing constant z to incorporate an 

estimate of the probability of getting the evidence if the hypothesized (or estimated) value 

were not observed. This formula would be BE=(x*y)/(x*y+z(1-x) ). A third approach is to 

conduct this analysis as a singular iterative model in an MCMC paradigm, optimizing 

parameters to obtain the estimate from the observed value. The second approach is likely to 

strike the best balance between providing incrementally useful predictive Bayesian estimates 

and maintaining computational parsimony.  
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 A cumulative approach, assimilating results from multiple samples and instances, is 

required when applying the signal-detection paradigm to questions of complex human 

psychology (Luce, 2003). That is, for more complex signals, more data is proportionally required 

for modelling (as was seen in the poor relative performance of the split-half regressions) and 

for understanding dynamic relations. Incorporating the new observations from diverse samples 

will provide a better measure of how well regression analysis can utilize the input of experts 

and the predictive signals in police datasets.  

A more sophisticated Bayesian approach than the one used in the above analyses is 

Bayesian networking. Bayesian Networks (BN) are used to simultaneously model the relations 

of multiple variables of interest to each other. The incorporation of subjective estimates in an 

“instructed modelling” approach has been touted as a potentially useful BN analysis method for 

investigations (Tartoni et al., 2006). A potential barrier, noted by Stahlschmidt et al. (2011), is 

that experts may not wish to quantify their estimates in a way that such models require. It is 

one of the strengths of the Bayesian approach that prior beliefs must be quantified, but it may 

not always be possible or agreeable to quantify one’s information or intuitions. This is a 

potential criticism of any method seeking to formally (quantitatively) integrate expert input 

with actuarial models.  

Also, large samples are needed to quantify reliable relationships in multivariate BN 

networks (Baumgartner et al., 2005, 2008; Stahlschmidt et al., 2011), making them less feasible 

for local use. However, this need not preclude smaller-scale use of the BN structure to estimate 

multiple dependent variables from several others. That is, one could conceivably model 
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predictively useful relations between several variables with only a small database. The field of 

BIA will likely benefit a great deal from further investigation of predictive use of BN. 

Specific to the present study, alternative integration algorithms and different 

standardization methods for the expert coefficients could be considered. Thus far it appears the 

simple method of dividing the expert rating value by the mean of that expert’s values for the 

model suffices to keep the expert coefficients from skewing predictions undesirably (i.e., the 

influence of the expert on the regression is rather tame). More important than this fine tuning 

is the application and observation of such approaches in the field. This must be done to 

ascertain whether the improvements will (as opposed to just could) have a meaningful effect in 

the form of keeping people safe and bringing people to justice.  
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Conclusion 

It was theorized at the commencement of this research that expert use of regression for 

novel cases may be ill-advised, but that formal methods of estimate adjustment may be capable 

of enhancing its performance. In the analyses conducted this translated to hypothesizing that 1) 

overfitting of regression models would be observed for novel case prediction and 2) integration 

of expert-provided insight would help to “pull” the regression estimates toward more accurate 

external predictions (or, put another way, pull the predictions away from overfitting to the 

regression sample).  

In pursuit of this theory, and to test these hypotheses, 33,684 predictions of offender 

characteristics were made. The first 2,406 predictions were made using means. Then these 

were compared to 2,406 predictions made using regression equations. Linear trends and group 

differences revealed overfitting as hypothesized, which suggests that regression (applied in BIA 

contexts) may indeed be ill-advised. Following this, 28,872 predictions were made with 

regression equations modified by 12 experts. These experts all improved upon the accuracy of 

regression when cases foreign to the regression’s own dataset were being predicted (three did 

so to a statistically significant degree and seven obtained medium or large positive effect size 

scores), which suggests that subjective expert insight may indeed enhance regression 

performance or correct for overfitting. These results mean that caution should be taken in 

reading the BIA research and optimism for more pragmatic paradigms should be high. 
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Appendix A: Prediction Models 

 

Table 24A: General categorical outcome variable models 1, 2, and 3 used for prediction in phase 
1 and 2 analyses. 

Model Outcome Variable Predictors Values 
 

1 Offender impulsive Offender had weapon 0 = no, 1 = yes 

Planning demonstrated (e.g., a kit) 0 = no, 1 = yes 

Offender stole items 0 = no, 1 = yes 

Assault location a residence 0 = no, 1 = yes 

Age of victim # in years 

Offender drug use just prior to crime 0 = no, 1 = yes 

Offender alcohol use just prior to crime 0 = no, 1 = yes 

Victim drugs or alcohol just prior to crime 0 = no, 1 = yes 

Crime occurred during the day/daylight 0 = no, 1 = yes 

Sadistic aggression/mutilation 0 = no, 1 = yes 

2 Offender has 
anger/temper 

Offender had weapon 0 = no, 1 = yes 

Planning demonstrated (e.g., a kit) 0 = no, 1 = yes 

Offender stole items 0 = no, 1 = yes 

Assault location a residence 0 = no, 1 = yes 

Offender drug use just prior to crime 0 = no, 1 = yes 

Victim drugs or alcohol just prior to crime 0 = no, 1 = yes 

Crime occurred during the day/daylight 0 = no, 1 = yes 

Sadistic aggression/mutilation 0 = no, 1 = yes 

3 Offender sexual crime 
preconvictions 

Offender had weapon 0 = no, 1 = yes 

Planning demonstrated (e.g., a kit) 0 = no, 1 = yes 

Age of victim # in years 

Offender drug use just prior to crime 0 = no, 1 = yes 

Offender alcohol use just prior to crime 0 = no, 1 = yes 

Victim drugs or alcohol just prior to crime 0 = no, 1 = yes 

Sadistic aggression/mutilation 0 = no, 1 = yes 
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Table 25A: General categorical outcome variable models 4 and 5 used for prediction in phase 1 
and 2 analyses. 

Model Outcome Variable Predictors Values 
 

4 Offender sexual crime 
preconvictions 

Forensic awareness demonstrated 0 = no, 1 = yes 

Victim female 0 = no, 1 = yes 

Victim resisted verbally 0 = no, 1 = yes 

Offender deterred by resistance 0 = no, 1 = yes 

5 Offender any 
preconvictions 

Offender had weapon 0 = no, 1 = yes 

Planning demonstrated (e.g., a kit) 0 = no, 1 = yes 

Offender stole items 0 = no, 1 = yes 

Assault location a residence 0 = no, 1 = yes 

Age of victim # in years 

Offender drug use just prior to crime 0 = no, 1 = yes 

Offender alcohol use just prior to crime 0 = no, 1 = yes 

Victim drugs or alcohol just prior to crime 0 = no, 1 = yes 

Crime occurred during the day/daylight 0 = no, 1 = yes 

Sadistic aggression/mutilation 0 = no, 1 = yes 

 

 

 
Table 26A: General continuous outcome variable models (i.e., models 6 and 7) used for 
prediction in phase 1 and 2 analyses. 

Model Outcome Variable Predictors Values 
 

6 Offender age Age of victim # in years 

Offender alcohol use just prior to crime 0 = no, 1 = yes 

Victim drugs or alcohol just prior to crime 0 = no, 1 = yes 

Crime occurred during the day/daylight 0 = no, 1 = yes 

7 Offender number of 
preconvictions 

Age of victim # in years 

Assault location a residence 0 = no, 1 = yes 

Offender drug use just prior to crime 0 = no, 1 = yes 
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Appendix B: Past Regression Studies 

 

 

 

 

  

Table 27B: Some regression analysis studies from the BIA literature indicating its potential 
effectiveness for use in investigations. 

Study N Method Predictors Predicted Conclusion 

Fujita et al. 
(2013) 

839 
Logistic 

Regression 

Crime scene 
information 

“police 
could 

observe 
objectively 

[at] 
discovery of 
the crime” 

(p. 217) 

Various 
offender 

characteristics 

“moderate and 
sufficient [predictive] 
accuracy” (p. 214) … 
“sufficient for police 
to prioritize lists of 
criminals” (p. 224) 

Goodwill et 
al. (2013) 

72 
Logistic 

Regression 

Latent scale 
scores 
versus 

robbery 
themes 

Prior 
convictions 

Score method 
provided “some 
improvement” in 
prediction (p. 90) 

Janka et al. 
(2012) 

682 
Logistic 

Regression 
Offending 
behaviour 

Sexual 
recidivism 

“characteristics of 
actual crime scene 
behavior of sexual 
offending have a 

predictive power” (p. 
163) 

Corovic et al. 
(2012) 

66 
Logistic 

Regression 
Offender 

behaviours 

Serial versus 
single-victim 

rape offender 

Outcome variable 
predicted with 80% 

accuracy 
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Table 28B: Some regression analysis studies from the BIA literature indicating its potential 
effectiveness for use in investigations. 

Study N Method Predictors Predicted Conclusion 

Burrell et al. 
(2012) 

166 
Logistic 

Regression 

Distance, 
target 

selection, 
temporal 
proximity, 

control, 
property 

stolen 

Case linkage 

“distance and target 
selection emerge as 

the most useful 
linkage factors [for 
robbery cases] with 

promising results 
also found for 

temporal proximity 
and control” but not 
property stolen (p. 

201) 

Goodwill et 
al. (2009) 

85 
Logistic 

Regression 

Thematic 
models 
versus 

multivariate 
approach 

Preconvictions 

Multivariate 
approach 

“performed best” (p. 
523) 

Goodwill & 
Alison (2007) 

85 
Moderated 

Linear 
Regression 

Victim age 
moderated 
by planning 

and 
aggression 

Offender age 

“crime scene factors 
can have differential 
moderating effects 

on predictive 
outcomes” (p. 823). 

Decision trees can be 
used with the 

regression equations 
to obtain estimates 

of age. 
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Appendix C: Regression Results, Dataset1 

 

 
Table 29C: Regression results for dataset1 model 1. These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

1 Offender 
impulsive 

Offender had weapon -1.971 0.088 1.155 

Planning demonstrated (e.g., a kit) -20.793 0.999 28378.68 

Offender stole items -1.3 0.341 1.366 

Assault location a residence -1.061 0.157 0.75 

Age of victim -1.069 0.81 4.443 

Offender drug use just prior to crime 0.392 0.643 0.845 

Offender alcohol use just prior to 
crime -0.722 0.4 0.858 

Victim drugs or alcohol just prior to 
crime 0.794 0.45 1.051 

Crime occurred during the 
day/daylight -2.306 0.016 0.956 

Sadistic aggression/mutilation -2.343 1 49201.88 

CONSTANT 2.986 0.035 1.412 

       

Overall Equation   

R2 p N     

0.409 .017 60     
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Table 30C: Regression results for dataset1 model 2. These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

2 Offender has 
anger/temper 

Offender had weapon -1.306 0.187 0.99 

Planning demonstrated (e.g., a kit) -21.685 0.999 25450.11 

Offender stole items 1.239 0.274 1.131 

Assault location a residence -0.872 0.241 0.744 

Offender drug use just prior to crime 0.732 0.293 0.696 

Victim drugs or alcohol just prior to 
crime -1.572 0.097 0.947 

Crime occurred during the 
day/daylight -1.901 0.018 0.801 

Sadistic aggression/mutilation 1.954 1 47572.92 

CONSTANT 0.674 0.377 0.763 

       

Overall Equation   

R2 p N     

0.306 .060 60     

 

 

  

Table 31C: Regression results for dataset1 model 3.  These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

3 Offender 
sexual crime 
convictions 

Offender had weapon -1.233 0.145 0.847 

Planning demonstrated (e.g., a kit) 0.908 0.593 1.701 

Age of victim -2.1 0.549 3.505 

Offender drug use just prior to crime 0.011 0.988 0.706 

Offender alcohol use just prior to 
crime 0.105 0.893 0.785 

Victim drugs or alcohol just prior to 
crime 1.481 0.107 0.92 

Sadistic aggression/mutilation -23.036 1 40192.97 

CONSTANT 1.191 0.178 0.885 

       

Overall Equation   

R2 p N     

.170 .340 60     
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Table 33C: Regression results for dataset1 model 5. These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

5 Offender any 
convictions 

Offender had weapon 16.052 0.999 13299.24 

Planning demonstrated (e.g., a kit) -50.645 0.996 11462.04 

Offender stole items -49.793 0.995 8750.657 

Assault location a residence -5.331 0.461 7.238 

Age of victim 16.615 0.998 5569.615 

Offender drug use just prior to crime 51.234 0.995 9035.98 

Offender alcohol use just prior to 
crime -33.104 0.998 12853.76 

Victim drugs or alcohol just prior to 
crime -50.888 0.996 10668.72 

Crime occurred during the 
day/daylight -5.331 0.461 7.238 

Sadistic aggression/mutilation 20.763 1 42295.84 

CONSTANT 52.856 0.996 10668.72 

       

Overall Equation   

R2 p N     

.521 0.07 60     

 

Table 32C: Regression results for dataset1 model 4.  These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

4 Offender 
sexual crime 
convictions 

Forensic awareness demonstrated -1.759 0.015 0.725 

Victim female -1.422 0.156 1.003 

Victim resisted verbally 0.946 0.23 0.788 

Offender deterred by resistance -0.598 0.455 0.801 

CONSTANT 1.634 0.046 0.82 

       

Overall Equation   

R2 p N     

.232 .026 60     
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Table 34C: Regression results for dataset1 model 6.  These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

6 Offender age Age of victim -0.294 0.095 0.173 

Offender alcohol use just prior to 
crime -0.058 0.1 0.035 

Victim drugs or alcohol just prior to 
crime 0.09 0.025 0.039 

Crime occurred during the 
day/daylight 0.007 0.846 0.034 

CONSTANT 1.563 0.000 0.057 

       

Overall Equation   

R2 p N     

.191 0.019 60     

Table 35C: Regression results for dataset1 model 7.  These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

7 Offender 
number of 
convictions 

Age of victim 0.179 0.101 0.108 

Assault location a residence -0.669 0.182 0.494 

Offender drug use just prior to crime -0.04 0.701 0.104 

CONSTANT 0.565 0.000 0.14 

       

Overall Equation   

R2 p N     

0.074 0.224 60     
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Appendix D: Regression Results, Dataset1 Split-half 

 

 
Table 36D: Regression results for dataset1 model 1. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

1 Offender 
impulsive 

Offender had weapon -37.082 0.998 16343.71 

Planning demonstrated (e.g., a kit) -2.596 1 41622.54 

Offender stole items -36.587 0.998 15294.53 

Assault location a residence 0.029 0.982 1.27 

Age of victim -3.512 0.56 6.022 

Offender drug use just prior to crime -0.068 0.964 1.489 

Offender alcohol use just prior to 
crime 0.281 0.857 1.555 

Victim drugs or alcohol just prior to 
crime -53.556 0.998 19597.91 

Crime occurred during the 
day/daylight -56.311 0.998 19597.91 

Sadistic aggression/mutilation 16.513 1 58147.27 

CONSTANT 56.465 0.998 19597.91 

       

Overall Equation   

R2 p N     

.687 .017 30     
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Table 37D: Regression results for dataset1 model 2. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

2 Offender has 
anger/temper 

Offender had weapon -2.24 0.291 2.121 

Planning demonstrated (e.g., a kit) -20.808 1 40192.97 

Offender stole items -1.413 0.378 1.603 

Assault location a residence -0.623 0.513 0.953 

Offender drug use just prior to crime 2.216 0.1 1.348 

Victim drugs or alcohol just prior to 
crime -3.634 0.035 1.72 

Crime occurred during the 
day/daylight -1.799 0.164 1.293 

Sadistic aggression/mutilation 2.222 1 56841.44 

CONSTANT 1.042 0.419 1.289 

       

Overall Equation   

R2 p N     

.399 .231 30     

 

 

  

Table 38D: Regression results for dataset1 model 3. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

3 Offender 
sexual crime 
convictions 

Offender had weapon -23.294 0.999 27964.11 

Planning demonstrated (e.g., a kit) 1.89 1 48963.93 

Age of victim -5.61 0.284 5.235 

Offender drug use just prior to crime 0.421 0.698 1.085 

Offender alcohol use just prior to 
crime 1.785 0.264 1.6 

Victim drugs or alcohol just prior to 
crime 0.556 0.688 1.386 

Sadistic aggression/mutilation -1.286 1 56841.44 

CONSTANT 1.911 0.163 1.37 

       

Overall Equation   

R2 p N     

.498 .065 30     



104 
 

 

 

 

 
Table 40D: Regression results for dataset1 model 5. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

5 Offender any 
convictions 

Offender had weapon -22.697 1 40983.12 

Planning demonstrated (e.g., a kit) -20.945 1 48758.55 

Offender stole items -14.848 1 30819.04 

Assault location a residence 2.432 0.431 3.086 

Age of victim -11.282 0.296 10.797 

Offender drug use just prior to crime 18.877 0.998 9278.391 

Offender alcohol use just prior to 
crime 19.023 0.999 10526.6 

Victim drugs or alcohol just prior to 
crime -1.103 1 20130.51 

Crime occurred during the 
day/daylight -20.483 0.999 17076.83 

Sadistic aggression/mutilation 27.194 1 67503.43 

CONSTANT 22.698 0.999 17076.83 

       

Overall Equation   

R2 p N     

.714 .142 30     

 

 

Table 39D: Regression results for dataset1 model 4. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

4 Offender 
sexual crime 
convictions 

Forensic awareness demonstrated -1.907 0.063 1.027 

Victim female -19.989 0.999 17408.34 

Victim resisted verbally -0.784 0.593 1.465 

Offender deterred by resistance 1.279 0.332 1.319 

CONSTANT 21.425 0.999 17408.34 

       

Overall Equation   

R2 p N     

.386 .045 30     
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Table 41D: Regression results for dataset1 model 6. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

6 Offender age Age of victim -0.232 0.293 0.216 

Offender alcohol use just prior to 
crime -0.086 0.112 0.053 

Victim drugs or alcohol just prior to 
crime 0.111 0.056 0.055 

Crime occurred during the 
day/daylight 0.002 0.963 0.049 

CONSTANT 1.545 0.000 0.072 

       

Overall Equation   

R2 p N     

.273 0.082 30     

Table 42D: Regression results for dataset1 model 7. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

7 Offender 
number of 
convictions 

Age of victim 0.207 0.13 0.133 

Assault location a residence -0.74 0.201 0.564 

Offender drug use just prior to crime 0.044 0.735 0.129 

CONSTANT 0.504 0.005 0.166 

       

Overall Equation   

R2 p N     

.119 0.341 30     
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Appendix E: Regression Results, Dataset2 

 

 
Table 43E: Regression results for dataset2 model 1. These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

1 Offender 
impulsive 

Offender had weapon -0.885 0.329 0.908 

Planning demonstrated (e.g., a kit) -1.549 0.044 0.769 

Offender stole items -0.96 0.193 0.737 

Assault location a residence -2.192 0.02 0.944 

Age of victim 5.046 0.132 3.349 

Offender drug use just prior to crime 1.058 0.231 0.884 

Offender alcohol use just prior to 
crime 0.366 0.571 0.647 

Victim drugs or alcohol just prior to 
crime 0.695 0.345 0.736 

Crime occurred during the 
day/daylight 1.951 0.106 1.207 

Sadistic aggression/mutilation 0.034 0.964 0.752 

CONSTANT -0.871 0.421 1.083 

       

Overall Equation   

R2 p N     

0.464 .000 85     
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Table 44E: Regression results for dataset2 model 2. These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

2 Offender has 
anger/temper 

Offender had weapon 1.192 0.324 1.209 

Planning demonstrated (e.g., a kit) -0.821 0.477 1.155 

Offender stole items -0.269 0.701 0.701 

Assault location a residence -0.548 0.491 0.796 

Offender drug use just prior to crime 2.251 0.006 0.818 

Victim drugs or alcohol just prior to 
crime 0.581 0.465 0.795 

Crime occurred during the 
day/daylight 0.875 0.499 1.295 

Sadistic aggression/mutilation -0.249 0.756 0.8 

CONSTANT -2.382 0.003 0.808 

       

Overall Equation   

R2 p N     

.204 0.191 85     

 

 

  

Table 45E: Regression results for dataset2 model 3.  These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

3 Offender 
sexual crime 
convictions 

Offender had weapon -0.07 0.918 0.677 

Planning demonstrated (e.g., a kit) 0.673 0.308 0.66 

Age of victim 3.004 0.222 2.458 

Offender drug use just prior to crime 0.341 0.547 0.565 

Offender alcohol use just prior to 
crime 0.647 0.201 0.507 

Victim drugs or alcohol just prior to 
crime 0.227 0.685 0.559 

Sadistic aggression/mutilation 0.863 0.139 0.583 

CONSTANT -2.088 0.021 0.904 

       

Overall Equation   

R2 p N     

.136 .246 85     
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Table 47E: Regression results for dataset2 model 5. These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

5 Offender any 
convictions 

Offender had weapon 0.465 0.64 0.995 

Planning demonstrated (e.g., a kit) 0.123 0.888 0.875 

Offender stole items -0.215 0.779 0.766 

Assault location a residence -0.668 0.502 0.993 

Age of victim -3.394 0.356 3.678 

Offender drug use just prior to crime 1.241 0.32 1.248 

Offender alcohol use just prior to 
crime 2.262 0.012 0.903 

Victim drugs or alcohol just prior to 
crime -1.441 0.128 0.948 

Crime occurred during the 
day/daylight -0.232 0.864 1.358 

Sadistic aggression/mutilation -0.37 0.703 0.97 

CONSTANT 2.279 0.073 1.273 

       

Overall Equation   

R2 p N     

.293 0.094 85     

 

Table 46E: Regression results for dataset2 model 4.  These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

4 Offender 
sexual crime 
convictions 

Forensic awareness demonstrated 22.589 1 40192.97 

Victim female 19.817 0.999 28420.73 

Victim resisted verbally -0.47 0.656 1.057 

Offender deterred by resistance -19.817 0.999 23205.42 

CONSTANT -20.733 0.999 28420.73 

       

Overall Equation   

R2 p N     

.285 .222 28     
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Table 48E: Regression results for dataset2 model 6.  These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

6 Offender age Age of victim 0.31 0.012 0.12 

Offender alcohol use just prior to 
crime -0.014 0.55 0.023 

Victim drugs or alcohol just prior to 
crime 0.009 0.723 0.025 

Crime occurred during the 
day/daylight -0.065 0.154 0.045 

CONSTANT 1.375 0.000 0.038 

       

Overall Equation   

R2 p N     

.103 0.066 85     

Table 49E: Regression results for dataset2 model 7.  These are for use in Conditions 1 and 3 (i.e., 
these are not split-half regression results). 

Model Outcome  Predictors B p SE 

7 Offender 
number of 
convictions 

Age of victim 0.15 0.007 0.054 

Assault location a residence 0.449 0.07 0.245 

Offender drug use just prior to crime 0.02 0.718 0.056 

CONSTANT 0.004 0.959 0.069 

       

Overall Equation   

R2 p N     

.171 0.002 85     
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Appendix F: Regression Results, Dataset2 Split-half 

 

 
Table 50F: Regression results for dataset2 model 1. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

1 Offender 
impulsive 

Offender had weapon 19.521 0.999 13160.82 

Planning demonstrated (e.g., a kit) -23.794 0.999 13160.82 

Offender stole items -4.115 0.07 2.272 

Assault location a residence -3.385 0.059 1.793 

Age of victim -0.149 0.983 7.189 

Offender drug use just prior to crime 0.486 0.737 1.448 

Offender alcohol use just prior to 
crime 2.119 0.264 1.896 

Victim drugs or alcohol just prior to 
crime -1.047 0.53 1.669 

Crime occurred during the 
day/daylight 28.128 0.999 22019.34 

Sadistic aggression/mutilation -2.635 0.17 1.922 

CONSTANT 2.937 0.28 2.718 

       

Overall Equation   

R2 p N     

.754 .000 43     
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Table 51F: Regression results for dataset2 model 2. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

2 Offender has 
anger/temper 

Offender had weapon 19.143 0.999 14636.75 

Planning demonstrated (e.g., a kit) -18.364 0.999 14636.75 

Offender stole items -0.876 0.439 1.132 

Assault location a residence -1.704 0.163 1.221 

Offender drug use just prior to crime 4.021 0.008 1.519 

Victim drugs or alcohol just prior to 
crime -0.261 0.831 1.222 

Crime occurred during the 
day/daylight 2.941 0.136 1.971 

Sadistic aggression/mutilation -1.858 0.176 1.374 

CONSTANT -1.964 0.062 1.054 

       

Overall Equation   

R2 p N     

.491 .031 43     

 

 

  

Table 52F: Regression results for dataset2 model 3. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

3 Offender 
sexual crime 
convictions 

Offender had weapon -0.033 0.976 1.08 

Planning demonstrated (e.g., a kit) 0.018 0.987 1.092 

Age of victim 3.41 0.369 3.8 

Offender drug use just prior to crime -0.948 0.327 0.968 

Offender alcohol use just prior to 
crime 1.447 0.102 0.883 

Victim drugs or alcohol just prior to 
crime 0.361 0.682 0.879 

Sadistic aggression/mutilation 1.779 0.103 1.09 

CONSTANT -1.765 0.227 1.46 

       

Overall Equation   

R2 p N     

.291 .163 43     
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Table 54F: Regression results for dataset2 model 5. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

5 Offender any 
convictions 

Offender had weapon 0.928 1 10255.1 

Planning demonstrated (e.g., a kit) -19.442 0.998 9662.477 

Offender stole items 1.333 1 13476.35 

Assault location a residence 1.382 1 12479.53 

Age of victim 0.000 1 75.0 

Offender drug use just prior to crime -4.148 1 27139.68 

Offender alcohol use just prior to 
crime 39.336 0.998 20866.71 

Victim drugs or alcohol just prior to 
crime -36.402 0.997 9983.333 

Crime occurred during the 
day/daylight 22.11 0.999 34831.71 

Sadistic aggression/mutilation -21.776 0.999 22802.35 

CONSTANT 37.096 0.997 9983.332 

       

Overall Equation   

R2 p N     

.859 .056 43     

 

Table 53F: Regression results for dataset2 model 4. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

4 Offender 
sexual crime 
convictions 

Forensic awareness demonstrated 22.812 1 40192.97 

Victim female N/A*   

Victim resisted verbally -1.609 0.368 1.789 

Offender deterred by resistance -19.593 1 40192.97 

CONSTANT 0.000 1 1.414 

       

Overall Equation   

R2 p N     

.471 .257 10     

*All victims randomly selected for model building were female (so the variable was 
automatically excluded from analysis). 
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Table 55F: Regression results for dataset2 model 6. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

6 Offender age Age of victim 0.191 0.207 0.149 

Offender alcohol use just prior to 
crime -0.022 0.478 0.03 

Victim drugs or alcohol just prior to 
crime -0.004 0.904 0.033 

Crime occurred during the 
day/daylight -0.089 0.216 0.071 

CONSTANT 1.426 0 0.052 

       

Overall Equation   

R2 p N     

.083 0.494 43     

Table 56F: Regression results for dataset2 model 7. These are for use in Condition 2 (i.e., these 
are the split-half regression results) 

Model Outcome  Predictors B p SE 

7 Offender 
number of 
convictions 

Age of victim 0.241 0.009 0.088 

Assault location a residence 0.532 0.196 0.404 

Offender drug use just prior to crime -0.013 0.885 0.091 

CONSTANT 0.029 0.815 0.125 

       

Overall Equation   

R2 p N     

.213 0.024 43     
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Appendix G: Continuous Outcome Phase 1 Supplementary 

 

 
Table 57G: Individual continuous outcome variable comparisons (made in the first phase of 
analysis). Compared is the predictive accuracy of continuous outcome variable mean-based 
prediction to regression-based prediction of the same values. 

What is 
being 

compared? 
 

Mean-based versus 
regression-based 
prediction, both 
predicting same data, 
same database 

Mean-based versus 
regression-based 
prediction, both 
predicting novel data, 
same database 

Mean-based versus 
regression-based 
prediction, both 
predicting novel data 
from a novel database 

Results Predicting Offender Age 

Paired t-test 
(two-tailed) 

 

No significant 
difference for mean-
based (M = 7.18, SE = 
0.005) compared to 
regression-based 
prediction (M = 7.04, 
SE = 0.250), t(1) = 
2.184, p = .273, r = .83 

No significant difference 
for mean-based (M = 
5.82, SE = 0.215) 
compared to regression-
based prediction (M = 
7.05, SE = 1.130), t(1) = -
1.339, p = .408, r = .76 

No significant 
difference for mean-
based (M = 6.76, SE = 
0.375) compared to 
regression-based 
prediction (M = 6.00, 
SE = 2.705), t(1) = -
.326, p = .799, r = .71 

Wilcoxon 
Signed Rank 

test  

Same as above: 
z = 1.342, p = .180, r = 
.67b 

Same as above: 
z = 1.342, p = .180, r = 
.67b 

Same as above: 
z = .447, p = .180, r = 
.49a 

Hypotheses 

Predicted 
Regression will predict 
significantly better 

Regression will predict 
significantly better 

Mean-based prediction 
will predict better 

Was 
hypothesis 

correct? 

No. Not to a 
statistically significant 

degree. 
No. No.  

*p < .10, ** p < .05. All significance tests two-tailed. 
a medium effect size (>.3), b large effect size (>.5). Effect sizes should be interpreted with 
caution as comparisons involved only two observations in each group (i.e., regression 
performance compared to mean expert performance predicting dataset1 from dataset2 
and predicting dataset2 from dataset1) 
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Table 58G: Individual continuous outcome variable comparisons (made in the first phase of 
analysis). Compared is the predictive accuracy of continuous outcome variable mean-based 
prediction to regression-based prediction of the same values. 

What is 
being 

compared? 
 

Mean-based versus 
regression-based 
prediction, both 
predicting same data, 
same database 

Mean-based versus 
regression-based 
prediction, both 
predicting novel data, 
same database 

Mean-based versus 
regression-based 
prediction, both 
predicting novel data 
from a novel database 

Results Predicting Number of Previous Offences 

Paired t-test 
(two-tailed) 

 

No significant 
difference for mean-
based (M = 0.36, SE = 
0.030) compared to 
regression-based 
prediction (M = 0.35, 
SE = 0.035), t(1) = 
1.000, p = .500, r = .83 

No significant difference 
for mean-based (M = 
0.260, SE = 0.050) 
compared to regression-
based prediction (M = 
0.250, SE = 0.070), t(1) = 
.500, p = .705, r = .83 

No significant 
difference for mean-
based (M = 0.290, SE = 
0.080) compared to 
regression-based 
prediction (M = 0.290, 
SE = 0.090), t(1) = .000, 
p = 1.000, r = .00 

Wilcoxon 
Signed Rank 

test 

Same as above: 
z = 1.000, p = .317, r = 
.50a 

Same as above: 
z = 0.447, p = .655, r = 
.22 

Same as above: 
z = 0.000, p = 1.000, r = 
.00 

Hypotheses 

Predicted 
Regression will predict 
significantly better 

Regression will predict 
significantly better 

Mean-based prediction 
will predict better 

Was 
hypothesis 

correct? 

No. Not to a 
statistically significant 

degree. 
No. No.  

*p < .10, ** p < .05. All significance tests two-tailed. 
a medium effect size (>.3), b large effect size (>.5). Effect sizes should be interpreted with 
caution as comparisons involved only two observations in each group (i.e., regression 
performance compared to mean expert performance predicting dataset1 from dataset2 
and predicting dataset2 from dataset1) 
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Appendix H: Expert Survey 
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Appendix I: Expert Response Data 

 

 
Table 59I: Expert survey response means and means of expert coefficient weights (for 
models 1, 2, and 3) of all twelve experts. 

Model Outcome 
Variable 

Predictors 
Mean 

Mean 
Coefficient 

1 Offender 
impulsive 

Offender had weapon 7.67 1.14 

Planning demonstrated (e.g., a kit) 7.92 1.23 

Offender stole items 5.83 0.87 

Assault location a residence 6.58 0.98 

Age of victim 5.75 0.86 

Offender drug use just prior to crime 7.17 1.07 

Offender alcohol use just prior to crime 7.17 1.07 

Victim drugs or alcohol just prior to crime 3.92 0.61 

Crime occurred during the day/daylight 7.33 1.13 

Sadistic aggression/mutilation 7.17 1.04 

2 Offender has 
anger/temper 

Offender had weapon 7.58 1.11 

Planning demonstrated (e.g., a kit) 8.42 1.25 

Offender stole items 6.00 0.85 

Assault location a residence 6.33 0.90 

Offender drug use just prior to crime 6.75 0.98 

Victim drugs or alcohol just prior to crime 4.17 0.59 

Crime occurred during the day/daylight 6.50 0.97 

Sadistic aggression/mutilation 8.92 1.34 

3 Offender 
sexual crime 
convictions 

Offender had weapon 6.92 1.09 

Planning demonstrated (e.g., a kit) 8.00 1.38 

Age of victim 5.17 0.78 

Offender drug use just prior to crime 5.83 0.89 

Offender alcohol use just prior to crime 5.75 0.88 

Victim drugs or alcohol just prior to crime 4.17 0.68 

Sadistic aggression/mutilation 7.67 1.31 
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Table 60I: Expert survey response means and means of expert coefficient weights (for 
models 4, 5, 6, and 7) of all twelve experts. 

Model Outcome 
Variable 

Predictors 
Mean 

Mean 
Coefficient 

4 Offender 
sexual crime 
convictions 

Forensic awareness demonstrated 8.83 1.41 

Victim female 5.92 0.93 

Victim resisted verbally 4.92 0.73 

Offender deterred by resistance 6.33 0.93 

5 Offender any 
convictions 

Offender had weapon 6.83 1.19 

Planning demonstrated (e.g., a kit) 7.25 1.20 

Offender stole items 5.42 0.88 

Assault location a residence 6.33 1.10 

Age of victim 5.17 0.83 

Offender drug use just prior to crime 6.25 1.08 

Offender alcohol use just prior to crime 5.75 0.90 

Victim drugs or alcohol just prior to crime 4.08 0.68 

Crime occurred during the day/daylight 5.42 0.87 

Sadistic aggression/mutilation 7.33 1.27 

6 Offender age Age of victim 6.75 1.30 

Offender alcohol use just prior to crime 5.42 0.95 

Victim drugs or alcohol just prior to crime 4.17 0.72 

Crime occurred during the day/daylight 5.58 1.03 

7 Offender 
number of 
convictions 

Age of victim 5.67 1.05 

Assault location a residence 5.75 1.05 

Offender drug use just prior to crime 5.25 0.91 
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Appendix J: Continuous Outcome Phase 2 Supplementary 

 

 
Table 61J: Individual continuous outcome variable comparisons (made in the second phase 
of analysis). Compared are the predictive accuracy of the continuous outcome variable 
regression equation and the mean performance of its expert-modified versions.  

What is 
being 

compared? 
 

Phase 1 Condition 1 vs 
Phase 2 Condition 1 
Regression vs expert-
modified regression, 
both predicting same 
data, same database 

Phase 1 Condition 2 vs 
Phase 2 Condition 2 
Regression vs expert-
modified regression, 
both predicting novel 
data, same database 

Phase 1 Condition 3 vs 
Phase 2 Condition 3 
Regression vs expert-
modified regression, 
both predicting novel 
data from a novel 
database 

Results Predicting Offender Age 

Paired t-test 
(two-tailed) 

 

No significant 
difference for expert-
modified regression 
model (M = 7.18, SE = 
0.385) compared to 
non-modified ones (M 
= 7.04, SE = 0.250), t(1) 
= 1.000, p = .500, r = 
.71b 

No significant difference 
for expert-modified 
regression models (M = 
6.89, SE = 0.975) 
compared to non-
modified ones (M = 
7.05, SE = 1.130), t(1) = 
1.065, p = .480, r = .72b 

No significant 
difference for expert-
modified regression 
models (M = 5.64, SE = 
2.625) compared to 
non-modified ones (M 
= 6.00, SE = 2.705), t(1) 
= 4.375, p = .143, r = 
.90b 

Wilcoxon 
Signed Rank 

test  

Same as above: 
z = 1.000, p = .317, r = 
.50a 

Same as above: 
z = 1.342, p = .180, r = 
.67b 

Same as above: 
z = 1.342, p = .180, r = 
.67b 

Hypotheses 

Predicted 
Regression will predict 
significantly better 

Regression will predict 
moderately better 

Expert-modified 
regression will predict 
significantly better 

Was 
hypothesis 

correct? 

No. But non-modified 
regression did predict 

non-significantly better 
No. 

No. But expert-
modified did predict 

non-significantly better 

*p < .10, ** p < .05. All significance tests two-tailed. 
a medium effect size (>.3), b large effect size (>.5). Effect sizes should be interpreted with 
caution as comparisons involved only two observations in each group (i.e., regression 
performance compared to mean expert performance predicting dataset1 from dataset2 
and predicting dataset2 from dataset1) 
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Table 62J: Individual continuous outcome variable comparisons (made in the second phase 
of analysis). Compared are the predictive accuracy of the continuous outcome variable 
regression equation and the mean performance of its expert-modified versions. 

What is 
being 

compared? 
 

Phase 1 Condition 1 vs 
Phase 2 Condition 1 
Regression vs expert-
modified regression, 
both predicting same 
data, same database 

Phase 1 Condition 2 vs 
Phase 2 Condition 2 
Regression vs expert-
modified regression, 
both predicting novel 
data, same database 

Phase 1 Condition 3 vs 
Phase 2 Condition 3 
Regression vs expert-
modified regression, 
both predicting novel 
data from a novel 
database 

Results Predicting Number of Previous Offences 

Paired t-test 
(two-tailed) 

 

No significant 
difference for expert-
modified regression 
model (M = 0.35, SE = 
0.040) compared to 
non-modified ones (M 
= 0.36, SE = 0.035), t(1) 
= 1.000, p = .500, r = 
.71b 

No significant difference 
for expert-modified 
regression model (M = 
0.25, SE = 0.070) 
compared to non-
modified ones (M = 
0.25, SE = 0.070), t(1) = 
0.000, p = 1.000, r = .00 

No significant 
difference for expert-
modified regression 
model (M = 0.28, SE = 
0.085) compared to 
non-modified ones (M 
= 0.29, SE = 0.090), t(1) 
= 1.000, p = .500, r = 
.71b 

Wilcoxon 
Signed Rank 

test 

Same as above: 
z = 1.000, p = .317, r = 
.50a 

Same as above: 
z = 0.000, p = 1.000, r = 
.00 

Same as above: 
z = 1.000, p = .317, r = 
.50a 

Hypotheses 

Predicted 
Regression will predict 
significantly better 

Regression will predict 
moderately better 

Expert-modified 
regression will predict 
significantly better 

Was 
hypothesis 

correct? 
No.  No. 

No. But expert-
modified did predict 

non-significantly better 

*p < .10, ** p < .05. All significance tests two-tailed. 
a medium effect size (>.3), b large effect size (>.5). Effect sizes should be interpreted with 
caution as comparisons involved only two observations in each group (i.e., regression 
performance compared to mean expert performance predicting dataset1 from dataset2 
and predicting dataset2 from dataset1) 
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Appendix K: Combined Regression Results 

 

 
Table 63K: Regression results for combined data (dataset1 and dataset2) for model 1. These are 
for phase 3 analyses. 

Model Outcome  Predictors B p SE 

1 Offender 
impulsive 

Offender had weapon -0.871 0.146 0.599 

Planning demonstrated (e.g., a kit) -1.767 0.002 0.559 

Offender stole items -0.93 0.094 0.556 

Assault location a residence -1.45 0.003 0.482 

Age of victim 0.417 0.357 0.453 

Offender drug use just prior to crime 0.33 0.507 0.496 

Offender alcohol use just prior to 
crime -0.117 0.801 0.463 

Victim drugs or alcohol just prior to 
crime 0.388 0.448 0.512 

Crime occurred during the 
day/daylight -0.544 0.305 0.53 

Sadistic aggression/mutilation -0.198 0.762 0.653 

CONSTANT 0.891 0.137 0.598 

       

Overall Equation   

R2 p N     

.383 .000 145     
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Table 64K: Regression results for combined data (dataset1 and dataset2) for model 2. These are 
for phase 3 analyses. 

Model Outcome  Predictors B p SE 

2 Offender has 
anger/temper 

Offender had weapon 0.356 0.564 0.617 

Planning demonstrated (e.g., a kit) -1.015 0.115 0.643 

Offender stole items 0.061 0.906 0.514 

Assault location a residence -0.552 0.252 0.482 

Offender drug use just prior to crime 1.267 0.005 0.449 

Victim drugs or alcohol just prior to 
crime -0.632 0.235 0.533 

Crime occurred during the 
day/daylight -0.466 0.403 0.557 

Sadistic aggression/mutilation -0.579 0.381 0.662 

CONSTANT -0.925 0.052 0.475 

       

Overall Equation   

R2 p N     

.157 .041 145     

 

 

  

Table 65K: Regression results for combined data (dataset1 and dataset2) for model 3. These are 
for phase 3 analyses. 

Model Outcome  Predictors B p SE 

3 Offender 
sexual crime 
convictions 

Offender had weapon -0.217 0.652 0.481 

Planning demonstrated (e.g., a kit) -0.153 0.739 0.46 

Age of victim 0.137 0.698 0.354 

Offender drug use just prior to crime 0.197 0.618 0.396 

Offender alcohol use just prior to 
crime 0.32 0.401 0.382 

Victim drugs or alcohol just prior to 
crime -0.073 0.851 0.389 

Sadistic aggression/mutilation 0.298 0.561 0.513 

CONSTANT -0.118 0.774 0.411 

       

Overall Equation   

R2 p N     

.029 .869 145     
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Table 67K: Regression results for combined data (dataset1 and dataset2) for model 5. These are 
for phase 3 analyses. 

Model Outcome  Predictors B p SE 

5 Offender any 
convictions 

Offender had weapon 0.911 0.259 0.807 

Planning demonstrated (e.g., a kit) -0.741 0.293 0.705 

Offender stole items -0.658 0.347 0.699 

Assault location a residence 0.188 0.785 0.689 

Age of victim -0.561 0.323 0.567 

Offender drug use just prior to crime 0.986 0.239 0.837 

Offender alcohol use just prior to 
crime 2.408 0.004 0.847 

Victim drugs or alcohol just prior to 
crime -1.025 0.166 0.74 

Crime occurred during the 
day/daylight -0.459 0.536 0.742 

Sadistic aggression/mutilation -0.299 0.746 0.921 

CONSTANT 2.093 0.009 0.803 

       

Overall Equation   

R2 p N     

.245 .021 145     

 

 

Table 66K: Regression results for combined data (dataset1 and dataset2) for model 4. These are 
for phase 3 analyses. 

Model Outcome  Predictors B p SE 

4 Offender 
sexual crime 
convictions 

Forensic awareness demonstrated -0.573 0.355 0.619 

Victim female -1.171 0.087 0.684 

Victim resisted verbally 0.242 0.65 0.535 

Offender deterred by resistance -0.37 0.557 0.631 

CONSTANT 0.997 0.113 0.629 

       

Overall Equation   

R2 p N     

.074 .286 88     
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Table 68K: Regression results for combined data (dataset1 and dataset2) for model 6. These are 
for phase 3 analyses. 

Model Outcome  Predictors B p SE 

6 Offender age Age of victim -0.294 0.095 0.173 

Offender alcohol use just prior to 
crime -0.058 0.1 0.035 

Victim drugs or alcohol just prior to 
crime 0.09 0.025 0.039 

Crime occurred during the 
day/daylight 0.007 0.846 0.034 

CONSTANT 1.563 0.000 0.057 

       

Overall Equation   

R2 p N     

.191 0.019 60     

Table 69K: Regression results for combined data (dataset1 and dataset2) for model 7. These are 
for phase 3 analyses. 

Model Outcome  Predictors B p SE 

7 Offender 
number of 
convictions 

Age of victim 0.179 0.101 0.108 

Assault location a residence -0.669 0.182 0.494 

Offender drug use just prior to crime -0.04 0.701 0.104 

CONSTANT 0.565 0.000 0.14 

       

Overall Equation   

R2 p N     

0.074 0.224 60     
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