
 i

USING DECISION TREES FOR INDUCTIVELY DRIVEN

SEMANTIC INTEGRATION AND ONTOLOGY MATCHING

Bart Gajderowicz

BSc, Ryerson University, Toronto, Canada, 2008

A thesis

presented to Ryerson University

in partial fulfilment of the

requirements for the degree of

Master of Science

In the program of

Computer Science

Toronto, Ontario, Canada, 2011

© Bart Gajderowicz, 2011

 ii

 iii

I hereby declare that I am the sole author of this thesis or dissertation.

I authorize Ryerson University to lend this thesis or dissertation to other institutions or individuals for the

purpose of scholarly research.

Place, Date

Signature

I further authorize Ryerson University to reproduce this thesis or dissertation by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

Place, Date

Signature

 iv

USING DECISION TREES FOR INDUCTIVELY DRIVEN
SEMANTIC INTEGRATION AND ONTOLOGY MATCHING

Bart Gajderowicz

MSc, Computer Science, Ryerson University, 2011

Abstract

The popularity of ontologies for representing the semantics behind many real-world domains has

created a growing pool of ontologies on various topics. While different ontologists, experts, and

organizations create the vast majority of ontologies, often for internal use or for use in a narrow

context, their domains frequently overlap in a wider context, specifically for complementary domains.

To assist in the reuse of ontologies, this thesis proposes a bottom-up technique for creating concept

anchors that are used for ontology matching. Anchors are ontology concepts that have been matched

to concepts in an external ontology. The matching process is based on inductively derived decision

trees rules for an ontology that are compared with rules derived for external ontologies. The matching

algorithm is intended to match taxomonies, ontologies which define subsumption relations between

concepts, with an associated database used to derive the decision trees. This thesis also introduces

several algorithm evolution measures, and presents a set of use cases that demonstrate the strengths

and weaknesses of the matching process.

Keywords: ontology matching, machine learning, decision trees, semantic integration, taxonomy.

 v

Acknowledgments
This thesis is the result of a great deal of time assessing the hard problems which prohibit people and

societies from having an open dialogue with one another, and searching for ways in which my

technical background can contribute to these problems. I have spent several years researching these

topics, and articulating my findings to the people I credit with helping me achieve this goal. To that

end, I would like to thank the following individuals that have assisted me in this process.

First I would like to thank my supervisor Alireza Sadeghian for indulging my ideas at the beginning

of this journey, and guiding me as I began to explore the world of formal research. His openness and

willingness to lead me through the many potential avenues, helped me focus on the areas necessary to

achieve my goals.

I would like to thank my co-supervisor Mikhail Soutchanski for helping me articulate my ideas, and

for strengthening my understanding of the logical foundations of ontologies that have guided my

interests and the development of my research. His endless assistance and guidance have generated

many ideas found within the pages of this thesis.

I would also like to thank Michael Grüninger for the invaluable insight into ontologies and research I

have gained through my discussions with him.

Finally, I would like to thank my friends and colleagues Hossein Rahnama and Chris Mawson, who

spent countless hours with me discussing the technical, social, and theoretical aspects of my research,

and the countless others who have shared their ideas with me.

 vi

Dedications
This thesis is dedicated to my family. To my mother and sister whom I owe everything, and to my

wife, without whose patience I could not have reached this goal.

 vii

Table of Contents
Abstract iv	

Acknowledgments v	

Dedications vi	

Table of Contents vii	

List of Tables ix	

List of Figures xi	

Chapter 1.	
 Introduction 1	

1.1	
 Problem Statement and Motivation 1	

1.2	
 Existing Approaches 2	

1.3	
 Methodology 3	

1.4	
 Objectives 4	

1.5	
 Thesis Outline and Contributions 5	

Chapter 2.	
 Background and Related Work 7	

2.1	
 Ontology Matching 7	

2.2	
 Machine Learning 9	

2.3	
 Web Ontology Language OWL 12	

2.4	
 Existing Approaches 17	

Chapter 3.	
 Methodology 21	

3.1	
 Approach 21	

3.2	
 Semantics and Machine Learning 22	

3.3	
 Database Preparation 26	

3.4	
 Attribute Matching 28	

3.5	
 Concept Matching 29	

3.6	
 Semantic Granule Building 31	

3.7	
 Granule Rule Matching 37	

3.8	
 Nominal Property Rules 41	

3.9	
 Matching Algorithm 44	

3.10	
 Concept Match Ranking Measures and Motivation 47	

3.11	
 Match Rankings 50	

3.12	
 Matching Schemes 53	

 viii

Chapter 4.	
 Results and Analysis 59	

4.1	
 Evaluation Measures 59	

4.2	
 Evaluation Measures - Precision and Recall 61	

4.3	
 Proximity Measures 64	

4.4	
 Evaluation Use Cases 68	

4.5	
 Evaluation Test Results 70	

4.6	
 Real-Life Use Case And Test Results 74	

4.7	
 Ontology Considerations 78	

Chapter 5.	
 Conclusion 83	

5.1	
 Contribution 83	

5.2	
 Future Work 84	

Appendix 1. Test Parameters and Evaluation Data 86	

Parameters 86	

Appendix 2. OWL 2 Representation 91	

OWL 2 Semantics 91	

OWL 2 Examples 93	

Appendix 3. Use Case Ontologies 97	

Appendix 4. Code 111	

Appendix 5. User Interface: Match Selector 112	

Bibliography 115	

Glossary 123	

Terms 123	

Symbols 125	

Acronyms and Variable Name Conventions 127	

 ix

List of Tables

Table 1. Basic Description Logic AL (Attribute Language) ... 13	

Table 2. Family of Description Logics and extensions ... 13	

Table 3. TBox Example .. 16	

Table 4. ABox Example (Roles on Individuals) .. 16	

Table 5. Concept hierarchy levels as database columns ... 26	

Table 6. Normalized Data Sample .. 27	

Table 7. Match Score Example MS(LC, TC, msv) .. 51	

Table 8. Matching Scheme Rating (msrating) .. 58	

Table 9. Proximity measure relationships ... 64	

Table 10. Standard proximity measure ... 65	

Table 11. Matching Scheme proximity measure .. 65	

Table 12. Symmetric proximity measure .. 66	

Table 13. Effort proximity measure .. 66	

Table 14. Effort with edge count proximity measure ... 67	

Table 15. Combined proximity measure ... 67	

Table 16. Use Case Ontologies ... 68	

Table 17. Use Case Statistics, with main Precision and Recall Measures. ... 70	

Table 18. FutureShop vs. BestBuy Precision and Recall Measures summary. ... 75	

Table 19. Parameters used by the matching algorithm. .. 86	

Table 20. Use Case Statistics, with main Precision and Recall Measures. ... 87	

Table 21. Precision Evaluation Measures. .. 88	

Table 22. Recall Evaluation Measures. ... 89	

Table 23. FutureShop vs. BestBuy Precision. ... 90	

Table 24. FutureShop vs. BestBuy Recall Measures. ... 90	

 x

Table 25. Class Expressions .. 91	

Table 26. Interpreting Class Expressions .. 91	

Table 27. Data Property Expressions .. 91	

Table 28. Interpreting Data Ranges .. 92	

Table 29. Use Case (ow to ow): self match. ... 97	

Table 30. Use Case (ow to t1): flattened concepts. ... 100	

Table 31. Use Case (ow to t2): expanded concepts. .. 101	

Table 32. Use Case (ow to t3): drastic reconstruction. ... 102	

Table 33. Use Case (ow to t4): ground term movement. .. 104	

Table 34. Use Case (ow to t5) : ground terms become super-classes of other ground terms. 105	

Table 35. Use Case (ow to t6): ground terms become super-classes of their siblings. 107	

Table 36. Use Case (FutureShop to BestBuy): real-world example. .. 108	

Table 37. Sample of proposed matches presented to the user. ... 113	

 xi

List of Figures
Figure 1. Latest form of the Semantic Web stack diagram (W3C Semantic Web Activity 2010). 12	

Figure 2. A sample (a) Weather Ontology OW with (b) 2-dimensional data clusters at each class level for

the attributes Temperature (Temp) and Visibility. .. 23	

Figure 3. A sample (a) Weather Ontology OWEATHER with (b) 2-dimensional data clusters at each class

level for the attributes Temperature (Temp) and Visibility (Vis). .. 23	

Figure 4. A 2-dimensional representation of the (a) area and (b) decision tree rules classifying the

Weather concept using attributes Temperature (Temp) and Visibility. ... 24	

Figure 5. A 2-dimensional representation of the (a) area and (b) decision tree rules classifying the Wind

and Precipitation concepts using attributes Temperature (Temp) and Visibility. 24	

Figure 6. A 2-dimensional representation of the (a) area and (b) decision tree rules classifying the Rains

and Snow concepts using attributes Temperature (Temp) and Visibility. ... 25	

Figure 7. A sample taxonomic Local Ontology (OL) with class levels, and a 2-dimensional cluster for data

attributes daa and dab. ... 30	

Figure 8. OL Level 1 granulation. .. 30	

Figure 9. 2-dimensional, Level 2 sub-class clusters for OL. ... 31	

Figure 10. OL Level 2 granulation. .. 31	

Figure 11. Standard Target Ontology (OT) with class levels, and a 2-dimensional clusters. 32	

Figure 12. 2-dimensional, Level 2 sub-class clusters for OT. ... 32	

Figure 13. 2-dimensional, Level 3 sub-class clusters for OT. ... 33	

Figure 14. 2-dimensional, Level 4 sub-class clusters for OT. ... 33	

Figure 15. Complete granulation (Levels 0 – 3) of OT. ... 34	

Figure 16. Decision tree classification with 2 numeric data attributes for sub-classes of LCA. 35	

Figure 17. LCA and TCA granule matches between R (a) (d), S (b) (e), and T (c) (f). 38	

 xii

Figure 18. Decision Tree branch conversion to rules and data-points using numeric attributes daa and dab.

 ... 40	

Figure 19. Granule matching example using numeric attributes daa and dab. .. 41	

Figure 20. Decision tree classification, utilizing a numeric (daa) and a nominal (dac) property. 41	

Figure 21. Decision Tree branch converted to rules and data-points with nominal and numeric attributes

daa and dac. .. 43	

Figure 22. Granule matching example using the numeric attribute daa and nominal attribute dac. 43	

Figure 23. Local and Target Ontologies defining the Precipitation concept. ... 47	

Figure 24. Test results of precision vs. use cases, for each proximity measure. .. 71	

Figure 25. Test results of recall vs. use cases, for each proximity measure. .. 73	

Figure 26. Test results of precision for FutureShop vs. BestBuy, for each rating (x-axis) and proximity

measure (legend on right). .. 75	

Figure 27. Test results of recall for FutureShop vs. BestBuy, for each rating (x-axis) and proximity

measure (legend on right). .. 77	

Figure 28. OL (a) and OT (c) ontologies, with corresponding top level data clusters, (b) and (d) 78	

Figure 29. Linear Ontology Example (OLinear) (a) and a 2-dimensional clusters (b). 79	

Figure 30. LCA, TCA , and owl:Thing granule matches: (a) (d) (g), (b)(e) (h), and (c) (f) (i). 80	

Figure 31. Differently Structured Ontology Example (ODiff) (a) and a 2-dimensional cluster (b). 81	

Figure 32. 2-dimensional, Level 2 sub-class clusters for OL and ODiff. .. 82	

 1

Chapter 1. Introduction

1.1 Problem Statement and Motivation
In today’s open community, more organizations are willing to share their data in the hopes of

improving their processes through collaboration [1]. Often the individual system’s intended domain

models, such as concepts, relations and attributes1, are very similar, if not equivalent to other

representations within the same or complimentary domain [2][3]. These domain elements can be

represented as a database schema or be embedded in the application’s program logic. With different

technical representations and implementation details, aligning these elements between two systems

can be nearly impossible. To separate the implementation details from the domain elements, many

organizations create a higher level description of their domains, through representation structures such

as UML diagrams, workflows, rules, or taxonomies [3][4], and often a more formal ontology [5]. This

thesis adopts the definition of an ontology as a shared understanding of a particular domain through

conceptualization, and the use of explicit concepts, definitions, and the relationships between those

concepts [6]. A definition more relevant to this thesis, and one which will be expanded later on, is that

an ontology can also be seen as describing a particular domain using role hierarchies, where roles

define concepts and properties of those concepts and relationships among concepts [7]. Ontologies

can express a variety of entities, concepts, relationships, processes, roles, guidelines, and others [6].

An ontology’s expressiveness depends greatly on the language it is represented in. Ontological

elements, similar to implementation details, are open to interpretation by the domain expert, and need

to meet the technical requirements and constraints faced by the system architect [8].

The way information is translated into ontologies depends heavily on the ontologist who is creating

them, the subject matter expert (SME), and when the ontologies were created [9]. It is often the case

that two ontologies are equivalent though their underlying concepts and definitions. It may also be the

case that ontologies describing the same phenomenon are made up of differently organized definitions

that are not equivalent. This may be due to the SME's bias, ontologist's bias, incomplete data, limited

number of finite observations or different contexts. Regardless of the reason it is a well documented

fact that conceptualizations by different people will often be translated in different ways [9]. The

discrepancies may exist in the interpretations, and also in the available data. The alignment of

ontologies is a difficult process, and this thesis focuses on reducing the difficulties in aligning

ontologies, from here on called “ontology matching” [10]. The focus of this thesis is taxonomic

ontologies, represented by sub-class and super-class relationships.

1 See Glossary on page 112 for the definitions of concepts, relations, and attributes.

 2

1.2 Existing Approaches
Previous work that attempts automatic or semi-automatic ontology matching uses various aspects of

the ontology itself. In all cases, however, a similarity measure of some kind is required for the

information extraction process. Similarities can be structural in nature, especially when the ontology

can be represented by a directed labeled graph, or bipartite graphs [11]. In such cases, lexical anchors2

are found which are initially used to match similar concepts between ontologies, and then their

structural position relative to other anchors is considered for further matching [12]. One of the

simplest structural characteristics is the relative distance between concept nodes in a structure

[13][14]. Considering the distance between nodes is called edge-counting, where the term edge is

adopted from a graph representation of subsumption. For example, considering Rain Precipitation

 Weather Event, there is 1 edge between Rain and Precipitation, 2 edges between Rain and

Weather, and 3 edges between Rain and Event. A more in-depth structure analysis of ontologies can

be applied using various graph-theoretic methods. Stochastic measures such as expectation

maximization algorithms have been utilized for ontology matching [12][15], by presenting the

ontologies as graphs, and performing graph matching [16].

Some methods concentrate on purely lexical information, and look for similarities between labels

[15][17][18][19] and data values. This lexical information can relate to record identifiers such as

identification values (ID’s) or uniform resources locators (URI’s), as well as labels which are

normalized through word similarities and synonyms [17]. Tools such as WordNet [20] are meant to

provide similar terms such as synonyms, as well as much richer semantics between words such as

hypernyms3, hopenym4, holonyms5 and troponyms6 to name a few. Some domains, such as

Biomedicine which have a well defined vocabulary, are well suited for such lexical mappings [21].

Various methods have been used to enhance the initial anchors, such as neural networks, decision

trees, and support vector machines [22]. A set of terminology relationships such as synonyms, word

senses, and hypernym groupings, can be rated and grouped together into a structure like the decision

tree, and compared to others in order to find a set of similar characteristics [23][24].

2 An anchor is a concept in the local ontology which was identified as a match with a target concept. An anchor is used to align

ontologies, and possibly perform further matches using structural or other matching techniques.
3 Hypernym: a term with a broader meaning (e.g. Weather is a hypernym of Snow).
4 Hopenym: a term with a specialized meaning; opposite of hypernym (e.g. Snow is a hopenym of Weather).
5 Holonym: a term that denotes a whole made up of parts (e.g. Car is a holonym of engine, wheels, etc).
6 Troponym: A verb version of hopenym, giving a specialized meaning of a verb (e.g. Strolling is a troponym for walking).

 3

As data becomes more complex, this information also becomes a more powerful resource for

matching the ontological elements it is meant to represent. This more complex data will also allow

machine learning techniques to advance beyond simple analysis of the format or string sequences of

data values, as discussed in the previous paragraph, and instead will allow the analysis of both overall

statistical characteristics and underlying patterns in the data. With this, however, comes a level of

uncertainty, as the results given by machine learning algorithms are predictions, often based on the

maximum entropy principle [25]. Though uncertainty and probabilities have been widely studied in

the ontology field, Description Logics are a newer area of interest generating research in recent years

in this field [26]. Many researchers concentrate on belief measures of uncertainty introduced by

ontological definitions [27][28][29][30], with others concentrating on probabilistic measures

[31][32][33][34][35]. Once preliminary anchors are defined with associated belief measures,

similarity measures can be calculated between two concepts in similar ontologies [36][37].

1.3 Methodology
To overcome some of the limitations, and extend the efforts of previous work on ontology matching,

we propose an algorithm that inductively builds decision trees based on the ontological characteristics

of a data set. The focus is to avoid using lexical information of labels and vocabularies of the

individual ontologies for creating concept anchors. Instead, inductively derived information in a

bottom-up fashion is used to create and rate a set of matches. Similar to Volz [38], by using the

ontology as a guide for the data-mining algorithm, we are able to utilize the semantic relations of the

ontology and the statistical information of the data, to create a set of rules which encompass

knowledge from both sources. The resulting decision trees represent refined definitions of ontology

elements, specifically ground terms, based on data. This builds a set of anchors, through a bottom up

approach, which can act as anchors in the matching process. The hypothesis is that despite

discrepancies in two separate ontologies based on different needs, and built by different architects, the

data itself will show some level of consistency. Data is required to match concepts, and the

assumption is that even though interpretations may differ, the underlying occurrences captured in data

records will remain somewhat consistent [10][38].

The rules defined by the local decision trees are then checked by a reasoner for consistency with a set

of rules from a target ontology and data set. The actual data gathered about observations7 may be

consistent amongst the instances observed by other ontologists, even when the data does not apply

7 Observations are actual events that occur in the real world, about which data can be gathered.

 4

directly to their domain. If so, this data may be used to match concepts from one domain to the other

at a more detailed level based on a learned model from instance data [10]. For example, a particular

type of precipitation event may be characterized as Rain or a lighter Drizzle. While the two terms are

labeled differently, the actual rainfall recorded, along with wind speeds, temperature, and other

information would be consistent amongst all observers. Once a consistent set of rules is found, a

match is created between the two concepts Rain and Drizzle. As will be expanded on in section 2.3,

this thesis utilizes OWL 2 to represent the derived rules. Due to OWL 2’s adoption by W3C as a web

ontology standard, it may increase the adoption of these rules by other external systems. Also, if an

ontology is already represented in an OWL 2 compatible ontology, the derived rules could act as

extensions to existing OWL 2 concepts.

1.4 Objectives
The objective of this thesis is to describe the ontology matching process, which is made up of the

following modules. (1) First, a local database is enhanced semantically by associating individual

records with the single or multiple ontological concepts they represent. This can be done

automatically if records already have a “category” column that can be matched up with a concept in

the ontology. (2) A reasoner is used to create a sets of records that are grouped under a particular

parent concept. The reasoner resolves super-class and sub-class role hierarchies. (3) These records are

then classified with a decision tree algorithm. (4) The derived trees, and the associated rules are then

converted into OWL 2 axioms for portability and reasoning tasks. (5) The axioms derived from a

local and target ontology are used to find overlapping axioms based solely on the data provided by the

records themselves (numeric values are generalized by expanding their range and reducing their

requirements, while nominal values use WordNet [20] to generalize the terms). Unlike lexical

matching algorithms which use tools such as WordNet to generalize labels of concepts or even

attributes, as described in the next chapter, this algorithm generalizes data values for the attributes. (6)

Finally, the matches are rated based on the accuracy of the original classification and structural

similarities dependent on several structural rating schemes. The rated matches are presented to the

user for verification. Due to its data driven approach, this algorithm is a bottom-up matching

technique, which focuses on creating anchors for ground terms in an ontology, which represent more

specific matches compared to their more ambiguous super-class counterparts [39]. If abstract concepts

in different ontologies, higher in the ontological hierarchy, share similarities in data, it may be

possible to match them as well, as long as the data-driven similarity anchors can be traced up to the

abstract concepts through some data attribute.

 5

The applications which accompany this thesis, listed in Appendix 4 on page 86, utilize the WEKA

[25] data-mining package to build decision trees. Ontology analysis and reasoning for combining a

database and ontologies is performed on ontologies represented in the OWL 28 language, using the

HermiT [40] reasoner. As will be expanded on in section 2.3, HermiT reasoning services utilized by

this thesis, include verifying if a concept is satisfiable given a particular OWL 2 axioms, and deriving

the super-classes and sub-classes of a particular concept. HermiT plays a key role in the matching

algorithm because it is used to perform the consistency checks between two mappings, based on the

created OWL 2 rules, derived from a decision tree. The OWL API [41] is utilized to build OWL 2

syntax, and to express derived rules, build associations, and represent matching criteria for the

HermiT reasoner. All development is done using the Ruby9 language, with jRuby10 being the

interpreter, for integration with the Java11 based WEKA, OWL API, and HermiT packages.

1.5 Thesis Outline and Contributions
This thesis proposes a bottom-up approach to data driven ontology matching. At the beginning of

Chapter 2 we provide necessary background knowledge about the technology utilized in this thesis.

Sections 2.1 to 2.3 provide background knowledge on the technologies utilized by the thesis. Section

2.4 describes key areas of research in the ontology matching field. The most effective matching

techniques are described, mainly lexical and structural characteristics of ontologies. The utilization of

machine learning algorithms is also discussed.

Chapter 3 describes the methodology of this thesis. Section 3.1 describes our ontology matching

approach, and includes definitions of key concepts. Section 3.2 describes the semantics of ontologies,

and describes the first contribution made, which is how machine learning techniques are utilized to

represent those semantics. Section 3.3 describes the process of associating an ontology with database

records it is meant to represent. Section 3.4 briefly describes how attributes are matched, and how this

process can be implemented. Sections 3.5 to 3.8 describe the second key contributions of the thesis,

mainly the rule creation and matching process. These sections include detailed definitions needed to

implement the algorithm. Sections 3.9 to 3.12 describe the third key contribution of this thesis, mainly

the match rating algorithms. It also demonstrates how these are presented to the user for verification

purposes.

8 OWL 2 is a web ontology language, and is described in greater detail in section 2.3.
9 Ruby 1.8.7 (http://www.ruby-lang.org/en/)
10 jRuby 1.4.0 (http://jruby.org/)
11 Java 1.6 (http://java.sun.com/)

 6

A detailed analysis of the algorithms and the results of the tests are described in Chapter 4, including

ontologies used for the tests, and the databases associated with the test ontologies. These last sections

also give the final contribution of the thesis, which is the extension of existing ontology matching

evaluation measures, proposed specifically for evaluating our algorithm. Sections 4.1 to 4.3 define the

evaluation measures used in the Results and Analysis chapter to evaluated the matching algorithm.

Section 4.4 lists the tests themselves, and gives motivation for the evaluation measures applied. The

use cases are described, with an explanation of the test scenario they cover. In section 4.5 we describe

the results of the evaluation tests and in section 4.6 we describe the real-life test results. Both sections

are accompanied by detailed analysis and derived conclusions. Based on the analysis in the previous

sections, section 4.7 describes the limitations of the algorithm, and considerations that must be taken

for the process to produce successful matches.

Chapter 5 serves as the conclusion, summarizing the algorithm and analysis of the results, and lists the

key contributions made. Finally, the direction for future work is described, with proposed extensions

and improvements to the algorithm. We also suggest possible applications of the produced granules,

rules and data-points in OWL 2, outside of the ontology matching application.

The appendices provide: the parameters used for the tests, the complete results of the evaluation

measures collected; sample match outputs as presented to the user for verification; OWL 2

representations of the axioms utilized by the algorithm; a list of use cases and benchmark concept

matches; and a link to the source code written for the implementation of the algorithm and test

execution. Finally the last sections provide the Bibliography and a Glossary of the terms, symbols,

acronyms and variable naming conventions used throughout the thesis.

 7

Chapter 2. Background and Related Work
Most ontology matching techniques use a variety of similarity measures. This chapter gives

background knowledge and lists related work, which deals with ontology matching in general, data

driven ontology matching, and incorporates decision trees with ontology matching.

2.1 Ontology Matching
Ontology matching is the alignment between entities of different ontologies [10]. In contrast to

similar work in the literature, ontology matching is the alignment of entities in one ontology, to at

most one entity in another. Several issues have been identified as obstacles in manual ontology

matching [8][10][42], specifically inconsistency, incompleteness and redundancy. This results in

incorrectly defined relationships, missing information, or simply human error. Upper ontologies12

such as DOLCE [43], OpenCYC [44], SUMO [45], and SWEET [46] have been used to serve as a

place for defining general concepts, heavily based on natural language and common sense. Such

concepts can then be used to define specific concepts in domain ontologies using general terms. This

type of mapping to common general terms has been envisioned as helping in matching one ontology

to another, promoting reusability of data, assisting in automated inference as well as natural language

processing [10]. Manual ontology creation and mapping has been conducted by ontologists and has

been based on their experiences in a particular context. Domain specific ontologies, or simply domain

ontologies, are created by subject matter experts and ontology engineers. The drawback of the manual

matching process is that the creation and mapping of ontologies is time consuming and error prone

[8][27].

An emerging field in ontology analysis is automated extraction of subjects and concepts from text

[47] in order to create ontologies as well as automated ontology merging [48]. Research in this field

has focused on semi-automated algorithms, as well as tools that assist with the manual process.

Cognitive support to humans has been very beneficial in helping ontologists build ontologies [49],

this is especially important since human experts in the same domain, and even the same expert at

different points in time, create different models for the same phenomenon [9]. The trend in

streamlining the mapping processes was dominated by structural mappings in early 2000’s, with a

shift in focus to semantic mappings in 2007 [49]. The main difference between these trends is that

structural mappings are those which only relate schemas to each other, whereas semantic mappings

12 Upper ontologies are typically large ontologies that define “common sense” definitions in a variety of domains.

 8

also consider data based information, such as how terms are related to each other. This has greatly

improved the mapping process, by allowing a system to reason with the relationships of individual

terms and concepts. Systems such as OntoClean [50] consider lexical information and metadata of

ontologies in an attempt to measure an ontology’s validity. OntoClean was used to extract a

“backbone” of key terms, analyze their position in the hierarchy, and reorganize them into a more

logical structure. An ontology's validity was measured by comparing the success of a query against

the system before and after it was processed by OntoClean.

Various techniques have been identified by Euzenat and Shvaiko [10] for automated and semi-

automated matching techniques. Each technique depends on the type of data the matching algorithm

works with. The first type of techniques are element-level techniques, which include algorithms based

on strings, languages, constraints being applied to entities (such as types, cardinality, keys) and

linguistic resources such as lexicons or related thesauri terms. The second type is structural-level

techniques, which include graph-based techniques that interpret ontologies as labeled graphs (such as

database schemas or taxonomies), taxonomy-based techniques that consider only the specialization

relation [51], data-analysis and statistical techniques that consider element properties such as

maximums, variance, grouping and number of segments [10]. A different set of characterizations

could tell us something about the patterns and distribution of data in a particular domain [10][52].

When datasets share a common domain but not the database, it can be beneficial to instead compare

the distance between the sets of records within the different databases. In this case, disjoint extension

comparison techniques can be applied, which can be based on descriptive statistics of a class as a

whole, based on element features [10].

In order to apply these characterizations, a data-enhanced ontology can be created which has data

associated with individual ontology entities. This will refine the observations made and increase the

probability of finding a match from one ontology to another. The information derived from element-

level techniques may also increase the degree of consistency in the translation of observations to

axioms. The most beneficiary applications of a record-based ontology matching process are ones with

domains that possess data sufficiently descriptive to differentiate ontological concepts. Likely

candidate domains are scientific research for which experimental results are only as accurate as their

underlying data and historical, and archiving systems such as climate prediction and population

census surveys. When qualifying collected specimens or observed phenomena, the investigator often

relies on a combination of data-driven and theory-driven information [53]. In fields such as geology,

qualifying various types of rock depends greatly on the specimens found and the geologist’s

 9

knowledge about the region, rock types, and properties that are infrequently observed and

theoretically important. Due to personal bias, some theoretical knowledge may be used incorrectly

because of an incorrectly qualified location, for example a lake instead of a stream. Brodaric et al.

[53] observed that more consistent and presumably correct qualifications were exhibited using data-

driven information, versus theory-based.

2.2 Machine Learning
The idea of learning can be interpreted in many different ways: is it the act of acquiring knowledge;

of becoming aware of our environment based on that knowledge; or the ability to reason based on that

knowledge? Finding a universally agreed upon definition is difficult because the philosophical,

theoretical, and technical definitions concentrate on various aspects of the meaning. Therefore taking

philosophical and theoretical matters aside, this thesis deals with the definition of learning adopted by

the machine learning community, mainly any computational approach to learning [54]. Because of

the data driven nature of this thesis’ topic, it specifically concentrates on the definition adopted by the

data-mining field, that is, “a technique for finding and describing structural patterns in data for

helping to explain that data and make predictions from it” [25]. As will be described in Chapter 2,

current research employs many data-mining algorithms for this purpose. Specifically, ontologies can

be analyzed, created, and enhanced using machine learning techniques. There are inductive means

that deal with the uncertainty of a set of rules, or the probabilistic measures of a particular rule. This

thesis employs decision trees as the data-mining algorithm to capture knowledge.

As a data structure, decision trees are used to represent the logical structures of classification rules for

domain specific empirical data. The basic algorithm selects the property with the highest information

gain for a particular class, and creates disjoint subsets based on that property’s values. Ordinal

attributes are split into two branches on the < and ≥ number restriction. For example a size property

could be split into large and small classes based on the number of records and their size values.

Nominal attributes are treated as categorically disjoint sets, with as many branches as there are values.

For example, the taxonomical R relation “instance of” (France is an instance of Country) would be

able to express the ontological relation x R y : [x ∈ {Country} ∧ y ∈ {France, Italy, Spain}]. A

decision tree classifying Country would be represented with a parent node Country, and three sub-

nodes, France, Italy, and Spain. These could be further split on an ordinal property such as population

size ranges, or another nominal property such as language. These subsets are smaller in cardinality

than the previous subset, but more exact in precision in classifying a concept. The key factor in the

 10

classifying process is the property and value combinations that identify concepts best and make up the

classification rules.

If we are to use decision trees for matching purposes, we must ensure the trees are somewhat

consistent, despite being created by different people who may be using different data sets. We can

assume the algorithm producing the decision tree is the same as well as the process of converting the

result into the final ontology language, and accommodating axioms. What we need is to ensure that

the randomness of the algorithm in the learning process has minimal impact on the consistency of the

resulting trees for the two ontologies being matched. To minimize these inconsistencies, instead of

producing a single decision tree to model each ontology's data set, several smaller decision trees are

created, and combined using various techniques. The resulting decision tree is an intelligently

generalized version, which does not lose any information but rather is easier to compare to a tree

created using a different data set with similar information. Each technique generalizes the set of trees

by iteratively combining them in various ways.

Bagging, which stands for bootstrap aggregation, works by combining all trees produced using the

training data, and testing them out on the learning data13. This process actually works better when

there are many differences in the trees, a phenomenon which can be increased by ensuring the trees

are not pruned14. Some models not only produce a score, but probabilities as well, averaging those

probabilities to enhance the score is called bagging with costs.

Boosting is a technique that “boosts” the importance of individual records in the data by assigning

weights to those records based on whether they were correctly classified by the derived decision tree.

By identifying “hard” and “easy” problems, the next iteration produces a classifier that concentrates

on the hard problems of the previous step. Over time, the set of generated classifiers complement each

other on the testing data set.

Stacking is a technique that compares models built with different classification algorithms. Essentially

an iterative metalearner is a process that learns which classification algorithm is best.

13 In machine learning, learning data is a subset of data records used by the algorithm primarily for identifying a pattern inherent

in the data. Testing data is a separate set of data records used to test the learned pattern.
14 Pruning refers to the removal of a lower section of a tree branch. This results in a reduction of complexity of the decision tree,

but also reduces the level of precision offered by the longer branch.

 11

Option tree is a technique that produces a decision tree with two types of nodes: the traditional

decision node, and a new type called an option node. Unlike a decision node that leads to a single

branch, an option node leads to all branches simultaneously. Each branch is then scored against the

others, with the best one chosen as the predicate for that point of the formation tree. The option tree

technique allows for a generalization that may be scored with various methods.

This thesis implements the bagging with cost technique, by utilizing WEKA’s MetaCost15 class, to

standardize the resulting decision trees and remove the affects of randomness in their creation. The

Bagging technique and MetaCost class are WEKA libraries that are utilized in this thesis, and are

discussed in greater detail here.

Bagging16, or bootstrap aggregation, is a process of improving the prediction model over some data

set L [55]. Bagging begins by taking the entire training set L, and creating several training sub-sets

{Lk} with replacement, with the same record count as L. Although record selection for each Lk is

random, each Lk has the same underlying distribution as the original data set L. The classification

algorithm then builds a single prediction model ϕk for each sub-set in Lk. Each model in {ϕk} is then

used to predict all classes in L, and each record in L is assigned a vote for each ϕk. This vote identifies

how well each record was classified by each model ϕk, and is used to score how well each ϕk

classifies each class in L. See the weka.classifiers.meta.Bagging Java model in WEKA [25] for details

of the implementation, and calculation of the vote value. The MetaCost class utilizes the calculated

votes to create a new dataset Lw. Lw is a copy of L where the class of each record is weighed based on

the best average vote, from each prediction model in {ϕk}. Finally, the new Lw is used to create the

final decision tree, used by this thesis.

The rules derived by the algorithm are meant to be exchanged by different systems. As a result, a

language must be chosen that represents the rules with sufficient expressivity and a wide acceptance

by the intended communities. Traditional rule based systems utilize languages and reasoners intended

for closed homogenous environments. However systems that work in an open heterogeneous

environment must have a different language, which meets a new set of requirements [5].

15 The bagging with costs method utilized in this thesis is the weka.classifiers.meta.MetaCost class, which is part of the WEKA

package.
16 The main Bagging algorithm is based on Breiman [55], but the detailed description given here is based on the implementation

of WEKA’s class weka.classifiers.meta.Bagging.

 12

2.3 Web Ontology Language OWL
The language chosen here to represent derived rules is the Web Ontology Language 2, or OWL 2,

which has been adopted as a recommendation for the web ontology standard by the World Wide Web

Consortium (W3C) [56]. Its predecessor OWL was recommended in 2004 to be used as the language

to represent ontologies on the semantic web, with the next challenge being extending these ontologies

with rules [5].

Figure 1. Latest form of the Semantic Web stack diagram (W3C Semantic Web Activity 2010).

Figure 1 shows OWL ontologies are parallel with Rule Interchange Format (RIF) rules. RIF has been

proposed specifically as the standard for sharing rules over the semantic web17. The W3C has

published a detailed procedure for representing OWL 2 axioms in RIF18. OWL 2 was chosen as the

actual representation language in this thesis for two key reasons. The first is the availability of an

OWL 2 reasoner called HermiT [40]. No such reasoner currently exists for RIF. The reasoning

services provided by HermiT, and utilized by this thesis, include verifying if a concept is satisfiable

given particular axioms, and deriving the super-classes and sub-classes of a particular concept.

Ultimately, the rules built by the algorithm presented here can be easily converted from RIF to OWL

2 for reasoning purposes, and back to RIF again for sharing. The second key reason is that by

representing the rules as OWL 2 axioms, they can be directly embedded in the original ontology, if it

17 http://www.w3.org/TR/2009/WD-rif-overview-20091001/
18 http://www.w3.org/TR/2009/WD-rif-owl-rl-20091001/

 13

was written in an OWL 2 comparable language. This would in fact extend the existing ontology and

its concepts through a method called Ripple Down Rule (RDR)19 [57].

Table 1. Basic Description Logic AL (Attribute Language)

Syntax Description
A, B Atomic concept
C, D Concept descriptions
R Atomic Role
Τ	
 Universal concept

⊥ Bottom concept
¬A Atomic negation

C Π D Concept intersection

∀ R.⊥ Value restriction

∃ R.Τ Limited existential quantification

Table 2. Family of Description Logics and extensions

Name Characteristic

AL Basic Description Logic (Attribute Language)

ALU AL + unions

ALE AL + full existential quantification

ALN AL + number restrictions

ALFL- AL + non-atomic negation

ALC AL + union (U) + existential quantification (E) + complement (C)

S ALC + transitively closed primitive roles

SH S + hierarchy of roles

SHI SH + inverse roles

SHIQ SHI + generalized cardinality restrictions

SHIN SHIQ limited to unqualified number restrictions

SHO SH + singleton classes

SHOQ SHO + qualified number restrictions

SHIF SHIN limited to functional number restrictions20

SHOIN SHOQ + inverse roles (I) + unqualified number restrictions (N)

SROIQ SHOIN + complex role inclusion + reflexive roles + transitive roles + irreflexive roles
+ disjoint roles + universal role + new construct ∃R.Self

19 See the Glossary for a definition of Ripple Down Rule.
20 Functional number restrictions represent a literal that uniquely identifies an individual, such as a Social Insurance Number or

Student ID.

 14

OWL 2 is based on Description Logics, which provide constructors to build complex concepts and

roles out of atomic ones [58], with various extensions derived to handle different types of constructs

[27][58]. The inference capability of Description Logics is provided by the same mechanism used by

humans as well as intelligent information processing systems, mainly the classification of concepts

and individuals [59]. In this sense, classification of concepts means creating sub-class and super-class

relationships between concepts in a hierarchical fashion. In Description Logics these hierarchical

relationships are called subsumptions, and are identified by the symbol . The semantics of

subsumption are the same as sub-set ⊆, but are applied to subsuming different types of elements, such

as atomic concepts, atomic roles (relationships), and their complex counterparts. The complexity of

these relationships is based on the expressivity of a particular Description Logic, and more

specifically, the characteristics of particular Description Logic extension.

Description Logics in their current form have developed from a basic set of properties of the AL

Description Logic in , to several different extensions, as listed in . In recent years, much attention has

been placed on the SH family of extensions, since it provides sufficient expressivity useful for

intended application domains with the use of hierarchical concepts such as Tree Plant, and also

hierarchical roles such as hasBranch is a sub-role of hasPart, represented by hasBranch hasPart.

Following SH, the SHOQ extension has added the capability to specify qualified number restrictions,

adding the capability to represent concepts such as “Father with at most 2 female children”,

represented by Father Π ≤ 2 hasChild.Female.

The SHOIN extension has combined singleton classes, inverse roles and unqualified number

restrictions. As a result, SHOIN has the ability to define an inverse role, such as childOf is an inverse

of parentOf. Unqualified number restriction provides the ability to express the fact that being a parent

implies having children, without referring to the children concepts themselves. For example, SHOIN

can represent concepts such as “Father with at most 2 children”, represented by Father Π ≤ 2

hasChild, which does not require the added concept qualification of Female required by previous

Description Logic extensions. Further, SHOIN has been used to create the Web Ontology Language

(OWL), which has been adopted as the web ontology standard by W3C [27].

Finally, based on input from ontology developers in practice, Horrocks at el. [60] have extended

SHOIN by adding the characteristics listed in to create the SROIQ Description Logic. By allowing

for more complex roles, SROIQ can define the disjoint relationship between partOf and hasPart

 15

roles. Further, we can identify the reflexivity of the role knows, where every person knows

themselves, and the irreflexivity of the role siblingOf, where no person is a sibling of themselves.

Negated role assertion removes the need to identify two roles such as likes and dislikes, by defining

dislikes simply as ¬likes. We can now say that STEVE likes MARY, but MARY doesn’t like STEVE

by defining likes, and writing likes(STEVE, MARY) and ¬likes(MARY, STEVE).

Complex role inclusion allows for a mixing of roles. For example, the transitive roles hasPart and

owns, can be combined to state that the owner of C also owns every part of C, represented as owns ¡

hasPart owns. For example, this can be used to express that if an engine is part of a car, CAR

∃hasPart.ENGINE, and a person owns that car, than that person owns that engine as well, represented

as ∃owns.CAR ∃owns.ENGINE.

Universal roles define an explicit complete relation between every individual. This allows the

definition of a single domain specific class that expresses all axioms in an ontology [60]. For

example, a single class EUCountries can be constructed by the universal role that groups all European

Union countries together. The class EUCountries can now be inferred by iterating through European

Union countries.

The last characteristic that SROIQ introduces is the concept of Self, which applies to every concept in

a domain, and is represented by ∃R.Self, where R is a type of relation. This allows the definition of a

“locally reflexive” role such as “narcissist” as being someone who likes themselves, defined by

∃likes.Self.

Every Description Logic is comprised of two components: the ABox, which stores assertions about a

particular domain, and the TBox, which is the actual ontology. The TBox contains both the terms

used by an ontology for a specific domain and the axioms which govern how ABox assertions relate

to one another [5]. gives examples of TBox definitions, and gives examples of ABox assertions

about individuals such as MARY and PETER. It is appropriate to equate individuals in an ABox to

records in a database when performing data related processing using Description Logics. The ABox

in OWL has the open world assumption (OWA) [61] that if a statement is unknown it has not been

falsified. In contrast, the closed world assumption (CWA) states that if a statement is not known to be

true, it is false. These assumptions are related to defaults, which resolve ambiguities and missing

values in a closed world system, but cannot be assumed in the open world. New developments in

 16

inductive methods have been proposed to close the gap between CWA defaults and any ambiguities

they introduce in the open world [5].

Table 3. TBox Example

Concept Definition
Father Male Π ∃hasChild.Person
Mother Female Π ∃hasChild.Person
MotherWithoutDaughter Mother Π ∀hasChild.¬Female
PersonWithoutChildren Person Π ∀hasChild.⊥
FatherWithAtMostTwoFemaleChildren Father Π ≤ 2 hasChild.Female
FatherWithAtMostTwoChildren Father Π ≤ 2 hasChild

Table 4. ABox Example (Roles on Individuals)

Description Definition
MARY is a Mother without daughters MotherWithoutDaughter(MARY)
MARY has a child PETER hasChild(MARY, PETER)
MARY has a child PAUL hasChild(MARY, PAUL)
PETER is a Man with a child Father(PETER)
PETER has a child HARRY hasChild(PETER, HARRY)
PETER is an only child ≤ 1 hasChild(PETER)
ENGINE is part of a CAR CAR ∃hasPart.ENGINE
The owner of CAR owns (its part) ENGINE ∃owns.CAR ∃owns.ENGINE

To ensure greater tractability of OWL, OWL 2 has been proposed, which is based on the SROIQ

extension, and allows strict partial order on roles in the form of role-hierarchies [62] as per . OWL 2

is comprised of three sub-languages called profiles21, each with a set of properties suitable for

different tasks.

The EL profile22 allows for polynomial time algorithms, and is suitable for large ontologies, where

expressivity is sacrificed for performance of reasoning tasks. This increase in performance is achieved

by limiting EL ontologies to include tractable class restrictions and axioms. These include selecting

elements from a finite set, intersections of such sets, subsumption relations, equivalent and disjoint

class axioms, transitivity and reflexivity. Excluded intractable class restrictions include defining

21 http://www.w3.org/TR/owl2-overview/#Profiles
22 http://www.w3.org/TR/owl2-new-features/#OWL_2_EL

 17

unbounded sets, cardinality restrictions, unions, disjoint properties, negation and a universal

quantifier.

The QL profile23 has been created to allow conjunctive queries to be processed in LogSpace time, and

is meant to be used with existing relational database systems, where ABox assertions are represented

by records in a database, and the TBox is a set of relational query like structures.

Finally, the RL profile24 is a syntactic subset of OWL 2 that allows for polynomial time reasoning

algorithms, to be used on rule-extended database systems. This partial axiomatization of OWL 2

semantics places restrictions on the RL profile. These restrictions aim to avoid inference of

individuals that do not already exist in the ABox, and to avoid non-deterministc reasoning. The RL

profile is suitable to express the OWL 2 rules derived by the algorithm in this thesis. Specifically,

these rules represent the information contained within the ABox of the local and target systems. See

Appendix 2 on page 91 for specific examples of OWL 2 syntax utilized by this thesis.

2.4 Existing Approaches
Systems such as the Quick Ontology Matcher (QOM) [18] build similarity measures between

ontology concepts based on similarity of terms. Direct matches such as PersonL from the local (L)

ontology and PersonT from the target (T) ontology are identified as exact matches. Indirect matches

through synonyms, such as CarL and AutomobileT are matched as well. Through a top-down iterative

process, the matches made in previous iterations are used to build additional term anchors25. By using

anchors such as these, additional measures are utilized, specifically features of ontological entities

expressed in RDFS26, since ontologies matched by QOM must be represented in RDFS. The

characteristics include the uniform resource locators (URL) to identify unique entity labels. Structural

characteristics are also utilized to find further matches, including inherited and direct properties, sub-

properties, parent-properties as well as concepts, sub-concepts, and super-concepts of previously

found matches. The OWL owl:sameAs relationship is utilized to identify explicit matches between

already matched terms. Logical inconsistencies are used to remove any conflicting lexical matches.

23 http://www.w3.org/TR/owl2-new-features/#OWL_2_QL
24 http://www.w3.org/TR/owl2-new-features/#OWL_2_RL
25 Refer to the Glossary on page 112 for the definition of anchor.
26 RDFS: (Resource Description Framework Schema) A general-purpose language, in XML syntax, for representing assertions

(or more generally information) on the Web, as proposed by W3C.

 18

After scoring each match, QOM implements a filtering step based on a set threshold to disregard

insignificant matches.

Systems such as QOM which use a variety of techniques, essentially create a set of criteria and

methods called Parameterizable Alignment Methods (PAM) [22] which can be used to match

ontologies. Systems such as APFEL [22], or Alignment Process Feature Estimation and Learning, can

utilize the work done by systems like QOM and derive additional matches. APFEL allows users to

iteratively validate matches manually. Once they are validated, it uses various machine learning

algorithms such as decision trees, neural networks, and support vector machines to infer best PAM

parameters to use, and iteratively applies these parameters to derive further matches.

Xu et. al. [23] also uses a collection of matching techniques, but to analyze record data in addition to

lexical information provided by schema labels. The system first (1) finds terminology relationships,

such as synonyms and hypernyms with the use of WordNet [20]. It then 2) identifies data-value

characteristics such as string length and alphanumeric ratios. 3) Domain specific characteristics are

then utilized such as expected strings and predefined formats (e.g. phone number), through the use of

regular expressions. Similarly to QOM, after using concept anchors based on weights assigned in

steps 1 - 3, the system then 4) looks for structural similarities, such as inherited concepts. Matching is

done by creating a decision tree to rank each matching technique [24]. Based on the decision tree

rules, a particular technique is applied to identify the best presumed match.

Ichise et. al. [63] applies support vector machines (SVM) to select best matching techniques between

concepts. The techniques, called “match properties” are similar to the ones already listed in this

chapter, including lexical and structural matching techniques. 1) “Word” similarity includes lexical

similarities such as prefixes, suffixes, edit distances and n-grams. 2) “Word-list” similarity applies to

phrases that can be written in different forms, but have the same intended meaning, such as “Social

Sci” and “Social Science.” 3) “Concept hierarchy” identifies hierarchical similarities, such as parent-

to-child relations between concepts, based on lexical anchors derived in 1 and 2. It then 4) uses

“structure similarity” to take into account the entire ontology, not just direct parent and child nodes as

in 3), and implements “graph based similarity” measures, with an emphasis on parent nodes. The

algorithm calculates scores for each concept-property pair, and the SVM selects closest property

matches. Concepts are deemed similar if they have similar property measures for a particular

technique.

 19

Ontologies have also been used to build decision trees, where an ontology is used to classify concepts.

As demonstrated in the development of the Ontology-driven Decision Tree (ODT) algorithm [64],

ontologies provide the hierarchical relation is-a (Coke is-a Soda) to link records in the data with

super-classes in the ontology. For example, a record in a dataset identified as Coke can be linked to

another record identified as Milk, through ontological relationships27 Coke ⊆ Soda ⊆Beverage and

Milk ⊆ DairyBeverage ⊆ Beverage. ODT considers an attribute’s information gain, and modifies the

decision tree by inserting the super-class of each record from the ontology as a sub-node, instead of

the actual records, as with the traditional decision tree algorithm. A similar approach to ODT was

used in combination with user ratings to develop a recommender system called SemTree [65]. The

advantage in using an ontology is that the key factor of the building process, the information-gain

used to associate an attribute to a concept, is based on the attribute’s association with that concept in

relation to other concepts in the ontology, and not just the attribute’s data value.

Kieler et. al. match specific geospatial locations [66] and specific rivers [67] based on records from

different systems, captured by different sensors, and most importantly at different scales. The

algorithm builds decision trees from the provided records, which share a similar database schema with

the target database. Based on the generated rules, sufficient similarities are found in the data, which

identify a particular location or object. The rules are able to correctly classify that location or object,

despite being built from information that is not exact in nature. Because the database schemas are

sufficiently similar, Kieler et. al. is able to utilize all attributes, by allowing the decision tree

algorithm’s property selection process to chose the attributes to be included. Because the ontologies

targeted by this thesis may have irregular similarities, as described in the following chapter, multiple

2-dimensional decision trees (utilizing 2 attributes at a time) are built, and compared as a group.

The current work on including inductively derived information has focused on classification of

assertions (ABox) in a Description Logic (DL) knowledge base, by associating uncertainty to the

ontology’s terminology (TBox). BayesOWL [31] has been proposed to perform automatic ontology

mapping [36] by associating probabilities with text based information, and using Jeffrey’s Rule to

propagate those probabilities. Text documents are classified using a classifier such as Rainbow28, and

probabilities are assigned using the conditional probability table (CPT) process. BayesOWL creates

probabilities for OWL Description Logics by converting a DL to a directed acyclic graph (DAG), and

assigning probabilities to each edge using a CPT, for two types of nodes; concept nodes and L-nodes

27 The subset ⊆ symbol is used here instead of subsumption to reflect the syntax in the original paper.
28 http://www-2.cs.cmu.edu/~mccallum/bow/rainbow

 20

(logical relations) [31]. As an example, the CPT probability for an equivalent L-node between

concepts c1 and c2, is 1.0 if [(c1 ∧ c2) ∨ (¬c1 ∧ ¬c2)], and 0.0 otherwise, while the probability of a

complement L-node is 1.0 if [(¬c1 ∧ c2) ∨ (¬c 1 ∧ ¬c2)], and 0.0 otherwise. Tools such as OWL-

CM [37] have begun looking at how similarity measures and uncertainties in the mapping process can

be improved to increase access correspondences between text ontology entities.

In this thesis, we utilize a similar process to ODT to associate records with ontological concepts. We

expand on this approach to associate records with the entire ontological parent chain. We use this

concept-to-record association as classification criteria for decision trees. The expanded parent chain is

used to identify classification29 criteria at each hierarchical level of the ontology, in a bottom-up

fashion. Different classification criteria are identified at each level, and utilized by a machine learning

algorithm, mainly decision trees, to produce criteria for concept anchors. This approach differs from

other methods in that it produces anchors based primarily on database records, instead of lexical

information extracted from labels used by the ontology author. Similarly to the work cited here, we

use these local anchors to find additional structural characteristics between other local anchors and

matched them to target anchors.

29 As noted in the Glossary under class, classification refers to the meaning used in machine learning literature.

 21

Chapter 3. Methodology

3.1 Approach
System integration deals with merging two separate systems, or sub-systems, to work together in

achieving a single goal, or produce a single output [1]. Often this involves merging business logic

through an Application Programming Interface (API), or by a much more intricate process where

individual application libraries are merged or interlinked, to produce a hybrid system. This may

involve integrating not just the supporting infrastructure, but the databases processed by the individual

systems. Database integration deals with integrating database structure tables, columns, and possibly

rows (instance matching) [2][3]. Semantic integration deals with integrating two systems where not

just the format of information is considered, but also the intended meaning of the elements to be

matched [68][69].

As with many database integration techniques [3][70][71], this thesis uses machine learning measures

to derive properties about the data. Unlike database integration however, the matching will not be

done between a local and a target database schema, but between a local and target ontology, and is

called ontology matching [10].

Definition 1: (Local System Terms). The ontology matching algorithm described in this thesis is

dependent on a locally available database DBL and a local ontology OL that represents semantic

relationships between local concepts {LC}. Data records in DBL are made up of attributes {da} in the

set DAL. Formally the local system is made up of:

DBL ::= DBL is the local database used to classify concepts in OL by building
decision trees.

fL ::= fL is the number of attributes in a normalized version of DBL

DAL ::= DAL is a set of data attributes used in DBL, defined as {da0, … , dafL}.

OL ::= OL is a local ontology being matched to an external target ontology.

LC ::= LC is a local concept in OL.

LevelL(LC) ::= LevelL(LC) is the minimal number of edges LC is away from the root
(owl:Thing in OWL ontology) class, or root when OL is a taxonomy.

The Semantic Integration process strives to match OL to an external target ontology OT, by matching

their individual concepts.

 22

Definition 2: (Target System Terms). The target system being matched has a different database

DBT, which contains similar information to DBL. Similar in the sense that both databases contain

records capturing information of the same or similar dataset. For example, DBL may contain weather

phenomena recorded by weather stations in Africa, and DBT of weather phenomena recorded in

South America. Formally the target system is made up of:

DBT ::= DBT is the target database used to classify concepts in OT by building
decision trees.

fT ::= fT is the number of attributes in a normalized version of DBT.

DAT ::= DAT is a set of data attributes used in DBT, defined as {da0, … , dafT}.

OT ::= OT is a target ontology being matched to a local ontology OL.

TC ::= TC is a concept in OT.

LevelT(TC) ::= LevelT(TC) is the minimal number of edges TC is away from the root
(owl:Thing in OWL ontology) class, or root when OT is a taxonomy.

3.2 Semantics and Machine Learning
As described in previous chapters, there is a great deal of interest in ontology matching, and utilizing

lexical and structural information extracted from an ontology. There is also a growing interest in

incorporating machine learning, uncertainty and probability to assist with automatic or semi-

automatic ontology matching. To further this effort, this thesis proposes matching ontologies not

based on lexical information of their terms, but on the information they represent. For this reason this

thesis considers ontologies that are associated with a dataset that can be mined with machine learning

algorithms, specifically the classification algorithm for decision trees. The decision tree algorithm

needs a column that holds a set of class values, which are used to classify records. This is usually

associated with the record type, a particular condition the record represents or an associated

conclusion represented by the record; usually this class value is already part of the data, or embedded

in the application.

Ontologies, however, can be concepts at a higher level of abstraction, described by a single record,

collection of records, or a combination of column values. For example, different types of precipitation

can be described by the combination of water fall recorded in milliliters, the current temperature in

Celsius, visibility in kilometers, or wind velocity in kilometers per hour: low water fall, temperature

 23

above 0 degrees Celsius, high visibility and low winds may represent Rain. Lower temperatures and

less visibility may represent Snow. These four pieces of information can be stored in different

columns of a single record, in multiple records, or multiple tables, within a single database.

 (a) (b)

Figure 2. A sample (a) Weather Ontology OW with (b) 2-dimensional data clusters at each class
level for the attributes Temperature (Temp) and Visibility.

Consider the partial Weather Ontology OWEATHER in Figure 2 (a). Here we have a top level concept

Weather at level 1 which subsumes concepts Wind and Precipitation. At level 2 Wind subsumes

Gusting, Variable and Tornado, while Precipitation subsumes Rain and Snow. Once each of these

concepts has been assigned records from DB, we can plot these records30 onto a 2-dimensional plane.

The discussion on dimensionality and number of attributes is deferred to section 3.5. In Figure 2 (b)

we plot data-points for the attributes Visibility and Temperature (Temp) for records assigned to

Weather on Level 1, Precipitation on level 2, and finally Rain and Snow on level 3.

 (a) (b) (c)

Figure 3. A sample (a) Weather Ontology OWEATHER with (b) 2-dimensional data clusters at each
class level for the attributes Temperature (Temp) and Visibility (Vis).

30 See section 3.3 for examples of data records and associated concepts.

 24

We now look at each class level individually. Figure 3 shows the same information as Figure 2 (b)

with each concept and class level in Figure 3 (a), (b) and (c). Figure 3 (b) also shows data points for

the Wind concept as small grey clusters, to illustrate an important fact about which attributes to use

when building decision trees. The Visibility and Temperature attributes clearly represent the Weather

concept in Figure 3 (a) as a distinct data cluster, as well as give a clear distinction31 between Rain and

Snow in Figure 3 (c). There is no such distinction between Precipitation and Wind in Figure 3 (b)

however, and these may not be the best attributes with which to distinguish Precipitation and Wind

records using decision trees.

 (a) (b)

Figure 4. A 2-dimensional representation of the (a) area and (b) decision tree rules classifying
the Weather concept using attributes Temperature (Temp) and Visibility.

 (a) (b)

Figure 5. A 2-dimensional representation of the (a) area and (b) decision tree rules classifying
the Wind and Precipitation concepts using attributes Temperature (Temp) and Visibility.

31 These examples are for demonstration purposes only, and are not meant to be representative of an actual clear distinction

between Rain and Snow.

 25

 (a) (b)

Figure 6. A 2-dimensional representation of the (a) area and (b) decision tree rules classifying
the Rains and Snow concepts using attributes Temperature (Temp) and Visibility.

To demonstrate this point further, we show what a decision tree for each concept may look like. In

Figure 4 (a) we again see data-points for the Weather concept with a rectangle representing the area

classified by the decision tree rule as Weather-A using the attributes Visibility and Temperature, and

the decision tree itself in Figure 4 (b)32. Note that this area is a leaf node of the decision tree in Figure

4 (b) that we will call a granule33, and this granule represents a range of data-points in the form of a

rule. In Figure 5 (a) we see granules attempting to identify the areas representing Wind (dashed sides)

and Precipitation (solid sides). Because there is no clear distinction between these two concepts using

the Visibility and Temperature attributes, the decision tree created in Figure 5 (b) is not a good model

for Wind or Precipitation. This tree is represented by granules in Figure 5 (a), where it is clearly

visible that some of the granules with dashed sides (Wind) are clearly overlapping with the main oval

area representing Precipitation. These granules classify encompassed data-points as Wind, but have a

low probability of correctness since many of the points are in fact Precipitation. The same is true for

the granules with solid sides representing Precipitation classification rules that encompass Wind data-

points.

We again demonstrate the areas encompassing data-points associated with Rain and Snow in Figure 6

(a) using the attributes Visibility and Temperature. This time we include granules that represent

classification rules for Rain and Snow with the corresponding decision tree in Figure 6 (b). Here there

is a clear distinction between these two concepts. As a result the decision tree’s classification rules

and resulting granules have a high probability of correctness.

32 Note that this is an oversimplified example for demonstration purposes only.
33 A granule represents a data cluster, identified by a leaf node in a decision tree. It contains components usually identified with a

decision tree leaf node, as per Definition 3 on page 36 and Definition 4 on page 37.

 26

3.3 Database Preparation
We now describe the procedure for associating database records with ontological concepts. The

resulting dataset will allows us to perform supervised learning to build a decision tree model of the

records that an ontology is meant to describe semantically. In order to achieve this, the database DB

must be associated with the ontology O in such a way that the ontological concepts are used as

classification criteria for the machine-learning algorithm. This preparation is similar to the ODT [64]

system in that it associates an ontological concept to a column classifying a particular database record.

We extend this notion by representing an entire hierarchical branch and each concept in that branch

with that record in the database.

The records that O describes are represented by a tuple, which we assume is stored in a database DB.

For a relational database, multiple tables must be denormalized. In this process, all attributes and

relationships are brought into a single table, with logical and hierarchical relations being represented

as database attributes in a single row. It is important to represent concepts at equivalent levels34 by the

same column, with different classes as separate columns. The reason is that the decision tree

algorithm will use a particular column as the classification criterion. For example, in order to classify

all direct sub-classes of owl:Thing, the “Class Level 0” column will be used for all records in the

database. Therefore it is important that all sibling concepts are identified together at the same level, by

the same column. Representing ontology levels is demonstrated in Figure 7 and Figure 11 in section

3.5 below. For example, consider the following two branches in Table 5. They are represented as

database records 4 and 5 in Table 6, where owl:Thing is the ontology root concept.

Table 5. Concept hierarchy levels as database columns

Table 6 below demonstrates this type of hierarchy as a denormalized table with all database attributes.

Notice that the “Class Level 0” column contains owl:Thing in all rows. This represents the root node

of the ontology’s hierarchical representation. Multiple super-classes are represented by a duplication

34 It is not required for levels to align when matching concept clusters and rules across ontologies, only when initially creating the

decision trees, since the parent-to-child concept classification is done in isolation from the rest of the tree.

Record # Class Level 0 Class Level 1 Class Level 2 Class Level 3 Class Level 4

4 owl:Thing WeatherEvent VisibilityEvent ScatteredCloudLayer

5 owl:Thing WeatherEvent Measured TemperatureEvent CurrentDewPoint

 27

of records 8 and 9 representing the subsumption relationships (Showers WeatherDescriptor) and

(Showers PrecipitationEvent). Also, a record may represent multiple concepts. This is achieved by

again duplicating records with different class values. Records 4 and 5 are equal in property values,

and represent (ScatterCloudLayer VisibilityEvent) and (CurrentDewPoint TemperatureEvent),

and records 6 and 7 represent (HighVariableWindEvent VariableWindEvent) and (Cumulonimbus

 CloudType).

Table 6. Normalized Data Sample

In
st

an
ce

 #

V
is

ib
ili

ty
 D

ir
ec

tio
n

E
ng

lis
h

T
em

pe
ra

tu
re

1

T
em

pe
ra

tu
re

2

H
ou

rl
y

Pr
ec

ip
ita

tio
n

V
is

ib
ili

ty
 S

ta
tu

te
 M

ile
s

H
um

id
ity

 P
er

ce
nt

W
in

d
D

ir
ec

tio
n

E
ng

lis
h

W
ea

th
er

 In
te

ns
ity

W
in

d
Sp

ee
d

M
PH

W
in

d
G

us
t M

PH

H
as

 S
ta

tio
n

ID

In
ch

es
 O

f M
er

cu
ry

C
la

ss
 L

ev
el

 0

C
la

ss
 L

ev
el

 1

C
la

ss
 L

ev
el

 2

C
la

ss
 L

ev
el

 3

C
la

ss
 L

ev
el

 4

1 ? 28 24 ? 3 ? NW Light 2 5 KSYN 4.6 owl:Thing Weather Event Visibility
Event Scattered Cloud Layer ?

2 ? 4 1 10 4 35 N Medium 5 6 YPKG 3.6 owl:Thing Weather Event Visibility
Event Scatter Cloud Layer ?

3 N 51 14 29 1 32 NE ? 1 2 KEVB ? owl:Thing Weather Event Visibility
Event Scattered Cloud Layer ?

4 NE 7 1 3 8 25 SE Light 0 0 KSYN 4.2 owl:Thing Weather Event Visibility
Event Scattered Cloud Layer ?

5 NE 7 1 3 8 25 SE Light 0 0 KSYN 4.2 owl:Thing Weather Event Measured Temperature Event Current Dew
Point

6 NE 5 5 28 4 83 WE Medium 2 4 PADL ? owl:Thing Weather Event Wind Event Variable Wind Event HighVariable
WindEvent

7 NE 5 5 28 4 83 WE Medium 2 4 PADL ? owl:Thing WeatherQualifier Cloud Type Cumulonimbus ?

8 SW 14 6 64 13 45 N Heavy ? 0 KAJG ? owl:Thing Weather Event
Current
Weather

Event
Precipitation Event Showers

9 E 17 10 17 20 54 W Heavy 4 5 EYKA 1.0 owl:Thing Weather Descriptor Showers ? ?

10 S 89 58 99 4 47 NE Light 4 7 KRMG 3.6 owl:Thing Weather Event Measured PressureEvent Altimeter
Setting

11 W 75 55 43 8 38 S Heavy 3 8 KSAC 3.2 owl:Thing Weather Descriptor Thunderstor
m ? ?

12 NE 8 1 3 7.2 86 SE Medium 1 3 EYKA 2.7 owl:Thing WeatherQualifier Cloud Type Cumulonimbus ?

13 SW 8 1 600 7.2 14 E Medium 4 8 KSAT 8.0 owl:Thing WeatherQualifier Cloud Type Cumulonimbus ?

14 NW 7 1 30 8.4 41 W Light 2 5 KBWG ? owl:Thing WeatherQualifier Cloud Type Standing Lenticulor
Or Rotor Clouds ?

15 S 7 1 31 8.4 40 NW Heavy 1 3 KALW ? owl:Thing Weather Descriptor Blowing ? ?

16 NE 7 1 44 8.4 20 NE Heavy 2 2 KSAT ? owl:Thing Weather Descriptor Blowing ? ?

17 E 10 46 32 4 ? ? ? 3 1 KALW 3.1 owl:Thing Weather Event Measured PressureEvent Altimeter
Setting

18 E 10 46 32 4 ? ? ? 3 1 KALW 3.1 owl:Thing Weather Descriptor Blowing ? ?

19 ? ? 3 62 7 ? ? ? ? 0 KBUR 7.2 owl:Thing WeatherQualifier Cloud Type Altocumulus
Castellanus ?

20 NE ? 3 18 13 ? ? ? ? 0 KBUR ? owl:Thing WeatherQualifier Cloud Type Altocumulus
Castellanus ?

 28

3.4 Attribute Matching
Before utilizing database records for semantic integration through classification, attributes of the local

and target databases must first be matched. Once this is complete, the algorithm can use data-mining

to find similarities and match concepts. While there are many methods for matching database

attributes [70], as an example we describe a simple statistical matching process here, and give its

representation in OWL 2 syntax in Example 9 as part of Appendix 2.

To match numeric data attributes we use the Java implementation of a statistical library35 provided by

WEKA to calculate an attribute’s standard deviation, mean, maximum, and minimum. We then create

rules that define a range for each of these values and for each attribute. We do not use the original

values for numeric ranges, but instead expand the range’s boundaries, using an arbitrarily chosen

factor of 0.25. The value of this factor is dependent on the precision required, and the fluctuation of

the attributes being matched. We choose an arbitrary value of 0.25 for our example to demonstrate the

algorithm, and recognize that a more in-depth analysis would be required for individual

implementations of the attribute matching process. The expanded minimum for a range is (value ×

0.75), and the expanded maximum is (value × 1.25). For example, if the standard deviation of a local

property da0 is σ0 =10.0, it will match the standard deviation σ1 of a target property da1 in the range

7.5 ≤ σ1 ≤ 12.25.

If a data attribute is nominal, we use the terms extracted from WordNet [20] 3.0 to create a set of

terms which represent that attribute’s nominal range. We then consider local attribute daa and target

attribute dab equivalent if any of the key terms in daa and dab match. Key terms are identified as the

actual values found in the database for an attribute, plus any extracted terms shared by all original

values. For example, suppose that the database attribute Direction contains amongst its records the

value “N” which stands for north. “N” is associated in WordNet with the intended term “compass

point” as well as the unintended term “nitrogen”, amongst others. The term “compass point” is

consistently extracted from WordNet for other Direction terms such as “S” for south, “W” for west,

“E” for east, and so on. This indicates that “compass point” is a good term to match a field

representing Direction, and is considered as a key term, while “nitrogen” is not. Here, the key terms

for Direction will be “N”, “S”, “E”, “W”, “compass-point”. Note that this is not meant to be an

exhaustive definition, and that more terms are actually associated with directions in WordNet 3.0.

35 weka.experiment.Stats

 29

3.5 Concept Matching
Once local and target attributes are matched, the concept matching process can begin. This process

works by finding decision tree rules that overlap one another. With every additional property utilized

by the decision tree, the dimensionality of the search space between the rules being matched increases

as well. This creates very strict criteria for finding a match. Such criteria can be beneficial when the

systems being matched use the same database, and very similar schemas [66][67], but not systems in

which similar data can be interpreted and represented differently in the database as well as the

ontology. To make the matching algorithm more general and increase the probability of finding a

match between different systems, the dimensionality of the search space must be reduced. For this

reason, this algorithm creates a set of 2-dimensional search spaces for each data cluster, by building

multiple decision trees based on two attributes at a time. The generality of 2-dimensional decision

trees also prevents over-fitting in any single tree to a specific combinations of multiple attributes.

Situations where this reduction in dimensions in the search space may not work, occurs when there is

a great deal of relations in different combinations of attributes. For example, if it is known that

attributes da0, da1 and da2 always appear together in order to identify some concept A, it would be

necessary to include 3-dimensional trees in the search space. If all combinations of 3 attributes are

necessary, computing power would need to be sufficiently increased to handle this.

As a collection of possible rules, each decision tree and combination of attributes increases the

probability of finding a match between two heterogeneous systems that show some similarities. The

ideal solution would be to include every combination of attributes, producing (n × (n - 1) / 2)

combinations for n attributes. Another solution would be to use an attribute evaluation algorithm,

perhaps based on entropy, to choose the attributes that contribute most to the classification process,

and use those attributes to create several 2-dimensional trees. The latter method is very sensitive to

differences in the distribution of data in DBL and DBT. For the real-life test in Chapter 4, we included

every combination of all attributes, and disregarded any decision trees that had a single and no

branches. For the evaluation test using the weather ontology that up to 1 million records per test, we

chose yet another attribute selection method, due to the computation limitation of the test machines

used. We chose pairs of consecutive attributes to cover as many combinations as possible, without

exponentially growing the number of trees being compared. For example the four attributes da0, da1,

da2, da3, will produce four 2-dimensional trees for da0 vs. da1, da1 vs. da2, da2 vs. da3 and da3 vs. da0.

See section 4.7 in the Results and Analysis chapter for a further discussion on the issues affecting the

performance of the algorithm presented here.

 30

 (a) (b)

Figure 7. A sample taxonomic Local Ontology (OL) with class levels, and a 2-dimensional cluster
for data attributes daa and dab.

A demonstration of a taxonomy is shown in Figure 7, where part (a) shows a hierarchical OWL

ontology which we’ll call our local ontology OL, with sub-class relations between concepts, and part

(b) shows the clusters which represent Level 1 of the ontology and data distribution for data attributes

daa and dab, in the associated database DBL. The top concept is owl:Thing36, which is the root of the

ontology and the super-class of all other concepts. At level 1 the ontology contains three concepts:

LCA, LCB, LCC which are sub-classes of owl:Thing. At level 2 the ontology has nine more concepts:

LCR, LCS, LCT which are sub-classes of LCA; LCU, LCV, LCW which are sub-classes of LCB; and LCX,

LCY, LCZ which are sub-classes of LCC. To integrate the ontology with its associated data in DBL,

each leaf concept of the ontology is associated with all the records that represent that concept, where

the ontology concept being represented is he last “Class” column with a value, as per Table 6. Once

the records are assigned, we can visually display the associated data values on a 2-dimensional plane

with the two attributes for the axes, as illustrated in Figure 7 (b). See sections 3.2 and 3.3 for a

detailed description of combining data and an ontology into a 2-dimensional plane.

Figure 8. OL Level 1 granulation.

36 owl:Thing is the root node of every OWL ontology, and every class is implicitly subsumed by owl:Thing

(http://www.w3.org/TR/2004/REC-owl-guide-20040210/#DefiningSimpleClasses)

 31

With the use of decision trees, these clusters can be broken down further into smaller granules defined

by rules derived by the decision trees. Figure 8 demonstrates such granules at level 1, where the

decision trees classify concepts LCA, LCB, and LCC.

The clusters in Figure 7 can be further split on level 2, visualizing clusters for concepts LCR, LCS,

LCT, LCU, LCV, LCW, LCX, LCY, and LCZ, as indicated in Figure 9 below.

 (a) (b) (c)

Figure 9. 2-dimensional, Level 2 sub-class clusters for OL.

 (a) (b) (c)

Figure 10. OL Level 2 granulation.

Similarly to Figure 8, level 2 concepts can be classified with decision trees, which create much

smaller and more specific granules, as demonstrated in Figure 10.

3.6 Semantic Granule Building
With granules, associated decision trees and rules build we are ready to look at how this can be used

to match a local ontology to a target ontology. In Figure 11 below, we have an example of a target

ontology OT, which has all the same ground terms but is structured slightly differently from OL: TCR,

TCS and TCT are sub-classes of TCA; TCU is a sub-class of TCN; TCV and TCW are sub-classes of TCP;

 32

TCX, TCY and TCZ are sub-classes of TCC. Assume the associated database DBT has some similarities

with DBL. Assume also that the data clusters for all ground terms are similar, and overlap when

plotted and clustered on a 2-dimensional plane.

 (a) (b)

Figure 11. Standard Target Ontology (OT) with class levels, and a 2-dimensional clusters.

The key differences, identified by dotted lines, between OL and OT are that the structure of the sub-

class relationships is different. The sub-classes of A are still R, S and T, but while LCA direct

owl:Thing, TCM is introduced in OT, where TCA direct TCM direct owl:Thing. TCC is structured in the

same way as LCC. LCB is split into two different sub-classes; mainly TCN and TCP, where TCP direct

TCN direct TCM. Matching LCC to TCC is the simplest task by looking only at the sub-classes. LCA can

be matched to TCA in a similar way. LCB however has no exact match in OT because it is split between

TCN and TCP. We can now classify concepts at lower levels of OT, and derive granules for its ground

terms, mainly TCR, TCS, TCT, TCU, TCV, TCW, TCX, TCY, and TCZ.

 (a) (b)

Figure 12. 2-dimensional, Level 2 sub-class clusters for OT.

 33

 (a) (b)

Figure 13. 2-dimensional, Level 3 sub-class clusters for OT.

Figure 14. 2-dimensional, Level 4 sub-class clusters for OT.

Figure 11 to Figure 14 have projected onto a 2-dimensional plane, clusters that represent data

classified under ontological concepts in OT. This is different from usual classification criteria, which

is either a column in the database or a condition embedded in an application. Both the database

schema and application logic are implementation details, whose main purpose is to process

information efficiently. The ontology on the other hand defines semantic relationships between not

just the records in DBT, but also the abstract concepts these records are meant to represent in the real

world. These abstract concepts may be independent from the implementation details and functional

constraints placed on a database and application logic. While it may be correct to assume that the

tightly integrated data concepts in the local system do not necessarily share similarities with an

external target system, it may be possible that both the local and target ontologies are representing

real life entities, such as Person, Home, Dwelling, Rain, Snow, and so on. The data driven approach in

this thesis is meant to identify such similarities and utilize them for the ontology matching process.

 34

 (a) (b) (c)

 (d) (e) (f)

Figure 15. Complete granulation (Levels 0 – 3) of OT.

To ensure the intended meaning of concepts in a system are matched, even though they may differ in

their structure but not ontological representation, we again create clusters of each 2-dimensional

space. As with the local system, OT is associated with records in DBT , decision trees are built to

classify concepts in OT, and the resulting rules that represent data-point ranges are represented as

granules. Each of the granules in Figure 8 and Figure 10 for OL and Figure 15 for OT, represents a

single rule generated by the algorithm. Figure 16 illustrates the decision tree classifying records based

on OL concepts LCR, LCS and LCT, which are sub-classes of LCA, and utilize data attributes daa and

dab.

 35

Figure 16. Decision tree classification with 2 numeric data attributes for sub-classes of LCA.

In Figure 16, each leaf node classifies a particular sub-class of LCA. As Figure 9 (a) and Figure 13 (a)

demonstrate, clusters in the plotted graphs overlap each other, which results in the classifications

being mixed, and a clear distinction between LCR, LCS, or LCT is not present. Instead, the decision tree

algorithm creates a set of rules, which identify granule-3 (Figure 16 - inset axis), where each granule

is a branch in the decision tree. This branch is a set of conditions that identify a particular granule for

each class being classified by a leaf node. All granules for sub-classes of LCA and TCA are illustrated

in Figure 10 and Figure 15 (d). In Figure 16, the highlighted area (inset axis) and branch identify a

granule for concept LCT. The rules for this LCT granule, defined as:

 [LgT (granule-3)] [(dab ≤ 10) ∧ (daa ≤ 14) ∧ (dab > 6)]

are a conjunction of the conditions represented by the branch leading from the root of the tree to [LgT

(granule-3)].

 36

Definition 3: (Ontology Concept Granule). Each ontological concept is identified with records

stored in its respective database. Based on the record, each concept is broken down into granules.

Formally these are:

Lgi ::= Lgi is a local granule representing a leaf node in a decision tree built by
classifying concepts in DBL, where i is the index or label uniquely identifying
Lgi within OL.

Tgj ::= Tgj is a target granule representing a leaf node in a decision tree built by
classifying concepts in DBT, where j is the index or label uniquely identifying
Tgj within OT.

Let “A” be either “L” or “T” for local or target input respectively. Each concept is made up of a
set of granules:

ACz (Ag0 ∨ … ∨ Agk ∨ … ∨ Agn)

where each granule Agk implies a unique ACz concept by:

Agk ⇒G ACz

Because each granule stems from a leaf node in the decision tree, it also possesses several statistical

properties, as described in Definition 1, most notably the distribution of correctly classified records

by each leaf node. The derived granule Agk is comprised of several components, as defined in

Definition 4 below.

 37

Definition 4: (Granule Components). Let “A” be either “L” or “T” for local or target input

respectively. Each granule Ag implies AC, identified by Ag ⇒G AC.

Ag.attribs ::= Data attributes utilized in the decision trees used to classify Ag as AC,
where Ag.attribs = {daa , dab } ∈ DAA and DAA is the set of all data attributes
in DBA.

Ag.rule ::= Conjunction of conditions which define the granule’s area within the 2-
dimensional property space of a numeric data attributes daa and a nominal data
attribute dab:

[(daa ¯ l0) ∧ … ∧ (dab ¯ ln)] = Ag.rule

where dab has only a single value, and

[(daa ¯ l0) ∧ (daa ¯ l1) ∧ (dab ∈ { l3, l4 ,l5,l6})] = Ag.rule

where dab has multiple values defining a nominal range, ¯ ∈ {≥ , ≤ , =}, and l0 , …, ln are
literals used in the condition for daa and dab. In case of nominal attributes, a nominal range is
generalized with the use of WordNet [20]. This list is discussed in section 3.8.

Ag.data-points ::= daa and dab data-points identifying outer edges of the area covered by
Ag.rule:

[(daa = l0) ∧ … ∧ (dab = ln)] = Agk.data-points

Ag.cover ::= Total records classified inside Ag by the decision tree.

Ag.good ::= Total records correctly classified inside Ag by the decision tree.

Ag.Pr ::= The probability that the decision tree leaf node represented by Agk was
correct in classifying the associated ACz, where:

 !".!" =
!".!""#
!".!"#$%

 (1)

3.7 Granule Rule Matching
Up to this point, it has been illustrated how to classify records based on ontological concepts, and

build rules identifying granules using the decision tree algorithm. Using the derived granules, with

associated rules and data-points, the matching process is now illustrated, by matching the local

concepts LCR, LCS and LCT, to target concepts TCR, TCS and TCT. Figure 17 illustrates the overlapping

granules for LCA and TCA sub-classes.

 38

 (a) (b) (c)

 (d) (e) (f)

Figure 17. LCA and TCA granule matches between R (a) (d), S (b) (e), and T (c) (f).

As indicated by the shaded areas in Figure 17, there is a visible overlap between the areas covered by

these granules. The matching algorithm described by this thesis works by identifying these

overlapping regions, and rating them. Figure 18 and Figure 19 illustrate how the matching process

works, and how the reasoner views the granules in terms of data-points and rules.

The reasoner utilized in this thesis is HermiT [40], a freely available OWL 2 reasoner. To identify

overlapping granules, the reasoner needs two components: 1) rules identifying a range, and 2) data-

points which fall within that range. The rules are a semi-direct translation of decision tree branches

into OWL 2 axioms. The data-points are outer most points defined by the range in the rule. Infinite

conditions are left out, leaving an open boundary. For example, if the condition on daa is only daa > ln,

the rule will match any data-point greater then or equal to ln. Rule translation is semi-direct because

the rules are automatically made more inclusive for matching purposes, in two ways. Firstly, while

numeric ranges created by decision trees are based on {≤ , >}, the OWL 2 translations built by the

algorithm are based on {≤ , ≥}, which are more inclusive. Note that this is not a limitation of OWL 2

as it is fully capable of handling any of facets using {≤ , ≥ , < , >}. Secondly, the boundary values of

the ranges are changed, expanding the covering area defined by the rules, and decreasing the area

between data-points by a user defined factor called RULE_CLUSTER_BUFFER. The generalized

 39

boundaries are given in Equations (2) to (5). Figure 18 below illustrates the inclusivity measure for

two granules, Lg0 (granule-0) and Tg1 (granule-1) with numeric values.

rule.uppergen = (upper + ((upper - lower) × factor) (2)

rule.lowergen = (lower - ((upper - lower) × factor) (3)

data-points.uppergen = (upper - ((upper - lower) × factor) (4)

data-points.lowergen = (upper - ((upper - lower) × factor) (5)

 40

Figure 18. Decision Tree branch conversion to rules and data-points using numeric attributes
daa and dab.

 41

Figure 19. Granule matching example using numeric attributes daa and dab.

3.8 Nominal Property Rules
Up to now, we have dealt with rules and data-points for numeric attributes only. Next, we

demonstrate how nominal attributes are converted from decision tree branches to rules and data-

points, and describe the matching process.

Figure 20. Decision tree classification, utilizing a numeric (daa) and a nominal (dac) property.

In Figure 20, a decision tree classifies concepts LCR, LCS and LCT that are sub-classes of LCA, using a

numeric and a nominal property, daa and dac respectively. With numeric attributes, data values

included in rules and data-points have been derived directly from the records in a database. While

numerical values depend on their numerical ranges to create clusters, which they can be matched to,

nominal values present a different challenge. A single letter, term, phrase, or a set of terms, cannot be

used to represent the intended meaning of that term. For example, one ontology might use “N,” and

 42

another “North”, or “Northbound”. For this reason, WordNet [20] was incorporated to build rules

which not only contain the actual values for a database property in records identified as some concept,

but also some related terms extracted from WordNet. This generalizes the rules to find matches with

other nominal “data-points”. The rules and “data-points” for nominal data attributes are a disjunction

of possible values, made up of the original value and extracted WordNet terms. For example, an

original value might be dab-original = (“N”), and the one included in granule rules and data-points might

be dab-generalized = (“n”, “compass north”, “northward”, “360 degrees”}

The terms extracted from WordNet represent a generalized meaning of that data attribute value. It is

important to avoid including any specific terms which may be associated with the terms used only in a

particular local system, as this will limit the generality of matches. The following WordNet sets are

utilized:

• Adjective Satellite, and all associated synonyms.

• Adjectives, and all associated synonyms.

• Nouns, and all associated synonyms, hypernyms, instance hypernyms, member holonyms,

substance holonyms, associated topics, topic members, regions and region members.

• Verbs, and all associated synonyms, hypernyms, troponyms, verb groups, entailments,

associated topics and regions.

 43

Figure 21. Decision Tree branch converted to rules and data-points with nominal and numeric
attributes daa and dac.

Figure 22. Granule matching example using the numeric attribute daa and nominal attribute dac.

Figure 21 lists the conversion of nominal decision tree branches into granule rules and data-points.

Figure 22 illustrates how such rules and data-points can be matched by the algorithm.

 44

3.9 Matching Algorithm
Once the granules {Lgk}, with associated Lgk.rule and Lgk.data-points are built, these are made

available to external parties using OWL 2 syntax. This section defines the matching algorithm, and

matching schemes used to rank and derive further structural matches, based on granules and the local

and target ontology.

Definition 5: (Points To Rule Match P2RM). Given a local granule Lg, and a target granule Tg,

consistency between two granules depends on an overlap between Lg.data-points and Tg.rule, as

illustrated in Figure 19 and Figure 22. Specifically, if the attributes used by a local granule Lg.attribs

and a target granule Tg.attribs are all the same, and if the data-points of a local granule Lg.data-

points are covered by the rules of a target granule Tg.rule, then there exists a relation between the

ordered pair (Lg, Tg), identified as P2RM(Lg, Tg). All P2RM relations between the granules of LC

and TC, where Lg ⇒G LC and Tg ⇒G TC , are members of the set P2RM(LC, TC)set.

Definition 6: (Concept Match). A “Concept Match” is a match between a local and a target concept.

The match criterion is a successful overlap between a local and a target granule, as per Definition 5,

where the local (target) granule implies the local (target) concept being matched. Specifically,

ConceptMatch is a ternary relation between a local concept LC, a target concept TC and the set

P2RM(LC, TC)set if there exists at least one P2RM(Lg , Tg) relation in P2RM(LC, TC)set such that Lg

⇒G LC and Tg ⇒G TC. This relation is identified as ConceptMatch(LC, TC, P2RM(LC, TC)set), or

ConceptMatch(LC, TC, P2RMset) for short.

Definition 7: (Local Concept To Target Concept Match C2CM). C2CMset is a set of all

ConceptMatch relations as per Definition 6, ultimately creating a set of all matches between local and

target concepts.

Once a set of local granules is generated for a local ontology, this ontology can be potentially matched

to an external target ontology, based on the associated target granules. The granule matching

algorithm in Definition 8, attempts to find any matches between a local (LC) and target (TC) concept.

Matching concepts requires first matching any overlapping local granule’s Lg.data-points and a target

granule’s Tg.rule, as illustrated in Figure 19 and Figure 22, and defined in Definition 5. An overlap

occurs if the data points defined in Lgi.data-points are within the ranges defined in Tgj.rule, as defined

by Definition 5, and is called a “Points to Rule Match,” identified by the P2RM relation between a

local and target granule. A successful P2RM relation is then associated with the local and target

 45

concepts that each granule implies, as per Definition 6. The resulting ternary relation ConceptMatch

becomes a member of C2CMset, as per Definition 7, which represents a set of all matched concepts.

We now describe the Granule Matching Algorithm in Definition 8 below. The algorithm first (1)

associates all previously established matches between local and target data attributes, DAL and DAT

respectively by adding the EquivalentDataProperty37 axiom for each local and target data property

pair. On step (2 – 16) it iterates through each local granule {Lgi} over i, and the associated Lgi.data-

points. For each Lgi.data-points, on steps (4 - 14) the algorithm iterates through all target granules

{Tgj} over j, and the associated target rules Tgi.rule, and ensures only one Lgi.data-points axiom and

Tgj.rule axiom is present in Ow. In step (7) the consistency between Lgi and Tgj is checked as per

Definition 5 by inserting a EquivalentClasses38 axiom stating that Lgi and Tgj are equivalent, and in in

step (8) verifying whether this axiom did not cause Ow to be unsatisfiable. If Ow is still satisfiable, the

two granules Lgi and Tgj are matched in step (9) by creating the “Points To Rule Match” relation

P2RM(Tgj, Lgi), as per Definition 5. In step (11) the EquivalentClasses axiom previously insert in

step (7) is then removed, along with the target granule rule Tgj.rule axiom in step (12) previously

inserted in step (6).

37 The EquivalentDataProperty axiom is an OWL 2 axiom which states that two data properties a EquivalentDataProperty are

equivalent, as per the definition in Table 27 on page 91.
38 The EquivalentClasses axiom is an OWL 2 axiom which states that two concepts are equivalent, as per the definition in Table

25 on page 91.

 46

Definition 8: (Granule Matching Algorithm). During the Lgi.data-points and Tgj.rule matching

process, the “work” ontology OW is used to verify the two granules are consistent with each other for

all local and target granules, where:

OW ::= Ow is a “work” ontology used for reasoning with axioms in the matching
process.

and the algorithm is:

1) Add all EquivalentDataProperty39 Axioms into Ow

2) Foreach Local Points Axiom as Lgi.data-points

3) Add Lgi.data-points into Ow

4) Foreach Target Rule Axiom as Tgj.rule

5) If Lgi.attribs are equivalent to Tgj.attribs

6) Add Tgj.rule into Ow

7) Add EquivalentClasses40(Lgi.data-points, Tgj.rule) Axiom into Ow

8) If Ow is satisfiable (no unsatisfiable classes exist)

9) Create the P2RM(Lgi, Tgj) relation, as per Definition 5.

10) End

11) Remove EquivalentClasses(Lgi.data-points, Tgj.rule) from Ow

12) Remove Tgj.rule from Ow

13) End

14) End

15) Remove Lgi.data-points from Ow

16) End

17) Foreach Target Concept as TC

18) Foreach Local Concept as LC

19) If P2RMset ≠ ∅, as per Definition 6

20) Create the ConceptMatch(LC, TC, P2RMset) relation, as per Definition 6.

21) ConceptMatch(LC, TC, P2RMset) is a member of C2CMset, as per Definition 7.

22) End

23) End

24) End

39 The EquivalentDataProperty axiom is an OWL 2 axiom which states that two data properties a EquivalentDataProperty are

equivalent, as per the definition in Table 27 on page 91.
40 The EquivalentClasses axiom is an OWL 2 axiom which states that two concepts are equivalent, as per the definition in Table

25 on page 91.

 47

After the individual local granules (Lgi) have been matched with all consistent target granules (Tgj), in

steps (17 - 24) the target concepts are iterated, and for each target concept TC, local targets are

iterated, in order to create the ternary ConceptMatch relation between local and target concepts LC

and TC, and the set of associated P2RM relations P2RMset, as per Definition 6. In step (21) the

resulting ConceptMatch relation becomes a member of the set C2CMset which contains all matches

between local and target concepts, as per Definition 7.

3.10 Concept Match Ranking Measures and Motivation
Up to this point, the algorithm to perform concept matching has been described. We now present the

motivation for the methods by which each match is ranked. After a high level introduction, sections

3.11 and 3.12 present formal definitions of concept-to-concept match rankings. As a running example,

we define the local and target ontologies in Figure 23, which demonstrate how the Precipitation

concept is defined by each ontology.

Figure 23. Local and Target Ontologies defining the Precipitation concept.

Once granules are matched, as per Definition 5, we must rank each individual granule-match to infer

the best concept-matches. Recall from Definition 4 on page 37, that each granule represents a leaf

node in a decision tree, and that each granule has a probability associated with that leaf node. This

probability is the number of correctly classified records in the leaf node divided by the number of all

records classified by that leaf node. For example, a leaf node may have classified 20 records as RainT,

but only 15 of them are actually RainT in the database. The probability of this node being correct

would be 15 / 20 = 0.75. This value, which we call Lg.Pr and Tg.Pr for local and target granules

respectively and define in Definition 4 on page 21, gives us a ranking of individual granules.

 48

Because there may not be a clear distinction between Rain and Drizzle, there may be an overlap

between some Rain and Drizzle granules. As a result, some local granules that define RainL will

overlap with target granules that define DrizzleT. These ambiguous granules at the intersections of

concepts will be of low quality, and contain misclassified records. This will result in low Lg.Pr and

Tg.Pr values, giving these granules a low quality score. In order to successfully match RainT to RainL

and DrizzleL to DrizzleT we must consider how many high-quality granules overlapped between RainT

and RainL compared to low quality granules. In Definition 9 we define the Match Score relation MS

that represents the quality of a match between concepts based on the quality of granules used.

In addition to overlapped data-points, we must consider a concept’s position in the ontology’s

hierarchy. Here we are concerned with matching concepts at the correct ontology level identified by λ.

Consider matching the target LiquidPrecipitationT to the local PrecipitationL. We can infer that all

granules that represent RainT and DrizzleT will also represent their super-class LiquidPrecipitationT..

To see that this is the case, consider the fact that the rules for any super-class are inclusive of all data-

points for all sub-classes, and their granules: so any data-points for RainT and DrizzleT will also be the

data-points for LiquidPrecipitationT. However, this same fact cannot be used to match a local and

target concept without considering at which λ level the individual concepts reside.

At ontology OL level λ = 3 we have DrizzleL, RainL, SnowL and IcePelletesL and their direct super-

class PrecipitationL at level λ = 2. In OT we also see PrecipitationT at λ=2, but DrizzleT, RainT, SnowT

and IcePelletesT are at level λ = 4. Assuming their data-points overlap, we can match the concepts at

level λL = 3 and λT = 4 as well as at levels λL = 2 and λT = 2 strictly by considering the granules.

Matching LiquidPrecipitationT and SolidPrecipitationT at λT = 3 to their OL counterpart is more

difficult because there is no direct match. In Definition 10 we define the Level Match relation LM

between a target concept TC and a set of local concepts {LCi} it matched at a particular local level λL.

The union of data-points for LiquidPrecipitationT and SolidPrecipitationT overlap with data-points for

PrecipitationL. Equally so, LiquidPrecipitationT can be matched to the union of data-points for

DrizzleL and RainL, and finally SolidPrecipitationT to the union of data-points for SnowL and

IcePelletsL. In order to find the best match within the OL hierarchy, we attempt to match

LiquidPrecipitationT to all local concepts who’s data-points overlapped with its own data-points at

different λL levels of OL. By doing so, LiquidPrecipitationT may get a partial match for RainL and

DrizzleL at λL =3. It will also match a portion of the data-points for PrecipitationL at λL =2. Because a

 49

direct match for LiquidPrecipitaitonT does not exist in OL, a “best guess” is chosen instead with a

lower match rating reflecting the indirect match. To distinguish between good and bad Level Matches

at a particular local level λL, as defined in Definition 10, we create the Match Rank score msv in

Definition 11 that assigns a numeric rank to a particular Level Match.

To identify highly distinct data-point clusters within levels, we identify concepts whose matched

granules are significantly better than others. For example, RainT and DrizzleT may both overlap with

RainL, although DrizzleL to a lesser degree. Also, SnowT may overlap with RainL, but to an even lesser

degree: perhaps some weather stations recorded rain during a cold front, and classified it as snow,

while capturing “rain like” data-points. To accommodate this use-case, the algorithm identifies gaps

in the quality of matches. In the example of matching target concepts to RainL, there may be a slight

gap between the ranking of the “RainT to RainL“ match, and the “DrizzleT to RainL” match, and a

larger gap between these two and the “SnowT to RainL” match which would be very low on the

ranking scale. In Definition 12 we define the Gap Match ranking that implements this method in

order to distinguish high ranking “close matches” from significantly lower ranking matches.

In the same manner as stated above, RainT data-points will overlap with RainL, as well as the more

inclusive PrecipitationL. In fact, due to ambiguous data-points in DrizzleL, RainT may have more data-

points overlap with PrecipitationL rather than RainL. In order to prevent such mismatches, our

algorithm also considers the hierarchical position and quality of matched sibling concepts with target

concepts. For example, if RainT closely matches RainL and PrecipitationL, we look at its sibling

concept DrizzleT to determine a best match. In this case, DrizzleT has a match with DrizzleL and

PrecipitationL. Here, DrizzleL is a local sibling of RainL. Taking this into consideration, we see a

hierarchical pattern emerging, and it is this: the siblings RainT and DrizzleT both match PrecipitationL;

PrecipitationL has the sub-classes RainL and DrizzleL; RainT matched RainL and DrizzleT matched

DrizzleL, both sibling pairs. The algorithm then infers two hypotheses from this information. The first

hypothesis is that by having many sub-classes (in addition to overlapping data-points) in common, the

two super-classes PrecipitationL and PrecipitationT are equivalent. This is defined in Definition 13 as

the Gap To Parent Match. The second hypothesis is that given many overlapping data-points and

equivalent super-classes, RainT is equivalent to RainL, and DrizzleT is equivalent to DrizzleL. The

second hypothesis is defined in Definition 14 as a Child via Parent Match. This measure is also meant

to identify matched concepts that may have many overlapping data-points, but who’s siblings do not.

 50

Depending on the application and domain of the ontologies being matched, a user may want to

indicate a cut off point for the quality of matches she will consider valid. For this purpose we define

the Close Match relation CM in Definition 15 that identifies matches that met this cut off point. For

further verification by the user, we group such “close matches” by the highest super-class found, as

demonstrated in Appendix 5 on page 112. For example, based on the matching process, the following

target concepts have been identified as a Close Match with LiquidPrecipitationT: PrecipitationL

DrizzleL, RainL. This will be displayed to the user as

 CMSubs(LiquidPrecipitationT) = { PrecipitationL { DrizzleL, RainL } },

where CMSubs is the set of concepts matched to LiquidPrecipitationT called Close Match Sub-

classes, as defined in Definition 16. This hierarchical perspective is meant to make it relatively easy

for a user to pinpoint which of the three concepts (PrecipitationL, DirzzleL, or RainL) PrecipitationT

should match.

Depending on the user’s point of reference, she may be interested in viewing the matches from either

the local or target ontology’s perspective. For this reason, in Definition 17 we define the Local To

Target Matches set L2TM and Target To Local Matches set T2LM. These are partially ordered sets

that list matches sorted in such a way that the best matches are shown first. Both sets contain identical

information, the only difference being that L2TM displays matched grouped by concepts in the local

ontology, and T2LM by concepts in the target ontology.

In the following sections 3.11 and 3.12 we present the formal definitions of the terms just discussed.

3.11 Match Rankings
In order to identify the quality of a particular match between a local concept (LC) and a target concept

(TC), the “Match Score” (MS) considers the quality of the measures used to create the match, as per

Definition 9. Recall from Definition 3 on page 36 that each granule implies a particular concept. For

example, the local granule Lg implies the local concept LC, which is identified by Lg ⇒G LC.

Similarly the target granule Tg implies the target concept TC, which is identified by Tg ⇒G TC. The

match quality measure considered is the quality of the target granules used to create the match. Again

recall from Definition 4 on page 37, that each granule represents a leaf node in a decision tree, and

that each granule has a probability associated with a leaf node. This probability, identified as Tg.Pr, is

the number of correctly classified records in the leaf node divided by the number of all records

classified by the leaf node. The derived numeric value msv, as per Definition 9, is the average quality

 51

Tg.Pr of target granlues matched with local granlues for a partcicular LC and TC pair. This average

considers the probability of the same Tg matched to multiple Lg’s as independent probabilities, as per

the example in Table 7 below.

Definition 9: (Match Score MS). The Match Score is a ternary relation called MS between a local

concept LC, a target concept TC, and a numeric value msv that represents the quality of the match

between LC and TC. The numeric value msv in the relation MS(LC, TC, msv) utilises the probability

of the target granules (Tg) matched to a local granule (Lg) in the relation P2RM(Lg, Tg) as per

Definition 5 and Definition 6. It is the average of he quality of target granules matched with a local

granules. If a Tgj was matched to more than one Lgi, that Tgj’s quality is counted multiple times since

it is associated with a different Lgi:. The msv score is calculated by:

msv (LC, TC) = 	

∑ !"! . !"

!"!
 (6)

where:

Lgi ::= Lgi is a local granule associated with LC, where Lgi ⇒G LC, matched with
any target granule Tgj.

Tgj ::= Tgj is a target granule associated with TC, where Tgj ⇒G TC, matched
with a local granule Lgi.

for all existing relations P2RM(Lgi, Tgj) that are members of the set P2RMset for the relation
ConceptMatch(LC, TC, P2RMset).

Table 7. Match Score Example MS(LC, TC, msv)

Local Granule
 Lgi ⇒G LC

Target Granule
 Tgj ⇒G TC Tg.Pr

Lg0 Tg1 0.9
Lg1 Tg1 0.9
Lg2 Tg2 0.95
Lg3 Tg2 0.95
Lg6 Tg2 0.95
Lg7 Tg5 0.8

Total 6 5.45 msv = 0.91

All MS(LC, TC, msv) relations are first grouped by the matched target concept Tg, and second by the

local concept’s hierarchical level as identified by LevelL and defined in Definition 1 on page 21. This

 52

grouping will be used to compare matches between a target concept TC and local concepts at different

levels of the local ontology OL.

Definition 10: (Level Match LM). In order to compare matches between local concepts LC and

target concepts TC in a more meaningful way, we group the matches at different levels of the local

ontology. Specifically, LM is a ternary relation between LC, TC, and LevelL(LC)=λ as per Definition

1 on page 21, and is identified by LM(LC, TC, λ). We also define a partially ordered set LM(TC, λ) ,

whose members are all LM relations between a target concept TC, and all local concepts in {LCi} at

OL level λ, sorted in descending order by msv.

To identify the best matches we make an assumption that highly scored matches will identify the best

concept in a sub-class/super-class hierarchy in which the actual match exists. We describe the factors

required to test this assumption in the rest of this chapter. In section 3.12 we discuss how those factors

are utilized. In order to incorporate the hierarchical position of a local concept LC in the match

ranking algorithm, we define LM which is a ternary relation between the local concept LC, the target

concept TC, and the level at which LC is within OL, as defined in Definition 10. For each TC and OL

level λ, all such LM(LC, TC, λ) relations are contained in the partially ordered set LM(TC, λ)λ, in

descending order by msv, as per Definition 10.

Definition 11: (Match Rank MRank). The Match Rank is meant to assign a score to LM relations

between a target concept TC and all local concepts LC at the same OL level for which a LM(LC, TC,

LevelL(LC)) relation exist. It utilizes the msv score in the relation MS(LC, TC, msv) as per Definition

9, to calculate this ranking. Each Match Rank is sorted by the associated msv score, with highest score

having the highest rank value. Specifically, MRank is a ternary relation between a target concept TC,

a local concept LCx in {LCk}, and mr, referred to as MRank(TC, LCk, mr). Here, the partially ordered

set {LCk} ordered on mr contains all the local concepts LCx that are at OL level λ, and have a LM

relation with TC in the set LM(TC, λ). mr is a numeric rank normalized over [0, 1] defined by

Equation 7 below. Each MRank relation is also a member of the partially ordered set MRankset, sorted

in descending order by mr.

mr = 1 –
!
!

 (7)

where m is the number of local concepts at a particular OL level λ defined by LevelL(LCk), k is the
index of LCk within {LCk} and k ∈ {1, … , m}

 53

To numerically determine which match is better, we introduce the MRank relation, and the associated

numerical rank mr in Definition 11. The mr rank will determine which LM relation is better within

the set LM(TC, λ)λ at a particular OL level λ, for a particular target concept TC. Continuing the

example of matching PrecipitationL and PrecipitaitonT, mr at level 3 may determine that LM(RainL,

RainT, 3) is ranked higher than LM(DrizzleL, RainT, 3), stating that RainT and RainL are a better match.

PrecipitationL is the only concept at OL level 2 matched to RainT, so LM(PrecipitationL, RainT, 2) is

considered best at level 2. However, the local concepts RainL and DrizzleL, will also be matched to

RainT’s super-class LiquidPrecipitationT, because of its large and inclusive cluster, as discussed in

section 3.10. The next section describes how matches between multiple target concepts and multiple

local concepts are ranked, with the use of “matching schemes”.

3.12 Matching Schemes
Once the initial matches between a target concept TC and multiple local concepts {LCx} are

determined, the matches are rated based on additional matching criteria called matching schemes.

Matching schemes focus on structural similarities between local and target concepts, while utilizing

the MRank relation and associated mr rank between those concepts, as defined in Definition 11.

Matching schemes begin by considering the mr value of each MRank relation in the MRankset set, at

some OL level λ, and predict additional matches based on structurally relevant similarities. These

similarities build on top of the anchors built by previous matching processes, and act as prerequisites

for further matching schemes.

Definition 12: (Gap Match GM). The Gap Match represents the best matches between local

concepts at some OL level λ and a target concept TC. It identifies a significant gap between the mr

score of MRank relations between TC and those local concepts. Specifically, GM is a binary relation

GM(LCk , TC) between a local concept LCx and a target concept TC, where the mrk rank in the

relation MRank(TC, LCx, mrx) is significantly larger than mrm for the next relation MRank(TC, LCm,

mrm) in the partially ordered set MRankset. Here we consider all MRank relations in MRankset for a

single TC and a single local ontology level λ, where λ = LevelL(LCk) = LevelL(LCm). A significant

gap occurs when (mrk – mrm) ≥ GAP_MIN, where GAP_MIN is a user defined threshold. In order to

omit large gaps between low ranking MRank relations, only relations with mr ≥ GAP_CHECK_MIN

are considered, where GAP_CHECK_MIN is a user defined threshold. Each GM relation is a member

of the set GMset.

 54

The first scheme is the Gap Match scheme identified by the GM relation, as per Definition 12. The

corresponding GMset is a set containing all GM relations, and represents any local to target concept

matches that have a large gap between the mr rank of two consecutive MRank relations, within

MRankset. For example, consider

 MRankset = { MRank0 (LiquidPrecipitationT , RainL , 0.9),

 MRank1 (LiquidPrecipitationT , DrizzleL , 0.9),

 MRank2 (LiquidPrecipitationT , SnowT , 0.1) }.

MRank0 and MRank1 relations are equally distinct from the MRank2 relation. Here we see a significant

gap between mr0 = mr1 = 0.9 and mr2 = 0.1. Such gaps occur when the decision trees made to

differentiate local siblings such as {RainL, DrizzleL, SnowL} are similar to the decision trees made to

differentiate target siblings. In order to use only gaps between high ranking MRank relations, only

MRank relations with rm ≥ GAP_CHECK_MIN are considered. Here, the user defined numeric

threshold GAP_MIN identifies what value constitutes a significant gap. Also, if consecutive MRank

relations have the same mr value, such as mr0 = mr1 = 0.9, they are compared as a single mr value and

MRank to the next MRank relation with a different mr value , like mr2 = 0.1. As a result only the

binary relations GM(LiquidPrecipitationT, RainL) and GM(LiquidPrecipitationT, DrizzleL) become

members of the set GMset, as per Definition 12.

Definition 13: (Gap To Parent Match G2PM). The Gap To Parent Match represents a match

between a local concept and a target concept, based on the number of matches between their direct

sub-classes. Specifically, if for some local concepts LCx and LCm , where LCx direct LCm , and target

concepts TCy and TCn , where TCy direct TCn , the relations GM(LCx, TCy) and GM(LCm, TCn) are

members of GMset , the relation MRank(LCm, TCn, mr) is a member of MRankset with mr ≥

TOP_P2P_RANK_MIN, then the relation G2PM(LCm, TCn, count) is a member of G2PMset. Here,

count is the number of GM relations between sub-classes of LCm and TCn, and

TOP_P2P_RANK_MIN is a user defined threshold identifying the minimum value of an rm rank in a

MRank relation between a local and target concept before those two concepts can qualify for the

G2PM relation. Each G2PM relation is a member of the set G2PMset.

Next, the “Gap To Parent Match” scheme is identified by the relation G2PM, as per Definition 13.

This scheme creates a G2PM relation between a local and a target concept, based on a match between

these two concepts, as well as a match between their direct sub-classes. Essentially, if a subset of local

sibling concepts {RainL, DrizzleL} match a subset of target sibling concepts {RainT, DrizzleT}, and

their direct super-classes LiquidPrecipitationT and PrecipitaitonL are matched, this is a good indicator

 55

that these super-class concepts are a good match. The first requirement for the algorithm to categorize

such matches as good is that the GM relations between the sibling classes be members of GMset. This

means that both GM(RainL, RainT) and GM(DrizzleL, DrizzleT) must be members of GMset. The second

requirement is that the GM relation between the parent concepts GM(PrecipitationL,

LiquidPrecipitationT) also be a member of GMset.

The third requirement for the “Gap To Parent Match” between a local and target concepts is that the

GM(PrecipitationL, LiquidPrecipitationT) relation be of high quality. For this we consider the Match

Rank defined in Definition 11. If such a relation is a member of GMset, then the relation

MRank(PrecipitationL, LiquidPrecipitationT, mr) is a member of MRankset, as per Definition 11 and

Definition 12. We now utilize the rm rank in their MRank relation as an indicator for the quality of

the match. If this rm rank is greater or equal to a user defined threshold TOP_P2P_RANK_MIN, then

a match between PrecipitationL and LiquidPrecipitationT is considered of high quality. Setting a

higher TOP_P2P_RANK_MIN threshold means a user put great emphasis on the role sibling concepts

play in the matching of their super-classes.

As a final measure of quality for the match between local and target concepts PrecipitationL and

LiquidPrecipitationT, we also consider the number of matches between their direct sub-classes. To

capture this we create the count value, which is the number of GM relations between their sub-classes.

Finally, if all conditions defined in Definition 13 are met, we create the G2PM(LC, TC, count)

relation, which becomes a member of the set G2PMset. In our example, having created the GM(RainL,

RainT) and GM(DrizzleL, DrizzleT) relations, we would also have the G2PM(PrecipitationL,

LiqiudPrecipitationT, 2) relation.

Definition 14: (Child via Parent Match CVPM). The “Child via Parent Match” is a relation

between a local concept LC and a target concept TC, based on two criteria: a successful granule

overlap for the two concepts (ConceptMatch as per Definition 6), and a successful “Gap To Parent

Match” between their direct parent classes (G2PM as per Definition 13). Specifically, CVPM is a

binary relation between a pair of concepts LC and TC, if 1) the relation ConceptMatch(LC, TC,

P2RMset) is an element of CM2Cset ; and 2) the relation G2PM(LCm, TCn, count) between their direct

super-classes LCm and TCn, is an element of G2PMset., where LC direct LCm and TC direct TCn. All

CVPM relations are elements of the set CVPMset.

 56

The third matching scheme is the “Child via Parent Match“ identified by the relation CVPM, as

defined in Definition 14. This relation identifies a match between a local concept LC and a target

concept TC, based on their individual concept definitions and associated granules, as well as a

significant match between their super-classes. Recall that the “Gap To Parent Match” in Definition 13

identifies a match between two concepts if their direct sub-classes were matched. This is a bottom-up

process in that the super-classes are matched because their direct sub-classes were matched. In

contrast, the “Child via Parent Match” is a top-down process in that the direct sub-classes are matched

because their direct super-classes were matched. The reason for this matching scheme is that two

concepts LC and TC matched solely by their granules, meaning data-points overlapping with rules,

may not have a significantly high “Match Rank” as per Definition 11. In such a case, we look to their

siblings and super-classes for more information.

Consider again the local and target Precipitation concept hierarchies, and specifically the bottom local

and target concepts IcePelletsL and IcePelletsT. We may already have a good quality match between

the local and target Rain, Drizzle, and Snow concepts, and a “Gap To Parent Match” between

PrecipitationL for both LiquidPrecipitaitonT and SolidPrecipitaitonT. We now want to use that

information to see if we can match IcePelletsL to IcePelletsT. Unfortunately we cannot use these

concepts in isolation because they have a low quality match, perhaps due to lack of weather station

records for IcePelletsT. We can see that 1) IcePelletsL`s siblings were all matched to each other, and

that 2) their super-classes were matched as well. We can also see that 3) some IcePelletsL data-points

did overlap with IcePelletsT data-points, although the data-points belong to low quality granules. We

use these 3 observations to infer that IcePelletsL and IcePelletsT are in fact equivalent concepts, and

build the binary relation CVPM(IcePelletsL, IcePelletsT) as defined in Definition 14.

Definition 15: (Close Match CM). A match between a local and a target concept is considered a

Close Match when the rank of the match is above a predetermined threshold. Specifically, CM is a

binary relation between a local concept LC, a target concept TC, represented as CM(LC, TC) if the

relation MRank(LC, TC, mr) is a member of MRankset, and mr ≥ TOP_RANK_MIN, where

TOP_RANK_MIN is a user defined constant. All CM relations are also part of the set CMset.

Definition 16: (Close Match Sub-classes CMSub). For verification purposes by the user, all CM

relations between a target concept TC and local concepts in the same local sub-tree are members of a

partially ordered set CMSubTC, sorted on the OL level, LevelL(LCx), of each local concept LCx.

Specifically, CMSubTC is a partially ordered set whose members are CM relations in CMset between a

 57

particular target concept TC and local concepts {LCx}, where each LCx in {LCx} is a sub-class of LC,

and CM(LC, TC) is also in CMset. Each CMSub(TC) set is a member of the collection CM.

The fourth and final matching scheme is “Close Match”, and is identified by the relation CM, as per

Definition 15. This relation identifies highly ranked matches between a local (LC) and target (TC)

concept, and is based on their mr rank in the MRank(LC, TC, mr) relation, if one exists. For a match

to be considered a “Close Match” the associated mr rank must be greater or equal to a user defined

threshold called TOP_RANK_MIN. This threshold allows a user to state how strict the matching

process is, by only including high ranking matches in the CMset set. As a supportive measure in

manual verification of matches, we define the partially ordered set CMSub(TC), as defined in

Definition 16. Each CMSub(TC) set allows a user to quickly see matches from a hierarchical

perspective, and remove possible false positives between a target concept TC and sub-trees of local

concepts. Each set CMSub(TC) is also a member of the collection CM, which is ultimately displayed

to the user.

Revisiting the example from section 3.10, we may have Close Match relations with

LiquidPrecipitationT, mainly PrecipitationL DrizzleL, RainL. This will be displayed to the user as

 CMSubs(LiquidPrecipitationT) = { PrecipitationL { DrizzleL , RainL } },

where CMSubs is the set of concepts matched to LiquidPrecipitationT. By providing this hierarchical

view, it should be relatively easy for a user to pinpoint which of the three concepts PrecipitationL,

DirzzleL or RainL, LiquidPrecipitationT should match.

Definition 17: (Final Matches L2TM and T2LM). For display purposes and verification by the

user, all matches are grouped under either the local concepts and local ontology OL levels, or the

target concept and target ontology OT levels. The matches are members of the matching scheme sets

GPset, G2PMset, CVPMset and CMset, with the associated confidence rating msrating, as listed in Table 8.

Specifically, L2TM is a partially ordered set that contains relations in each matching scheme set

between local concepts and target concepts, sorted on the OL level and msrating of the matching scheme

used. T2LM is a partially ordered set that contains matches between target concepts and local

concepts, sorted on the OT level and msrating of the matching scheme used.

 58

Table 8. Matching Scheme Rating (msrating)

Matching Scheme msrating Description
Gap Match (GM) 1.0 Matching concepts based on a highly distinct Match Rank in MRank.
Gap To Parent Match (G2PM) 0.75 Matching two parent concepts based first on their children’s GP

match, and secondly on the closeness of their own MRank.
Close Match (CM) 0.5 A match between concepts based on their high MRank.
Child via Parent Match (CVPM) 0.25 A recheck of the original matches, i.e. ConceptMatch relations in

C2CMset, based on newly found “Gap To Parent Matches”, i.e.
G2PM relations in G2PMset.

Once the various matching schemes have been applied to local and target concepts, each produces sets

of the relations, mainly GMset, G2PMset, CMset with the associated CM collection, and the CVPMset

set. Each matching scheme, and as a result each set, is ranked and combined into two sets that group

“Local To Target Matches” (L2TMset), and “Target To Local Matches” (T2LMset), as defined in

Definition 17, which are presented to the user for verification. The matches in the L2TMset set are

grouped by local concepts, and this set is useful for users who are familiar with the local ontology OL.

Similarly, the matches in T2LMset are grouped by target concepts and this set is useful for users who

are familiar with the target ontology OT. In each set, the top level super-class concepts and highest

rated matching schemes are displayed first. Both lists are equivalent, and differ only in the main

grouping, where the primary concepts are either the local or target concepts. An example is created in

Chapter 4, based on the Weather test case chosen for this thesis.

 59

Chapter 4. Results and Analysis

4.1 Evaluation Measures
The evaluation measures described in the following sections are meant to identify the precision and

recall of the matching algorithm presented in this thesis. We adopt the notion of correspondence

proximity proposed by Ehrig and Jérome [39], and extend it with our own proximity measures

specifically created to measure the performance of our bottom-up matching algorithm. We call our

approach a bottom-up matching algorithm because it associates ground terms with records in a

database, and finds additional matches moving “upwards” towards the root of the ontology.

The evaluation methods used to validate the ontology matching algorithm in Chapter 4 are based on

methods described by Shvaiko et. al. [72], in which ontology matching benchmarks are described and

past competitions evaluated. The evaluation measures utilized by Shvaiko et. al., and adopted here are

based on the work proposed by Ehrig and Jérome [39].

In 2006, Shvaiko et. al. introduce the Ontology Matching (OM) Workshop41 and the Ontology

Alignment Evaluation Initiative42 (OAEI), and analyze the 2006 results. Although OM and OAEI

have a vast amount of resources for ontology matching, including ontologies and alignments for

verification, none of them have a corresponding dataset of records to use for data-mining, and for

building decision trees required by this thesis. As a result, an existing weather ontology [73] and

dataset [74] were manually associated, and used in the tests in the following chapter. The dataset is a

collection of weather data from weather stations around the world in the METAR format, a format of

meteorological codes defined by the World Meteorological Organization (WMO)43 [75] to record

meteorological phenomenon. The weather ontology is a modified version of an ontology by Elkiss et

al. [73], which was originally used to convert METAR reports to DAML [76]. Without a subject

matter expert in the meteorological domain, only one ontology was associated with multiple files in

the METAR dataset format, as per the procedure described in section 3.3. As a real-life example test,

the taxonomies and data records of two major consumer electronics retailers were extracted from their

respective online catalogs, and matched using the algorithm. The “Simple Tests (1xx)” and

“Systematic Tests (2xx)” tests in the Benchmark Track [72] are performed using the weather

ontologies in order to analyze how a matching algorithm performs when matching ontologies with

41 http://www.om2006.ontologymatching.org/
42 http://oaei.ontologymatching.org/
43 http://www.wmo.int

 60

particular types of differences between them. The “Real-Life Test (3xx)” is performed on the

electronics retailers’ extracted taxonomies and data records.

The first test performed is the “Simple Tests (1xx)”, which matches an ontology to itself, an irrelevant

ontology, or scaled down version of the original in a less expressive representation in OWL-Lite. As a

benchmark for our tests, we are matching a single ontology to itself using the same METAR data. We

also match the same ontology to itself, but with a subset of the METAR data focusing on a specific

geographical region dominated by a particular type of weather, such as arctic weather or sunny

weather. The second test is the “Systematic Tests (2xx)”, which matches an ontology to a modified

version of itself, where some features are disregarded, and is meant to identify how the algorithm

performs with variety of differences in target ontologies. These differences can be structural, lexical,

or simply have missing or new elements in the target ontology. The modifications considered in the

original OM test include (a) modifying labels of ontology entities; (b) modifying comments; (c)

suppressing, expanding or flattening specialization hierarchies; (d) removing ABox instances; (e)

removing attributes or modifying restrictions placed on their domain and range; (f) and expanding or

flattening concepts [72].

This algorithm purposefully avoids using lexical information from any ontology elements, including

labels or comments so the (a) and (b) tests are not performed. For generality of interpretations

between a local and target ontology, any ABox instances provided with an ontology are ignored and

complete focus is placed on database records, which means test (d) is not performed. It is important to

note that while an ABox may contain instances that can be treated as database records, it can simply

contain a small set of examples, not suitable for data-mining. For this reason, the algorithm requires

an associated database or a great number of ABox instances suitable for data-mining. Since this

algorithm is driven by the data, removing any ABox instances equates to the “Simple Tests (1xx)”

test where instances are included only for a particular geographical region that focuses on a particular

type of weather, as discussed in the previous paragraph.

Lastly, the only attributes that are referenced by the algorithm are ones that exist in the dataset

associated with the ontology. As a result, each property that is not needed to represent a column in the

dataset is ignored. Since test (e) deals specifically with how property removal affects the matching

process, the test is not performed. Consequently, a test can be performed by removing several 2-

dimensional trees (using 2 attributes at a time), in order to see how the matching algorithm performs

without the attributes used to create the removed tree. Consequently, by modifying the structural

 61

characteristics of the weather ontology, only tests (c) and (f) are performed. The third and final test is

the “Real-life Tests (3xx)” which involves running a matching algorithm on a real life ontology of

bibliographic information. Since a dataset was not included with the benchmark ontology to perform

data-mining on, this test was performed using taxonomies and data records extracted from online

catalogs for two consumer electronic retailers, FutureShop and BestBuy.

4.2 Evaluation Measures - Precision and Recall
It has been well established [77] that a solution to a search problem needs a good balance between

identifying correct matches (true positives) and limiting the number of proposed matches to reduce

incorrect matches (false positives). The tests described by Shvaiko et. al. [72] measure the precision

and recall of the matching algorithm, and are based on the work of Ehrig and Jérome [39]. These

precision and recall measures are also adopted here, with variations that specifically test the precision

and recall of the matching algorithm proposed by this thesis. The details of the work done by Ehrig

and Jérome are not discussed here, as evaluation methods in general are outside the scope of this

thesis. Only the background information necessary to understand the motivation of the measures

adopted here is provided, along with their definitions. Precision and recall is a classic measure that

evaluates how good an algorithm is at identifying the correct matches [39]. Precision is the ratio

between true positives and all potential matches retrieved. Recall is the ratio between true positives

and all possible matches. This is summarized in Definition 18 below.

Definition 18: (Precision and Recall). Precision is given by

Prec(M, R) =
!∩!
!

 (8)

and Recall by

Rec(M, R) =
!∩!
!

 (9)

where M are all proposed matches, rpair(LC, TC), and R are all the correct matches, usually as a
predefined list used for verification.

There is also a need to generalize precision and recall, giving the generalized functions !"#$! !,!

and !"#! !,! , respectively, to accommodate variation in degrees of correctness. This is allowed as

long as the generalization methods adhere to a set of basic properties [39]. These properties includes

 62

the fact that the generalized version of |R∩M|, mainly ω(R, M), should not produce a negative

number, and should not have a cardinality greater than |R∩M|. Also a relaxed measure should add

flexibility to Prec and Rec, producing better results. And finally, !"#$! and !"#! should be

symmetric where ω(R, M) = ω(M, R). For ontology matching however, where the local and target

ontologies are not necessarily symmetric, there is no guarantee that their predefined correct matches R

and proposed matches M will be symmetric. For this reason the symmetry is not required here [39].

To calculate a relaxed measure, a “correspondence proximity” must be calculated which is the

product of several match features.

Definition 19: (Ground Term Precision). Ground Term Precision is similar to the Precision in

Definition 18, except it considers only matches to local ground terms.

As mentioned previously, the ontology matching algorithm presented here is a bottom-up approach,

where matches between ground terms are assumed to be of the highest quality. This is due to their

close association with database records, and the assumed consistency between local and target

databases, as described in section 3.3. In order to test this theory, the Ground Term Precision measure

is also calculated, as defined in Definition 19. It is similar to the Precision measure defined in

Definition 18, except it only considers ground terms in its rankings.

Definition 20: (Match Correspondence Proximity MCP). MCP is a rating of a particular match, in

the range of [0, 1], which considers several characteristics of the matching process and the matches

themselves, giving a relaxed proximity measure.

MCP(LC, TC) = CPpair(LC, TC) × CPrel(LC, TC) × CPconf(LC, TC) (10)

where the characteristics are

CPpair(LC, TC) ::= CPpair(LC, TC) is the rating of proposed match between LC and TC in the
[0, 1] range.

CPrel(LC, TC) ::= CPrel(LC, TC) is the rating of the relation between LC and TC in the [0, 1]
range.

CPconf(LC, TC) ::= CPconf(LC, TC) is the confidence rating of the match between LC and TC in
the [0, 1] range.

 63

Definition 21: (Full Match Correspondence Proximity). The generalized accumulated proximity

measure rates the matching algorithm itself, and is based on all matches ms produced by all matching

schemes [39].

!"#!"## !,! =
!"#(!" !", !" , ! !", !"

 !
 (11)

and M are all the proposed matches, ms(LC , TC) ∈ M, ms is a Match Scheme, and R are the
predefined correct matches where r(LC, TC) ∈ R.

The Match Correspondence Proximity MCP is adopted from “correspondence proximity” proposed

by Shvaiko et. al. [72] and defined in Definition 20. MCP represents a rating of the match between

LC and TC, and considers several elements of the matching process. It incorporates the characteristics

of the method used to create the original match as well as the similarities and differences between LC

and TC. Because this measure rates the matching algorithm itself, it measures the proposed matches

M against the actual matches R. Note that each characteristic of MCP, mainly CPpair, CPrel, and CPconf,

is aggregated through MCP to the final rating of the ontology matching algorithm MCPfull, as defined

by Definition 21. This means that these methods must also abide by the requirement of being in the

range of [0, 1].

Definition 22: (Effort and Normalization). The effort to go from concept LCA to concept LCB in a

single branch of a hierarchy is the edge count between these two concepts. In order to normalize this

value to the range of [0, 1], the number of edges is divided by the depth of their branch.

!""#$% !"!, !"! = !"#"$! !"! − !"!"#!(!"!) (12)

!""#$%!"#$!"!, !"! = 1 −
!""#$%(!"!, !"!)

!"#"$!(!"!)
 (13)

where either LCC LCB LCA or LCC LCA LCB, and LCC is a ground term.

The first measure to influence MCP is CPpair, the rating of the proposed match ms(LC , TC) and the

correct match r(LC, TC). Note that this is not rating the different matching schemes, only the type of

match a scheme produced. For example, consider ms(PrecipitationL , RainT) which matched

PrecipitatonL with its direct sub-class, where RainL direct PrecipitationL and rpair(RainL, RainT). A

match between a concept and its sub-class is relatively good, especially considering it is matched to

its direct sub-class. This type of match would be rated as better when compared to a match between a

concept and its indirect sub-class, because the distance in terms of edge counting between the two

 64

concepts is larger. Edge counting is a well established method of determining the distance between

two nodes in a graph, and has been successfully applied to ontology matching [12]. The match would

also be rated as better when compared to a match between a concept and its super-class. This is

because a match to a sub-class is more specific than a match to a super-class [39]. To demonstrate this

point, consider that every concept could be matched to the root concept, but such a match should be

scored relatively low as it is far too ambiguous to be of any benefit. A direct match would have the

highest rating of 1.0.

The second measure influencing MCP is CPrel, which is a rating of the type of relationship between

LC and its match. Since the use cases evaluated in the next chapter deal strictly with hierarchical

ontologies which only have sub-class and super-class relationships, CPrel is by default set to 1.0, or

effortnorm, a rating based on edge counting, as defined in Definition 22.

The final measure influencing MCP is CPconf, which is the confidence given to the matching

technique, either based on the scheme’s msrating rating (listed in Table 8) which produced the match, or

the proximity measure’s own rating. These values are given in the following section.

4.3 Proximity Measures
The proximity measures described in this section are concrete proximity measures based on the

general definition of Match Correspondence Proximity in Definition 20. As mentioned previously,

the CPrel rating is by default 1.0, because we only consider super-class and sub-class relationships in

these tests. This changes when we consider the hierarchical difference of a concept and its super-class

or sub-class. In Table 9 below, we identify the types of correct relationships that can exist between

concepts in the ontology. These are then used to identify how to rate a proposed direct match in M to

its correct counterpart in R, if one exists, using the associated CPpair, CPrel, and CPconf ratings for the

individual proximity measures in Table 10 to Table 15.

Table 9. Proximity measure relationships

Found
Relation

Correct
Relation Definition

LC TC LC TC A direct match between LC and TC
LC TC LC ⇑ TC LC and TC are sibling, i.e. they share a direct super-class
LC TC LC TC LC was matched to its super-class TC
LC TC LC TC LC was matched to its sub-class TC

 65

The first concrete proximity measure is the standard proximity measure. It considers only direct

matches as correct, and all other indirect matches as incorrect. This is achieved by assigning CPpair a

value of 1.0 for all direct matches, and a value of 0.0 for any indirect matches, as per Table 10.

Table 10. Standard proximity measure

Found
Relation

Correct
Relation CPpair CPrel CPconf Comment

LC TC LC TC 1.0 1.0 1.0 Only considering direct matches.
LC TC LC ⇑ TC 0.0 1.0 1.0 Not considering indirect matches
LC TC LC TC 0.0 1.0 1.0 Not considering indirect matches
LC TC LC TC 0.0 1.0 1.0 Not considering indirect matches

In order to rate the Matching Scheme used to perform a particular match, the Match Scheme proximity

measure is configured with the MCP parameters in Table 11. Any match, direct or indirect is

considered valid, with a rating of 1.0 assigned to CPpair. In order to incorporate the Matching Scheme,

the CPconf value is assigned the ranking of the particular scheme used, as defined in Table 8.

Table 11. Matching Scheme proximity measure

Found
Relation

Correct
Relation CPpair CPrel CPconf Comment

LC TC LC TC 1.0 1.0 msrating A direct match has the highest proximity
LC TC LC ⇑ TC 1.0 1.0 msrating Matched sibling have the second highest

proximity
LC TC LC TC 1.0 1.0 msrating A match within own hierarchical branch
LC TC LC TC 1.0 1.0 msrating A match within own hierarchical branch

To add flexibility to proximity measures, we now define measures that consider indirect matches as

well as direct ones. The symmetric proximity measure identifies structural symmetry between

matched concepts, by rating indirect matches with a value greater than 0.0. As shown in Table 12, the

symmetric measure assigns different values to the CPpair rating, based on the type of correct

relationship the matched concepts have. A correctly identified direct match has a rating of 1.0.

Indirect matches are divided into two groups, siblings with a rating of 0.75, and super/sub-classes

with a rating of 0.5. The matching scheme is not considered, as indicated by the assignment of 1.0 to

CPconf.

 66

Table 12. Symmetric proximity measure

Found
Relation

Correct
Relation CPpair CPrel CPconf Comment

LC TC LC TC 1.0 1.0 1.0 A direct match has the highest proximity
LC TC LC ⇑ TC 0.75 1.0 1.0 Matched sibling have the second highest

proximity
LC TC LC TC 0.5 1.0 1.0 A match within own hierarchical branch
LC TC LC TC 0.5 1.0 1.0 A match within own hierarchical branch

To further differentiate between indirect matches, the effort proximity measure favours matches

between a local concept and its target own sub-class. Generally speaking, sub-classes are viewed as a

specialized version of their super-class [39]. The criteria which was used to create the match is then

viewed as a specialization of the matched concept. Conversely, a match between a concept and its

super-class is viewed as a generalization of that concept. As a result, the effort measure assigns a

higher rating for matches between a concept and its sub-class, and a lower rating for a match with its

super-class.

As indicated in Table 13, the CPpair is again used to differentiate between different types of matches,

assigning 1.0 for direct matches, 0.8 to siblings, 0.4 to super-class matches, and 0.6 to sub-class

matches. The word “effort” is adopted from Ehrig and Jérome [39], and refers to the amount of effort

a user verifying the matches would need to manually correct or find the proposed matches.

Comparing the effort measure to the symmetric measure in Table 12, the key difference is that the

effort measure differentiates between super-class and sub-class matches. This is because symmetry

does not consider the specialization and generalization mentioned above which is introduced with

sub-classes and super-classes, respectively. However, Ehrig and Jérome do not consider the distance

between the concept and its matched counterpart in the hierarchy. The next proximity measure

introduced here does just that.

Table 13. Effort proximity measure

Found
Relation

Correct
Relation CPpair CPrel CPconf Comment

LC TC LC TC 1.0 1.0 1.0 A direct match has the highest proximity
LC TC LC ⇑ TC 0.8 1.0 1.0 Matched siblings have the second highest

proximity
LC TC LC TC 0.4 1.0 1.0 Matching to a more ambiguous super-class
LC TC LC TC 0.6 1.0 1.0 Matching to a more specific sub-class

The effort with edge count proximity measure is identical to the effort measure, except that it

discriminates against large hierarchical differences between matches. This measure uses the number

 67

of edges between a concept and its matched sub or super-class. In order to satisfy the requirements for

aggregating these measures, and preserve the [0, 1] range, the edge count is normalized over the

depth of the branch which the two concepts are part of, as per Definition 22, giving CPrel = effortnorm,

as shown in Table 14.

Table 14. Effort with edge count proximity measure

Found
Relation

Correct
Relation CPpair CPrel CPconf Comment

LC TC LC TC 1.0 effortnorm 1.0 A direct match is best, with an edge count of 0

LC TC LC ⇑ TC 0.8 effortnorm 1.0 Siblings have an edge count of 0, but a lesser
proximity than a direct match

LC TC LC TC 0.4 effortnorm 1.0 Matching to a more ambiguous super-class,
taking edge count into consideration

LC TC LC TC 0.6 effortnorm 1.0 Matching to a more specific sub-class, taking
edge count into consideration

Finally, the combined proximity measure considers all the information included in the previous

measures, as outlined in Table 15 below. When considering how a pair of concepts relate to each

other using the CPpair characteristic, a direct match between concepts is rated as best with a value of

1.0, an indirect match between siblings is assigned a value of 0.8, a concept and its more specific sub-

class a value of 0.6, and its more general super-class a value of 0.4. When considering the type of

relationship the matched concepts LCA and LCB have between each other, the effort to go from one to

the other is considered, and the CPrel is assigned the value of effortnorm(LCA, LCB). The particular

matching scheme (ms) used to create the match is considered by using the associated msrating value for

CPconf.

Table 15. Combined proximity measure

Found
Relation

Correct
Relation CPpair CPrel CPconf Comment

LC TC LC TC 1.0 effortnorm msrating A direct match is best; using Matching
Scheme rating and a normalized effort

LC TC LC ⇑ TC 0.8 effortnorm msrating Siblings are second best; using Matching
Scheme rating and a normalized effort

LC TC LC TC 0.4 effortnorm msrating Matching to a more ambiguous super-class;
using Matching Scheme rating and a
normalized effort

LC TC LC TC 0.6 effortnorm msrating Matching to a more specific sub-class; using
Matching Scheme rating and a normalized
effort

 68

4.4 Evaluation Use Cases
We now evaluate the test results of our test weather ontology (ow) [73] associated with METAR

reports [74]. For details regarding the parameters used in these tests, and the computed values

discussed in the results section below, see Appendix 1. Once the evaluation measures are analyzed, in

section 4.6 we present a real-life use-case that matching the ontologies of two comparable consumer

electronics retailers FutureShop and BestBuy.

Table 16. Use Case Ontologies

Label Description Condition Tested
wo-wo The original weather ontology 1xx: Match ontology onto itself.

wo-t1 wo with 5 key concepts flattened out, meaning 5
non ground term concepts were removed, and
their sub-classes moved up one level. 13 concepts
were moved up in total.

2xx (f): Generalization of direct classification
condition of ground terms.

wo-t2 wo with 3 key concepts extended, meaning their
sub-classes were grouped under an additional
level, affecting 23 direct sub-classes, and creating
6 new concepts.

2xx (f): Specification of direct classification
condition of ground terms.

wo-t3 wo with drastic restructuring, where mid to upper
level concepts with several levels of sub-classes
are moved, or split up and removed completely. In
total, 5 key concepts were moved, 1 concept was
removed as all of its sub-classes were moved,
affecting 36 direct and indirect sub-classes. 1 new
concept was created.

2xx (c): Loss of consistent classification condition
for ground terms, a minor loss of anchors with the
loss of a concept and the introduction of 1 new
concept. Note these concepts were used as
classification criteria for creating the decision trees.

wo-t4 wo with 37 key ground terms moved under 5 new
super-class concepts. The original 5 super-class
concepts were removed.

2xx (c): Loss of consistent classification condition
for ground terms, a major loss of anchors with the
loss of 5 concepts and the introduction of 5 new
concepts. Note these concepts were used as
classification criteria used to create decision trees.

wo-t5 wo with several key ground-terms becoming
super-classes of other ground-terms. In total 4
ground-terms became sub-classes and 2 concepts
were removed. In total 26 concepts were moved.

2xx (c, f): Loss of consistent classification of 29
ground terms, plus loss of anchors with the removal
of 2 concepts.

wo-t6 wo with several ground terms becoming super-
classes of their siblings. In total, 5 ground terms
became super-classes, affecting 29 ground terms.

2xx (f): Major loss of anchors with the re-
classification of ground terms. Some structural
consistency exists due to the expansion between
siblings.

wo-wo
EB

wo ontology, associated with a limited set of data.
Instances were selected based on their originating
weather station. Station prefixed with “E” for
Northern Europe and “B” for Iceland/Greenland
and Kosovo.

1xx: Matching an ontology to itself with lack of
records of certain ground terms. This caused many
ground terms in wo EB not to have sufficient records
to generating all decision trees generated in wo.

 69

Before running the METAR data through the decision tree classifier, we must ensure an equal

distribution between concepts being classified, and prevent over-fitting for a concept with many

records. To achieve this, we create “filler” records for concepts with a low number of records. These

“filler” records are copies of existing records already associated with an under represented concept,

and are chosen at random. This ensures an equal number and distribution of records representing each

concept. Also, we make certain that similar precision rates are used for decision tree leaf nodes by

setting the minimum number of records in a leaf node to be 10% of the total number of records

associated with the concept being classified. We set the CLASS_NODE_MIN_FACTOR parameter to

0.1 and pass it to the classification portion of the algorithm that creates decision trees. This parameter

also controls the maximum number of leaf nodes that will be generated. By setting this parameter to

0.1, we are certain the number of leaf nodes will not exceed 10 or create unnecessarily detailed

decision trees. The set of tests in this section use live records from weather stations around the world,

often recorded minutes apart for a 24 hour period producing more than 6 million records. Due to test

system’s CPU and memory limitations, the number of records per ground term has been limited to

30,000. We also select 22 attributes, in combinations of 2 consecutive attributes per decision tree. For

example if we had 4 attributes da0, da1, da2 and da3, we would have 5 combinations of attribute

pairs, {(da0, da1), (da1, da2), (da2, da3), (da3, da4), (da4, da0)}

The use cases for our tests are variations of the original wo ontology. Each variation is meant to

represent a type of difference that may exist between two heterogeneous ontologies being matched.

The tests are described in Table 16, with the Condition Tested column indicating which OM test is

being adopted, either “Simple Tests (1xx)” or “Systematic Tests (2xx)”. We consider the Benchmark

as the regular precision and recall, based on proximity measure as described in section 4.3 . Due to the

bottom-up nature of the algorithm, heavily based on ground terms, the proximity measures for just the

ground terms were noted as “Ground Terms Only”. Also, in the algorithm proposed by the thesis, the

machine learning algorithm considers siblings as classification criteria for each decision tree in

isolation from the rest of the ontology. This ensure that before considering the data-points and rules

of local and target granules, each local and target concept has an equal chance of being matched. For

example, RainT, DrizzleT, SnowT and IcePelletT all have an equal chance of being matched to RainL, as

well as to any other local concepts such as HighWindL or TornadoL. For this reason we also noted

“Sibling = Direct” precision and recall, where a sibling match is rated equal to a direct match. By

comparing this measure to the “Benchmark” and “Ground Term”, we are able to identify what

significance siblings have on the matching process.

 70

4.5 Evaluation Test Results
We now evaluate the different aspects of the ontology matching algorithm by analyzing the test

results in Table 17, and proximity measure analysis with precision in Table 21 and recall in Table 22

of Appendix 1 on page 86.

Table 17. Use Case Statistics, with main Precision and Recall Measures.

Use Case Concepts Derived
Concepts

Matched
Concepts

Derived
Ground
Terms

Matched
Ground
Terms P PM PG R RM RG

wo-wo 110 66 60 54 49 .91 .91 .91 .55 .79 .92
wo-t1 110 65 46 53 36 .71 .71 .68 .42 .61 .68
wo-t2 110 66 54 53 44 .82 .82 .83 .49 .71 .83
wo-t3 110 66 54 54 48 .82 .82 .89 .49 .71 .91
wo-t4 110 61 33 50 29 .54 .54 .58 .30 .43 .55
wo-t5 110 66 40 55 34 .61 .61 .62 .36 .53 .64
wo-t6 110 66 52 57 44 .79 .79 .77 .47 .68 .83
wo-EB 110 56 14 43 6 .25 .25 .14 .13 .18 .11

Concepts: Total number of concepts in the local ontology P: Total Precision
Derived Concepts: Number of concepts classified using decision trees, and used for
matching

PM: Matched Precision

Matched Concepts: Number of successfully identified matches PG: Ground Term Precision
Derived Ground Terms: Number of ground terms classified using decision trees and
used to for matching

R: Total Recall

Matched Ground Terms: Number of ground terms that were successfully matched RM: Matched Recall
 RG: Ground Term Recall

Out of the 110 concepts (Concepts) in the weather ontology wo, only between 56 to 66 (Derived

Concepts) were classified by both local and target ontologies using decision trees. The intersection of

derived concepts is the set of possible matches. This is a limitation of the data, because this algorithm

can only match the concepts represented by records in the database. Because there is a great emphasis

on ground terms, we also show the number of ground terms that were classified (Derived Ground

Terms), and the matched (Matched Ground Terms). We then show the precision and recall of each.

We consider precision and recall only for the concepts that have derived decision trees. These

measures would increase if the data were available to classify all concepts.

 71

Figure 24. Test results of precision vs. use cases, for each proximity measure.

Figure 24 above, illustrates the precision of each use case, for each proximity measure, which is the

rate of true positives found. It should be noted that none of the tests achieved 100% precision. It may

be expected that at least, the wo-wo test would return 100% precision, or recall in Figure 25 below.

The reason for this is the level of generality which was introduced to the granule rules and data-points

discussed in sections 3.7 and 3.8. This generality blurred the discrete lines between concepts, for the

sake of successful matches between two heterogeneous ontologies.

The best precision for proximity measures was achieved by the “Effort”, “Effort with Edges” and

“Symmetric” measures. This indicates that the structural relationships that these measures are based

on played a highly significant role in finding correct matches. This is especially noticeable when

compared to the “Standard” measure, which only considered direct matches, and has a lower precision

than the other three. They were also affected negatively by the loss of anchors and ground terms in the

wo-EB use case, especially in the “Ground Term” rating. Each of the three measures also produced

close results, with parallel variation for each use case. Due to the similarity of precision for each

indirect match measure, mainly “Effort”, “Effort with Edges” and “Symmetric”, no significant benefit

was achieved by considering whether a generalized super-class or specialized sub-class was found,

nor the effort distance between them. This was due to the small number of indirect matches found

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
w

o-
w

o
w

o-
t1

w

o-
t2

w

o-
t3

w

o-
t4

w

o-
t5

w

o-
t6

w

o-
w

o
EB

w
o-

w
o

w
o-

t1

w
o-

t2

w
o-

t3

w
o-

t4

w
o-

t5

w
o-

t6

w
o-

w
o

EB

w
o-

w
o

w
o-

t1

w
o-

t2

w
o-

t3

w
o-

t4

w
o-

t5

w
o-

t6

w
o-

w
o

EB

Benchmark Precision Ground Terms Only Precision (Sibling = Direct) Precision

Standard Match Scheme Symmetric Effort Effort w Edges Combined
Precision	
 Test	
 Results	
 (Table 21)	

 72

with high effort scores. Still, there was enough indirect matches for these three measures to be higher

than the ”Standard” measure. Of the three, there was no major difference between the “Benchmark”,

and “Ground Term" rating, while the “Sibling = Direct” was slightly better on the wo-t4, wo-t5, and

wo-t6 use cases. The “Effort with Edges” measure also suffered the largest drop for the wo-EB use

case, especially for the “Ground Term” rating. Again, this is because the “Ground Term” rating is

directly affected by the number of ground terms and their matches, that were lost in wo-EB.

The next best precision was achieved by the “Standard” measure. This measure considered only direct

matches, without taking into consideration any other proximity measures. When compared to the

indirect measures described above, mainly “Effort”, “Effort with Edges”, and “Symmetric”, we can

see the improvement the addition of indirect matches had. While starting off high at above 0.91 for a

match with the ontology itself (ow-ow), we see the measure drop for the “Benchmark” rating. It

should be noted that the wo-t1 use case had the least number of changes, and resembled the original

ontology most. The “Ground Term” rating has a steady precision until use case wo-t4, when it drops

to around 0.81 through to use case wo-t6. As can be observed, the three indirect measures held up

much better to the differences in the ontologies, than direct measure ”Standard.” The wo-t3 and wo-t6

use cases, which saw a change in ground terms being shifted within the ontology, have an advantage

for the “Sibling = Direct” tests. This indicates a tolerance for specialized ground terms created by the

expansions in wo-t3 and wo-t6. Finally, we see that the “Standard” measure experienced the biggest

drop for wo-EB use case. The loss of data records to build decision trees greatly impacted this

measure. The impact was not as great when considering siblings as direct matches, as per the

precision of “Sibling = Direct” tests. While many anchors were lost in the wo-EB ontology, the ones

that remained were structurally similar to the wo ontology, and remained at a high precision for the

available concepts.

The next best measure is “Match Scheme”, which considers the matching scheme ratings only. This

measure is not affected by the types of matches, and considers all direct and indirect matches equally.

It does highlight which matching schemes are being utilized. For example, the steady rating with an

average of 0.8 indicates a high number of “Gap Match” matches, which have a rating of 1.0. This

match scheme is offset by lower rated schemes, lowering it to 0.8. By evaluating the matches

themselves, we found around 1.5 direct “Gap Parent” matches for every 1 “Close Match”, with a

rating of 0.5. By averaging the combinations of these two, the score was calculated as 0.8. The final

measure is the “Combined” proximity measure, which considers all characteristics of MCP. Its low

precision can be attributed to being the product of all other proximity characteristics. When compared

 73

to the other measures, it does parallel the other measures as a whole. As a result, we conclude that it

can in fact be used as a suitable measure that encompasses the other characteristics. It would off

course need to be compared to other “Combined” measures, and not the other specialized measures as

presented here.

Finally, we mentioned again the observed drop in the wo-EB use case for all measures, which was

built with records of only a few ground terms. Based on the test results, it seems that the “Sibling =

Direct” result was least sensitive to this lack of data, still managing to keep a precision above 0.4 for

all measures, due to the differences being more specialized ground terms. By looking at the recall rate

next, we see how this is proportional to the low recall for this use case.

Figure 25. Test results of recall vs. use cases, for each proximity measure.

In Figure 25, the recall rate identifies the percentage of returned matches. The low recall rate, mostly

below 0.4 indicates the user is given several choices to choose from, but these choices have the

correct match most of the time, as indicated by the high precision scores above. This low score is

most likely due to the low number of ground terms making up the entire match space. This hypothesis

is supported by two observations. Firstly, the “Ground Terms” tests had a noticeably better overall

recall rate, if by a small margin. The reason for this is that of the recalled matches, the majority of

them were ground terms, as indicated by the “Matched Ground Terms” column in Table 17. This is

because of the consistency in the data, and the direct association of data with ground terms. This again

0	

0.1	

0.2	

0.3	

0.4	

0.5	

w
o-­‐
w
o	

w
o-­‐
t1
	

w
o-­‐
t2
	

w
o-­‐
t3
	

w
o-­‐
t4
	

w
o-­‐
t5
	

w
o-­‐
t6
	

w
o-­‐
w
oE
B	

w
o-­‐
w
o	

w
o-­‐
t1
	

w
o-­‐
t2
	

w
o-­‐
t3
	

w
o-­‐
t4
	

w
o-­‐
t5
	

w
o-­‐
t6
	

w
o-­‐
w
oE
B	

w
o-­‐
w
o	

w
o-­‐
t1
	

w
o-­‐
t2
	

w
o-­‐
t3
	

w
o-­‐
t4
	

w
o-­‐
t5
	

w
o-­‐
t6
	

w
o-­‐
w
oE
B	

Benchmark	
 Recall	
 Ground	
 Terms	
 Only	
 Recall	
 (Sibling	
 =	
 Direct)	
 Recall	

Standard	
 Match	
 Scheme	
 Symmetric	
 Effort	
 Effort	
 w	
 Edges	
 Combined	

Recall	
 Test	
 Results	
 (Table 22)	

 74

supports the bottom up anchor creation approach favored by this matching algorithm. Having

different ontologies, the positive affect that consistency in the data has on concept matching is

apparent in this result. Secondly, consider the drastic drop of recall rate for the wo-EB use case for all

three tests, “Benchmark,” “Ground Term,” and “Sibling = Direct”. wo-EB had significantly less

ground terms associated with data records. This negatively affected all three tests, especially “Ground

Terms”, having the lowest.

Similarly to the precision results, the “Effort”, “Effort with Edges”, and “Symmetric” measures had

the highest recall rate, reiterating the conclusion that these measures had a significantly positive affect

on the retrieval of correct matches. The “Match Scheme” measure again has the next best results,

followed closely by “Combination” measure. Similarly to the precision rate patterns, each measure

was in parallel with the other, showing a consistency in the proximity measures used. This

observation indicates correct proximity measures were chosen, which are affected similarly by the

matching results.

4.6 Real-Life Use Case And Test Results
In this section we present a real-life use case where we match the ontologies of two consumer

electronics retailers FutureShop44 and BestBuy45. The results are presented in a similar format to the

weather ontology in section 4.5, with the exception that results and evolution measure are presented

for one test, matching FutureShop concepts to BestBuy concepts. In contrast, section 4.5 presented

results for six tests, comparing the weather ontology to 7 variations of the original ontology. The

purpose of the previous tests was to introduce the evaluation measures, and demonstrate their

performance when matching ontologies with various types of differences between them. The purpose

of this section is to apply the ontology matching algorithm and evaluate the algorithm on a real-life

use-case.

The two ontologies and associated data records are both taxonomies extracted from their respective

websites. Only the Computer categories were used for the test, as it contained the most number of

products. The taxonomy was built from each retailer’s hierarchical catalog menu structure, with the

ground terms being the last menu item. These menu items were associated with a list of products.

Those products were then extracted from the site along with their associated attributes accessible on

44 http://www.futureshop.ca/en-ca/home.aspx
45 http://www.bestbuy.ca/Search/SearchResults.aspx?

 75

the product detail page. Because the two retailers are owned by the same company, they share the

same named attributes, although the taxonomies and the majority of products are different. Evry

combination of the 95 selected attributes was used to generate decision trees, although any trees with

a depth of 0, a single root node, were excluded from the matching process.

The FutureShop taxonomy, and specifically the Computer subset has a shallow depth of 3 levels and

contains 89 concepts, 73 of which are ground-terms. In contrast the Computer subset of the BestBuy

taxonomy has a depth of 4 levels, with 232 concepts 185 of which are ground-terms.

Table 18. FutureShop vs. BestBuy Precision and Recall Measures summary.

Use Case Concepts Derived
Concepts

Matched
Concepts

Derived
Ground
Terms

Matched
Ground
Terms P PM PG R RM RG

fs-bb 89 37 24 30 16 .64 .64 .53 .41 .41 .34

In Table 18, we present the summary of the test results. Here we see that out of the 89 FutureShop

concepts, 37 had enough data records to be associated with decision trees. 30 of the FutureShop

concepts associated with decision trees were ground-terms. In total, 24 FutureShop concepts were

successfully matched with their BestBuy counterpart, 16 of which were ground-terms. The matching

algorithm performed relatively well, reaching 64% precision with a 41% recall rate.

Figure 26. Test results of precision for FutureShop vs. BestBuy, for each rating (x-axis) and
proximity measure (legend on right).

Recall	
 Test	
 Results	
 (Table 23)	

 76

Figure 26 above illustrates the precision achieved by each proximity measure when matching the

FutureShop concepts to the BestBuy taxonomy. The FutureShop taxonomy is relatively shallow being

only 3 levels deep, which affects the measures in the following way. The “Effort” and “Effort with

Edges” measures both achieved equal precision scores of 0.83 for the “Benchmark” rating, followed

closely by “Symmetric” with 0.78. We can also see a score of 1.0 for the “Sibling = Direct” rating for

“Effort”, “Effort with Edges” and “Symmetric” measures. Because of the low depth, all of the indirect

matches were made to siblings of the correct match. Also, because the matched siblings are at the

same level as the correct match, the “Effort” and “Effort with “Edges” gave the same score. The

number of edges between sibling classes is zero, making the “Effort” and “Effort with Edges”

indistinguishable for the “Sibling = Direct” rating.

Similarly to the Weather Ontology test results in section 4.5, the “Effort”, “Effort with Edges” and

“Symmetric” measures have the highest scores, reiterating again the positive affect incorporating

structural relationships has on the matching process. The second highest measure is the “Matching

Scheme” measure with a score between 0.53 and 0.55 for the “Benchmark”, “Ground-Terms” and

“Sibling = Direct” ratings. The majority of the matches were created using the “Close Match”

matching scheme with a msrating = 0.5, which averaged out to between 0.53 and 0.55. This scheme

considers high MRank values between concepts before making a match, as per Definition 15 on page

56. Due to the low number of data records extracted for some concepts (between 10 and 100), the

minimum MRank threshold was set low to 0.2. This essentially loosened the criteria for considering a

match correct by the “Close Match“ scheme. In contrast, the Weather Ontology tests used live records

from weather stations often resulting in up to 30,000 records per ground-term. As a result the weather

tests had a much higher “Close Match” threshold of 0.9.

The “Combined” proximity measure averaged between 0.44 and 0.55 for each rating. As mentioned in

the previous section, this measure is essentially a combined product of the “Match Scheme” and

“Effort with Edges” measures, and is meant to measure the algorithms performance using a single

value, incorporating the other proximity measures into one. As expected this measure is lower then

the other ones because it is a product of decimal numbers in the [0, 1] range, as per Equation 10 on

page 62, considering several values listed in Table 15 on page 67. What is important is whether they

are parallel to the other measures. As in the weather tests, this measure is parallel to the other scores,

meaning it successfully reflects the other measures.

 77

Finally the “Standard” proximity measure is the lowest at 0.14 and 0.09 for the “Benchmark” and

“Ground-Term” ratings. This measure only considers direct matches as correct, and all non-direct

matches as incorrect. This result indicates that in general there was a low number of direct matches.

Also, due to the slightly higher score for the “Benchmark” rating, more non-ground-term concepts

were matched using this measure then ground-terms, essentially indicating that more non-ground-term

FutureShop concepts were matched to their direct BestBuy counterpart then ground-terms. Also, the

“Standard“ measure for the “Sibling = Direct” rating is equal to 1.0, echoing the “Effort”, “Effort with

Edges” and “Symmetric” proximity measures. This again indicates that despite the low number of

direct matches, the algorithm found the correct concept’s sibling instead.

Figure 27. Test results of recall for FutureShop vs. BestBuy, for each rating (x-axis) and
proximity measure (legend on right).

In Figure 27, the recall rate represents the number of returned results as a percentage of all possible

correct matches. For the “Benchmark” rating, the highest score is achieved by “Effort” and “Effort

with Edges” with 0.49, followed closely by the “Symmetric” measure with 0.46. Similarly to the

precision results above, the highest scores were achieved by these three. The “Matching Scheme”

proximity measures again achieved the second highest score with 0.33. The “Standard” measure was

the lowest again indicating that few direct matches were found. The combination of a high precision

core with a low recall score indicates that although the direct match was not the top match, it did exist

in the suggested match results. This pattern was repeated for the “Ground-Term” and “Sibling =

Direct” ratings, with the exception for the “Standard” measure. As with the precision values, the

Recall	
 Test	
 Results	
 (Table 24)	

 78

“Standard” measure equals that of “Effort”, “Effort with Edges” and “Symmetric”. This again

indicates that majority of indirect matches were made with a sibling of the correct match.

4.7 Ontology Considerations
As can be deduced from the test results, the ontologies being matched by this algorithm must be

consistent in some regards, and can differ in others. This section describes some considerations and

restrictions put on potentially matching ontologies. For example, consistency in the data is an

important factor, especially when there are differences in the structure of the ontology.

Ontology design is very closely tied to a user’s interpretation of their domain [8]. For this reason,

equivalent concepts can be structured differently in similar domains. While the literature [8] describes

different considerations, we concentrate on the aspects directly affecting the usability of this

algorithm.

Recall the local ontology OL and target ontology OT, illustrated again in Figure 28 (a) and (b).

 (a) (b)

 (c) (d)

Figure 28. OL (a) and OT (c) ontologies, with corresponding top level data clusters, (b) and (d) .

 79

Recall also from section 3.5, that the similarities between the OL and OT ontology, mainly that the

sub-classes of A (AL and AT) and C (CL and CT) are similarly classified, and that BL is similar to the

combination of NT and PT. The decision tree algorithm works by taking a particular set of records, the

entire sample initially, and determines which property has the highest information gain to classify

each class. When choosing an attribute automatically based on its contribution to classification,

various rankings can be used. The data-mining tool WEKA [25], provides several algorithms, such as

information gain, entropy, and principal component. The J4846 decision tree algorithm uses the

information gain47 measure to calculate property relevance. The tree is then split on that property,

generating two branches (≤ and >) for numeric attributes, and multiple branches for nominal

attributes. The key factor to observe here is that the decision tree is directly impacted by the set of

classes being classified, and the records themselves, neither of which can be guaranteed to be exactly

the same in individual systems. These two factors impact what property is chosen for each sample of

records, at different stages of the decision tree creation. This in turn has an impact on several aspects

of the ontology matching process.

Firstly, the local and target databases, DBL and DBT respectively, must illustrate some level of

consistency, in other words, they must be representing similar observations. Secondly, the ontologies,

and sub-class relations, must also show some level of consistency. Specifically, the direct sub-classes

of a concept must be similar, in order to build similar clusters on a 2-dimensional plane. To prevent

over-fitting by any individual sub-class, the distribution of records for each sub-class must be similar

[25]. Take for example the Linear Ontology OLinear, illustrated in Figure 29 (a) and (b).

 (a) (b)

Figure 29. Linear Ontology Example (OLinear) (a) and a 2-dimensional clusters (b).

46 The WEKA 3.6.0 module weka.classifiers.trees.J48 used to implement the C4.5 classification algorithm.
47 Definition taken from the WEKA 3.6.0 module weka.attributeSelection.InfoGainAttributeEval

 80

When viewing the cluster representation in Figure 29 (b), we can see the individual ground terms are

clustered in a similar manner to OL and OT. Despite this, the decision tree generated for it will look

differently, because there are more sub-classes to classify at once, {R, S, T, U, V, W, X, Y, Z} as

appose to grouping them under their super-classes A, B, or C in OL, and A, C, N, M, or P in OT. The

resulting rules for each class, and associated granules may in fact be overlapping, but because more

classes are involved, some boundaries will be larger or smaller. As a result, the individual branches,

representing a decision tree leaf node will contain different rules. These new rules may or may not

overlap with another ontology’s rules. Figure 30 below illustrates the rules a decision tree may build

to represent LCC, TCC, and owl:Thing. Some of the shaded rules do overlap, but others do not.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Figure 30. LCA, TCA , and owl:Thing granule matches: (a) (d) (g), (b) (e) (h), and (c)
(f) (i).

 81

Another example of an ontology that differs in structure is one that classifies sub-classes differently.

Figure 31 below illustrates such an ontology, ODiff. Notice that ODiff looks similar to OL, but the ground

terms are actually classified under different super-classes. In Figure 31 (b), we see how at level 1,

neither DDiff, EDiff nor FDiff look similar to LCA, LCB, or LCC in Figure 28 (b).

 (a) (b)

Figure 31. Differently Structured Ontology Example (ODiff) (a) and a 2-dimensional cluster (b).

To see similarities, we must look at the ground terms, as illustrated in Figure 32 below. When using

the same attributes daa and dab, the clusters look very different for each super-class {DDiff, EDiff , FDiff

} and {LCA, LCB, LCC}. With clear boundaries and different overlapping areas between clusters,

different rules will be generated in the decision trees for each of these parent nodes. For this reason,

instead of using all attributes at once, multiple 2-dimensional trees are built, using a combination of

every property available in the database. There is a better chance of identifying overlapping areas

between different combinations of attributes, for different datasets.

 82

 (a) (b) (c)

 (d) (e) (f)

Figure 32. 2-dimensional, Level 2 sub-class clusters for OL and ODiff.

Finally, the decision tree algorithm incorporates a level of randomness to its decision making. This

allows it to process missing values for attributes in the records it uses for classification [25], but at the

same time, skewing classification results. As mentioned in section 2.2, the bagging technique, which

stands for bootstrap aggregation, is used to produce multiple decision trees for each set of data. The

bagging with cost technique is then used to combine all trees produced by bagging, and create a

stabilized tree, which encompasses all information of the original trees. These extra steps reduce the

randomness affect of noisy attributes with missing values. Section 2.2 on page 9 discusses machine

learning and the motivation for choosing these techniques, in greater detail.

 83

Chapter 5. Conclusion

5.1 Contribution
This thesis proposes a novel approach to ontology matching, mainly one which is solely based on

concrete data that represents ontological concepts. We demonstrate how the algorithm applies

machine learning techniques to represent semantics between concepts, and inductively build decision

trees using those semantics. The decision trees are then represented in OWL 2 syntax as rules. The

Description Logic reasoner HermiT is utilized to perform the matching process. We then applied a

novel match ranking algorithm to select the best matches, and extend existing ontology matching

measures to evaluate the results.

We present the algorithm and demonstrate several measures that can be used to evaluate it, with a set

of use cases made up of specifically altered weather target ontologies, and match real-life ontologies

from the BestBuy and FutureShop retailers. These use cases demonstrate the benefits and draw backs

of this algorithm. The algorithm avoids differences in labels, which can vary significantly between

ontologies, and places a lower priority on structural differences. We achieve this by concentrating on

the data representing the concepts being matched. By utilizing machine learning, we inductively build

decision trees that identify the conditions that differentiate a set of concepts from their ontological

siblings. Note that siblings rely on a highly localized structural similarity, as oppose to having to

consider the entire ontology as a whole. Using these conditions, we build a set of granules, with

associated rules and data-points. These are then represented in OWL 2 syntax, to make them available

to a wider audience. By using the algorithm presented here, the local system as well as a target system

can now match their ontologies by sharing these granules, and identify overlapping rules and data-

points between their local and target ontologies

Another key benefit of the algorithm is that it takes advantage of the consistency in data to introduce

consistency between two separate ontologies, which may differ greatly. However one main drawback

of this association with data is that the only concepts that can be matched are ones that are represented

by the data. For example, if the dataset being used does not have records that represent a particular

concept in the ontology, rules for that concept will not be generated, and it will not be matched.

However, the assumption is that the most important concepts to match are ones which do exists in the

dataset, and are used by the local system. This however is implementation dependent, and will reduce

the applicability of this algorithm for implementations affected by this drawback.

 84

The evaluation and proximity measures that are proposed and tested by this thesis establish a method

for analyzing the matching preformed by our algorithm. By considering various aspects of the

algorithm, and identifying a set of generalized proximity measures to analyze each aspect, we show

the types of differences which impact the successful matching of concepts.

5.2 Future Work
The approach to ontology matching in this thesis is a novel approach to incorporating data and

machine learning algorithms, and has many exciting directions and possibilities for enhancements.

The matching algorithms in the OM Workshop [72] competition all use a combination of lexical and

structural techniques, and run through several iterations refining their matches by incorporating

various new techniques. This algorithm only deals with creating the initial anchors. Implementing

more complex refinement iterations would improve the overall match rate, by incorporating existing

matching techniques. Also, extending the expressivity of ontologies to include new relationships

beyond super/sub-class would be an ideal extension to this algorithm. Finding correspondences using

more complex semantics would increase the algorithm’s applicability against real-life use cases. More

sophisticated logical evaluation and verification algorithms would improve the precision and recall of

the algorithm. For example, a check for contradictory super/sub-classes would ensure structural

characteristics of concepts are preserved, and the generality of super-classes does not overwhelm the

specialization of sub-classes.

The METAR format used in the weather use case demonstrated that a single database record, with

multiple attributes, could represent multiple ontology concepts. Composite attributes, which form a

new property when used together, require a more abstract approach. By incorporating not just concept

hierarchical analysis, but also property hierarchies, more complex database designs could be used to

associate ontological concepts with data records. In the solution presented here we resulted to

normalizing the database. However for larger databases, with multiple tables and a greater number of

attributes this could cause a scaling problem, due to the duplication of values during normalization.

An enhanced hierarchical property association would allow the algorithm to scale up to more complex

database designs.

While the presented extensions of the matching algorithm are novel, the generated OWL 2 axioms

themselves can be applied to other research area. For example, executing queries over the semantic

web [5] requires not just knowledge of the external system’s schema, but also its ontology. By

 85

creating a semantically enhanced query, generated from the semantically enhanced decision trees, it

may be possible to apply the rules-portion of the generated granules to query a target system using the

distributed target rules. The query itself can be reconfigured to abide by the target database system’s

schema, through query rewriting.

 86

Appendix 1. Test Parameters and Evaluation Data

Parameters
For the use cases in Chapter 4, we use the following parameter values needed by the algorithm. A detailed
description of the parameters is found in the glossary under “Acronyms and Variable Name
Conventions”. Any parameters used in pairs are described together.

Table 19. Parameters used by the matching algorithm.

 Value
Field wo-* fs-bb Purpose Comment
CLASS_NODE_MIN_FACTOR 0.1 0.1 A minimum number of records in

a decision tree leaf node ensures
equal precision of each leaf node.

0.1 was chosen to have at most 10
leaf nodes. For more complex
decision tree, this parameter can be
reduced.

RULE_CLUSTER_BUFFER 0.1 0.1 To generalize the rules built by
the decision tree algorithm, this
buffer is used to expand granule
rules and decrease data-points.

For domains which require much
stricter guidelines and less
flexibility, a lower value is
beneficial.

GAP_CHECK_MIN 0.7 0.9 Minimum MRank of a match
before it is check for a “Gap
Match” GM.

Low values ensure only close gaps
were considered between high
ranking matches [MRank ≥ 0.5 (0.7
- 0.2)]. For example match(0.6,
Cloud) and match(0.4, Heat-Index)
would not be considered for the GM
check, as the higher of the two
match(0.6, Cloud) had too low of a
ranking (0.6) to be considered.

GAP_MIN 0.2 0.7 The gap used to identify a “Gap
Match” GM.

TOP_RANK_MIN 0.9 0.2 Used to identify a “Close Match”
CM.

A higher value indicates a stricter
criteria for a match.

TOP_P2P_RANK_MIN 0.6 0.6 The MRank minimum threshold to
identify a parent-to-parent match
after a successful GM was found
between their sub-classes.

A more flexible criteria would
require a smaller value.

 87

The following tables contain the results of the matching algorithm tests discussed in Chapter 4.

Table 20 contains the Weather Ontology test Concept counts and main Precision and Recall for each
category, as described below here, and elaborated on in Chapter 4. Table 23 and Table 24 on page 90
contain the Precision and Recall for the FutureShop vs. BestBuy test.

Concepts: Total number of concepts in the local ontology

Derived Concepts: Number of concepts classified using decision trees, and used for matching

Matched Concepts: Number of successfully identified matches

Derived Ground Terms: Number of ground terms classified using decision trees and used to for

matching

Matched Ground Terms: Number of ground terms that were successfully matched

P: Total Precision

PM: Matched Precision

PG: Ground Term Precision

R: Total Recall

RM: Matched Recall

RG: Ground Term Recall

Table 20. Use Case Statistics, with main Precision and Recall Measures.

Use Case Concepts Derived
Concepts

Matched
Concepts

Derived
Ground
Terms

Matched
Ground
Terms P PM PG R RM RG

wo-wo 110 66 60 54 49 .91 .91 .91 .55 .79 .92
wo-t1 110 65 46 53 36 .71 .71 .68 .42 .61 .68
wo-t2 110 66 54 53 44 .82 .82 .83 .49 .71 .83
wo-t3 110 66 54 54 48 .82 .82 .89 .49 .71 .91
wo-t4 110 61 33 50 29 .54 .54 .58 .30 .43 .55
wo-t5 110 66 40 55 34 .61 .61 .62 .36 .53 .64
wo-t6 110 66 52 57 44 .79 .79 .77 .47 .68 .83
wo-EB 110 56 14 43 6 .25 .25 .14 .13 .18 .11

 88

The following two tables contain detailed results for each proximity measure in the Weather Ontology
tests discussed in Chapter 4.

Table 21. Precision Evaluation Measures.

Benchmark Use Case Standard Match
Scheme

Symmetric Effort Effort w
Edges

Combined Use Case
Average

wo-wo 0.83 0.73 0.87 0.87 0.86 0.7 0.81
wo-t1 0.61 0.57 0.66 0.66 0.65 0.52 0.61
wo-t2 0.72 0.67 0.78 0.78 0.77 0.63 0.73
wo-t3 0.7 0.67 0.76 0.77 0.76 0.63 0.72
wo-t4 0.42 0.42 0.49 0.49 0.48 0.38 0.45
wo-t5 0.5 0.49 0.57 0.56 0.56 0.46 0.52
wo-t6 0.62 0.63 0.71 0.7 0.69 0.55 0.65
wo-wo EB 0.05 0.19 0.17 0.18 0.17 0.13 0.15

Benchmark Averages 0.56 0.55 0.63 0.63 0.62 0.50 0.58

Ground
Terms Only

Use Case Standard Match
Scheme

Symmetric Effort Effort w
Edges

Combined Use Case
Average

 wo-wo 0.83 0.74 0.87 0.87 0.86 0.7 0.81
 wo-t1 0.6 0.55 0.64 0.64 0.63 0.52 0.60
 wo-t2 0.76 0.67 0.8 0.8 0.79 0.65 0.75
 wo-t3 0.81 0.74 0.85 0.85 0.84 0.7 0.80
 wo-t4 0.47 0.46 0.53 0.53 0.52 0.41 0.49
 wo-t5 0.51 0.5 0.58 0.57 0.56 0.46 0.53
 wo-t6 0.63 0.61 0.71 0.7 0.68 0.54 0.65
 wo-wo EB 0.02 0.1 0.09 0.08 0.07 0.05 0.07
Ground Term Averages 0.58 0.55 0.63 0.63 0.62 0.50 0.59

(Sibling =
Direct)

Use Case Standard Match
Scheme

Symmetric Effort Effort w
Edges

Combined Use Case
Average

 wo-wo 0.84 0.73 0.88 0.87 0.86 0.7 0.81
 wo-t1 0.62 0.57 0.66 0.66 0.65 0.53 0.62
 wo-t2 0.76 0.67 0.79 0.78 0.77 0.63 0.73
 wo-t3 0.73 0.67 0.77 0.77 0.76 0.63 0.72
 wo-t4 0.46 0.42 0.5 0.49 0.48 0.38 0.46
 wo-t5 0.55 0.49 0.58 0.57 0.56 0.46 0.54
 wo-t6 0.65 0.63 0.72 0.71 0.7 0.56 0.66
 wo-wo EB 0.15 0.19 0.2 0.2 0.19 0.14 0.18
(Sibling=Direct) Averages 0.60 0.55 0.64 0.63 0.62 0.50 0.59

Precision Average 0.58 0.55 0.63 0.63 0.62 0.50 0.58

 89

Table 22. Recall Evaluation Measures.

Benchmark Use Case Standard Match
Scheme

Symmetric Effort Effort w
Edges

Combined Use Case
Average

 wo-wo 0.72 0.64 0.76 0.75 0.75 0.6 0.70
 wo-t1 0.52 0.49 0.57 0.56 0.55 0.45 0.52
 wo-t2 0.63 0.58 0.68 0.67 0.67 0.54 0.63
 wo-t3 0.61 0.58 0.66 0.67 0.66 0.54 0.62
 wo-t4 0.34 0.34 0.39 0.39 0.38 0.3 0.36
 wo-t5 0.44 0.43 0.49 0.49 0.48 0.4 0.46
 wo-t6 0.54 0.54 0.62 0.61 0.6 0.48 0.57
 wo-wo EB 0.04 0.14 0.13 0.13 0.12 0.09 0.11
Benchmark Averages 0.48 0.47 0.54 0.53 0.53 0.43 0.50

Ground
Terms Only

Use Case Standard Match
Scheme

Symmetric Effort Effort w
Edges

Combined Use Case
Average

 wo-wo 0.84 0.75 0.89 0.88 0.87 0.72 0.83
 wo-t1 0.6 0.55 0.64 0.64 0.63 0.52 0.60
 wo-t2 0.76 0.67 0.8 0.8 0.79 0.65 0.75
 wo-t3 0.82 0.75 0.87 0.86 0.86 0.71 0.81
 wo-t4 0.44 0.43 0.5 0.5 0.49 0.39 0.46
 wo-t5 0.53 0.52 0.6 0.59 0.59 0.48 0.55
 wo-t6 0.67 0.65 0.76 0.75 0.73 0.58 0.69
 wo-wo EB 0.02 0.08 0.07 0.06 0.05 0.04 0.05
Ground Terms Averages 0.59 0.55 0.64 0.64 0.63 0.51 0.59

(Sibling =
Direct)

Use Case Standard Match
Scheme

Symmetric Effort Effort w
Edges

Combined Use Case
Average

 wo-wo 0.73 0.64 0.76 0.76 0.75 0.61 0.71
 wo-t1 0.53 0.49 0.57 0.56 0.56 0.45 0.53
 wo-t2 0.66 0.58 0.68 0.68 0.67 0.55 0.64
 wo-t3 0.63 0.58 0.67 0.67 0.66 0.55 0.63
 wo-t4 0.37 0.34 0.4 0.4 0.39 0.31 0.37
 wo-t5 0.48 0.43 0.5 0.5 0.49 0.4 0.47
 wo-t6 0.57 0.54 0.63 0.62 0.6 0.48 0.57
 wo-wo EB 0.11 0.14 0.15 0.15 0.14 0.11 0.13
(Sibling=Direct) Averages 0.51 0.47 0.55 0.54 0.53 0.43 0.51

Recall Averages 0.53 0.50 0.57 0.57 0.56 0.46 0.53

 90

The following two tables contain detailed results for each proximity measure in the Real-Life tests
discussed in Chapter 4.

Table 23. FutureShop vs. BestBuy Precision.

 Use Case Standard Match
Scheme

Symmetric Effort Effort w
Edges

Combined Use Case
Average

Benchmark Averages 0.14 0.55 0.78 0.83 0.83 0.45 0.60
Ground Term Averages 0.09 0.53 0.77 0.82 0.82 0.44 0.58
(Sibling=Direct) Averages 1.00 0.55 1.00 1.00 1.00 0.55 0.85
Precision Average 0.41 0.54 0.85 0.88 0.88 0.48 0.68

Table 24. FutureShop vs. BestBuy Recall Measures.

 Use Case Standard Match
Scheme

Symmetric Effort Effort w
Edges

Combined Use Case
Average

Benchmark Averages 0.09 0.33 0.50 0.52 0.52 0.29 0.38
Ground Term Averages 0.05 0.28 0.41 0.44 0.44 0.23 0.31
(Sibling=Direct) Averages 0.63 0.35 0.63 0.63 0.63 0.35 0.54
Precision Average 0.26 0.32 0.51 0.53 0.53 0.29 0.41

 91

Appendix 2. OWL 2 Representation

OWL 2 Semantics
The following tables list the OWL 2 expressions utilized by the algorithm presented in this thesis. For
ease of readability, the list of notations is presented in Functional Syntax. In each table, the Definition
gives the official OWL 2 definition and the Usage column explains how the algorithm uses the
expression. For a complete list of OWL 2 syntax and semantics visit the official W3C website contributed
to by Horrocks et. al. [78].

Table 25. Class Expressions

Axiom Definition Usage

SubClassOf (Cx Cn)
Cx is a sub-class of Cn Used to represent sub-class, as well as make

union of granules a sub-class of a concept.

EquivalentClasses
 (C1 ... Cn)

All concepts C1 to Cn are equivalent Used to make two granules equivalent before
checking whether their rule and data-points are
consistent.

Table 26. Interpreting Class Expressions

Class Expression Definition Usage

ObjectIntersectionOf
 (C1 ... C1n)

A intersection of concepts C1 to Cn.
The resulting expression is satisfied
by all concepts included.

Used to create a Concept out of an intersection of
data-points, via DataAllValuesFrom() and a
single data-points via DataHasValue().

ObjectUnionOf
 (C1 ... Cn)

A union of concepts C1 to Cn. The
resulting expression is satisfied by
at least one of the concepts
included.

Used to group granules together, to be used as a
sub-class of a concept.

DataAllValuesFrom
 (pa DRn)

Assign a data range of literals in
DRn to the property pa.

Creates a Concept expressions out of an range of
data literals for a particular property pa. A range
is an interpretation of a decision tree rule, such as
pa ≥ ln, for some literal ln

DataHasValue (pa ln)
pa = ln
Assign a single literal value ln to
property pa:

Used to set a granule’s data-points value ln for
the property pa.

Table 27. Data Property Expressions

Axiom Definition Usage
EquivalentDataProperty
 (da1 ... dan)

All data properties da1 to da are
equivalent

Used to make a local and target data property
equivalent.

 92

Table 28. Interpreting Data Ranges

Data Range Definition Usage

DataOneOf (l1 ... ln) A set of literal values l1 to ln, such as
{“N”, “W”, “S”, “E”}

Used to set a “range” of nominal values, when
defining a rule with a nominal property.

DatatypeRestriction
(typea f1 lt1 ... fn ltn)

A set of data ranges of the same
type typen, defined by using facets f
and literals l . Facets are conditions
such as ≥ or ≤.

Used to set a “range” of numeric values, when
defining a rule with a numeric property.

 93

OWL 2 Examples
Examples of OWL 2 syntax usage in the algorithm. For ease of readability the examples are presented in
OWL XML syntax.

The rules built have the following form.

Example 1. A concept as a disjunction of granules (Definition 3).

Definition ACz (Agi ∨ Agj ∨ Agk)

OWL XML
Syntax

<EquivalentClasses>
 <Class IRI="ACz"/>
 <ObjectUnionOf>
 <Class IRI="Agi"/>
 <Class IRI="Agj"/>
 <Class IRI="Agk"/>
 </ObjectUnionOf>
</EquivalentClasses>

Example 2. Granule rule as disjunction of conditions (Definition 4) with numeric pa and nominal pb
attributes.

Definition Agi.rule [(Apa ≤ l0) ∧ (Apa ≥ l1) ∧ (Apb ∈ { l3, l4 ,l5,l6})]

OWL XML
Syntax

<SubClassOf>
 <Class IRI="Agi"/>
 <ObjectIntersectionOf>
 <DataAllValuesFrom>
 <DataProperty IRI="Apa"/>
 <DatatypeRestriction>
 <Datatype abbreviatedIRI="xsd:float"/>
 <FacetRestriction facet="&xsd;minInclusive">
 <Literal datatypeIRI="&xsd;float">l0</Literal>
 </FacetRestriction>
 </DatatypeRestriction>
 </DataAllValuesFrom>
 <DataAllValuesFrom>
 <DataProperty IRI="Apa"/>
 <DatatypeRestriction>
 <Datatype abbreviatedIRI="xsd:float"/>
 <FacetRestriction facet="&xsd;maxInclusive">
 <Literal datatypeIRI="&xsd;float">l1</Literal>
 </FacetRestriction>
 </DatatypeRestriction>
 </DataAllValuesFrom>
 <DataAllValuesFrom>
 <DataProperty IRI="Apb"/>
 <DataOneOf>
 <Literal xml:lang="en">l3</Literal>
 <Literal xml:lang="en">l4</Literal>
 <Literal xml:lang="en">l5</Literal>
 <Literal xml:lang="en">l6</Literal>
 </DataOneOf>
 </DataAllValuesFrom>
 </ObjectIntersectionOf>
</SubClassOf>

 94

Example 3. A granule rule with a single numeric property (Definition 4).

Definition Agj.rule (Apa ≤ l2)

OWL XML
Syntax

<SubClassOf>
 <Class IRI="Agj"/>
 <DataAllValuesFrom>
 <DataProperty IRI="Apa"/>
 <DatatypeRestriction>
 <Datatype abbreviatedIRI="xsd:float"/>
 <FacetRestriction facet="&xsd;minInclusive">
 <Literal datatypeIRI="&xsd;float">l2</Literal>
 </FacetRestriction>
 </DatatypeRestriction>
 </DataAllValuesFrom>
</SubClassOf>

Example 4. A granule rule with a single nominal property, and multiple values (Definition 4).

Definition Agk.rule (Apb ∈ { l4 ,l5 , l6, l7})

OWL XML
Syntax

<SubClassOf>
 <Class IRI="Agj"/>
 <DataAllValuesFrom>
 <DataProperty IRI="Apb"/>
 <DataOneOf>
 <Literal xml:lang="en">l4</Literal>
 <Literal xml:lang="en">l5</Literal>
 <Literal xml:lang="en">l6</Literal>
 <Literal xml:lang="en">l7</Literal>
 </DataOneOf>
 </DataAllValuesFrom>
</SubClassOf>

 95

Example 5. A granule data-points with multiple attributes either numeric or nominal, each having
multiple values (Definition 4).

Definition Agi.data-points [(Apa = l0) ∧ (Apa = l1) ∧ (Apb = l3) ∧ (Apb = l4) ∧ (Apb = l5) ∧ (Apb = l6)]

OWL XML
Syntax

<SubClassOf>
 <Class IRI="Agi"/>
 <ObjectIntersectionOf>
 <DataHasValue>
 <DataProperty IRI="Apa"/>
 <Literal datatypeIRI="&xsd;float">l0</Literal>
 </DataHasValue>
 <DataHasValue>
 <DataProperty IRI="Apa"/>
 <Literal datatypeIRI="&xsd;float">l1</Literal>
 </DataHasValue>
 <DataHasValue>
 <DataProperty IRI="Apb"/>
 <Literal xml:lang="en">l3</Literal>
 </DataHasValue>
 <DataHasValue>
 <DataProperty IRI="Apb"/>
 <Literal xml:lang="en">l4</Literal>
 </DataHasValue>
 <DataHasValue>
 <DataProperty IRI="Apb"/>
 <Literal xml:lang="en">l5</Literal>
 </DataHasValue>
 <DataHasValue>
 <DataProperty IRI="Apb"/>
 <Literal xml:lang="en">l6</Literal>
 </DataHasValue>
 </ObjectIntersectionOf>
</SubClassOf>

Example 6. A granule data-points with a single property, either numeric or nominal, and a single value
(Definition 4).

Definition Agj.data-points (Apa = l2)

OWL XML
Syntax

<SubClassOf>
 <Class IRI="Agj"/>
 <DataHasValue>
 <DataProperty IRI="Apa"/>
 <Literal xml:lang="en">l2</Literal>
 </DataHasValue>
</SubClassOf>

 96

Example 7. A granule data-points with a single nominal property, and multiple values (Definition 4).

Definition Agk.data-points [(Apb = l3) ∧ (Apb = l4) ∧ (Apb = l5) ∧ (Apb = l6)]

OWL XML
Syntax

<SubClassOf>
 <Class IRI="Agj"/>
 <DataHasValue>
 <DataProperty IRI="Apb"/>
 <Literal xml:lang="en">l4</Literal>
 </DataHasValue>
 <DataHasValue>
 <DataProperty IRI="Apb"/>
 <Literal xml:lang="en">l5</Literal>
 </DataHasValue>
 <DataHasValue>
 <DataProperty IRI="Apb"/>
 <Literal xml:lang="en">l6</Literal>
 </DataHasValue>
 <DataHasValue>
 <DataProperty IRI="Apb"/>
 <Literal xml:lang="en">l7</Literal>
 </DataHasValue>
</SubClassOf>

Example 8. Granule Equivalence (Definition 8, line 7).

Definition Lgi Tgj (based on Lgi.data-points Tgj.rule as defined above)

OWL XML
Syntax

<EquivalentClasses>
 <Class IRI="Lgi"/>
 <Class IRI="Tgj"/>
</EquivalentClasses>

Example 9. Data Property Equivalence (Definition 8, line 1).

Definition (local) Ldaa dp (target) Tdab

OWL XML
Syntax

<EquivalentDataProperties>
 <DataProperty IRI="Ldaa"/>
 <DataProperty IRI="Tdab"/>
</EquivalentDataProperties>

 97

Appendix 3. Use Case Ontologies
The following tables list the mappings between the weather ontology wo, and other use cases included in
the tests in Chapter 4. These tables also show the correct matches between Local Concept and the Target
Concept. The table also includes comments describing any changes which were done in tables t1 to t6.
The formatting of the table is based on Ruby syntax. Comments are prefixed with a (#) pound sign.
Strings are enclosed by single quotes (‘). Namespaces have been removed for ease of readability. A match
is identified by the Ruby symbol (=>), where ‘A’ => [‘B’] means A in the local ontology matches B in
the target ontology. In instances where a single local concept matches multiple target concepts, the
relationship is identified by ‘A’ => [‘B’, ‘C’, ‘D’], where A is matched with B, C, and D. A case where a
local concept does not have a match in the target ontology, is represented by ‘A’ => []. Table 29 acts as
the main references. If one of the subsequent tables does not have a local concept in the left column, this
indicates it was not modified, and Table 29 acts as the reference to its unmodified match.

Table 29. Use Case (ow to ow): self match.

Local Concept Target Concept

'owl:Thing' => ['owl:Thing’]

'WeatherDescriptor' => ['WeatherDescriptor’]

'Partial' => ['Partial’]

'Showers' => ['Showers’]

'Thunderstorm' => ['Thunderstorm’]

'Patches' => ['Patches’]

'Freezing' => ['Freezing’]

'Blowing' => ['Blowing’]

'Shallow' => ['Shallow’]

'WeatherQualifier' => ['WeatherQualifier’]

'WeatherIntensity' => ['WeatherIntensity’]
'WeatherProximity' => ['WeatherProximity’]

'ReportModifier' => ['ReportModifier’]

'WeatherEvent' => ['WeatherEvent’]

'TimedWeatherEvent' => ['TimedWeatherEvent’]

'WindShiftEvent' => ['WindShiftEvent’]

'TimeRangeWeatherEvent' => ['TimeRangeWeatherEvent’]

'DatedWeatherEvent' => ['DatedWeatherEvent’]

'WeatherReport' => ['WeatherReport’]

'TafReport' => ['TafReport’]

'MetarReport' => ['MetarReport’]

'SpeciReport' => ['SpeciReport’]

'CanadaMetarReport' => ['CanadaMetarReport’]
'UsaMetarReport' => ['UsaMetarReport’]

'IntlMetarReport' => ['IntlMetarReport’]

 98

'Measured' => ['Measured’]

'TemperatureEvent' => ['TemperatureEvent’]

'CurrentDewPoint' => ['CurrentDewPoint’]

'MaximumTemperature' => ['MaximumTemperature’]

'TwentyFourHourMaximumTemp' => ['TwentyFourHourMaximumTemp’]
'SixHourMaximumTemp' => ['SixHourMaximumTemp’]

'MinimumTemperature' => ['MinimumTemperature’]

'SixHourMinimumTemp' => ['SixHourMinimumTemp’]

'TwentyFourHourMinimumTemp' => ['TwentyFourHourMinimumTemp’]

'CurrentTemperature' => ['CurrentTemperature’]

'DerivedTemperature' => ['DerivedTemperature’]

'WindChill' => ['WindChill’]

'HeatIndex' => ['HeatIndex’]

'RelativeHumidity' => ['RelativeHumidity’]

'PressureEvent' => ['PressureEvent’]

'PressureTendencyCharacter' => ['PressureTendencyCharacter’]

'PressureChangeEvent' => ['PressureChangeEvent’]
'PressureFallingRapidly' => ['PressureFallingRapidly’]

'PressureRisingRapidly' => ['PressureRisingRapidly’]

'ThreeHourPressureTendency' => ['ThreeHourPressureTendency’]

'SeaLevelPressure' => ['SeaLevelPressure’]

'AltimeterSetting' => ['AltimeterSetting’]

'SevereWeather' => ['SevereWeather’]

'TornadicActivity' => ['TornadicActivity’]

'Tornado' => ['Tornado’]

'Waterspout' => ['Waterspout’]

'FunnelCloud' => ['FunnelCloud’]

'Sandstorm' => ['Sandstorm’]

'DustOrSandWhirl' => ['DustOrSandWhirl’]
'Duststorm' => ['Duststorm’]

'Squall' => ['Squall’]

'WindEvent' => ['WindEvent’]

'WindShiftEvent' => ['WindShiftEvent’]

'VariableWindEvent' => ['VariableWindEvent’]

'HighVariableWindEvent' => ['HighVariableWindEvent’]

'LowVariableWindEvent' => ['LowVariableWindEvent’]

'PeakWindEvent' => ['PeakWindEvent’]

'GustingWindEvent' => ['GustingWindEvent’]

'VisibilityEvent' => ['VisibilityEvent’]

 99

'SurfaceVisibility' => ['SurfaceVisibility’]

'RunwayVisualRange' => ['RunwayVisualRange’]

'UsaRunwayVisualRange' => ['UsaRunwayVisualRange’]

'IntlRunwayVisualRange' => ['IntlRunwayVisualRange’]

'SectorVisibility' => ['SectorVisibility’]
'VerticalVisibility' => ['VerticalVisibility’]

'UsaSurfaceVisibility' => ['UsaSurfaceVisibility’]

'IntlSurfaceVisibility' => ['IntlSurfaceVisibility’]

'SkyCondition' => ['SkyCondition’]

'CloudLayer' => ['CloudLayer’]

'SolidOvercastCloudLayer' => ['SolidOvercastCloudLayer’]

'ScatteredCloudLayer' => ['ScatteredCloudLayer’]

'FewCloudLayer' => ['FewCloudLayer’]

'OvercastCloudLayer' => ['OvercastCloudLayer’]

'BrokenCloudLayer' => ['BrokenCloudLayer’]

'ClearSkies' => ['ClearSkies’]

'ClearSkiesSKC' => ['ClearSkiesSKC’]
'ClearSkiesCLR' => ['ClearSkiesCLR’]

'TowerVisibility' => ['TowerVisibility’]

'VariableVisibility' => ['VariableVisibility’]

'CurrentWeatherEvent' => ['CurrentWeatherEvent’]

'ObscurationEvent' => ['ObscurationEvent’]

'VolcanicAsh' => ['VolcanicAsh’]

'Mist' => ['Mist’]

'WidespreadDust' => ['WidespreadDust’]

'Sand' => ['Sand’]

'Haze' => ['Haze’]

'Spray' => ['Spray’]

'Smoke' => ['Smoke’]
'Fog' => ['Fog’]

'PrecipitationEvent' => ['PrecipitationEvent’]

'Drizzle' => ['Drizzle’]

'Hail' => ['Hail’]

'Snow' => ['Snow’]

'IceCrystals' => ['IceCrystals’]

'Rain' => ['Rain’]

'SmallHail' => ['SmallHail’]

'SnowGrains' => ['SnowGrains’]

'IcePellets' => ['IcePellets’]

 100

'CloudType' => ['CloudType’]

'StandingLenticularOrRotorClouds' => ['StandingLenticularOrRotorClouds’]

'CumulonimbusMammatus' => ['CumulonimbusMammatus’]

'ToweringCumulus' => ['ToweringCumulus’]

'Cumulonimbus' => ['Cumulonimbus’]
'AltocumulusCastellanus' => ['AltocumulusCastellanus’]

'OtherWeatherPhenomena' => ['OtherWeatherPhenomena’]

'UnitAbbreviation' => ['UnitAbbreviation’]

Table 30. Use Case (ow to t1): flattened concepts.

Local concept Target Concept
 # flattened DerivedTemperature

 'DerivedTemperature' => ['WindChill', 'HeatIndex', 'RelativeHumidity’]

 'WindChill' => ['WindChill’] # shifted up to TemperatureEvent

 'HeatIndex' => ['HeatIndex’] # shifted up to TemperatureEvent

 'RelativeHumidity' => ['RelativeHumidity’] # shifted up to TemperatureEvent

 # flattened PressureChangeEvent

'PressureChangeEvent' => ['PressureFallingRapidly', 'PressureRisingRapidly’]

 'PressureFallingRapidly' => ['PressureFallingRapidly’] # shifted up to PressureEvent

 'PressureRisingRapidly' => ['PressureRisingRapidly’] # shifted up to PressureEvent

 # flattened VariableWindEvent

 'VariableWindEvent' => ['HighVariableWindEvent', 'LowVariableWindEvent’]

 'HighVariableWindEvent' => ['HighVariableWindEvent’] # shifted up to WindEvent

 'LowVariableWindEvent' => ['LowVariableWindEvent’] # shifted up to WindEvent

 # flattened CloudLayer

 'CloudLayer' => ['BrokenCloudLayer', 'FewCloudLayer', 'OvercastCloudLayer',
'ScatteredCloudLayer', 'SolidOvercastCloudLayer’]

 'SolidOvercastCloudLayer' => ['SolidOvercastCloudLayer’] # shifted up to SkyCondition

 'ScatteredCloudLayer' => ['ScatteredCloudLayer’] # shifted up to SkyCondition

 'FewCloudLayer' => ['FewCloudLayer’] # shifted up to SkyCondition

 'OvercastCloudLayer' => ['OvercastCloudLayer’] # shifted up to SkyCondition

 'BrokenCloudLayer' => ['BrokenCloudLayer’] # shifted up to SkyCondition

 # flattened ClearSkies
'ClearSkies' => ['ClearSkiesCLR', 'ClearSkiesSKC’]

 'ClearSkiesSKC' => ['ClearSkiesSKC’] # shifted up to SkyCondition

 101

 'ClearSkiesCLR' => ['ClearSkiesCLR’] # shifted up to SkyCondition

Table 31. Use Case (ow to t2): expanded concepts.

Local concept Target Concept
expand WeatherDescriptor
'WeatherDescriptor' => ['WeatherDescriptor', 'MinorWeatherDescriptor',

'MajorWeatherDescriptor’]
'Shallow' => ['Shallow', 'MinorWeatherDescriptor’]

expended under MinorWeatherDescriptor (new)
'Partial' => ['Partial', 'MinorWeatherDescriptor’]

expended under MinorWeatherDescriptor (new)
'Showers' => ['Showers', 'MinorWeatherDescriptor’]

expended under MinorWeatherDescriptor (new)
'Patches' => ['Patches', 'MinorWeatherDescriptor’]

expended under MinorWeatherDescriptor (new)
'Freezing' => ['Freezing', 'MajorWeatherDescriptor’]

expended under MajorWeatherDescriptor (new)
'Blowing' => ['Blowing', 'MajorWeatherDescriptor’]

expended under MajorWeatherDescriptor (new)
'Thunderstorm' => ['Thunderstorm', 'MajorWeatherDescriptor’]

expended under MajorWeatherDescriptor (new)

 # expanding ObscurationEvent

'ObscurationEvent' => ['ObscurationEvent', 'NonSolidObscurationEvent',
'OtherObscurationEvent', 'SolidObscurationEvent’]

'Mist' => ['Mist', 'NonSolidObscurationEvent’]
expended under NonSolidObscurationEvent (new)

'Haze' => ['Haze', 'NonSolidObscurationEvent’]
expended under NonSolidObscurationEvent (new)

'Spray' => ['Spray', 'NonSolidObscurationEvent’]
expended under NonSolidObscurationEvent (new)

'Fog' => ['Fog', 'NonSolidObscurationEvent’]
expended under NonSolidObscurationEvent (new)

'VolcanicAsh' => ['VolcanicAsh', 'SolidObscurationEvent’]
expended under SolidObscurationEvent (new)

'WidespreadDust' => ['WidespreadDust', 'SolidObscurationEvent’]
expended under SolidObscurationEvent (new)

'Sand' => ['Sand', 'SolidObscurationEvent’]
expended under SolidObscurationEvent (new)

'Smoke' => ['Smoke', 'OtherObscurationEvent’]
expended under OtherObscurationEvent (new)

expanded PrecipitationEvent

'PrecipitationEvent' => ['PrecipitationEvent', 'SolidPrecipitationEvent',
'LiquidPrecipitationEvent’]

 102

'Drizzle' => ['Drizzle', 'LiquidPrecipitationEvent’]
expended under LiquidPrecipitationEvent (new)

'Rain' => ['Rain', 'LiquidPrecipitationEvent’]
expended under LiquidPrecipitationEvent (new)

'Hail' => ['Hail', 'SolidPrecipitationEvent’]
expended under SolidPrecipitationEvent (new)

'Snow' => ['Snow', 'SolidPrecipitationEvent’]
expended under SolidPrecipitationEvent (new)

'IceCrystals' => ['IceCrystals', 'SolidPrecipitationEvent’]
expended under SolidPrecipitationEvent (new)

'SmallHail' => ['SmallHail', 'SolidPrecipitationEvent’]
expended under SolidPrecipitationEvent (new)

'SnowGrains' => ['SnowGrains', 'SolidPrecipitationEvent’]
expended under SolidPrecipitationEvent (new)

'IcePellets' => ['IcePellets', 'SolidPrecipitationEvent’]
expended under SolidPrecipitationEvent (new)

Table 32. Use Case (ow to t3): drastic reconstruction.

Local concept Target Concept
 # moved WeatherDescriptor

'WeatherDescriptor' => ['WeatherDescriptor’] # moved under WeatherQualifier

'Partial' => ['Partial’] # moved with WeatherQualifier

'Showers' => ['Showers’] # moved with WeatherQualifier

'Thunderstorm' => ['Thunderstorm’] # moved with WeatherQualifier

'Patches' => ['Patches’] # moved with WeatherQualifier

'Freezing' => ['Freezing’] # moved with WeatherQualifier

'Blowing' => ['Blowing’] # moved with WeatherQualifier

'Shallow' => ['Shallow’] # moved with WeatherQualifier

removed Measured

'Measured' => ['TemperatureEvent', 'PressureEvent’]

'TemperatureEvent' => ['TemperatureEvent’] # moved to CurrentWeatherEvent

'CurrentDewPoint' => ['CurrentDewPoint’] # moved with TemperatureEvent

'MaximumTemperature' => ['MaximumTemperature’] # moved with TemperatureEvent

'TwentyFourHourMaximumTemp' => ['TwentyFourHourMaximumTemp’] # moved with
MaximumTemperature

'SixHourMaximumTemp' => ['SixHourMaximumTemp’] # moved with MaximumTemperature
'MinimumTemperature' => ['MinimumTemperature’] # moved with TemperatureEvent

'SixHourMinimumTemp' => ['SixHourMinimumTemp’] # moved with
MinimumTemperature

'TwentyFourHourMinimumTemp' => ['TwentyFourHourMinimumTemp’] # moved with
MinimumTemperature

 103

'CurrentTemperature' => ['CurrentTemperature’] # moved with TemperatureEvent

'DerivedTemperature' => ['DerivedTemperature’] # moved with TemperatureEvent

'WindChill' => ['WindChill’] # moved with DerivedTemperature

'HeatIndex' => ['HeatIndex’] # moved with DerivedTemperature

'RelativeHumidity' => ['RelativeHumidity’] # moved with DerivedTemperature

 # removed PressureEvent

'PressureEvent' => ['PressureEvent’] # moved under UnitAbbreviation

 'PressureTendencyCharacter' => ['PressureTendencyCharacter’] # moved with PressureEvent

'PressureChangeEvent' => ['PressureChangeEvent’] # moved with PressureEvent

'PressureFallingRapidly' => ['PressureFallingRapidly’] # moved with PressureChangeEvent

'PressureRisingRapidly' => ['PressureRisingRapidly’] # moved with
PressureChangeEvent

'ThreeHourPressureTendency' => ['ThreeHourPressureTendency’] # moved with PressureEvent
'SeaLevelPressure' => ['SeaLevelPressure’] # moved with PressureEvent

'AltimeterSetting' => ['AltimeterSetting’] # moved with PressureEvent

moved CloudLayer

'CloudLayer' => ['CloudLayer’] # moved under CloudQualifier (new under
WeatherQualifier)

'SolidOvercastCloudLayer' => ['SolidOvercastCloudLayer’] # moved with CloudLayer

'ScatteredCloudLayer' => ['ScatteredCloudLayer’] # moved with CloudLayer

'FewCloudLayer' => ['FewCloudLayer’] # moved with CloudLayer
'OvercastCloudLayer' => ['OvercastCloudLayer’] # moved with CloudLayer

'BrokenCloudLayer' => ['BrokenCloudLayer’] # moved with CloudLayer

 # moved CloudType

'CloudType' => ['CloudType’] # moved under CloudQualifier (new under
WeatherQualifier)

'StandingLenticularOrRotorClouds' => ['StandingLenticularOrRotorClouds’] # moved with CloudType

'CumulonimbusMammatus' => ['CumulonimbusMammatus’] # moved with CloudType

'ToweringCumulus' => ['ToweringCumulus’] # moved with CloudType
'Cumulonimbus' => ['Cumulonimbus’] # moved with CloudType

'AltocumulusCastellanus' => ['AltocumulusCastellanus’] # moved with CloudType

 104

Table 33. Use Case (ow to t4): ground term movement.

Local concept Target Concept
 # concepts removed; sub-classes moved under MinorWeatherEvent(new), MediumWeatherEvent(new),
MajorWeatherEvent(new),
'ObscurationEvent' => [], # ObscurationEvent (deleted)

'VolcanicAsh' => ['VolcanicAsh’] # moved under MajorWeatherEvent (new)

'Mist' => ['Mist’] # moved under MinorWeatherEvent (new)
'WidespreadDust' => ['WidespreadDust’] # moved under MajorWeatherEvent (new)

'Sand' => ['Sand’] # moved under MediumWeatherEvent (new)

'Haze' => ['Haze’] # moved under MinorWeatherEvent (new)

'Spray' => ['Spray’] # moved under MinorWeatherEvent (new)

'Smoke' => ['Smoke’] # moved under MajorWeatherEvent (new)

'Fog' => ['Fog’] # moved under MediumWeatherEvent (new)

moved sub-classes and removed PrecipitationEvent

'PrecipitationEvent' => [], # PrecipitationEvent (deleted)

'SnowGrains' => ['SnowGrains’] # moved under MinorWeatherEvent (new)

'Drizzle' => ['Drizzle’] # moved under MinorWeatherEvent (new)

'SmallHail' => ['SmallHail’] # moved under MinorWeatherEvent (new)
'Hail' => ['Hail’] # moved under MediumWeatherEvent (new)

'Rain' => ['Rain’] # moved under MediumWeatherEvent (new)

'IcePellets' => ['IcePellets’] # moved under MajorWeatherEvent (new)

'Snow' => ['Snow’] # moved under MajorWeatherEvent (new)

'IceCrystals' => ['IceCrystals’] # moved under MajorWeatherEvent (new)

moved sub-classes and removed CloudType

'CloudType' => [], # deleted CloudTyped

'StandingLenticularOrRotorClouds' => ['StandingLenticularOrRotorClouds’] # moved under
MinorWeatherEvent (new)

'ToweringCumulus' => ['ToweringCumulus’] # moved under MinorWeatherEvent
(new)

'Cumulonimbus' => ['Cumulonimbus’] # moved under
MediumWeatherEvent (new)

'AltocumulusCastellanus' => ['AltocumulusCastellanus’] # moved under
MediumWeatherEvent (new)

'CumulonimbusMammatus' => ['CumulonimbusMammatus’] # moved under
MajorWeatherEvent (new)

 # removed WeatherDescriptor; sub-classes moved under MiscWeatherEvent(new); MiscVisibilityEvent(new)
 'WeatherDescriptor' => [], # deleted WeatherDescriptor

 'Partial' => ['Partial’] # moved under MiscWeatherEvent (new)

 105

'Showers' => ['Showers’] # moved under MiscVisibilityEvent (new)

'Thunderstorm' => ['Thunderstorm’] # moved under MiscVisibilityEvent (new)

'Patches' => ['Patches’] # moved under MiscVisibilityEvent (new)

'Freezing' => ['Freezing’] # moved under MiscVisibilityEvent (new)

'Blowing' => ['Blowing’] # moved under MiscWeatherEvent (new)
'Shallow' => ['Shallow’] # moved under MiscWeatherEvent (new)

removed SevereWeather; sub-classes moved under MiscWeatherEvent(new); MiscVisibilityEvent(new);

'SevereWeather' => [], # deleted SevereWeather

'TornadicActivity' => ['TornadicActivity’] # moved under MiscVisibilityEvent (new)

'Tornado' => ['Tornado’] # moved with TornadicActivity

'Waterspout' => ['Waterspout’] # moved with TornadicActivity

'FunnelCloud' => ['FunnelCloud’] # moved with TornadicActivity

'Sandstorm' => ['Sandstorm’] # moved under MiscWeatherEvent (new)

'DustOrSandWhirl' => ['DustOrSandWhirl’] # moved under MiscVisibilityEvent (new)

'Duststorm' => ['Duststorm’] # moved under MiscVisibilityEvent (new)

'Squall' => ['Squall’] # moved under MiscWeatherEvent (new)

Table 34. Use Case (ow to t5) : ground terms become super-classes of other ground terms.

Local concept Target Concept

 # restructured WeatherDescriptor ground terms

'WeatherDescriptor' => ['WeatherDescriptor’]

'Blowing' => ['Blowing’] # became a super-class

'Partial' => ['Partial’] # moved under Blowing

'Freezing' => ['Freezing’] # moved under Blowing

'Patches' => ['Patches’] # became a super-class
'Showers' => ['Showers’] # moved under Patches

'Shallow' => ['Shallow’] # moved under Patches

'Thunderstorm' => ['Thunderstorm’] # moved under Patches

 'ClearSkiesCLR' => ['ClearSkiesCLR’] # became a super-class

'GustingWindEvent' => ['GustingWindEvent’] # became a super-class

 # sub-classes (ground terms) moves elsewhere

'PressureEvent' => [], # PressureEvent(deleted)

 106

'PressureTendencyCharacter' => ['PressureTendencyCharacter’] # moved under ClearSkiesCLR

'ThreeHourPressureTendency' => ['ThreeHourPressureTendency’] # moved under ClearSkiesCLR

'SeaLevelPressure' => ['SeaLevelPressure’] # moved under GustingWindEvent

'AltimeterSetting' => ['AltimeterSetting’] # moved under GustingWindEvent
'PressureChangeEvent' => ['PressureChangeEvent’] # moved under GustingWindEvent

'PressureFallingRapidly' => ['PressureFallingRapidly’] # moved with PressureChangeEvent

'PressureRisingRapidly' => ['PressureRisingRapidly’] # moved with PressureChangeEvent

sub-classes (ground terms removed)

'Measured' => ['Measured’] #kept TemperatureEvent wth
MaximumTemperature,MinimumTemperature

'TemperatureEvent' => ['TemperatureEvent’] # stayed under Measured

'MaximumTemperature' => ['MaximumTemperature’] # stayed under TemperatureEvent

'TwentyFourHourMaximumTemp' => ['TwentyFourHourMaximumTemp’] # stayed under
TemperatureEvent

'SixHourMaximumTemp' => ['SixHourMaximumTemp’] # stayed under TemperatureEvent

'MinimumTemperature' => ['MinimumTemperature’] # stayed under TemperatureEvent

'SixHourMinimumTemp' => ['SixHourMinimumTemp’] # stayed under TemperatureEvent

'TwentyFourHourMinimumTemp' => ['TwentyFourHourMinimumTemp’] # stayed under
TemperatureEvent

'CurrentDewPoint' => ['CurrentDewPoint’] # moved under ClearSkiesCLR

'CurrentTemperature' => ['CurrentTemperature’] # moved under GustingWindEvent

'DerivedTemperature' => ['DerivedTemperature’] # moved under GustingWindEvent

'WindChill' => ['WindChill’] # moved with DerivedTemperature

'HeatIndex' => ['HeatIndex’] # moved with DerivedTemperature

'RelativeHumidity' => ['RelativeHumidity’] # moved with DerivedTemperature

 # sub-calss (ground terms) moved elsewhere

'SevereWeather' => [], # deleted SevereWeather

'Sandstorm' => ['Sandstorm’] # moved under FewCloudLayer

'DustOrSandWhirl' => ['DustOrSandWhirl’] # moved under FewCloudLayer

'Duststorm' => ['Duststorm’] # moved under BrokenCloudLayer

'Squall' => ['Squall’] # moved under BrokenCloudLayer

 107

'TornadicActivity' => ['TornadicActivity’] # moved under BrokenCloudLayer

'Tornado' => ['Tornado’] # moved with TornadicActivity

'Waterspout' => ['Waterspout’] # moved with TornadicActivity

'FunnelCloud' => ['FunnelCloud’] # moved with TornadicActivity

Table 35. Use Case (ow to t6): ground terms become super-classes of their siblings.

Local concept Target Concept
 # ground-terms moved down under AltocumulusCastellanus

 'CloudType' => ['CloudType’]

'AltocumulusCastellanus' => ['AltocumulusCastellanus’] # became super-class

'StandingLenticularOrRotorClouds' => ['StandingLenticularOrRotorClouds’] # moved under
AltocumulusCastellanus

'CumulonimbusMammatus' => ['CumulonimbusMammatus’] # moved under
AltocumulusCastellanus

'ToweringCumulus' => ['ToweringCumulus’] # moved under AltocumulusCastellanus

'Cumulonimbus' => ['Cumulonimbus’] # moved under AltocumulusCastellanus

ground terms became sub-classes

'ObscurationEvent' => ['ObscurationEvent’]

'WidespreadDust' => ['WidespreadDust’] # became a super-class

'VolcanicAsh' => ['VolcanicAsh’] # moved under WidespreadDust
'Sand' => ['Sand’] # moved under WidespreadDust

'Fog' => ['Fog’] # became a super-class

'Haze' => ['Haze’] # moved under Fog

'Mist' => ['Mist’] # moved under Fog

'Smoke' => ['Smoke’] # moved under Fog

'Spray' => ['Spray’] # moved under Fog

 # ground terms became sub-classes of siblings

'PrecipitationEvent' => ['PrecipitationEvent’]

'Snow' => ['Snow’] # became a super-class

'IceCrystals' => ['IceCrystals’] # moved under Snow
'SnowGrains' => ['SnowGrains’] # moved under Snow

'IcePellets' => ['IcePellets’] # moved under Snow

'Rain' => ['Rain’] # became a super-class

'Drizzle' => ['Drizzle’] # moved under Rain

 108

'Hail' => ['Hail’] # moved under Rain

'SmallHail' => ['SmallHail’] # moved under Rain

 # ground terms became sub-classes of siblings

'WeatherDescriptor' => ['WeatherDescriptor’]
'Patches' => ['Patches’] # became a super-class

'Showers' => ['Showers’] # moved under Patches

'Thunderstorm' => ['Thunderstorm’] # moved under Patches

'Shallow' => ['Shallow’] # moved under Patches

'Blowing' => ['Blowing’] # became a super-class

'Partial' => ['Partial’] # moved under Blowing

'Freezing' => ['Freezing’] # moved under Blowing

Table 36. Use Case (FutureShop to BestBuy): real-world example.

Local concept Target Concept
'Computers-1' => ['Computers-1'],

'AppleiPadAppleTabletComputer-2' => ['AppleMacBooksiMacsiPads-2'],
'AppleComputers-2' => ['AppleMacBooksiMacsiPads-2'],
'MacMiniiMacComputers-2' => ['AppleMacBooksiMacsiPads-2'],
'MacBookMacBookProAir-2' => ['AppleMacBooksiMacsiPads-2'],
'Laptops-2' => ['Laptops-2', '17Laptops-3', '16Laptops-3'],
'Netbooks-2' => ['Laptops-2'],
'LaptopAccessories-2' => ['LaptopAccessories-3'],
'DesktopComputers-2' => ['DesktopComputers-2'],
'DesktopComputerAccessories-2' => ['Accessories-2'],
'Monitors-2' => ['Monitors-2', 'LEDMonitors-3'],
'PrintersandAllInOnes-2' => ['PrintersInkPaper-2'],
'InkToner-2' => ['InkToner-3', 'Toner-4'],
'Paper-2' => ['PaperSupplies-3'],
'DataProjectors-2' => ['Projectors-2', 'ReplacementLamps-4',

'MiscellaneousAccessories-4'],
'Scanners-2' => ['Scanners-2'],

Ground Terms
'iPad-3' => ['AppleiPad-3'],
'AppleiPadAccessories-3' => ['AppleiPadAccessories-3', 'iPadCasesCovers-4',

'iPadCablesChargers-4',
'AppleComputers-3' => ['AppleiMac-3', 'AppleMacMini-3'],
'AppleLaptop-3' => ['AppleMacBookPro-3', 'AppleMacBookAir-3', 'AppleMacBook-

3'],
'AppleComputerAccessories-3' => ['AppleMonitors-3', 'AppleAccessories-3',

'OtherAppleAccessories-4','AppleKeyboardsMice-

 109

4','AppleWirelessBaseStations-4',
'13LaptopsandSmaller-3' => ['141LaptopsUnder-3'],
'14Laptops-3' => ['141LaptopsUnder-3'],
'15Laptops-3' => ['156Laptops-3', '154Laptops-3'],
'18LaptopsandLarger-3' => ['18LaptopsOver-3'],
'RefurbishedLaptops-3' => ['Laptops-2'],
'TabletandSpeciality-3' => ['TabletsConvertiblePCs-3'],
'10NetbooksandLarger-3' => ['Netbooks-3'],
'LaptopBagsCases-3' => ['LaptopCases-4','Sleeves-5','StandardCases-5','MessengerBags-

5','Backpacks-5','DesignerCases-5','RollerCases-5','TravelCases-5'],
'LaptopSkins-3' => ['LaptopCases-4'],
'Batteries-3' => ['LaptopBatteriesPower-4'],
'DockingStations-3' => ['DockingStationsStands-4'],
'Locks-3' => ['Accessories-2'],
'PowerProducts-3' => ['LaptopBatteriesPower-4'],
'PresentingTools-3' => ['Accessories-2'],
'ScreenAccessories-3' => ['Accessories-2'],
'LaptopCooling-3' => ['LaptopCooling-4'],
'SupportsandStands-3' => ['Accessories-2'],
'OtherLaptopAccessories-3' => ['OtherLaptopAccessories-4'],
'DesktopComputers-3' => ['DesktopComputers-3','DesktopComputerPackages-3'],
'PerformanceGamingComputers-3' => ['DesktopComputers-3','DesktopComputerPackages-3'],
'AllinOneComputers-3' => ['AllinOneDesktopComputers-3'],
'HomeServers-3' => ['HomeServers-3'],
'Adapters-3' => ['Adapters-5', 'Miscellaneous-4'],
'BatteryBackUp-3' => ['UPSBackup-5'],
'Bluetooth-3' => ['Miscellaneous-4'],
'ExtensionCables-3' => ['MiceKeyboardCables-5'],
'FirewireCables-3' => ['FireWireCables-5'],
'Headsets-3' => ['HeadsetsMics-3'],
'MonitorStandsandDeskMounts-3' => ['MonitorStands-4'],
'MonitorCables-3' => ['MonitorVideoCables-5'],
'Mousepads-3' => ['MouseWristPads-4'],
'OtherCables-3' => ['PowerCables-5'],
'SurgeProtectors-3' => ['SurgeProtection-4', 'SurgeProtectors-5'],
'TransferCables-3' => ['SerialATAFloppyCables-5'],
'USBCables-3' => ['USBCables-5'],
'OtherComputerAccessories-3' => ['KVMSwitches-5', 'HighDefinitionWebcams-4',

'StandardDefinitionWebcams-4', 'ToolKits-4', 'OtherAccessories-3',
'VideoCapture-3', 'SoundCards-3', 'SerialParallelCards-3',
'Miscellaneous-4'],

'19UnderMonitors-3' => ['19UnderLCDMonitors-3'],
'2021Monitors-3' => ['20215LCDMonitors-3'],
'2223Monitors-3' => ['22235LCDMonitors-3'],
'24UpMonitors-3' => ['24UpLCDMonitors-3'],
'AllinOneInkjetPrinters-3' => ['InkjetPrinters-3'],
'AllinOneLaserPrinters-3' => ['AllInOneLaserPrinters-4'],
'PhotoPrinters-3' => ['PhotoPrinters-4'],

 110

'LaserPrinters-3' => ['LaserPrinters-3', 'SingleFunctionLaserPrinters-4'],
'InkRefillKits-3' => ['RefillKits-4'],
'Brother-3' => ['InkforBrotherPrinters-4'],
'Canon-3' => ['InkforCanonPrinters-4'],
'Epson-3' => ['InkforEpsonPrinters-4'],
'HewlettPackard-3' => ['InkforHPPrinters-4'],
'Kodak-3' => ['InkforOtherPrinters-4'],
'Lexmark-3' => ['InkforLexmarkPrinters-4'],
'Minolta-3' => ['InkforOtherPrinters-4'],
'NEC-3' => ['InkforOtherPrinters-4'],
'Okidata-3' => ['InkforOtherPrinters-4'],
'Panasonic-3' => ['InkforOtherPrinters-4'],
'Primera-3' => ['InkforOtherPrinters-4'],
'Samsung-3' => ['InkforOtherPrinters-4'],
'Sharp-3' => ['InkforOtherPrinters-4'],
'Xerox-3' => ['InkforOtherPrinters-4'],
'FaxPaper-3' => ['PaperSupplies-3'],
'Labels-3' => ['LabelsStickers-4'],
'MultipurposePaper-3' => ['MultipurposePaper-4'],
'OtherPaper-3' => ['PaperMiscellaneous-4'],
'PhotoPaper-3' => ['PhotoQualityPaper-4'],
'DataProjectors-3' => ['Projectors-3'],
'PocketProjectors-3' => ['Projectors-3'],
'BusinessDocumentScanners-3' => ['BusinessProfessionalScanning-3'],
'PhotoPersonalScanners-3' => ['HomeScanning-3']

 111

Appendix 4. Code
All the code and supplementary files can be found at:
http://www.scs.ryerson.ca/~bgajdero/msc_thesis

 112

Appendix 5. User Interface: Match Selector
The appendix gives a sample output of the matches proposed by the algorithm. Each example is
accompanied by a comment and its purpose. The results have the following format:

Level [x]
the following matches are for local concepts at level x.

[y] >> LC1
Local concept at level x

(a) [b] >> TC1
LC1 was matched to TC1 using matching scheme (a); TC1 is at level b, where
LevelT(1) = b;
Matching Schemes: 1 = GP, 2 = G2PM, 3 = CM, 4 = CVPM

(Rating c, Method: X)
match rating is c, name of match scheme is X

Optional information, dependent on type of match

:: direct
a direct match between LC1 and TC1

:: sibling
LC1 was matched to TC1, where TC1 ≈ LC2, LC1 ⇑ LC2

:: super2sub
LC1 was matched to TC1, where TC1 ≈ LC2, LC1 LC2

:: sub2super
LC1 was matched to TC1, where TC1 ≈ LC2, LC1 LC2

:: L:[LC1] (c10) TC10 (c11) TC11 (c12) TC12
LC1 also has a CM match with TC10, TC11, and TC12, where TC1 {TC10, TC11, and
TC12}

:: T:[LC1] (c10) TC10 (c11) TC11 (c12) TC12
same as above, except match was found in the target ontology. Needed when
finding an indirect match between a local and target class, through a target
concept which does not exists in the local ontology.

 113

Table 37. Sample of proposed matches presented to the user.

Level [2]

 [2] >> VisibilityEvent

 (1) [4] >> AltimeterSetting
 (Ranking 0.9706, Method: GM)
 :: L:[VisibilityEvent] (0.9091) BrokenCloudLayer

 (3) [3] >> LowVariableWindEvent
 (Ranking 0.9412, Method: CM)
 :: L:[VisibilityEvent] (0.9697) SurfaceVisibility (0.9118) TowerVisibility

 (3) [4] >> PressureEvent
 (Ranking 0.9167, Method: CM)
 :: L:[VisibilityEvent] (0.9167) SkyCondition (0.9167) SurfaceVisibility

 (3) [4] >> ClearSkies
 (Ranking 0.9118, Method: CM)
 :: [L] super2sub
 :: L:[VisibilityEvent] (0.9697) ClearSkies (0.9394) SurfaceVisibility

 (3) [5] >> RelativeHumidity
 (Ranking 0.9000, Method: CM)
 :: L:[VisibilityEvent] (0.9000) SurfaceVisibility (0.9000) SkyCondition

 (4) [2] >> VisibilityEvent
 (Ranking 0.9000, Method: CVPM)
 :: [L] direct

 [2] >> Freezing

 (1) [4] >> CloudLayer
 (Ranking 0.9706, Method: GM)

 (1) [4] >> Freezing
 (Ranking 0.9412, Method: GM)
 :: [L] direct

 (2) [3] >> PressureEvent
 (Ranking 0.9167, Method: G2PM)

 (3) [4] >> Fog
 (Ranking 0.9118, Method: CM)

 (3) [2] >> Shallow
 (Ranking 0.9000, Method: CM)
 :: [L] sibling

 (4) [5] >> RelativeHumidity
 (Ranking 0.9000, Method: CVPM)

 [2] >> SevereWeather

 (3) [4] >> CurrentTemperature
 (Ranking 0.9706, Method: CM)
 :: L:[SevereWeather] (0.9706) TornadicActivity (0.9706) DustOrSandWhirl

 (3) [4] >> PressureChangeEvent
 (Ranking 0.9412, Method: CM)

 (2) [3] >> PressureEvent
 (Ranking 0.9167, Method: CM)
 :: L:[SevereWeather] (0.9167) Duststorm (0.9167) Squall

 (3) [2] >> CurrentWeatherEvent
 (Ranking 0.9000, Method: CM)
 :: [L] sibling
 :: L:[SevereWeather] (0.9000) DustOrSandWhirl (0.9000) TornadicActivity

 (4) [4] >> HighVariableWindEvent
 (Ranking 0.9118, Method: CVPM)
 :: L:[SevereWeather] (0.9118) Squall

 114

Level [3]

 [3] >> PeakWindEvent

 (3) [4] >> ClearSkies
 (Ranking 0.9697, Method: CM)

 (3) [3] >> PeakWindEvent
 (Ranking 0.9167, Method: CM)
 :: [L] direct

 [3] >> Squall

 (1) [4] >> ClearSkies
 (Ranking 0.9706, Method: GM)

 (1) [4] >> LowVariableWindEvent
 (Ranking 0.9412, Method: GM)

 (3) [2] >> Shallow
 (Ranking 0.9000, Method: CM)
 :: [T] sibling

 (3) [5] >> RelativeHumidity
 (Ranking 0.9000, Method: CM)

 115

Bibliography

[1] A. Prencipe, A. Davies, and M. Hobday, eds., Introduction. The Business of Systems Integration,

By Prencipe, Oxford University Press, 2003.

[2] C.P. Cheng, G.T. Lau, and K.H. Law, "Mapping regulations to industry-specific taxonomies," in

Proc. 11th International Conference on Artificial Intelligence and Law, ACM, 2007, pp. 59-63.

[3] W.S. Li, C. Clifton, and S.Y. Liu, "Database integration using neural networks: implementation

and experiences," Knowledge Information Systems, Springer-Verang, vol. 2, no. 1, 2000, pp. 73-

96.

[4] F. Baader, A. Borgida, and D.L. McGuinness, "Matching in Description Logics: Preliminary

Results," in Proc. 6th International Conference on Conceptual Structures, (ICCS '98), Springer-

Verlag, 1998, pp. 15-34.

[5] V. Papataxiarhis, V. Tsetsos, I. Karali, and P. Stamatopoulos, " Developing rule-based applications

for the Web: Methodologies and Tools ", in Handbook of Research on Emerging Rule-Based

Languages and Technologies: Open Solutions and Approaches, A. Giurca, D. Gasevic, and K.

Taveter, eds., Information Science Reference, 2009.

[6] M. Uschold, and M. Gruninger, "Ontologies: principles, methods, and applications". Knowledge

Engineering Review, vol. 11 no. 2, 1996, pp. 93-155.

[7] F. Baader, I. Horrocks, and U. Sattler, "Description Logics" in Handbook of Knowledge

Representation, V. L. Frank van Harmelen and B. Porter eds., Elsevier, 2008, pp. 135-179.

[8] S.M. Falconer, N.F. Noy, and M.A. Storey, "Ontology mapping - a user survey," in Proc.

Workshop on Ontology Matching (OM2007), 2007, pp. 113-125.

[9] D. Richards, and S.J. Simoff, "Design ontology in context - a situated cognition approach to

conceptual modeling". Artificial Intelligence in Engineering, vol. 15 no. 2, 2001, pp. 121-136.

[10] J. Euzenat, and P. Shvaiko, eds. Ontology Matching. Secaucus, NJ, USA: Springer-Verlag New

York, 2007.

 116

[11] J. Hayes, and C. Gutierrez, "Bipartite Graphs as Intermediate Model for RDF," in Lecture Notes in

Computer Science, LNCS 3298, Springer, 2004, pp. 47-61.

[12] B. Gajderowicz, A. Sadeghian, and M.F. dos Santos, "Expectation Maximization Enhancement

with Evolution Strategy for Stochastic Ontology Mapping," in Proc 11th Annual Conference on

Genetic and Evolutionary Computation (GECCO09), ACM, 2009, pp. 1847-1848.

[13] T. Slimani, B. Yaghlane, and K. Mellouli, "A New Similarity Measure based on Edge Counting,"

in Proc. World Academy of Science, Engineering and Technology, vol. 17, Dec. 2006.

[14] N. Lin, B. Wu, R. Jansen, M. Gerstein, and H. Zhao, "Information assessment on predicting

protein-protein interactions". BMC Bioinformatics, vol. 5 no. 154, 2004.

[15] P. Doshi, and C. Thomas, "Inexact matching of ontology graphs using expectation maximization,"

in Proc. 21st National Conference on Artificial Intelligence (AAAI'06), AAAI, 2006, pp. 1277-

1282.

[16] B. Luo, and E.R. Hancock, "Structural Graph Matching Using the EM Algorithm and Singular

Value Decomposition". Transactions on Pattern Analysis and Machine Intelligence, vol. 23 no. 10,

IEEE, 2001, pp. 1120-1136.

[17] M. Ehrig, and Y. Sure, "Ontology Mapping - An Integrated Approach, " in 3rd The Semantic Web:

Research and Applications, LNCS 3053, Springer Berlin / Heidelberg, 2004, pp. 76-91.

[18] M. Ehrig, and S. Staab, "QOM - Quick Ontology Mapping," in Proc. 4th International Semantic

Web Conference (ISWC05), Hiroshima, Japan, 2004, pp. 683-697.

[19] N.F. Noy, and M.A. Musen, "The prompt suite: Interactive tools for ontology merging and

mapping". International Journal of Human-Computer Studies, vol. 59, no. 6, Academic Press, Dec.

2004.

[20] C. Fellbaum, (1998, ed.). WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press.

[21] A. Ghazvinian, N.F. Noy, C. Jonquet, N. Shah, and M.A. Musen, "What Four Million Mappings

Can Tell You about Two Hundred Ontologies," in Proc. 8th International Semantic Web

Conference (ISWC '09) Springer-Verlang Berlin / Heidelberg, 2009, pp. 229-242.

 117

[22] M. Ehrig, S. Staab, and Y. Sure, "Bootstrapping Ontology Alignment Methods with APFEL," in

Proc. 4th International Semantic Web Conference (ISWC05), Springer Berlin / Heidelberg, 2005,

pp. 186-200.

[23] L. Xu, and D.W. Embley, "Discovering Direct and Indirect Matches for Schema Elements, " in

Proc. 8th International Conference on Database Systems and Advanced Applications

(DASFAA'03), IEEE Computer Society, Washington DC, USA, 2003, pp. 39-46.

[24] D.W. Embley, D. Jackman, and L. Xu, "Multifaceted Exploitation of Metadata for Attribute Match

Discovery," in Proc. Information Integration In Proceedings of the International Workshop on

Information Integration on the Web (WIIW'01), 2001, pp. 110-117.

[25] I. Witten, and E. Frank, Data Mining: Practical machine learning tools and techniques, 2nd ed.,

Morgan Kaufmann: San Francisco, June 2005.

[26] B. Gajderowicz, and A.F. Sadeghian, A.F. Bobillo, "Ontology Granulation Through Inductive

Decision Trees," in Proc. Workshop on Uncertainty Reasoning for the Semantic Web, (URSW'09),

Spinger-Verlang, 2009, pp. 39-50.

[27] I. Horrocks, P.F. Patel-Schneider, and F.V. Harmelen, "From SHIQ and RDF to OWL: The Making

of a Web Ontology Language". Journal of Web Semantics, vol. 1, no. 1, Elsevier, 2003, pp. 7-26.

[28] U. Straccia, "A Fuzzy Description Logic for the Semantic Web". Fuzzy Logic And The Semantic

Web, Capturing Intelligence, Elsevier Amsterdam, 2006, pp. 167-181.

[29] U. Straccia, "A Fuzzy Description Logic", in Proc. 15th National Conference on Artificial

Intelligence, AAAI, Madison, USA, 1998, pp. 594-599.

[30] U. Straccia, "Reasoning within Fuzzy Description Logics". Journal of Artificial Intelligence

Research, vol. 14, 2001, pp. 137-166.

[31] Z. Ding, Y. Peng, and R. Pan, "BayesOWL: Uncertainty Modeling in Semantic Web Ontologies,"

in Soft Computing in Ontologies and Semantic Web, Springer-Verlang, vol. 204, 2005, pp. 3-29.

 118

[32] I. Horrocks, and U. Sattler, "Ontology Reasoning in the SHOQ(D) Description Logic," in Proc.

17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), Morgan Kaufmann, 1998, pp. 199-

204.

[33] J.Z. Pan, and I. Horrocks, "Reasoning in the SHOQ(Dn) Description Logic," in Proc 2002 Int.

Workshop on Description Logics (DL-2002), Apr. 2002.

[34] K.B. Laskey, "MEBN: A Language for First-Order Bayesian Knowledge Bases, " Artificial

Intelligence, vol. 172 no. 2-3, 2008, pp. 251-178.

[35] P. Klinov, and L.J. Mazlack, "Granulating Semantic Web Ontologies", in Proc IEEE International

Conference on Granular Computing, IEEE , 2006, pp. 431-434.

[36] Z. Ding, Y. Peng, R. Pan, and Y. Yu, "A Bayesian Methodology towards Automatic Ontology

Mapping," in Proc. American Association Artificial International '05 C&O Workshop on Contexts

and Ontologies: Theory, Practice and Applications, AAAI, 2005, pp. 72-79.

[37] M. Leida, P. Ceravolo, E. Damiani, Z. Cui, and A. Gusmini, "Semantics-aware matching strategy

(SAMS) for the Ontology meDiated Data Integration". International Journal of Knowledge

Engineering and Soft Data Paradigms (IJKESDP), vol. 2, no. 1, Inderscience Geneva, 2010, pp.

33-56.

[38] S. Volz, "Data-Driven Matching of Geospatial Schemas," in Spatial Information Theory, Springer

Berlin / Heidelberg, LNCS 3693, 2005, pp. 115-132.

[39] M. Ehrig, and E.B. Jérome, E.B, "Relaxed Precision and Recall for Ontology Matching," in Proc.

Workshop on Integrating Ontologies, Banff, Alberta, Canada, 2005, pp. 25-32.

[40] B. Motik, R. Shearer, and I. Horrocks, "Hypertableau Reasoning for Description Logics". Journal

of Artifical Intelligence Research (JAIR), AI Access Foundation, 2005, vol. 36, no. 1, pp. 165-228.

[41] M. Horridge, and S.R. Bechhofer, "The OWL API: A Java API for Working with OWL 2

Ontologies," in Proc 6th OWL Experienced and Directions Workshop (OWLED-08), CEUR-

WS.org , vol. 529, 2008.

[42] S. Staab and R. Studer, eds., Handbook on Ontologies, Springer-Verlang, 2007.

 119

[43] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari, "Sweetening WordNet with Dolce". AI

Magazine, AAAI, vol. 24, no. 3, 2003, pp. 13-24.

[44] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira, "An Introduction to the Syntax and

Content of Cyc", 2006 AAAI Spring Symposium on Formalizing and Compiling Background

Knowledge and Its Applications to Knowledge Representation and Question Answering, AAAI,

2006, pp. 44-49.

[45] I. Niles, and A. Pease, "Towards a Standard Upper Ontology," in Proc. International Conference

on Formal Ontology in Information Systems, ACM, Ogunquit Maine, New York, NY, USA, 2001,

pp. 2-9.

[46] R.G. Raskin, M.J. Pan, "Knowledge representation in the semantic web for Earth and

environmental terminology (SWEET), " Computer and Geoscience, Elsevier, vol. 31, no. 9, 2004,

pp. 1119-1125.

[47] M. Enkhsaikhan, W. Wong, W Liu, and M.P. Reynolds, "Measuring Data-Driven Ontology

Changes using Text Mining," in Proc. 6th Australasian Conference on Data Mining and Analytics,

Australian Computer Society, vol. 70, 2007, pp. 39-46.

[48] G. Stumme, and A. Maedche, "FCA-MERGE: Bottom-Up Merging of Ontologies," in Proc. 7th

International Conference on Artificial Intelligence (IJCAI '01), Morgan Kaufmann, vol. 1, 2001,

pp. 225-230.

[49] S.M. Falconer, N.F. Noy, and M.A. Storey, "Towards understanding the needs of cognitive support

for ontology mapping, " in Proc 1st International Workshop on Ontology Matching (OM-2006),

CEUR-WS.org, vol. 225, 2006.

[50]N. N. Guarino, and C. Welty, "Evaluating ontological decisions with OntoClean." in

Communications of the ACM, ACM, vol. 45, no. 2, 2002, pp. 61-65.

[51] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, "S-Match: an Algorithm and an Implementation of

Semantic Matching," in Proc. European Semantic Web Symposium (ESWS'04), 2004, pp. 61-75.

 120

[52] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, "Learning to Map Between Ontologies on the

Semantic Web," in Proc 11th International Conference on World Wide Web (WWW'02), ACM,

New York, NY, 2002.

[53] M. Brodaric, and M. Gahegan, "Experiments to Examine the Situated Nature of Geoscientific

Concepts". Spatial Cognition & Computation: An Interdisciplinary Journal, vol. 7, no. 1, 2007, pp.

61-95.

[54] P. Langley, Editorial: On Machine Learning. Machine Learning, Kluwer Academic Publisher, vol.

1, no. 1, 1986, pp. 5-10.

[55] L. Breiman, "Bagging Predictors". Machine Learning, Kluwer Academic Publisher, vol. 24, no. 2,

1996, pp. 123-140.

[56] H. Perez-Urbina, I. Horrocks, and B. Motik, "Efficient Query Answering for OWL 2," in Proc. 8th

International Semantic Web Conference (ISWC 2009), Springer-Verlang Berlin / Heidelberg,

LNCS 5823, 2009, pp. 489-504.

[57] R.B.H. Kwok, "Translations of Ripple Down Rules into Logic Formalisms," in Proc. 12th

European Workshop on Knowledge Acquisition, Modeling and Management (EKAW '00),

Springer-Verlang London, UK, 2000, pp. 366-379.

[58] C. Erdur, and I. Seylan, "The design of a semantic web compatible content language for agent

communication". Expert Systems, vol. 25, no 3, July 2008, pp. 268-294.

[59] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider (eds.), The

Description Logic Handbook: Theory, Implementation and Applications, Cambridge University

Press, 2003.

[60] I. Horrocks, O. Kutz, and U. Sattler, "The Even More Irresistible SROIQ," in Proc 10th

International Conference on Principles of Knowledge Representation and Reasoning (KR2006),

AAAI, 2006, pp. 57-67.

[61] L. Stojanovic, "Methods and Tools for Ontology Evolution." Ph.D. Thesis, University of Karlsruhe,

Germany, 2004.

 121

[62] M. Krotzsch, S. Rudolph, and P. Hitzler, "Description Logic Rules," in Proc. 18th European

Conference on Artificial Intelligence (ECAI 2008), IOS Amsterdam, 2008, pp. 80-84.

[63] R. Ichise, "Machine Learning Approach for Ontology Mapping Using Multiple Concept Similarity

Measures," in Proc. 7th International Conference on Computer and Information Science (ICIC

2008), IEEE, 2008, pp. 340-346.

[64] J. Zhang, A. Silvescu, and V. Honavar, "Ontology-Driven Induction of Decision Trees at Multiple

Levels of Abstraction," in Abstraction, Reformation, and Approximation, Springer-Verlang, LNCS

2371, 2002, pp. 316--323.

[65] A. Bouza, G. Reif, A. Bernstein, and H. Gall, "SemTree: Ontology-Based Decision Tree Algorithm

for Recommender Systems," in Proc. 7th International Semantic Web Conference (ISWC2008),

Germany, 2008.

[66] B. Kieler, "Semantic Data Integration Across Different Scales: Automatic Learning Generalization

Rules", in International Archives of Photogrammetry, Remote Sensing and Spatial Information

Sciences, vol. 37, 2008.

[67] B. Kieler, W. Huang, J.H. Haunert, and J.M. Jiang, "Matching River Datasets of Different Scales,"

in Advances in GIScience, Springer, 2009, pp. 135-154.

[68] M. Uschold, and M. Gruninger, "Ontologies and semantics for seamless connectivity," in ACM

SIGMOD Record, ACM, vol. 33, no. 4, Dec. 2004, pp. 58-64.

[69] N.F. Noy, "Semantic integration: a survey of ontology-based approaches," in ACM SIGMOD

Record, ACM, vol. 33, no. 4, pp. 65-70.

[70] W.S. Li, and C. Clifton, "SEMINT: a tool for identifying attribute correspondences in

heterogeneous databases using neural networks". in Data and Knowledge Engineering, Elsevier,

vol. 33, no. 1, pp. 49-84.

[71] J. Evermann, "An Exploratory Study of Database Integration Processes". in IEEE Transactions on

Knowledge and Data Engineering, IEEE, vol. 20, pp. 99-115.

 122

[72] P. Shvaiko, J. Euzenat, H. Stuckenschmidt, H., M. Mochol, F. Giunchiglia, M. Yatskevich, P.

Avesani, W.R. van Hage, O. Svap, and V. Svátek, Description of alignment evaluation and

benchmarking results, Technical Report, KnowledgeWeb, 2007.

[73] A. Elkiss, "An ontology for use in converting METAR and TAF reports to DAML," Retrieved

August 10, 2010 from http://www.csd.abdn.ac.uk/~ggrimnes/AgentCities/WeatherAgent/weather-

ont.daml.

[74] National Weather Service Internet Web Team, "METAR Data Access," Retrieved August 10, 2010

from http://weather.noaa.gov/weather/metar.shtml.

[75] Internet Services Group, "Meteorological Character Codes," Retrieved August 10, 2010 from

http://www.nws.noaa.gov/tg/code.html.

[76] D. Connolly, F. van Harmelen, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider, and L.A.

Stein, "DAML+OIL (March 2001) Reference Description," Retrieved August 10, 2010 from

http://www.w3.org/TR/daml+oil-reference.

[77] C.J. van Rijsbergen, "In Information Retrieval," Butterworth, 1979.

[78] I. Horrocks, B. Parsia, and U. Sattler, "OWL 2 Web Ontology Language Direct Semantics,"

Retrieved on August 10, 2010 from http://www.w3.org/TR/owl2-direct-semantics.

 123

Glossary
There are several common terms and symbols, which have varying definitions in the literature, utilized
throughout this document. To avoid ambiguous interpretations and repetitive reclassification of these
terms and symbols, the following lists provide meanings and notations of the terms and symbols adopted
in this document. Several acronyms and variable naming conventions have been adopted in this thesis.
These are listed in the Acronym and Conventions section below.

Terms

anchor: An anchor is a concept in the local ontology which was identified as a match with a target
concept. Used to align ontologies and possibly perform further matches using structural or
any other means.

attribute: It is common in database literature to refer to database fields as columns, attributes, or

properties. This thesis uses the term attribute, to distinguish it from OWL properties.

bagging: Bootstrap aggregation, also known as bagging, is a method for improving the prediction

model over some data set. Bagging works by creating several models, and assigning weights
to class values that are biased against bad performing classifications, in each model.

bagging with costs: Bagging with costs is a type of bagging which considers probabilities of each

prediction model and averages those probabilities to create an overall better model.

boosting: Boosting is a technique that “boosts” the importance of individual records in a dataset by

assigning weights to those records based on whether it was correctly classified by the derived
decision tree.

class: A class is classification value used by a machine learning algorithm.

cluster: A cluster is the total area on a n-dimensional plane covered by a particular concept’s data

points for n attributes of that concept. Each cluster is broken up into sub-clusters called
granules, which define their own area in terms of rules defining a range, and data-points that
exist within that range.

concept: A concept represents a particular element in an ontology. A concept hierarchy may be Rain

 Precipitation WeatherEvent. Often this is referred to as a class. Concept is adopted here
to differentiate it from the data-mining term class, which refers to classification, as noted
above.

consistency: Consistency can refer to logical consistency, where logical theory must have no

contradictory axioms, or the consistency between patterns displayed amongst the records of
complementary datasets. The context in which the term is used will make the distinction
apparent.

effort: Effort represents the number of edges between two concepts in a single branch

(Definition 22).

granule: A granule represents a leaf node in a decision three. See Definition 3 and Definition 4 for a

detailed definition of a granule.

 124

ground term: A ground term is a concept at the lowest level of the ontology, with no sub-classes.

inverse role: An inverse role is a role which is the reverse of another role; e.g. isChild is the inverse

of isParent.

key terms: Key terms are terms that have been associated with a set of records in a database.

option tree: An option tree is a type of decision tree that, in addition to the standard decision node

which leads to a single branch, also has an option node. The option node leads to all branches
simultaneously, with each lead having a positive (correct) and negative (incorrect) score. The
best (most correct) path is chosen as the predicate for that spot in the tree.

qualified number: A qualified number is a number which restricts the range of a role for a particular

concept such as Female, as in the following example; e.g. Having at least 2 female children (
≤ 2 hasChild.Female).

local: When referring to matching any parts of a system, the primary system is referred to as the local

system, and identified by the letter L.

OWL: OWL is the Web Ontology Language, adopted by the World Wide Web consortium (W3C).

OWL 2 is the latest version of OWL.

stacking: Stacking is a technique that compares models built with different classification algorithms.

target: The system which the local system is being matched to is referred to as the target system, and

identified by the letter T.

RDFS: Resource Description Framework Schema is a general-purpose language, in XML syntax, for

representing assertions (or more generally information) on the Web, as proposed by W3C48.

Ripple Down Rule: RDR, or Ripple Down Rule is an automated technique for dealing with a

growing rule-based knowledge base. RDR updates an existing knowledge base by refining
existing rules with more refined extensions. For example, a rule such as “a square has four
sides” could be refined by attaching the rule “all sides are equal in length”, giving the more
accurate definition “a square has four sides, and all sides are equal in length”.

unqualified number: An unqualified number is a number which restricts the range of a role, without

the need to specify a particular concept; e.g. Having at least 2 children (≤ 2 hasChild).

upper ontology: An upper ontology is an ontology that describes general concepts, and often

includes common sense definitions. It is meant to support broad semantic interoperability
between various ontologies.

48 http://www.w3.org/TR/rdf-schema/

 125

Symbols
::= definition A ::= definition A is defined by the phrase or equation

“definition”.

 subsumption A B Concept A is subsumed by concept B.

direct direct subsumption A direct B Concept A is a directly subsumed by concept
B.

 reverse subsumption A B Concept A subsumes concept B.

direct direct reverse subsumption A direct B Concept A directly subsumes concept B.

{...} set elements A = {a, b, c} A is a set whose elements are a, b, and c.

{ak} set elements over k A = {ak} A is a set or subset whose elements are
uniquely indexed using k, such a0, a1, …

ω generalization method ωP(a, b) or Pω ωP or Pω are generalized version of P.

⇑ graph siblings A ⇑ B Concepts A and B are subsumed by the same
direct super-class.

 concept definition A B Concept A is defined to be equal to Concept
B.

 concept equivalence A B Concept A is equivalent to concept B.

dp data attribute equivalence a dp b Data attribute a is equivalent to data attribute
b.

⇒G granule implication Ag ⇒G AC Ag is a granule that represents a leaf node that
classifies concept AC in a decision trees.

∧ logical AND A ∧ B True if A and B are true.

∨ logical OR A ∨ B True if either A or B are true.

∩ set intersection A ∩ B Elements which exist in both set A and set B.

Π concept intersection A Π B Concept that is of type A and B.

 126

¬ logical not ¬A If A is true, then ¬A is false.

∈ set element m ∈ M m is an element of set M.

∑ summation ∑ m Sum of elements m, in some predefined set.

[0, 1] normalized range [0, 1] Continuous real numeric values in the range 0
to 1 inclusively.

 127

Acronyms and Variable Name Conventions
Any label in capital letters, such as GAP_MIN or TOP_RANK, is a user-defined constant, relation or set.
The type of value and its usage will be apparent through its name and the context within which it is used.
A user-defined variable is labelled with more than one word, and these words will be connected with an
underscore “_”. If they are not, this represents either a relation or a set. The naming convention for
relations and sets is the acronym of the relation or the set’s title. Relations are presented in an italic font.
Sets of relations have the same label as the relation, are presented in non-italic font, and have the
subscript “set”. For example, the “Close Match” relation CM is a member of the set CMset, and each set
has a formal definition. Each constant, relation and set acronym is defined below. A collection is a set of
sets, and is identified by the special Blackletter font such as CM.

C2CMset: “Local Concept To Target Concept Match” is the set of all ConceptMatch relations

(Definition 7).

CLASS_NODE_MIN_FACTOR: The minimum number of records in a decision tree leaf node.

Ensures equal precision of each leaf node, and limits the number of leaf nodes created.

CM: A “Close Match” relation represents a match based on a high ranking MRank relation

(Definition 15).

CMset: The set of all CM relations (Definition 15).

CM: The collection of all CMSubs relations (Definition 16).

CMSubs: The set “Close Match SubClasses” is a set containing all CM relations for a target concept

TC, grouped under the most general local concept, for ease of readability during verification by
the user, and is written as CMSubsTC (Definition 16).

ConceptMatch: A “Concept Match” relation represents a set of concept matches based on their

matched granules in P2RMset (Definition 6).

CPlabel: “Correspondence Proximity” is a particular characteristic of MCP, as indicated by the

subscript label (Definition 20).

CVPM: A “Child via Parent Match” relation is a match between concepts based on overlapping

granules and a “Gap To Parent Match” between their parent concepts (Definition 14).

CVPMset: The set of all CVPM relations (Definition 14).

GAP_CHECK_MIN: The MRank threshold used to determine if a “Gap Match” relation between
two concepts is an element of GMset. Ensures two low ranking matches are not included in GMset
match. See section 3.12 for an example.

GAP_MIN: The MRank gap threshold used to find a Gap Match (GM) between two concepts.

G2PM: A “Gap To Parent Match” relation represents a match between two parent concepts based

first on their children’s GM relation, and secondly on the closeness of their own MRank relation
(Definition 13).

G2PMset: The set of all G2PM relations (Definition 13).

 128

GM: A “Gap Match” relation represents a match between two concepts, highly distinct from other

matches, i.e. having MRank ranking much higher then the next match (Definition 12).

GMset: A set of GM relations (Definition 12).

L2TM: “Local To Target Matches”, a set of all selected proposed matches, grouped by local concepts

(Definition 17).

LC vs. TC: In general, local and target ontology concepts will be represented by LC and TC,

respectively. For simplicity, on some occasions concepts may be referenced by their
identifier, meaning LCX may be represented by simply X, especially in figures. When
mentioning a term used by both local and target systems, a unified scheme is used to define
AC, where A ∈ {L, T}. The letter will be defined before its use.

Lg vs. Tg: A local and target granule (Definition 3 and Definition 4).

MCP: “Match Correspondence Proximity” is a proximity measure between two matches. Used for

algorithm evaluation purposes (Definition 20).

MCPfull: “Match Correspondence Proximity - Full” is the aggregation of individual MCP measures

for each match (Definition 21). This is the final rating used to evaluate a particular configuration
of proximity measures.

LM: A “Level Match” relation between a local and a target concept at different levels of the local

ontology (Definition 10).

LMset: The set of all LM relations between local concepts and a single target concepts TC, for some

local ontology level λ, written as LMTCλ.

MS: “Match Score” is a function giving the quality of matches between a local and target concept

(Definition 9).

MRank: A “Match Rank” relation associates a local and target concept and LM relation (if one exists)

with a numeric rank, that is a normalized value in the range [0, 1] , for some local ontology level
λ (Definition 11).

MRankset: The set of all MRank relations (Definition 11).

P2RM: A “Points To Rule Match” relation represents a match between the rule and data-points of

two overlapping granules (Definition 5).

P2RMset: When referring to matched concepts LC and TC, P2RMset is the set of all P2RM relations

between granules that imply either LC or TC (Definition 6).

PROP_CLUSTER_RANGE: A factor used to expand granule rules and decrease the coverage of

data-points.

T2LM: “Target To Local Matches” is a set of all selected proposed matches, grouped by target

concepts (Definition 17).

 129

TOP_RANK_MIN: The value of a threshold that determines a “Close Match” (CM) between two
concepts, based on the rank associated with the MRank relation between those concepts.

TOP_P2P_RANK_MIN: The value of a threshold that determines if a Gap To Parent Match

(G2PM) relation is found between two concepts, based on the rank associated with the MRank
relation between those concepts.

	

	

