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Safely caching HOG pyramid feature levels, to speed up facial landmark detection

Master of Applied Science 2019

Gareth Adam Higgins

Electrical and Computer Engineering

Ryerson University

Abstract

This thesis presents an algorithm for improving the execution time of existing Histogram

of Oriented Gradients (HOG) pyramid analysis based facial landmark detection. It

extends the work of [1] to video data. A Bayesian Network (Bayes Net) is used as a

policy network to determine when previously calculated features can be safely reused.

This avoids the problem of recalculating expensive features every frame. The algorithm

leverages a set of lightweight features to minimize additional overhead. Additionally,

it takes advantage of the wide spread adoption of H.264 encoding in consumer grade

recording devices, to acquire cheap motions vectors. Experimental results on a difficult

real world data set show that policy network is effective, and that the error introduced

to the system remains relatively low. A large performance benefit is realized due to the

use of the cached features.
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Chapter 1

Introduction

1.1 Background

Face detection has always been an area of interest in computer vision. With deeper

analysis focusing on problems such as facial landmark detection, pose estimation, and

face identification. Recently deep learning techniques [2], [3] have been showing promis-

ing results for detection, classification, and identification. However traditional machine

learning algorithms still provide state of the art performance for pose estimation, es-

pecially over multiple scales. This is partially because traditional techniques maintain

higher level semantic information.

These tasks are separated due to the difference in objective, and difficulty. The

easiest task being face detection, which is only concerned with finding the existence of

a face, and generally a rough bounding box; an example output is shown in fig. 1.1a. For
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this task deep learning currently provides the best results. In pose estimation the goal

is to determine the orientation, and rotation of a face, which requires a more refined

bounding box, or face model.

#### ###

(a) Face detection (b) Pose estimation

Figure 1.1: Examples of face detection, and pose estimation

For facial landmark detection, not only must the face be identified, but the location

of sub-features such as the eyes, nose, mouth, etc; shown in fig. 1.2a. Generally these

sub-features are more difficult to detect, and keep track of in a computationally efficient

manner. Finally shown in fig. 1.2b is face identification, where the goal is to detect the

unique features of a face, similar to fingerprinting. The two major applications of this

are monitoring, and identity verification for authentication.

(a) Facial landmark

David Cindy Adam

(b) Face identification

Figure 1.2: Examples of landmark detection, and face identification

2



With regards to pose estimation, and facial landmark detection they often serve

as the first stage in more complex tasks. In the entertainment industry this includes

real time facial mapping between live actors, and computer generated models, for use in

animated, or Computer Generated Image (CGI) movies. Traditionally this has required

physical motion capture markers to be attached to subjects, or actors. Independently, in

health monitoring and security, an emerging subject of interest is emotion and attention

recognition. This requires the tracking of individual facial features, with minimally

invasive equipment or techniques. Histogram of Oriented Gradients (HOG) continues

to be a state of the art approach for facial landmark extraction and pose estimation [4].

1.1.1 Purpose and Scope of this Thesis

This work is part of a larger collaborative project with Alcohol Countermeasure Systems

Inc. (ACS) aimed at detecting distracted and inebriated drivers in order to prevent ac-

cess to vehicles. According to [5], within Canada alone in 2015, there were 122 deaths

and 596 incidents of bodily harm caused by alcohol impaired drivers. Additionally

the number of drug impaired driving incidents has been on the rise. If we are able

to detect drivers who are not fit to drive, we hope to decrease the number of injuries

and fatalities by preventing vehicle operation. This can be achieved by detecting at-

tention and emotional state using machine learning, based on minimally invasive and

economically viable input features. This thesis covers the first stage of the pipeline,

which is to design a system that can acquire stable facial features and pose information
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of drivers. Other members from Ryerson Multimedia Labratory (RML) have already

made progress on subsequent stages of the pipeline, which makes use of these features,

such as gaze detection [6].

Although we optimize our setup for use in a car, it generalizes to any model detection

applications.

1.1.2 Contributions

The contributions of this work can be summarized as follows:

• Adaptation of facial landmark and pose estimator [1] from image data

to video data. The initial work was not created to process image sequences

and naively processes each frame. We extend the algorithm to video data and

utilize the redundant information in previous frames. The motivation is to utilize

the facial landmark tracker as the first stage in an emotion and attentiveness

recognition system.

• Introduction of partial HOG pyramid feature level updates. We intro-

duce the concept of partially updating feature levels within the HOG pyramid.

We define a cost function based on the feature level of interest, to control the

frequency of updates. This reduces the total number of calculations that need to

be performed in each frame.
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• Addition of a Bayesian Network (Bayes Net) based policy network. We

utilize a Bayes Net to determine when it is safe to utilize cached data. The Bayes

Net is a lightweight network used to predict the probability that utilizing cached

data will decrease accuracy. As an additionally safety measure, low confidence

predictions fall back to the original algorithm. This minimizes the likelihood

that the modified algorithm will produce different results from the the original

implementation. This fallback behaviour allows us to train our Bayes Net with a

very small sample input, since we are only looking for easy hints.

• Utilization of hardware pre-computed H.264 motion vectors. Inexpensive

modern recording devices utilizes H.264 to compress the stream; for storage and

transmission. As part of this process, motion vectors are calculated in order to

enable inter-frame prediction. We utilize these vectors as a hint to the Bayes Net.

We avoid an expensive software implementation by reading them out of the H.264

stream.

1.1.3 Organization of Thesis

The remainder of this thesis is organized as follows:

Chapter 2 — Literature Review: This chapter covers existing works related to

facial landmark tracking. First, the distinction between marker based and marker-less

tracking systems is made. Followed by a discussion of the motivation to move to marker-
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less; primarily cost, and accessibility. Following that, existing techniques are divided

into two groups; model based and regression based. Traditional statistical techniques

can fall under either categories. However, Neural Network (NN) based techniques fall

under regression. Real-time execution is the goal that most facial landmark trackers

attempt to achieve while maintaining accuracy. Compared to face detection, this is

much more difficult to achieve due to the complexity of localising the landmarks.

Chapter 3 — Methodology: This chapter first briefly describes the original im-

plementation from [1] and our modifications. It is broken up into three sections. The

first covers HOG and touches on multi-resolution analysis. It describes how a HOG

feature is constructed and subsequent histogram is formed. The second section covers

in detail how the original algorithm operates. The final section details our modifications

to the system to make it better suited to video data. We first introduce the idea of

feature caching in order to reduce calculations. We then introduce a cost function for

choosing which features will be updated. Furthermore we introduce a restricted model

search to further decrease the number of calculations required every frame. Finally,

we describe our Bayes Net based caching policy and overall algorithm. The algorithm

attempts to balance accuracy with execution speed.

Chapter 4 — Experiments & Results: This chapter will present the experi-

mentation used to show that the modified algorithm behaves similar to the original with

regards to accuracy. We execute the original algorithm and our modified version on the

6



same database; YouTube Faces DB [7]. We show in general that our algorithm is able

execute faster that the original implementation when applied to video. Additionally we

show that the error introduced is generally low. For the sake of completeness, we also

show that our policy network is performing better than selecting feature levels to skip

randomly.

Chapter 5 — Conclusion: This chapter explains why the decrease in execution

time occurs. Additionally, the restriction on when this behaviour can be expected. We

then identify the scenarios which cause the largest accuracy drop in the experiment.

Finally, future work such as a partial online training or the use of more powerful rein-

forcement based policy networks is discussed.

1.1.4 Publications

Our algorithm will be published in International Conference on Image Analysis and

Recognition (ICIAR), held August 2019, as “Safely caching HOG pyramid feature levels,

to speed up facial landmark detection”[8].
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Chapter 2

Literature Review

2.1 Facial Landmark trackers

Full body tracking in professional environments traditionally uses a visual marker based

system to improve results. For more casual users, this can be incorporated into clothing

or wearable accessories. If the purpose is for personal entertainment, often the inaccu-

racy of marker-less is accepted; such as in gaming devices or arcades. When considering

facial landmark tracking, both the aforementioned techniques are also utilized. There

is a narrow scope in which facial landmark trackers are used with markers for high

precision tasks [9], [10]. However they, are not user friendly nor economically viable

since the markers must be reapplied each time. Shown in fig. 2.1 are the markers that

would be typically utilized for such a system. This leads to a strong desire to operate

in marker-less environments.
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Figure 2.1: Facial motion capture markers, ”Motion Capture” by Jirka Matousek is
licensed under CC BY 2.0 / Cropped and cleaned up

Some recent works [11] have eliminated the need for special reflective markers and

instead are able to use non-toxic paint. This reduces the issue regarding cost, but

does not improve the ease of use significantly. While the focus of this paper is facial

landmark tracking, the final goal is to be included in a project regarding driver attention

and sobriety detection for use in vehicles. This rules out marker based tracking, as the

user cannot be expected to apply markers before utilizing their vehicle.

2.1.1 Optimistic and Realistic Databases

The accuracy of facial landmark detectors is shown to drop significantly when applied

to difficult databases containing real world photos, not just frontal portraits. This

is not unique to facial landmark detection, all visual recognition system suffer from,

illumination, reflection, occlusion, and multiple scales. Zhu and Ramanan [1] show

9
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that while their method achieves slightly less than state of the art accuracy on the

MultiPie data set [12], it does produce state of the art results on a more difficult data

set which they have crafted; Annotated Face in-the-Wild (AFW). AFW is created by

hand annotating images from Flickr. The main characteristic that differentiates AFW

from other databases is that non-frontal portraits with multiple subjects are specifically

included; similar to fig. 2.2. Additionally, they calculate both pose estimation and facial

land mark tracking jointly. Traditional algorithms first need a bounding box of the face,

which they then apply pose or landmark detection.

Figure 2.2: Busy scene including many subjects with different poses

Traditionally, facial landmark detectors for video have been adapted from versions

which operated on pictures or single frames. A brief overview will be discussed be-

low, however an extensive comparison can be found in the survey paper [13]. Several
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techniques can be used to improve the naive implementation, which is to process the

video as a stream of individual photos. The first technique discussed is to apply a filter

to the position of landmarks reported between frames [14], which helps to smooth out

both visual noise and loss of tracking. Another approach is to continually refine the

estimated face shape based on the predictions from previous frames [15]. Our approach

similarly adapts an existing method that originally operated on single frames, however

our goal is to improve processing speed by utilizing the nature of video and redundant

information without sacrificing significant accuracy.

2.2 Model based

2.2.1 Active Appearance Model

In [16] Active Appearance Model (AAM) is adapted to faces. They use supervised

learning with labelled facial feature key points to learn face shape. They then learn

the relationship between face texture and shape directly on the gray scale pixel values.

To handle faces of different sizes they utilize Gaussian image pyramid multi-resolution

analysis. An interesting approach of their technique is that they start from the lowest

level of the pyramid, with the smallest resolution. This allows them to fit their model

more quickly since the there are less pixels to compare. When checking the subsequent

higher level layers, they utilize the previously discovered key point locations.
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2.3 Regression Based

Recently, NN based regression techniques dominate this category. Traditional regression

techniques are still utilized, such as [17], but they are falling out of favour. Convolu-

tional Neural Networks (CNNs) have been shown to perform extremely well at object

detection and classification. Naturally, attempts are being made to extend them to fa-

cial landmark detection. There are many NN based methods that outperform statistical

methods in the task of face detection [18]. However, it is more difficult to find methods

which produce competitive pose estimation and facial feature locations.

2.3.1 Cascaded Convolutional Neural Network

Fan and Zhou [19] introduce a two part Cascaded Convolutional Neural Network (Cas-

caded CNN) to split the facial landmark detection into two tasks. Their first CNN

produces a rough prediction of the key points. They posit that while the individual

landmarks may not be accurate, they capture the rotation and scale of the subject.

The second network is utilized to refine the key point prediction and learn the relation-

ship between them. For both CNNs they use a VGG [20] like network structure, with

half the number of channels in each layer, and only two FC layers. Additionally, the

second network utilized only the first three convolutional layers.

12



2.3.2 Task-Constrained Deep Convolutional Network

Zhang, Luo, Loy, et al. [21] compare their work to an early version of Cascaded CNN

[22]. Their two main contributions are decreasing the number of CNNs required and

creating a network which is able to perform multiple tasks simultaneously. While the

more recent version of Cascaded CNN [19] reduces the number of layers, it does not

address task sharing. Zhang, Luo, Loy, et al. [21] define a network which performs pose

estimation, facial landmark detection, sex identification, emotion recognition, and other

related tasks utilizing the same convolutional layers. They use task specific FC layers,

which are jointly trained, with the CNN. They achieve competitive results in [23].
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Chapter 3

Methodology

In this chapter we describe the original implementation [1] and our modifications to

it. We start by introducing HOG and HOG pyramid; including their computational

limitations. A brief overview of the original implementation proposed by Zhu and

Ramanan [1] is presented. We then present our algorithm and motivation. We introduce

the idea of feature caching, which utilizes previously calculated HOG features. We then

explain how feature level updates are scheduled into a partial update system. Finally,

we discuss how the decision on when it is safe to utilize cached features is made.

3.1 Histogram of Oriented Gradients

For each pixel in the original image the filters Fy, Fx from eq. (3.1) are applied in order

to calculate a gradient in each direction. These gradients, now represented by a vector,

14



are then grouped into cells of a fixed size.

Fx = {1, 0,−1}, Fy = {1, 0,−1}T (3.1)

Different applications can see variance in performance by increasing or decreasing this

cell size. When the vectors within a cell align they hint that structure behind represents

an outline or boundary. Figure 3.1 shows signed vectors (0◦ to 360◦). The left grid

represents the vectors before they are grouped into their cell size, and the right grid

after. However, [24] shows that in human detection unsigned vectors (0◦ to 180◦) achieve

better results. In order to construct the HOG feature a histogram is taken using the

direction as bins and aggregating the magnitudes. As shown in [24], the bin interval can

also affect the quality of the results. We extend [1], which uses 18 bins for the histogram.

They deviate slightly from traditional HOG in that adjacent bins to a particular vector

also receive some of the magnitude through linear interpolation.

Figure 3.1: Signed HOG vectors with 2x2 cell size
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3.1.1 HOG Pyramid

As shown in the leftmost image of fig. 3.2, for large images the HOG features are quite

small, which may prevent the detection of objects closer to the camera. Increasing the

cell size can alleviate this, but also decreases the quality of the vectors as they are likely

to be noisy. Another solution is to process the image at multiple scales, or feature

levels. Feature pyramids have been utilized to handle this problem for many years and

continue to be used [25]. Popular NN based methods such as VGG [20] and Residual

Network (ResNet) [26] emulate this concept; with convolutional layers followed by down

sampling.

Figure 3.2: Increasingly deep levels of HOG pyramid from left to right.

In the case of HOG pyramid, at feature level the image resolution is down sampled,

but the cell sizes are kept constant. This allows both local and global features to be

investigated. In fig. 3.2 the noise from textures and small objects is disappears moving

from left to right; towards the deeper levels of the pyramid. When approaching the

correct scale there is a clear boundary formed between objects. The rightmost image in

fig. 3.2 has passed the correct scale, thus object boundaries become less distinguishable.
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3.2 Original Implementation

Our work is an extension of [1] which originally targets image data and is un-optimized

for video data. A typical output for a single frame is shown in fig. 3.3. The yellow

points represent parts of the model; with the blue boxes representing the HOG cell

associated with the part. The pose angle is shown inside the yellow box located on the

forehead of the subject.

Figure 3.3: Detected face; including eyes, eyebrows, nose, mouth, and jaw line from
ACS database

The approach they take is to build a mixture of tree-structured part models, where

each part is described by a HOG feature. The models are learned via a supervised

training method and annotated from −90◦ to 90◦. Both the part HOG features and

model tree structures are learned. We do not train our own models, instead we use one

of the models generated by [1]. For the model we utilized, there are 13 unique views

with six left profiles, six right profiles, and one frontal profile shown in fig. 3.4.
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(a) Side view (b) Oblique view (c) Front view

Figure 3.4: Tree structure and HOG features for different models

When running the tracker, the part scores for each feature level of the HOG pyramid

are calculated for every model. The orientation of the face is determined by the highest

scoring model detected in a particular region. We recognize that multi-scale HOG

Pyramid adds a considerable number of extra calculations which are not always relevant,

nor required. This is because all scales at which a subject of interest could occur must

have HOG performed each frame. Our goal is to find a balance between accuracy and

processing speed. We achieve this by utilizing slightly stale information, which is still

highly correlated to new frames. A similar approach is common in video processing,

known as frame skip. We extend that idea to feature levels within a HOG pyramid.

However unlike frame skip we utilize cached data from previous frames, instead of just

discarding it entirely. The pseudo-code of the original algorithm is provided in alg. 3.1.
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Algorithm 1: Pseudo code for original Algorithm

1 input l ea rned models

2 set de t e c t i on th r e sho ld

3 foreach image

4 foreach f e a t u r e l e v e l s

5 Calcu la te HOG f e a t u r e s save as l e v e l

6 Downsample by s c a l e f a c t o r

7 foreach model

8 foreach l e v e l in f e a t u r e l e v e l

9 foreach part in model

10 Convolve part with l e v e l save s co r e

11 Find X,Y o f part with h i ghe s t s co r e and save part

3.3 Our Modification

3.3.1 Feature Caching

Conjecture 1. Upper levels of the HOG pyramid, relative to the scale of interest, will

change less between frames and do not need to be updated as frequently.

Conjecture 2. Lower levels of the HOG pyramid, relative to the scale of interest, are

unlikely to contribute information distinguishable from noise, and can be ignored.

Under these assumptions, the accuracy penalty from not updating distant feature

levels is low. This introduces two issues deciding the frequency of update based on

distance, and determining when data has become too outdated to be useful. Recently,

this concept has also been applied to ResNet[26] where a policy network controls which
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layers will be utilized in a forward pass, dubbed BlockDrop [27]. ResNet successively de-

creases output feature size by combining neighbouring cells, which is a similar operation

to multi-scale analysis.

For any frame in which the scale of interest is not known, we run the original

full algorithm. If latency is not acceptable, we can drop queued frames after this

initialization under the assumption that the subject has not moved too far. After

candidate scales are discovered, we prioritize them over other feature scale levels when

performing HOG updates. Non-candidate feature level updates are then scheduled

based on their difference to the closest scale of interest. This reduces the workload that

must occur in every frame. This works naturally for subjects on the same scale level,

and can be extended to subjects at different scales. The degenerate case occurs when a

subject exists at each scale. This case is unlikely, as the scale space is often over selected.

Overall this method does not completely ignore feature levels, it simply updates them

less frequently, which makes it differ from a traditional frame skip approach.

3.3.2 Partial Update

During a partial update, each scale will not be updated every frame. The number of

frames between updates Up is shown in eq. (3.2), where Si are scales which contain a

detected subject of interest and Sp are all the possible scales to be updated.

Up = b(minSi Si − Sp)
γe, γ = 1.25 (3.2)
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The exponent γ is chosen to maintain high update rate on near scales, while lowering

update rate of distant scales. Larger values of γ are more likely to cause issue with

tracking, but provide better performance. The non-updated HOG features are still

considered when scoring the model parts in the subsequent step. This old data can

be utilized because at that particular scale significant changes are not likely to have

occurred.

3.3.3 Restricted Model Search

Since [1] is designed for standalone images there is no previously predicted model data

which can be leveraged. However, when moving to video data, after a candidate model is

found we can restrict the model search to adjacent models, under the condition that the

motion in the scene does not exceed a threshold. Shown is fig. 3.5 is how the models are

laid out relative to the face. There are 13 models, separated by 15◦ intervals. Relative

to the frontal view, they cover a −90◦ to 90◦ view of the face.
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Figure 3.5: Positioning of each model, relative to face
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While the most computationally expensive operation in [1] is the HOG pyramid

calculations, the second most expensive operation is the part scoring algorithm. This is

because it must fit all the parts of every model to all HOG feature in each feature level.

Although our implementation does not recalculate every feature level in the pyramid

at every frame, we still perform the aforementioned search. By reducing the number of

models that must be searched, we are able to further decrease the computation time.

3.3.4 H.264 Encoder & Motion Vectors

Recently many consumer grade cameras are equipped with hardware video encoders

implementing advanced video Codecs such as H.264 [28]. Instead of recalculating the

motion vectors at a software level, we extract them directly from the H.264 encoded

video. The quality of the vectors is low, however they have practically zero performance

cost since they are generated by the device automatically. H.264 is a block based video

compression algorithm which utilizes motion compensation. The H.264 encoder has

three separate frames types:

• I-Frame: Entire image is present

• P-Frame: Motion prediction is done using previous frames

• B-Frame: Motion prediction is done using both previous and future frames

In realtime or streamed video, B-Frames are not present as they require future data,

so only forward prediction can be utilized. With this restriction, we utilize videos that

only contain I-Frames and P-Frames.
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Figure 3.6: Macroblocks used in H.264 encoding

During encoding, each frame of the video is first decomposed into macro blocks via

a quad-tree like method [29]. As shown in fig. 3.6b, macroblocks are created to describe

regions of pixel within the frame, with the minimum block size set at 4 pixels× 4 pixels.

These sizes are selected to maintain a balance between accuracy and compression. If

the macroblocks are too small then no compression can be realized. Conversely if the

macroblocks are too large then detail will be lost from the image in the P-Frames as

large regions are approximated.
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Figure 3.7: Macroblock decomposition of image frame; 8 pixel× 8 pixel block regions
highlighted in red, and 4 pixel× 4 pixel block regions shown in black

Where fig. 3.6b shows what an individual macroblock looks like, section 3.3.4 show

how a frame looks like after decomposition. Large regions represent areas with little

variation, while smaller regions are required to show high variation detail. In the encod-

ing algorithm, once the frame has been decomposed a search is performed against the

previous frame to find block which are present in both. If matching blocks are found,

then a motion vector is created to represent this.

By transmitting the motion vectors of the macroblocks, instead of the entire block,

bandwidth is saved. The final result is a set of sparse motion vectors, as they apply to

blocks not pixels. Since we rely on the trend of motion vectors which fall into an area

of interest, this sparsity is not a problem.

24



Figure 3.8: H.264 extracted motion vectors

It is possible to observe effects of the macroblocks, by looking at the motion vectors

in fig. 3.8. Large macroblocks can be seen in the upper left corner where there are sparse

motion vectors since the background provides little variation. In the face regions and

around edges, the number of macroblocks increases and their size decreases in order

to represent the detail. We find that these sparse motion vectors contain sufficient

information to suggest when it is safe to avoid recalculating feature levels. Initially, the

motion vectors of the whole image are considered. Once the algorithm has successfully

completed an iteration, candidate bounding boxes are available based on the fit models.

The bounding box, BB, is created by applying convex hull, denoted by Conv, to the
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key points contained in the model, represented by Mkey.

BB = Conv ({(x, y) ∈Mkey}) (3.3)

In order to detect motion which may occur at the edge of the bounding box, as a subject

moves, we use an enlarged copy of the bounding box. The existing bounding box is

translated to the origin, by calculating the average (x, y) coordinates of the key points,

denoted as µ(x,y). It is then scaled by a factor α to capture motion that occurs at the

edge of the face. Finally, the points are translated back to their coordinate space by

utilizing µ(x,y). Subsequent frames consider only the motion vectors which fall within

these bounding boxes, as long as a valid model is found in that frame.

BB′ = α
(
BB − µ(x,y)

)
+ µ(x,y) (3.4)

Other Encoders

There is no strict requirement to use H.264, other motion estimation based encoders

can be substituted. Older implementations such as H.263 may be utilized at the cost

of some processing time, and accuracy. More interestingly newer implementations such

as H.265 can be dropped in to improve both, accuracy, and speed. Currently H.264

has a larger adoption rate than H.265 in consumer cameras, until that changes utilizing

H.264 is less restricting for the algorithm.
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3.3.5 Caching Policy

In order to maintain accuracy and reduce result latency in fast moving scenes, a Bayes

Net provided by the Infer.Net framework [30] is used to discover a policy for deciding

when the HOG features need to be recalculated. More specifically, we utilize a Bayes

Point Machine [31] which utilizes Bayes Point Algorithm (BPA).

Weight

X

Feature Value

Feature Score

+

Score

N

1

Noisy Score

>

Label

Figure 3.9: Basic Bayesian Network, adapted from example found in [30]

In a Bayes Net, an initial belief weight is supplied for a given feature and is used to

generate predictions. A random belief weight can be used like in other machine learning

algorithms. However, since the feature value has semantic information understandable

by a human, the initial weight can be chosen to represent an expert’s belief. Assuming

the initial belief is not entirely incorrect the convergence speed of the training will be
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improved. Bayes Nets are also known to have less overfitting problems when compared

to deep NNs. Another advantage of Bayes Net is that they are able to handle missing

data in the input features; both in training and inference. The largest benefit of a Bayes

Net is that it can be used to predict the outcome of an intervention or action before

that action is taken. This makes it perfect for use in our algorithm, as we are trying to

predict the effect of using cached features, instead of recalculating them.

Bayes Net

As noted by Herbrich, Graepel, and Campbell [31] while the optimal approach for small

or incomplete training data sets would be to use a full Bayesian classifier, there is a

large computational cost. This is because all hypotheses must be examined for new

test points. From [31] eq. (3.5) shows how the class selection for new test points is

performed.

Bayesz(x) := argmin
y∈Y

EH|Zm=z [l (H (x) , y)] (3.5)

This cost is only paid during training time, however we would still like to avoid it; as

to allow online training in future implementations. The solution to this problem is to

utilise the BPA. The key feature of the BPA is that the entire hypothesis space is not

searched, only hypotheses which are computationally efficient for the given test point.

Abp(z) := argmin
h∈H

EX
[
EH|Zm=z [l (h (X) , H (X))]

]
(3.6)
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Evidence

The action taken can be: no update, partial update, or full update; with full update

being the most costly with regards to time. Our Bayes Net uses an input feature vector

with five items:

1. Summation of frame motion vectors within area of interest

2. Information quality (Number of frames since last full update)

3. Previous frame pose change Occurrence

4. Previous frame scale change Occurrence

5. Previous frame fit model successfully

The output is a prediction of the optimal action required to prevent divergence from

the original implementation and the confidence of the prediction. While not explored,

it may be possible to avoid decoding the frame, if the Bayes Net determines that an

update is not necessary based on the motion vectors.

Training and Prediction

The advantage of the Bayes Net is that it is very lightweight, both in inference, and in

training. It also accepts unknowns as inputs, which allows us to deal with cases where

we have just lost tracking, or have not yet acquired tracking. We train the Bayes Net

on a single segment of video, with a good range of motion that sweeps through all the

model poses. The length of the training video was not specifically chosen, however we

record it and other statistics in table 3.1. Since we are looking for a hint and not the
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exact policy this does not require a large database to train. We show that the Bayes

Net provides results better than randomly dropping frames.

Table 3.1: Training input for Bayes Net

Resolution Frames Time Train/Test

1920x1080 746 23s 60/40

The information quality is measure of how old the information contained in the

HOG feature pyramid are. This feature was chosen to help predict how long processing

can continue based on stale data. The expectation is that as the data quality drops, the

uncertainty in the Bayes Net will rise until eventually it predict that loss of tracking

would occur if a more substantial HOG pyramid update is not performed.

3.4 Algorithm Flow

The Bayes Net is used to predict which action would be required to prevent loss of

accuracy in object tracking. In addition to the recommended action, we also obtain

the probability that the Bayes Net believes in this outcome. For low confidence results,

we opt to be cautious, and perform a more comprehensive update than recommended

by the Bayes Net. With more evidence and testing, a more aggressive stance could be

taken to balance accuracy. The pseudo-code for our implementation can be found in

alg. 3.2.
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Algorithm 2: Psuedo-code for modified Algorithm

1 input l ea rned models

2 set de t e c t i on th r e sho ld

3 i n i t i a l i z e l e v e l s o f i n t e r e s t

4 foreach image

5 i f detec ted f a c e l a s t frame

6 Sum motion ve c t o r s bounded by detec ted ob j e c t s

7 e l se

8 Sum a l l motion vec to r s

9 Query Bayes Net save as p r ed i c t i on

10 foreach fL eve l in f e a t u r e l e v e l s

11 i f Pa r t i a l Update

12 foreach i L ev e l in l e v e l s o f i n t e r e s t

13 Calcu la te d i s t ance from iLev e l to fLeve l as r a t e

14 i f l a s t updated mod ra t e

15 Calcu la te HOG f e a t u r e s save as l e v e l

16 e l se

17 Use cached HOG f e a t u r e s f e a t u r e s

18 Downsample by s c a l e f a c t o r

19 i f Pa r t i a l Update

20 models = s e l e c t ad jacent models to p r ev i ou s l y detec ted

21 foreach model in models

22 foreach l e v e l in f e a t u r e l e v e l

23 foreach part in model

24 Convolve part with l e v e l save as s c o r e

25 Find X,Y o f part with h i ghe s t s co r e save part
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3.5 Summary

Based on the discussed methodology, the expected advantages of the implementation

is a decrease in average frame processing time. This is achieved by taking advantages

of partial HOG level updates. The major concern with utilizing stale data is a drop

in accuracy as compared to the original algorithm. To address this a policy network is

used to intelligently select when it is safe to reuse stale data.
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Chapter 4

Experiments & Results

4.1 Execution Performance

In order to test our method, we utilize the YouTube Faces DB [7]. We use approximately

400 videos chosen at random from the database to demonstrate our method. Due to

the diversity of the data set various resolutions are present, with the smallest being

720x480. We also show that we can realize a large performance gain. Our modified

algorithm at best takes only 36% of the time to process the same video, since we are

able to avoid calculating unused HOG features.

Relative Difference =
x− xref
xref

(4.1)
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Additionally we show that our algorithm achieves an accuracy negligibly different from

the original algorithm. We use relative difference in execution time as our performance

metric, shown in eq. (4.1). Applying this metric to the randomly selected videos pro-

duces the histogram shown in fig. 4.1. The bar chart highlights the percent of frame

samples along the primary vertical axis and the relative difference in execution time

achieved along the horizontal. Since the percent of samples are split into many bins, a

cumulative line graph is shown on the secondary axis for clarity.

Figure 4.1: Histogram of execution time difference, compared to original in YouTube
Faces DB using 433 randomly selected videos
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Over 60% of the videos processed by the modified algorithm, take less than 50%

of the original processing time. A summary of the results from fig. 4.1 is shown in

section 4.1. The best and mean are both negative since they take less time than the

original. Our worst case however is positive, indicating our algorithm can take more

time. In scenes that contain a lot of motion, in which cached information cannot be

utilized, we pay a performance penalty for no gain. The ten percent slower worst case

is caused by the construction of the feature vector and inference, when such analysis

provides no benefit, this is an expected result as not all frames entirely redundant.

Relative Difference

Best Mean Worst

-0.6347 -0.3876 0.0969

Table 4.1: Performance difference between original algorithm being naively applied to
each frame and our method.

In scenes with low motion, we realize the largest gain, using only 36% of the time

compared to the original algorithm. For scenes with extremely high motion it may be

possible to bypass the feature vector creation and inference entirely to decrease the

penalty; this is left to future work.
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4.2 Accuracy

After observing the performance increase, we verify that our algorithm does not nega-

tively impact the accuracy of the original algorithm. First we confirm that the discov-

ered model is detected at the same scale as the original algorithm. Next we perform

nearest neighbour between the key points in our results and those of the base algorithm.

We then record the maximum pixel error and mean pixel error based on the result of

the nearest neighbour search. This metric is only meaningful when both algorithms

successfully find a model. In order to address this we record some additional statistics

during the evaluation as shown in table 4.2. We pass the same frame to each algorithm,

which each have a separate internal state. If a model is found by both algorithms they

are compared as previously discussed. If both miss the model or only the modified

algorithm finds a model, no penalty is recorded. Otherwise a symbolic penalty weight

is recorded.
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Table 4.2: Table of metrics kept during evaluation detailing if model tracking was lost,
over 59349 frames

Found Model in Frame
Number of Frames

Original Modified

Yes Yes 46233

No No 12970

Yes No 146

No Yes 0

The two scenarios which introduce the most concern are listed at the bottom of the

table. The second last entry having a non-zero value indicates that our changes have

introduced enough error that tracking is occasionally lost. However the number of cases

represents less than 0.25 % of the total frames. The final row being zero, indicates that

our algorithm did not detect models where the original missed them. This is to be

expected since our goal is to increase speed, with a low to marginal impact on accuracy.

Since the number of frames where the modified algorithm was not able to find the

model is so low, below details only the cases in which a model was found in both. It is

important to note that both figs. 4.2a and 4.2b utilize a logarithmic vertical axis; the

error would appear to be zero otherwise.
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When comparing all the key points in a frame of the original algorithm and our

modified version 84 % of the frames have less than 10 pixels of error. When considering

the median error of all key points in a frame 99.9 % of the frames have less than 7.8 pixels.

Our results suggest that is is safe to utilize the previously calculated HOG levels in very

diverse environments as generally the pixel error is quite low.

4.3 Visual comparison

A brief visual comparison is shown by taking three frames, from a number of samples

videos, with a five frame interval between each. The following examples have been

selected to highlight the diverse environments: lighting, pose, and scale. For forward

facing frontal portraits both the original algorithm and modified perform as expected,

shown in fig. 4.3.
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(i) Frame 5 (ii) Frame 10 (iii) Frame 15

(a) Original Implementation

(i) Frame 5 (ii) Frame 10 (iii) Frame 15

(b) Our Algorithm

Figure 4.3: Frontal portrait with uniform background

Shown in fig. 4.4 are frames from a video which contains a comparatively noisy

background. There is a semi-round logo which could be confused for a face, that has

been correctly ignored. The subject is both farther from the camera and rotated away,

as compared to fig. 4.3. The original and modified algorithm both correctly identify the

face and pose.
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(i) Frame 5 (ii) Frame 10 (iii) Frame 15

(a) Original Implementation

(i) Frame 5 (ii) Frame 10 (iii) Frame 15

(b) Our Algorithm

Figure 4.4: Oblique view with cluttered background

However as we can see in the see in third example of fig. 4.5b our modified algorithm

occasionally de-synchronizes from the original algorithm. This scenario occurs when,

both the policy network has failed to predict that de-synchronization will occur based

on the current state and trigger a full update, as well as the actual cached features

leading to a different outcome. This is not unexpected, and tends to only last for a

single frame.
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(i) Frame 5 (ii) Frame 10 (iii) Frame 15

(a) Original Implementation

(i) Frame 5 (ii) Frame 10 (iii) Frame 15

(b) Our Algorithm

Figure 4.5: Noisy background with many face like objects and difficult illumination

This kind of error can occur in the original algorithm as well, when a background

object produces the same HOG feature that would normally correspond to a face feature;

example shown in fig. 4.6.
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Figure 4.6: Original algorithm incorrectly identifying object (hair) as facial feature
(jaw)

4.4 Policy Network

In order to show that the Bayes Net is providing good hints about when skipping updates

will not introduce tracking errors, we record the Receiver Operating Characteristic

(RoC) curve for the training input; a thirty second webcam video shot from slightly

above the subject with a 60/40 train test split. Additionally to show that it generalizes

we also test an uncorrelated video, from a Microsoft Kinect, shot looking up at the

subject. Shown in fig. 4.7 we find that in general the prediction performs better than

randomly guessing, shown as No Knowledge. The orange line represents flipping a coin

to decide if a partial or full update is required to prevent our modified algorithm from

diverging from the original algorithm. Perfect classification would be represented by

a unit step function; that is 100 % True Positive, with 0 % False Positive. To better
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understand RoC curve the function can be integrated to produce Area Under receiver

operating characteristic Curve (AUC). The perfect score would then be an area of 1 A.

Shown in fig. 4.7 the achieved AUC is 0.670 A.
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Figure 4.7: RoC curve for training, and testing video, including no knowledge (random
selection)

4.5 Restricted Model Search

As previously discussed in section 3.3.3 we can reduce the number of models, or views

that be checked against the computed features. The result is that the model candidate
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space will be reduced. For each frame, the input image is fed through our algorithm

and a set number of models are compared against the hog features to model candidates.

In the original algorithm, all models are compared. In our modified algorithm, we are

able to restrict it to adjacent models based on the results of the Bayes Net. In fig. 4.8

the affect of this, as well as the feature caching can be seen. The overall proportion

between the models remains relatively the same between the algorithms. However our

algorithm, has only checked 7 of the 13 models; 3 models adjacent to the previously

detected.
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4.6 Results Overview

As discussed in this chapter we confirm that suspicion about not requiring all feature

levels to be updated is correct. More importantly we are able realize performance gain,

with minimal impact on accuracy. The policy network we utilize is found to produce

quality predictions, which helps to minimize error. Additionally the restricted model

search is shown to remove low quality candidate parts without affecting the overall

result.
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Chapter 5

Conclusion

5.1 Summary

In this thesis a technique for improving the execution time of HOG pyramid based facial

landmark tracking is proposed. This technique uses a Bayes Net as a policy network

for determining when cached data from slightly stale frames can still be utilized. By

avoiding calculations which do not contribute significant accuracy, the system is able

to realized a large improvement in execution time. In order to reduce the overhead of

the algorithm and policy network, the system takes advantage of lightweight feature

inputs. The system is able to utilize motion vectors which are a normally an expensive

feature, by reading them out of the H.264 encoding.

As shown in fig. 4.1 there are a low number of cases in which the algorithm takes

the same or slightly greater time to complete. This is expected since the method for
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determining if it is safe to use cached feature does have a cost, even though it is low. In

videos where no cached features can be safely used, the penalty is still paid to determine

this with no benefit gained. This is the trade-off for using such a simple policy network,

when the prediction has too much uncertainty, the system must fall back to running

the original algorithm. With regards to overall accuracy the modified algorithm does

not differ significantly from the original method as shown in fig. 4.2a with respect to

accuracy.

5.2 Future work

Moving forward to more complex input features and policy networks, careful attention

needs to be kept on the performance penalty they introduce. As shown with with the

H.264 motion vectors, it is often possible to leverage existing systems in use, often from

slightly different disciplines.

5.2.1 Policy Network

Since the training of the Bayes Net is incredibly light weight, it may be possible to

incorporate an online adaptive algorithm, which can further optimize away unnecessary

feature level updates. This does not need to operate every frame and could be run

at a slower rate in order not to increase the processing time. Alternatively it may be

possible to use a Reinforcement Learning (RL) technique to discover a more complex

policy at the cost of extra additionally training time and data.
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5.2.2 Inter-Frame Position Smoothing

The focus of this research was to improve the execution performance of the existing

method [1]. During the literature review many additional techniques were discovered.

In a similar work [14] Kalman filters are used to successfully interpolate frames in which

feature detection fails. Implementing such a technique may help to further decrease the

number instances where the original and modified algorithm disagree.

5.2.3 Deep CNN

As NN based methods catch up in accuracy this technique may be similarly applicable

to them. As previously mentioned it has a similar concept to [27]. It may be possible

to utilize our lightweight policy network to gate calculations in a deep CNNs.
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