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Abstract

In this thesis, we propose a novel nonparametric modeling framework for financial time 

series data analysis, and we apply the framework to the problem of time varying volatility 

modeling. Existing parametric models have a rigid transition function form and they 

often have over-fitting problems when model parameters are estimated using maximum 

likelihood methods. These drawbacks effect the models’ forecast performance. To solve 

this problem, we take Bayesian nonparametric modeling approach. By adding Gaussian 

process prior to the hidden state transition process, we extend the standard state-space 

model to a Gaussian process state-space model. We introduce our Gaussian process 

regression stochastic volatility (GPRSV) model. Instead of using maximum likelihood 

methods, we use Monte Carlo inference algorithms. Both online particle filter and offline 

particle Markov chain Monte Carlo methods are studied to learn the proposed model. 

We demonstrate our model and inference methods with both s imulated and empirical 

financial data.
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Chapter 1

Introduction

1.1 Motivation and Objective

Financial time series data analysis is one of the most studied areas in financial economics

research, also it is a highly empirical discipline. Both academic researchers and finance

market practitioners are interested in questions like these: what is the mechanism of

financial market? What are the determining reasons for asset prices change? To answer

these questions we need to find a proper way to describe the market and the vast data it

generates. The financial market is a huge complex system determined by many factors

such as political, corporate, and individual decisions. Financial data contain both mean-

ingful information and random noises. So from an information processing point of view,

it is nature to take the statistical modeling approach to the problem of financial time

series analysis. For last decades, we have seen a lot of similar applications in engineering

areas. Recent years there has been a dramatic growth of statistical models and related

techniques used in finance as well. In this research, we would like to apply the engineering

modeling techniques to the financial time series data. When working on financial time

series data, we take the same methodology and utilize the same set of mathematical tools

as we process other signals like audio, image and video in engineering applications.

In this research, we would like to exploit the problem of financial time series analysis

using Bayesian nonparametric (BNP) models. One key feature of financial time series

data is that there exists certain levels of uncertainty in the data [52]. For example, the

asset volatility is not directly observed and some data is generally corrupted by noise. As
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a result, we can use probability theory and related methods to express aspects of these

uncertainties in our models. Another problem with financial time series data modeling is

the huge amount and rapid growth of data. Ideally, a model should be adaptive enough

to handle this. If the forecast output of the model is probability distribution, when

more data comes, we should increase the probability of events which actually happened

[21]. Based on above requirement, we would prefer a model which is flexible and robust

enough to fit the financial time series data in. There is a very large body of current

research on ways of doing approximate Bayesian machine learning [17]. The Bayesian

nonparametric framework can provide an appropriate platform on which to approach

massive data analysis [10].

Volatility plays a uniquely important role in the financial market, and modeling

volatility becomes an increasingly important task in financial time series research. The

main objective of this research is apply the Bayesian nonparametric modeling framework

to analyze the conditional volatility. The volatility of the asset return series is an impor-

tant factor in measuring risk. Because volatility describe the magnitude and speed of the

time series’ fluctuations, it can be interpreted as the variability of a financial time series.

Although volatility is not the same as risk, its importance in conveying the uncertainty

when making investment decisions makes it one of the most important variables. There

are three main purposes of modeling asset volatility:

Risk Management potential future losses of one asset are measured because they ac-

count for large part of risk management. When we calculate these losses, the future

volatilities are needed as an input.

Portfolio Optimization the standard approach of Markowitz [38] by minimizing risk

for given level of expected return, the estimate of the variance-covariance matrix is

required to proxy the risk. Like the application to risk management, the volatility

for each asset in the portfolio is crucial important to optimize the portfolio.

Option Pricing all option traders try to develop their own volatility trading strategy,

and based on that to compare the estimate for one option’s value and the market

price. Hence they can take bets on future volatility. This is perhaps the most

challenging application. Since the Chicago board of option exchange (CBOE) in-

troduced the ground-breaking volatility index VIX in 1993 [44], Many investors
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worldwide consider VIX as the world’s premier barometer of investor sentiment

and market volatility. Because of its importance, the volatility index of a market

has become a financial instrument. The VIX volatility index has been traded in

futures since March 26, 2004.

1.2 Volatility Modeling Literature Review

In this section, we review main parametric volatility models, their advantages and dis-

advantages and techniques for estimate model parameters. Some alternative approaches

for analyzing volatility are presented as well. Volatility which is often expressed as con-

ditional standard deviation of asset return. In Equation (1.1), rt denotes the return of

an asset at time t, and It−1 describe all the information we can obtain until time t − 1.

The expected value µt and variance σ2
t of the return series are:

µt = E(rt|It−1) (1.1a)

σ2
t = V ar(rt|It−1) = E[(rt − µt)

2|It−1] (1.1b)

There are two general categories of volatility models: the generalized autoregressive

conditional heteroscedasticity (GARCH) models and Stochastic Volatility (SV) models.

The first category models describe the evolution of σ2
t using an exact function of all

variables available until time t − 1, while those belong to the second category assume a

stochastic process governs σ2
t . Both these two type of models share the same structure

which can be expressed:

rt = µt + at (1.2a)

σ2
t = Var(rt|It−1) = Var(at|It−1) (1.2b)

where at is called as the innovation of the asset return at time t.

3



1.2.1 GARCH Models

Autoregressive conditional heteroscedasticity (ARCH) model [16] was first introduced by

Engle in 1982. An ARCH(p) model can be specified as follows:

at = σtεt (1.3a)

σ2
t = α0 + α1a

2
t−1 + ...+ αpa

2
t−p = α0 +

p∑
i=1

αia
2
t−i (1.3b)

where at is the innovation of the asset return at time t. εt is assumed to be a sequence

of independent and identically distributed(i.i.d.) random variables with zero mean and

unit variance. α0 and αi,...,αp are model parameters, and α0 > 0, and αi ≥ 0 for i > 0.

For εt, it is often assumed to follow the standard Gaussian distribution or a generalized

error distribution (GED) or standardized Student-t distribution.

ARCH model is the first systemic framework for volatility modeling, and it gives a

good way to describe the asset return series features such as volatility clustering. The

ARCH model is not only suitable to asset return data but also does well with other

financial time series. Since the introduction of ARCH model, a lot of variants and

extensions have been proposed. Bollerslev extended the model, and give a form of the

Generalized Autoregressive Conditional Heteroskedasticity Model (GARCH) [6]. Similar

to (1.3), the GARCH(p,q) can be summarized as follows:

at = σtεt (1.4a)

σ2
t = α0 +

p∑
i=1

αia
2
t−i +

q∑
j=1

βiσ
2
t−j (1.4b)

where at, σt and εt are with the same meaning in (1.3). The GARCH(1,1) with εt follows

a standard Gaussian distribution is easy to estimate and widely used in many real world

financial applications. Here we can simplify (1.4) to obtain GARCH(1,1) with Gaussian

innovation:

at ∼ N (0, σ2
t ) (1.5a)

σ2
t = α0 + α1a

2
t−1 + βσ2

t−1 (1.5b)
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Although ARCH and GARCH are good candidate models to represent the properties of

financial asset return series, such as volatility clusters, they are not perfect. There are

some weaknesses like: Both models can not handle the leverage effect which is found by

empirical financial data that volatility tend to react differently with positive and negative

return shocks. This asymmetry effect in volatility equation is not captured in ARCH and

GARCH models. Some GARCH extensions are developed to fix this problem. In 1991,

Nelson [43] proposed the Exponential GARCH (EGARCH) model.

log(σ2
t ) = α0 +

q∑
j=1

αjg(at−j) +

p∑
i=1

βi log(σ2
t−i) (1.6a)

g(at) = θat + λ|at| (1.6b)

In Nelson’s model, the logarithm of σ2
t is modeled instead of σt.

Another popular GARCH extension Threshold-GARCH [22]model was introduced by

Glosten et al. in 1993, also see Zakoian [56]. The model is also called as GJR-GARCH,

σ2
t = α0 + βα2

t−1 + γa2t−1Ht−1 (1.7a)

Ht−1 =

0, if at−1 ≥ 0

1, if at−1 < 0
(1.7b)

where Ht−1 is the threshold function. α0, β and γ are model parameters.

The last GARCH typed model we want discuss in ths section is the Markov Regime-

switching GARCH model. The idea of regime switching models for economic data anal-

ysis was introduced at least three decades ago. See [25], [24], and [26] for details of

regime switching models. The literature on Markov Regime-switching GARCH models

(MRS-GARCH) begins with Cai [8]. In the paper of Marcucci [37] compared a set of

standard GARCH models with a group of Markov Regime-Switching GARCH models.

The main feature of MRS-GARCH is that it allows the parameters to switch across dif-

ferent regimes according to a Markov chain process. If we denote the regime variable as

st, the transition probability is:

Pr(st = j|st−1 = i) = pij (1.8)
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Usually we assume there are two regimes, and the matrix form of Equation 1.8:

P =

[
p11 p21

p12 p22

]
=

[
p (1− q)

(1− p) q

]
(1.9)

If the regime variable st takes the value of i, then the conditional mean and the conditional

variance can be expressed in GARCH(1,1)-like form:

rt = µ
(i)
t + σ

(i)
t εt (1.10a)

at = rt − µ(i)
t (1.10b)

h
(i)
t = α

(i)
0 + α

(i)
1 a

2
t−1 + β

(i)
1 ht−1 (1.10c)

where ht denotes the conditional variance, so we have ht = σ2
t .

The parameters of GARCH class models can be learned using maximum likelihood

methods. There are a lot of papers on the topic and many software environment provide

the program implementing the algorithms. Among these , see Kevin Shepperd’s Matlab

code of Oxford MFE Toolbox 1. In [7], the authors explore the volatility forecasting

performance of GARCH family models. There are two advantages of GARCH-type mod-

els: the analytical tractability and flexibility descripting empirically observed features of

asset returns.

1.2.2 Stochastic Volatility Models

Stochastic volatility (SV) models difference GARCH typed models with the process of

how the conditional volatility evolves over time. For SV models, the volatility equation

is expressed as a stochastic process, which means the value of volatility at time t is latent

and unobservable. While for GARCH and its extensions, this value is totally determined

by the information up to time t, which we defined as It−1 in before. For example, Hull and

White replaced Black-Scholes option-pricing formula [4]with a stochastic process [27].

The first discrete time-varying stochastic volatility mdoel was introduced by Taylor,

see [48] [50] [49]. The logarithm of variance was modeled by a latent AR(1) process.

1The toolbox can be download from https://www.kevinsheppard.com/MFE_Toolbox. The earlier
versions are called as UCSD GARCH toolbox.
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Taylor’s stochastic model can be presented as:

rt = µt + at = µt + σtεt (1.11a)

log(σ2
t ) = α0 + α1log(σ2

t−1) + σnηt (1.11b)

where α1 is a parameter which controls the persistence of logarithm variance, the value

of α1 is between (-1,1). There are two independent and identically distributed random

variables εt and ηt. The original idea of SV model assume these two noise parts to be

i.i.d. normal distributed. Recently, some researchers brought the idea of making εt and ηt

negative correlated: corr(εt, ηt) < 0. By doing this, the SV model can react asymmetric

fashion to return shocks. This is similar to the way EGARCH extend GARCH model to

reflect empirical observation of financial return series.

The inference of a SV model parameters is not as straightforward as the corresponding

simple GARCH typed model. In [47], Shephard reviewed SV models and inference meth-

ods like methods of moments (MM) and quasi-maximum likelihood (QML). Simulation-

based methods to learn SV models become more and more popular because their accuracy

and flexibility of handling complicated models.

1.2.3 Alternative Approaches

Besides GARCH and SV models, there are some alternative approaches to solve this

conditional volatility modeling problem. Here we discuss some of these methods: Using

High-Frequency Data and Using Open, High, Low, and Close Price. High-Frequency

Data, for example when we modeling daily conditional volatility, we can use the intra-

day like 5-minute or 10-minute data to calculate the daily volatility. This approach

sometimes is also called realized volatility. We will elaborate this later when this realized

volatility is used as the proxy of the real volatility.

Another approach is called implied volatility, and it is related to option trading prob-

lems. If we assume that the prices are governed by some econometric models for example

the Black-Scholes equation, we can use the price to calculate the “implied” volatility.

Experience shows implied volatility is often larger than the value of GARCH type model.

The VIX of CBOE is an example of implied volatility. The calculation of VIX is based

7



on this equation (see [14] for more details):

σ2 =
2

T

∑
i

∆Ki

K2
i

eRTQ(Ki)−
1

T
[
F

K0

− 1]2 (1.12)

where σ is VIX/100, T is time to expiration, F is forward index level desired from index

option prices, K0 is the first strike below the forward index level F . Ki is strike price of

the ith out-of-the-money option. R is the risk-free interest rate to expiration, and Q(Ki)

is the midpoint of the bid-ask spread for each option with strike Ki.

1.3 Main Contributions

In this thesis, we propose a novel nonparametric model which we call it Gaussian pro-

cess regression stochastic volatility (GPRSV) model. We use GPRSV model to solve the

problem of modeling and forecasting time varying variance of financial time series data.

For the standard econometric volatility models ( including both GARCH and SV classes),

model forecast performance is limited by the rigid linear transition function form. More-

over, the model parameters are usually learned by maximum likelihood methods, which

can lead to over-fitting problems. We apply the recent development of Bayesian non-

parametric modeling methods to unblock the bottleneck of financial time series volatility

modeling. The Gaussian process regression stochastic volatility models are more natural

to describe the financial time series dynamic behaviors.

The second contribution of this research is the development of algorithms to learn

the proposed models. We applied the recent developed learning algorithms to learn

the GPRSV models. We use tailed sequential Monte Carlo and particle Markov chain

Monte Carlo methods to jointly learn the hidden states trajectory and Gaussian process

hyper-parameters. Most of the previous work on state-space model inference has took

the approach of separating the hidden states filtering and parameters estimating. The

GPRSV model usually is more difficult to estimate than a GARCH or SV model. By

taking a full Bayesian nonparametric approach we learn the hidden states or system

variable distribution, so our inference method is free of the over-fitting problem as using

maximum likelihood methods for the traditional parametric models.

8



1.4 Organization of Thesis

In chapter 2, we describe the background of this thesis. The characteristics of financial

time series data, preliminaries of volatility modeling and basic of Bayesian nonparametric

models are discussed. Also we present fundamental knowledge of Gaussian process and

state-space models.

In chapter 3, we propose our Gaussian process regression stochastic volatility models.

We discuss the model’s structure, the process of building a GPRSV model and the issue

of introducing exogenous factors to improve the forecasting performance.

In chapter 4, we discuss how to learn Gaussian process regression stochastic volatility

models. We introduce a novel estimating approach to learn both the hidden volatility

and model’s hyper-parameters together. Monte Carlo methods are provided to learn the

nonparametric models.

In chapter 5, we conduct experiment to prove the advantages of proposed modeling

approach. Both simulated and empirical financial data are tested using our GPRSV

model and tailored Sequential Monte Carlo algorithm.

In chapter 6, we conclude our work and discuss future work for this research.

9



Chapter 2

Background

In this chapter, we would like to present the background of this research. There are

two parts, the first part is the data set characters we are study and the preliminaries of

volatility modeling. The other part is the methodology we are going to use: Bayesian

nonparametric framework, Gaussian process and state-space models.

2.1 Financial Time Series Data

Time series data are collected through time. One time series is a sequence of data points

of measurement zt ∈ R index by time t. Time series can be in discrete or continuous

form. The discrete time series can be viewed as special case of continuous time series.

If we measure the continuous time series exactly once per unit time we can obtain the

discrete ones. This is often called as uniform sampling [53]. To simplify we often but not

always focus on discrete time series. Another classification for time series is univariate or

multivariate. Throughout this thesis, we mainly discuss the problem of discrete univariate

time series analysis. The objective of time series analysis is utilizing the theory and

methods to extract meaningful statistics and other characteristics from the data. Time

series analysis is widely used for many real world applications in the domains of science,

economic and engineering.

Financial time series analysis is a highly empirical discipline, and people more concern

with the theory and practice how asset valuation change over time. In financial time series

research, people usually analyze assets return instead of price [9]. See Figure 2.1 for the

11



differences between asset return and price data. The data we use here is Standard & Poor

500 (S&P 500) index data from January 3, 1990 to July 21, 2009. Clearly we can observe

that consecutive prices are highly correlated and the variance increases with time. The

return series (in percent) we get in Figure 2.1 and Table 2.1 is defined as:

rt = 100[log(pt)− log(pt−1)] (2.1)

where rt is the return at time t, pt is the asset price at time t. In Table 2.1, we give the

descriptive statistics of the data.

Table 2.1: Descriptive Statistic of S&P 500 Daily Return Data

Mean Standard Skewness Kurtosis Min Max
Deviation

0.0198 1.1761 -0.1936 12.2642 -9.4695 10.9572

2.2 Volatility Modeling Preliminaries

The idea behind volatility modeling is to express the relationship of the return and

volatility and how these two processes evolve over time. Before we go on to discuss

Bayesian nonparametric volatility models, there are several preliminaries and background

we need to present in this chapter. Volatility modeling and forecasting is an important

task in financial markets and it was born about 30 years ago ever since Engle introduced

the autoregressive conditional heteroskedasticity (ARCH) model in 1982. Both academics

and practitioners are interested in this problem.

The most special feature of asset return is that volatility can not be directly observed

from the return data. For example, the daily data we used to plot Figure 2.1 consist of

4895 observations of Standard and Poor 500 daily returns. There is only one observation

in a trading day, if we do not use intra-day data. Even we use the intra-day data we

can only estimate part of the volatility. Another part is the overnight volatility which

12
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Figure 2.1: Standard & Poor 500 index return and close price data from January 1,
1990 to July 21, 2010

13



intra-day data can provide very little information. This observability of volatility makes

evaluating the forecasting of candidate models difficult.

Besides the hidden feature, there are some other characteristics which are commonly

observed in asset return series.

• Heteroscedastic: the volatility of asset return is not constant through time. This is

also called Heteroscedastictiy. The most common phenomenon of this heteroskedas-

tic effect is the example of launching rocket. For asset return, the value of this

conditional volatility is time varying.

• Volatility Clustering : it is widely accepted that the asset return tend to exist clus-

ters for volatility, which also means there is some period the market is with high

volatility and there is some period with lower volatility. In 1963, Mandelbrot [36]

pointed out that ”large changes tend to be followed by large changes, of either sign,

and small changes tend to be followed by small changes.”

• Asymmetric Effect : based on rich empirical observations of financial asset returns,

volatility tend to react differently on positive and negative returns. This is one

important character that the early models like ARCH, GARCH and basic SV all

failed to capture, and there are many ways of modifying those models to deal with

this asymmetric effect. For example, the EGARCH model was introduced to fix

this problem based on the GARCH framework. For the SV models, one possible

solution is to change the independence of εt and ηt in Equation (1.11), and make

the correlation of the two innovation negative: corr(εt, ηt) < 0.

• Heavier tails : volatility models should explain that the asset returns are not nor-

mally distributed. Actually rich evidences prove that financial asset return exhibit

heavy tails and high-peakedness. Even in GARCH models, we assume that returns

are conditionally normally distributed, the unconditional (marginal) distribution

can be represented as a mixture of normal distributions. The tail of the mixture

normals turn out to be heavier than the single normal distribution.

• Stationary : volatility usually changes within some fixed ranges, and it evolves over

time in a continuous manner. Sudden jumps are rare for most asset returns. Before

modeling the return series, we can use some statistical tests to test the stationary

of the series.
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2.3 Bayesian Nonparametric Framework

The Bayesian approach to data analysis and machine learning is based on using prob-

ability to represent all forms of uncertainty [41]. The process flow can be summarized

as:

• Define model : We expresses qualitative aspects of the system, by defining random

variables, their forms of distributions, and independence assumptions. Also we

specify prior probability distribution for the unknown parameters.

• Collect data: We can compute the posterior probability distribution for the un-

known parameters, given the collected data.

• Make decisions : With the posterior we can make scientific conclusion, predict future

output by averaging over the posterior distribution and make decisions to minimize

expected loss.

The Bayes’ Rule for modeling:

P (θ|D) =
P (θ)P (D|θ)

P (D)

where P (D|θ) is likelihood of unknown parameters θ, P (θ) is prior probability of θ and

P (θ|D) is the posterior of θ given data D. Also, we can write this relationship as:

P (parameters|data) ∝ P (parameters)P (data|parameters)

or

Posterior ∝ Prior× Likelihood

We can see from above that choosing suitable prior is very important to Bayesian

Modeling. In parametric models, finite set of parameters are assumed. Given the param-

eters,future predictions are independent of the observed data. so the unknown parameters

capture everything about the data. The capability of the model is bounded even if the

amount of data is unbounded [21]. While nonparametric models often assume that there

are an infinite dimensional parameters θ. The nonparametric models make fewer as-

sumptions about the dynamics, and thereby the data drive the complexity of the model
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[17].We can think of θ as function instead of a vector. By saying nonparametric, it is not

mean there is no parameters, but actually infinitely many ones. The infinite dimensional

θ often takes form of a function. From information channel viewpoint, all the models

are like information channels, with the past data D as input and future prediction y as

output. For parametric models, given the model parameters, future predictions, y are

independent of the observed data. The model’s complexity or the channel’s capacity is

bounded. That is to say the parameters constitute a bottleneck in channel. nonparamet-

ric models are free of this bottleneck problem, with more data D, the more information

θ can capture. To make predictions, nonparametric models need to process a growing

amount of training data D. This information channel view of nonparametric modeling

was first pointed out in [21] by Ghahramani.

As presented in recent report [10], “big data” arises in many areas. Terabytes of

data, in some cases petabytes of data are generated. The rapid growth heralds an era

of “data-centric science”. The Bayesian nonparametric modeling framework is adaptive,

robust and flexible way of analyzing data and it could be promising technique for the

problem of “big data” analysis.

2.4 Gaussian Process

Gaussian process, together with Dirichlet process (DP), constitute the fundamental tools

in Bayesian nonparametrics. For a Gaussian process, it places distribution over functions,

while a Dirichlet Process is a distribution on distribution. Here we give a compressed

introduction to Gaussian process (GP), more detailed discussion can be found in the

textbook of Rasmussen and Williams [45], the paper of Neal [42]. Gaussian process was

first introduced in the statistics community as kriging. Most probability distributions are

over finite dimensional objects (scalars, vectors), while functions are infinite dimensional.

So a Gaussian process can be viewed as an extension of multivariate Gaussian distribution

to infinite dimensions. Like a Gaussian distribution is specified by a mean vector and

covariance matrix, a Gaussian process is determined by mean function and covariance

function. Similarly we can have the definition of Gaussian process:

f ∼ GP(m(x), k(x, x′)) (2.2)
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Here we use this notation to say function f is drawn from a Gaussian process. m(x) and

k(x, x′) are the mean function and covariance function. The covariance function k(x, x′)

is also called as kernel function.

From the definition we can see that any finite subset of sampled function values y

from the process follows a multiple Gaussian distribution. The mean function is often

set to be zero: m(x) = 0 for many Gaussian process applications, but this is not case

for our Gaussian process regression stochastic volatility (GPRSV) model in Chapter 3.

In GPRSV model, the mean functions are not simply assumed to be zero but to be

adjusted to the specific application requirements, we will discuss the reason in details in

that chapter. The covariance function k(x, x′) measures the “similarity” between inputs

x and x′. The parameters in mean and covariance functions are called hyper-parameters.

These hyper-parameters will control the sampled function’s properties: smoothness, input

output scale and so on (see [53]). One of the most used covariance function is the squared-

exponential (SE) function:

k(x, x′) = γ exp(− 1

2l2
|x− x′|2) (2.3)

where γ and l are the hyper-parameters for the covariance function.

2.4.1 Gaussian Process Regression

Gaussian process can be used for the non-linear regression problems in many fields, such

as machine learning, statistics and engineering. In this thesis we would like to apply this

useful tool to financial time series data analysis. The object of a non-linear regression

problem is to find how to express y using the covariates x. Simply we use the following

equation to describe the relationship:

yi = f(xi) + εi (2.4)

where f is called the regression function, and εi is the random residuals which are assumed

to be i.i.d. Gaussian distributed with mean zero and constant variance σ2. A Gaussian

process represents a powerful way to perform Bayesian inference about functions.
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Figure 2.2: Graphical model representation of standard Gaussian process regression,
where xt is the input at time t, and yt are the output of regression process at time t. The
Gaussian process regress function value is f . The thick horizontal line represent fully
connected nodes.
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2.4.2 GP for Time Series

In [53], Turner pointed out that there are two approaches for Gaussian Process time

series modeling: Gaussian process time series (GPTS) , and autoregressive Gaussian

process (ARGP) . The first one GPTS can be described below:

yt = f(t) + εt (2.5a)

f ∼ GP(0, k) (2.5b)

εt ∼ N (0, θ2) (2.5c)

where the time series input is time index t, and the time series output is yt. εt is standard

normal distributed noise. The GPTS models generalizes a lot of the classic time series

models: the autoregressive (AR), the autoregressive moving average (ARMA).

The other Gaussian process to time series modeling approach is ARGP. Compared to

GPTS, ARGP is more general and powerful but more computational. In Equation (2.6)

we present an ARGP with order p, yt−p:t−1 are the p previous values of the output yt.

yt = f(yt−p:t−1) + εt (2.6a)

f ∼ GP(0, k) (2.6b)

εt ∼ N (0, θ2) (2.6c)

In this thesis, we choose the ARGP instead of GPTS to model financial time series because

ARGP is more general than GPTS and ARGP can model more complex dynamics than

GPTS do.

Both the GPTS and ARGP can handle external inputs with the regress process, the

ARGP with external inputs zt can be generalize as below:

yt = f(yt−p:t−1, zt−p:t−1) + εt (2.7a)

f ∼ GP(0, k) (2.7b)

εt ∼ N (0, θ2) (2.7c)
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2.5 State-Space Models

Discrete time series data can be modeled mainly with two approaches: autoregressive and

state-spaces. The main difference of the two methodologies is that state-space models

assume the system is governed by a chain of hidden states, and we can inference the

system by a sequence of observations which are determined only the hidden states. The

advantages of state-space models over autoregressive models are: not requiring the spec-

ification of an arbitrary order parameters and a richer family of naturally interpretable

representation. For most of the times, a state-space model can be a general framework

for describing dynamical phenomena. Only when inference is difficult the autoregressive

models are more advantageous, but this special case is not discussed in this thesis.

State-space models (SSM) or hidden Markov models (HMM) are one of the most

widely used types of methods for effectively modeling time series and describing dy-

namical system. In different areas SSM maybe named differently: structural models

(Econometrics), linear dynamic models (LDS) or Bayesian forecasting models (Statis-

tics), linear system models (Engineering). In Finance, state-space models can generalize

other popular time series models such as ARMA, ARCH, GARCH and SV.

A state-space model consists of two parts: hidden state xt and observation variable

yt. The essential idea is that behind the observed time series yt there is an underlying

process xt which itself is evolving through time in a way that reflects the structure of the

system. The general form of SSM can be summarized as:

xt = f(xt−1) + ε, xt ∈ RM (2.8a)

yt = g(xt) + ν, yt ∈ RD (2.8b)

where ε and ν are both i.i.d. noise with zero mean and unit variance. The unknown

function f describe the system dynamics and function g links the observation and the

system hidden state. Both the f and g functions can be linear or non-linear. The hidden

state xt follows a Markov chain process which is the reason we use the terminology of

hidden Markov models. In figure 2.5, we give the graphical model representation of one

SSM.

We use p(xt|xt−1; θ) and p(yt|xt; θ) to define the conditional distributions of both
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xt-1 xt xt+1

yt-1 yt yt+1

Figure 2.3: Graphical model representation of a state-space model, where xt is the hidden
state at time t, and yt is the observation at time t. The system state follows a Markov
chain process, and the unknown parameter vector θ is omitted in the figure.

state and observation variables, θ is a vector of unknown parameters. Also we define

x1:t = {x1,x2, ...,xt} and y1:t = {y1,y2, ...,yt}. Since we cannot observe the system

variable x0:t, we are interested in estimate x0:t using the observation y1:t. The conditional

probability distribution of p(x0:t|y1:t; θ) is calculated using Bayes’ Rule:

p(x0:t|y1:t; θ) =
p(x0:t,y1:t; θ)

p(y1:t; θ)
(2.9)

where the integration p(y1:t; θ) is called the likelihood of the state-space model. Be-

sides the joint smoothing distribution, there are three marginal distributions people are

interested as well: the one-step ahead predictive distribution p(xt|y1:t−1; θ), the filtering

distribution p(xt|y1:t; θ), and the smoothing distribution p(xt|y1:T ; θ).

2.6 Chapter Summary

In this chapter, we present the basic background knowledge for this thesis, the financial

time series data we are studying and the methodology we use, and most important
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the preliminaries for volatility modeling. The characteristics for volatility models try

to capture, the prepare work we need to do before we apply our modeling procedure

to the asset return. And we present the structure of Gaussian process for time series

analysis and state-space models which are the fundamental knowledge for our Bayesian

nonparametric modeling approach to volatility analysis.
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Chapter 3

Gaussian Process Regression

Stochastic Volatility Model

In this chapter we introduce the Gaussian process regression stochastic volatility (GPRSV)

model to solve the problem of financial time series volatility modeling and forecasting.

Like GARCH and basic stochastic volatility (SV) models, we model the financial asset

return and volatility in state-space way. The logarithm of variance is modeled as the

system’s unobserved latent variable in our model. We use Gaussian process (GP) to

sample unknown hidden states transition function. A GPRSV model can be viewed as

an instant of Gaussian process state-space model (GP-SSM). Gaussian process which

has been discussed in chapter 2 is a flex and powerful tool to model time series data.

After introducing the GPRSV model, we continue to discuss the procedure of building a

GPRSV model, and the issue of introducing exogenous factors to improve GPRSV model

forecast performance.

3.1 GPRSV Models Framework

In GPRSV model, the conditional volatility is modeled in a Bayesian nonparametric way.

We assume that the hidden system states process is governed by a stationary stochastic

process. The main difference between GPRSV and traditional stochastic volatility models

is the driven force for the stochastic process. In traditional stochastic volatility models,

the process is assumed to follow a rigid linear autoregressive form. In GPRSV model the
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Figure 3.1: Graphical model representation of a Gaussian process regression stochastic
volatility model, where at is the observation variable at time t, and vt are the hidden
variable (logarithm of volatility) at time t. ft is the Gaussian process sampled function
value at time t, and the thick horizontal line represent fully connected nodes. Hyper-
parameters of the Gaussian process are omitted in the figure.
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process is not limited to take a rigid form but a Gaussian process prior is placed over the

transition function. The basic framework of a GPRSV model can be presented with the

following equations:

at = rt − µ = σtεt (3.1a)

vt = log(σ2
t ) = f(vt−1) + τηt (3.1b)

f ∼ GP(m(x), k(x, x′)) (3.1c)

where rt is the asset return at time t and µ is the mean of asset return series, and at is

the innovation of the return series. vt is the logarithm of variance at time t, εt and ηt are

i.i.d. Gaussian (or student’s t) distributed noises. τ is unknown scaling parameters to be

estimated. The function f is the hidden state transition function. Here we assume this

function f follow a Gaussian process, which is defined by the mean function m(x) and

covariance function k(x, x′). We use logarithm of variance instead of standard deviation

directly in our model. The advantage of using logarithm form can be found in [48] and

[43]. Taylor’s SV model and Nelson’s EGARCH model used logarithm form in their

models as well.

In Gaussian process, the mean function m(x) can encode prior knowledge of system

dynamics. For volatility modeling problems, we can encode the asymmetric effect in the

mean function. The covariance function k(x, x′) is defined by covariance between function

values Cov(f(vt), f(vt′)), so the covariance function is used to describe the correlation

relationship of the time-varying volatility values. In Figure 3.1 we give the graphical

model representation of a GPRSV model. We model the logarithm of variance instead of

volatility directly, which is the same way as in EGARCH model and Taylor’s stochastic

volatility model.

3.2 GP-SSM for Financial Time Series Modeling

Our GPRSV model can be viewed as an instant of Gaussian process state-space models

(GP-SSM) which are proved to be powerful tool to describe the nonlinear dynamic sys-

tems. Gaussian process are widely used as dimensionality reduction technique in machine

learning community. In [34], Lawrence introduced the Gaussian Process Latent Variable
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Figure 3.2: Graphical Model Representation of a Gaussian Process State-Space Model,
where xt is the hidden state variable value at time t, and yt is the observation value
at time t. ft is the Gaussian process regression function (the hidden state transition
function) value at time t. The thick horizontal line represent fully connected nodes

Model (GPLVM) for principal component analysis (PCA). In Lawrence’s model, Gaus-

sian process prior is used to map from a latent space to the observed data-space which is

high dimensional. In [33], Ko and Fox proposed a Gaussian process based Bayesian Filter

which is a nonparametric way of recursively estimating the state of a dynamical system.

Wang et al. proposed the Gaussian Process Dynamical Model (GPDM) in [54]. GPDM

enriches the GPLVM to capture temporal structure by incorporating a Gaussian process

prior over the dynamics in the latent space. Frigola et al. pointed out that Gaussian

process can represent functions of arbitrary complexity and provide a straightforward

way to specify assumptions about the unknown function in [18]. Gaussian process re-

lated regression and classification problem has emerged as a major research field for time

series modeling in machine learning community, however the advantage of this Bayesian

nonparametric framework has got enough attention of financial researchers and market

practitioners. We would like to apply this flexible and powerful modeling tool to the prob-

lem of financial time series analysis. We can combine Gaussian process and state-space
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model together. The way of combining the two is to use the state-space model’s structure

and apply Gaussian process to describe the hidden state transition function. The essence

of the GP-SSMs is to change the rigid form of states transition function of traditional

state-space models to a Gaussian process prior. In Figure 3.2, we show the Gaussian

process state-space model graphical model representation. Financial data exhibits many

dynamics because of the market is changing all the time and a lot of small change of the

involved factors can result in significant fluctuation. As more and more data is available

to process, the rigid form of state transition function in traditional state-space models

becomes the bottleneck of improving the models’ forecast performance.

To learn a GP-SSM is more difficult than a standard SSM. In our work, we take the

Bayesian approach to solve the GP-SSMs inference problem. Bayesian filtering is a type

of technique used to estimate the hidden states in dynamic systems. The goal of Bayesian

filtering is to recursively compute the posterior distribution of the current hidden state

given the whole history of observations. One of the most fundamental and widely used

Bayesian filters is the Kalman filter, but one of Kalman filter’s limitation is that it can

only deal with linear and Gaussian noisy models. Two popular extensions for non-linear

systems are the extended Kalman filter (EKF) and the unscented Kalman filter (UKF)

(see [39], [46], [29] and [30]). Markov chain Monte Carlo (MCMC) methods can be used

to learn a state-space model parameters. Particle filter (PF) is another Monte Carlo

method to the problem of filtering a state-space model. We will discuss the details of

leaning GP-SSMs in Chapter 4.

3.3 Model Structure

All volatility models try to describe how the hidden volatility value evolve over time

and capture the characteristics of the asset return series we have discussed in Chapter

2. To achieve these goals, we need to put the conditional volatility modeling problem

in a reasonable structure. Compared with auto regression approach, state-space models

provide us a more general and flex framework to describe dynamic systems. Both the

GARCH and SV models can be viewed as instants of state-space models. The hidden

volatility is naturally modeled as the system’s state variable, and the return is observable

to us. In Chapter 1 literature review part, we have reviewed these two categories of
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conditional volatility models. Both these types of models follow the same structure to

presenting how the return and variance process with time. In this structure there are

two equations: mean equation and variance equation. For all these models the mean

equations are similar. Usually we can assume rt follows simple time series models like

stationary AR, ARMA models (we can add some explanatory variables if necessary). For

most of the times, the conditional mean can be simply described like in Equation (1.2a).

What distinguish one volatility model from others is the variance equation. In Equa-

tion (1.2b), we can see the statistical meaning of the conditional volatility but it does not

give any information about the manner how σ2
t evolves over time. All the GARCH family

models use an exact function to describe the evolution of σ2
t , while all stochastic volatility

models use a stochastic equation to describe σ2
t . Although these two categories models

are quite different at this point, but both the two typed of models use a linear regress

form in variance equation. Both GARCH and standard SV models belong to parametric

models. In [55], the Gaussian process was introduced to volatility modeling problems, the

authors proposed the Gaussian process volatility (GP-Vol) model which can be viewed as

an extension of GARCH model. Our GPRSV model apply the Gaussian process regres-

sion tool to replace the linear regression function in standard stochastic volatility model.

In GP-Vol model and our GPRSV models, the volatility as the hidden state variable is

modeled in a nonparametric way. The state transition function is assumed to generated

from a Gaussian process. The function is not specified to follow a certain linear or non-

linear form as in standard economic models. Functions sampled from a Gaussian process

can take many forms despond on the mean and covariance functions associated with the

Gaussian process.

3.4 Model Building Process

In [52], Tsay gave a four steps process for building a conditional volatility model and

applied it to analyze empirical stock market data using GARCH models. Similarly, we

can build our GPRSV model with the following steps:

• Step 1: specify mean equation. First we need to test the serial dependence in

the return series. If the series are linear dependent, we should use an econometric

model (e.g. an ARMA model) to remove the linear dependence in return series.
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Figure 3.3: Flowchart of Volatility Model Building Process
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Depending on the data we want to model we can use different methods to remove

the linear dependence. After doing that, we can specify the distribution the return

variable. In Equation (3.1a), we simply normalize the return series to remove the

linear dependence part. If mean of the return series is significant small, we can use

the return series directly, otherwise we model the innovation or residuals at, and

we specify εt as a Gaussian or Student’s-t distribution.

• Step 2: test ARCH effect. The residuals of the asset return at expressed

in (3.1a) are often used to test the series’ conditional heteroscedasticity. This

conditional heteroscedasticity is also known as the ARCH effects [52]. There are

two kind of test for ARCH effect, the first one is to apply the Ljung-Box statistics

Q(m) to a2t [40], and the second test is the Lagrange multiplier (LM) test [16]. The

null hypothesis of Ljung-Box test is that the first m lags of autocorrelation function

(ACF) of the testing series are zero. For the Lagrange multiplier test, we assume

in the linear regression form:

a2t = α0 + α1a
2
t−1 + ...+ αma

2
t−m + ct (3.2)

where t = m + 1, ..., T , ct is the noise term and T is the sample size. Additional

we define

SSR0 =
T∑

t=m+1

(a2t − ω̄)2 (3.3a)

SSR1 =
T∑

t=m+1

ĉ2t (3.3b)

F =
(SSR0 − SSR1)/m

SSR1/(T − 2m− 1)
(3.3c)

where ω̄ = (1/T )
∑T

t=1 a
2
t is the sample mean of a2t . F is asymptotically distributed

as a chi-squared distribution χ2
m under null hypothesis. m is the degree of freedom.

The null hypothesis H0 is α1 = ... = αm = 0. The decision rule is to reject H0

if F > χ2
m(α)( here χ2

m(α) is the upper 100(1 − α)th percentile of χ2
m), or type-I

error: the p value of F is less than α (see [52] for details).
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• Step 3: specify volatility equation. The key of volatility modeling is to specify

how the hidden variable volatility or logarithm of variance evolves over time. In

GPRSV models, this part is modeled using the flexible Bayesian nonparametric

tool, Gaussian process regression. For GARCH and SV models this part is modeled

in linear regression approach. Once we estimated the model’s parameters, those

parametric models are determined. When the hidden variable is modeled using

Gaussian process regression, we need to specify both the mean and covariance

functions. Besides these functions forms, the initial value of hyper-parameters

(the parameters in mean and covariance functions are called hyper-parameters)

associated with them need to be specified as well. How to choose the function

forms and initial hyper-parameters are discussed in details in Chapter 5 when we

analyze the empirical financial asset data.

• Step 4: estimate model parameters and check model fitness. After specify-

ing both the mean and volatility equations and associated parameters and in Step

2 and Step 3, we can use training data to estimate the unknown parameters. Once

we get our estimated parameters we can use testing data to test learned model, and

it is necessary to check the fitness of model we obtained so far. Sometimes we need

to go back to Step 3 to modify our Gaussian process mean and covariance function

forms or hyper-parameters.

To demonstrate the four steps process, here we show the flowchart of this model

building process in Figure 3.3. Also we use stock market data to further explain the

process. We analyze the daily return data of GE corporation. The data is collected

from January 1, 1990 to September 29, 1994 with 1200 observations. See Figure 3.4 for

the return series. In Table 3.1 we give the descriptive statistic of the series. Because

the mean value is very small, we can model the return series directly for this data set.

In Figure 3.5, the sample autocorrelation function (ACF) and partial autocorrelation

function (PACF) [28], [20] of the return and square return series are plotted. From these

figures, we can clearly see that there is no significant serial correlation but the series are

dependent for the GE daily return data during the period.
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Figure 3.4: GENERAL ELECTRIC (NYSE: GE) daily return data from January 1, 1990
to September 29,1994
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Figure 3.5: Sample ACF and PACF functions for GE Daily returns from January 1, 1990
to September 29,1994. The first row: ACF and PACF of the returns; the second row:
ACF and PACF of the squared returns.
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Table 3.1: Descriptive Statistic of GE Daily Return Data

Mean Standard Skewness Kurtosis Min Max
Deviation

0.0433 1.2394 0.0092 5.2534 -6.3326 5.9952

3.5 GPRSV with Exogenous Factors

The GPRSV model with exogenous factors can be summarized as:

at = rt − µ = σtεt (3.4a)

vt = log(σ2
t ) = f(vt−1, ut−1) + τηt (3.4b)

f ∼ GP(m(x), k(x, x′)) (3.4c)

where τ is scale of variance process noise, and at, rt, σt, εt, ηt and f have the same meaning

as Equation 3.1. ut is known exogenous factor data at time t. When modeling different

financial time series, we can take different information into account. In Figure 3.6,

we show the graphical model representation of a Gaussian process regression stochastic

volatility model with exogenous factor. There are many macro-finance variables besides

the asset return series itself which can be applied to volatility modeling, but how to

manage fitting these variables can be complicated. The ultimate purpose of adding

exogenous factors is to improve the forecasting performance of the model. If we treat

these extra factors as simple linear regression variables, it can lead to the problem of over

fitting and introducing too many parameters in which case learning such a model would

be too difficult. By putting the exogenous factors in a Gaussian process, we can avoid the

above problems. In [5], the authors investigated to use the mood measurements derived

from large-scale Twitter feeds to predict the value of the Dow Jones Industrial Average

(DJIA). They obtained an accuracy of 86.7% in predicting the daily up and down changes

in the closing values of the DJIA and a reduction of the Mean Average Percentage Error

(MAPE) by more than 6%. Although this is not a volatility forecast case, we can see

that there are rich exogenous factors we can explore to improve our GPRSV models.
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Figure 3.6: Graphical model representation of a Gaussian process regression stochastic
volatility model with exogenous factor ut, in this figure the nodes of observation variable
(return series) is omitted. vt is the hidden variable (volatility) at time t. ft is the
Gaussian process sampled function value at time t, ut is the exogenous factor, and the
thick horizontal line represent fully connected nodes. Hyper-parameters of the Gaussian
process are omitted in the figure as well. In GPRSV models we can add more than one
exogenous factors, we show one factor case for clarity
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3.6 Chapter Summary

In this chapter, we introduced the GPRSV models, and discussed the advantages com-

pared with traditional parametric volatility models. We gave the process how to build a

GPRSV model, and discussed the model’s structure. One possible way of improving the

basic GPRSV model is to introduce exogenous factors into the model.
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Chapter 4

GPRSV Models Inference

In this chapter, we discuss the problem of learning the proposed GPRSV models. It is

much more challenging to learn a GPRSV model than its parametric competitors. As we

have discussed a GPRSV model can be viewed as an instant of Gaussian process state-

space model. Learning a GP-SSM model is a more complex task than learning a standard

HMM model. Gaussian process dynamics are embeded in the hidden state transition

equation. In GP-SSM models, we need to estimate two types of unknown variables

from training data: the hidden states trajectory and the Gaussian process dynamics. In

GPRSV models, the hidden state is the logarithm of variance and the Gaussian process

dynamics are the hyper-parameters in the mean, covariance, likelihood functions. We

specify the forms of these functions before the learning step, the only unknown part is the

hyper-parameters. Jointly learning the hidden states trajectory, the unknown Gaussian

process regression function values and hyper-parameters is computational challenging.

Our approach is marginalizing out the Gaussian process regression function values, and

then jointly learning the hidden volatility states and hyper-parameters using Monte Carlo

methods.

4.1 Bayesian Inference for State-Space Models

In time series analysis settings, the task of learning a state-space model include two

parts: the hidden system states and the parameters of the model. Bayesian Inference is

to use the posterior distribution to answer questions of our interest. We have the prior
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knowledge of the hidden states and the model’s parameters. Although we can not update

our knowledge of hidden states and parameters directly, we have the observation variable

(return for volatility modeling problems) which is related to the hidden system states

and unknown parameters with the likelihood function. With more observations come,

we can update the posterior distribution applying Bayes’ theorem.

First we consider estimate the unknown parameters. We denote the proposed model’s

parameters as a vector θ and the observations y1:T . We can consider estimation as a

special case of inference as the parameter is our target of the posterior distribution. We

use Bayes’ rule to describe the estimation problem as:

p(θ|y1:T ) =
p(y1:T |θ)p(θ)

p(y1:T )
(4.1)

where p(θ) is the distribution quantifying the modeler’s belief of parameters’ value before

any observation data comes, p(θ|y1:T ) is the poster distribution, and p(y1:T |θ) is the

likelihood and p(y1:T ) is the marginal likelihood.

The optimized θ value can be achieved by the Maximum-a-Posteriori (MAP) point

estimate,

θMAP = arg max
θ

p(y1:T |θ)p(θ)

More conveniently we can use the logarithm posterior,

θMAP = arg max
θ

log(p(y1:T |θ)p(θ))

When the prior p(θ) is equal to constant, the the MAP solution becomes the maximum

likelihood (ML) solution.

θMAP = arg max
θ

p(y1:T |θ)p(θ) = θML = arg max
θ

log(p(y1:T |θ))

This ML method is widely used to the parameter estimation problems in time series

modeling, but one possible drawback of this approach is the over-fitting problem.

Secondly, we would like to discuss learning the hidden system states trajectory. If we

assume that we know the parameters or we have estimated the them using ML methods,

the distribution of the hidden states x1:t can be estimated iteratively. We can decompose
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Equation 2.9 recursively as:

p(x1:t|y1:t;θ) =
p(yt|x1:t, y1:t−1;θ)p(x1:t|y1:t−1;θ)

p(yt|y1:t−1;θ)

=
p(yt|x1:t, y1:t−1;θ)p(x1:t−1|y1:t−1;θ)

p(yt|y1:t−1;θ)
p(x1:t−1|y1:t−1;θ)

=
p(yt|xt;θ)p(xt|xt−1;θ)

p(yt|y1:t−1;θ)
p(x0:t−1|y1:t−1;θ)

(4.2)

From Equation 4.2 we can find the recursive relationship between p(x1:t|y1:t;θ) and

p(x0:t−1|y1:t−1;θ). This is the foundation for designing recursive algorithms to solve the

problem of learning the hidden states.

4.2 Monte Carlo Methods

We have discussed the general idea of Bayesian inference for state-space models, but

the two parts: hidden states and unknown parameters are not learned together. As we

discussed in Chapter 3, GP-SSMs provide us a flexible framework for time series analysis.

However this great descriptive power comes with the expense of a computational cost.

It is impossible to obtain analytic solution like learning linear Gaussian residuals state-

space models using Kalman filter [31]. Our solution to this problem is applying the

Monte Carlo methods to simulate the unknown densities. The core idea of Monte Carlo

methods is to draw a set of i.i.d. samples (particles) from a target distribution density,

and use the samples to approximate the target density with point-mass function [1].

pN(x) =
1

N

N∑
i=1

δx(i)(x) (4.3)

where x(i) is the ith sample, N is the number of samples, and δx(i)(x) denotes the Delta-

Dirac mass function value at x(i). Further more we can approximate integrals of f which

is function of interest. I(f) can be achieved with tractable sums IN(f),

IN(f) =
1

N

N∑
i=1

f(x(i))
a.s.−−−→

N→∞
I(f) =

∫
f(x)p(x)dx (4.4)
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In a standard Gaussian process regression problem setting, the inputs and outputs are

fully observed, so the regression function value f can be learned using exact Bayesian

inference methods, for the details how to do that we refer readers to [45]. For GP-SSMS

inference, both the hidden states and the Gaussian process dynamics are unknown. Di-

rect learning the hyper-parameters, hidden states and Gaussian process function values

is a challenging task. Most of previous work on inference GP-SSMs focused on filtering

and smoothing hidden variables without jointly learning the Gaussian process hyper-

parameters. In [35], a novel particle Markov chain Monte Carlo (particle MCMC) algo-

rithm, particle Gibbs with ancestor sampling (PGAS) was proposed. In [19], Frigola et

al. apply the algorithm to learn a GP-SSM’s hidden states and Gaussian process dy-

namics jointly. In [55], a regularized Auxiliary Particle Filter which the authors named

as Regularized Auxiliary Particle Chain Filter (RAPCF) was introduced. The RAPCF

algorithm belongs to the sequential Monte Carlo (SMC) methods.

To learn GPRSV models using the PGAS and RAPCF algorithms, we marginalize

out the Gaussian process regression function value f first. Then we can targeting jointly

learning the hidden states and hyper-parameters together. After marginalizing out f , the

models become non Markovian state-space models. Traditional filter and smooth meth-

ods are not capable to learn such models. The Monte Carlo methods based algorithms we

presented here provide us a powerful tool to solve this problem. Both of the hidden states

and parameters can be represented using particles associated with normalized weights.

4.2.1 Sequential Monte Carlo Methods

Sequential Monte Carlo (SMC) concept was first introduced by Gordon et al. [23] in 1993,

and Del Moral [13] gave the first consistency proof for that in 1996. SMC is also called

as particle filter in some applications. Ever since its introduction, SMC method has been

widely used in many areas to solve the problem of inference complex nonlinear models.

References for SMC methods applied to engineers, finance and economics are [15], [11]

and [12]. In Economic study, economists introduced many dynamic stochastic general

equilibrium (DSGE) models to many real world time series which often exhibit strong

non-Gaussian and time-varying behaviors. In this scenario, SMC methods are used to

learn nonlinear, non-Gaussian state-space models. For volatility modeling research, Kim

et al. first learned a stochastic volatility model using particle filter in [32]. In [55], Wu et

40



Algorithm 1 RAPCF for GPRSV Model

1: Input: return data r1:T , number of particles N , shrinkage parameter 0 < λ < 1,
prior p(θ).

2: Remove linear dependence from r1:T to get the residuals a1:T .
3: Sample N parameter particles from the prior, and set initial importance weights,
W i

0 = 1/N
4: for t = 1 to T do
5: Shrink parameter particles towards empirical means

θ̄t−1 = ΣN
i=1W

i
t−1θ

i
t−1 (4.5a)

θ̃it = λθit−1 + (1− λ)θ̄t−1 (4.5b)

6: Compute expected states:

µi
t = E(vt|θ̃it, vi1:t−1) (4.6)

7: Compute important weights

git ∝ W i
t−1p(at|µi

t, θ̄
i
t) (4.7)

8: Resample N auxiliary indices {j} according to {git}.
9: Propagate the chains of vt forward, {vj1:t−1}j∈J .

10: Add jitter: θit−1 ∼ N (θjt , (1− λ2)Vt−1), and Vt−1 is empirical covariance of θt−1.

11: Propose new states vjt ∼ p(vt|θjt , v
j
1:t−1, a1:t−1)

12: Adjust weights with newly proposed states:

W i
t ∝ p(at|vjt ,θ

j
t )/p(at|µ

j
t , θ̃

j
t ) (4.8)

13: end for
14: Output: particles of vj1:T , particles of θjt and particle weights W j

t .
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al. proposed the RAPCF algorithm to learn a Gaussian process based GARCH model.

Here, we can modify the RAPCF algorithm to learn our GPRSV model.

In Algotithm 1, we present our version of RAPCF for jointly learning the hidden

states and Gaussian process hyper-parameters for the GPRSV models.

4.2.2 Particle MCMC methods

Algorithm 2 PGAS for GPRSV models

1: Input: the return data r1:T , the iteration times l.
2: Remove linear dependence from r1:T to get the residuals a1:T .
3: Set θ[0] and v1:T [0] arbitrarily.
4: for l ≥ 1 do
5: Draw particles of θ[l] conditionally on v1:T [l − 1] and a1:T .
6: Run CPF-AS, targeting p(v1:T |θ[l], a1:T ), conditionally on v1:T [l − 1].
7: Sample k with p(k = i) = wi

T and set v1:T [l] = vk1:T .
8: end for
9: Output: the hidden volatility v1:T and the hyper-parameter θ.

Besides SMC methods, we can learn the GPRSV models using Markov chain Monte

Carlo methods as well. MCMC played significant important role in statistics, economics,

computing science and physics over the last three decades. One of the MCMC methods:

the Metropolis algorithm was considered to be one of the ten algorithms which have had

the greatest influence on the development and practice of science and engineering in the

20th century [3]. In this section we focus on particle Markov chain Monte Carlo methods

for learning the GPRSV models. The particle MCMC method was first introduced in

[2]. The idea of particle MCMC is to use of a certain SMC sampler to construct a

Markov kernel leaving the joint smoothing distribution invariant. In [35], Lindsten et

al. proposed the PGAS algorithm. Frigola et al. applied the PGAS algorithm to the

problem of Gaussian process state-space models inference [19]. Based their results, the

PGAS algorithm is suitable to learn a non Markovian state-space model. In Algorithm

2, we show the PGAS algorithm to learn a GPRSV model. The main block of the PGAS

algorithm is the conditional particle filter with ancestor sampling (CPF-AS) which is

a particle filter like procedure. The CDF-AS part is presented in Algorithm 3. The

two types of methods both can learn the proposed GPRSV models. Particle MCMC
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Algorithm 3 CPF-AS conditional on v′1:T
1: Initialize(t=1)
2: Sample vi1 ∼ pθ1(x1), for i = 1, 2, ..., N − 1.
3: Set vN1 = v′1.
4: Set wi

1 = W θ
1 (vi1), for i = 1, 2, ..., N .

5: for t ≥ 2 do
6: Sample eit ∼ Discrete({wj

t−1}Nj=1), for i = 1, 2, ..., N − 1.

7: Sample vit ∼ pθt (vt|v
eit
1:t−1), for i = 1, 2, ..., N − 1.

8: Set vNt = v′t.
9: Sample eNt with wi

t−1fθ(v′t|vit−1).
10: Set vi1:t = {ve

i
t

1:t−1, v
i
t} and wi

t = W θ
t (vi1:t), for i = 1, 2, ..., N .

11: end for

methods are offline algorithms which are more accurate than the SMC methods, but the

disadvantage is they are slower than SMC methods. In our experiment, we find that SMC

method can provide us desired accuracy results. In Chapter 5, the empirical financial

data are learned with SMC methods.

4.3 Chapter Summary

In this chapter, we discussed the inference methods for our proposed GPRSV models.

Our approach is taking the SMC and particle MCMC algorithms to jointly learning the

volatility and hyper-parameters posterior distribution. The advantage of our method is

that the hidden states and the model’s parameters are estimated simultaneously.
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Chapter 5

Volatility Analysis with GPRSV

Models

In this chapter, we apply both the simulated and empirical financial data to demonstrate

our GPRSV models and inference methods. First, to prove the RAPCF and PGAS

algorithms we discussed in Chapter 4 can be used to learn the proposed GPRSV models,

we generated sets of simulated data. The results show that the algorithms can effectively

learn the nonparametric models. Then we continue to demonstrate the GPRSV models

with real financial data. The empirical data sets are used to demonstrate the forecasting

performance our models.

5.1 Simulated Data

We generated ten synthetic data sets of length T = 200 according the equations in

Chapter 3. Based on Equation (3.1), we sample our hidden state transition function

f from a Gaussian process prior. We specified that the mean function m(xt) and the

covariance function k(y, z) as follow:

m(xt) = axt−1 (5.1a)

k(y, z) = γexp(−0.5|y − z|2/l2) (5.1b)
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Figure 5.1: Return and variance values of one set of generated simulation data. Total
number of observations is 200. The data are generated follow basic GPRSV model, and
the Gaussian process mean and covariance functions are specified in Equation 5.1.
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Figure 5.2: Estimated hidden states densities of simulated Data. There are 200 iteration
steps for the simulated data, and we plot every 5 densities in this figure. The distribution
densities are generated using particles and weights as described in Algorithm 1.

where a is the mean equation hyper-parameter, and γ and l are the covariance hyper-

parameters.

In Figure 5.1, we show one set of the simulated data set. The return and variance

are plotted. We applied the RAPCF algorithm to jointly learn the hidden states and the

hyper-parameters. As we have explained in Chapter 4, although the Gaussian process

regression parameters are fixed, we still learn these values using particles. The prior

knowledge is given and at each iteration we update the unknown hidden state and pa-

rameter distribution with coming observation. The first 50 iteration is used as burn in

period. The particles or samplers number we used for these simulated data sets is 1000.

The shrink parameter in RAPCF λ = 0.99 is used.

One of the advantages of our approach for learning is the hidden states and Gaussian

process dynamics are jointly learned together using particles. At each iteration step we
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Figure 5.3: Results of the Gaussian process hyper-parameters. The hyper-parameters
are learned from RAPCF algorithm using particles.
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Figure 5.4: RAPCF algorithm learned predictive Log-likelihood value are compared with
true value calculate from Equation 3.1. We discard the first 50 burn in iterations. The
RAPCF learned predictive Log-likelihood result proves that the algorithm can success-
fully learn the hidden volatility.

can approximate the hidden state distribution. In Figure 5.2, we plot the hidden state

variable density at every 5 iteration step. In Figure 5.3, we plots of the expected value

and 90% posterior intervals for all the hyper-parameters learned from particles. Although

the hyper-parameters are not random variables, we can learn those values using particles.

In Figure 5.4, we show the results of predictive log-likelihood. At each iteration step,

we can calculate the log-likelihood with the learned hidden state value and the observation

value. Compared with the values obtained from the true hidden state and observation,

our particle filter based learned results are close enough. With more particles used the

accuracy of results can improve. Based on our experiment, 800 to 1000 particles are

enough to learn these sets of GPRSV models. With different Gaussian process function
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forms and numbers of hyper-parameters, the more particles may be needed.

5.2 Empirical Data

In this part we apply our GPRSV model to the real financial data, and compared our

model with a class of GARCH models which are the traditional parametric volatility

models. We use the realized volatility calculated from intra day data as the proxy for

the true daily volatility value. The process of the comparing is as follow : first we use in-

sample data to train both the two typed models, and then we estimate the volatility values

for the out-of-sample period. Finlay we use the average loss function values criterion to

rank the models.

5.2.1 Volatility Forecast Evaluation

The evaluation of model’s forecasting performance is the key step in the empirical data

experiment. In finance study, it is rare to find a method that is consistently superior

for forecasting the price of financial assets, and empirical studies are often inconclusive.

The problem of volatility forecasting is that we cannot observe the variance directly.

The evaluation of volatility forecasting can be complicated. There is many metrics to

evaluate different forecast models. One of the most popular approach is using a particular

statistical loss function, the model which achieved a minimized loss function value is the

best forecasting model [7]. There are extensive choices of lost functions. We adopt a

class of statistical loss functions instead of a particular one. Here we denote the unbiased

ex post proxy of conditional variance as σ2
t+m and a model’s forecast value as σ̂2

t+m. We

take the following loss functions:

MSE : L(σ̂2
t+m, σ

2
t+m) = n−1

n∑
t=1

(σ̂2
t+m − σ2

t+m)2 (5.2)

MAD1 : L(σ̂t+m, σt+m) = n−1
n∑

t=1

|σ̂t+m − σt+m| (5.3)

MAD2 : L(σ̂t+m, σt+m) = n−1
n∑

t=1

|σ̂2
t+m − σ2

t+m| (5.4)
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MLAE1 : L(σ̂t+m, σt+m) = n−1
n∑

t=1

log(|σ̂2
t+m − σ2

t+m|) (5.5)

MLAE2 : L(σ̂t+m, σt+m) = n−1
n∑

t=1

log(|σ̂t+m − σt+m|) (5.6)

QLIKE : L(σ̂2
t+m, σ

2
t+m) = n−1

n∑
t=1

(σ̂2
t+m/σ

2
t+m + logσ2

t+m) (5.7)

HMSE : L(σ̂2
t+m, σ

2
t+m) = n−1

n∑
t=1

(σ̂2
t+m/σ

2
t+m − 1)2 (5.8)

These loss functions include the typical mean squared errors, mean absolute deviation

criteria and logarithmic loss functions which are more used in econometric literature.

Another problem with volatility forecasting evaluation is that we do not have the real

true volatility value in the loss functions. We have to use some proxy to standard for

the real value. Some proxy like the square of return can be quite inaccurate. In our

experiment, we apply the high frequency data to calculate the “realized volatility” [51].

In our experiment we want to model daily return series volatility, so we can use the intra-

daily data as the high frequency data to estimate the daily volatility. Compared with

the squared return, realized volatility is considered to more precise proxy for volatility

forecast evaluation.

5.2.2 Data

The data set we analyzed is the IBM stock daily closing price data 1. We used the

daily closing price as our input. The data period is from January 1, 1988 to September

14, 2003. There is 1000 observations in total, the first 252 ones (from January1, 1988

to September 27,2001) are used as in-sample part for training purposes and the rest

observations (from September 28, 2001 to September 14, 2003) are used as out-of-sample

for evaluating forecasting performance.

Follow the process we proposed in Chapter 3, we can build our basic GPRSV model

with the IBM return data, we measure that the in-sample data mean value is quite small

1The data set can be obtained from YAHOO! finance website http://finance.yahoo.com/
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and the standard deviation is around one. The detailed statistics are presented in Table

5.1.

Table 5.1: Descriptive Statistic of IBM Daily Return Data

Mean Standard Skewness Kurtosis Min Max
Deviation

0.1319 1.7840 0.9583 11.0807 -9.6498 12.0474

5.2.3 Results

We compare our GPRSV model with two standard parametric volatility models: GARCH

and GJR-GARCH. For the parametric models, we use Kevin Sheppard’s Oxford MFE

Toolbox to estimate parameters and make prediction. For GPRSV model, the Gaus-

sian process dynamics are specified as follows: the mean function is m(xt) = axt−1

and the covariance function is the squared exponential covariance function k(y, z) =

γexp(−0.5|y − z|2/l2). The hyper-parameters include a, γ, l and likelihood function

parameter log(sn). The learned parameters are presented in Table 5.2.

Table 5.2: Estimated GPRSV Model Hyper-parameters Results for IBM Daily Return
Data

a γ l log(sn)

1.8777 3.3064 1.3044 -1.7664

In Figure 5.5, we plot the learned volatility values of GARCH, GJR-GARCH, stan-

dard SV and GPRSV models. In Table 5.3, we give the results of three models loss

function values with realized volatility as proxy. The GPRSV achieved the lowest aver-

age loss function values for all functions except for MSE loss function. The GJR-GARCH

obtained the lowest MSE loss function value. Our GPRSV model’s performance is the

best based on the loss function values.
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Figure 5.5: The volatility values learned from the three models are plotted. GARCH and
GJR-GARCH results are both estimated using Kevin Shepperd’s Oxford MFE Toolbox.
GPRSV model results are learned using RAPCF algorithm
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5.3 Chapter Summary

In this chapter we conducted experiments with both simulated and empirical data. Based

on our results, the modified RAPCF algorithm can successfully learn a GPRSV model.

We use loss functions to compare model forecasting performance, and the realized volatil-

ity is adopted as true volatility proxy instead of squared return. Our GPRSV model can

provide better forecasting performance compared with standard parametric volatility

models.
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Chapter 6

Conclusion and Future Work

In this thesis, we proposed a Gaussian process regression based volatility model for the

problem of analyzing and predicting the time varying volatility of financial time series

data. After we introduced the GPRSV model, we gave a solution to jointly learning

the hidden volatility states and the Gaussian process dynamics. Also we discussed the

possible way of adding exogenous factors to improve its forecasting performance.

Based on our experiment results, we can successfully learn the Gaussian process re-

gression stochastic volatility model’s hidden states and hyper-parameters. Also the Gaus-

sian process regression based stochastic volatility models can achieve better performance

compared with the standard economic parametric models.

For future research, there are several possible directions. First, we introduced the

GPRSV framework to analyze the time varying volatility, and discussed that we can

add exogenous factors to improve the forecasting performance. There are many factors

that can be used. In different applications, depending on the data we analyze, we can

study what information is more relevant. In our experiment, we used only one covariance

function. The squared-exponential (SE) function gave us the best performance for our

data set, but we can apply different covariance functions besides the most common used

SE function. There are many more choices for molders to explore. Second, we think

the way of learning the GPRSV model can be applied to other Gaussian process state-

space models as well. Third, we can extend our Gaussian process regression stochastic

volatility model to other financial data analyze. Any application using state-space models

to analyze the data is also applicable using Gaussian process state-space model. Our
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approach is marginalizing out the Gaussian process regression function values and then

jointly learning the hidden states and the hyper-parameters. This methodology can be

applied to those applications. Especially the learning procedure we used.

58



References

[1] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael Jordan. An

introduction to MCMC for machine learning. Machine learning, 50(1-2):5–43, 2003.

[2] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain

monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 72(3):269–342, 2010.

[3] Isabel Beichl and Francis Sullivan. The metropolis algorithm. Computing in Science

and Engineering, 2(1):65–69, 2000.

[4] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.

Journal of Political Economy, 81(3):637–654, 1973.

[5] Johan Bollen, Huina Mao, and Xiaojun Zeng. Twitter mood predicts the stock

market. Journal of Computational Science, 2(1):1–8, 2011.

[6] Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal

of Econometrics, 31(3):307–327, April 1986.

[7] Christian Brownlees, Robert Engle, and Bryan Kelly. A practical guide to volatility

forecasting through calm and storm. Journal of Risk, 14(2):1–20, 2011.

[8] Jun Cai. A markov model of switching-regime ARCH. Journal of Business and

Economic Statistics, 12(3):309–316, 1994.

[9] John Campbell, Andrew Wen-Chuan Lo, and Archie Craig MacKinlay. The econo-

metrics of financial markets, volume 2. princeton University press Princeton, NJ,

1997.

59



[10] National Research Council. Frontiers in Massive Data Analysis. The National

Academies Press, Washington, DC, 2013.

[11] Drew Creal. A survey of sequential monte carlo methods for economics and finance.

Econometric Reviews, 31(3):245–296, 2012.

[12] Dan Crisan and Arnaud Doucet. A survey of convergence results on particle filtering

methods for practitioners. Signal Processing, IEEE Transactions on, 50(3):736–746,

2002.

[13] Pierre Del Moral. Nonlinear filtering: Interacting particle solution. Markov Processes

and Related Fields, 2(4):555–580, 1996.

[14] Kresimir Demeterfi, Emanuel Derman, Michael Kamal, and Joseph Zou. More than

you ever wanted to know about volatility swaps. Goldman Sachs Quantitative Strate-

gies Research Notes, 1999.

[15] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smooth-

ing: Fifteen years later. Handbook of Nonlinear Filtering, 12:656–704, 2009.

[16] Robert Engle. Autoregressive conditional heteroscedasticity with estimates of the

variance of united kingdom inflation. Econometrica, 50(4):987–1007, 1982.

[17] Emily Fox, Erik Sudderth, Michael Jordan, and Alan Willsky. Bayesian nonpara-

metric methods for learning markov switching processes. 2010.

[18] Roger Frigola, Yutian Chen, and Carl Rasmussen. Variational Gaussian process

State-Space Models. In Advances in Neural Information Processing Systems, pages

3680–3688, 2014.

[19] Roger Frigola, Fredrik Lindsten, Thomas B. Schön, and Carl E. Rasmussen. Bayesian

inference and learning in gaussian process state-space models with particle MCMC.

In Advances in Neural Information Processing Systems 26, pages 3156–3164, 2013.

[20] Box George. Time Series Analysis: Forecasting and Control. Pearson Education

India, 1994.

60



[21] Zoubin Ghahramani. Bayesian non-parametrics and the probabilistic approach to

modelling. Philosophical Transactions of the Royal Society A: Mathematical, Phys-

ical and Engineering Sciences, 371(1984):20110553–20110553, 2012.

[22] Lawrence Glosten, Ravi Jagannathan, and David Runkle. On the relation between

the expected value and the volatility of the nominal excess return on stocks. The

Journal of Finance, 48(5):1779–1801, 1993.

[23] Neil Gordon, David Salmond, and Adrian Smith. Novel approach to nonlinear/non-

gaussian bayesian state estimation. 140(2):107–113, 1993.

[24] James Hamilton. A new approach to the economic analysis of nonstationary time

series and the business cycle. Econometrica, 57(2):357–384, 1989.

[25] James Hamilton. Time Series Analysis. Princeton University Press, 1994.

[26] James Hamilton and Raul Susmel. Autoregressive conditional heteroskedasticity

and changes in regime. Journal of Econometrics, 64(1-2):307–333, 1994.

[27] John Hull and Alan White. The pricing of options on assets with stochastic volatil-

ities. The Journal of Finance, 42(2):281–300, 1987.

[28] Gareth Janacek. Time series analysis forecasting and control. Journal of Time

Series Analysis, 31(4):303–303, 2010.

[29] Simon Julier and Jeffrey Uhlmann. Unscented filtering and nonlinear estimation.

Proceedings of the IEEE, 92(3):401–422, Mar 2004.

[30] Simon Julier, Jeffrey Uhlmann, and Hugh Durrant-Whyte. A new approach for

filtering nonlinear systems. 3:1628–1632, 1995.

[31] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.

Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[32] Sangjoon Kim, Neil Shephard, and Siddhartha Chib. Stochastic volatility: likelihood

inference and comparison with ARCH models. The Review of Economic Studies,

65(3):361–393, 1998.

61



[33] Jonathan Ko and Dieter Fox. Gp-bayesfilters: Bayesian filtering using gaussian

process prediction and observation models. Autonomous Robots, 27(1):75–90, 2009.

[34] Neil Lawrence. Probabilistic non-linear principal component analysis with gaussian

process latent variable models. The Journal of Machine Learning Research, 6:1783–

1816, 2005.

[35] Fredrik Lindsten, Michael Jordan, and Thomas Schön. Particle gibbs with ancestor

sampling. Journal of Machine Learning Research, 15:2145–2184, 2014.

[36] Benoit Mandelbrot. The Variation of Certain Speculative Prices. The Journal of

Business, 36:394, 1963.

[37] Juri Marcucci. Forecasting Stock Market Volatility with Regime-Switching GARCH

Models. Studies in Nonlinear Dynamics and Econometrics, 9(4):1–55, December

2005.

[38] Harry Markowitz. Portfolio selection*. The Journal of Finance, 7(1):77–91, 1952.

[39] Bruce McElhoe. An assessment of the navigation and course corrections for a manned

flyby of mars or venus. Aerospace and Electronic Systems, IEEE Transactions on,

AES-2(4):613–623, July 1966.

[40] Allan McLeod and William Li. Diagnostic checking arma time series models using

squared-residual autocorrelations. Journal of Time Series Analysis, 4(4):269–273,

1983.

[41] Radford Neal. Bayesian Learning for Neural Networks. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 1996.

[42] Radford Neal. Regression and classification using gaussian process priors. Bayesian

Statistics, 6:475–501, 1998.

[43] Daniel Nelson. Conditional Heteroskedasticity in Asset Returns: A New Approach.

Econometrica, 59(2):347–70, March 1991.

[44] Chicago Board of Option Exchange (CBOE). Vix index and volatility. http://www.

cboe.com/micro/vix-and-volatility.aspx, January 2015.

62

http://www.cboe.com/micro/vix-and-volatility.aspx
http://www.cboe.com/micro/vix-and-volatility.aspx


[45] Carl Rasmussen and Christopher Williams. Gaussian Processes for Machine Learn-

ing. the MIT Press, 2006.

[46] Stanley Schmidt. The kalman filter-its recognition and development for aerospace

applications. Journal of Guidance, Control, and Dynamics, 4(1):4–7, 1981.

[47] Neil Shephard and Andersen Torben. Stochastic Volatility: Origins and Overview.

Economics Series Working Papers 389, University of Oxford, Department of Eco-

nomics, March 2008.

[48] Stephen Taylor. Modelling financial time series, 1986.

[49] Stephen Taylor. Modeling stochastic volatility: A review and comparative study.

Mathematical Finance, 4(2):183–204, 1994.

[50] Stephen Taylor. Financial returns modelled by the product of two stochastic pro-

cesses, a study of daily sugar prices. Oxford University Press, 2005.

[51] Andersen Torben, Tim Bollerslev, Francis Diebold, and Paul Labys. Modeling and

forecasting realized volatility. Econometrica, 71(2):579–625, 2003.

[52] Ruey Tsay. Analysis of financial time series. Wiley, 2010.

[53] Ryan Turner. Gaussian Processes for State Space Models and Change Point Detec-

tion. PhD thesis, University of Cambridge, Cambridge, UK, July 2011.

[54] Jack Wang, Aaron Hertzmann, and David Blei. Gaussian process dynamical models.

In Advances in neural information processing systems, pages 1441–1448, 2005.
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