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Abstract

HDR images are usually generated by fusing sequence of images captured with variable exposure time.

Exposure Fusion is a technique that directly fuses the exposure shots into displayable image. This

thesis proposes a novel Exposure Fusion algorithm that directly fuses exposure bracketed shots into a

displayable image. Most techniques targeted for direct fusion do not have an effective exposure control

mechanism and are only designed for exposure sequence containing adequate number of exposure shots.

The proposed algorithm offers a novel approach that adaptively adjusts its parameter for the best viewing

experience even for exposure sequence that do not contain adequate number exposure shots. An online

user survey showed that the proposed method gave consistent superior results when compare with other

methods of similar nature. The survey results were also compared against state of the art evaluation

metrics (TMQI and HDR-VDP) and the survey results contradicted the evaluation metric.
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Chapter 1

High Dynamic Range Imaging

1.1 Introduction

The primary purpose of an image or a photograph is to capture, record and present the incoming light

in order to accurately represent the scene or object in question. A conventional camera can capture

light in an 8-bit format (per channel) which, for the most part, can represent a reasonable amount of

incoming light accurately in most situations. However, the natural light has a vast range of intensities

which a conventional camera cannot possibly capture. A sunlit scene vs. a moonlit scene differs by a

factor 109 in amount of light hitting the object [1] and thus, representing this range using only 8 bits

will cause a lot of relevant information to be lost.

The Human Visual System (HVS) deals with this enormous range of incoming light by dynamically

changing its photoreceptor sensitivity and contraction or expansion of the pupil [1]. However, the

dynamic response of the eye is still not fully understood and the attempts to replicate the results lie

even below our current understanding of the eye. The goal of High Dynamic Range (HDR) imaging is

to mitigate the limitation of the standard camera by capturing the full range of incoming light [1].

Recent cameras are equipped with functionality to automatically detecting the scene brightness,

allowing the camera to adjust its exposure settings automatically when taking the shots. However, the

auto-exposure functionality of the camera still has limitations. A scene containing dark regions as well

as bright regions can lose a significant amount of details. For example, a photograph of a room with

sunlight streaming through a window will either make the scene outside the window or the room itself

1
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unrecognizable. HDR imaging is a technique that tries to lessen these effects.

HDR imaging attempts to capture the light as faithfully as possible in order to preserve maximum

information (which in most cases refers to the delineation of adequate structural detail defining the

scene). This can be achieved in two ways: 1) use a camera which can capture the light with more than

8 bits or 2) capture images at a multiple exposures and then combine the most relevant part of each of

the image into one final image [1]. The first approach is an expensive solution to HDR imaging, usually

requiring a camera with a multiple layers of sensors, each with different sensitivity [1].

Furthermore, most display devices can only display 8-bit images so capturing image with HDR

becomes problematic when converting into a range capable for rendering. However, the second approach

can be employed by existing cameras. The issue of displaying the HDR image still remains for both

methods and therefore, the image needs to be converted back into an 8-bit image before displaying.

Reducing the dynamic range for displaying the image is referred to as tone mapping and the traditional

8-bit image is referred to as a low dynamic range (LDR) images.

1.2 Applications

Applications of an HDR imaging are countless. HDR imaging is especially useful in applications involv-

ing: 1) Fusion of multiple images or 2) Accurate rendering of light and colour. Examples of applications

that perform one of the two functions mentioned above are very wide and numerous including:

• Scientific and Medical Visualization

HDR imaging has found many uses in medical imaging where high accuracy is essential. For

example, a mammography images are usually taken in multiple shots each captured using different

exposure level. Mammography images are taken this way because it is essential to capture every

subtle detail. An expert specializing in inspecting the different bands of light is then required for

diagnosis. With the advances in HDR imaging techniques (such as tone mapping) this process can

be made easy and convenient [2].

• Physical Based rendering

One of the most widely used applications of HDR imaging is the real life lighting of virtual objects in

a mixed reality environment. Real life lighting using HDR images is termed Image Based Lighting

2
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(IBL) [1]. IBL is used in most game engines (including Unity [3]) for enhanced lighting effects and

is also widely used in the making of animated films [1]. Images utilizing IBL are produced by taking

multiple HDR photographs of a light probe (usually a reflective sphere) placed at every location

where an object needs to be rendered. HDR images of the light probe captures incoming light

from every possible angle [1]. The information from HDR photographs is then used for lighting

and rendering [1]. A recent advance in IBL utilizes a video of a light probe in order to obtain more

accurate lighting effects [4].

• Multispectral Visualization and Security

Visualization of ”light” outside the visible spectrum has many applications. For example, satellite

imagery, infrared photography, ultra sound etc. The captured light data is usually represented as

an HDR image. For example, visualization of infrared (IR) images is very useful in security and

surveillance to detect intruders [5]. HDR imaging is usually used when a camera need to record a

sunlit area from inside of a building [5]. HDR imaging has also found applications in visualization

of sonar images for underwater navigation [6].

• Recognition

One of the most challenging tasks in image based recognition in an outdoor environment is recog-

nition under constant change of illumination. Accuracy of the classifier is dependent on the time

of the day the training data were collected. [7] and [8] have shown that recognition tasks using

a HDR images are robust against illumination. Robustness against illumination can significantly

improve any recognition tasks (for example, lane detection) in an outdoor environment.

1.3 The Pipeline

Figure 1.1 depicts the traditional pipeline used for creating and displaying images with HDR content

using multiple exposures. The first stage in an HDR image acquisition pipeline is the capturing of images

with multiple exposures. In this stage, images are first subjected to alignment and registration. From

the aligned multi-exposure images the camera’s response curve is estimated (stage 2). This involves

using the exposure time along with corresponding pixel values to estimate the non-linear relationship

between a pixel and its radiance value. Multi-exposure images are then linearised using the estimated

3
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Figure 1.1: HDR Image Acquisition Pipeline

inverse camera response function and fused together in order to generate the HDR image. The fused

HDR image is then subjected to de-ghosting and then stored or processed. The HDR image cannot be

viewed on conventional monitors since monitors can only display 8-bit images. Therefore the image is

subjected to tone mapping and colour correction (steps 4 and 5) before displaying on a monitor.

Most HDR imaging algorithms follow th step 1-6 outlined in Figure 1.1. However, there is a spe-

cialized group of algorithms that fuse the images directly into tone mapped images, effectively skipping

stages 2-5 of the conventional pipeline. These specialized algorithms, which can directly fuse images into

tone mapped images, are termed differently by many authors however they all will be referred as Expo-

sure Fusion (EF) ,first termed by Mertens et al [9], algorithms in this document for simplicity. The work

proposed in this thesis dissertation will improve upon one of these Exposure Fusion techniques. There

exist many techniques for Exposure Fusion and one issue that many algorithms share is the accurate

displaying of information in bright or dark regions. The Human Visual System (HVS) cannot perceive

changes in bright areas as much as dark areas (Weber’s law1 [10]) and therefore, the details in bright

regions are not as easily perceived. This problem is amplified when the image is displayed on a large

screen monitor due to interpolation used to resize the image.

Another major issue that most Exposure Fusion techniques face is the robustness against a lack of

sufficiently exposed images. Current EF techniques are designed to give best results when the exposure

sequence contains an equal number of over and under exposed photographs. However, a practical HDR

imaging implementation will likely capture either mostly under or over exposed photographs. Having

mostly under or over exposed images will yield images which are too bright or too dark when fusing using

EF algorithms. Figure ?? displays a typical multiple exposure sequence containing both over and under

1 Weber’s law state that the the just-noticeable difference (level at which we can perceived the difference) between two
stimuli is proportional to the magnitude of the stimuli. In case of image, Weber’s law implies that the small change in
bright regions (stimuli) will not not be detected as easily as changes in dark region.

4
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exposed regions for entire scene. On other hand, Figure ?? displays an exposure sequence containing

mixed levels of exposures for different regions of the scene. For example, the sky in Figure ?? contains

equal number of over and under exposure images whereas the grass region (bottom left) contains only

two shots which are slightly over exposed. Using current EF technique on images of Figure ?? will result

in an image with a dark grassy region and a bright sky; making the image look unrealistic (Figure ??

(b)-(d)). Figure ?? (d) is the middle exposure shot in the exposure sequence. Figure ?? (d) clearly show

that the bottom left grass region appears too dark while the sky is overly bright compared to the grass

region. This observation suggests that over or under exposedness is a local attribute and therefore a

single exposure shot will be insufficient to capture the whole scene.

This thesis proposes a novel, non-parametric method for directly fusing an exposure sequence into

an 8-bit/channel image (skipping the tone mapping step). The proposed method reduces the brightness

of a over exposed regions while increases the brightness of a under exposed regions in order that details

may be perceived more accurately. The proposed method is an EF technique which is robust against

varying exposure times, which may differ from one photographer to next. The proposed method is thus

ideal for practical HDR imaging applications.

1.4 Organization

This thesis is organized as follows: Chapter 2 will discuss different techniques of HDR image generation.

Chapter 2 will briefly discuss hardware based HDR image generation and focus largely on HDR image

generation using multiple exposure shots. Chapter 3 will briefly discuss tone mapping followed by

exposure fusion techniques in Chapter 4. Chapter 4 will also present the proposed exposure fusion

technique. Chapter 5 will then present the experiment setup and results. Finally Chapter 6 will conclude

this thesis and present future work.

5
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1.2: Increasing exposure time from (a) to (h)
6
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 1.3: Increasing exposure time from (a) to (g)
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Chapter 2

HDR Image Generation

2.1 Introduction

A digital camera captures images by refocusing light from a scene through a lens onto an array of light

sensors. The lens used for focusing the light is a passive device which does not degrade any incoming

information [1] (assuming lens is perfectly clean). The light falling on the sensors then generates electrical

signals that get recorded into memory. In non-digital cameras the light falls on a photosensitive film

which can then get developed into photographs [1].

Light sensors in general are non linear devices that usually only operates on a specific range of

incoming stimuli. Any incoming stimuli outside the operating range of the sensor will over saturate the

sensor causing information loss. Cameras control the amount of light falling onto a sensor by adjusting

its shutter speed.

Light from a natural scene contains a vast range of light intensities which usually fall outside a

sensors’ operating range. A single natural scene might contain regions that can over saturate the sensors

as well as regions that need large exposure time to be legible. A digital camera cannot locally adjust its

shutter speed for capturing light from such a large dynamic range in a single scene.

High Dynamic Range (HDR) imaging tries to solve the problem faced by the conventional cameras

by capturing a more extensive range of incoming light. HDR imaging faces two main issues: capture

and display. The main issue of capturing the incoming light can be solved at the hardware or software

level. Similarly, the representation issue can also be solved at the hardware or software level.

8
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Capturing HDR images at a hardware level involves specialized cameras equipped with light sensors

that do not saturate when exposed to large dynamic range of light intensities [1]. Hardware based

approach to HDR image generation can directly capture scene with HDR content in a single shot.

A software based approach to HDR image generation involves capturing multiple photographs at

different exposures levels and fusing them afterward. The main rationale behind this approach is that

HDR scenes that cannot be captured in a single shot can be captured by varying the exposure time thus,

ensuring some shots are within the operating range of sensors. The fusion process then locally combines

the most relevant part from each exposure shot into one final HDR image. The main disadvantage of

using this method is that both the camera and the scene needs to stay perfectly still in all of the exposure

shots. A non static scene captured using multiple exposures will cause artifacts, known as ghosting, in

the final fused HDR image.

Hardware based HDR image generation is a fairly new technique and it has still not been adopted for

traditional photography. Software based HDR image generation is complicated and faces many issues

however it can be used by existing devices. Currently, software based HDR image generation is the most

popular approach due to its compatibility with existing cameras. However, hardware based HDR image

generations is expected to be more in use in the future.

As discussed above, software based HDR image generation is widely popular and therefore, this

chapter will mainly focus on that with a brief discussion on hardware based approaches.

2.2 Hardware Based Methods

The hardware based methods of capturing an image with HDR content involves having a specialized

cameras that are able to capture the full range of light. Cameras capable of direct HDR image capture

are usually equipped with multiple layers of light sensors with different sensitivity. Another methodology

used for direct HDR image capture is to use grouping of light sensors with variable sensitivity for each

region of the image. For example, [11] used a special camera that uses IcyCAM chips for HDR image

acquisition. IcyCAM are SoC (System-on-Chip) chips created by e Centre Suisse dElectroniqueet de

Microtechnique (CSEM; Neuchtel, Switzerland)that have an optical front end and a processor on the

same device. IceCAM chips are able to perform image acquisition, analysis and decision-making on

cluster of pixels instead of whole image. Despite the advantages of IcyCAM, it is still in the development
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stage and requires vigorous tuning. In [11], IcyCam is used to compensate and reduce the capture of

glare.

Hardware based HDR image generation is still in its development stage and thus it is not widely

available. However, future cameras will most likely contain direct HDR image capturing capabilities.

2.3 Software Based Methods

As discussed earlier, a major stage in the HDR acquisition pipeline is to capture images at different

exposure levels and then fuse them afterward. This section describes some of the techniques used to

fuse captured images. Most of the fusion techniques described below requires a tone mapping stage

for display purposes. Furthermore, every fusion technique requires that the camera and the scene are

perfectly still. As a consequence, Scenes with movement are first subjected to image alignment in order

to register the captured images.

2.3.1 Median Threshold Bitmap

Before discussing the fusion of multi-exposure images, it is of great importance to discuss image regis-

tration for the exposure sequence. Median Threshold Bitmap (MTB), is by far the most popular image

registration technique used for aligning multi-exposure images. MTB is widely used in many HDR

related research as well as commercial HDR applications.

MTB was first introduced by Ward [12] and further refined by Pece and Kautz [13]. Ward noted in

his paper that registration of multi-exposure images is very different from registration of photographs

captured at a single exposure level [12]. Traditional image alignment algorithms rely on edges or other

features in an image for matching criteria. However, every photograph in a exposure sequence will

generate a different edge map and therefore an image alignment using traditional methods will yield

undesirable results. MTB is an image alignment technique which is impervious to varying exposures.

The MTB algorithm initially calculates the median of each exposure shot (grayscale) and thresholding

that image to its median value. A pixel will be assigned a value of 0 if it is lower than the median and 1

if it is greater. Each threshold image is then compared with a reference image from the sequence using

the XOR operation. The offset of an image is calculated by measuring the difference of XOR values in

a region surrounding a pixel. The result of MTB is (N − 1)I(x, y) integer offset at location (x, y) for
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each of N − 1 exposure images (assuming there are N images in an exposure sequence) from a reference

exposure image. Multi-exposure images can then be aligned using the generated offsets.

MTB is a fast image alignment algorithm used prior to any image fusion. MTB also has some noise

reduction capability that makes MTB an ideal choice for multi-exposure image alignment.

2.3.2 Image Fusion

Image fusion is the most widely studied and relevant topic in software based HDR image generation. In

a multi-exposure image fusion, special care must be taken to retain contrast, natural tone and reduce

artifacts. This section will outline the most recent techniques of image fusion.

Pixel-wise image fusion, first proposed by Mann and Picard [14], assumes that the camera and

the scene are both completely static. The proposed idea was to do simple weighted average of the

corresponding pixels across the exposures.

Id =

∑ W (v)∗f−1(v)
t∑

W (v)
(2.1)

Where:

Id = Radiance map

v = captured pixel value at a given exposure

t = exposure time

f−1(v) = inverse camera response function that maps from pixel value to irradiance

Equation 2.1 is the general framework for a weighted average approach and it requires estimation

of camera response function, exposure time and a weight function. The rationale behind Equation 2.1

is that the pixel-wise image fusion is inherently a linear operation thus the argument of the averaging

function should also be linear. Applying the inverse camera response function and dividing each pixel

by the exposure time will linearize the image. The pixel values are converted into radiance values. After

the fusion operation, tone mapping should be applied before displaying or printing. The main challenges

in pixel=wise fusion stem from deriving an optimal weighting function.
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Mann and Picard initially proposed the weighing function as the derivative of the camera response

function arguing that the saturated pixels cannot map to the derivative [14].

Taking motivation from Mann and Picards work, many other weighing functions were proposed.

Debevec and Malik [15] proposed a simple hat function arguing that only the mid-range intensities are

relevant in each exposure. Mitsunaga and Nayar [16] proposed a weight function to reduce signal to

noise ratio. Reinhard et al.[1] combined the work of [15] and [16] by applying a broader hat function to

[16]s work. Recently an adaptive Gaussian weighting function was introduced by [17] to accommodate

for the case when a great amount of details are in over/under exposed photographs. For example, the

Gaussian of over exposed image might have mean closer to 255 while the Gaussian of a under exposed

image might have mean closer to 0. The biggest issue of these methods is that the resulting images

lose relevant edge information because it is essentially a global process and it does not take spatial

information into account.

The problem of weighted average (presented above) was solved by fusing images at different scales

and resolutions. Multi-scale image fusion attempts to fuse the sequence by first decomposing the images

into different sub images with different resolution (Gaussian pyramid [9] for example). For each location

in the transformed image, the value in the pyramid with highest saliency (eg. visual saliency ) is selected.

The fused image is then reconstructed by taking an inverse transform of the combined images. Xu et

al. [18] used this approach to fuse the images in the wavelet domain. The images are first decomposed

into wavelet coefficients. The coefficients of each image at each level are then combined using a weighted

average method. Finally the fused image is obtained by taking the inverse wavelet transform. Similarly,

[19] used wavelet packet transformation for image fusion. The technique used by [20] was very similar

to transform domain fusion. In this approach, a gradient of images over multiple resolution is first

calculated, the gradient field is then modified in accordance with the multi-resolution decomposition of

the original image. Gradients from all the images are then then fused in the multi-resolution domain.

Finally, the Poisson equation is used to obtain the fused image and finally the image is linearly stretched

to [0-255] range for display.

Finally [21] uses the dictionary learning technique to fuse the image. A dictionary is first trained

using K-SVD algorithm [22]. Different outdoor/indoor images were used for training (images were

first divided into blocks). Using the trained dictionary, the input images are then decomposed into

appropriate dictionary atoms using orthogonal matching pursuit (OMP) [23]. The coefficients are then
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merged and recombined with the dictionary to get the final output image.

2.3.3 Ghost removal

Once exposures are aligned and the camera response curve is estimated, it is safe to fuse the images.

However if there is motion in the scene, for example, a person walking, the moving object may appear

in the final image as ghosts. This is also known as motion blur.

Ghost removal is usually performed after image registration and camera response estimation. Ghost

removal consists of two stages: 1) ghost detection and 2) ghost removal.

Motion in a scene can be classified in two ways: 1) moving object on a static background or 2) moving

background with static objects. Most ghost detection technique can only detect one of the two types of

motion that were described above; very few ghost detectors can detect both.

The ghost detection technique most commonly used, detects ghosts by weighted variance measure

[24] described below:

V IUV =

W (ZkUV )∗(EkUV )2∑
W (ZkUV )

(
W (ZkUV )∗(EkUV )2∑

W (ZkUV )
)2

− 1 (2.2)

Where:

UV = image pixel location at (U,V)

ZkUV = pixel value Z of exposure k at position (U,V)

EkUV = Estimated radiance value of exposure k at location UV

Equation 2.2 describe a general formation for ghost detection by comparing variance in the image.

The main purpose of variance calculation is to detect regions in the image that had experienced motion.

Variance of a region affected by a motion will be high while variance of a region not affected by motion

will be low, therefore rhe variance map can give an indication of the location of a moving object.

Variance based ghost detection is only one of the many ghost detection algorithm available. There

are also algorithms based on entropy and more recently ghost detection is carried out by optical flow

algorithms [24].

The final aim of HDR image capture is to remove all ghosting artifacts. One way a Ghost can be

removed after ghost detection stage is by applying separate fusion algorithm on the affected areas. This
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is done by assigning weights to the affected regions based on its probability of being static or not. The

ghost removal stage is usually performed during the fusion process.

2.4 Summary

This chapter outlines the range of approaches to HDR image generation. with each approach having its

own advantages and disadvantages. Hardware based HDR image generation involves utilizing specialized

cameras while software based image generation can generate HDR images using existing devices. The

main advantage of the hardware based approach is that it is fast and it is robust against artifacts

caused by motion. However, it requires special hardware which might not be available. On other hand,

software based HDR image generation can be employed by existing devices. However, it requires many

pre-processing stages (alignment, camera response estimation and ghost removal).
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Chapter 3

Tone Mapping

3.1 Introduction

High Dynamic Range (HDR) images cannot be viewed on conventional 8-bit/channel monitors. The

process of compressing the HDR content to displayable low dynamic range (LDR) is termed tone map-

ping. The core issue in tone mapping is not only the compression of dynamic range, but compressing the

dynamic range in such a way that the information that is ”thrown” away is not perceptually relevant.

The Human Visual system (HVS) sensitivity range far exceeds the light sensitivity of a camera sensors

and thus the tone mapping operation will ultimately degrade the quality of the original HDR image.

Degradation due to a tone mapping operation needs to be controlled in order to maximize the outcome

of the application at hand.

Tone mapping can also be regarded as a nonlinear quantization process that aims to quantize 32-bit

image (HDR image) into an 8-bit image (LDR image) [1]. Every process that performs A/D conversion

faces quantization problems. The problem of tone mapping has existed for a long time before HDR

imaging came into existence however, it was not a major issue with traditional LDR photographs due

to low sensitivity of the sensors [1]. However, it is currently a major challenge in HDR imaging.

The difference in contrast seen in a natural environment cannot be reproduced by conventional

cameras and thus in traditional photography it falls to the photographer or the artist to convey this

information in a most natural way whilst remaining in the display range of the monitor. For example, a

photograph of a person or an object with sun or a major source of light directly behind him/her will cause
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a severe darkening effect making the person unrecognizable (the photographer must then compensate by

choosing an exposure setting that compromises for a trade-off between detail either in the foreground or

background of the captured scene). The most accurate and natural visualization of captured contrast is

the key issue of tone mapping.

Various tone mapping operators (TMO) have been introduced thus far and they fall into two main

categories: 1) Global TMOs and 2) Local TMOs. Global TMOs are computationally efficient however,

they fail to encode subtle contrast difference that make an image appear detailed. On the other hand, a

local TMO is able to encode all the details but are computationally expensive. Another issue faced by

local TMOs is the halo effect which occurs when the contrast change in a region is too strong (this is not

an issue for a global TMO) [1]. Halo effect is an artificial light or dark ring that surrounds an object,

like the halo on top of an angel. Due to the nature of the tone mapping problem, the use of various

visual models has become the backbone of many TMOs. This chapter will first detail the visual models

used by major TMOs and then present the tone mapping operators themselves.

3.2 Stevens’ Power Law

Equation 3.1 is the general form of Stevens’ law describing the relationship between any physical stimuli

and the magnitude of its perceived intensity. Stevens’ law states that any physical stimulus (e.g. light,

touch, taste etc.) has an exponential relationship between the amount of physical stimuli and its per-

ceived magnitude. Stevens’ law models human perception to physical stimuli and therefore many of the

tone mapping operators are based on it.

S = k ∗ Iα (3.1)

Where:

S = Sensation magnitude

k = Adjustable constant

I = Stimulus intensity

α = Power constant dependent on modality
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Figure 3.1: Naka-Rushton Model

3.3 Naka-Rushton Model

Psychophysical studies have shown that the photoreceptors response to the incoming light is a sigmoid

function when plotted on a log linear graph [1]. Study have shown that the eye response to the incoming

light is not only dependent on the light intensity itself but the light hitting the surrounding regions as

well [1]. The eye response models the incoming light as a sigmoid function which can effectively model

over and under-saturation. The sigmoid function will adjust its position on the light intensity axis based

on surrounding light intensities if the receptor stay saturated for too long, ensuring that the eye response

does not stay saturated. The eye response can be modeled by the Naka-Rushton equation (Equation

3.2).

R

Rmax
=

In

In + bn
(3.2)

Where:

I = Radiance image

R = Eye response

Rmax = Maximum eye response
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b = Semi-saturation constant

n = Sensitivity control exponent

Parameter b in Equation 3.2 is a constant that is dependent on background intensity. Figure 3.1

shows the plot of the relative eye response curve over a range of background light intensity. Figure 3.1

clearly shows that changing the b value will shift the sigmoid function in the intensity axis and thus

allowing the eye receptor to handle large dynamic range of incoming light.

3.4 Retinex

Retinex, the combination of the word retina and cortex, is another simplified model of the HVS. Retinex

theory was first proposed by Land in 1971 [25]. Land proposed that the HVS decomposes an image

into illuminance and reflectance, latter of which is used in human perception (Equation 3.3). The key

challenge in the Retinex model is the decomposition of an image into both its illuminance and reflectance

component. Many algorithms have been proposed to do this. Tone mapping operators based on Retinex

theory attempt to map the reflectance to display range and are local in nature due to the local nature

of calculation involved to predict reflectance.

I = R ∗ I (3.3)

Where:

R = Reflectance

I = Illuminance

Retinex theory is also used extensively in other image processing fields with an alternate name. The

Retinex model can also be regarded as a homomorphic filter, where the task is to filter the illuminance

from the image. Homomorphic filters are mainly used to filter multiplicative noise. Although the Retinex

model and homomorphic filtering share many similar elements, they both use very different methodology

to decompose the image into its respective components.
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3.5 Global Tone Mapping Operators

Global TMOs are usually logarithmic or S-shaped functions which operate on each pixel individually.

Global TMOs do not take spatial relationship of the pixels into account, so they tend to blur the edges

of the tone mapped image.

A relatively large class of TMOs uses S-shaped functions with the intention of mimicking the response

of the photoreceptors in the eye. A global TMO based on a photoreceptor model is designed to apply a

sigmoid or a piece wise logarithmic function on every pixel of the image. On other hand, a local TMO

will vary the shape and the operating range of a sigmoid function based on the neighborhood of a pixel.

One of the earliest TMO was introduced by Tumblin and Rushmeier [20]. Tumblin and Rushmeier’s

TMO is a global TMO based on Stevens’ law that aimed to compress the global luminescence to the

display range by mapping the perception curve (Stevens’ law) with the model of the display device.

n = [
L
α(w)
α(d)
w

Ld max
∗ 10

β(w)−β(d)
α(d) − 1

Cmax
]
1
γ (3.4)

α(L) = 0.4 ∗ E(log(L)) + 2.92 (3.5)

β(L) = −0.4 ∗ (E(log(L)))2 − 2.58 ∗ E(log(L)) + 2.02 (3.6)

Where:

γ = Display γ

Cmax = Maximum display contrast

d = Display luminance (constant)

w = Real world luminance

Lw = Real world luminance

Ld max = Maximum display luminescence

E(log(L) = Expected value of log(L)
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Equation 3.4 - 3.6 denote the Tumblin and Rushmeier’s tone mapping operator. Tumblin and Rush-

meier’s operator was specifically designed for grayscale images only and therefore it is not suited for

colour images. Furthermore, Tumblin and Rushmeier’s operator is a global tone mapping operator that

requires display specific parameters which might not be available in many situations.

Ward and Rushmeier [26] later introduced a TMO based on histogram adjustment. Ward and Rush-

meier operator introduces a novel histogram adjustment technique based on local adaptation population

in the scene. The Ward and Rushmeier operator incorporates models for human contrast sensitivity,

glare, spatial acuity, and colour sensitivity to match subjective viewing experience. The histogram ad-

justment operator is still a global TMO however it is partially local; in the sense that it chooses its

parameters based on local attributes.

As discussed earlier, many of the tone mapping operators are based on some aspect of visual model,

Naka-Rushton model discussed above is just one of them. Schilick [27] proposed a tone mapping function

that is based on the Naka-Rushton model. The tone mapping equation is:

F (I) =
I

I + Imax−I
p

(3.7)

Where:

I = World luminance

Imax = Maximum World luminance

p = Adjustable constant

Equation 3.7 is a special case of Equation 3.2 where ”n” = 1 and ”b” = Imax−I
p . The Schlick operator

aims to compress the overall dynamic range without any explicit edge or contrast enhancement.

The most popular local TMO used is a TMO based on Reinhard operator [28]. The Reinhard operator

first finds how bright a scene is, which is know as the key of that image. For example, a night scene will

have a low key compared with a day scene. The Key of the scene is estimated using Equation 3.8 which

is the log average of the image.

The Reinhard operator first estimate the key of the scene by using Equation 3.8. The second step in

Reinhard operator is to use the Equation 3.9 to scale the image appropriately. The final low dynamic

range image is computed using Equation 3.10. There are lots of variations of Reinhard’s operation such
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as variable alpha selection based on local regions in order to make the Reinhard operator a local operator.

key =
1

N
exp(

∑
log(δ + Lw(x, y)) (3.8)

L(x, y) =
α

key
Lw(x, y) (3.9)

Ld(x, y) =
L(x, y)( L(x,y)

L2
white

)

1 + L(x, y)
(3.10)

Where:

N = Total number of pixels

α = Adjustable parameter

Lwhite = White balance value

3.6 Local Tone mapping operators

One of the first local TMO was proposed by Chiu [29]. Chiu’s TMO attempts to compress the dynamic

range by utilizing a blurred version of the input image. Chiu also incorporates glare removal in its tone

mapping algorithm. Chiu’s TMO is:

Ld(x, y) =
L(x, y)

k ∗ Lblurw (x, y)
(3.11)

Where:

Ld(x, y) = rone mapped image at position x amd y

Lblurw (x, y) = Gaussian filtered image with window size

As with all local TMOs, Chiu’s TMO will produce halo artifact in the boundary between light and

dark regions.

Retinex based TMOs can be classified as local TMOs that are inspired by the human visual system.

They encode the reflectance of an image to a displayable range, enhancing the local contrast in process.
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The Original retinex model introduced by Land was named random path retinex. The random path

retinex assigns a set of random 1-D paths originating from each pixel location. The ratios of adjacent

pixels in a given path are then averaged in order to obtain the reflectance estimation from a given path.

The final reflectance value at a given pixel location is then calculated by averaging all the reflectance

values obtained from each path. Lands algorithm utilizes random 1-D path for its reflectance calculation

and as such resulting image depends on number of paths per pixels and the size of the path. Furthermore,

due to the random nature of the paths, the final solution is not always the same for a given image.

The path based retinex was then improved by [30]. [30] introduced the random spray retinex where

spray of pixels around the test pixels are used for reflectance calculations. The random spray retinex has

many free parameters and it is not always easy to tune for optimal results however unlike path based

retinex, the spray retinex yield a constant stable solution for a given image,

Another method of reflectance calculation was introduced by [31]. The new version of retinex, named

center surround retinex, estimates the value of reflectance by the ratio of the pixel to its local average.

Ld = log(Lw) − log(Lblurw ) (3.12)

Where:

Ld = Tone mapped image

Lw = Gaussian filtered image(HDR)

LwIblur = Gaussian filtered image (HDR)

Equation 3.12 shows the general form of center surround retinex. There are many different formula-

tions of blurring filter used in Equation 3.12, each with its own advantages and disadvantages

3.7 Discussion

Figure ?? show a toned mapped image generated by various tone mapping operators. Images shown in

Figure ?? have many differences and it is up to the observer to decide the overall quality of the image.

Figure ?? (a) and (c) appears ”washed out” and dull compared to Figure ?? (b) which seems to be

detailed. However, Figure ?? (b) has an overly bright sky region and therefore, the details in the clouds
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(a) Tumblin and Rushmeier’s TMO [20] Schlick’s TMO [27]

(b) Reinhard’s TMO [28] (c) Chiu’s TMO [29]

Figure 3.2: Tone mapped image generated using various TMOs

appears attenuated. The ground region in Figure ?? (b) also appears to be darker then that of Figure

?? (a).

Figure ?? (d), which is generated using a local TMO, has overly bright ground regions however, the

details do not appears to be lost. The sky region also appears detailed. One major drawback of every

local TMO is the halo effect. Figure ?? (d) shows a dark rim of halo around hill where it meets the sky.

Of the TMOs presented in Figures ?? (a)-(d), Reinhard TMO (Figure ?? (b)) appears to generate

the best image. However, effectiveness of a TMO is evaluated depends on the particular application on

which it is performed and other TMOs might be applicable where Reinhard TMO fails.
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3.8 Summary

This chapter outlines the importance of tone mapping operators in the HDR imaging pipeline in that

they are required to display the image. There are many tone mapping operators available, each with

its own advantages and disadvantages. However, most TMOs are based on some aspect of the human

visual system that they try to emulate. TMOs are grouped in two categories, global and local. Global

TMOs are computationally efficient, but they tend to dull the edges. Local TMOs can preserve the

edges better, but they show halo artifacts where the bright region meets the dark.
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Exposure Fusion

4.1 Introduction

Exposure Fusion is a term given to a group of algorithms that attempts to fuse multi-exposure images

into a single displayable image, skipping the tone mapping stage. Furthermore, Exposure Fusion does

not requires the calculation of the camera response curve as it is not applying tone mapping. There

many different algorithms available for estimating camera response curve, tone mapping and HDR image

generation. Each method in each of these categories has it own advantages and disadvantages. And the

primary advantage of skipping these three steps in EF algorithms is that finding the optimal method

for best results can be avoided. Only one algorithm (EF) will now be needed to be optimized instead

of three. Another advantage of Exposure Fusion (aside from no tone mapping ) is that resulting images

tends to be more perceptually detailed. This can be explained by noticing that Exposure Fusion does not

require an intermediate HDR image and therefore, it is not subjected to distortions caused by different

fusion methods.

Disadvantages of Exposure Fusion also arises from the lack of intermediate HDR image. Exposure

Fusion techniques can only be used for applications that involves image visualization, and are not useful

for image based recognition for example. Another disadvantage of the Exposure Fusion is that it does not

take exposure time into account during the fusion process. Exposure time, along with camera response

curve, is used to process the pixels in the same domain. Without the exposure time, the overall tone

of the fused image will differ from the physical scene. For example, an exposure sequence containing

25



CHAPTER 4. EXPOSURE FUSION 4.2. EXISTING METHODS

5 under exposed images and 2 over exposed images will most likely generate (from Exposure Fusion)

image that is too dark, which might not represent the physical scene well.

This chapter will present the most recent techniques used for Exposure Fusion, its limitations and

subsequent motivation for the current work, and a newly proposed methodology for EF.

4.2 Existing Methods

The most influential Exposure Fusion algorithm was introduced by Mertens et al [9]. Mertens’ algorithm

begins by calculating a series of quality metrics which are contrast, saturation and well exposedness for

each of the exposure shot. The quality metrics indicate how important a given exposure shot is in the

final fusion process. Mertens, in his paper, stated that the combination of the product of each of the

normalized quality metrics should be used as weights to generate the final fused image. Mertens also

noticed that fusing images with the combined quality metrics as weights will cause artifacts. Much

like the halo artifacts, directly fusing the multiple exposure images will cause seams in the boundaries

between dark and light regions. In order to solve the seam problem, Mertens fuses the exposure sequence

in the multi-resolution domain. The quality metrics for each of the image is first decomposed into a

Gaussian pyramid while the image itself is decomposed into Laplacian pyramid. Each level of the

Gaussian pyramid is multiplied with each level of the Laplacian pyramid. Each level from each exposure

shots is then added together to get the final decomposed image. Finally, the fused image is obtained by

applying inverse Laplacian to the decomposed image (Algorithm 1.

Laplacian pyramid decomposes the image into a series of band pass images. While the Gaussian

pyramid decomposes the image into a series of low pass images. Multiplication of a band pass image

with a low pass image is equivalent to a convolution operation in the frequency domain, which results in

a band pass image weighted by the low pass image. Combining the images in multi-resolution fashion can

be considered as fusing each band pass image with a different weighting function. Mertens’ algorithm,

which was just described, is summarized below:

Figure 4.1 shows a pictorial representation of Algorithm 1. Figure 4.1 clearly show that each level of

the Laplacian pyramid represent a band pass image while each level of the Gaussian pyramid represents

a low pass image. The blurring of the quality metric is essential in order to avoid artifacts. Proposed

method will improve upon Mertens’s EF algorithm.
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Figure 4.1: Mertens’ Exposure Fusion algorithm

A slightly different method of EF was proposed by Raman and Chaudhuri [32]. Raman and Chaudhuri

used the difference between the image and the bi-lateral filtered version of the same image. for each

exposure shot as the weighting function for image fusion, which aims to preserve weak edges.

A more recent method by Neil Bruce [33] fuses the sequence in log domain using local entropy as

a weighting function. The main rationale behind Bruce’s method is that a local region with maximum

information (entropy) should be weighted more strongly, thus representing a non-linear as opposed to

linearly weighted blending of images.
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Algorithm 1 Mertens’ Exposure Fusion

C = scale(contrast(LDR images);
S = scale(saturation(LDR image));
W= scale(well exposedmess(LDR images))
Quality measure = normalize(C*S*W );
for Each image I in the input sequence do

pyr = Laplacian pyr(I)
pyrG = Gaussian pyr(Quality measure)
for L - number of levels do

R[L] = pyr[L]*pyrG[L[
end for

end for
reconstruct oyr(R)

4.3 Adaptive Exposure Fusion

4.3.1 Motivation

There are two primary methods used to display HDR images to regular monitors. The first method

involves the creation of a HDR image and then displaying that HDR image using a tone mapping

operation. The second method used to display an image with HDR content is by directly fusing the

exposure sequence into a displayable image (Exposure Fusion (EF)). The main difference between these

two methods is that the first method, which generates the HDR image using Equation 2.1, utilizes

exposure time information (among other things) for HDR image generation. While the second method

does not use any exposure time information. The variables introduced during final image generation

can result in very extreme differences in the final image when there are no guidelines to what exposure

time settings to use (currently it is left to user to decide). Figure ?? shows the extreme difference

between tone-mapped vs. exposure fused image is when the exposure time for shots is not calibrated

correctly. The tone mapped image in Figure ?? appears overly bright while the exposure fused image

appears dark. There is no way to correctly identify the tone of the scene. The image in Figure ?? (a)

appears to be taken in mid-afternoon where the sun is bright whereas Figure ?? (b) appears to be taken

at dusk. Main reason for the bright tone mapped image is that it was generated from HDR image while

the image generated using Exposure Fusion was not. The rationale behind the previous statement is

that the division of every pixel by its exposure time in Equation 2.1 (used to generate HDR image) will

yield a larger value for pixels corresponding to shorter exposure time than pixels corresponding to longer

exposure time. For example, an exposure sequence containing five under exposed images and only two
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over-exposed images will yield a dark image if generated by Exposure Fusion algorithms whereas the

same sequence fused by the traditional HDR imaging pipeline will not. The issue discussed above is an

issue faced by all of the Exposure Fusion methods and is yet to be solved.

The following section thus proposes a novel non-parametric pre-processing stage to Exposure Fusion

image generation which aims to mitigate the effect of images taken with improper exposure time. The

Exposure Fusion algorithm introduced so far do not employ any pre-processing before fusion. The pre-

processing needs to be applied before the fusion stage because the images themselves need to be improved

before any further processing.

4.3.2 Proposed Method

As discussed earlier, Exposure Fusion by definition does not utilize exposure time information when

fusing multiple images taken at a multiple exposure levels. This issue of exposure time in EF techniques

is not as noticeable for exposure sequences containing equal (roughly) number of over and under exposed

images thereby giving final fused image that is somewhere between the two extremes. However, the issue

of exposure time is much more noticeable in a practical HDR imaging scenarios. In a practical HDR

imaging scenario, without any guidelines for best the exposure time settings, an exposure sequence will

most likely contain unequal numbers of over and under exposed images causing the fusion result to favor

the set of images which are dominant in term of exposure time. The aim of the proposed method is

to mitigate the negative effect of exposure time and, at the same time, yield more natural appearing

images.

Another issue with most of the EF techniques is that these algorithms do not consider how natural

the resulting image appears. In [34], the authors modified the Mertens’ algorithm to work in L*a*b*

colour space in order to generate more natural appearing image. L*a*b* is a non-linear colour space

whose aim is to linearize the HVS perceived colour difference in the image. The main issue with Mertens

method (and its modification in [34]) is that details in the darker regions appears washed out. Details

in the bright regions are severely attenuated when image is resized for larger display. The main goal of

the proposed method is to increase the contrast of the most relevant region of the image by darkening

the overly bright regions while brightening the dark regions of an image.

The proposed algorithm first converts the exposure sequence into L*a*b* space as [34]. The proposed

algorithm then applies Exposure Adjustment algorithm (proposed method) to the L* channel of the
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(a) (b)

Figure 4.2: a) Tone mapped image; Exposure Fusion Image

exposure sequence. As per the original EF algorithm by Merten (shown in Algorithm 1), contrast,well

exposedness and saturation metrics are then computed (from exposure adjusted images). [34] has shown

that the retinal-like-subsampling-contrast (RSC) metric [35] is more perceptually accurate measure of

contrast in an image and it has been used by [34] to generate more natural appearing exposure fused

image. The RSC uses the difference of Gaussian (DoG) filter mask to measure the edges instead of

Laplacian operator used by Merten’s method. The present implementation of the proposed algorithm

replaces RSC filter mask with Laplacian of Gaussian (LoG) filter because LoG is more computationally

efficient and yield similar results to RSC.

The fusion of images is then performed in a multi-resolution fashion. Each image is decomposed into

Laplacian pyramid while the saturation, well exposedness and contrast metrics (after multiplication and

normalization) are decomposed into a Gaussian pyramid. At each pyramid level the Laplacian and the

Gaussians pyramid levels are multiplied together. The resulting product at each pyramid level of each

of the input images is then added together. The pyramid is then collapsed and converted back to RGB

colour space to obtain the final image. The proposed algorithm is summarized in the following page.

4.3.3 Exposure Adjustment

As mentioned earlier, current EF technique do not employ any pre-processing before the image fusion

and this has caused many issues with regards to exposure time. The goal of the Exposure Adjustment

is to pre-process the exposure sequence in such a way that every image in the sequence have equal
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Algorithm 2 Proposed Adaptive Exposure Fusion

LDR images = Exposure Adjust(LDR images);
C = scale(contrast(LDR images);
S = scale(saturation(LDR image));
W= scale(well exposedmess(LDR images));
Quality measure = normalize(C*S*W );
for Each image I in the input sequence do

pyr = Laplacian pyr(I)
pyrG = Gaussian pyr(Quality measure)
for L - number of levels do

R[L] = pyr[L]*pyrG[L[
end for

end for
reconstruct oyr(R)

perceptive contrast. The proposed Exposure Adjustment equation is shown in Equation 4.1 [36].

I(x, y) = I(x, y) ∗ exp(k − Iave(x, y)) (4.1)

Where:

k = brightness level

I = Exposure adjusted image

Iave = input image filtered with 3x3 averaging mask

Equation 4.1 assumes that pixel values ranges between 0-1. Equation 4.1 applies a simple exponential

scaling to the original image. The local average is a good measure of amount of brightness in a region

surrounding the given pixel, (Iave), therefore the local average is used to determine the local exposure

adjustment levels. The k parameter of Equation 4.1 determines when a pixel should be amplified or

attenuation and by how much. For example, any value of Iave larger than k will attenuate the pixel

while any value of Iave smaller than k will amplify the input pixel value. Any Iave values equal to k will

not affect the pixel values at all. The resulting pixel value is not limited to 0-1 range and therefore the

output of the Exposure Adjustment needs to be scaled to a values between 0 and 1 using simple contrast

stretching equation before further processing. Figure 4.4 shows the results after setting k parameter

of Equation 4.1 to 0,0.2,0.4...1. The most important aspect to note from Figure 4.4 is that k value of

Equation 4.1 determines how dark or bright the resulting image will appear. For example, setting k=0
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Figure 4.3: proposed Exposure Fusion algorithm

will result in very dark image compared to setting k=1. The k parameter, in effect, will determine the

tone of the image.

Iave is an image filtered by 3x3 averaging mask and the filter size was chosen based on trial and error

basis. A large filter mask causes unwanted artifacts in the image as it blurs the edges severely. A small

filter kernel can effectively predict the background luminance value without deteriorating the edges. The

main drawback of having small filter kernel is that it cannot predict the global tone of the image giving

undesirable effects in some cases, which will be discussed later.

Equation 4.1 is also an approximation of how the HVS operates. Equation 4.1 combines the local

averaging aspect of the Naka-Rushton function and the exponential nature of Stevens’ power law. Unlike

Stevens’ power law, Equation 4.1 applies an exponential weighting to the image as opposed to exponential
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(a) k=0 (b) k=0.2 (c) k=0.4 (d) k=0.6 (e) k=0.8 (f) k=1

Figure 4.4: Result of equation 4.1 after setting various k values

mapping and this change was adopted from Naka-Rushton function. Equation 4.1 was not designed to

mimic the functionality of the HVS and therefore it does not have any experimental evidence confirming

its correlation with the HVS. However, it does indicate some possible correlation with known HVS

behavior and thus, future research can be aimed at checking Equation 4.1’s correlation with HVS.

4.3.4 Adaptive k

Equation 4.1 is the general equation that describes how the exposure of a given image should be adjusted.

As discussed earlier, the k parameter of Equation 4.1 determines the overall tone of the image and it can

be left as a parameter that the user can set. In order to make the Exposure Adjustment algorithm more

robust and non-parametric, this paper also proposes a possible scheme to set the k values adaptively

based on intuitive reasoning that can compensate for Weber’s effect and enhance details.

An image usually contains many types of regions but these regions can be classified into two major

groups: 1) light or dark regions and 2) detailed or no-detailed regions. In order to overcome the limitation

of the HVS, it is natural to increase the contrast by darkening the overly bright regions and similarly

the dark regions need to be amplified. However, Weber’s law and other visual phenomenon suggest that

only informative regions need to be adjusted and the information free regions of the image can remain

un-altered. Rationale behind the above statement is that humans tend to focus on edge rich informative

region more than flat information free regions. For example, it is much easier to focus on a small black

dot on a piece of white paper than a single spot on a blank paper. The HVS then increases the contrast

of object of our focus by darkening bright areas and brightening the dark areas to perceive the details

more accurately. Hence, the contrast of the informative regions needs to be increased in order to better

perceive the details.
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Based on the rationale presented above the k value needs to satisfy the following:

• bright and high informative region - low k value

• dark and low informative region - low k value

• bright and low informative region - high k value

• dark and high informative region - high k value

The first 2 points will insure that only the informative region in the bright area of the image will

darken (to compensate for Weber’s effect). Similarly, the last 2 points will insure that only informative

regions in the dark area will get brighter.

As discussed earlier, an image filtered using an averaging mask is a good indication of how bright

or dark the region surrounding a pixel is. Edges in an image constitute for the high frequency region

of the image, therefore it can be considered as highly informative. An image filtered using a Laplacian

of Gaussian (LoG) mask can be used as an indication of informative region in the image. Using an

image filtered by an averaging mask and a LoG mask to determine the k values can provide an image

of localized k values instead of a constant over the entire scene.

Equation 4.2 is a simple scheme to calculate the k value satisfying all four points discussed above.

k = (1 − Ledge) ∗ (Lave) + (Ledge) ∗ (1 − Lave) (4.2)

Where:

Lave = L channel (of L*a*b* space( filtered with 3x3 averaging mask

Ledge = L channel filtered with 3x3 LoG mask

The first part of Equation 4.2 satisfies the first 2 points while the second part of Equation 4.2 satisfies

the last 2 points

Figure 4.5 clearly shows that Equation 4.2 satisfies all of the 4 points. Furthermore, Figure 4.5 shows

that the k values are smooth over its operating range. Figure 4.7 shows the k values corresponding the

exposure sequence of Figure ??. Figure 4.7 clearly shows that the dark grassy region (bottom left) of

the scene appears much brighter in under-exposed images than the corresponding image in Figure ??.
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Figure 4.5: Graphical representation of equation 4.2

Similarly, the sky region in Figure 4.7 is darker in over exposed exposed images than its corresponding

image in Figure ??. The k map of Figure ?? in Figure ?? also emphasizes details more clearly than its

corresponding originals.

(a) (b)

Figure 4.6: (a)Comparison of original exposure image before and after Exposure Adjustment a) Original
exposure image;(b) After application of Exposure Adjustment stage

Figure 4.6 shows an image before and after Exposure Adjustment. Figure 4.6 clearly shows that the

dark twigs in the bottom left hand corner, for example, of Figure 4.6 (b) is much brighter than the same

region of Figure 4.6 (a). Figure 4.6 (b) appears to be enhancing edges in the dark regions by brightening

them, and at the same time, the edges in the bright regions (sky) are darkened. The overall effect of

brightening the dark regions and darkening the bright regions is that overall contrast of the image is

increased.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.7: Adaptive k value for a exposure sequence

4.3.5 Contrast, Saturation and Well Exposedness

The contrast is calculated by filtering the image with a Laplacian of Gaussian (LoG) filter mask. The

LoG filter was chosen for the current implementation based on the results of [34] and [35] which showed

that a Difference of Gaussian (DoG) filter can yield a better indication of a perceived contrast in an

image. The DoG filter is a close approximation of LoG filter and therefore a LoG filter was used in the

present implementation.

Figure 4.8 (a) and (b) shows the resulting image with and without Contrast metric respectively. The

main purpose of the Contrast metric is to give high weights to the edge pixels in the final averaging

stage. The edges in Figure 4.8 (a) so appear slightly brighter then of Figure 4.8 (b) which lacked the

Contrast metric. The overall effect of the contrast metric do not appear to be significant to the final
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(a) (b)

Figure 4.8: (a)Image generated using all three metric;(b) Resulting image with the absence of Contrast
metric

image however small detail enhancement is necessary for some image visualization applications.

Saturation is defined as the measure of colourfulness in the picture. The saturation is calculated as

the absolute difference of channels a* and b*. The rationale behind it is that for a region containing

no colour, the a* and b* component of the L*a*b* colour space will have the same value (0 saturation)

while a colouful region would have different a* and b* component (high saturation).

(a) (b)

Figure 4.9: (a)Image generated with all three quality metrics; (b) Resulting image with the absence
Saturation metric

Figure 4.9 (a) and (b) shows the resulting image with and without Saturation metric respectively.

The image in 4.9 a) appears to have slightly more vivid colours then that of 4.9 b)however the overall

feel of the image is not affected.

The Contrast and Saturation metric has been modified from the original methods introduced by
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Mertens et al. The reason for this change was simply to add slightly enhanced naturalness and realism

to the image.

Well Exposedness is calculated as a Gaussian weighting of the L channel with mean of 0.5. Figure

(a) (b)

Figure 4.10: (a)Image generated with all three quality metrics;(b) Resulting image with the absence
Well Exposedness metric

4.10 (a) and (b) shows the resulting image with and without Well Exposedness metric respectively. The

image in Figure 4.10 (a) appears to be bright and more pleasing to the eye than image in Figure 4.10

(b). And this indicates that the Well Exposedness metric has a significant impact on the final image.

Figure 4.10 (a) also appear to be more colourful than that of Figure 4.10 (b) and this can be explained

by noting that the Well Exposedness metric will brighten colours that were previously too dark to notice.

This significant effects of well exposednesson the final results is due to the proposed Exposure Adjustment

stage. The Exposure Adjustment stage proposed in this paper aims to bring the edge pixels closer to the

mean of the Gaussian, giving them higher weights in the final fusion/averaging process. The Exposure

Adjustment stage allows more pixels to have impact on the final merging/fusing process.

Figure 4.11 (a)-(c) shows an example of resulting quality metric of the exposure shown in Figure 4.6

(b). Figure 4.11 (d) shows the resulting quality metric after merging and normalization (across all the

exposures) of Figure 4.11 (a)-(c). The quality metric is calculated across the entire exposure sequence

and then decomposed into a Gaussian pyramid (for each exposure image). Each level in the Gaussian

pyramid is multiplied (pixel wise) by its corresponding level in the Laplacian pyramid of the original

image. Due to the normalization of the quality metric, the quality metric acts similar to weights in the

averaging process. The exposures are combined in a multi-resolution fashion in order to ensure that
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artifacts caused by sudden spatial change in weights is avoided.

(a) (b) (c)

(d)

Figure 4.11: visualization of the quality metric: (a) Contrast; b)Saturation; c) Well Exposedness d)
combined quality metric

Merging the exposure sequence in a multi-resolution will yield a Laplacian pyramid, which is then

needed to be collapsed in order to fenerate the final fused image. Figure 4.12 (a) shows an example of

weight metric decomposed into Gaussian an pyramid. While Figure 4.12 (b) shows an example of orginal

image decomposed into Laplacian pyramid. Figure 4.12 (c) is the resulting pyramid after multiplication

of Figure 4.12 (a) and (b). Finally Figure (d) is obtained by adding the multiplied (Gaussian and

Laplacian) pyramids of all exposures. The entire fusion process is shown in Figure 4.3.

4.4 Summary

This chapter presented Exposure Fusion techniques which directly fuse the exposure sequence into dis-

playable image. The main advantage of Exposure Fusion is that it does not require tone mapping stage

however Exposure Fusion techniques are limited to visualization applications only.

This chapter also proposes a novel pre-processing algorithm for images generated using Exposure

Fusion. The proposed method aims to brighten the dark regions while darkening the bright regions.

Proposed method is also robust against varying nature of exposure time used to capture the images
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(a) Gaussian pyramid (b) Laplacian pyramid (c) Multiplication of Laplacian
and Gaussian pyramid

(d) Addition of all pyramids
across exposure sequence

Figure 4.12: Resulting pyramids decomposition of one exposure shot
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Chapter 5

Experimental Setup and Results

5.1 Introduction

Every Image enhancement technique is best evaluated by human subjects. In order to test the effec-

tiveness of proposed algorithm, multi-exposure images of each scene (full dataset 1 and 20 select images

from dataset 2) were fused using state of the art EF algorithms and compared with proposed method.

Images generated using proposed algorithm was not compared with a tone mapped images because the

EF technique can only be compared with other EF method namely the algorithm by [34], [33] and [32].

5.2 The Dataset

The proposed algorithm was tested on two publicly available datasets. The first dataset on which the

proposed algorithm was tested on was provided by Yeganeh and Wang [37]. The photographs in this

dataset are a compilation of images used in papers (HDR imaging related) dating as far back as 1997.

Furthermore, the photographs in this dataset were captured by an expert photographer and contains

sufficient number of over and under exposed images. The dataset consists of photographs of 15 scenes

taken with a standard camera. Each scene was photographed using 8 different exposure levels (which

are also available). The dataset also provide a single HDR image (fusion of the 8 multi-exposed images)

in a .hdr format.

The second dataset that the proposed algorithm was tested on was provided by Funt et al. [38]. The
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dataset consists of 105 scenes taken with Nikon D700 digital still camera. Each scene in the dataset was

photographed using between 3-9 exposure levels. Furthermore the capture photographs do not contain

equal number of over and under exposed images.

5.3 HDR Image Evaluation Site

A website was created for the sole purpose of evaluating the proposed method with other similar methods.

Figure 5.1 shows the general setup for the survey. The site presents the user with a random scene

generated using four different algorithms (proposed method,[34], [33] and [32]). All 4 images for a

particular scene are displayed to the user on a single page. The user then assign each image with

number between 1 and 4 (with 1 being the best and 4 the worst) using the draggable numbers also

available on the page. Note: the position of the 4 images is also randomized. The user presses next

button for the next scene. Figure 5.1 (b) shows the web page used for the survey. The larger image at

the bottom displays a zoomed version of the selected image. There are 35 scenes in total, 15 scenes from

dataset 1 and 20 selected scenes from dataset 2. The survey ends when the user have rated all 35 scenes.

Readers are encouraged to take the survey at hdreval.artform.ca.

5.4 Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) (Equation 5.1 is a statistical tool used to evaluate any process that is

evaluated relatively. The evaluation procedure described above rate the images relatively, meaning it

evaluates a given algorithm compared with other. The inverse in Equation 5.1 implies that the each

ranked image is inversely ”better” then the next image. For example Equation 5.1 implies that the

image with rank of 1 is 50% better than the image with rank of 2. This method is not the most accurate

measure of comparison, however it is a good approximation.

MRR =
1

N

∑ 1

Rank
(5.1)

Where:

N = Number of different algorithms (4 in this case)
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(a) Front Page

(b) Survey Page

Figure 5.1: evaluation site

Rank = Eank of the image (with 1 being the best)

5.5 Results

Figure 5.2 shows the evaluations results using the most recent exposure fusion algorithms. The proposed

algorithm was evaluated by 25 observers (non-expert) using the evaluation site discussed previously.

Users were asked to rank in order of most visually appealing image to least visually appealing image.
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Figure 5.2: Mean Reciprocal Rank (MRR) score of the survey

Users were not asked to change any display settings of their monitors and as such, this was a uncontrolled

experiment. Figure 5.2 shows the MRR score of the 35 scenes used for the evaluation. Image set number

1-15 comes from dataset 1 which contained ideal number of over and under exposed images. Image

set 16-35 comes from dataset 2 which does not contain fixed number of exposures (per scene) and the

exposure times are not evenly distributed. The MRR score for each dataset is shown in Figure 5.2.

The magnitude of MRR score in Figure 5.2 is not as important as its relative placement.

5.6 Comparison with other HDR image evaluation metric

Most algorithms for HDR image processing are evaluated subjectively by the author but there have been

some attempts at an objective evaluation. Tone Mapping Quality Index (TMQI) [10] is an evaluation

tool used by many recent HDR researchers to rate a tone mapped image objectively. Tone mapping, as

discussed earlier, is a term used for compression of HDR images into LDR images.

TMQI evaluates the tone mapped image by comparing its structural information (local standard

deviation) with that of HDR image. HDR image is taken as a reference [10]. TMQI is not a suitable
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metric to evaluate images based on EF techniques because there is no intermediate HDR image used

and thus, reference is not the HDR image but the exposure sequence itself. Figure 5.3 shows the TMQI

score for the images in dataset 1 and 2 as discussed above.

Another popular evaluation tool used by many algorithms is HDR-VDP [39]. HDR-VDP stands

for High Dynamic Range-Visual Difference Predictor and is a modified version of the popular method

VDP [40]. Visual Difference Predictor evaluates an image based on its similarity with a reference (HDR

image). HDR-VDP employ complex visual pathway models and other part of the HVS to determine

how likely a human observer will be able to visualize the difference (error). As with TMQI, HDR-VDP

uses the generated HDR image for reference. Figure 5.4 shows the HDR-VDP score for completeness.

5.7 Discussion

The results of the survey along with the results of widely used evaluation metric (TMQI and HDR-VDP)

are presented in Figure 5.2-5.4. Figure 5.2 clearly shows that the proposed algorithm is widely favored for

exposure sequence containing equal number of over and under exposed images (image set 1-15) and also

for exposure sequence containing uneven number of over and under exposed images (image set 16-35). A

noteworthy aspect of Figure 5.2 is that the image fusion using proposed algorithm consistently performs

better than other algorithms. Specifically, the EF method by Bruce’s shows significantly decreased

performance while method by Martinex-Canada significantly improve after image set 15. As mentioned

earlier, image set 1-15 consists of scenes photographed with sufficient number of over/under exposed

images while image set 16-35 does not. Figure 5.2 indicates that Bruce’s method does not perform well

when number of exposure images vary significantly.

Figure 5.3 shows the TMQI results of fused images that were used in the survey. The TMQI does

not correlate with the results of the survey. The magnitude of the TMQI score is not as important as

its relative placement however, TMQI score still does not correlate with the survey results. The TMQI

score indicate that method 2 ([34]) is preferable for image set 1-15 which is in sharp contrast to the

survey results. The TMQI score also suggests that the proposed method’s performance is only slightly

better than other method for image set 16-35, which is also a sharp contradiction to the survey results.

Figure 5.4 shows the HDR-VDP results of the fused images. The HDR-VDP score clearly show that

it is in very sharp contrast to the survey results. HDR-VDP score indicates that the proposed method
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Figure 5.3: TMQI Score

performs poorest of all, which the survey shows otherwise. Results of applying image evaluation metric

do not correlate with the result of the survey. The discrepancy between the image evaluation metric and

the survey is most likely caused because the images that were being evaluated were not tone mapped

images but exposure fused images. Which also suggests that this metric is not entirely reflective of

the image quality itself, but rather, as a metric, is quite dependent on the fusion process/mechanism

employed. TMQI and HDR-VDP evaluates the quality of an image by comparing it with a reference

HDR image. Tone mapped images are a processed HDR images and therefore the HDR image can be

used for reference. The exposure fused images are result of processing of multiple images which cannot

be used in TMQI or HDR-VDP for a reference.

As discussed earlier, HDR-VDP measures the visible difference between the reference image and the

image in question. The reference image (HDR image) represents the income radiance while the tone

mapped image represent the response of a light sensor to incoming light. The tone mapping will warm

an image for better visibility and therefore the diffrence between the tone mapped image and an HDR

image will be significant. The HDR-VDP score appears to drop significantly after image set 15 and that

can be explained by noting that image set 16-35 contains images that were generated from mostly under
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Figure 5.4: HDR-VDP Score

exposed images (dark images). The HDR image associated with each exposure sequence will be bright

because they are not dependent on exposure time. While the image generated using the exposure fusion

will be dark because the are dependent on exposure time, thus the difference between the HDR image

and the exposure fused image will be high. There are no images in the current database whose MRR

score matches the HDR-VDP score.

TMQI evaluate an image based on its structure similarity with the refrence (HDR image). AS

discussed earlier, the HDR image corresponding to image set 16-15 will be bright and therefore the

TMQI will reward a bright image over a dark image. Image set 16-35 generated mostly dark images and

therefore these images will be more perceptually pleasing if they are bright. RMQI score also reward

bright images and therefore some level of correlation is expected with the MRR score. There were 6

images from the dataset whose TMQI score matched the MRR score and five these images belonged to

dataset 2 (image set 15-35). Although there was some correlation between MRR score and TMQI score,

TMQI is still not suitable for evaluating images generated using Exposure Fusion. TMQI failed to give

accurate results for majority of the images.

Figure ??(a)-(d) show the fusion results using the most recent exposure fusion algorithms. Exposure
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(a) Proposed method Martinez-Canada [34] (b) Bruce [33]

(c) Raman and Chaudhuri [32] (d) Tone Mapped Image [28]

Figure 5.5: Image set 15 generated using various EF methods

48



CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 5.7. DISCUSSION

(a) Proposed method Martinez-Canada [34] (b) Bruce [33]

(c) Raman and Chaudhuri [32] (d) Tone Mapped Image [28]

Figure 5.6: Image set 11 generated using various EF methods
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Table 5.1: Score for image set 15

Method Survey Result (MRR) TMQI HDR-VDP
Proposed Method 0.77 0.95 90.41
Martinez-Canada 0.46 0.99 91.28

Bruce 0.55 0.98 90.9890
Raman and Chaudhury 0.30 0.93 91.15

Tone mapped Image 0.97 88.8

Table 5.2: Score for image set 11

Method Survey Result (MRR) TMQI HDR-VDP
Proposed Method 0.96 0.98 90.42
Martinez-Canada 0.40 0.94 91.37

Bruce 0.38 0.95 90.98
Raman and Chaudhury 0.33 0.90 90.87

Tone mapped image 0.90 88.64

sequence used to generate Figure ?? contained equal number of both over and under exposed images.

Furthermore, MRR score in Table 5.1 indicate that the image generated using the proposed method is

highly preferable.

The key difference between all four of the images in Figure ?? is the amount of details that can

be perceived and how natural the resulting image appears. The proposed algorithm aims to increase

the details in both bright and dark regions, whilst retaining the naturalness of the image which other

methods fail to capture.

Figure ??(c) and (d) shows the result of using Bruce’s and Raman and Chaudhuris algorithm re-

spectively [33][32]. The bright regions (sky) in these images are overly bright which have led to loss

of details. The cloud region in Figure ??(c) and (d) shows where this loss of detail has occurred and

the same region in Figure ??(a) clearly show that the proposed algorithm has more perceived details.

Because Figure ??(c) and (d)are bright, the regions in the dark area are visible but they appear ”washed

out”. Figure ??(b) is based on a method that is most similar to proposed method. The cloud regions in

fig ??(b) appear detailed however dark regions (e.g. enclosed by the lower rectangle), show that these

areas shows a loss of details and appear ”washed out”. The same regions in Figure ??(a) show more

visible structural details.

The TMQI score shown in Table 5.1 indicate that the proposed method performs poorly compared

to method of Bruce and Martinez-Canada. However, the user study indicates otherwise. One possible

50



CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 5.7. DISCUSSION

reason for poor TMQI score is that the HDR image that was used for comparison might be a bright

image therefore TMQI results preferred the brighter image. As discussed earlier HDR images cannot

be displayed directly and require tone mapping for display. The bright tone mapped image in Figure

??(e) indicate that the HDR image was indeed bright and therefore, the tone mapped image also gained

a higher TMQI score even though the details in the cloud region is not visible. The HDR-VDP scores

Table 5.1 also ranked other methods higher then proposed method and that is another indication that

the HDR image used for the reference might be the cause of this discrepancy.

Figure ?? is another example of images generated using Exposure Fusion techniques (same techniques

used to generate Figure ??). Exposure sequence used to generate Figure ?? contains equal number of

over and under exposed images. Furthermore, the MRR score in Table 5.2 indicates that the proposed

method is highly preferable over other method.

Figure ?? (a) clearly shows that the image generated using the proposed method appears bright and

detailed. Figure ?? (d) also appear bright however the details in the sky region appears ”washed out”.

The grass and the tree region in Figure ?? (b) and Figure ?? (c) appear ”washed out” as well (more

in Figure ?? (b)) making the imaged appears dull. Figure ?? a) also appears more colourful, making it

highly preferable.

TMQI score in Table 5.2 indicate that the performance of the proposed method is far greater than

other methods. However, TMQI score does not correlate with MRR score of remaining methods. The

TMQI appears to be favoring brighter image over darker one. The tone mapped image appears dark

and therefore the TMQI score was also at the bottom.

Figure ?? and Figure ?? are an examples of fusion results from a sequence containing mostly under

exposed images. The MRR scores in Table 5.3 and 5.4 indicates that the proposed method generated

the most favorable image.

The proposed algorithm aims to bring the relevant edge pixels to the mid display range (0.5) and

therefore they are not attenuated by the fusion step. In an ideal case where equal number of over and

under exposed images are used for the fusion, the fusion result will come somewhere between the two

extremes. However, when the images used for fusion do not contain equal number of over and under

exposed shots, the resulting image will be dominated by a dark or bright pixels and thus, the image

will lose its natural feel (Figure ??(b)-(d)). The proposed method aims to mitigate this effect by pre-

processing the images before the fusion. Figure ?? (a) clearly shows that the overall tone of the image
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(a) Proposed method Martinez-Canada [34]

(b) Bruce [33] (c) Raman and Chaudhuri [32]

(d) Tone Mapped Image [28]

Figure 5.7: Image set 23 generated using various EF methods
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(a) Proposed method Martinez-Canada [34]

(b) Bruce [33] (c) Raman and Chaudhuri [32]

(d) Tone Mapped Image [28]

Figure 5.8: Image set 35 generated using various EF methods

53



CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 5.7. DISCUSSION

Table 5.3: Score image set 23

Method Survey Result (MRR) TMQI HDR-VDP
Proposed Method 0.72 0.95 62.53
Martinez-Canada 0.41 0.85 66.09

Bruce 0.44 0.88 68.00
Raman and Chaudhury 0.52 0.86 70.24

Tone mapped image 0.84 52.53

Table 5.4: score fpr image set 35

Method Survey Result (MRR) TMQI HDR-VDP
Proposed Method 0.83 0.80 67.33
Martinez-Canada 0.55 0.80 69.15

Bruce 0.39 0.80 68.83
Raman and Chaudhury 0.30 0.79 68.45

Tone mapped image 0.88 50.29

is bright. The grass region of the image (bottom left) clearly indicates the location and the angle of

the sun. On other hand, Figure ?? (b)-(d) gives mixed feeling of the overall tone of the image. The

region with tall grass (center) for example, appears too dark in Figure ?? (b)-(d). TMQI results in 5.3

gives higher ranking to proposed method and this is an indication that TMQI prefers bright image more

(proposed method yielded bright image).

Figure ?? is an example of a scene where the image generated by tone mapping and exposure fusion

differs greatly. The TMQI score in Table 5.4 highly favors the tone mapped image while the MRR score

favors the image generated using proposed method. High TMQI score of tone mapped image indicate

that the HDR image is also overly bright.

As discussed earlier, the proposed method aims to bring the edge pixels near the mean of the Gaussian

(0.5) and thus, images littered with edges will be greatly improved. Scene in Figure ?? does not contain

any smooth regions and therefore, the proposed method is expected to perform better for this particular

scene. Figure ?? (b)-(d) appears overly dark due to fusion of mainly under exposed images. However,

the ?? a) is a bright, colourful image that is not only favored by majority of people but it also appear

highly natural.

Figure 5.2 shows that the proposed method gives superior result for majority of the images however

there are few cases where the proposed method is not favored. For example, the proposed method is

highly unpopular for the image set 3 and 4.
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(a) Proposed method Martinez-Canada [34] (b) Bruce [33]

(c) Raman and Chaudhuri [32] (d) Tone Mapped Image [28]

Figure 5.9: Image set 3 generated using various EF methods
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(a) Proposed method Martinez-Canada [34]

(b) Bruce [33] (c) Raman and Chaudhuri [32]

(d) Tone Mapped Image [28]

Figure 5.10: Image set 4 generated using various EF methods
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(a) Proposed method Martinez-Canada [34]

(b) Bruce [33] (c) Raman and Chaudhuri [32]

(d) Tone Mapped Image [28]

Figure 5.11: Image set 30 generated using various EF methods
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(a) Proposed method Martinez-Canada [34]

(b) Bruce [33] (c) Raman and Chaudhuri [32]

(d) Tone Mapped Image [28]

Figure 5.12: Image set 32 generated using various EF methods
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Table 5.5: Score for image set 3

Method Survey Result (MRR) TMQI HDR-VDP
Proposed Method 0.49 0.90 91.11
Martinez-Canada 0.59 0.94 91.36

Bruce 0.61 0.95 91.21
Raman and Chaudhury 0.39 0.95 91.16

Tone mapped image 0.92 89.26

Table 5.6: Score for image set 4

Method Survey Result (MRR) TMQI HDR-VDP
Proposed Method 0.48 0.93 80.00
Martinez-Canada 0.47 0.94 80.39

Bruce 0.61 0.92 80.10
Raman and Chaudhury 0.52 0.88 79.82

Tone mapped image 0.93 74.65

Table 5.7: Score for fig 30

Method Survey Result (MRR) TMQI HDR-VDP
Proposed Method 0.57 0.72 67.17
Martinez-Canada 0.84 0.72 67.56

Bruce 0.31 0.72 72.29
Raman and Chaudhury 0.34 0.72 72.10

Tone mapped image 0.81 51.98

Table 5.8: Score for image set 32

Method Survey Result (MRR) TMQI HDR-VDP
Proposed Method 0.56 0.75 67.03
Martinez-Canada 0.72 0.72 66.92

Bruce 0.38 0.71 73.53
Raman and Chaudhury 0.41 0.69 73.04

Tone mapped image 0.83 50.22

Proposed method aims to bring the edge pixels to the middle of the display range in order to increase

the contrast. The main reason an image might not be favored (image generated using proposed method)

might be because of the existence of large smooth areas in a scene as well as relatively small edge rich

area. The propose method will not bring any change to the smooth regions however, the small edge

rich regions gets darker if it’s bright and brighter if it’s dark. This will reduce the overall contrast in

the image. For example, a scene with a bright edge rich area on a large dark background (smooth)
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will generate a dull appear image. In the case described in previous sentence, the proposed algorithm

will darken the edge rich area (since its bright) and instead of increasing the contrast, the contrast will

be decreased due the presence of large smooth dark background and ultimately the image with poor

contrast will not be favored.

Figure ?? shows a scenario which contains large smooth background with small bright edge rich area.

The images in Figure ?? were generated from exposure sequence containing equal number of over and

under exposed images. Table 5.5 shows that MRR score for the proposed method is much lower than the

other methods. This is due to the presence of large dark background and small edge rich area (face). The

proposed method darkens the bright edge area thereby reducing the overall contrast (making the image

undesirable). The tone mapped image show a bright Figure on a dark back ground, which indicates that

the HDR image also contain a bright Figure on a dark background, giving TMQI score that correlate

the MRR score.

Figure ?? is another example where the image generated by the proposed method was undesired. The

scene in Figure ?? was generated from an exposure sequence containing equal number of over and under

exposed images. The scene contains a bright background with a dark foreground which the proposed

method might not enhance. Figure ?? (a) shows that the proposed method generated an image with

a bright foreground (room) with a bright background. Because the dark edge rich area was enhanced

while the bright smooth background was left unaltered the contrast was reduced, making it undesirable.

For the scene depicted in Figure ??, the TMQI score does not correlate with the survey results.

Figure ?? and ?? are an example of images generated by exposure sequence containing uneven number

of over and under exposed images and the proposed method fails to generate a pleasing output. The

bright stone in middle of the pond in Figure ?? is an edge area that the proposed method will attenuate

thus, causing loss of contrast and making the image undesirable. On other hand, Figure ?? shows a

smooth bright area (the sky) behind a dark foreground (forest). The ”washed out” effect of ?? b) is

desirable in this situation.

The HDR image of scene depicted in ?? and ?? appears to be a bright image as indicated by a bright

tone mapped image.
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5.8 Summary

This chapter presents the results of a user survey, which was specifically designed to measure the effec-

tiveness of the proposed method with other methods of similar nature. Images used for the evaluation

were generated using two distinct types of exposure sequences. The first set of exposure sequences con-

tained both over and under exposed images, representing an ideal situation. While the second set of

exposure sequences did not contain fixed number of exposure shots, representing a practical scenario.

The survey show that the proposed method’s performance was consistently superior to other methods

in both, practical and ideal, situations. Where as the performance of other competing methods showed

different level of performance for the two different types of exposure sequences.
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Chapter 6

Conclusion and Future Work

HDR imaging is an emerging technology whose aim is to capture the vast range of natural light intensity

that a conventional camera cannot capture. This is achieved by utilizing the existing hardware or using

new cameras specialized for HDR image capture. Cameras that are able to capture HDR image directly

are still not commercially available due to cost and the experimental technology involved, however, HDR

image generation using existing cameras is widely popular.

Existing camera can capture a HDR image by capturing sequence of photographs each captured at a

different exposure level. The HDR image is created by fusing all the multi-exposure images. HDR image

generation using this method has several other processes involved. For instance, image alignment is

applied to the exposure sequence and then camera response curve is estimated from the aligned images.

De-ghosting is then applied before the final fusion process. De-ghosting is a process of removing artifacts

caused by an object motion between the exposure shots.

The generated HDR image cannot be displayed on a conventional monitors and therefore the dynamic

range compression (tone mapping) is performed before displaying any HDR content. The tone mapping

process is a non-linear quantization process that quantize the image into displayable range while keeping

the human visual system and perception into consideration.

There also exist algorithms to directly fuse the image into displayable image know as Exposure Fusion

(EF). EF algorithms do not require the intermediate HDR image generation stage and yield more natural

appearing image. However EF techniques are not robust against varying nature of exposures used for

the fusion.
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The proposed method introduces a novel EF technique that is robust against the varying nature of

exposure shots. The proposed method aims to increase the contrast by adaptively darkening the bright

regions and vice versa. The proposed method was assessed in form of a user survey which proved the

effectiveness of the proposed method. In support of these (subjective) evaluations, a number of metrics

used to assess HDR were also considered, however it was found that these metrics (whilst informative),

do not reflect the perception of quality of users as evidenced in the user survey. This implies that

such metrics may not be adequate for use in evaluating HDR image quality. The need to explore more

adequate metrics is thus warranted.

6.1 Future Work

Future work will be focused on 2 major issues regarding Exposure Fusion: 1) evaluation metric and

2) better pre-processing algorithm. The evaluation metrics introduced so far are only suitable for tone

mapped images (as discussed in this chapter) and therefore an evaluation metric capable of assessing

images generated by Exposure Fusion techniques needs to be researched.

Table 5.7 and 5.8 shows that the MRR scores for the scenes is not the highest. As discussed earlier,

the main reason for low MRR score is the presence of dark smooth region behind a small bright edge rich

region. The proposed method aims to pre-process the images for best results for all condition, however,

there are some cases where the proposed method fails. Future research will be aimed at improving the

pre-processing algorithm introduced in this chapter.
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Appendix 1

Gaussian Pyramid

The Gaussian pyramid is an algorithm to reduce image resolution. Gaussian pyramid iteratively decimate

an image (usually by factor of 2) by first filtering the image using a Gaussian mask and then down

sampling. the aim of the Gaussian pyramid is to generate a sequence of low pass images, each with

stopband reduced by factor of 0.5. The Gaussian mask can be generated using equation 1.1.

f(x, y) = Ae
−(

(x−x0)2

2σ2x
+

(y−y0)2

2σ2y
)

(1.1)

Where:

A = Scale factor

(x, y) = x and y coordinate

(x0, y0) = x and y coordinate of center of the Gaussian

(σx, σx) = Adjustable parameter to set the width of the Gaussian
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The σ in equation 1.1 should be set to have π/2 stopband. The Gaussian pyramid effectively ”throw”

away the high frequency component of the image in each iteration. Therefore, the original image cannot

be recovered from the Gaussian pyramid. Algorithm 3 summarizes the steps needed to compute the

Gaussian pyramid.

Algorithm 3 Gaussian Pyramid

N = NumberofLevels);
I = InputImage);
for L = 1 to N do
If = Gaussian filter(I)
Id = DownSample(If )
pyr(L) = Id

end forreturn pyr



Appendix 2

Laplacian Pyramid

Laplacian pyramid also is an algorithm to reduce image resolution. However, the laplacian pyramid

decomposes the image into series of band pass images. The Laplacian pyramid is calculated similarly to

Gaussian pyramid with the added step of interpolating the decimated image and then subtracting that

image from the original. This step will preserve the details that a Gaussian pyramid ”throws” away.

The Laplacian pyramid will yield a single base level (low pass image) and series of detail levels (band

pass images). Algorithm 4 summarizes the steps needed to compute the Laplacian pyramid.

Algorithm 4 Laplacian Pyramid

N = NumberofLevels);
I = InputImage);
for L = 1 to N do
If = Gaussian filter(I);
Id = DownSample(If );
Iu = UpSample(If );
Ifd = Gaussian filter(Iu);
Idetail = I − Ifd;
I = Id;
pyr(L− 1) = Idetail;
pyrL = I;

end forreturn pyr

66



APPENDIX 2. LAPLACIAN PYRAMID 2.1. INVERSE LAPLACIAN

2.1 inverse Laplacian

The Laplacian pyramid does not ”throw” away any information and therefore, the original image can

be re-constructed.

Inverse of the laplacian pyramid, also known as collapsing the pyramid, is obtained by iteratively

interpolating the base layer and adding the adjacent detail layer. Algorithm 5 summarizes the steps

needed to compute the inverse Laplacian pyramid.

Algorithm 5 Inverse Laplacian Pyramid

N = NumberofLevels);
pyr = Laplacianpyramid);
for L = 1 to N do
Iu = UpSample(pyr(N))
If = Gaussian filter(Iu);
pyr(N − 1) = pyr(N − 1) + If ;
N = N − 1

end forreturn pyr(1)
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