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A b stract
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R yerson U niversity

This research focuses on the application of joint time-frequency (TF) analysis for 
watermarking and classifying different audio signals. Time frequency analysis which 
originated in the 1930s has often been used to model the non-stationary behaviour of 
speech and audio signals. By taking into consideration the human auditory system 
which has many non-linear effects and its masking properties, we can extract efhcient 
features from the TF domain to watermark or classify signals.

This novel audio watermarking scheme is based on spread spectrum techniques and 
uses content-based analysis to  detect the instantaneous mean frequency (IMF) of the 
input signal. The watermark is embedded in this perceptually significant region such 
tha t it will resist attacks. Audio watermarking offers a solution to data piracy and 
helps to protect the rights of the artists and copyright holders. Using the IMF, we 
aim to keep the watermark imperceptible while maximizing its robustness. In this 
case, 25 bits are embedded and recovered within a 5 s sample of an audio signal. This 
scheme has shown to be robust against various signal processing attacks including 
filtering, MP3 compression, additive noise and resampling with a bit error rate in the 
range of 0-13%.

In addition, content-based classification is performed using TF analysis to classify 
sounds into 6 music groups consisting of rock, classical, folk, jazz and pop. The fea­
tures th a t are extracted include entropy, centroid, centroid ratio, bandwidth, silence 
ratio, energy ratio, frequency location of minimum and maximum energy. Using a 
database of 143 signals, a set of 10 time-frequency features are extracted and an ac­
curacy of classification of around 93.0% using regular linear discriminant analysis or 
92.3% using leave one out method is achieved.
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Chapter 1 

Introduction

J OINT time-frequency (TF) analysis of signals such as radar, sonar, communica­

tions and biomedical signals is necessary to understand and analyze their true 

non-stationary behaviour. One of the popular ways for describing the notion of TF is 

to understand musical notation. Each musical note corresponds to a specific instant 

in time (localization in time) and frequency localization or pitch.

One of the most commonly known methods of spectral analysis developed by 

Fourier known as the Fourier transform is quite useful in analyzing periodic and 

stationary signals. However this transform does not allow for the concept of frequency 

evolving over time therefore rendering instantaneous frequency meaningless. Since 

many practical signals have frequency information which changes over time, joint 

TF analysis is required. The resolution of such transforms is limited by their time 

duration and bandwidth product in the uncertainty principle. This notion was first 

examined in quantum mechanics with position and momentum used instead of time 

and frequency. This work was first noted by Heisenberg (1925), later by Weyl (1927) 

and Gabor (1947) in his application to signal theory. This principle stated that the 

energy spread of a function and its corresponding Fourier transform cannot both be 

simultaneously small [2].

Furthermore, the concept of instantaneous frequency (IF) as first explored by 

Gabor and Ville involved the use of the Hilbert transform to compose an analytical 

signal from which the IF could be derived. This approach was faced with a limitation 

for multi-component signals requiring a two dimensional distribution such as the



sliding Fourier transform  to analyze them.

W ith the advancement in multimedia systems and audio coders, the concept of 

music analysis remains the same. To analyze a music signal such as in an audio 

coder, it is necessary to  understand and mimic the characteristics and limitations 

of the Human Auditory Systems (HAS). Here, several characteristics are im portant. 

For instance, the hum an ear is able to perceive the frequencies tha t create a sound 

localized in time. Therefore, the model used needs to use joint TF analysis to process 

the music signal.

In this thesis, we examine two different areas of content-based audio watermarking 

and retrieval using T F  parameters. Figure 1.1 shows the block diagram of the pro­

posed schemes. Since most of the previous work in this area examine audio in either 

the tim e or frequency domain, it is assumed tha t the signals are either wide sense sta­

tionary (WSS) or th a t they have constant frequency components within the discrete 

Fourier transform  window. In reality however, audio signals are non-stationary and 

m ulti-component signals which consist of a series of sinusoids with harmonically re­

lated frequencies. In this case, we consider the short time Fourier transform  (STFT) 

of the audio signal to  extract parameters th a t will be used to waterm ark or classify 

the signal.

Many advanced TF distributions based on Cohen’s class of T F  representations 

such as the Wigner-Ville distribution and Choi-Williams distribution have been pro­

posed over the years [3]. However, by taking advantage of the masking properties of 

the HAS, we are able to use a simple technique namely, the STFT to analyze audio 

signals. The masking property of the HAS implies that certain sounds will not be 

heard by the human ear depending on the sounds that occurred in nearby frequencies 

or close in time. Also, note tha t Wavelet analysis is not used in this work as it is 

translation variant implying th a t the features would be destructed where STFT is in­

variant. Also, STFT provides good frequency resolution in all bands, where Wavelet 

does a poor job at higher frequency bands. In addition, as a consequence of the 

masking property, we find tha t we do not need to examine audio signals at every in­

stan t in time, thereby, introducing the concept of instantaneous mean frequency and



bandwidth which are extracted for each time duration. The two topics are further 

explored in Chapters 3 and 4.

Using TF analysis, we first examine audio watermarking applications. The need 

for watermarking audio files has increased in the last couple of years due to a faster 

rate of downloading and uploading data on the Internet. This has created increased 

number of file transfer applications with large number of users. In turn, recording 

companies have lost billions of dollars due to Internet piracy of music files (approx­

imately 4.5 billion dollars loss as reported by US Congress in 2001 [4]). In fact, the 

loss due to music piracy has been much greater than that of movies (approximately 

3 billion dollars US [5]). This is due to the fact that, using MPEG-1 layer 3 (MP3) 

technology, compact audio files can be obtained from professional CDs which essen­

tially duplicate the crisp sound quality of the original segment. Transfer of movies 

over the Internet has generally not been as popular due to the decrease in quality of 

the compressed files and the large size of files increasing the amount of time required 

to transmit them.

One of the earliest methods of hiding data was used by the ancient romans who 

would write on paper using “invisible inks” made from substances such as lemon juice 

and milk. The paper would be left to dry and the ink would disappear. Once the 

paper was heated, the message would re-appear. Such techniques were even used up 

to World War II. These days, watermarking is used in audio, image, video and text 

files.

In watermarking audio signals, an imperceptible and statistically undetectable 

digital signature consisting of a sequence of bits is embedded within the music seg­

ment. These bits could be used to prove ownership of intellectual property, track 

pirated copies of multimedia and prevent illegal copying among other applications. 

These embedded bits are referred to as a watermark. In audio watermarking schemes, 

the watermark has to be statistically undetectable to prevent its removal by unautho­

rized parties. This can be obtained using spread spectrum watermarking which has 

been used since the 1930s for military applications due to its robustness to jamming 

attacks and since it spreads the message across all frequency bands that it renders it
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Figure 1.1: Block diagram of proposed audio watermarking and classification schemes

statistically undetectable to outsiders. The watermark should also be robust against 

intentional removal and jamming attem pts. However, the attacks to  which a water­

m ark may be exposed to are limited since the pirate would not want to  damage the 

original audio file.

The second concept examined in this thesis is tha t of content-based audio classifi­

cation and retrieval. The need for this has risen from the requirement to manage and 

index large m ultimedia databases available on the Internet and even on PCs which are 

currently being indexed based on the file name or au thor’s name alone. Several prob­

lems exist with this technique. First, this results in extra work to manually classify 

such files and improper naming or indexing could result in inefficient and incorrect 

searches. Second, this technique does not allow for retrieval of files of a specific type 

or one th a t sounds similar to an existing musical piece.

As a  solution, the M PEG-7 standard started  in 1996 in order to improve searches



over the web and bring them to the level of text-based searches [1]. MPEG-7 is also 

referred to as “Multimedia Content Description Interface” and uses a standardized 

set of descriptors. However these descriptors can vary according to the context and 

application. Some descriptors for audio may include; melody descriptions, sound 

timbres, mood and tempo. These descriptors may be encoded within the data or 

may exist somewhere else as long as a link exists between the file and the descriptors. 

Also, they may be generated either manually or automatically.

Manual / automatic

Decoding (for 
Storage)

Encoding (for 
transmission)

U ser & 
computational 

system s

Figure 1.2: Applications of MPEG-7 [1]

This standard also shows the applications of MPEG-7 . Consider an input of mul­

timedia content from which we extract features from this either manually or automat­

ically thereby resulting in an audio visual description [1]. Prom these descriptors one 

can create a database from which a user can look for specific criteria. If we consider a 

pull scenario, client applications will submit queries to the description repository and 

will receive a set of descriptions matching the query for browsing (just for inspecting 

the description, for manipulating it, for retrieving the described content, etc.).

Unlike other MPEG standards that describe compression coding methods, such 

as MPEG-1, -2 and -4, MPEG-7 represents information about the signal (such as 

features describing the audio signal). The MPEG-21 standard also concentrates on a



standardization framework rather than the coding approaches [1].

In an efficient content-based retrieval system, audio signal is analyzed, domi­

nant perceptual features such as brightness and loudness are selected, extracted and 

the music is classified according to these features. The stronger the features, the 

higher degree of separation between the different types of music and therefore an im­

provement in audio classification accuracy. The aim is to make music search engines 

content-based and as effective as text-based search engines. This is a complex task 

since text-based Web search engines simply count the number of words in common, 

while audio retrieval techniques need to take a perceptual approach. Although several 

audio classification techniques exist in literature, they do not take advantage of the 

fact th a t audio signals are non-stationary in nature and the best m ethod to extract 

features from them  is to use a TF technique. Instead, existing audio classification 

techniques concentrate on frequency or time domain feature extraction which is not 

as efficient. Also, while many such classification techniques provide discrimination 

between speech and audio signals, the proposed technique in this thesis has the more 

difficult task of distinguishing between different music genres which may have similar 

spectral features. The possibilities in this area are endless. In fact, there is current 

research on allowing users to whistle a specific tune while using pitch extraction al­

gorithms to convert these results to their note-like representation to query a music 

database.

1.1 O rgan ization  o f th e  T hesis

The thesis consists of 5 chapters which are organized as follows;

C h a p te r  2: T im e  F re q u en c y  A n a ly sis  a n d  S h o r t- t im e  F o u rie r  Transform  

Chapter 2 offers a background on TF analysis techniques including Wigner-Ville Dis­

tribution and Short-Time Fourier transform. We also examine the need for joint TF 

analysis and how STFT, in particular, is applicable to the scope of this thesis.

C h apter 3: C ontent B ased  A udio  W aterm arking U sin g  T im e-F requency  

A n alysis



In Chapter 3 we introduce some new TF parameters such as instantaneous mean 

frequency and discuss their application for TF domain watermarking. We review 

existing audio watermarking procedures and discuss their benefits and limitations. 

We also look at the characteristics of spread spectrum systems which are important 

in digital communications to understand spread spectrum based watermarking. The 

results of our watermarking algorithm against various attacks are also presented.

Chapter 4; Content-Based Audio Classification and Retrieval using Time- 

Frequency Analysis

In Chapter 4, we discuss content-based retrieval of audio signals. We start by review­

ing existing audio classification techniques and discuss the previous work in this area 

using techniques such as Mel-Frequency Cepstral Coefficients. We discuss important 

features for audio analysis and classification and introduce our TF based classification 

technique.

Chapter 5: Conclusions and Future Work

Chapter 5 discusses the conclusions and direction for future work. A summary of our 

work is also presented here. At the end of this thesis, a list of publications that have 

risen out of this work are shown.



C hapter 2 

T im e Frequency A nalysis and  
S h ort-tim e Fourier Transform

2.1 In trod u ction

IN signal analysis, time-domain representation is often used to measure changes 

in the signal’s amplitude or energy as a function of time. The Fourier transform 

on the other hand can provide information about the signal’s energy or phase as a 

function of frequency. It decomposes a signal into a set of basis functions which consist 

of complex exponentials. These exponentials of varying frequencies add up to  compose 

the original signal. The Fourier transform has been widely used to analyze the spectral 

distribution of signals. For example in speech signals, the frequency spectrum  can be 

used to  differentiate between male and female voices. W hen sounding a letter in the 

alphabet, the location of the spectral peaks (formants) represent the resonances of 

the vocal cavity. The difference in these locations between the male and the female 

speaker is used to identify the speaker. The discrete Fourier transform of a signal 

g{n) where the windowed signal is f {n)  =  g{n)w{n)  can be expressed as:

=  E (2-1)
n = 0

where A: =  0 ,1 ,..., N  — I, and the length of the window sequence w{n) is less than  or 

equal to  the D FT length L.  This analysis assumes that regardless of the length of the 

window, the  signal would remain time-invariant and provides no information about 

the local frequency distributions of the signal. The window used to truncate the signal



length can have a significant effect on the frequency response. Since multiplication in 

the time domain implies convolution in the frequency domain, the window can distort 

the signal’s spectrum. Rectangular windows which have an amplitude of one up to 

the desired cutoff have oscillatory side lobes with large amplitudes in the frequency 

domain. Although a good frequency concentration can be obtained using this window, 

the signal spectrum will leak to adjacent frequencies due to the window’s side lobe 

behaviour. Hamming windows on the other hand which do not have as sharp cutoffs 

in the time-domain will reduce spectral leakage in the frequency domain although they 

will have a lower frequency concentration which is referred to as spectral spreading.

Some applications of where joint TF analysis are required include telecommu­

nications, speech and music analysis, radar analysis (i.e. laser radar on vehicles), 

underwater acoustics and bioacoustics including identification of whale or dolphin 

songs, geophysics, and structural analysis. For signals with time-varying amplitudes, 

frequencies and phases, a non-stationary signal model with TF representation is re­

quired to describe them. Radar signals for instance, are transient in the time domain 

and require TF analysis to capture their rapid changes. They use a transmitter which 

sends electromagnetic waves to an object and then its antenna receives the scattered 

waves from the target. The manner which the waves reflect off the object are cap­

tured in a radar image. Due to the nature of radar signals, to use the standard Fourier 

transform would require the assumption that the Doppler frequency does not change 

over time. The TF extraction, however, allows for de-noising and extraction of weak 

radar signal in noise [6].

The human ear is a capable instrument, able to perceive the various frequencies 

that create a sound, distinguish their volume, and even recognize various instruments 

at any given time. Ultimately, we would like to imitate the capability of the ear and 

provide simultaneous information about time and frequency of the music.

TF analysis was examined as early as 1930 by Wigner, Weyl and von Neumann 

and later in 1946 by Gabor in his work on the theory of communications [2]. This 

analysis can be considered as a set of transforms that map a one-dimensional time 

domain signal into a two-dimensional representation of energy vs. time and frequency.
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Some of the common T F  representations used include Short Time Fourier Transform 

(STFT), Gabor Transform, Wavelet Transform, Wigner-Ville distribution and Cohen 

Class transforms.

2.2 S h ort-T im e Fourier Transform

STFT is widely used as it offers ease of implementation and low computational com­

plexity compared to  other distributions. Its TF mapping can be displayed on either 

a 3-D or a 2-D plot where the energy is represented by the light intensity of the 

colours. It uses a sliding window and computes the Fourier transform of the signal in 

th a t region, thereby providing an estimate of the “local frequency” at a given time. 

By moving this window over the entire signal, and computing the Fourier transform  

of the windowed signal, an estimate of the signal’s spectral change over time is estab­

lished. This process of computing the STFT for a signal x(n)  can be m athem atically 

shown as:

L-l
S T F T ( n , f )  — x(n  + ,

m = 0
L - l

— ^  x(jn)w {m  — (2.2)
m = 0

where w{n)  is the window function and L  is the window length [7]. This equation 

is essentially a comparison of the similarity between the signal and the elementary 

function w{m — As opposed to the STFT which is complex, the spectro­

gram is a real-valued function which shows the energy density in the T F  plane. For 

a signal x{n),  the spectrogram with respect to w{n)  is defined as:

S P E C i n J )  = \ S T F T { n J ) \ ^ .  (2.3)

In fact, SP E C { n ,  f ) A n A f  represents the energy in the time interval [n, n  -t- An] 

in the frequency band [/, /  -t- A /]. From the T F  uncertainty principle we are given 

th a t A n  • A /  >  \  [2]. This reveals the drawback for STFT as it implies th a t fre­

quency resolution can be improved by decreasing the spectral width A /  at the risk of
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Figure 2.1: Time Frequency Tilings

increasing the temporal width An (poor time resolution). Figure 2.1 shows the TF 

tilings used in STFT calculation.

The shape of the window w[n) is also important as a window with a sharp cutoff 

will introduce artificial discontinuities. Hanning or other smooth windows are mainly 

used in audio analysis techniques as they reduce spectral leakage. Rectangular win­

dows on the other hand have high oscillations which can be perceivable in audio 

signals.

The linear chirp signal can be used to show the benefits of the STFT relative to the 

Fourier transform (Figure 2.2). We can also write this expression as x{n) = cos(^f(n)) 

where ^f(n) represents the phase of the chirp signal. Here, the IF is the derivative of 

the phase which we express as;

f i W  ~  — /o +  Pn,2tt an
(2.4)

where /? =  (/i — fo)/ni.  The values /o and fi  are the frequencies at time 0 and 

rii. In Figure 2.2, the spectrogram shows that this chirp signal is 2 seconds long, 

starts at DC and crosses 150 Hz at 1 sec. The magnitude spectrum plot showing the 

DFT exhibits some dominating frequencies, but the information about the temporal 

behavior of the signal is lost. The fact is, neither the time-domain plot nor the DFT 

plot clearly show how the frequency content of the chirp evolves over time. If we
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compute the Fourier transform of a linearly decreasing chirp signal, we will find th a t 

the power spectrum of such a signal is identical to that of the linearly increasing chirp 

signal shown in Figure 2.2.

As mentioned earlier, the Fourier transform decomposes signals into sum of fixed- 

frequency basis functions where n  ranges from — oo to  + 00 . These basis ele­

ments are evenly spread out over all time which does not give any IF information. 

Ideally, we would like the T F  plot to give us information about the IF of a signal, th a t 

is, the frequency at every time instant. However, this contradicts with the uncertainty 

principle stated earlier.
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F igure  2.2: Time-domain Plot, Spectrogram and Spectrum of Linear Chirp Signal

We can also examine the quadratic chirp where x{n) — cos(’F(n)) with IF  sweep 

f^{n) = fo + Pv?. In Figure 2.3, we have a concave chirp where /5 =  ( / i  — fo)/n{.  

This chirp signal starts at /o—100 Hz and crosses /i= 2 0 0  Hz a t Isec. The two 

figures show the effect of different window sizes. The top figure splits the chirp signal 

into overlapping segments and for each segment computes the 128-point DFT. The 

bottom  figure which uses a 256 point DFT has a higher frequency resolution (increased



13

Hanning Window of Length NFFT=128

2 200
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Figure 2.3: Windowing Effects-Quadratic Chirp Signal

number of frequency windows) and lower time resolution (decreased number of time 

windows compared to the top figure).

2.3 W igner-Ville D istribution

The Wigner Ville distribution (WVD) is a commonly used tool in non-stationary 

signal analysis. For a discrete signal s(n), the WVD is defined as:

W V D s { n , f ) =  ^  z{n — m)z*{n + m)e - j2 n fm (2.5)
m = ~ L

where z*{n) is the complex conjugate of the analytical signal z{n), and N  = 2L + 1 

is its length. The analytical signal is derived from the real signal s{n) as [8]:

z{n) = s{n) +jH{s{n)).  (2.6)

Here, H{.) represents the Hilbert transform. The WVD is the Fourier transform 

of the auto-correlation of the signal s{n). Notice that the WVD does not contain the
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window function used in STFT calculations, as the window here is the signal itself. 

This type of distribution, has a much better time and frequency resolution than  the 

STFT spectrogram used earlier. The main disadvantage of WVD however, is the large 

cross term s which cause major problems when analyzing multicomponent signals. 

Note th a t if a signal is composed of a single modulated tone, it is considered mono­

component while a signal which is composed of the sum of several m odulated tones is 

multicomponent. Consider the WVD of a multicomponent signal s{n) =  Si(n)-|-S2(n):

(2.7)

where the WVD of the cross terms can be seen as:

^  (2 .8)
m = —L

As can be seen from the above equations, the WVD of a signal containing two 

other signals, is not simply the linear sum of the WVD of the two signals, instead it 

contains two cross terms. These cross-terms have a strong oscillation as can be seen 

in Figure 2.4. This figure shows tha t the WVD consisting of a sum of two sinusoids 

a t different frequencies produces a cross term  in the middle of the two frequencies.

Several quadratic time frequency distributions have been proposed in order to 

minimize the cross term  interference but preserve the high resolution TFD  perfor­

mance. One such example is the Gabor spectrogram which has a high TF resolution 

w ith minimal cross terms. Another example is the Smoothed Pseudo WVD with 

decreased the cross term  interference but also decreased T F  resolution. Cohen’s class 

of bilinear TFDs are based on the WVD and include the Choi-Williams distribution 

and the Gabor Spectrogram. The Choi-Williams distribution provides a smoothed 

version of the WVD, good time and frequency resolution with less cross term s than  

the original WVD but is computationally quite expensive [3]. Similarly, the Gabor 

Spectrogram  improves the cross terms while increasing complexity.

Although the STFT provides the worst T F  resolution, it possesses no cross term s 

and is very fast to compute. As we will show later in Chapter 3, the IF of a signal
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can be easily and quickly derived. Also, since this thesis deals mainly with audio 

signal analysis, the temporal masking properties of such signals do not require us 

to compute and extract features such as the IF for every instant in time. Instead 

the window size is chosen similar to existing audio coders, so that these features are 

extracted for every time window.

Also, Boashash, found that although a high TF resolution is obtained using WVD 

or the Choi-Williams distribution, they stated that “result suggests that only a mea­

sure of spread derived from a positive distribution (such as the STFT) will be a useful 

physical quantity” [3]. Another point is that the spread of frequency around the IF 

is not always positive and, therefore, not useful.

These factors for TFDs derived from WVD, such as the inherent cross-terms for 

multi-component signals, the requirement to calculate the analytical signal first for 

single component signal and the additional computational complexity of computing 

the IF at each moment in time have solidified our desire to analyze audio signals for 

watermarking and classification using STFT analysis. Our study of IF and STFT 

distributions and their applications in audio watermarking and retrieval will continue 

in Chapters 3 and 4.

2.4 Applications of TF analysis and STFT

One of the well-known applications of TF analysis is for speech analysis and com­

pression [7]. Here, there is a need to decrease the data rate and in order to increase 

the bandwidth efficiency for the purpose of transmission or storage. In representing 

speech by a small number of bits, the perceptual quality of the speech needs to be 

maintained. The two methods of representing speech samples include direct quanti­

zation and parametric quantization. Pulse Coded Modulation (PCM) is an example 

of direct quantization where the speech samples are directly represented. PCM is 

simple to implement as it maps the sampled data to fixed quantizer levels although 

it does not achieve low enough bit rates. In fact a bit rate of 64 kbits/sec is achieved 

using PCM while speech has a sampling rate of 8 kHz. Parametric quantizers are 

more efficient as they represent and quantize the speech model or spectral param-
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eters rather than  the speech directly. More advanced coding techniques have data  

rates in the range of 2.4 kb its/s - 16 kbits/s. To achieve these rates, speech anal­

ysis and synthesis is required. This process refers to the encoding and decoding of 

a set of param eters tha t represent the speech. In the synthesis part, the speech i s . 

decoded and is mapped through a set of transformations to the original speech. As 

mentioned earlier, the most successful speech coders or voice coders are those that 

use the perceptual speech models.

In fact, as early as the 1940s, there has been much work on speech coders (vocoders) 

in order to  decrease the bandwidth of speech. This work started  with a variety of 

PCM  techniques which eventually obtained a rate of 32 kbits/s. Linear prediction 

models were also used in the spectral analysis of speech. In 1971, Atal and Hanauer 

developed an analysis-synthesis m ethod based on linear prediction [9]. There has also
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been much work in the application of STFT for the analysis and synthesis of speech. 

The design and simulation of such a system was explored in 1973 by Schafer and 

Rabiner [10].

In addition, STFT analysis and spectrograms can be quite useful in distinguishing 

between the different types of speech from a spectral point of view. It was examined in 

[11] that speech signals can be referred to as non-stationary or even quasi-stationary 

over the duration of 5-20 ms. They can be broken down into voiced, unvoiced, and 

mixed speech segments. Voiced speech consists of sounds such as vowels (“a” , “i” ,...) 

which are quasi-periodic in the time-domain and harmonically related in the frequency 

domain. Unvoiced speech segments such as consonants ( “sh” ) have no periodicity and 

are random and broadband in the frequency domain. Unvoiced fricative sounds are 

created by forming a constriction in the vocal tract and forcing air through it. Here, 

the air does not flow freely from the mouth but it is not completely stopped as in 

unvoiced fricatives. This turbulence creates a noise-like excitation. In such sounds, 

the energy is concentrated high in the frequency band and the appearance is noise­

like. Examples of fricatives include (“/ f / ” , “/v /” , “/ th /” , “/ s / ”). In unvoiced plosive 

sounds, there is a silent period and then a sudden explosion of sound which is shown 

as a strong energy in many frequency bands. These sounds are created by completely 

closing the vocal tract while pressure builds up and then abruptly releasing the sound. 

Examples of such sounds include ( “/ p / ”, “/ d / ”)-

As can be seen from the spectrogram in Figure 2.5, the unvoiced segments are 

noise-like or random in nature while the voiced segments are more organized and their 

energy is usually higher than that of the unvoiced segments. Also, the spectrogram 

can identify formants in voiced speech. These formants are horizontal bands where the 

spectral peaks. They are the frequencies where the mouth gives resonance to sounds. 

In the spectrogram they are represented by the bands of spectral peaks. Different 

sounds have different locations of formants and the location of these formants is 

important in speech synthesis and perception [12].

It was then concluded in [10] that using STFT offers several benefits including 

increased flexibility in altering speech parameters, lower bit rate and no need for pitch
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F igure  2.5: Spectrogram of sound waveform “safety” (spoken by a male) 

tracking before the analysis-synthesis procedure.

2.5 C hapter Sum m ary

In this chapter we have explored the limitations of classical Fourier analysis and 

the need for TF modelling. Since many sonar, seismic, biomedical, speech and au­

dio signal are non-stationary in nature, their analysis requires the use of a joint T F  

model such as STFT. We also examined some common applications of STFT in­

cluding speech analysis. Up till now, TF analysis has not commonly been used for 

state-of-the-art multimedia and wide-band signal processing techniques such as audio 

retrieval and watermarking. In this thesis we examine how to apply STFT based T F  

analysis for wide-band signals. Also, we examine the application of the spectrogram
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which was previously used primarily to give a visual representation of the signal, to 

extract numbers and features that will be applied to the watermarking and retrieval 

techniques.



C hapter 3 

C ontent B ased A udio  
W aterm arking U sin g  
T im e-Frequency A nalysis

3.1 In tro d u ctio n

OV ER the past several years, the ease of copying and distributing copyrighted 

m ultimedia such as video, audio, image and software over the Internet has in­

creased significantly. W ith the emergence of peer-to-peer (P2P) file-sharing systems, 

this problem has only become more critical. These systems allow each PC to act as 

a file server for the network, sharing illegal multimedia data. As a result, there is a 

strong need to  protect the rights of the authors. In order to keep up with the new 

technologies and to increase sales, record companies now offer purchase of music over 

the Internet through online subscriptions. However, computer-savvy individuals who 

can obtain the files for free have not converted to this method. Although the amount 

of money lost as a result of online piracy has not be estimated, in the recent lawsuit 

against Napster (a file-sharing service), it was found that an average of 12-30 million 

files were downloaded a day [4]. Furthermore, a recent report subm itted by the In­

ternational Federation of the Phonographic Industry (IFPI) showed th a t worldwide 

music sales have decreased by 7% over the last year; and although it is difficult to 

estim ate the exact loss due to online piracy, this practice is considered one of the 

main contributing factors.

These factors have been a  strong motivation for recent research in multimedia

20
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watermarking. Watermarking provides a solution to data piracy by allowing a series 

of bits which identify the author’s name or logo to be embedded within the original 

image, audio or video signal. Although there are many similarities between audio 

and image watermarking, audio watermarking presents more complications as the 

human auditory system (HAS) is much more sensitive to changes than the human 

visual system (HVS). In fact, the ratio of the highest to lowest audible frequency is 

approximately 1,000 (range of 20 Hz-20 kHz) where the ratio of the highest to lowest 

frequency light waves we can see is a factor of 2. Also, in the HAS, small changes in 

audio files can be perceived as low as one part in ten million [13]. Regardless of the 

large dynamic range, the HAS has a small differential range that allows loud sounds 

to down quiet ones. These factors are taken into consideration when developing our 

scheme.

In the case of audio watermarking, there are three main requirements. The first 

is that the watermark needs to be inaudible and must not affect the sound quality 

of the original music segment [13]. Second, the watermark bits need to be embedded 

or hidden in such a way that their pattern is not easily detectable and open to 

manipulation. Finally, the watermark needs to be robust, such that it will withstand 

intentional signal processing attacks including lossy compression algorithms (such 

as MP3), low-pass filtering, cropping and additive noise. Other important factors 

in evaluating a watermarking scheme may include its security, complexity and the 

number of bits that can be embedded with a small bit error rate (HER).

However, in any watermarking scheme the trade-off always exists between the 

robustness of the watermarking algorithm to signal processing attacks and the trans­

parency of the watermark. It is known that as the energy of the watermark is in­

creased, the probability of full recovery of the watermark is also increased. However, 

by increasing the watermark energy, we increase the noise in the signal and, thus, 

make the watermark audible.

Although digital watermarking is an application for data hiding, there exist some 

differences. Digital watermarking consists of embedding a handful of bits which iden­

tify copyright information, whereas data hiding embeds a large number of bits such
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as an image within a host signal. Also, unlike d a ta  hiding, the watermark usually 

gives an indication of ownership within a host signal. W atermarking’s main purpose 

is to  ensure th a t the hidden message remains hidden and recoverable; it does not aim 

to prevent access to the original file [13].

In addition, there is much confusion between watermarking and cryptography. 

Cryptography does not aim to hide a message such tha t it will not be easily noticeable, 

it only encrypts it to  hide the original message.

3.2 A p p lica tion s

In recent years, several watermarking applications have been proposed [14]. One of 

the most popular applications is copyright protection. This consists of two types of 

waterm arks including proof of ownership and enforcement of usage rights. Proof of 

ownership waterm ark aim to help determine the rightful owner or copyright holder 

in a court of law or in a lawsuit. These types of watermarks not only require strong 

robustness, bu t they must also be able to resolve the deadlock dispute. Here, the 

problem arises of determining the first real watermark and one of the solutions pro­

posed is the idea of “tim estam ps” where the owner sends a request to a “third party 

time stam ping service” . Enforcement of usage watermarks still have many flaws as 

the exact m ethod of implementation has not been explored. The idea behind it is 

th a t these waterm arks provide instructions to applications which in turn, would not 

allow duplication or copying the files if it is in violation of the usage policy.

A nother common application is fingerprinting where watermarks are embedded to 

identify the recipient of each single distributed copy. This can be used to track pirated 

copies to  the original recipient who made illegal copies and pirated them. These types 

of waterm arks will require a very strong robustness to intentional attacks by pirates.

Fragile waterm arks on the other hand are used for authentication purposes. They 

are able to  w ithstand innocent signal processing operations such as change in volume 

equalization or MP3 compression but are destroyed once exposed to malicious attacks 

to damage them. Intuitively, such watermarks do not need to be as robust as they 

are broken once certain attacks are performed.
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3.3 Related Work

Several techniques currently exist for hiding data within audio files. In general, these 

algorithms are defined for either the time or the frequency domain. The overall block 

diagram used in audio and image watermarking is depicted in Figure 3.1.

Audio Signal (sj

Message
(m)

Password (k)

Encoding

Watermarked 
Audio (x)

Distribution Decoding
f(s,m,k) f(x,n)

Message
Estimate

m

Attacks
(n)

Password (k)

Figure 3.1: Overall block diagram of watermark embedding and decoding

In one of the pioneer works on audio watermarking, Bender et al [13] presented 

several methods, which include phase coding, low-bit coding, echo hiding and spread 

spectrum coding. Phase coding breaks an audio signal into segments, applying a 

discrete Fourier transform (DFT) and replacing the phase of the first segment with 

a phase that represents the watermark. All consecutive segment phases are changed 

relative to the first segment. This technique could change the perceptual quality 

of the audio signal by introducing perceptual clicks in cases where the modification 

of the phase is not small enough. Low-bit coding embeds the watermark data by 

changing the least significant bit of the audio signal. This allows for a large number 

of message bits to be encoded within the audio file. Bender et al [13] suggest that 

up to 1 kb per second (kbps) per 1 kiloHertz (kHz) can be encoded. This means 

that for a noiseless channel a bit rate of 44 kbps can be achieved if the sampling 

frequency is 44 kHz. However this large data rate presents two problems. The first 

is that it does not meet the imperceptibility requirement for data hiding [15]. In fact 

the noise would be audible in music signals without much background noise. One 

method to compensate for this audibility is to decrease the amplitude of the hidden 

data. However, even with this a second and more important problem exists with 

this method, it is not robust to signal processing manipulations. As mentioned by
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Gordy in [15], d a ta  hiding or watermarking techniques need to be able to withstand

attem pts at removal. In this technique it was found that the embedded data  could 

not be recovered if attacks such as channel noise or resampling were performed. One 

m ethod to improve the robustness of this technique is to introduce error-correcting 

codes. However such techniques tend to decrease the payload of the message.

The th ird  technique, echo hiding embeds the watermark as an echo of the original 

signal w ith different delays representing a one and a zero. The problem with this 

m ethod is th a t the amplitude of the echo must be decreased in order to make it 

inaudible, but doing so sacrifices its robustness.

A nother watermarking technique utilizes the MPEG audio psychoacoustic model 1 

in order to  shape the watermark and is examined by Swanson et al in [16] and Boney 

et al in [17]. Their proposed algorithm uses the frequency and tem poral masking 

properties of the HAS. Here, the frequency masking property is used to generate a 

masking filter th a t is applied to the watermark. Then, the tem poral masking property 

of the HAS waterm ark is exploited by weighting the watermark by the envelope of 

the audio signal. This is one of the most popular watermarking techniques and the 

block diagram  for this procedure as is shown in Figure 3.2. These methods, although 

efficient, have a high computational complexity.

Audio Signai 
s(n)

» 1
Tim e dom ain F req u en cy

an a ly s is ana ly s is
b(n)

a(n)

w(n)
Message

m -se q u e n c e

Watermarked
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Watermark Data

Figure 3.2: Block diagram of spread spectrum encoding
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In a similar technique, Bassia and Pitas [18] examine time-domain watermarking 

by using a constant to control the energy of the watermark and make it inaudible. 

Here, noise shaping is done by using a low-pass filter. In [17], Boney et al also used a 

“scale factor” to decrease the energy of the watermark in the frequency domain. The 

spread spectrum watermarking technique used in [13] makes the watermark transpar­

ent simply by decreasing the amplitude of the watermark to a fixed rate of 0.5% the 

amplitude of the original audio signal.

Finally, Erkucuk [19] presents an audio watermarking algorithm which embeds 

a chirp signal as the watermark using spread spectrum techniques. Once passed 

through the channel, the extracted bits are postprocessed using TFD and Hough 

Radon Transforms. This transform can detect patterns, thereby allowing an increased 

number of watermark bits to be hidden. For instance, the watermark message can 

correctly be extracted up to 20% BER and its presence can be detected up to 30% 

BER. However, the technique offers a disadvantage in that it is difficult to generate a 

chirp signal in reality as it has a constantly changing IF. But the proposed approach 

can be used in other watermarking algorithms such as the one proposed in this thesis, 

as an error correction technique [19].

3.4 M otivation

In this chapter, we examine a spread spectrum watermarking scheme that inserts a 

watermark into the audio file using time and frequency characteristics simultaneously 

[20]. This approach reduces the computational complexity compared to techniques 

examining time and frequency separately while maintaining transparency. Our mo­

tivation for this work is to address two important features of security and imper­

ceptibility and this can be achieved using spread spectrum and instantaneous mean 

frequency (IMF) respectively. In fact, the estimated IMF of the signal is examined as 

an optimal point of insertion of the watermark in order to maximize its energy while 

achieving imperceptibility.

This Chapter is organized as follows: Section 3.5 offers a review of spread spectrum 

systems, introduces the fundamentals of IMF and analyzes the proposed watermark-
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ing scheme. Simulation results are presented in Section 3.6, and conclusions are given 

in Section 3.6.

3.5 B ackground  and M eth od o logy

In this section we examine the background, theory and methodology involved in 

achieving the content-based watermarking scheme for audio files. We begin the section 

with an overview of spread spectrum theory and its application to watermarking. At 

the end of the  section, we discuss the benefits of IMF and our watermarking algorithm.

3 .5 .1  In tro d u ctio n  to  Spread S p ectru m  S y stem s

The development of spread spectrum communication started as early as 1940s and 

was initially used for military communications during World War II. It was attractive 

for such applications due to its anti-jamming capability, low probability of intercept 

by intruders, and secure communications. Up until the 1970s, much of the information 

regarding spread spectrum techniques was classified and used by the military. Since 

th a t time, many civilian applications were developed including code division multiple 

access (CDMA) used in cellular telephones, wireless local area networks (WLANS), 

and Global Positioning Systems (GPS) which is the largest spread spectrum system 

used today [21]. The advances in microelectronics technology and signal processing 

techniques have made it much more cost-effective for spread spectrum  techniques to 

be applied for commercial purposes.

Although bandwidth and energy efficiency are im portant concepts in digital com­

munications, in some cases it is necessary to sacrifice this bandwidth in order to take 

advantage of the benefits of spread spectrum systems such as their resistance to inter­

ference, and m ultipath  interference rejection. Spread spectrum technology essentially 

spreads the transm itted  spectrum much wider than the original signal bandwidth in 

order to  provide the mentioned advantages.

In fact, all spread spectrum systems satisfy two main criteria [22]:

•  The bandw idth of the transm itted data  sequence, i.e., the hidden message, is
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much larger than the minimum bandwidth required for transmission.

• The data sequence is spread by a pseudonoise (PN) code, which is independent 

of the original data sequence. This same code must then be used at the re­

ceiver to despread the received signal and recover the original hidden message 

sequence. Note that synchronization between the transmitted sequence and the 

received sequences is necessary to ensure proper recovery.

Moreover, the robustness that spread spectrum provides including its transparency 

to outside jammers make it ideal for watermarking applications. Where several au­

dio watermarking algorithms concentrate on imperceptibility, spread spectrum based 

watermarking provides an added measure of security that is quite desirable. This 

concept will be further explored in this Chapter.

3.5.2 Spread Spectrum  Characteristics

In summary, several characteristics of spread spectrum systems make them attractive 

for a variety of applications particularly audio watermarking. Such characteristics 

include:

• Jammer robustness: Since the carrier signal or code is random, it is difficult for 

the jammer to predict. Also, their wide-band characteristics make them more 

difficult to jam than narrowband signals.

• Low probability of intercept: Their noise-like characteristics and their uniform 

spectral spread make the embedded signal appear as noise. Therefore, they are 

difficult to detect surveillance receivers.

• Low spectral energy: By modulating with a spreading sequence, the information 

bearing signal is spread over a large bandwidth making it seem like noise. Since 

the signal is spread over a large frequency band, the power spectral density is 

also decreased by this amount [23].

•  Cryptographic capabilities: Spread spectrum data once modulated with the car­

rier signal will appear as random to outsiders since the carrier code is unknown
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to them. This feature provides a privacy th a t makes it difficult for an intruder

to decode the message also making it attractive tool for watermarking systems 

including image and audio.

As discussed in this chapter, for audio watermarking techniques tha t use spread 

spectrum, the original music signal is considered as a jamming signal trying to 

degrade the transmission and recovery of the watermark signal. Since the power 

of the spread watermark is much less than  the audio signal to which it is added, 

this could present a problem in the recovery of the watermarked signal. In fact, 

an embedding strength is required to decrease the amplitude of the watermark 

relative to the audio. However, there is a tradeoff between the embedding factor 

(the sound quality) and the full recovery of message bits.

3 .5 .3  Spread  S p ectru m  T echniques

The main spread spectrum  techniques used today include direct sequence, frequency 

hopping, time hopping, chirp and hybrid methods. These techniques were reviewed 

and examined by Peterson [22], Haykin [24], and a brief overview is presented here.

D irect Sequence

Direct Sequence Spread Spectrum is the most prominent spread spectrum technique. 

Here, the data  signal is multiplied by a pseudorandom (PN) sequence which is a series 

of bits valued at +1 and -1. In this section, we first consider the time-domain rep­

resentation of direct sequence system. The discrete direct sequence spread spectrum 

technique will be examined at the end of this Section.

Let the information bearing data  sequence be denoted as and puk as the pseudo 

noise sequence. Conversely, their nonreturn-to-zero time-domain representations can 

then be expressed as m{t)  and pn(t), where each waveform can take on the values 

of ±1. By multiplying the signal (a narrowband signal m (t)) by a wideband random 

signal pn{i) we will produce a spectrum tha t is nearly the same as the wideband PN 

signal. This is intuitive from the Fourier transform theory where multiplication in 

the time domain of two signals is equivalent to the convolution of the spectra of the
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two signals in the frequency domain. Through this modulation procedure, the PN 

sequence spreads signal to give it a noise like appearance.

The amount that the signal is spread is determined by the ratio of the bit rate of 

the spreading sequence divided by the data rate of the information signal. This ratio 

is also referred to as the processing gain:

(3.1)Bss _  Th
B  “ Te’

where B  is the message signal bandwidth and Bss is the corresponding spread spec­

trum signal bandwidth in Hz. The duration of one chip of the spreading signal is 

Tc, which is much smaller than the duration of the signalling interval Tb- Thus, the 

bandwidth of the spread signal is the product of the bandwidth of the unspread signal 

and the processing gain.
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Figure 3.3: Spreading process in a direct-sequence system

In Figure 3.3, the narrowband signal and the spread-spectrum signal both use 

the same amount of transmit power and carry the same information. However, the 

amplitude of power density for the spread-spectrum signal is much lower than that of 

the narrowband signal. As a result, it is more difficult to detect the presence of the
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Figure 3.4: Model of a direct sequence spread spectrum transmitter and receiver

spread spectrum  signal. The power density is defined as the amount of power over a 

certain frequency. In the case of Figure 3.3, the narrowband signal’s power density is 

2 times higher than  th a t of the spread spectrum signal, assuming the spread ratio is 

2.

Now, given a d a ta  signal m{t) and its corresponding spreading sequence pn(t), the 

transmission model for a baseband spread spectrum system can be represented as:

w(t) = m{t)pn{t).  (3.2)

The received signal r(t), which consists of the transm itted  signal w{i) plus the 

additive interference signal i{t) can then be expressed as;

(3.3)

In order to recover the transm itted signal, a demodulator consisting of a multiplier 

follower by an integrator and a decision device is applied to the received signal r(t). 

Figure 3.4, shows the transm itter and receiver models of a baseband spread spectrum 

system. Since the transm itter and receiver share information about the spreading 

signal, a  copy of the locally generated PN sequence is applied to the multiplier. In 

this step, we assume tha t there is complete synchronization between the receiver and 

the transm itter such th a t the PN sequence is the same in both the receiver and the 

transm itter. After the multiplier stage, the output can be seen as:
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z{t) = pn{t)r{t),

= pn^{t)m{t)+pn{t)i{t),

= m{t)+pn{t)i{t), (3.4)

since pn{t) =  ±1 and pn?{t) =  1. If the system has been exposed to an interference 

jammer in the same band, its impact will be severely reduced as it will spread out 

during the de-spreading process. In Equation 3.4, we are spreading the interference 

signal i{t) by multiplying it by the locally generated PN sequence. This causes the 

power spectral density of the jamming signal to decrease by a factor of N  (the pro­

cessing gain as explained in Equation 3.1) creating a wideband signal. This is an 

example of how direct-sequence spread spectrum radio combats the interference jam­

mer [21]. At the same time, the power spectral density of the data signal m{t) has 

increased due to despreading and the narrowband signal has been re-created. The 

original signal can be recovered easily using a low-pass filter with a bandwidth that is 

just large enough to recover the message signal m{t). This will significantly decrease 

the effect of the interference signal i{t). It is important to note that despreading does 

not provide any advantage against broadband noise since it can not be spread any 

further. Therefore, the reduction in the Power Spectral Density (PSD) only occurs 

if the interference bandwidth is in the same order as the bandwidth of the baseband 

signal.

In Figure 3.4, low-pass filtering is actually done by the integrator that evaluates 

the area under the signal produced at the multiplier output. The integration is carried 

out for the bit interval 0 < t < T, providing the sample value v. The decision device 

is then used by the receiver to determine whether the original data symbol was 1 (in 

the duration 0 < t < T) if u > 0 or -1 if n < 0. If the sample value v is equal to zero, 

then the decision device makes a random guess as to wether the original bit was a 1 

or —1.
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a) d a ta  signal m(t)

b) spreading 
seq u en ce  pn(l) o

c) spread data 
w(t) 0

Figure 3.5: Spreading of a data signal

P seudo-P tandom  N o ise  Sequences

Spread spectrum  systems use “white noise” to spread data. This means the PN 

sequence needs to be a signal with a flat power spectral density. This signal ideally 

has an autocorrelation tha t is a delta at zero lag {3(n) = 1 at n  =  0). Figure 3.6 shows 

the autocorrelation of a 32-point and a 441-point PN sequences. It also shows the 

effect of reducing its amplitude on the autocorrelation value. This is often required 

in waterm arking procedures to decrease the energy of the watermark relative to the 

audio signal. As Figure 3.6 shows, the longer the length of the PN sequence, the 

higher the value of the autocorrelation at zero lag. As we will examine later in this 

Chapter, the performance of a spread spectrum  technique is proportional to the length 

of the PN sequence. T hat is, the longer the PN sequence, the better the recovery 

of the hidden message. This is because the sequence tha t is encoded (the hidden
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Figure 3.6: Autocorrelation plots for PN sequences of length 32, 441

message) using the PN sequence will be amplified by the value of the autocorrelation 

at zero lag, but everything else, i.e. the background music will be spread over the 

whole spectrum.

Several criteria exist for choosing a spreading sequence. First, a spreading se­

quence typically consists of a series of ±1. Second, it possesses the autocorrelation 

properties discussed above. Ideally, the spreading code should be designed so that 

the chip amplitudes are statistically independent of one another. This is why our 

method of randomly generating the PN sequence using Matlab’s randn() function is 

highly useful.

Note that there are many different types of spread spectrum codes that could be 

used. The most well known are called PN codes, as discussed earlier. A variant of PN
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codes is Gold codes which, are used in GPS systems [24]. There axe also Kasami codes 

and Walsh codes which are used in 1895 technology [24]. In radar communication, 

a subset of PN codes called Barker codes are used which are short codes with a 

length of up to 13. Barker codes are aperiodic sequences that meet the criteria of 

pseudo-randomness of length=l,2 ,3 ,4 ,5 ,7 ,ll, and 13. Due to these short lengths, such 

sequences are usually too short for useful spreading of the signals. In general, only 

periodic sequences are used in direct sequence spread spectrum systems.

D iscrete  D irect Sequence Spread Spectrum

The process examined at the beginning of this Section, can be conversely examined for 

a discrete-time communication system as expressed in [25]. Let us consider a simple 

communication system in two forms. In one form, we transm it the d a ta  as it was and 

in the other one, we transm it the signal after spreading with a PN sequence. First 

consider, the non-spread digital communication system model. Here, the transm itted 

d a ta  sequence is rrik, where E {±1}, and assume that it is equiprobable th a t the 

bit is +1 or -1. Now, the received sequence which has gone through the channel and 

exposed to  additive noise can be seen as:

rk = Ert ik+jk .  (3.5)

Here, S' is a positive value, the energy of the pulse representing each bit. Also, jk 

is the interference, an additive white Gaussian noise sequence with zero mean such 

th a t its auto-covariance is:

E[jnJn+l] = (3.6)

In order to  determine the transm itted bit, the optimal receiver which is a simple 

level detector is used where if >  0 then assume that a -1-1 bit was sent, otherwise 

a -1 bit was sent. Note tha t in Equation 3.5, r* is a Gaussian random  variable with 

mean Errik and variance In this case, the probability of bit error is a function of 

the bit energy [22] :

Pb =  Q (3.7)
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Figure 3.7: Spreading in discrete system

Now consider the spread spectrum discrete system. Here, we are transmitting a series 

of N identical bits ruk, so we can examine just one bit m  for ease of calculation. Similar 

to the time domain case, this bit is spread by a chip sequence which is expressed as:

(3.8)

This spreading sequence has two important characteristics. First, the ideal spreading 

sequence has a mean of approximately zero as shown in Equation 3.9:

1 N~ 1

E\pn,i =  jÿ  ^  pn., «  0. (3.9)
n=0

Also, as mentioned earlier its discrete-time periodic autocorrelation can be given by:

G [prin )  =  ^  E n = 0  p ^ n  ,

I  1, 2 = 0
[ 0 ,  0 <  |2| <  A, (3.10)

where pUn+N = P^n since the spreading sequence is periodic with N.  Note, that the 

above two conditions represent ideal conditions and can be approached realistically 

using the techniques mentioned in [22]. For example in a maximal length sequence 

(m-sequence), the number of bits at 4-1 differs from the number of bits at -1 by 

exactly one meaning that the mean of the sequence is not exactly zero.
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Now, similar to  the time-domain case, the transm itted signal can be w ritten as;

Wn = Ecmprin,  n =  0 , . . . ,  A/" -  1 (3.11)

where the energy Ec — E / N . The received sequence for the k-th transm itted bit with 

additive white Gaussian noise is seen as

~  E qTtlpriji -f- jji. (3.12)

Again this received sequence r„ goes through a correlation receiver which de­

spreads the received sequence by correlating it with the locally generated spreading 

sequence and estimates the transm itted bit using a decision device with a threshold 

of zero. This process is shown as:

N - l

V  =  p U n  +  j n ) p n n ,
n = 0

N - l

=  N E cm  -I- jnpnn, (3.13)
n = 0

and the ou tpu t of the decision device

' ^ 4 - 1

In Equation 3.13, the decision variable v has mean or expected value shown below 

by the symbol fj, and is defined as follows:

N - l

P' — \NEcTn\ -f- [ ^  ] jnijP^nj\i
n = 0

=  N E cm  -I- 0,

=  E m .  (3.15)

We can also show th a t it has variance:

J V - l

V AR{v)  = V A R { N E c m )  + V A R { Y , jn { p n n ) ) .
n=0

=  0 +  ^ ^ .

=  <7". (3.16)
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Similarly, it can be shown that in the case of the non-spread digital communication 

system model, the decision variable is also Gaussian with mean Em  and variance 

cr̂ . This means that in both cases, the AWGN channel contributes the same effect 

and that the probability of error is the same in both cases. In effect, spreading 

shows an improvement in narrowband interference which can be spread out further 

in the despreading process of the receiver. In communication systems, such effect is 

produced from multipath or multiuser interference [23].

In this Section, we have explored spread spectrum communication and the effect 

of spreading sequences. We have also examined direct sequence spread spectrum 

systems and its advantages and disadvantages. In Section 3.5.5, we will continue our 

discussion of spread spectrum for watermarking applications . There, we will take 

advantage of the benefits of spread spectrum explored here such as security, robustness 

to jamming attacks and transparency to attackers as solutions for watermarking audio 

signals.

In the following analysis, the process of generating a watermark that will be em­

bedded in an audio signal is expressed in spread spectrum terminology. The original 

audio signal is equivalent to the “noise” mentioned in Section 3.5.3. The watermark 

sequence is transformed in a watermark audio signal and then the audio signal (noise) 

is added to it. Similar to before, this procedure of adding noise to a signal is called 

“jamming”. In a communication system, the jammer aims to degrade the perfor­

mance of transmission by exploiting knowledge of the communication system. In 

the watermarking algorithm, the music signal is considered the jammer and it has 

much more power than the transmitted watermark bit stream, thereby reducing the 

probability of error free transmission.

3.5.4 Instantaneous mean frequency estim ation

Before addressing our watermarking technique, we will first review the IMF and its 

application to watermarking in this Section. In order to understand the need for IMF, 

we must first realize the limitations of Fourier transform. As discussed earlier, the 

standard Fourier transform only provides information about a signal in the frequency
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domain. In the  case of nonstationary signals where the signal’s spectral peaks are 

varying over time, T F  analysis is required. In such a case, the STFT can be used to 

interpret the signal in both time and frequency domains by calculating the Fourier 

transform  of the signal in each time segment.

The IMF of a signal obtained from its STFT can show its local frequency at a 

particular time. Note th a t a chirp signal is an example of a nonstationary signal with 

time-varying frequency (Figure 3.9).

One of the known definitions of IF is defined as the derivative of the phase with 

respect to time [26]. Consider the case where a real signal may be expressed as

g{t) =  , (3.17)

then the instantaneous frequency fi  is evaluated as:

f =
27T dt ’

-  U  (3.18)

The signal can also be expressed as g{t) = u{t)+jv{t)  where =  arctan{v{t)/u{t)). 

Then, the solution for ^(t)  will not be unique as the choice of v(t) is arbitrary [27]. 

Also calculating the IF as the derivative of the phase, could result in a negative IF. 

This concept can be quantified using the following example.

Given a real signal, the following steps are required to  derive its IF as per Equation 

3.18:

1. Take a multi-component real signal s{t).

2. Generate the complex signal g(t) from the real one s(t). The analytic signal 

g(t) can be calculated using:

g ( t ) ^ s { t ) + } H ( s { t ) ) ,  (3.19)

where H{.) denotes the Hilbert transform.

3. Determine the phase (p(t) from Equation 3.19.
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4. Compute the IF as the derivative of the phase of the analytic signal such that 

fi =  d(l){t)/dt.

Spectrogram  of acorg.w av and its IMF
X 10

15000

S'gioooo

u- 5000

M L

Figure 3.8: Calculating IF and IMF of a ROCK music signal “acorg.wav” :
a) Spectrogram of music signal as well as IMF of the signal
b) IMF of music signal extracted using STFT analysis
c) IF of music signal calculated using derivative of phase method

The IF of a music signal computed using the derivative of the phase is shown in 

Figure 3.8c. As can be seen, this interpretation is not meaningful for multi-component 

signals where the IF has resulted in negative IF. Also, in audio watermarking algo­

rithms, it is not necessary to compute the IF which is defined for every moment in 

time. Instead, we compute the IMF for each time window. As will be explained 

further in Section 3.5.5, the temporal masking properties of sounds will allow us to 

use STFT and to compute the IMF in every window.
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Based on G abor’s work on IF, Ville devised the WVD, which showed the distri­

bution of a signal over time and frequency. The IMF of a signal was then calculated 

as the first moment of the WVD with respect to frequency. Therefore, the IMF of a 

signal could be expressed as [28];

(3.20)

This IMF is computed over each time window of the STFT, and TF D [n ,  f )  refers 

to the energy of the signal at a given time and frequency. Note tha t in Equation 3.20, 

refers to the maximum frequency of the signal, n  is the time index and /  is the 

frequency index. From this we can derive an estimate of the IMF of a non-stationary 

signal assuming tha t the IMF is constant throughout the window. A non-stationary 

chirp signal with linear IF deviation can be expressed as s{t) =  cos{2nat)t. The top 

row in Figure 3.9 shows the spectrogram and the IMF of a linear chirp signal. As 

expected, the IMF of a chirp signal increases with time. The bottom  row in Figure 

3.9 shows the IMF of a music signal.

Chirp Signal Spectrogram  of Chirp Signal IMF of chirp

f i "  ‘ 'iiiymniT

Time5 10 15
Time

Original Music Signai

?̂ 6000

CD 4000

T̂imê

F ig u r e  3 .9 : T im e-dom ain plot, spectrogram  and IM F of linear chirp  and  music
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3.5.5 W atermarking algorithm

Many watermarking schemes proposed in literature use ideas from spread spectrum 

communications. They embed a watermark by adding a PN sequence with low am­

plitude to the image or audio file. This specific watermark is then detected using a 

correlation receiver.

Consider an audio signal s(n) of length N samples, divided into B = N / M  blocks 

of M  samples each. Twenty five message bits are embedded in each block. A block 

division was chosen because it allows a variable number of bits to be embedded by 

adjusting the block size. The host signal can be expressed as the concatenation of B 

non-overlapping blocks, S i,. . . ,  Sk with concatenation denoted by C.

s(n) =  Cg.1  Sk (3.21)

The hidden message representing the author’s name, logo or copyright informa­

tion, is defined as a sequence randomly generated and consisting of D bits. However 

for simplicity of notation, we assume that we are embedding a single random message 

bit into each block of the audio signal. Now, the message can be represented as a 

bipolar sequence m*. e  {±1}. To spread the signal, every element of the message 

sequence (or the one bit) is multiplied with its corresponding PN sequence.

In Figure 3.10, we demonstrate the watermark generation procedure using a PN 

sequence and BPSK modulation. In our watermarking technique we begin by multi­

plying the original message signal by a narrowband PN sequence. The PN sequence 

piii discussed briefly in Section 3.5.3 must be generated in such a way that it has an 

autocorrelation of S{n) = 1, for n=0. The longer the PN sequence, the higher the 

value of the autocorrelation at zero lag. It follows the characteristics discussed earlier 

such as zero mean and its elements are random numbers chosen from the continuous 

uniform distribution on the interval from -1 to -fl. The benefit of this technique 

is that it has a chaotic nature, thereby, improving the cryptographic security of the 

system. Also, the sequence generation mechanism cannot be reverse engineered and 

knowledge of part of the sequence would not give clues about the remaining bits. 

Next, this sequence is low-pass filtered according to the frequency characteristics of
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the music signal. In a similar technique, Bassia et al [18], shaped the modulated 

w aterm ark using a low-pass Hamming filter. They described the shaping process as 

necessary to  reduce the audibility of the watermark before embedding. In this case, a 

narrowband PN sequence will be generated first which will also result in a narrowband 

modulated watermark. This filtered sequence can be expressed as:

p n ] =  h  pn;. (3.22)
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where h is the filter impulse response with filter order L and can be written as:

h =

h o 0 0 0 0 0 0 0 0 0 . < . 0
h i h o 0 0 0 0 0 0 0 0 0

h-2 h i h o 0 0 0 0 0 0 0 0
; 0

h i - i > .  * h o 0 0 0 0 0 0

0 0

0 0 h i - i h i h o 0 0 0 0

: 0 0

: 0 0

1 0
0 0 h i - i h i h o 0
0 0 0 h i - i » « « h i h o

(3.23)

where the FIR lowpass filter has cutoff frequency of 1.5 kHz (chosen empirically). In 

order for the watermark to survive typical transformations of audio signals, including 

MP3 coding, it is important that the watermark should be limited to the perceptu­

ally relevant portions of the spectra. Therefore, a spread-spectrum signal with an 

uncharacteristically narrow bandwidth is used. More information about perceptual 

coding and MP3 coding can be found in [29].

In the next stage, we use a variation of BPSK modulation where the IMF of 

the signal is the time-varying carrier frequency. Since it was shown in [16] that an 

effective watermark needs to be perceptually shaped and placed in a region that will 

limit the chances of removal, we believe that the IMF will embed the watermark in 

such a region.

The modulated watermarked signal can now be defined by:

Wi = mi pn[ài |cos(27rfi)|, (3.24)

where

|cos(27rfi)| =

■ |cos(27r/i(ll))| 0 0 0 . . . 0
0 |cos(27r/i(22))| 0 0 . . . 0

0 0 0 . . . 0

0 0 0 0

0 0 0 0

0 0 0 ............ 0
0 0 0 0 . . . . . .  1 C O S(27r/i(MM))| _

(3.25)
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In Equation 3.24, rrii refers to the watermark or hidden message bit before spread­

ing, is the low-pass filtered spreading code or the PN sequence and f; refers to 

the time-varying carrier frequency which represents the IMF of the audio signal.

The power of the carrier signal is determined by a; and is adjusted according to the 

frequency-masking properties of the signal. Figure 3.10 presents the block diagram 

used for w aterm ark generation and recovery. The embedding strength a; is selected 

based on the simultaneous frequency-masking properties of the HAS as given in [29].

A u dio  M asking

Here we will give a brief overview of audio masking and how it relates to audio 

watermarking. There are three main concepts to consider in masking, first is the 

threshold of hearing, second is temporal masking and third is frequency masking.

Absolute Threshold of Hearing (Hz scale)
250

200
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j  100

50
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Figure 3.11: Absolute Threshold of Hearing

The absolute threshold of hearing or the threshold in quiet (TIQ) describes the 

energy th a t is required for a pure tone at a given frequency to be heard by the listener. 

The implication is th a t we are unable to hear sounds which are too weak and different
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frequency of tones may require different energy to be heard. Figure 3.11, shows the 

absolute threshold of hearing curve [29]. From this, several things can be observed, 

first the ear is most sensitive to frequencies between 1 and 5 kHz, where we are able 

to hear signals even below 0 dB. Second, two tones of equal power and different 

frequencies need not be equally loud to be heard. Finally, the sensitivity decreases at 

low and high frequencies. We should also note that this threshold of hearing curve 

rises and the range of hearing decreases as the age of test subjects increases. While 

someone at the age of 20, will be able to hear between 20 Hz to 20 kHz, a middle 

age person’s range of hearing is on average closer to 50 Hz - 8 kHz. This threshold of 

hearing is mathematically estimated in dB as [29];

=  3.64(//1000)-°-^ -  6.5e-°^(//1000 -  3.3)^ +  10-^(//1000)'^, (3.26)

where /  is the frequency variable. The TIQ is commonly used in audio coders to 

determine the feasible amount of compression as the sound which falls below the TIQ 

curve is not perceived and can be removed.

The second concept, is temporal masking where sounds are hidden due to maskers 

which have occurred earlier in time or even after maskers which are about to appear. 

Essentially, if we hear a loud sound and then it stops, it takes a little while until we 

can hear a soft tone nearby in frequency. This phenomenon can be explained by the 

physiology of the human ear. Temporal masking is in effect a defence mechanism used 

by the ear to protect its delicate structures from loud sounds. When we are exposed to 

a loud sound, the human ear automatically responds by contracting slightly causing 

the perceived volume of the proceeding sounds to decrease. This reflex which is 

similar to the blinking of the eye is performed to protect the structure of the ear 

from potentially harmful sonic power. Which in turn causes us to not be able to hear 

sounds that occur just before or just after a loud sound.

The effect of masking after a strong sound is called post-masking and usually lasts 

about 50-200 ms. The technique of pre-masking where a sound is masked by some­

thing which appears after it, is relatively short and usually lasts 5-20 ms. Consider 

an experiment where we turn on a 1 kHz tone at 60 dB, followed by a 1.1 kHz tone
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at 40 dB. It can be seen th a t the second tone (test tone at 1.1 kHz) will not be heard 

as it is masked. Now if the masking tone at 1 kHz is stopped first then the test tone 

is stopped after a short delay. One will notice that the shortest time delay when the 

test tone can be heard is 5 ms.

Note th a t many audio coders use this information to change their window size 

for spectral analysis. Typically, the audio is transformed into blocks and every 256 

samples (5.8 ms) at 44.1 kHz, the Fourier transform of the signal is taken. Similarly, 

in audio watermarking literature, specifically those using frequency and temporal 

masking properties separately compute the FFT of a signal every 512 samples (ap­

proximately 11.6 ms) [17, 29, 16].

Finally, the third concept is simultaneous masking which occurs when one sound 

(maskee) becomes inaudible due to the presence of another sound (masker) with 

higher intensity when both sounds are heard at the same time. This can be examined 

by the simple experiment where a 1 kHz masking tone is played at 60 dB, plus a test 

tone a t 1.1 kHz at 40 dB. One will notice tha t the test tone cannot be heard and is 

masked by the 60 dB tone.

The HAS detects perceived sounds in sub-bands called critical bands and can 

be modeled as a set of bandpass filters with varying bandwidths. These 26 critical 

bands in frequency are linearly related to lengths of the basiliar membrane. Each 

band corresponds with an equal section of the cochlea around 1.3 mm. The widths 

of the critical bands differ within the frequency range. A simple explanation is that 

for each critical band, the human ear has approximately the same sensitivity. The 

critical band table can be found in [29]. The critical bands are uniformly wide from 

0 to 500 Hz (100 Hz wide) but after that, a nonlinear exponential relationship is 

followed where each critical band is around 20% larger than the band below 100 Hz. 

A bark scale is defined where each bark corresponds to the width of one critical band 

[29].

In order to understand the simultaneous masking phenomenon, we will examine 

two different scenarios of simultaneous masking. First, in the case where a narrowband 

noise masks a simultaneously occurring tone within the same critical band, the signal-
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to-mask ratio is about 5 dB. Second, in the case of tone-masking noise, the noise needs 

to be about 24 dB below the masker excitation level. Meaning that it is generally 

easier for a broadband noise to mask a tonal sound, than for the tonal sound to mask 

a broadband noise. Note that in both cases, the noise and tonal sounds need to occur 

within the same critical band for simultaneously masking to occur.

In our case, the tone- or noise-like characteristic is determined for each window of 

the spectrogram and not for each component in the frequency domain as in [16]. We 

found the entropy of the signal useful in determining whether the window can best 

be classified as tone-like or noise-like. The entropy can be expressed as

/) )  logg /)) , (3.27)
/=o

where

=  (3.28,

and Pf(TFD{n,  /) )  is the probability of energy for each frequency in a given window 

of the spectrogram. Since the maximum entropy can be written as;

— iog2Fm- (3.29)

We assume that if the entropy calculated is greater than half the maximum entropy, 

the window can be considered noise-like; otherwise it is tone-like. Based on these 

values, âi controls the energy of the embedded watermark Wi relative to the energy of 

the audio signal. For each time window, once the tone or noise-like behaviour of the 

music determined, the energy of the music signal is determined in that window. The 

watermark energy is then scaled by the coefficients in â; such that the watermark 

energy will be either 24 dB or 5 dB below that of the music signal. The embedding 

strength matrix can be defined as:
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ai =

■ %(11) 0 0 0 . . . 0
0 Ui(22) 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 0
0 0 0 ............... 0
0 0 0 0 . . . . . .  tti(MM) _

(3.30)

where each row represents the scaling coefficient for a time window.

Once the watermark is perceptually shaped and modulated at the IMF according 

to Equation 3.24, it is added to the music signal in the time domain as:

Yi =  Si +  Wi, (3.31)

where Si represents the original audio signal.

In order to recover the watermark and thus the hidden message, the user needs 

to know the PN sequence and the IMF of the original signal. Figure 3.10 illustrates 

the message recovery operation. The decoding stage consists of the following:

•  Step 1: The watermarked music signal and the locally generated time-varying 

carrier signal are applied to a product demodulator. Assuming tha t this is a 

noise-free channel such tha t ji is not present then:

r; =  yi|cos(27rfi)|,

=  ( s î Wi)|cos(27rfi)|,

=  (si 4- m;pnja; |cos(27rfi)|)|cos(27rfi)|,

=  (si|cos(27rfi)|) +  (mi pn|â||cos^(27rfi)|). (3.32)

Since:

then

cos^{a) = œs{a)cos{a)  =  -[1  4- cos(2a)], (3.33)

r, =  (si|cos(27rfi)|) 4 -—mi pn-ai(l 4 - |cos(47rfi)|), (3.34)
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where the component with double the frequency of the IMF is then removed 

using a LPF, and the audio signal modulated by the IMF is considered as noise 

iXi resulting in a received signal:

r; =  (si • lcos(27rfi)|) +  mipnja;, 

= mi pn|â; +  n;. (3.35)

Step 2: Spectrum despreading occurs by correlating the result obtained in Step 

1 with the filtered PN sequence. The resulting message is

m = (3.36)

where r, and p n ' f  denote vectors of length IxM and Mxl. Finally, a threshold 

detector is used to recover the original message bits as shown in Figure 3.10.
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Figure 3.12: Overview of watermarking procedure for POP voiced segment (“viorg.wav”)
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3.6 S im u lation  R esu lts

The watermarking algorithm described in this thesis was applied to several different 

music files ranging between classical, pop, rock and country music. These files were 

sampled a t a rate  of 44.1 kHz, and 25 bits were embedded into a 5 sec sample of 

the audio signal. Figure 3.12 gives an overview of the watermark procedure for a 

voiced pop segment while Figure 3.13 shows the watermark procedure completely for 

a classical very quiet piano segment.

As can be seen from these plots, the watermark envelope follows the shape of the 

music signal. As a result, the strength of the watermark increases as the amplitude 

of the audio signal increases.

Figure 3.14 shows the before and after time domain and TF plots of the original 

and watermarked segments. As can be seen from these plots, the transparency of the 

waterm ark is apparent and is very important for ensuring secure watermark transfer.

The performance criteria presented by Gordy and Bruton in [15] were used to 

evaluate our watermarking algorithm. First, the bit error rate (BER) was calculated 

w ithout any signal manipulations. Note that the BER is given by:

Depending on the music signal, the watermark was either fully recovered or had 

an average BER of around 0.04. In terms of imperceptibility of the watermark, 

it was found th a t the watermark was undetected by the listener regardless of the 

music signal. Fig. 3.14 shows the power spectral density (PSD) of the audio signal 

compared to th a t of the perceptually shaped watermark. It can be seen th a t the 

inaudible watermark PSD is below that of the music.

The effect of increasing the message payload was examined for five different audio 

files (Figure 3.16). These files can be classified as follows: acorg.wav is a rock-like 

signal and a sample of an ACDC music signal, a spatially rich sample. Deorg.wav is 

a voiced sample of a rock-hke Def Leppard song, hporg.wav is a classical harpsichord
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segment and viorg.wav is a voiced pop segment of the song “Visit” with instrumental 

accompaniment. Finally, “piorg.wav” is a segment of a solo piano music. Since the 

sound of a piano is well known, any distortion introduced by the algorithm should be 

readily perceptible.

It can be observed from Figure 3.16 that as the message payload decreases, the 

length of the PN sequence increases, thereby improving the robustness of the message 

and decreasing its BER. However, it should be noted that although the BER is 

shown as zero for a message payload less than 25 bits, this value might vary since 

our PN sequence is generated randomly. Also, since our embedding algorithm is 

content-based, the message payload for some files may be better than that for others, 

depending on their frequency and energy components.

Several robnstness tests were then performed on the five different audio files to 

examine the reliability of our algorithm against signal manipnlations. The snmmary 

of these resnlts can be seen in Table 3.1. For simplicity, we considered the case where 

the message signal was fully recovered without exposure to attacks.

First, the watermarked music signal was low-pass filtered at 5 kHz. It was found 

that the message bits were still fnlly recovered with a BER of 0. However, a low- 

pass filter at 4 kHz or a high-pass filter at 100 Hz resulted in an average BER of 

0.05-0.06. Next, we considered additive white Ganssian noise with zero mean and 

variance a. Figure 3.15 shows the effect of adding noise for five different wave files. 

The signal-to-noise ratio (SNR) was varied between -40 dB and -|-40 dB. In this 

case, the BER remained 0 for SNR greater than 0 dB, and increased to 0.08 for an 

SNR of -10 dB. However, since the noise is generated randomly the BER could vary 

slightly depending on the iteration. Our scheme was also tested for robustness to 

lossy compression techniques including MP3 compression. Here, it was found that 

the average BER increased to 0.08 (2 out of 25 bits were not recovered). Other attacks 

included resampling the mnsic down to 22.05 kHz and back to 44.05 kHz, amplitude 

changes, equalization and noise removal.

Up till now, there is not a fixed database of music signals where all audio wa­

termarking algorithms are tested against. Also, there is no set of attacks which all
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audio waterm arking algorithms are exposed to. In an attem pt to  standardize this,

Petitcolas et al [30] realized tha t many claims of robustness have been made in sev­

eral papers w ithout following the same criteria. They have published a work where 4 

popular audio watermarking algorithms, three of which were subm itted by companies 

have been exposed to  several attacks. The algorithms are referred to as A, B, C and 

D. For each algorithm, 6 audio segments were watermarked and it was noted whether 

the waterm ark was completely destroyed or somewhat changed by the attacks. Al­

though the BER from these attacks were not shown, Table 3.1, shows which of the 

four algorithms were affected by each of the attacks. Their algorithms were not tested 

against MP3 compression.

A ttacks A verage B E R A ffected  A lgorithm s  
in StirM ark

1. N on e 0.00 N /A
2. H P F  (100 Hz) 0.05 A , D
3. L P F  (4 kH z) 0.06 A, C, D
4. R esam p lin g  factor (0.5) 0.04 C, D
5. A m p litu d e  change (4 -/-  lOdB) 0.08 N /A
6. P aram etric  equalizer (bass boost) 0.13 A, B , C, D
7. N o ise  red uction  (hiss rem oval) 0.02 C ,D
8. M P 3 com pression 0.08 N /A

T a b le  3.1: Perform ance of algorithm  after various a ttacks

As can be seen from the above tests, our technique offers several improvements 

over existing algorithms. First, since our algorithm is content-based, it is adap­

tive to various music files where algorithms with fixed atténuation of the watermark 

amplitude will not maximize the imperceptibility/robustiicss criteria. Second, this 

algorithm is less computationally complex than several other algorithms, particularly 

frequency-domain watermarking techniques. In fact, using MATLAB encoding and 

decoding of the watermark takes around 24 sec (on a Pentium 4 CPU, 1.40 GHz with 

256 MB of RAM) for a 5 sec audio sample. In addition, our technique offers more 

than  simple detection of the watermark; we are able to recover the watermark with
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minimal error. Finally, using the IMF of the signal we maximize the robustness to 

various signal processing attacks.

3.7 Conclusions

In this Chapter, we proposed a novel spread spectrum watermarking technique that 

utilizes IMF estimation of the original audio signal and the simultaneous masking 

property to determine optimal points of insertion of the watermark. It was found that 

the watermark was imperceptible within the host signal, statistically undetectable and 

robust to common signal processing attacks including filtering, additive noise and 

MP3 compression (BER 0-13%). Furthermore, the algorithm is secure as knowledge 

of both the PN sequence and the time-varying carrier frequency are required to recover 

the hidden message.
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Figure 3.14: Before and after watermarking for a classical music segment
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Chapter 4 

Content Based Audio Classification 
and Retrieval Using 
Time-Frequency Analysis

4.1 Introduction

WITH the abundance of personal computers, advances in high speed modems 

operating at 100 Mbps and GUI based P2P file-sharing systems that make it 

simple for individuals without much computer knowledge to download their favorite 

music, there has been an increase of digitized music available on the Internet and on 

personal computers. As such, there is also a rising need to manage and efficiently 

search the large number of multimedia databases available online which is difficult 

using text searches alone. Current multimedia databases are indexed based on song 

title or artist name which requires manual entry and improper indexing could result 

in incorrect searches. A more effective content based retrieval system, analyzes audio 

signals, selects and extracts dominant perceptual features and classifies the music 

based on these features. Stronger features provide a higher degree of separation 

between classes and thereby a higher classification accuracy. The aim is to make 

music search engines as effective as text-based ones and this is examined further in 

this chapter.

57
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4.2  R e la ted  W ork

In recent years, there has been many works on audio classification with various per­

ceptual features and several classification algorithms. In one of the pioneer works done 

on audio classification and later commercialized into the “Muscle Fish” project, Wold 

et al [31] extracted an N dimensional vector consisting of several acoustical features 

such as loudness, pitch, brightness, bandwidth and harmonicity from each sound. A 

Euclidean (Mahalanobis) distance is then calculated between the input sound feature 

vector and the existing models in the database. Using the nearest neighbor (NN) 

rule, the signal is grouped into the class with the minimal Euclidean distance.

In 1997, using a different approach, Foote [32] uses a 13 dimensional feature vector 

consisting of 12 Mel frequency cepstral coefficients (MFCCs) and an energy term. A 

tree-based vector quantizer is built and used to divide the feature space into non­

overlapping regions. A template or a histogram showing the relative frequencies of 

samples in each region is constructed for different audio sources. The histogram of 

the audio signal to  be classified is then compared to the existing templates using the 

NN rule and Euclidean or Cosine distances. The main benefit of this approach is that 

the MFCC feature set is uncorrelated and the features do not need to be adjusted 

depending on the audio file characteristics.

In a similar work to  th a t of [31], Liu et al [33] extracted 13 different audio features 

to separate audio clips into different scene classes such as advertisement, basketball, 

football, news and weather. Features consist of volume distribution, pitch contour, 

bandwidth, frequency centroid and energy. A neural network classifier with a one- 

class-in-one network structure is used and an overall classification rate of 88% is 

achieved. Artificial neural networks (ANN) are designed to imitate the human nervous 

system and its ability for adaptive learning. They are effective in detecting complex 

nonlinear relationships while requiring little formal training. However, their process 

is computationally expensive due to the training process and more importantly, the 

relation between the input and output variables is defined in a black box model tha t 

has no analytical basis. In term s of audio classification this means tha t it is difficult
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to deduce which acoustical features are significant in classifying each type of sound 

[31]. Also using ANNs, Wan et al [34] employ a combination of a probabilistic neural 

network (PNN) and a NN classifier. A set of 87 perceptual features are extracted from 

the time domain, frequency domain, and coefficient domains. A sequential feature 

selection (SFS) technique method is then used to decrease the feature set and the 

PNN to classify the sounds into 3 general classes. Finally the NN rule is applied to 

determine the subclass of the input signal.

In a different technique, Lu and Hankinson [35] used a rule-based heuristic clas­

sification method to classify an audio signal into speech, music and noise. For each 

feature, a threshold is set to determine the segment type and the feature set in­

cludes silence ratio, centroid, harmonicity and pitch. Since the feature threshold 

must change for different audio inputs, this type of classifier is tedious and not ideal. 

A classification rate of 75% for speech, and 89% for music is reported.

Lu et al [36] proposed support vector machines (SVMs) as an alternative to current 

classification methods. Using a kernel-based SVM increases the classification rate by 

separating nonlinear cases. Here, a nonlinear kernel function maps the data to a high 

dimensional feature space where the data is linearly separable. The authors use a 

combination of a rule-based classifier and a kernel based SVM to distinguish between 

5 different audio classes including silence, music, background sound, pure speech and 

non-pure speech. Their feature set include similar features to those reported in [31] 

and [32], such as MFCCs, zero-crossing rate (ZCR), short time energy (STE), sub­

band powers, brightness, and bandwidth with some new features such as spectral flux 

(SF), band periodicity (BP), and noise-frame-ratio (NFR). An average classification 

accuracy of around 90% is achieved.

Finally, in one of the few TF approaches to content based audio retrieval, Uma- 

pathy [37], uses a technique based on matching pursuit with Gabor functions. They 

decompose a signal into TF functions based on Gabor functions. They find that 

the octave parameter used in decomposition, can provide discriminatory information 

about the audio signals and can be used for pattern classification. The distribution 

of the 14 octave parameter values are calculated over 3 different frequency bands
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resulting in a to ta l of 42 values for each audio signal to  be used as the feature set 

for classification. In their technique, an overall classification accuracy of 98.6% is 

achieved using the regular LDA method and 95.8% using the leave-one-out method. 

The database of signals is the same as that used in this thesis. However, although 

high accuracy rates are achieved, this technique is quite computationally complex. 

First, the number of features extracted is large and second, extracting the features 

using Gabor decomposition takes up a lot of processing time.

We find th a t in the majority of the previous work in this area, audio is examined 

in either the time or frequency domain where it is assumed that the signals are wide 

sense stationary. In reality, audio signals are non-stationary and multi-component 

signals consisting of series of sinusoids with harmonically related frequencies. Our 

algorithm considers the short-time Fourier transform (STFT) of an audio signal to 

extract param eters th a t will be used along with linear discriminant analysis (LDA) 

to classify signals. Figure 4.1 shows the block diagram of our proposed audio classifi­

cation and retrieval scheme. Our retrieval technique is less computationally intensive 

than those th a t use ANN, SVM, or Hidden Markov Models (HMM). Also, the effi­

ciency of features can be examined which is not directly feasible in ANNs. Note that 

while HMM can be used to examine spectral change over time, past works have shown 

th a t HMM needs to be coupled with external features such as Cepstral or perceptual 

features to be efficient [38]. Finally, our method also offers the added improvement 

th a t it is not specific to certain audio files and can be applied without adjusting the 

algorithm such as in rule-based models.

Music
S egm ent Feature Reliability 

Testing

G enre Classification 
(Linear Discriminant 

Analysis)
Feature Extraction

T im e-Frequency 
A nalysis (Short-tim e 
Fourier Transform)

1. Rock

2. C lassical

3. Country

4. Folk

5. Ja z z

6. Pop

F ig u r e  4 .1: Block diagram of proposed scheme

Our work on content-based audio classification is presented as follows. Section 

4.3 presents the application of T F  analysis to feature selection and analysis for audio
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classification. In Section 4.4 we present our classification results for the system and 

our conclusions are provided in Section 4.5.

4.3 Audio Feature Extraction

The set of features extracted are critical as they need to be strong enough to clearly 

separate the classes of signals. This procedure requires perceptual features that model 

the human auditory system. Discriminating music from speech is less complex than 

between different classes of music. The latter may only require a small number of 

features such as zero crossing rate or energy envelope and since the spectral charac­

teristics are not very similar, high accuracy rates are achieved.

Here, we examine the similarities of 143 audio signals and classify them under 

six different genres. Each audio signal is 5 seconds long, mono-channel, sampled at

44.1 kHz with 16 bits/sample quantization. The length of the audio samples was 

chosen to be 5 seconds in relevance with the human neurological behavior which was 

examined by Perrot et al in [39]. They found that human beings require at least 3 

second long excerpts to identify different musical genres with a 70% accuracy rate 

while the accuracy decreases to 53% for a 250 ms excerpt.

We start by transforming our audio signal into a spectrogram with a window size 

of 1024 samples which corresponds to about 23 ms at 44.1 kHz. This window size is 

similar to that used in [36] and [40]. A Hanning window with 50% overlap is used 

and the DFT is calculated in each window. The audio features extracted from the 

two-dimensional time-frequency distribution (TFD) are explained below.

4.3.1 Entropy

The entropy of a signal is a measure of its spectral distribution and portrays the 

noise-like or tone-like behavior of the signal. The entropy of a signal in time frame n 

can be calculated as:

H(n) = t , P A T F D ( n , f ) ) h g 2 Pf(TFD{n,f)),  (4.1)
/= 0
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Figure 4.2: Entropy of different sounds
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where

T ,T J , ' 'T F D (n ,S )

Here, T F D { n ,  / )  represents the energy of the signal at time frame n  and frequency 

index /  (it is equivalent to S P E C (n ,  f )  defined in Section 2.1). Also, Fm refers to 

the maximum frequency.

Consider the case where there are L  number of frequency bins. Then the maximum 

entropy in time window n  is log2 L  which occurs if the frequency bins are equiprobable. 

First, we examined the entropies of 3 different types of signals. These signals were 

analyzed using 128 frequency bins (Figure 4.2), implying that the maximum entropy 

is 7 bits. The first signal consisted of a single sine wave, at a sampling frequency of 

1 kHz. In this case, the mean entropy was 1.24 bits and the standard deviation at
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5.636 X 10“®. Next we considered the vowel “a” (a signal component with harmonic 

structure) and its entropy was calculated to be 2.84 bits with a standard deviation 

of 0.1. Finally, we considered white Gaussian noise and its mean entropy was 6.38 

bits with a standard deviation of 0.06. As we expected, the sine wave had the lowest 

entropy and a standard deviation of almost zero while white noise had the largest 

entropy (approaching maximum) with a larger standard deviation.

CLASSICAL COUrfTRY FOLK JAZZ PO P

(a)

llll II I
C lw stcal

lll.lll ll

(b)

Figure 4.3: Comparison of entropy values a) Results for different genres b) Distribution 
for classical and rock.

From our database of music signals, we found that entropy was a dominant feature 

in classifying particularly rock or folk music. As shown in Figure 4.3a, rock signals 

possessed the highest entropy followed closely by folk music while classical, country,
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jazz and. pop had low entropies. Figure 4.3b shows the distribution of entropy for rock

music compared to classical. As can be seen, the entropy ranges for the two types 

of signals are quite different. In order to determine the strength of entropy from a 

different perspective, a receiver operating curve (ROC) was plotted. The ROC curve 

is a two dimensional measure of classification performance. The area under this curve 

measures discrimination, or the ability of a feature to correctly classify signals. An 

area of 1.0 represents a perfect test; where an area of 0.5 or less shows the feature 

is not useful in discrimination of tha t class. Rock, folk, jazz, classical, country and 

pop music had ROC areas of 0.933, 0.808, 0.644, 0.337, 0.294, and 0.145 respectively. 

These results show th a t although entropy is a strong feature, further features are 

required to improve classification.

4 .3 .2  E n ergy  ratio

The ra te  of change in the spectral energy over time was measured as the mean of the 

to tal energy in a frequency sub-band to the previous time window. This energy ratio 

can be expressed as:

T lrJ ,Z Z T F D (n - lJ )
This was examined in three different sub-bands [0, 5 kHz], [5, 10 kHz], [10 kHz,

Fin]. However, it was found empirically that the energy ratio in mid and high fre­

quency bands did not improve the classification. This is probably because most energy 

activity in audio signals is in the low frequency band. Therefore, only the mean of 

energy in the low-band was used in our feature set.

The frequency location with the lowest energy component was also computed. 

Although an estimate of the mean can be calculated from the frequency domain, it was 

included in our feature set as it improved the classification rate by 5%. In fact, using 

the mean and standard deviation of the location of minimum energy provided 100% 

classification rates for classifying country, folk and jazz music but low classification 

rates for the other three genres. W hen examining the histogram of the location of 

minimum energy for our database of signals (Figure 4.4), the frequency spread was 

smaller for country (21.4-21.5 kHz), folk (21.45-21.85 kHz), jazz (21.36-21.51 kHz)
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Figure 4.4: Distribution of frequency location with minimum energy

and a wider range for pop (18.1-21.5kHz), classical 15.5-21.5kHz) and rock (20-21.6 

kHz).

4.3.3 Brightness

The brightness of a signal also referred to as its frequency centroid, shows the weighted 

midpoint of the energy distribution in a given frame. It is defined by:

EfSo /  TFD{nJ)
/>{») = EfioTFD{nJ) (4.4)

The brightness feature could also be seen as the instantaneous mean frequency
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param eter, a typical non-stationary feature of a  signal. The frequency centroid of the 

audio signal in the low frequency range (0-5 kHz) is also examined as most of the 

frequency content of audio signals is concentrated in low frequency.

In addition, the mean of centroid ratio to previous window is a useful feature as it 

measures the spectral change over time. As shown in Figure 4.5 rock, folk, pop and 

country music signals had the largest change in centroid frequency over time while 

classical and jazz signals had the lowest change. This is expected as classical and jazz 

music generally have less activity over time compared to the other 4 genres.

i
s
2

Ô

0.5

PopJa z zFolkCountryClassicalRock
Type

F ig u r e  4 .5: Mean of centroid ratio to previous tim e window

4 .3 .4  B a n d w id th

Bandwidth is the magnitude-weighted average of the difference between the signal s 

spectral components and centroid. It can be defined as:

E;so(/-/i(«))rmn./) 
TFD(n,  f )

(4.5)

Effectively, it shows the spectral shape and the spread of energy relative to  the
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centroid, therefore it is also a non-stationary feature. For instance, a sine wave 

without noise has zero bandwidth.

4.3.5 Silence ratio

Silence ratio is the number of silent time window frames with total energy less than 

0.01. This threshold is set empirically. Note that this feature could also be extracted 

from the time domain.

Bandwidth, brightness and silence ratio have been proven to be effective in previ­

ous audio classification papers including [31, 33] although an STFT approach showing 

the rate of change to previous windows has not been used.

4.3.6 Summary of Features

Using the above analysis, the 10 features extracted for each sample included mean 

and standard deviation of centroid frequency (IMF) , mean centroid (low-frequency 

range), mean of centroid ratio to previous window, mean bandwidth, silence ratio, 

mean and standard deviation of the frequency location with the lowest energy, mean 

and standard deviation of entropy. These features are summarized below. Note that 

the time index for each window is denoted by n and there are N  time windows in

total. Also, e() denotes the energy in a specific time window while E\\ denotes the

expected or mean value operator.

1. Mean Entropy :

E[H{n)\n = u i .. .Un ] (4.6)

2. Standard Deviation of Entropy :

STD[H{n)\n = n i...n N ]  (4.7)

3. Mean IM F/ Centroid Frequency:

E[fi{n)\n = n i...n N ]  (4.8)
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4. Standard Deviation of IM F / Centroid Frequency:

STD [fi{n)\n  = n i . . .n N ]  (4.9)

5. Mean IM F  Ratio to Previous Window:

^ I f i M / f i i n i ) ,  fi{n /)/fi{n2 ), f i{n /) / fi{n z ) .. .] (4.10)

6 . Mean IM F  (low hand 0-5KHz):

^[fi(_lowband){p}\'^ ~  . . . Hjif] (4.11)

7. Mean Bandwidth:

8 . Silence Ratio:

E[Bi{n) |n =  Til. . .  un] (4.12)

t i n

where:

E  (4.13)
n = 7 i i

^(")= { o: 2 ^ " ’ " (4.14)

9. Mean o f Frequency with Lowest Energy:

E[f{emin{n))\n = n i . . .n N ]  (4.15)

10. Standard deviation of Frequency with Lowest Energy:

S T D [ f(e m in {n )) \n ^ n i...n N ]  (4.16)

4.4  A u d io  C lassification

Once the features are extracted for the 143 audio signals, linear discriminant analysis

(LDA) is then apphed using SPSS software [41], to predict group classification of

cases.
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4.4.1 Linear Discriminant Analysis

There are several techniques that can be used for data classification. One of the 

most popular techniques includes linear discriminant analysis which has been used 

in speech recognition and face recognition techniques. LDA offers the benefit that it 

can handle different within-class frequencies. In fact, the discriminant function finds 

the coefficients 61. . .  610 that will maximize the ratio of between-class variance to the 

within-class variance. The objective here is to obtain the highest possible ratio so 

that adequate class separability is obtained.

Note that another common data classification technique is cluster analysis where 

the software is not told which groups or classes the data set belongs to and its objective 

is to find the best way in which the cases may be clustered into groups. In discriminant 

analysis however, the groups are predetermined and the objective is to find the linear 

combination of independent variables that will best discriminate among the groups. 

In the proposed classification algorithm, use of LDA is preferred as it is supervised 

and will therefore be more likely to group classes into the correct genres compared to 

an unsupervised cluster analysis.

In fact, LDA tries to find a linear combination of those extracted features that best 

separate the group of cases. To represent this linear combination, a discrimination 

function is formed using the extracted features as discrimination variables and can 

be expressed as:

L = biXi 4- b2X2 + ...... +  feiô îo +  c, (4.17)

where b \... b\o are the coefficients, c is a constant and are both derived using the 

Fisher’s linear discriminant analysis [41]. Also, X i...  xio are the set of extracted TF 

features and L is a function which classes the cases into different groups. In the 

case where more than two groups exist, this technique finds the first function that 

separates the groups as much as possible and then finds further functions that improve 

the separation and are uncorrelated to previous ones. The number of functions is the 

smallest of the number of predictor variables or features or the number of groups 

available minus one.
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SPSS computes the within-class scatter matrix and the between-class scatter ma­

trix for all the samples of classes. The within-class scatter m atrix is the expected 

covariance of each of the classes and is expressed as [42]:

c
~  (4.18)

Ù

where pj is the apriori probabilities of the classes, Xj is the sample of class j ,  p,j is 

the mean of the class j  and C  is the number of classes.

The between class m atrix on the other hand is:

c
Sh = -  //)(//; — //)^, (4.19)

j

where p. is the mean of all classes. Now the algorithm will maximize the ratio of the 

between class to  within class scatter.

We can also describe the above process simply that linear planes are used to

divide each d a ta  set into different groups. The covariances and probabilities are used

to confine the area in the space where each class of signal occur. Once this area is 

defined, statistical distances are calculated between the centroid of each of the classes 

and linear planes are introduced to segregate the classes.

4 .4 .2  C lassifica tion  R esu lts

The audio files are categorized into six groups (rock, classical, country, folk, jazz 

and pop). SPSS shows the standardized canonical discriminant function coefficients 

which indicate the relative importance of the independent variables (the 10 features) 

in predicting the dependent or the music type(Figure 4.6).

Using F isher’s coefficients and prior probabilities of each group, a scatterplot 

(Figure 4 .7) is created showing the discriminant scores of the cases on two discriminant 

functions. This plot shows the separation between different cases.

The territorial map (Figure 4.8) shows a plot of the boundaries used for classifying 

cases into groups based on discriminant functions. Note that where we see 63 at 

the top of the map is the border where in the discriminant space, group 6 (POP) is 

separated from group 3 (country) music.
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s tandard ized  Canonical D iscrim inant Function Coefficients

Function
1 2 3 4 5

mean entropy .032 -1.649 -.716 -1.228 -.291
m ean minimum freq .997 2.427 .631 .509 1.760
mean Inst freq -4.004 -2.262 1.205 2.945 2.256
m ean If low 4.320 2.107 -.913 .185 -2.703
mean If ratio .707 -.655 1.018 .166 -.683
low energy ratio .862 .166 -.575 -.133 .850
bandwidth 1.388 .905 1.667 -.768 2.100
std entropy 1.023 .375 -1.718 -.410 -.503
std if -.273 .447 -1.257 1.104 -3.245
std_min freq .219 1.506 .690 .439 1.140

Figure 4.6: Standardized Canonical Discriminant Function Coefficients

The classification table or the confusion matrix depicted in Table 4.1 shows the 

performance of LDA. In this table when the prediction accuracy is 100%, all the cases 

will lie on the diagonal. In fact, the hit ratio is defined as the number of cases that 

are on diagonal or the percentage of correct classifications.

Using the original LDA, 93.0% of all original grouped cases are correctly classified 

with folk music having the lowest rate. A more accurate estimate is obtained through 

the cross-validated method where a portion of cases belong to the learning sample 

and the other cases belong to the test sample.

In fact, in [43], it was stated that “the use of nonparametric error estimates may 

lead to biased results if the kernel covariances are estimated from the same data as 

are used to form the error estimate.” It was also shown that the leave-one-out method 

(also referred to as the Jack-knife algorithm), provides a least-biased estimate. In the 

leave-one-out type estimate, one sample case is excluded from the feature vector and 

the classifier is then trained with all the remaining samples. The excluded data now 

belonging to the test data is used to determine the classification accuracy. The data 

is re-entered into the learning sample and a different sample case is excluded and used 

to test the classification accuracy. This process is repeated until all the samples of 

the vector have been used as test samples. The number of correctly classified cases is 

then used to calculate the classification accuracy rate. Since each signal is excluded 

from the training set in turn, the independence between the test set and the training 

set is maintained. Using the leave-one-out method, 92.3% of songs were correctly
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Figure  4.7: All-groups scatter plot with the first two canonical discriminant functions

classified, revealing the discrimination strength of our feature set.

Finally, we compare our database of sounds to one of the popular methods men­

tioned in Section 4.2, the Muscle Fish Project which started in 1996 by Blum et al 

and is a commercially licensed software tha t allows you to search for audio files that 

sound like a given file. Similarity is based on perceptual features such as loudness, 

pitch, brightness and bandwidth.

Figure 4.9 shows the audio classification results from Musclefish when asked to 

classify other files that sounded like rock. We provided the rock signal training set: 

acl.wav, ac2 .wav, acsl.wav, acs2 .wav, del.wav, de2.wav... and we were looking for 

the following files to be classified under rock ac3.wav, ac4.wav, acs3.wav, acs4.wav, 

de3.wav, de4.wav ... (testing sequence). As the figure shows, all 143 records were 

given sorted in closest Euclidean distance but several files were misclassified as ROCK
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M ethod Type RO CL CO FO JA PO CA%
1. Original RO 14 0 0 2 0 0 87.5

CL 0 30 0 0 0 1 96.8
CO 0 0 15 0 0 1 93.8
FO 2 0 1 27 1 1 84.4
JA 0 0 0 1 15 0 93.8
PO 0 0 0 0 0 32 100

Overall 93.0
2. Cross- RO 14 0 0 2 0 0 87.5
Validated CL 0 30 0 0 0 1 96.8

CO 0 0 15 0 0 1 93.8
FO 2 0 1 26 1 2 81.3
JA 0 0 0 1 15 0 93.8
PO 0 0 0 0 0 32 100

Overall 92.3

Table 4.1: Classification results. Method: Original - Linear discriminant analysis, Cross - 
validated - Linear discriminant analysis with leave-one-out method (RO-Rock, CL-Classical, 
FO-Folk, Ja-Jazz, PO-Pop, CA% - Classification accuracy rate)

while they were not. These files are highlighted in Figure 4.9. There were 16 rock 

files in total, 8 were used for training and 8 for testing. As seen in Figure 4.9, the 

16 rock files were returned in the top 20 matches, however 3 non-rock files were also 

classified under rock among them.

In the case of classical music, the files used in the training set inclnded bchrisl, 

bchris2, bchris5,bchris6, chrisl, chris2, chrisS, chris6 and the testing set included: 

bchris3, bchris4, bchris7,bchris8, chris3, chris4, chris7, chris8. There were 31 classical 

music files in total, 16 were used for training and 15 for testing. The 31 files were 

recovered in the top 61 matches. In the top 61 closest matches, 30 other non-classical 

files were also listed. We tested the Musclefish demo for all 5 classes of songs and a 

15-60% misclassification rate existed.
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4.5 C h ap ter Sum m ary

In this C hapter, we examined a technique where features used to classify music signals 

are derived directly from the TF domain. Using six different genres for classification, 

we have shown th a t high accuracy rates can be obtained using features that reflect the 

non-stationarity properties of audio signals and are able to depict its spectral, energy 

and entropy change over time. In fact, using the original LDA, 93.0% of all original 

grouped cases were correctly classified while 92.3% of songs were correctly classified 

using the leave-one-out technique. In addition to the success rate, the algorithm has 

a low com putational complexity compared to techniques using HMM, ANN, or SVM, 

and offers versatility as it can be apphed to any audio signal without alteration.
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T e r r i t o r i a l  Map 
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Figure 4 .9 : Com parison w ith musclefish



Chapter 5 

Conclusions

IN this thesis, we examined a technique where features used to classify and water­

mark signals are derived from the joint TF domain. Introduction and motivation 

for our work were explained in Chapter 1. TF theory and STFT analysis were intro­

duced in Chapter 2. Chapter 3 discussed a novel spread spectrum audio watermark­

ing technique based on instantaneous mean frequency and using spectrum technology. 

Audio classification using TF approach and new TF based perceptual features were 

discussed in Chapter 4. In this Chapter we will present a summary of our results and 

future work. Publications generated from our work are listed in Appendix A.

5.1 Summary of results

The summary of our results can be divided into two sections; 1. Results of audio 

watermarking and 2. Results of audio classification.

5.1.1 Spread spectrum  watermarking and instantaneous mean  
frequency

Our novel audio watermarking algorithm was tested using 5 different types of audio 

signals including classical, pop, rock, and country music. Using TF analysis, the 

watermark (consisting of 25 bits within a 5 second sample of an audio signal) was 

embedded using the IMF of the audio signal and perceptual shaping. The watermark
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was exposed to  common signal processing attacks including MP3 compression, addi­

tive noise, filtering operations, equalization, noise reduction, resampling and additive 

white noise. This resulted in a bit error rate in the range of 0-13%.

Based on the research in this area and our experimental results, we were able to 

make the following deductions:

•  The performance of a spread spectrum watermarking technique is proportional 

to the length of the PN sequence. The longer the length of the PN sequence, 

the better the recovery of the hidden message. This is because, in the recovery 

stage, there will exist a higher degree of correlation between the message spread 

with the PN sequence and the locally generated PN sequence. And even if the 

message is exposed to channel distortions or AWGN, there is higher chance of 

recovery. However, as the length of the PN sequence is increased, the number 

of message bits must be decreased therefore the message payload is not as high.

•  There exists a tradeoff between the imperceptibility and the robustness of the 

embedded watermark. In order to decrease the BER and improve the water­

m ark’s recovery, the energy of the watermark must be relatively high compared 

to the music segment. However, by increasing the embedding strength of the 

waterm ark, we are making it more perceptible within the audio segment. An 

ideal balance needs to be reached by using perceptual shaping tha t will maxi­

mize the energy of the embedded bits and improve recovery.

•  By examining different TFDs, we found that Cohen’s class of transforms based 

on the W VD gave high resolution in the TF domain, however such TFDs pre­

sented several drawbacks. First, the TFD of multi-component signals suffered 

from cross term  interference. Due to the temporal masking properties of the 

hum an ear, it is sufficient to compute the IF in each time window using STFT 

analysis (referred to as IMF). Such STFT analysis is also more ideal since it 

has a low com putation time and can be practically implemented compared to 

the WVD.
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•  In examining the IF to be extracted we found that by using the direct definition 

of IF as the derivative of the phase, several problems exist. For one thing, 

it is necessary to compute an analytical signal first using Hilbert transform 

which will generate an IF at each instant in time. Depending on the type of 

signal, the IF can yield negative values using this definition which will render 

it meaningless. Second, as mentioned earlier, there is no need to compute the 

IF at every instant in time (especially in the case of audio signals), leading us 

to the definition of IMF for each window.

•  Using the proposed IMF, the watermark can be modulated to a perceptually 

undetectable and statistically imperceptible region of the audio signal. Along 

with the benefits offered with spread spectrum technology, a highly secure wa­

termark can be obtained as the security of the system is not dependent upon 

the knowledge of the algorithm.

• Other benefits of this type of watermarking can be summarized as follows. 

First, since the algorithm is content based, it is adaptive to various audio files 

where algorithms with fixed attenuation are unable to maximize the robust­

ness / imperceptibility criteria. Second, the algorithm is less computationally 

complex than frequency domain watermarking techniques. Finally using the 

IMF of the signal we maximize the robustness to various attacks by embedding 

in perceptually significant regions.

• The disadvantage of this system is that we have assumed perfect synchronization 

between the receiver and transmitter. This means that an intentional synchro­

nization attack such as cropping would destroy the watermark. To improve this 

performance, several solutions such as redundancy coding or synchronization 

bits have been proposed in literature [44].

5.1.2 Content based audio classification

Our novel audio classification algorithm was tested on 143 different music segments 

consisting of 5 different types of audio signals including classical, pop, rock, folk and
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country music. In classifying music into six different genres, we have shown that

high accuracy rates can be obtained using features that reflect the non-stationarity 

properties of audio signals and are able to depict its spectral, energy and entropy 

change over time. In fact, using the original LDA, 93.0% of all original grouped 

cases were correctly classified while 92.3% of songs were correctly classified using the 

leave-one-out technique. These results were also compared to a popular commercially 

licensed software (Musclefish) where a classification error of up to 50% was achieved.

Based on the research in this area and our experimental results, we were able to 

make the following deductions:

•  The entropy of a signal is an efficient and simple technique for computing the 

tonality and noise of a music segment. This novel TF derived feature along with 

its standard  deviation, performs well for discriminating between different genres 

of music. However, further TF features are required to improve classification 

accuracy.

•  O ther T F  derived features such as overall IMF, IMF from low subbands IMF 

ratio, instantaneous bandwidth can efficiently characterize music signals. The 

IM F ratio allows us to monitor the spectral change of an audio signal while the 

instantaneous bandwidth can show the spread around the IMF of the signal.

•  Techniques th a t extract feature from the time or frequency domain alone can 

achieve high classification rate for discrimination between music and speech 

segments since their spectral characteristics are quite different. However, such 

techniques will not perform efficiently for discrimination between different gen­

res of music th a t can have similar sounds.

•  For pa ttern  classification, it is advantageous to use linear discriminant analysis 

th a t has commonly been used in speech recognition algorithms. Such technique 

has low com putational complexity and offers versatility as it can be applied to 

any audio signal without altering the algorithm. Also, neural network classifiers 

which are popular are not always ideal as they have a black box effect where 

the efficiency of the extracted features can not be examined.
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5.2 Future work

•  In terms of audio classification, the algorithm should be tested on a larger 

database of signals including other genres of music such as rap, hip hop and 

international music among others. The TF approach and the features extracted 

could also be extended to other forms of multimedia data and its efficiency 

examined.

Further work should also include examining other classification methods such 

as minimum classification error (MCE) instead of LDA to improve classification 

accuracy.

• In audio watermarking, a larger database of signals should also be tested for 

imperceptibility of embedded watermark and recovery rate. In order to improve 

the BER for larger message sizes and small PN sequence lengths, error correcting 

schemes should be implemented. Finally, the effect of further attacks such as 

cropping and dual watermarking should be examined.

• For both audio classification and audio watermarking techniques, optimization 

of window sizes used in the STFT could be examined to improve feature accu- 

racy.
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