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ABSTRACT 

This thesis presents a 3D widget user-interface (UI), super-ellipsoid shape primitives and a 

customized volume rendering algorithm that together create a system effective for exploring 3D 

medical images and for selecting a 3D region within these images. Using a “painting” metaphor, 

the widget UI supports the fast and precise positioning of a super-ellipsoid shaped paint “blob”. 

The paint blob can be “deposited” and automatically blended with previously deposited blobs to 

form arbitrarily-shaped regions enclosing target image features. The rendering of these “focus” 

regions can be controlled separately from the surrounding contextual region, allowing medical 

experts to examine and measure image features relative to the context. The system’s core 

algorithms are designed to execute on Graphics Processing Units (GPUs), resulting in real-time 

interaction and high-quality visualizations. The focus plus context visualization system presented 

in this thesis is validated via a user study and a series of experiments.  
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Chapter 1: Introduction 

The visualization of 3D medical volume images has evolved rapidly over the past two decades. 

The emergence of powerful Graphics Processing Units (GPUs), containing hundreds of processing 

cores, has enabled the development of visualization algorithms that process these data volumes in 

parallel. This hardware advancement has provided medical professionals with the capability of 

viewing, manipulating, and exploring high-resolution 3D renderings of the data in real-time. 

Consequently, the use of these 3D visualizations for examining and measuring specific anatomical 

structures or pathologies, especially when viewed in the context of neighboring structures, is now 

an important step in disease diagnosis, treatment planning and the planning of surgeries. Direct 

Volume Rendering1 (DVR) is the standard algorithm for generating the visualizations, especially 

for CT2 scans. Expert users utilize Transfer Functions (TFs) to control the visual output of a DVR 

algorithm. A TF maps the scalar field values - commonly referred to as intensity values - stored in 

a 3D medical image to optical properties of opacity3 and color. A TF is commonly defined using 

a curve or a piecewise linear polynomial and a graphical user interface (GUI) enabling the user to 

control the curve shape (See Section 2.1). A TF GUI provides users with the ability to quickly 

select classes of anatomical structures, such as skin or bone or arteries, for rendering.  

 

                                                 

1 In computer graphics, direct volume rendering is an algorithm that samples 3D volumetric datasets along rays 

emanating from the viewpoint, mapping the sample values to a color and opacity and accumulating these color and 

opacity values to generate a final color and opacity for an array of screen pixels.  
2 Computed Tomography 
3 In computer graphics, opacity describes the degree to which an object is opaque. That is, it controls the 

transparency of an object.  
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Despite the extensive amount of research in the field of volume rendering and transfer function 

(TF) design [1], quickly defining a single TF that generates the desired view of a spatially localized 

focus region within the data volume, or of specific anatomical structures, remains a non-trivial 

task. Specifically, selecting an individual structure, a part of a structure, or an arbitrary volumetric 

region of interest (ROI) containing several target structures is more difficult with these global 

functions. This may be due to the fact that TF specification is primarily a mapping of 

ranges/characteristics of voxel intensity values4 (i.e. it is data attribute based), and thus doesn’t 

provide the user with the ability to localize specific features or regions in the volume image without 

some additional control mechanisms. These additional mechanisms, such as 2D transfer functions, 

provide more control to the user over the visualization output but often at the cost of more complex 

user interfaces that are still primarily indirect in nature. Fast and simple direct selection of a spatial 

sub-volume can complement a TF specification process by supporting separate and more easily 

defined TFs for the “focus” region within the ROI, and for the context region surrounding it. In 

particular, the separate TF can be set to visually “cut away” occluding data within the ROI in order 

to reveal interior target structures, while also providing the option of maintaining a contextual view 

of the surrounding volume. Conversely, a dedicated TF for a ROI can also be used to select and 

highlight features within the ROI using some sort of distinctive rendering style in order to aid in 

the visual analysis. Another use of a user-defined ROI is as input to a semi-automatic 

segmentation5 algorithm, in order to either constrain the algorithm or provide it with an accurate 

                                                 

4 A voxel represents a scalar field value in a 3D image. It can be considered a 3D extension of a pixel. The scalar 

field value is commonly referred to as the intensity value.  
5 Segmentation is the process of labelling voxels in an image with the goal of dividing it into multiple parts. 

Segmentation algorithms are used to identify objects and to allow for further analysis of the objects.  
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initialization, especially in noisier 3D medical images such as MR6 volumes where TF-defined 

volume rendering of un-segmented images is often less effective. This “constraint envelope” 

strategy may improve the robustness of the segmentation algorithm as well as potentially minimize 

the often tedious and time-consuming manual editing phase [2] [3] [4]. A user-defined ROI 

constraint/initialization may be especially useful in scenarios where segmentation algorithms do 

not perform well, such as segmenting objects in noisy images.  

Designing interaction techniques enabling a user to explore a volume or to quickly generate a 

contextual view by directly selecting a focus ROI or selecting a specific target structure in a volume 

rendered image is a challenging human-computer interaction (HCI) task. An interactive ROI 

selection technique needs to provide the user with the ability to overcome the problems with the 

TF specification approach by supporting functionality for the fast and controllable selection of 

objects adjacent to other objects that have been mapped by the TF to similar opacity and color 

values. Furthermore, target ROIs may vary from regularly shaped regions, such as rectangular 

blocks or spheres, to arbitrarily complex, curving shaped objects/features, or to elaborate 

branching objects such as vasculature. In addition, the TF specification may result in a volume 

rendering in which target ROIs contain several visually disconnected objects or ROIs that are 

visually occluded by parts of other structures. It is also an important requirement of interactive 

ROI selection techniques to support the fast modification of the ROI as a user is exploring the 

volume from new viewpoints. That is, visual analysis of medical images is often an iterative 

process of initial view generation and visual examination, followed by view changes or 

refinements (via volume navigation) and additional visual analysis. Finally, the interaction issues 

                                                 

6 Magnetic Resonance 



 

4 

 

are inherently tied to issues of the user’s depth perception of the target ROI as well as issues 

involving the design of appropriate supporting visual cues, as well as signifiers7 to indicate 

affordance, that guide the user’s actions during the ROI selection process. In summary, the goal is 

to be able to simply and efficiently explore, select, and optionally remove regions of any shape or 

level of occlusion, in order to examine and focus on structures and their relationship to surrounding 

structures.    

1.1 Thesis Statement 

This thesis presents an interactive view generation and ROI selection technique that is based on 

the manipulation and rendering of mathematically-compact and blend-able convex shape 

primitives known as super-ellipsoids. Specifically, a user interface (UI) design that uses 3D 

widgets for manipulating the super-ellipsoids is presented (Figure 1). The main hypothesis is that 

the combination of the 3D widget UI, blend-able super-ellipsoids blobs, and a standard TF 

interface is an effective paradigm for quickly creating useful views. The thesis will attempt to 

quantitatively evaluate the UI efficiency and accuracy, as well as qualitatively evaluate the ease of 

use, flexibility, and rendering control of the super-ellipsoid based technique and its associated UI 

for selecting and visualizing a wide range of target ROIs and anatomical structures from 3D 

medical images in order to generate effective contextual views. The 3D widget-based UI (referred 

to as a blob tool) for manipulating blobs is compared to an alternative UI based on a surface 

                                                 

7 According to Norman [55] an “affordance is a relationship between the properties of an object and the capabilities 

of the agent that determines just how the object could possibly be used”. Norman then defines the term signifier as 

“any mark or sound, any perceivable indicator that communicates appropriate behavior to a person”. Put simply, 

Norman states: “Affordances determine what actions are possible. Signifiers communicate where the action should 

take place”. Affordances are what an object can do (truth). Perceived affordances are what one thinks an object can 

do (perception). Signifiers make affordances clearer (closing the gap between truth and perception). Signifiers often 

reduce number of possible interpretations and/or make intended way of using an object more explicit.” 



 

5 

 

paintbrush [5] and to a well-known screen-based paintbrush ROI selection technique. Several 

experiments demonstrating the use of the view generation technique for creating a wide range of 

contextual views are also performed in order to further validate the hypothesis.  

 

Figure 1: A snapshot of the graphical user interface and blend-able super-ellipsoid blobs with a 

3D widget interface. 

 

1.2 Contributions 

A super-ellipsoid based interactive volume navigation and ROI selection technique allows for the 

dynamic generation of “focus plus context” views [6] in a volume rendered image. Super-

ellipsoids, referred to as “blobs” in this thesis, are defined using implicit functions and can be 

seamlessly and tightly blended to form volumetric “paint” that envelopes anatomical regions of 
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any geometry or topology in the volume image. The blobs also provide a convenient mechanism 

for interactively controlling and constraining a GPU region growing segmentation algorithm [7]. 

That is, connected sets of visible voxels belonging to a target anatomical structure are “grown” 

(i.e. selected and highlighted) from a user-selected “seed” voxel, in real time. A widget-based UI 

is used to change the position, shape, and size of the blob and thereby controls region growth 

within it. Furthermore, inside a selected ROI defined by the blobs, a special TF may be applied 

that controls color and opacity separately from the surrounding contextual region, including the 

capability of rendering all voxels within the ROI invisible and thereby allowing users to quickly 

remove occluding structures. 

This thesis significantly expands on and improves upon previous work [5] that utilized a more 

primitive, primarily spherical paint blob, along with a blob manipulation UI that utilized a data 

iso-surface “painting” interaction metaphor – which is referred to in this thesis as a surface 

paintbrush. In summary, the contributions of this thesis are: 

1. A 3D widget UI for positioning, orienting and resizing super-ellipsoid shape primitives in 

the 3D volume space. This “blob painting” UI enables blobs to be quickly manipulated 

from any scene viewpoint using “handles”. Widget handles are visible on demand (i.e. 

handle visibility is controlled with a single key press) and act as intuitive signifiers that 

flexibly and accurately guide the ROI selection process. Both data independent (i.e. 

blended blob envelopes) and data dependent (i.e. GPU region growing) voxel selection is 

supported within the same 3D widget UI, allowing for fast and flexible volume exploration 

and ROI selection in 3D images ranging from relatively clean CT scans to noisy images 

such as MR scans.   
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2. A GPU region growing algorithm [7] that is controlled via the 3D widget UI and 

constrained by super-ellipsoid blobs, enabling the user to precisely select connected 

regions of voxels.  This technique supports the highly-efficient real-time selection of 

individual objects, parts of an object, or objects with complex geometry and topology - 

such as artery networks.  

3. An “open-view” capability that supports real-time exploration, examination and selection 

of occluded structures. An auxiliary adjustable cutaway “lens” can be attached to the 

camera at one end and the blob tool at the other. This capability allows the widget-based 

UI to overcome problems with viewing and selecting deeply “buried” or hidden structures. 

The adjustable cutaway lens design creates an effective perceptual depth cue of the cutaway 

region by orienting the cut surfaces towards the viewer.  

4. A user study comparing the 3D widget-based “blob tool” UI, the previously developed 

“surface paintbrush” style UI and a standard cylinder “screen-space paintbrush” UI for 

defining a ROI. Surface paintbrush style UIs are well-known technique for intuitively 

selecting and removing outer region “layers” of voxels belonging to a specific tissue type, 

such as skin. However, due to the nature of the painting style they simulate, they may not 

be optimal for enveloping (i.e. selecting for highlighting or removing) structures with 

varying thickness. A 3D widget-based UI, on the other hand, is more volume-oriented but 

may require more user interaction to position and manipulate. Finally, the standard screen-

space paintbrush is familiar, highly intuitive and often efficient for painting and thereby 

selecting 3D objects. However, for fast modification of the ROI to support volume 

exploration, the blob tool is more flexible than the surface and screen paintbrushes.     
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5. A second part of the user study compares a 3D widget-controlled, blob constrained UI (i.e. 

the blob region grow tool) for GPU region grow selection to a non-widget UI design that 

simulates the GPU region grow selection interface in a popular and freely available volume 

rendering package [8].  The goal of this part of the study is to determine if the interactive 

widget-controlled region growing algorithm offers any advantages in terms of 

performance, accuracy and controllability.  
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1.3 Thesis Outline 

Chapter 2 provides a review of techniques for interactively visualizing and exploring 3D medical 

images. An explanation of TF-based volume rendering is provided followed by a brief review of 

existing TF based approaches. A more detailed review of 3D ROI selection algorithms and their 

associated user interaction techniques is then presented. 

Chapter 3 presents implementation details of the system, including an overview of the user 

interface, the mathematical formulation of super-ellipsoid blending, pictorial descriptions of the 

various GPU-based program algorithms (known as shaders) and data structures used. 

Chapter 4 presents quantitative and qualitative results in the form of a user study and a series of 

contextual view generation experiments in order to test the hypothesis that a combination of a 3D 

widget UI and blend-able super-ellipsoids is an effective visualization technique.  

Chapter 5 summarises the thesis work and discusses the conclusions, future work, and 

improvements. 
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Chapter 2: Literature Survey 

To gain insight into the information contained in an un-segmented volume image, it is necessary 

to be able to explore it from different viewpoints and to visualize anatomical structures “buried” 

inside it. One way this capability can be achieved is by using direct volume rendering and 

highlighting target structures using some sort of distinctive visual style. At the same time, it is 

often useful to render regions of the volume surrounding the target structures to help the user 

maintain visual context and aid their visual examination and quantitative analysis. As mentioned 

in the introduction, selecting features of interest through TF specification alone is often tedious 

and unintuitive and can still result in target features being occluded by other structures. This 

chapter will review context preserving feature visibility techniques that have been presented in the 

literature, many of which use TF specification along with an explicit user selection of a ROI. 

Before this review, the chapter will begin by providing some background on medical images and 

volume rendering via transfer functions. A summary and classification of the most commonly used 

types of TFs will be presented. 
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2.1 Volume Rendering: A Brief Review 

  
 

 
 

Figure 2: A series of 2D MR image slices is stacked to form a 3D volume consisting of volume 

elements or “voxels”. 

 

A 3D volume image is a contiguous set of 2D image “slices” acquired by Magnetic Resonance 

Imaging (MRI), Computer Tomography (CT), or Positron Emission Tomography (PET), etc. The 

set of contiguous slices form a regular volumetric grid (Figure 2). Similar to a pixel (i.e. a picture 

element) in a 2D image which can be visualized as a small square with an associated scalar value, 

each volume element, or voxel, can be visualized as a small cube with an associated scalar value 

(or intensity). These scalar values are the result of a scanning process and each value represents 

the measurement of signal intensity, such as x-ray absorption in the case of CT scans. For example, 

a CT scan creates a set of X-ray images taken from different angles. Computer processing is then 

used to create cross-sectional images, or slices, that form the volume.  
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Figure 3: Using multiple 2D projections of the volume to aid in the process of navigation and 

ROI selection in 3DSlicer [9]. 

 

As mentioned in the introduction, to visualize the data stored in the volume image, the scalar voxel 

intensity values must be mapped to a visual representation. The most common and widely used 

representation is a 2D image where the voxel values are mapped to a grayscale. Several standard 

2D views (Figure 3) are typically provided corresponding to standard imaging planes: XY (axial), 

XZ (coronal) and YZ (sagittal).  While these standard 2D slice views are still heavily used by 

radiologists and technicians, they require the mental reconstruction of a 3D anatomical structure 

from 2D projections. The user interface is also often made more complex as regions of interest 

must be marked on the 2D slice planes. Oblique slice views (Figure 3, upper right) are also often 

provided to allow radiologists to create approximately orthogonal cross-sectional views of curving 

anatomical structures and more easily perform this mental reconstruction and region of interest 

specification.  
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The multiple 2D views, however, often complicate user interaction and make it difficult for the 

user to understand the spatial relationship between the various 2D and 3D views. Despite the 

extensive training of medical image specialists to understand the 2D slice views, a 3D rendering 

of the volume image is cognitively simpler to understand and displays a large amount of perceptual 

information familiar to humans. Therefore, examining structures directly in this space is now 

standard practice. For this reason, user interfaces for interactively viewing and manipulating 3D 

data using traditional 2D mouse input device is a heavily researched field.  

As mentioned in the introduction, rendering a 3D view of the anatomical structures buried in the 

3D volume on a 2D screen window is now commonly performed using volume rendering and 

expert users manipulate TFs via GUI’s to control the visual output of the volume rendering 

algorithm. Direct volume rendering is a computationally intensive task that may be performed in 

several ways. In the next section, a volume rendering technique based on ray casting will be 

outlined. It should be noted that volume rendering is just one type of visualization technique that 

is used to create 2D projections of discreetly sampled 3D datasets. It is fundamentally different 

from another commonly used approach which is based on generating an intermediate surface 

representation - such as connected triangle meshes - from the 3D scalar field and then rendering 

these surfaces.  
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2.2 Ray Casting 

 
Figure 4: Rays are cast through a volume and field values are sampled at regularly spaced 

intervals [10]. 

 

Ray casting is an image-based volume rendering technique. Rays are cast from the current view 

position through each screen pixel and traverse the volume (Figure 4). At (typically) regular 

intervals along the ray, the scalar intensity value of the volume is sampled. As the sample point 

may be between voxels, interpolation - for example tri-linear interpolation - is used to calculate an 

accurate field value.  Higher-order interpolation can also be used for improved accuracy at the 

expense of additional computational cost. A user-defined TF is then used to map the intensity value 

to a RGB color and an opacity A. In addition, the intensity gradient is calculated at the sample point 

position using a finite difference approximation. This gradient represents the orientation of a local 

surface within the volume (i.e. a surface normal vector). A light source is typically positioned at 

the location of the viewpoint and this light source position, the sample point position, the normal 

vector and the color and opacity value outputted by the TF are used in an equation of a local 

illumination model [10] to shade the sample point position (i.e. determine a final color). The final 

color and opacity of the current sample point is then added to the current total color and total 

opacity for the ray and associated screen pixel.  This front-to-back color and opacity accumulation 
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process continues until the ray exits the volume or until the opacity reaches a pre-defined threshold 

(known as early-ray termination).  

The color and opacity accumulation process can be described by the following recursive equation 

[10]: 

 
{
𝒄𝑖

∗ = 𝒄𝑖−1
∗ + (1 + 𝛼𝑖−1

∗ )𝛼𝑖𝒄𝑖

𝛼𝑖
∗ = 𝛼𝑖−1

∗ + (1 + 𝛼𝑖−1
∗ )𝛼𝑖

 

 

(2.1) 

 

where 𝒄𝑖 = (𝑟𝑖, 𝑔𝑖, 𝑏𝑖)  and 𝛼𝑖 (alpha) are the current color and opacity, respectively, at the sample 

point 𝒑𝑖, and 𝒄𝑖
∗ and 𝛼𝑖

∗are the accumulated color and opacity. More generally, Equation 2.1 can 

be viewed as an alpha compositing operation that combines the colors of the sampled ray points 

using the alpha opacity values as weights to achieve partial or full transparency. Equation 2.1 is a 

discrete approximation to the continuous light emission-absorption volume rendering integral 

equation which defines the light intensity after traversing the ray between two points on the ray. 

For an overview and introduction to volume rendering, the reader is referred to Engel et al. [11].  
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2.3 Transfer Functions 

 

Figure 5: (a) A 1D TF specifying color and opacity8 values. The gray background represents the 

histogram of binned scalar voxel values. 

 

This section provides an overview of TFs in volume rendering. For a recent and complete review, 

the reader is referred to the recent survey paper [1]. The simplest form of a TF is a 1D function 

that maps scalar voxel values to color and opacity (Figure 5). Polynomial curve widgets are used 

to interactively assign voxel intensity ranges to a color and opacity. The polynomial curves can be 

piecewise linear or higher-order. Typically, a histogram is pre-computed in which the horizontal 

axis corresponds to every scalar intensity value found in the volume image and the height above 

the horizontal axis depicts the number of voxels with that intensity value (i.e. the frequency of 

occurrence). The gray background in Figure 5 is a visualization of the histogram.  The user can 

manipulate (using a GUI) the curve and form a peak around a range of voxel values. The vertical 

axis of the TF represents the opacity assigned to a curve x-axis value (i.e. a voxel intensity), with 

                                                 

8 In computer graphics opacity describes the level of a material’s impenetrability to light. 
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the opacity varying from 0 to 1. A color band at the top of Figure 5 can be manipulated, via GUI 

controls, to assign an RGB color to a voxel intensity value. This 1D TF GUI interface is similar in 

most volume visualization software packages. For example, Figure 6 shows the TF interface for 

ImageVis3D [12].    

 

Figure 6: An example of a 1D TF and the resulting volume rendering of a CT volume [13] in 

ImageVis3D [12]. Color and opacity are assigned to voxel ranges using curve widgets (for 

example, the red curve in the figure). The gray background underneath the curves represents the 

histogram of binned scalar voxel values. 

 

  

Manipulating a simple 1D TF can be sufficient to generate a desired view of a data set, especially 

if the data is relatively noise free. However, it is often the case that such a TF cannot be used to 

visually separate some types of tissues (for example, arteries and bone) due to their overlapping 

scalar intensity values. Furthermore, medical data sets are derived from a scanning process and 

therefore the measurements are often noisy. Finally, partial volume effects9 and intensity non-

                                                 

9 The partial volume effect is the lack of contrast in an image between two neighboring tissues due to the finite 

resolution of the medical scanner. The result is more than one tissue type measurement contributes to the field value 

of voxels near the tissue boundary.  
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uniformity (known as field bias10 [14]) can occur. These factors make it difficult to correctly label 

and therefore visually separate different tissue types with a 2D histogram and a 1D TF. One 

possible reason for this difficulty is there is no local spatial correlation between the features in the 

histogram and specific anatomical structures in the volume.  

 

Figure 7: A 2D histogram of voxel intensity values vs intensity gradient magnitudes in 

ImageVis3D [12]. Some regions and boundaries are selected and assigned different colors. The 

resulting generated image is on the right. 

 

Many 2D and multi-dimensional (MD) TFs have been proposed to overcome the problems with 

1D TFs. For example, a common 2D TF takes as input not only the voxel intensity values but also 

the gradient magnitude at each voxel location [15]. Figure 7 shows a TF where the gradient 

magnitude is used to modulate the opacity such that interior homogeneous material regions are 

supressed, and material boundaries are enhanced, thereby improving visual perception of the 

volume rendering. A 2D joint histogram with voxel intensity values plotted along the horizontal 

                                                 

10 Field intensity non-uniformity arises from the imperfections of the scanning process and results in a variation in the 

intensity of the same tissue at different location within the image. 
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axis and gradient magnitude values on the vertical axis is shown in the left of Figure 7.  The end 

regions of an arch in the histogram visualization correspond to the homogeneous regions while the 

top parts of an arch represent maximum gradient magnitude regions and therefore correspond to 

material boundaries. The rectangles in Figure 7 represent widgets that allow the user to 

interactively select materials and material boundaries and assign to them color and opacity. 

Unfortunately, Figure 7 also illustrates how adding dimensions to a transfer function UI adds 

complexity and comprehension difficulty. Rectangular regions must now be adjusted to edit the 

visualization and the 2D joint histogram is not as intuitive as the histogram used in the 1D TF.  

One of the problems with 2D TFs utilizing gradient magnitude is that material values and gradient 

magnitude values can still overlap and selecting features on a 2D histogram can be unintuitive. 

Therefore, much research has been done using MD TFs that consider additional voxel intensity 

(first and higher-order) derivative attributes, as well as other types of computed data attributes. 

However, the resulting MD TFs create difficult user interface design challenges both in terms of 

interaction and comprehension, as is suggested in Figure 7. Examples of data attributes are the use 

of curvature measures [16], voxel intensity statistics that characterize local neighborhood around 

each voxel [17], and the use of scale by computing a per voxel scale field characterizing the size 

of a local feature [18]. Other researchers attempt to address the TF user interface visual complexity 

issues for MD TFs by aggregating the extra attributes. For example, clustering algorithms can be 

applied to the histogram of voxel intensity values [19] and the TF interaction and visualization can 

be simplified such that the user selects and weights these clusters to generate the volume rendering. 

Other researchers simplify TF design by finding meaningful structure in the data, for example by 
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using machine learning techniques on MD data attributes and mapping the lower dimensionality 

structured information to each voxel in the data set [20]. The TF is then applied to this map.  

  

2.4 Focus plus Context Views - Utilizing Spatial Information 

In summary, a large amount of research has been carried out to create UI’s and TF’s that enable 

medical professionals to generate insightful volume renderings of complex volume images, and 

much success has been achieved. In general, many 1D TF’s and 2D TF’s do not utilize global or 

local spatial information. However, how much spatial information is needed is perhaps task 

dependent [1]. For example, for tasks such as surgical planning for a brain tumor, it is beneficial 

to allow the surgeon to spatially localize and highlight target features or anatomical structures so 

that they can be viewed and measured with respect to surrounding structures. Formally, focus plus 

context visualizations attempt to visually combine a user-selected local spatial region of primary 

interest (the focus) with the surrounding information — or context — into a single display [6]. In 

a general sense, the focus region is differentiated from the context through the use of space, 

opacity, and color et cetera. In the context of volume rendering, a separate TF is used within the 

focus region, providing the possibility of a simpler UI design.   

One of the most common focus plus context techniques is to make occluding objects semi-

transparent thereby revealing hidden objects [21] [22]. For surface mesh data, context can be 

preserved by reducing the transparency of occluding objects according to the distance to the outline 

of the transparent object, where the outline typically consists of silhouette lines and is therefore 

view dependent [21]. For un-segmented volume data, the opacity of a sample point along a ray can 

be controlled by a function of shading intensity, gradient magnitude, distance to the viewer, and 
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previously accumulated opacity [23]. Two user settable parameters allow the user to control the 

depth of the transparency effect (higher values reveal more of the volume interior) and the 

sharpness of the transition between transparent and visible regions. In general, the use of 

transparency is limited – it does not provide a strong visual cue of the depth of the hidden objects 

and it can be visually confusing if there are multiple overlapping layers of semi-transparent 

surfaces.  The use of a distance function as part of the overall TF specification does take spatial 

information into account. However, the distance functions are typically radial in nature and do 

necessarily provide much local spatial control.  

In [24] a voxel classification scheme is used based on the ambient occlusion of voxels. Ambient 

occlusion is equivalent to finding the centroid of the weighted histogram of intensities around that 

voxel. The authors argue that most volumes (e.g. CT or MRI) contain occlusion patterns that 

encode the spatial structure of features within the volume. A 2D TF is designed to incorporate the 

ambient occlusion information, leading to better control over the separation of interior features 

from exterior occluding features and from neighboring features with a similar intensity profile.  

Another advantage of the ambient occlusion information is it is easily understandable by medical 

professionals. 

2.4.1 Focus plus Context Views using Explicitly Defined ROIs 

Many researchers have developed techniques to generate focus plus context views where the focus 

region (i.e. the ROI) is more explicitly defined with a convex shaped lens region [25] [26] [22] 

[27] [5] [28]. The lens geometry is often a cylinder, sphere or cone or some other compactly 

defined mathematical function. For example, Zhou et al. [25] used focal region defined by a center, 

radius and a distance function where the opacity of a voxel is based on its distance to the focal 
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center. The use of masking also enables the effect known as a “Magic Lens” or “Magic Lantern” 

[27] where the voxels inside the lens are ignored or highlighted. For example, Monclus et al. [27] 

uses a second TF to visualize a cone-shaped ROI in a way that is distinct from the surrounding 

material. Similarly, Ropinski et al. [29] uses a 3D convex shaped lens to define and render a 

volumetric focus region using non-photorealistic rendering. Tappenbeck et al. [30] uses distance-

based transfer functions to hide or emphasize structures based on their distance to a reference 

structure. Kirmizibayrak [31] uses a polygonal object to define the boundaries for the focus Magic 

Lens sub-volume and also supports multi-modal rendering within this sub-volume. Burns [32] 

defines a cutaway region using two user-defined angles, both measured with respect to viewing 

direction ray. The larger of the two angles separates a base opaque region (the context) from a 

focus region. The smaller angle controls the transition of opacity within the focus region. Any 

voxels along the rays cast from the eye, where the angle between the ray and the viewing direction 

ray is less than the smaller user-defined angle, are rendered transparent (clear). The opacity of 

other voxels in the region between the clear region and the base region is smoothly transitioned to 

fully opaque. Similar to some of the work presented in this thesis, Bruckner and Gröller [33] uses 

a 3D volumetric painting approach with a 3D Gaussian lens.  

 

Lenses realized with super-ellipsoids have also been used by other researchers, albeit often in more 

restricted ways, for volume image exploration and ROI selection. Similar to the super-ellipsoid 

lens presented in this thesis, Luo et al. [28] uses a super-ellipsoid distance function to define their 

focal probe region. Within this region, a different rendering style may be used than in the 

surrounding context. They also incorporate a view-dependent cone region to cutaway occluding 

voxels in front of the focal probe. Radeva et al. [34] also uses a super-ellipsoid lens and 
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incorporates an on-demand 3D image slice view into the lens. The image slice supports the 

rendering of a different modality image, providing the ability to simultaneously display mixed 

modalities. Both of these research works share similarities with the super-ellipsoid lens presented 

in this thesis. However, in this thesis the blob tool can act as a “lens” and multiple super-ellipsoid 

paint blobs can be deposited and smoothly blended to define a complex–shaped region (Section 

3.2.1). As mentioned in the introduction, this work can be considered an extension of [5]. However, 

unlike the work presented in [5], in this thesis the super-ellipsoid blob tool can be used to constrain 

and guide a region growing operation to segment complex visible structures such as arterial trees 

and uses a more advanced widget-based UI. 

Another issue with a convex lens approach is the target region/object may be occluded (i.e. hidden) 

by other objects. In this thesis, a user-controllable view-dependent auxiliary lens is attached to the 

blob tool and generates cutaway views in front of the blob to provide enhanced depth perception 

of target objects. Luo et al. [28] also employs this strategy although in this thesis the shape of the 

auxiliary lens is not restricted to a cone. The lens shape is configurable and is designed to provide 

depth cues via the cut surfaces of the occluding objects such that the relative position and depth of 

the target object is easier to perceive (see Chapter 3, Section 3.1.5).    

 

2.4.2 Selecting a Complex-Shaped ROI as a Focus Region  

Interactive selection of complex-shaped 3D ROI selection techniques can be categorized in several 

ways. One categorization is data dependent techniques versus data independent techniques. An 

interactive data independent technique specifies a ROI spatially (i.e. geometrically). A data 

dependent technique uses data attributes, such as voxel intensity or voxel gradient magnitude, to 
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label voxels as part of the same structure. This segmentation process is a heavily researched field 

in the world of medical image analysis [35] [36] [37] and advanced segmentation algorithms are 

often required to select structures in noisy images. Advanced segmentation algorithms are beyond 

the scope of this thesis. Instead, simpler semi-automatic highly-parallel GPU-based segmentation 

algorithms, such as voxel region growing, can be used with great effect in volume rendered images 

such as CT scans and MR scans to quickly define a ROI and generate a contextual view for 

previewing and examining of a target region. These techniques may be sufficiently accurate to 

perform a visual analysis of structures by quickly and iteratively generating contextual views from 

different viewpoints and of different spatial cutaway shapes and extents. Measurement tools may 

then be used to establish, for example, the 3D position and extent of an aneurysm. As mentioned 

above, for more detailed measurements of specific target structures in noisier volume images such 

as MR scans, advanced segmentation algorithms – both semi-automatic and automatic - are 

typically required. However, as mentioned in the introduction, a user-defined “envelope” region 

that surrounds a target structure can often be used to improve the robustness and efficiency of 

semi-automatic algorithms [4]. 

Geometric techniques that are primarily based on user interactive spatial specification of a ROI 

can take many forms. The advantage of these techniques is that they can be applied to any volume, 

regardless of noise. For example, a 3D ROI can be created by defining a 2D ROI on successive 

image slice planes and then merging them to form the 3D ROI [4].  

Geometric approaches to focus region specification, while noise independent, places the emphasis 

on the user to navigate to a region of interest and define an envelope. Hence, the effectiveness of 

the spatial localization hinges upon the user interface. A simple, intuitive UI that is flexible enough 
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to define desired regions is the goal. A common strategy to deal with the occlusion problem is to 

cut away, deform, or make the occluding parts of the volume semi-transparent in such a way that 

the features of interest become visible.  

2.4.3 Categorizing Complex-Shaped ROI Selection Techniques  

Techniques for interactive geometric specification of a ROI can also be categorized based on the 

underlying interaction metaphor used. Such a categorization can be useful for gaining an overall 

insight into the task. Outlining (or sketching), painting, sculpting, and deforming are among the 

most common metaphors used. In the following paragraphs we briefly describe these interaction 

metaphors and provide illustrative examples from the literature. It should be noted that many of 

the research works referenced below contain aspects of two or more of the categories within their 

interaction metaphor. Nevertheless, for simplicity, each referenced work is slotted within a 

particular category. 
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2.4.4 Outlining/Sketching 

 

Figure 8: Outlining interaction metaphor used in LiveVolume [8] to outline the sternum. From 

left to right: 1. Original 3D visualization. 2. Create an outline of the sternum using LiveVolume’s 

[8] region select tool. 3. Voxels outside of the contour are removed. 4. The scene is rotated to 

reveal the additional voxels selected by the contour. 5. Refine selection by creating another 

contour around sternum. 6. Repeat process until only sternum is selected. 

 

In a tracing or outlining interaction metaphor for ROI selection, the user draws/outlines an accurate 

contour on the screen, or on a plane defined within the volume image, or even directly on the object 

surface, to delineate a 2D region [38] [39] [8] [40] [41]. To create a 3D region, several techniques 

can be used. The contour can be extruded – i.e. copied and translated in depth and then connected 

to the previous contour. The extrusion direction is often in a direction orthogonal to the viewing 
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plane. Alternatively, when outlining on the screen, the screen pixels contained inside the contour 

region can be used as a “mask” in screen space and any visible voxels encountered along rays of 

the volume ray caster during volume rendering are projected onto this screen space. Any voxels 

inside the mask region are selected. Finally, tracing/outlining may also be performed on multiple 

2D slices [42] [3], either manually or semi-automatically, where a subsequent contour stitching is 

required to connect adjacent contours and form the 3D ROI. Similarly, in a contour sketching 

interface, the user quickly draws line/curve strokes on the screen [40], on the data surface [43], or 

on a series of 2D slices [4]. These strokes may overlap [44]. An algorithm then automatically 

connects these primitives to form a contour.  Similar to outlining, these contours are then connected 

[4], or “inflated” [44], to form a 3D surface envelope. Sketching actions tend to be quick, rough 

approximations and typically allows a user to introduce protrusions and bumps and other spatial 

features on the 3D ROI in a progressive manner.  

While tracing/outlining/sketching a 2D region on the screen/plane is simple, intuitive and precise, 

extending this region to 3D using a 2D input device (e.g. a mouse) so that it selects target objects 

in a 3D volume rendering is a more complex task.  The user begins by rotating the 3D volume 

rendered view of the data such that the target region/object to select is visually separated from the 

(Figure 8) context region. The user traces around the object and extracts the region inside the 

contour. This scene rotation and outlining process is repeated, progressively refining the 3D ROI. 

While an individual tracing action itself is fast and precise, the increased cognitive load11 on the 

user of rotating the volume to find views that separate the target ROI from the rest of the volume, 

along with the subsequent tracing action, can result in less efficient and more difficult selection in 

                                                 

11 Cognitive load refers to the mental effort imposed on working memory in any one instant.  
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some scenarios. Controlling the depth of the 3D ROI is also problematic. Most screen space 

techniques, for example, simply set the depth of the 3D ROI to the far side of the volume image 

and the user can only see the selected 3D ROI shape after by scene rotation. Furthermore, the 

efficiency of the tracing interaction itself depends on the complexity of the target shape. If a 

mistake is made, the current outline is typically discarded and a new one generated. That is, there 

is no facility inherent to outlining for 3D ROI shape editing. Outlining on multiple slices may also 

complicate the interaction - especially if the slices are arranged on a curving extrusion path or if 

some of the slices are orthogonal to others [42] [3]. Finally, outlining/sketching plus 

stitching/extruding 3D shapes with complex topology is also inherently difficult and therefore 

often not supported. The above issues may negatively affect ease of use, control and flexibility of 

the technique. Fundamentally outlining/sketching is progressive, multi-stage process where the 

selection is observed at the end of each stage to determine if it is complete. Thus, while this 

approach is useful for selection in many scenarios, it is not as appropriate for fast 3D ROI 

refinement required for volume exploration. Efficient volume exploration via selection requires a 

technique that supports fast, fluid instantly observable changes to the 3D ROI. 

2.4.5 Volume Clipping and Sculpting 

A sculpting interaction metaphor simulates cutting/sculpting tools with convex-shaped tool “tips” 

[45] [46], such as spheres, cylinders, rectangular blocks, and super-ellipsoids. Any voxels inside 

the tool tip are selected and sculpted away. Progressive cuts can be achieved, analogous to a 

sculptor with a chisel carving away pieces of stone. That is, rather than selecting voxels, sculpting 

typically attempts to reveal structures inside a volume by physically removing parts of the volume 

that otherwise would obstruct them. Typically, sculpting style interactions are performed directly 
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in the volume space, sometimes using a high DOF input device to position and orient the tool tip12 

[45] or using a 3D widget interface if a mouse is used. A classic example of sculpting is the work 

of Weiskopf et al. [45] to cut away parts of a volume by using various geometric primitives and 

depth test algorithms. Sculpting style interactions are familiar and easily understood by users and 

this interaction technique can be quite effective when cutting away regular shaped regions. One 

problem with sculpting interactions is hidden target voxels can be inadvertently removed resulting 

in an undo-redo sculpt sequence. Consequently, this scenario may result in the user using small 

tool tips when accurate ROI boundaries are desired in order to avoid undoing and re-sculpting. 

Another issue is perception – the progressive cutaway can make it difficult to perceive the extent 

of material removed – especially if the material has similar appearance to the surrounding 

structures.   

2.4.6 Deforming 

Directly deforming (i.e. pushing and pulling like kneading dough) occluding parts of the data 

volume out of the way, or deforming a supporting geometric model that such that it envelopes or 

separates occluding regions, is another type of ROI selection interaction metaphor [47] [48] [49]. 

Typical deforming actions include pushing, pulling, stretching, or peeling [50]. The underlying 

data volume or supporting geometric model is often treated or modeled as a flexible material. 

Generating a ROI using a deformation approach can be quite effective in some ROI selection 

scenarios. The pushing/pulling actions of the model are easy to perform, intuitive and can 

efficiently remove large occluding volumetric regions, especially when the flexible geometric 

                                                 

12 High DOF input devices are not explored in this thesis. 
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model is constructed as a deformable clipping surface [47]. The deformable material can be 

interactively “edited” to quickly change the ROI. However, deforming a supporting geometric 

model to select individual objects in the volume - especially curving, twisting, and/or elongated 

objects, or objects with varying thickness - may negatively affect ease of use and control as well 

as efficiency. In general, deformation may be better suited for separating/enveloping regions rather 

than specific objects. 

2.4.7 Painting 

 

Figure 9: An illustration of the screen painting technique used in the system. From left to right: 

1. Initial scene 2. Screen painting mode enabled. 3. Perform paint stroke. 

 

Selection via painting typically defines a “brush” as a circular area along with a user-specified 

depth/thickness of the brush to form a cylindrical region. Painting actions are typically constrained 

such that the brush slides along some surface - most often an iso-surface of the data generated by 
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the TF specification - mimicking real world painting [31] [7] [33] [51]. Painting is also commonly 

performed directly on other surfaces such as the screen plane (Figure 9), an image slice plane or 

some other user-defined painting plane [5]. As the brush slides along a surface, paint is 

continuously deposited and voxels inside the painted region can be rendered semi- or completely 

transparent. Depositing paint can mean planting individual paint “blobs” of a user-settable 

thickness which automatically smoothly merge with overlapping blobs to form a thick layer of 

paint [33] [5]. Alternatively, as the circular brush slides on the iso-surface or on the screen, a 

continuous mask region is created. During volume ray casting, if any voxels encountered along a 

ray project onto the surface/plane such that they are inside the mask region, they are selected and 

highlighted using the paint color [7]. Painting style interaction is simple, fast and intuitive as the 

underlying painting metaphor is familiar and easily understandable. Selection techniques based on 

painting are also typically quite flexible and easily support complex shaped regions. Painting often 

works very well for removing layers of voxels or “thin shell” ROIs [7] such as the skull region in 

a CT scan. Painting readily supports a previewing capability by using the brush as a “lens” [33] 

[5]. However, painting on a data iso-surface requires relatively noise-free volume images (i.e. to 

generate “clean” iso-surfaces) and therefore is primarily useful only for CT scans. Otherwise, the 

“paintbrush” can inadvertently stick to small disconnected pieces of the iso-surface which can be 

quite distant from the target object surface. A second issue is 3D ROI depth specification. This 

issue is also true when painting on the screen or on a painting plane. If the target structure or region 

is of varying thickness, then predefined paintbrush depth specification cannot be used and frequent 

dynamic adjustments of paintbrush depth/thickness affect ROI painting efficiency. If ROI 

boundary accuracy is required, the user may need to erase/undo already painted regions that have 

“spilled over” into neighboring structures behind the ROI. One solution is to use smaller thinner 
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brushes and paint over target regions multiple times, progressively removing “material” and 

progressively revealing deeper layers of the ROI [7]. This works well when the goal is to remove 

the occluding layers. However, for selecting deep occluded structures, the paint selection technique 

is not as applicable. For this reason, painting style selection is often combined with an interactive 

region grower or other segmentation algorithm that can select these deeper, occluded structures 

once parts of them are revealed via the painting actions (see Section 3.1.1). 

 

2.4.7.1 Volume Painting Using Blended Spherical and Super-Ellipsoid Blobs 

As mentioned in the introduction, in previous work Faynshteyn and McInerney [5] also used 

blended blobs to isolate, via painting, regions of interest. These blobs were primarily spherical in 

shape and the blending algorithm also generated a bulging effect when blobs were blended – 

sometimes resulting in unintuitive ROI selection. While super-ellipsoid blobs were also supported, 

the mathematical formulation of the super-ellipsoid and blending was not well-developed. There 

was also no open-view capability – making it difficult to select an occluded ROI. The result was 

that the technique was better suited to removing layers of tissue to reveal underlying structures. 

Viola et al. [33] describe a framework called VolumeShop that supports illustrative volume 

rendering techniques. It includes a surface-constrained 3D painting capability that uses a 3D 

Gaussian paintbrush to deposit Gaussian blobs which can be blended to form the 3D ROI.  

However, Gaussians have less shape control than super-ellipsoids and also suffer from unintuitive 

bulging effects where the blobs blend. 

In this thesis, the combination of the 3D widget-based UI and super-ellipsoid blobs contains 

aspects of both sculpting and painting interaction styles. Similar to sculpting-style tools, the super-
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ellipsoid lens used in this work acts as a cutting tool or as a highlighting tool. Unlike most 

sculpting-style tools however, the super-ellipsoid blobs can be deposited and smoothly blended 

like paint, if desired, to create a smooth envelope of paint defining an arbitrarily shaped ROI. This 

feature allows the paint envelope to be used as an initialization of a segmentation algorithm, if 

desired. It is also useful to tightly envelope a target object to better control the volume rendering 

within. A widget is an indirect interaction technique (slightly less direct) but has certain 

advantages. In Chapter 4, we compare this approach to a iso-surface painting style selection as 

well as to a standard screen space painting approach. The advantages of 3D widget- based 

techniques are they can provide precision and control and if the visual signifiers (i.e. the handles) 

are well designed, then they are simple and intuitive to use. The main disadvantage of 3D widgets 

is visual clutter and the serial nature of the widget positioning. 

2.5 Interactive Selection Techniques for Data Dependent Focus Regions or Image Features 

Interactive segmentation algorithms such as GPU based 3D interactive region growing are a fast 

and effective way of selecting objects in relatively noise-free CT scans and MR scans. The 

algorithm starts from a user selected “seed” voxel as well as user-defined intensity range, and 

optionally a user-defined voxel gradient magnitude range. Voxels that are spatially adjacent to the 

seed voxel and are within the user-defined value ranges are selected. These “child” voxels then 

become new seed voxels and the algorithm repeats until no new child voxels are added. The 

algorithm can typically also be under interactive control (using a mouse movement, for example 

[8]) by enabling some control over the growing process. Furthermore, it is also common to support 

interactive shrinking by unselecting voxels back to a previous voxel set. Some implementations 

further allow for rough control over the spatially localized growing/shrinking of the selected voxels 
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[7]. Region growing is a noise sensitive algorithm so for noisier volume images, such as MR 

images, it is often not possible to generate an accurate segmentation, especially for structures 

buried deep within the volume. In these cases, more sophisticated semi-automatic or automatic 

segmentation algorithms are required.   

The volume visualization package LiveVolume [8] also supports fast GPU region growing to select 

complex connected voxel regions. The UI is simple and effective – an initial point is selected, and 

the user uses the mouse to control the growing/shrinking of this region in 3D by moving the cursor 

away from, or towards this initial “central” point. This type of region growing control is compared 

to the widget plus super-ellipsoid constrained region growing of this thesis in the user study (see 

Chapter 4). Guo and Yuan [52] also use “region growing” techniques – i.e. based on topology 

(connectedness) of voxels values. In this work, all connected regions are preprocessed and 

organized into “branches” that can be instantly selected by simple painting on the voxels. Region 

growing algorithms are susceptible to noise and the preprocessed regions may inadvertently 

contain voxels from neighboring features or structures. Therefore, some user control is given up 

for automation and speed. Chen [53] [7] also supports fast GPU region growing. They use a sketch-

based UI where the user sketches curves on the screen. These curves are projected into the data 

volume and any iso-surface voxels with a value that is within a user-defined range are selected as 

seed voxels. Reversing the growth is supported (i.e. region shrinking) and localized region 

shrinking is accomplished by sketching additional curves on the screen to indicate regions that 

should be shrunk.  

The goal of Chen’s work is primarily segmentation of a target object whereas the goal of the work 

in this thesis is primarily dynamic contextual view generation. The idea is to quickly select target 
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regions and apply a separate TF to highlight or remove them. The widget UI is designed to 

interactively modify the selection to quickly generate contextual views from several viewpoints in 

succession. In this thesis, having the region growing functionality controlled by the same 3D 

widget UI as the geometric 3D ROI selection allows a user to precisely select regions of connected 

voxels that might be otherwise difficult and/or time-consuming to isolate using only the geometric 

approach. The two techniques are complementary.  

2.6 Interactive Navigation and Manipulation Interfaces for 3D Images 

Generating contextual views by utilizing spatially localized information within a volume rendering 

requires the user to define a local region. This commonly means that the user needs to quickly and 

easily interactively specify the position, spatial extent, shape, and optionally the orientation of the 

local region. Specifying these parameters requires the ability to move in and around the volume, 

known as navigation13. One of the primary navigation techniques for volume images is 3D rotation 

of the volume. This interaction is most commonly based on a virtual trackball such as the well-

known Arcball [54]. Other than volume rotation, moving around in the volume image, by 

specifying the position of a focus lens, is also a primary interaction. Orienting and scaling the lens 

is also a common requirement.  

There has been some research done in studying high degree of freedom input devices14 for 

navigating, exploring, and selection in 3D medical images in a desktop environment [45] [51]. 

However, the mouse, a two degree of freedom (2-DOF) input device remains as the preferred 

                                                 

13 For an overview of navigation in 3D virtual environments, the reader is referred to [62]. 
14 A review of high DOF input devices is beyond the scope of this thesis. 
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choice due to its speed, high precision, ease of use, and accessibility. Comfort is also an important 

factor – when using a mouse, the user’s arm rests on the desk and the large muscle groups of the 

shoulder, which are more easily fatigued, are not activated. However, since the volume image is a 

3D space, a mapping must occur between the 2D input and the 3D output. Additional input in the 

form of modifier keys and/or the mouse wheel are often used to implement this mapping.   

As described in the section on 3D ROI selection via painting, another technique for navigating in 

a volume image is to use the mouse to pick points on a volume rendered data iso-surface [5]. In 

addition, the surface normal vector can be used to orient a ROI delineator such as a convex lens. 

However, as mentioned, this technique is noise sensitive. While an iso-surface position 

specification can be used for translation and orientation, scaling of the ROI requires a separate 

input mode. In addition, only visible surfaces can be utilized, and it is difficult to pick points on 

the surfaces of thin structures such as arteries. Another well-known volume positioning technique 

is to use the user-controlled camera view direction along with a depth specification (via the mouse 

wheel, for example) to establish an oriented plane. The mouse can be used to pick points on this 

plane [5]. Faynshteyn and McInerney [5] use a combination of data iso-surface lens positioning 

and camera view plane lens positioning.   
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Figure 10: Translational, rotational and scale widgets of the 3DS Max15 modeling package. 

 

Another common technique for 3D volume navigation and manipulation is the use of 3D widgets. 

Widgets present to the user a proxy geometry in the form of “handles” (i.e. signifiers [55]) whose 

visual appearance suggest to the user their affordance (Figure 10). Translation, orientation and 

scale handles are presented as separate widgets or combined into a single widget. By selecting the 

handle and associating a shape primitive (e.g. a lens) with the handle, the primitive can be 

translated, oriented and scaled. The use of widgets is standard in modeling packages, game engine 

software, and visualization packages. Widgets are a precise and data independent 3D navigation 

and manipulation technique. The main problem with 3D widgets is visual clutter. In addition, the 

same strength of 3D widgets – data independence – can also affect the efficiency of the technique 

for translating and orienting a primitive (e.g. a lens) with respect to a target object. Control over 

scaling a lens is, on the other hand, quite efficient and intuitive. In this thesis a 3D widget UI for 

lens manipulation is proposed that also is integrated with data iso-surface positioning approach. 

                                                 

15 3ds Max, https://www.autodesk.ca/en/products/3ds-max/overview 
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The widget UI can be used alone or in concert with data iso-surface picking, enabling its use on 

even noisy data sets. The UI is detailed in Chapter 3.  

Chapter 3: Methodology and Implementation 

 

Figure 11: An example of the range of shapes created by the super-ellipsoid blob tool. The 

Super-ellipsoid shape is controlled by a few intuitive parameters via GUI sliders. For example, 

the blob can take the shape of a sphere, cylinder, cube, or anything in between. 

 

In the previous chapter a summary of TF based techniques as well as a summary of 3D ROI 

selection techniques was presented. This chapter describes the mathematics and implementation 

details of the widget-based blob tool for volume exploration and ROI selection.  The system 

combines volume rendering, a super-ellipsoid “blob tool” (Figure 11), a super-ellipsoid blending 

algorithm, and a super-ellipsoid constrained region growing algorithm with an intuitive and 

precisely controllable 3D widget UI to support the flexible real-time generation of focus plus 

context views. This chapter is divided into two sections; a description of the user interface 

followed by the implementation details describing the mathematics, algorithms and data 

structures used. 
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3.1 User Interface 

 

Figure 12: A snapshot of the graphical user interface of the volume rendering system presented 

in this thesis. 

 

The graphical user interface (GUI) (Figure 12) of the system was developed using Qt16, a cross-

platform application framework and widget toolkit for creating classic and embedded GUIs. The 

design of the interface is also loosely based off well-known 3D computer graphics modeling 

software such as Blender17, and game engines Unity18 and Unreal19. 

                                                 

16 Qt, http://qt-project.org 
17 Blender, https://www.blender.org/ 
18 Unity, https://unity3d.com 
19 Unreal, https://www.unrealengine.com 
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3.1.1 Painting Modes 

 

Figure 13: The three painting techniques supported in the system. From left to right: blob tool, 

blob region grow tool, and screen brush. Note the different regions highlighted by each tool.   

 

The system primarily uses the super-ellipsoid blob tool for painting and exploration. However, 

the blob and/or paint can also be used to constrain a semi-automatic segmentation technique. In 

this system, a super-ellipsoid is used to constrain a region grow algorithm which provides users 

with additional control over how a ROI is selected. This tool is referred to as the blob region 

grow tool. A screen space painting technique was also added to the system for comparison 

purposes and is an additional quick and intuitive way of selecting, editing, and deleting areas of 

interest. When these techniques are combined, a user can interactively create contextual views 

for any dataset. Figure 13 illustrates the three different painting techniques supported in the 

system. 
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3.1.2 Voxel Intensity Visibility Range 

 

Figure 14: A scene with a ROI defined by the blob tool. The minimum and maximum visible 

voxel intensities for the blob region and the context region (skin, in this example) have separate 

controls and can be blended together seamlessly to create a focus plus context view.  

 

Users can control which voxels are rendered by the volume ray caster by manipulating GUI 

sliders to control the minimum and maximum voxel intensity visibility thresholds for the volume 

image and super-ellipsoid defined regions. In effect, the sliders represent a simple rectangular 
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step function that defines the intensity range in which voxels are considered visible by the 

volume ray caster. Figure 14 illustrates how the sliders can be manipulated to alter the scene.  

3.1.3 Blob Tool Manipulation 

 

Figure 15: Super-ellipsoid blob tool and widget handles. From left column to right column: 

translation handle, resize handle, and rotation handle.  
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Figure 16: Examples of blob tool interaction using the widget handles. The top row illustrates 

translation, the middle row resizing, and the bottom row shows blob rotation as well as two 

different blob shapes. 

 

Blob tool: As described, the blob tool is defined by a super-ellipsoid blob and has a 3D widget-

based manipulation scheme (Figure 15). That is, users use the mouse to select the handles to 

translate, scale, and orient the blob. The handles are designed to suggest their function (i.e. 

translate, rotate, scale) and operation as well as provide an additional visual depth cue for the 

blob tool. To interact with the widget handles, a user begins by pressing and holding the shift 

key, causing the handles to appear near the blob. Once visible, the user selects a handle with the 

mouse. Once a handle is selected, holding down the left mouse button and moving the mouse 
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allows the user to perform transformations on the blob corresponding to the current 

transformation mode (Figure 16). The handles are also hidden during this action to allow the user 

to clearly see the effects of their movements on the blob. When the user releases the left mouse 

button, the handles reappear. The user can also use GUI sliders to change the shape and opacity 

of the blob. 

For precise blob positioning in any scenario or data volume, the user uses the translation widget 

handles. However, for quick blob positioning in a relatively noise-free CT data set, the user has 

the option of clicking on a point of a visible data iso-surface to instantly center the blob at the 

selected location. As the blob is manipulated, voxels inside are highlighted to provide visual 

feedback of the selection region. If a user is satisfied with the selection, they can apply the blob 

(i.e. blend it with any previously applied blobs) by pressing a keyboard shortcut or a GUI button. 

If the user makes a mistake they can instantly undo applied blobs with a GUI button or keyboard 

shortcut.  
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3.1.4 Super-ellipsoid Constrained Region Grow Overview 

 

 

Figure 17: Examples of how the widget-based blob region grow tool can be used to select 

connected structures in real-time. The region growing algorithm is spatially-constrained by the 

super-ellipsoid blob and the ROI can be dynamically resized in real-time by using the widget 

handles to adjust the blob size/shape. The ROI can also be completely removed by simply 

pressing a GUI undo button. Additional regions can be added by repeating the region grow 

algorithm at different locations in the volume. 
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Highly parallel GPU-based region grow algorithms are a fast and effective segmentation 

technique for selecting a ROI within a volume where the ROI consists of a connected set of 

visible voxels. However, region grow algorithms are noise sensitive and are prone to “leaking” 

into neighboring regions with similar voxel intensity ranges to that of the target ROI. Therefore, 

interactively controlling the region grow process prevents a user from wasting time manually 

correcting the region grow output by removing the leaked regions. In this thesis, the same widget 

controlled super-ellipsoid blob UI that is used to paint an ROI is also used to interactively 

constrain and “steer” the region grow process. This interactive blob region grow tool can be 

applied directly to the volume image to select connected voxels, for example an artery “tree”, or 

alternatively can be applied to connected voxels within a previously “painted” ROI. In this 

manner, the blob tool can be combined with the blob region grow tool to allow the user to 

flexibly select complex shaped ROIs even within a moderately noisy volume image.  

 

As mentioned, the constrained region grow is implemented on the GPU and the evolution of the 

selected region can be controlled in real time by resizing/reshaping the blob tool using the widget 

handles (Figure 17). The user selects the blob region grower and initiates region growing by first 

using the translation widget handles to place the blob around an anatomical structure they wish 

to select (Figure 17 upper left brown-colored region). The user then moves the mouse along the 

surface of this structure and a small green circular region is highlighted, indicating a valid seed 

voxel is within the bounds of the blob. If the circular region is colored red, this indicates the seed 

voxel is outside the blob boundary. A valid seed point is then selected with a mouse click. The 

region grow process is then activated and all valid connected voxels within the blob boundary 

are selected, essentially instantaneously (Figure 17, upper row, second from left). Valid voxels 
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are voxels that are visible in the scene and not already selected. The blob can then be 

interactively resized, reshaped or rotated using the widget handles and the selected region will 

automatically grow and/or shrink, in real-time, to stay within the blob boundary (Figure 17 upper 

row).  Other target regions can be dynamically added to the currently selected region by 

reinitiating the region grow tool and selecting new seed voxels (Figure 17 middle row and 

bottom row).  If desired, the user can also use a key or GUI button to completely undo any 

painted region they have previously selected with the region grower.  

3.1.5 Open-View 

 

Figure 18: Using open-view to reveal an occluded ROI. The open-view cap is defined by a 

super-ellipsoid blob that can be translated, scaled, rotated and shape-changed. The open-view is 

tied to the camera (i.e. it is view-dependent) allowing users to interactively reveal the target ROI 

from different viewpoints and to create cutaway surfaces of different shapes, from rounded to 

rectangular. 
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In situations where the blob itself is occluded or the target object is occluded, the user may 

enable an Open-View mode to remove the occluding objects without losing the surrounding 

context. The Open-View capability is implemented with an (invisible) auxiliary “lens” with one 

lens endpoint fixed to the viewpoint and the other endpoint attached to the blob tool. As the user 

manipulates the blob tool, the Open-View lens automatically cuts away any occluding visible 

voxels between the viewpoint and the blob. The shape of the Open-View lens is defined by a 

shaft region and an adjustable super-ellipsoid cap (see Section 3.2.5 in this chapter). The cap can 

be translated, scaled, and rotated using a similar widget interface as the blob tool. The cap can 

also be tapered. GUI sliders are also available to adjust the shape of the cap – which in turn 

automatically adjusts the shape of the shaft to match. Combining the Open-View capability with 

an intuitive widget-based blob manipulation UI allows the user to quickly create specialized 

view dependent cutaway regions that match the geometry of the target object and the geometry 

of the surrounding structures such that the contextual view is enhanced with effective depth cues 

provided by the surface of the cutaway region (Figure 18).  
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3.1.6 Creating Focus plus Context Views 

 

Figure 19: Using the blob tool to paint a rough initial ROI and applying the blob region grow 

tool within it to select the lungs and the intestines in this CT dataset retrieved from the Osirix 

DICOM Image Library [13]. Voxels selected by the region growing algorithm are added to the 

accumulation grid and the process is repeated until the desired view is created. 
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To create contextual views, many other volume rendering solutions use either multi-dimensional 

TFs and/or separate data-dependent segmentation techniques to produce the desired results. 

Unfortunately, as discussed in chapter 2, the multi-dimensional TF UI can be complex and there 

is no single technique that works for all situations. The system described in this thesis provides 

tools to break the view generation problem into a series of simpler phases using the various tools, 

where each tool is designed to be easy to use and the combined effect results in a desired view 

which can also be quickly adjusted. The system uses a data structure called the Accumulation 

Grid (see Section 3.2.6) which accumulates/combines the user’s various paint actions. A 

disadvantage of this approach is that the effectiveness of the system is dependent on the user’s 

ability to identify the most effective tool for each phase of the view generation task. Figure 19 is 

an example of how a skilled user could use the blob tool to define a ROI with different visibility 

settings to roughly isolate the lungs. The user can then use this ROI as the input sub-volume for 

the blob region grow tool to quickly select the lungs and create a contextual view that may be 

difficult to accomplish without a finely tuned spatial transfer function or specialized 

segmentation algorithm.  

 

In the CT data set [13] (Figure 19), the arteries and bones are visible due to the minimum and 

maximum voxel visibility settings. Unfortunately, the lungs and intestines have a much lower 

intensity range and cannot be rendered with arteries and bones as the skin and clothing of the 

subject is occluding them. However, by first isolating the lungs and intestines and adding them to 

the accumulation grid, it becomes possible to have a clear view of objects of greatly varying 

intensities without a complicated spatial transfer function. The view can also be enhanced even 

further with the addition of Open-View (Figure 20). This feature allows users to create a cutaway 
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region within the area of interest and remove occluding objects. In this case, Open-View allows 

the user to have a clear understanding of the lung and intestines position in relation to the 

subject’s skin and muscles. 

 

Figure 20: Using open-view to create a specialized cutaway region to reveal a user’s earlier 

selection of the lungs and intestines. These two structures can then be viewed in relation to the 

skin and muscle in the dataset. 

3.2 Implementation Details 

As mentioned, super-ellipsoid blobs can be placed and blended together to define an arbitrarily 

shaped 3D ROI within the volume image. The super-ellipsoid blobs are defined using implicit 

functions and the functions are evaluated at fixed points in a special 3D grid of voxels referred to 

as the blob grid. That is, each voxel of this grid stores an implicit function field value. The blob 
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grid has dimensions matching that of the input volume. For example, for a 256x256x256 input 

volume, a 256x256x256 blob grid is used. The implementation allows users to place a large 

number of blobs, if desired, in real time. To ensure quick lookups into the grid, the blob grid is 

stored in GPU memory and is modified and accessed in a highly parallel manner from GPU 

shader programs. Unfortunately, this implementation requires a large amount of GPU memory 

but results in overall higher performance by avoiding expensive calculations in the volume ray 

cast shader program. Specifically, this gain in performance is achieved by computing the blob 

grid values in a separate rendering phase using a special, highly-efficient GPU vertex shader 

program. As the user deposits a new blob, it is blended with the existing grid field values 

computed from the previously deposited blobs. There is no need to re-compute the grid field 

values for all blobs.  Consequently, during the volume rendering phase, at each step along the ray 

these grid values can then be efficiently accessed from the volume rendering fragment shader 

program. Storing the blended blob field values in a grid is a scalable solution as additional blobs 

have little or no performance impact.  

 

In addition to the blob grid, two other grids are required to support the system functionality. The 

dimensions of both of these grids also match the volume image dimensions. A region grow grid 

is used to record voxels selected by the blob region grow tool. The accumulation grid, as 

mentioned previously, is used to combine the voxel selections of the individual paint actions.  

The following sections will describe these data structures and the associated algorithms and 

equations used to implement the complete super-ellipsoid blob tool functionality.  
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3.2.1 Mathematical Formulation of Super-Ellipsoid Blending 

 

Figure 21: Super-ellipsoid blob blending resulting in various shapes. 

 

A 3D region is defined in the system using a soft object modeling [56] approach. In the soft 

modeling approach, an implicit surface model is derived from a global potential field function 

𝐹(𝑥, 𝑦, 𝑧) (the implicit function). This global function is defined as the sum of n component field 

functions 𝐹𝑖, one for each shape primitive 𝑃𝑖  (i. e. 𝑏𝑙𝑜𝑏)(Figure 21). That is: 

 
𝐹(𝑥, 𝑦, 𝑧) =  ∑ 𝐹𝑖(𝑥, 𝑦, 𝑧)

𝑛

𝑖=1

 
(3.1) 

The surface of the object 𝑺 may be derived from the implicit function 𝐹(𝑥, 𝑦, 𝑧) as the points in 

space whose value equals a threshold denoted by 𝑇 (in soft object modeling T is often set to 0.5): 

 𝑺 = {(𝑥, 𝑦, 𝑧) ∈  𝑅3, 𝐹(𝑥, 𝑦, 𝑧) = 𝑇 } (3.2) 

Each component field function 𝐹𝑖(𝑥, 𝑦, 𝑧) may be conveniently defined as the composition of a 

distance function 𝑑𝑖(𝑥, 𝑦, 𝑧) and a potential function 𝐹𝑖(𝑑), where: 

 𝐹𝑖(𝑥, 𝑦, 𝑧) =  𝐹𝑖 ∘ 𝑑𝑖(𝑥, 𝑦, 𝑧) (3.3) 

In general, function 𝑑𝑖(𝑥, 𝑦, 𝑧) defines the distance between a point 𝒑(𝑥, 𝑦, 𝑧) and the center 

point of shape primitive 𝑃𝑖, while function 𝐹𝑖(𝑑) characterizes the blending properties of the 
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shape primitive (i.e. how a shape primitive is blended with other shape primitives). In our 

implementation the blending function is defined as [57]: 

 
𝐹𝑖(𝑑) = {

0 

−
4

9
∗ d6  +

17

9
∗ d4  −  22/9 ∗ d2  +  1

 
, 𝑑 > 1.0

, 0 ≤ 𝑑 ≤ 1.0
 

(3.4) 

The distance function formulation follows that of Tigges et al. [57] where 𝑑(𝑥, 𝑦, 𝑧) is a super-

quadratic distance function derived from the implicit equation of a super-ellipsoid. That is, in this 

formulation, the super-ellipsoid shape primitive 𝑃𝑖 is represented via the distance function. The 

distance function is evaluated in a normalized volume image coordinate space.  The super-

quadratic (sq) distance function is therefore defined as: 

 

𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) = (|
𝑥

𝑟𝑥
|

2

𝜀2 + |
𝑦

𝑟𝑦
|

2

𝜀2
)

𝜀2
𝜀1

+  |
𝑧

𝑟𝑧
|

2

𝜀1   

(3.5) 

The surface of a super-ellipsoid has an implicit formulation 𝐹𝑠𝑒(𝑥, 𝑦, 𝑧) =  𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) − 1 = 0 

where 𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) also defines an inside-outside function. An inside-outside function provides a 

simple test to determine if a point 𝒑(𝑥, 𝑦, 𝑧) is inside the super-ellipsoid (𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) < 1), 

outside the super-ellipsoid (𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) > 1) or on the surface of the super-ellipsoid 

(𝑑𝑠𝑞(𝑥, 𝑦, 𝑧) = 1). The coefficients 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 are scale factors in the x, y and z directions, 

respectively. The parameter 𝜀2 controls the cross-sectional shape of the super-ellipsoid in the 

(𝑥, 𝑦) plane while 𝜀1 controls the cross-sectional shape in a plane along the z-axis perpendicular 

to the (𝑥, 𝑦) plane. Together these parameters control the range of influence of a super-ellipsoid 

shape primitive (via the distance function).  
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The distance function as defined in equation (3.5) above has blending problems. Tigges et al. 

[57] solved the blending problem by extending the distance function (for the ith shape primitive) 

to:  

 𝑑𝑖(𝑥, 𝑦, 𝑧) =  𝑑𝑠𝑞(𝑥, 𝑦, 𝑧)
𝜀2
2  

(3.6) 

Finally, blending of the component functions 𝐹𝑖, is generally performed by simply summing their 

potential fields, as in equation (3.1). Super-elliptic blending [58] has been proposed to reduce 

unwanted field “bulging” effects between the component functions that can result from this 

simple sum. Super-elliptic blending generates a more predictable shape of the global potential 

field function 𝐹(𝑥, 𝑦, 𝑧). This type of blending is performed as follows: 

 

𝐹(𝑥, 𝑦, 𝑧) = (∑ 𝐹𝑖(𝑥, 𝑦, 𝑧)𝐾

𝑛

𝑖=1

)

1
𝐾

 

(3.7) 

Where the parameter 𝐾 controls the amount of blending. When 𝐾 =  1 the super elliptic blend 

has the same result as the summation blend. When 𝐾 =  ∞ the super-elliptic blend is equal to the 

union of the component field function 𝐹𝑖 (i.e. no blending occurs). In this thesis, 𝐾 is set to a 

value of 8 for its balanced blending properties. See Figure 22 for an example of the effect of the 

parameter K. 

 Translating and rotating a super-ellipsoid blob is simply a matter of applying a 

transformation matrix M to the super-ellipsoid centered coordinates of equation (3.8). 

Representing super-ellipsoid-centered coordinates as 𝑠𝑒 and volume image coordinates as 𝑣𝑜𝑙 , 

the transformation can be represented as: 
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[

𝑥𝑣𝑜𝑙

𝑦𝑣𝑜𝑙
𝑧𝑣𝑜𝑙

1

] = 𝐌 [

𝑥𝑠𝑒

𝑦𝑠𝑒
𝑧𝑠𝑒

1

] 

(3.8) 

Where 𝐌 is defined as: 

 

M = [

𝑢𝑥 𝑣𝑦 𝑛𝑧 𝑐𝑥

𝑢𝑥 𝑣𝑦 𝑛𝑧 𝑐𝑦

𝑢𝑥 𝑣𝑦 𝑛𝑧 𝑐𝑧

0 0 0 1

] 

(3.9) 

 

The vectors (𝒖, 𝒗, 𝒏) are the basis vectors of the super-ellipsoid blob expressed in volume image 

coordinates and the point 𝒄(𝑥, 𝑦, 𝑧) represents the blob center in volume image coordinates. That 

is, for a given point defined in local super-ellipsoid coordinates, transformation M first rotates 

(defined by the vectors (𝒖, 𝒗, 𝒏) ) the point and then translates it by vector 𝒄(𝑥, 𝑦, 𝑧) .  The 

transformation M-1 transforms a point in volume coordinates to super-ellipsoid coordinates. In 

this case, the point is first translated then rotated. Transformation M-1 can be written as: 

 

 

M-1 = RT = [

𝑢𝑥 𝑢𝑦 𝑢𝑧 0

𝑣𝑥 𝑣𝑦 𝑣𝑧 0

𝑛𝑥 𝑛𝑦 𝑛𝑧 0

0 0 0 1

] [

1 0 0 −𝑐𝑥

0 1 0 −𝑐𝑦

0 0 1 −𝑐𝑧

0 0 0 1

] 

(3.10) 
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Figure 22: Comparison of blob blending using different values for super-elliptic blending 

parameter K. From left to right, K= 2, 8, and 32. 

 

3.2.2 Super-ellipsoid Blob Grid 

 

Figure 23: A high level view of the rendering pipeline for the 3D blob grid. The blob grid is 

stored in GPU memory and is updated in a special GPU vertex shader program that stores blob 

field values at grid voxels. 

 

As mentioned in the introduction of Section 3.2, the system uses a special 3D grid with the same 

dimensions as the volume image to store blob field values. Each field value stored in the grid is 

updated whenever the user adds or removes a blob. However, calculating each field value 

sequentially on the CPU would be too computationally expensive. To ensure real-time 
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performance, the massively parallel compute power of the GPU is leveraged by performing the 

blob grid calculations in a special vertex shader program (Figure 23). The blob grid is stored in 

GPU memory and after its field values are calculated, it can be accessed by the volume ray cast 

fragment shader program where volume rendering occurs. Algorithm 1 contains pseudo-code 

detailing how the vertex shader updates the blob field values at each grid voxel of the blob grid. 

Algorithm 1 Updating Blob Grid Field Values 

Input:  

 𝒅𝒊𝒎𝒙𝒚𝒛: physical dimensions of input volume 

 𝒃𝒍𝒐𝒃𝑮𝒓𝒊𝒅[𝑖][𝑗][𝑘]: 3D blob grid 

𝒄𝒙𝒚𝒛: center of input blob in volume coordinates  

 𝒓𝒙, 𝒓𝒚, 𝒓𝒛: blob scale factors  

             𝑹: blob rotation matrix from equation 3.10  

            𝜺𝟏: exponent from equation 3.5 

            𝜺𝟐: exponent from equation 3.5 

            𝑲: superelliptic blend parameter 

            𝑾𝒚𝒗𝒊𝒍𝒍𝑩𝒂𝒔𝒊𝒔𝑭𝒖𝒏𝒄(𝑑): −
4

9
∗ d6  +

17

9
∗ d4  −  22/9 ∗ d2  +  1 

            𝒊𝒔𝑫𝒓𝒂𝒘: 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑙𝑎𝑔 𝑡𝑜 𝑎𝑑𝑑 𝑖𝑛𝑝𝑢𝑡 𝑏𝑙𝑜𝑏 𝑓𝑖𝑒𝑙𝑑 𝑡𝑜 𝑔𝑟𝑖𝑑 

for each grid voxel i, j, k ∈  𝑏𝑙𝑜𝑏𝐺𝑟𝑖𝑑[𝑖][𝑗][𝑘] do 

 𝑝𝑣𝑜𝑙𝑥𝑦𝑧 =  𝑣𝑜𝑥𝑒𝑙𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖, 𝑗, 𝑘, 𝑑𝑖𝑚𝑥𝑦𝑧) 

𝑝𝑠𝑒𝑥𝑦𝑧  ← [𝑅] ∗ [
𝑝𝑣𝑜𝑙𝑥𝑦𝑧 − 𝑐𝑥𝑦𝑧

1.0
] 

𝑣𝑎𝑙𝑥 ← (|𝑝𝑠𝑒𝑥|/(𝑟𝑥))2.0/𝜀2 
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𝑣𝑎𝑙𝑦 ← (|𝑝𝑠𝑒𝑦|/(𝑟𝑦))2.0/𝜀2 

𝑣𝑎𝑙𝑧 ← (|𝑝𝑠𝑒𝑧|/(𝑟𝑧))2.0/𝜀1 

𝑑𝑠𝑞 ←  ((𝑣𝑎𝑙𝑥 + 𝑣𝑎𝑙𝑦)𝜀2/𝜀1 + 𝑣𝑎𝑙𝑧)𝜀1/2.0 

if 𝑑𝑠𝑞 > 1.0 then 

 𝑣𝑎𝑙 ← 0 

else 

 𝑣𝑎𝑙 ← 𝑊𝑦𝑣𝑖𝑙𝑙𝐵𝑎𝑠𝑖𝑠𝐹𝑢𝑛𝑐(𝑑𝑠𝑞) 

end if 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑙𝑜𝑏𝑉𝑎𝑙𝑢𝑒 ← 𝑏𝑙𝑜𝑏𝐺𝑟𝑖𝑑[𝑖][𝑗][𝑘] 

if 𝑖𝑠𝐷𝑟𝑎𝑤 = 𝑡𝑟𝑢𝑒 then 

 𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ←  (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑙𝑜𝑏𝑉𝑎𝑙𝑢𝑒𝐾 +  𝑣𝑎𝑙𝐾)1/𝐾 

 𝑏𝑙𝑜𝑏𝐺𝑟𝑖𝑑[𝑖][𝑗][𝑘]  ←  𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 

else 

 𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ←  (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑙𝑜𝑏𝑉𝑎𝑙𝑢𝑒𝐾 −  𝑣𝑎𝑙𝐾)1/𝐾 

𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ←  max (𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ,0.0) 

 𝑏𝑙𝑜𝑏𝐺𝑟𝑖𝑑[𝑖][𝑗][𝑘]  ←  𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 

end if 

end for 
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3.2.3 Region Growing Algorithm 

 

Figure 24: Region growing grid data structure. Each grid voxel contains an ID and a ParentID. 

A non-zero ID indicates that the corresponding voxel in the volume image has been selected and 

the ParentID indicates the voxel’s direction from its “parent” grid voxel. 

 

The GPU-based region-growing algorithm follows the algorithm described in Chen et al. [53]. 

The algorithm makes use of the input volume image as well as a 3D Region Growing Grid which 

is stored in GPU memory (Figure 24). Like the Blob Grid, the Region Growing Grid has the 

same dimensions as the volume image. The algorithm is divided into a vertex shader stage, 

geometry shader stage, and a transform feedback stage (Figure 25). 

 

Figure 25: GPU based region growing pipeline for updating values in the region grow grid. 
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The vertex shader begins once the user has selected an initial seed voxel or when new seed 

voxels have been added from a previous iteration. For each new seed voxel and its neighbors, a 

check is made to determine whether the voxel is valid. A valid voxel is one that is visible, inside 

the blob, and has not already been marked as selected. If the seed voxel is valid, it is marked as 

selected by setting its identifier to a non-zero integer corresponding to its constraining blob’s id 

(red voxel). For voxels neighboring the seed, another identifier indicating the voxel’s direction 

from its “parent” grid voxel is stored (yellow voxel). A parent grid voxel is the voxel that (i.e. 

left, right, top, bottom, back, front, boundary) acted as the “parent” seed in the region grow 

process. For example, in Figure 25 the upper yellow voxel would have its identifier set to “top” 

(adjacency id of green parent voxel) while the left most yellow voxel would set its identifier to 

“left”. If the adjacent voxel is invalid, its parent id is marked as a boundary voxel. The adjacency 

information is then used in the geometry shader stage to output new seeds and boundary voxels 

into a special GPU memory buffer known as the transform feedback buffer. The data from this 

buffer is then passed back into the vertex shader and the process is repeated in parallel on each of 

these new seeds until no new seed voxels are output. Saving the seed and boundary voxels in the 

transform feedback buffer and using the GPU to region grow seeds in parallel allows users to 

dynamically shrink or grow regions in real time. Figure 26 illustrates this process with a 2D 

example and shows how values are set in the region grow grid for each new seed point passed to 
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the region grow shaders. 

 

Figure 26: A 2D representation of the region grow algorithm. Starting from the top left: 1. 

Initial seed voxel. 2. Initial seed marked as grown and valid adjacent voxels marked as potential 

new seeds. 3. Potential new seeds changed to new seeds by geometry shader. 4. Vertex shader 

marks new seeds as grown and flags adjacent voxels. 5. Potential new seeds changed to new 

seeds by geometry shader. 6. No new seeds, region grow complete. 

 

For simplicity, Figure 26 only illustrates a 2D example with a maximum of 4 seeds. However, a 

real scenario may have thousands of seeds processed in parallel and may result in duplicate 

neighbor voxel output. To reduce redundancy and ensure the algorithm runs at interactive rates, 

the adjacency information is used by the geometry shader to determine which grown voxel is 

responsible for emitting new seeds [53]. Figure 27 illustrates how the geometry shader uses 

adjacency information to eliminate duplicate output. 
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Figure 27: A 2D representation of geometry shader region grow algorithm. Potential seeds are 

flagged in parallel in the vertex shader and adjacency information is used by the geometry 

shader to remove redundant output. 

 

When the region grow bounds defined by the blob region grow tool are changed, (i.e. the user 

changes the size and/or shape of the blob) the algorithm uses the boundary voxels stored in the 

transform feedback buffer as new seeds. The algorithm then performs a region grow or region 

shrink depending on the new dimensions of the region grow bounds. In the case where a 

boundary voxel isn’t adjacent to a valid voxel, the algorithm performs a region shrink. The 

shrink first checks to see if the current boundary voxels are still valid by checking if there are 

any grown adjacent voxels within the region grow bounds. If all adjacent voxels are invalid, the 

algorithm performs a region shrink by setting the current voxel as empty and flagging all 

neighboring non-empty voxels as new seeds. The new seeds are then stored into the transform 

feedback buffer and the process is repeated until no new seeds are added. Figure 28 illustrates a 

2D example of how the algorithm performs a region grow shrink. 
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Figure 28: A 2D representation of a region shrink over two iterations. Starting from left to right: 

1. Initial region shrink scene. 2. Boundary voxels removed and grown voxels marked as potential 

new seeds 3. New seeds marked as boundary voxels.   

 

3.2.4 Open View 

 

Figure 29: An open view representation for spherical and tapered cubical cap shapes. 

 

As described in Section 3.1.4, the open-view capability is implemented with an (invisible) 

auxiliary “lens”, with one lens endpoint fixed to the viewpoint and the other endpoint attach to 

the blob tool. The cap of the Open-View lens (Figure 29) is defined by one half of a super-

ellipsoid, optionally tapered, and allows users to create open-view lenses of varying shapes. The 

region created by the Open-View lens is determined by a line starting from the camera to the 

center of the blob tool. During volume ray casting, a calculation is made to determine the 

coordinate on the line that produces the shortest distance between the current ray position and the 

Open-View line. This coordinate is then used as the origin of a super-ellipse with the same shape 
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parameters as the cap. The series of super-ellipses along the line constitutes the shaft of the 

Open-View lens and all voxels within this area and not within the blob are hidden from view. If 

the Open-View cap shape is spherical, it results in a cylindrical tube shaft with a (hemi-)spherical 

cap at the end. For cubical shapes, the user has the option of tapering the end of the cap. A 

spherical cap or a tapered cubical cap result in cut surfaces of objects surrounding the target ROI 

(i.e. inside the blob) that are oriented toward the viewer, regardless of how deep the target ROI is 

within the volume.  Based on experiments, this shaft-plus-cap Open-View design results in a 

superior depth cue for the occluded target ROI than using a simple frustum shaped Open-View 

or a single super-ellipsoid shaped Open-View. In addition, the flexibility of the adjustable super-

ellipsoid cap shape provides greater cutaway shape control.     

3.2.5 Accumulation Grid 

 

Figure 30: A representation of the accumulation grid. Each voxel in the 3D grid contains an id 

and matches the dimensions of the volume data. 

 

The purpose of the accumulation grid is to give users the ability to combine ROIs of different 

visibility settings. The grid is stored in GPU memory and is a data structure matching the 

dimensions of the input volume (Figure 30). Each index in the grid holds an id that represents an 

index into an array of transfer function parameters that define voxel visibility. Currently, the 
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transfer function parameters consist simply of two values representing the minimum and 

maximum voxel intensity visibility range. Future implementations can be extended to define 

more complex voxel visibility rules.  

 

Figure 31: GPU pipeline for updating the accumulation grid. Voxels selected in the blob grid, or 

region growing grid are added to the accumulation grid by a special vertex shader. 

 

The process of adding data to the accumulation grid is handled in parallel by a special vertex 

shader (Figure 31). This vertex shader evaluates each voxel in the grid against the values stored 

in the blob grid or region growing grid. Voxels marked as selected in the blob grid or region 

growing grid are assigned an ID in the accumulation grid. An ID of zero represents an empty 

value and an ID greater than zero represents a voxel that has been added to the accumulation 

grid. If a voxel in the accumulation grid already has an ID greater than zero, the incoming data is 

discarded. This was done to prevent users from overriding previously selected areas unless 

explicitly requested by the eraser function.  Figure 32 illustrates how a user can add selected 

voxels to the accumulation grid from either the blob grid or region growing grid. 
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Figure 32: An example of how the blob region grow tool can be applied to a region defined by 

the blob tool and added to the accumulation grid. From left to right: 1. Blob tool used to create 

an ROI of the sternum and ribs. 2. Blob region grow applied to sternum. 3. Region grow paint or 

blob paint can be added to accumulation grid. 
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3.2.6 Rendering Pipeline 

 

Figure 33: Rendering pipeline for the volume ray cast shader. The vertex shader defines the 

bounds of the volume and the fragment shader accesses voxels from the input volume, blob grid, 

region growing grid, and accumulation grid to render the scene. 

 

Figure 33 illustrates the rendering pipeline of our system and begins with a check to determine if 

the blob grid, accumulation grid, or region growing grid needs to be updated. In the case where 

an update is required, the corresponding shader is executed. Once the grids are updated, they are 



 

69 

 

passed into the volume ray casting shader to render the final scene. The volume ray casting 

shader is divided into a vertex shader and fragment shader with most of the work done in the 

fragment shader. The vertex shader creates the boundaries of the volume ray caster and the 

fragment shader assigns a color to each screen pixel by stepping along each ray in parallel. For 

each step along the ray, the algorithm uses the volume data, blob grid data, region growing grid 

data, accumulation grid data, and the separate minimum/maximum voxel visibility setting for the 

context region and the painted blob region(s) to determine the final rendering. 

 

Figure 34: A 2D and 3D representation of color accumulation in the fragment shader. Rays are 

cast from the camera into the volume. As the ray steps through the volume, each visible voxel’s 

color and opacity are accumulated and blended until an opacity value of 1.0 or greater is 

reached or until the ray hits the bounds of the volume. From left to right: 1. A 3D visualization of 

volume ray casting, where each dot represents a step along the ray. 2. A 2D visualization of 

volume ray casting, where each box represents a ray’s color/opacity accumulation at each step. 

3. The result of rendering the color and opacity accumulation for each ray. 

 

Figure 34 illustrates how the volume ray caster steps along a ray and assigns a color to a pixel. 

Each ray starts with an initial entry coordinate and points along the ray are sampled until an 
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opacity of 1.0 is reached or the bounds of the volume are hit. At each step along the ray, a blob 

field value is calculated and if the value is greater than 0.5 the blob surface is rendered. The 

shader then checks if the current voxel selected from the volume data is visible by comparing its 

intensity against the data from the blob grid, accumulation grid, and open view. If the voxel is 

visible, its color and opacity are accumulated into the result. 

The blob surface of a ROI is rendered in the volume ray caster using the previously computed 

field values in the blob grid. For the preview blob, the blob field is calculated inside the volume 

ray caster and can be dynamically resized, translated, rotated and blended with the blob grid data 

in real time. Voxel visibility is determined by the accumulation grid, blob grid, open view, and 

the minimum and maximum visible voxel intensity ranges. For overlapping regions, there is a 

visibility hierarchy and the order is as follows: accumulation grid voxels, preview blob voxels, 

open view voxels, blob grid voxels, and volume data voxels. For example, a voxel inside the 

accumulation grid that is marked as invisible will not be shown even if it is within the minimum 

and maximum visible voxel intensity range for the blob or volume regions (Figure 35). 

 

Figure 35: A 2D representation of the voxel visibility hierarchy for overlapping regions. 
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Chapter 4: User Study and Experimental Results 

In this chapter we present the results of a user study that evaluates the effectiveness of our 

widget-based super-ellipsoid painting and region growing system for exploring and selecting 

areas of interest within a 3D volume. The user study compares the blob tool to a surface brush 

technique and a screen brush technique. These tools are described in Section 4.1.3. Also, in this 

chapter, several experiments are presented illustrating the contextual view generation capabilities 

of the system. The data sets used in the experiments are downloaded from the Osirix DICOM 

Image Library [13].  All the results were generated on a Windows 10 desktop computer equipped 

with a Nvidia 1080 GTX graphic card on a 1920x1080 native resolution monitor.  

4.1 User Study Description 

The user study was divided into four parts. Each part required participants to select a highlighted 

target object. The goal was to compare the widget-based UI selection tools (the blob tool and the 

blob region grow tool) to other types of tools with well-known UIs according to time, accuracy, 

and user preference. 

4.1.1 Participants 

Sixteen people participated in the study. Each participant took an average of one hour to 

complete the study. The participants were asked to paint several regions of interest with four 

different paint-based selection tools and then fill out a questionnaire.  Participants consisted of 

14 males and 2 females aged between 18-30 years old. Participant's average mouse usage per 

week was approximately 28 hours, with an average of 11 hours a week for video games and 2.4 
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hours for 3D modeling software. All 16 participants had a computer science or engineering 

background and didn’t have any medical experience. 

4.1.2 Apparatus 

The user study experiments were performed on a Windows 10 desktop computer with a mouse 

and keyboard. The computer was equipped with Nvidia 1080 GTX graphic card to ensure the 

system ran at a smooth 60 fps on a 1920x1080 native resolution monitor. 

4.1.3 Techniques 

The four tools used in the study were the blob tool and widget-based blob region grow tool, a 

surface brush and a screen brush. The UI of the surface brush and UI of the screen brush are 

described below. 

 

Figure 36: Illustration of the surface brush UI. The user moves the mouse and the brush blob 

automatically slides along the data iso-surface under the cursor. The blob also orients itself to 

line up with the data surface normal. The rightmost figure shows a side view and illustrates this 

surface normal alignment.  

 

Surface brush: The surface brush (Figure 36) was implemented in a separate system [5]. 

However, the UI and volume rendering parameters of this system were updated to match those of 
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the blob tool, screen brush and blob region grow tool system. The surface brush is defined by a 

super-ellipsoid blob similar to the blob tool, but instead of widget handles, the surface brush has 

an adjacent GUI panel with sliders and buttons to control brush size, orientation, and shape. The 

surface brush also had two painting modes, painting-plane sliding mode and surface sliding 

mode. In painting-plane sliding mode, the user presses and holds the left mouse button. As the 

user moves the mouse, the brush automatically adheres to and slides along the surface of an 

invisible oriented painting plane. The orientation of the painting plane is automatically tied to the 

camera view plane orientation. The depth of the painting plane in the volume image (i.e. distance 

from the camera) can be controlled with the mouse scroll wheel that translates it along the view 

plane normal. Surface sliding mode is the primary painting mode and allows the user to slide the 

brush blob along data iso-surfaces in the volume rendering by moving the mouse cursor (while 

pressing and holding the left mouse button) (Figure 36). In addition, if the mouse is moved to a 

new iso-surface position and the left mouse button is clicked, the brush will automatically jump 

to that surface position. Paint mode switching is handled by a button in the GUI panel. Similar to 

the blob tool, voxels encompassed by the paintbrush blob are highlighted to indicate the effect a 

paint action would have on the view. If a user is satisfied with the brush position, they can 

deposit the paint brush blob with a key press or with a GUI button. If the user makes a mistake, 

they can undo a deposited blob with an undo key or GUI button. 
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Figure 37: Illustration of the screen brush. The brush has a circular outline and users can paint 

strokes by holding down the left mouse button and dragging the cursor along the screen. From 

left to right: 1. Painting the sternum until all target voxels (yellow) are selected (green). 2. 

Rotating the view to reveal the additional voxels selected in depth. 3. Switching the brush to 

erase mode to erase unwanted selections. 4. Apply erase and inspect the result.  

 

Screen brush: The screen brush is a screen space painting technique similar to the ones used in 

many other 2D painting applications. Centered around the mouse-controlled cursor, is a circular 

outline indicating the bounds of the screen brush which can be resized using a separate GUI 

slider. Users can paint on a view by holding down the left mouse button and dragging the mouse 

cursor along the screen to paint strokes (Figure 37). Since the view is defined in a 3D space, the 

brush also paints in depth and selects voxels based on the camera’s perspective projection. This 

results in a brush that appears to be painting in a 2D view but is painting a 3D cone that gets 

wider based on the distance from camera. The depth of the cone extends to the far side of the 

volume image. Therefore, to select a target object, users must rotate the view with the mouse to 

find a screen view such that the target object is visually separated from the surrounding objects. 
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After painting the object from this viewpoint, the users must then rotate the view again to a new 

viewpoint. They then paint any missed portions of the target and/or erase painted regions on 

neighboring objects that were behind the target object when painting from the previous 

viewpoint. This process is repeated until the target object has been selected. Voxels underneath 

the screen brush are highlighted to indicate the effect a paint action would have on the view. If 

the user is satisfied with the highlighted region, they can press a GUI button to add the paint to 

the accumulation grid or press a key or GUI button to undo the paint. Once paint is added to the 

accumulation grid users can switch the brush to erase mode and erase incorrectly selected areas 

with the same technique. Although this painting style requires a user to continually rotate the 

entire view and painting/erasing to refine the selection, the painting action itself is familiar and 

intuitive to users.  

4.1.4 Datasets 

 

Figure 38: Illustration of the user study selection task. The yellow highlighted voxels are the 

target region (in this example, a kidney transplant). If the user positions a paint tool such that 

these yellow voxels are inside the bounds, they are highlighted green. If the paint tool 

encompasses non-target voxels, they are highlighted red. 
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The study used two CT scans [13] and was comprised of four different target anatomical 

structures. Each structure was specifically selected to tease out the strengths and weaknesses of 

each painting UI. In the hands of an experienced user, the selection tools used in the study can be 

used to quickly isolate a complex-shaped ROI consisting of multiple anatomical structures. 

However, in this study the participants are naïve users. Consequently, an ROI consisting of 

single, clearly defined anatomical structures were chosen as the targets.  The target structures 

were highlighted in yellow and the remaining visible voxels were de-emphasized by coloring 

them gray (Figure 38). If the user correctly selects these voxels, they are instantly painted green. 

Incorrectly selected voxels (i.e. voxels inside the paint bounds but outside the target) were 

instantly painted red.  

 

Figure 39: A series of anatomical structures used in the user study. From left to right: kidney, 

sternum, single vertebra, double vertebra and aneurysm. 

 

Kidney transplant: The kidney transplant structure (Figure 39, left) was chosen because it was 

a challenging structure to isolate. Participants were tasked with painting the kidney while 
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minimizing the amount of “spilled” paint (colored red) on surrounding structures such as the 

surrounding arteries and hip bone. 

Sternum: The sternum structure (Figure 39, second from left) was chosen because it was an easy 

target to isolate accurately. The goal was to determine which technique had the best results when 

selecting a relatively clean object. 

Vertebra: A vertebra (Figure 39, middle) was chosen because it was a challenging structure to 

isolate and typically requires resizing interactions. The goal was to evaluate the effectiveness of 

the widget based resize handles against the GUI slider-based resizing of the surface brush and 

screen space brush. 

Double Vertebra: The double vertebra target (Figure 39, second from right), as the name 

implies, adds another vertebra in the spine and is used for the region grow part of the user study. 

This structure was the most difficult to select.    

Aneurysm: A CT scan containing an aneurysm (Figure 39, right) was used in part II of the study 

that tested the widget-based blob region grow tool.  Specifically, it was used to test the 

effectiveness of the blob region grow tool’s widget interface compared to an unconstrained 

region-grow brush with simple mouse control for growing and shrinking the selected region.  

4.1.5 Accuracy Measures 

We follow Yu et al. [59] and use the recent American Psychological Association 

recommendations [60] that report results using estimation techniques and confidence intervals. 

To compare the four techniques, we used task completion times and an F1 accuracy measure to 

evaluate the accuracy of our results. An F1 measure is calculated from the number of true 

positives (TP, correctly selected voxels), false positives (FP, incorrectly selected voxels), and 
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false negatives (FN, correct voxels not selected). F1 is calculated as  𝐹1 = 2 ∗ (𝑃 ∙ 𝑅)/(𝑃 + 𝑅) 

with precision 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and recall 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). An F1 score of 1 indicates a 

perfect performance, while a score of 0 represents the worst possible result. For accuracy, a 95% 

confidence interval was calculated. 

4.2 User Study Results 

This section will provide an analysis of the user study results, results of the questionnaire, and 

observations from watching participants complete the study. 

4.2.1 Part I: Blob Tool vs Surface Brush vs Screen Brush 

The first part of the study was designed to compare the blob tool with the surface brush and 

screen brush. These three paint tools are all interactive geometric selection techniques that can be 

used to spatially isolate a 3D ROI.  Participants were asked to select all voxels of the target 

object as quickly and accurately as possible with target voxels highlighted in yellow. If non-

target voxels were selected, they were highlighted in red, while correctly selected voxels were 

highlighted in green. Since participants were given a visual cue when voxels were incorrectly 

selected, they were told that they could have a little bit of spilled paint if they had made a 

reasonable attempt. This was mentioned to prevent participants from redoing their paint until 

they had made a perfect selection. Giving participants visual feedback also mitigates the 

advantage a user with knowledge of anatomy and medical images may have over a naive user. 

Participants were also shown the open-view functionality and demonstrations were given for 

each technique. They were also given a few minutes to practice with each interface before 

beginning the trials. The surface brush, blob tool, and screen brush were tested on the kidney 
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transplant, sternum, and vertebra datasets. The blob region grow tool was tested on the kidney 

transplant, aneurysm, and double vertebra. Two trials were performed for each target object. The 

first trial for each dataset was used for practice and its results were discarded. However, 

participants were not told this information and performed both trials as quickly and accurately as 

possible. The order of the techniques the participants used followed a round robin approach 

except for the region grow technique always being last. For example, the first participant would 

conduct trials in the order of screen brush, surface brush, blob tool and blob region grow tool. 

The second participant would be blob tool, screen brush, surface brush, and blob region grow 

tool. The third participant would be surface brush, blob tool, screen brush and blob region grow 

tool, and so on. This round robin approach to testing was done to insure no selection technique 

had a learning advantage over other. The region grow technique was exempt from this because it 

was a semi-automatic segmentation technique that used the blob tool interface and we didn’t 

want it to influence participants performance and answers on the questionnaire with respect to 

the purely geometric selection techniques. Participants were also allowed to undo/redo any of the 

selections during a trial and once they felt they had completed their task, they could press a finish 

button to begin the next trial. Once participants had completed the trials for the screen brush, 

surface brush, and blob tool they were given a questionnaire to evaluate their level of satisfaction 

for each tool they had used. Once they had finished evaluating the three tools they were asked to 

perform the blob region grow tool trials and finish the questionnaire.  
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4.2.1.1 Kidney Results 

  

Table 4.1: Numerical values of the average task completion time (in seconds) for each selection 

technique on the kidney dataset. Error calculated with a 95% confidence interval. 

 

Figure 40: Average task completion time (in seconds) for each selection technique on the kidney 

dataset. Error calculated with a 95% confidence interval. 

 

For the kidney dataset (Figure 40, Table 4.1), many participants struggled with positioning the 

blob tool in depth using the translation handles. This may indicate that the current 

implementation of the translation handles wasn’t providing enough of a visual depth cue and/or 

intuitive positioning control. Participants instead preferred to use the surface brush’s mouse 

wheel functionality in painting-plane mode for translating the brush in depth based on the camera 

view. The average completion time reflects this issue as the blob tool took an average of 122 

seconds to complete with a 39 second variance calculated at a 95% confidence interval, while the 
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surface brush’s average completion time was 96 seconds with a 25 seconds variance calculated at 

a 95% confidence interval. The average completion time for the screen brush was 69 seconds and 

participants did better than the two previous techniques due to the kidney’s relatively compact 

area of interest and few surrounding objects. These traits allowed participants to quickly select 

the kidney while also limiting the amount of spilled paint, thus lowering erasing time 

significantly. 

 

4.2.1.2 Sternum Results 

 

Table 4.2: Numerical values of the average task completion time (in seconds) for each selection 

technique on the sternum dataset. Error calculated with a 95% confidence interval. 

 

Figure 41: Average task completion time (in seconds) for each selection technique on the 

sternum dataset. Error calculated with a 95% confidence interval. 
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The sternum dataset (Figure 41, Table 4.2) was the easiest object to select for participants with 

an average completion time of 25 seconds for the surface brush, 48 seconds for the blob tool, and 

61 seconds for the screen brush. The screen brush performed poorly because there are many 

objects hidden behind the sternum which resulted in participants having to repeatedly rotate the 

view and perform erasing actions to remove spilled paint. It was predicted that the surface brush 

would be simple to use for the sternum selection. Using the mouse, the surface brush could easily 

slide along the sternum’s exposed surface and only a few resize operations were needed as the 

sternum had a fairly consistent thickness. The surface brush was therefore the fastest technique. 

On the other hand, because of the ease of applying the surface brush to the sternum, it was 

observed that participants seemed reluctant to rotate the view to check for spilled paint and undo 

the paint blob or resize the brush before applying it. This reluctance resulted in a rather poor 

selection accuracy, with an F1 score of 0.79.  

Like the surface brush, one option for positioning the blob tool is to simply click on the sternum 

surface point and the blob tool would automatically jump to that point. However, instead of 

using a smaller blob size and quickly painting multiple times with this fast positioning capability, 

many participants opted to use the resize widget handles to make nicely shaped blob to paint the 

sternum in the fewest paint actions possible. This strategy resulted in slower selection times than 

the surface brush. However, this strategy is perhaps not unexpected as the idea of the widget 

interface is the handles suggest their function and operation to the user. Furthermore, while the 

resizing approach to selection resulted in a higher average completion time, it also produced a 

significantly higher F1 score with the blob tool F1 score of 0.97 versus surface brush’s F1 score 

of 0.79. Figure 42 illustrates a random participant’s selection results for the sternum dataset. 
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Figure 42: The front, top, and back view of a randomly selected participant’s selection results 

for the sternum dataset. The green highlight represents correctly selected voxels, the yellow 

highlight represents target voxels, and the red highlight represents incorrectly selected voxels. 

 

4.2.1.3 Vertebra Results 

 

Table 4.3: Numerical values of the average task completion time (in seconds) for each selection 

technique on the vertebra dataset. Error calculated with a 95% confidence interval. 
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Figure 43: Average task completion time (in seconds) for each selection technique on the 

vertebra dataset. Error calculated with a 95% confidence interval. 

 

The vertebra dataset (Figure 43, Table 4.3) was the most difficult selection task for the surface 

brush because the dimensions and orientation of the vertebra required the participants to resize 

and rotate the brush to match it closely. The surface brush used a GUI slider-based brush resize 

and brush orientation controls on a panel closely adjacent to the volume rendering window. It 

was observed that participants struggled to connect their GUI slider resize actions to the brush 

resizing. For example, participants would often lose track of the orientation of the width, height, 

and depth resize sliders after a rotation slider had been used and this resulted in participants 

having to test each resize slider again to reorient themselves. This disconnect between the GUI 

sliders and their effect on the brush seemed to frustrate most of the participants and resulted in a 

premature termination of the vertebra selection task when using the surface brush. Consequently, 

the F1 accuracy score was 0.82 with an average completion time of 93 seconds.  
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The blob tool fared much better as the resize handles provided an excellent visual orientation 

cue. When a user uses the rotation handles to orient the blob, the resize handles are also 

reoriented to remove any confusion on how a handle interacts with the blob’s current state. The 

use of the resize handles allowed participants to accurately select the vertebra and resulted in an 

F1 score of 0.94 with an average completion time of 70 seconds. However, the screen brush had 

the fastest average completion time of 57 seconds due to the small size of the vertebra and the 

few surrounding objects. These two traits allowed the user to select the vertebra with minimal 

spilled paint which resulted in a low editing time and an F1 score of 0.92. Figure 44 illustrates a 

random participant’s selection results for the vertebra dataset. 

 

Figure 44: The side, front, and back view of a randomly selected participant’s selection results 

for the vertebra dataset. The green highlight represents correctly selected voxels, the yellow 

highlight represents target voxels, and the red highlight represents incorrectly selected voxels. 
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4.2.2 Part II: Blob region grow tool 

4.2.2.1 Aneurysm Results 

 

Table 4.4: Numerical values of the average task completion time (in seconds) and F1 score for 

the aneurysm dataset. Error calculated with a 95% confidence interval. 

 

Figure 45: Average task completion time (in seconds) and F1 score for the aneurysm dataset. 

Error calculated with a 95% confidence interval. 

 

The aneurysm dataset (Figure 45, Table 4.4) was selected to evaluate the usefulness of our 3D 

widget-based UI for the blob region grow tool. The goal was to determine if the widget handle 

UI improved selection performance and user satisfaction when compared to a region grow 

technique with a more standard and simpler mouse-based UI. With the standard mouse-based UI, 

users began by selecting an initial seed voxel. Then, by simply moving the mouse away or back 

towards this seed voxel position, the selected region expands or contracts uniformly in all 
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directions. That is, the selected region has a spherical shape only – unlike the super-ellipsoid 

blob region grow tool. This simple but often effective UI design was patterned off the region 

grow tool of the publicly available LiveVolume [8] volume rendering software system.  

In order to test the hypothesis that a widget based, super-ellipsoid constrained UI would have 

superior performance, we chose a target object that could, in theory, be easily selected by the 

standard region grow tool by naïve users. That is, rather than choosing a more complex-shaped 

target object that might bias the experiment toward the more flexible UI of the widget-based blob 

region grow tool. The aneurysm (Figure 46) has a relatively spherical shape that can be selected 

in a single grow interaction if the initial seed voxel is carefully chosen. However, all participants 

were unable to do so, due to poor initial seed placement. Without the extra controls provided by 

the widget handles, accurate selection depended on the initial seed placement and editing the 

selection with a uniform grow in all directions resulted in “paint” spilling onto connected non-

target structures. Conversely, with the widget-based blob region grow tool, participants were 

able to place the initial seed point anywhere in the dataset and quickly adjust the selected region 

boundaries independently on six sides using the widget handles. As a result, users performed 

much better with the widget-based blob region growing tool with an average completion time of 

36 seconds and an average F1 score of 0.95. In comparison, the standard region grower’s average 

completion time was 59 seconds and average F1 score of 0.92. In a questionnaire asking 

participants to name their favorite UI between the two region grow tools, the blob region grow 

tool was unanimously the favorite. Participants commented that the widget handles were 

intuitive and added flexibility. 
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Figure 46: A comparison of a standard region grow tool and blob region grow tool. Left: 

Standard region grow control that grows/shrinks uniformly in all directions based on mouse 

movement. Middle: blob region grow that can be resized independently using the widget handles. 

Right: A participant’s selection results for the aneurysm dataset using the blob region grow tool. 

The green highlight represents correctly selected voxels, the yellow highlight represents target 

voxels, and the red highlight represents incorrectly selected voxels. 

 

4.2.2.2 Double Vertebra 

 

Table 4.5: Numerical values of the average completion time (in seconds) and F1 score for the 

blob region grow tool on the double vertebra dataset. Error calculated with a 95% confidence 

interval. 

 

The double vertebra dataset (Table 4.5) was only tested with the blob region grow tool due to 

time constraints. However, further insight into the effectiveness of the widget interface was 

gleaned. All blob region grow experiments were conducted last and therefore resulted in a lower 

learning curve for participants due to their experience in the previous trials with the widget 
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interface. To counter this advantage, participants were asked to select two vertebrae with the 

blob region grow tool. However, although most participants accurately selected the surface of 

each vertebra using the blob region grow tool, unfortunately voxels inside the vertebra were 

missed resulting in an F1 accuracy score of 0.88.  This is a potential problem with region 

growing, as mentioned previously, as it selects voxels within a specified range that are connected 

to the initial seed voxel. Many objects have a large intensity variation in their interior, resulting 

in disconnected islands of valid voxels.  Nonetheless, it is interesting to note that both vertebras 

were selected with an average completion time of 93 seconds.  Therefore, a single vertebra was 

selected in roughly 47 seconds (50% of 93) – which is considerably lower than the fastest 

technique in the single vertebra experiment (57 seconds using the screen brush). 

 

4.2.2.3 Blob region grow tool vs Blob tool, Surface brush, and Screen Brush 

 

Table 4.6: Numerical values of the average task completion time (in seconds) for each selection 

technique on the kidney dataset with blob region grow tool included. Error calculated with a 

95% confidence interval. 
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Figure 47: Average task completion time (in seconds) for each selection technique on the kidney 

dataset with blob region grow tool included. Error calculated with a 95% confidence interval. 

 

One experiment was performed to compare the blob region grow tool with the purely geometric 

region selection tools using a single anatomical structure – the kidney transplant. While the blob 

region grow tool is somewhat different in nature than the geometric tools in that it selects 

connected sets of voxels starting from a seed voxel, it was nonetheless deemed useful to gain 

further insight into the widget-based UI and into the region-grow tool (Figure 47, Table 4.6). As 

mentioned previously, to create a user study for naïve users, the target ROIs used in the study 

were all single anatomical structures (i.e. consisting of connected voxels). Therefore, it was 

expected that the blob region grow tool would outperform the other tools for these structures, at 

least in terms of selection time. Indeed, the blob region grow tool resulted in the fastest selection 

time with an average completion time of 55 seconds and a variance of 16 seconds calculated at a 

95% confidence interval. Participants primarily used the resize widget handles to quickly grow 

the selected voxels into the entire kidney. As the region growing algorithm doesn’t grow on 

already selected voxels, participants also would often perform smaller region grow selections 
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and use them as boundaries to perform a large selection on the entire kidney without “spilling” 

paint into surrounding areas. When selecting connected sets of voxels, the blob region grow tool 

has an inherent advantage as it lowers the importance of having to position the blob accurately to 

select the target region. Most geometric-based techniques require more precise positioning. 

Furthermore, often participants opted to ignore the translation handles of the blob region grow 

tool completely and exclusively use the resize widget handles. This interaction strategy 

dramatically reduced the average selection completion time and may suggest that the resize 

handles are more effective in general for selection tasks as the handles (and hence the blob 

resizing) can be controlled independently on each side and therefore can also act secondarily to 

translate the blob. Unfortunately, a weakness of the blob region grow tool is that it may miss 

voxels underneath the surface and resulted in a F1 score of 0.92. However, if voxels beneath the 

surface is not important, the blob region grow tool is just as effective as the blob tool and screen 

brush at capturing the shape of an object. Interestingly, the accuracy of the surface brush also 

suffered the same issues as the blob region grow tool due to user’s reluctance to resizing the 

brush to encapsulate entire regions (F1 score of 0.91). Users instead opted to paint multiple blobs 

along the surface of the kidney with a relatively small brush which resulted in voxels underneath 

the surface of the kidney to be missed. The accuracy of the blob tool (F1 score of 0.98) didn’t 

suffer this issue due to user’s preference of using the blob tool’s widget resize handles to 

encapsulate entire sections of the kidney before painting. 

4.2.3 Questionnaire Results 

After the trials for each tool were completed, participants were asked to fill out a questionnaire to 

evaluate their level of satisfaction for each technique. Each question was rated on a 7-point 
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Likert scale with a 1 indicating the lowest level of satisfaction and a 7 representing the highest. 

Users were also asked to pick their favorite technique before and after the introduction of the 

blob region grow tool (Figure 48,49). Before the introduction of the blob region grow tool 

participants generally favored the screen brush as it provided a simple and familiar interface for 

the selection tasks. The blob tool came in second as users with gaming or 3D modeling 

experience were familiar with the handle-based controls. The surface brush was the favorite for 

users that preferred to only use the more direct mouse-dominant surface sliding interface. It was 

observed that these users generally struggled with spatial awareness as well as coordinating 

between the mouse and keyboard, which put the other techniques at a disadvantage. Participants 

overwhelmingly favored the blob region grow tool once it was introduced. The intuitive blob 

tool interface combined with the region-grow functionality allowed users to quickly and 

accurately select a single object ROI. The least favorite technique was the surface brush (Figure 

50), most likely due to having the brush size and shape controls on a separate GUI panel, which 

frustrated users in tasks where the brush required resizing and/or reorienting. This result was 

expected for these tasks as the surface brush, as mentioned, is a more direct manipulation 

technique for positioning and automatic orientation. However, the cost of this direct-

manipulation capability is the difficulty of integrating resizing and orientation fine tuning into 

the interface. Several special keys can be used and combined with mouse movement or the 

mouse scroll wheel, but the resulting UI is rather clumsy and requires memorizing the keys.  On 

the other hand, when using the surface brush painting-plane mode, the functionality of using the 

mouse wheel to move the brush in depth, dependant on the user’s view, was well received and 

should be incorporated into the blob tool in future work. Each technique was also evaluated on 

how easy it was to learn (Figure 51), how easy it was to control (Figure 52), and how easy it was 
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to select objects (Figure 53). Participants found the screen brush easiest to learn with an average 

score of 6.29 followed by the blob region grow tool at 5.66, the surface brush at 5.31, and the 

blob tool at 5.06. For control, participants preferred the screen brush with an average score of 

6.47 followed by the blob region grow tool at 6, the surface brush at 5.12, and the blob tool at 

4.87. For selection, the screen brush came out on top again with an average score of 6 followed 

by the blob region grow tool at 5.91, blob tool at 5.12, and surface brush at 4.5. Interestingly, 

participants rated the blob tool relatively poorly when compared to the widget blob region grow 

tool even though they both shared the same interface. This difference in rating may have resulted 

from users performing the blob region grow tool trials last and thus giving them an experience 

advantage. Generally, the open-view functionality was well received and was rated on how 

helpful the functionality was for viewing and selecting hidden objects with an average score of 

5.5 and 5.37 respectively (Figure 54). Lastly, our blob region grow tool was unanimously the 

favorite when compared against a standard uniform region grower. Participants commented that 

the widget handles were intuitive and added flexibility. These traits resulted in participants 

selecting the aneurysm with an average completion time of 35.6 seconds and an average F1 score 

of 0.95. Versus the uniform region grower’s average completion time of 59.25 seconds and 

average F1 score of 0.92 (Figure 55). 

 



 

94 

 

 

Figure 48: Participant’s favorite technique excluding blob region grow tool. 

 

 

Figure 49: Participant’s overall favorite selection technique. 
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Figure 50: Participant’s overall least favorite technique. 

 

 

Figure 51: Participant’s rating on how easy each technique was to learn. 
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Figure 52: Participant’s rating on how easy it was to manipulate the tools into their desired 

form via translating, resizing, or rotating. 

 

 

Figure 53: Participant’s rating on how easy it was to manipulate the tools and select their 

desired region of interest.  
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Figure 54: Participants rating on how useful open view was for selecting and viewing hidden 

objects. 

 

 

Figure 55: Participant’s favored region growing selection technique. 
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4.3 Additional Experiments 

Additional experiments were performed to demonstrate the capabilities and flexibility of the 

system in various volume image selection/exploration situations. All experiments were 

performed in less than 5 minutes and a brief description and discussion of the selection process is 

provided for each experiment.  

4.3.1 Dilated Aorta Experiment 

 

Figure 56: CT data set for a patient with a dilated aorta. Starting from the top left: 1. Set initial 

minimum and maximum visibility settings to view aorta and surrounding structures without 

losing any detail. 2. Create a ROI using the blob tool. 3. Add voxels selected in the ROI to the 

accumulation grid. 4. Erase voxels from accumulation grid with screen brush. 5. Restore 

original view. 6. Add open view to create various contextual views by changing the viewing 

angle and visibility settings. 

 

Figure 56 is a series of volume renderings of a CT data set (down-sampled to 256x256x170 

voxels) for a patient with a dilated aorta. The goal was to select the aorta and create views to 

allow it to be viewed in context and measured. In this experiment, a combination of the blob tool 
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and screen brush is used. The top left of Figure 56 shows a view of the dataset with a voxel 

visibility range that removes as much of the surrounding information as possible, while also 

maintaining the details of the aorta. A simple 1D TF was used to create this view. To remove the 

remaining occluding objects, the blob tool was used to plant a series of blended blobs to roughly 

isolate the region surrounding the aorta. A separate TF controlling the visibility of voxels outside 

the ROI was then configured to hide all voxels. The selected voxels within the ROI were then 

added to accumulation grid (Figure 56, top row, second from right) and unwanted voxels were 

removed using the screen brush’s eraser function (Figure 56, top and bottom rows, right). Once 

the segmentation of the aorta was complete, the voxel visibility range was adjusted to re-display 

the surrounding context. An open-view lens was then added to create several contextual views, 

each using a different lens shape. The open-view lens generates a cross-sectional view within the 

heart region that allows users to more clearly view the aorta with respect to the heart. The open-

view lens can be reoriented and reshaped in real-time and if desired, the aorta itself can be cut in 

two and its cross-section measured.    
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4.3.2 Aneurysm Experiment 

 

Figure 57: Aneurysm selection experiment. Starting from the top left: 1. Set minimum and 

maximum visibility to view aneurysm and surrounding structures. 2. Select aneurysm with blob 

region growing tool and interactively adjust the blob to add connecting arteries. 3. Add selected 

voxels to accumulation grid. 4. Add open-view lens to create various contextual views by 

changing the viewing angle and visibility settings. 

 

The region of interest for this CT dataset (down-sampled to 256x256x144) is the aneurysm and 

the connected arteries (Figure 57). An aneurysm is an excessive localized enlargement of an 
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artery cause by a weakening of the artery wall.  Like the previous experiment, an initial voxel 

visibility intensity range was chosen that removes as much of the surrounding information as 

possible without removing any important detail from the ROI. As the data set was relatively 

clean (i.e. noise free), the blob region grow tool was used to initially select the aneurysm itself. 

At this point, the aneurysm volume can be measured, if desired. The widget handles were then 

used to resize the region grow blob to grow onto connecting arteries and the selected voxels were 

added to the accumulation grid. The minimum voxel visibility range was then lowered to render 

surrounding skin, muscles, and bones. A rectangular open-view lens was then added to create a 

view that allows users to clearly see the aneurysm’s position in relation to various surrounding 

structures. The open-view lens also allows the user to view the aneurysm from any angle and 

quickly gain additional insight. 



 

102 

 

4.3.3 MRI Brain Tumor 

 

Figure 58: MRI brain tumor selection experiment. Starting from the top left: 1. Set initial 

minimum and maximum visibility settings to view brain tumor without losing any detail. 2. Select 

tumor with blob region grow tool and add to accumulation grid. 3. Use blob tool and open view 

to create various contextual views by changing the viewing angle and visibility settings. 

 

This experiment uses a (down-sampled) 288x288x22 MRI scan and demonstrates how the 

system can be used with nosier volume images to create effective views (Figure 58). In this case, 

the object of interest is a tumor inside the brain with a very high intensity value. To select the 

tumor, the minimum voxel visibility range was set to a high value and the blob region grow tool 

was used to select and add the tumor to the accumulation grid. To create cross sections in the 

brain, a rectangular blob tool was used with its minimum voxel visibility range was set to the 

maximum value. Since voxels within the accumulation grid are not affected by the visibility 
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settings of the blob tool, it allows users to quickly create cross sections by translating, rotating, 

or resizing the blob. This allows users to quickly ascertain the tumor’s position relative to other 

objects within the dataset.  

4.3.4 Hypernephroma Experiment 

 

Figure 59: Hypernephroma exploration experiment. Starting from the top left: 1. Select kidneys 

and connected arteries using the blob region grow tool and add selected voxels to accumulation 

grid. 2. Adjust visibility settings via TF to view muscle and organs. 3. Add open-view lens to 

create various contextual views by changing the viewing angle and visibility settings. The bottom 

row starting from the left illustrates how open-view can be used to make cut surfaces: 1. Adjust 

visibility settings to show kidneys. 2. Place a cubical open-view within kidney to create a cut 

surface. 3. Adjust open-view size and placement to inspect kidney cross-section. 

 

Hypernephroma is a common type of kidney cancer that begins in the lining of the renal tubules 

of the kidney. This experiment is a 256x256x117 (down-sampled) CT scan and shows how our 

system can be used to select the kidneys and its surrounding arteries, or as a tool to create cross 

sections using an invisible rectangular blob to cut the kidney in half and view the cancer within. 
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Starting from the top left of Figure 59, the kidneys and its surrounding arteries were added to the 

accumulation grid using the blob region grow tool. The minimum voxel visibility range was then 

lowered to show muscles and organs. A rectangular open-view was also added to allow the user 

to inspect the kidneys from various angles. The bottom row of Figure 59, starting from the left, 

shows how a rectangular open-view can be used to create cross sections within the kidney to 

view the pockets within and inspect the areas affected by the cancer. 

4.3.5 Pulmonary Stent Experiment 

 

Figure 60: Pulmonary stent experiment. From top left: 1. Create initial view of stent and lung 

region using TF. 2. Increase minimum visible voxel intensity via TF to isolate the stent. 3. Use 

blob tool and paint the stent region and add it to accumulation grid. 4. Use blob tool to create an 

ROI around the stent and remove surrounding structures. 5. Add open-view lens to create 

various views by changing the viewing angle and visibility settings. 
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A stent is a metal or plastic tube inserted into an airway or artery (the pulmonary artery in this 

example) to keep it open. This experiment was conducted on a 512x512x308 CT scan and 

demonstrates how our system can be used to select a stent and inspect its position within the 

artery. Starting from the top left of Figure 60, the voxel visibility range was adjusted to view the 

lungs, but unfortunately, the stent wasn’t clearly visible until the voxel intensity range was set to 

a high value. As the surrounding area was clean, the blob tool was used to select the stent and the 

selected voxels were added to the accumulation grid. The voxel visibility range was then lowered 

to view the stent’s position around the heart and top of the lungs. To get a clearer view, the blob 

tool was placed around the area of the stent and all outside voxels were removed. This allowed 

the user to zoom in and create an enlarged view of the stent and its surrounding objects for 

inspection. Voxels of lower intensity were then brought back, and an open view lens was added 

to show cross-sectional views of the stent within the artery.  These two techniques allow the user 

to inspect the stent’s position relative to other objects and to potentially verify the stent was 

correctly installed. 
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4.3.6 Kidney Transplant Experiment 

 

Figure 61: Kidney transplant experiment. Starting from the top left: 1. Create initial view of 

bones, arteries, and kidney transplant via TF. 2. Use blob tool to select the hipbone and kidney 

transplant. 3. Use blob region grow tool to select the connected arteries and the kidney. 4. Use a 

cubical shaped blob to create a cut away using the blob tool. 4. Create contextual views by 

changing the viewing angle, blob size, and visibility settings to view the focus region in respect 

to muscles or skin. 
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This experiment was conducted on a 256x256x296 (down-sampled) CT scan and showcases how 

a user could create various contextual views for a kidney transplant. Starting from the top left of 

Figure 61, the hip bone and its surrounding structures were selected using the blob tool and the 

selected voxels were added to the accumulation grid. The remaining connecting arteries and 

vertebrae were then selected using the blob region grow tool and were also added to the 

accumulation grid. A rectangular blob tool was then placed over the accumulated paint and the 

minimum voxel visibility range was set to reveal skin. The minimum voxel visibility range for 

the blob was then set to the maximum value to hide all voxels within the blob that were not 

within the accumulation grid. An open-view lens was then added and combined with various 

blob sizes and visibility settings to create several contextual views.  
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Chapter 5: Conclusions and Future Work 

In this thesis, a volume rendering system that uses super-ellipsoids to perform fast volume of 

interest selection in medical images via a widget-based interface was presented. It accomplishes 

this by providing users with a blob tool that can be intuitively translated, scaled, rotated, and 

transformed. 3D paint, in the form of blended super-ellipsoids, can be deposited to form a well-

defined 3D ROI in which a separate transfer function can be applied. The ability to define an 

area of interest with a separate transfer function using multiple complementary tools allows users 

to quickly create effective contextual views by breaking the view generation problem into a 

series of simple and intuitive geometrically-defined interactions. A real-time blob region grow 

tool with a widget-based UI was described. A screen brush with a simple UI was also integrated 

into our system as another complementary technique to select or erase regions. An open-view 

auxiliary lens functionality was introduced as a method for quickly exploring and viewing 

occluded objects. It accomplishes this by giving users the ability to create view-dependent 

cutaway regions with a user-adjustable super-ellipsoid defined cap that is attached to the blob 

tool. This functionality allows users to quickly customize the cutaway region shape to either 

explore or view occluded objects in any situation. An accumulation grid was introduced to 

combine the output of the intermediate selections resulting from the individual interactions. 

Examples of this workflow were presented in a series of experiments in Chapter 4.   

 

The effectiveness of the widget-based UI was quantitatively and qualitatively evaluated in a user 

study. Users overwhelmingly preferred the widget-based blob region grow tool. The widget-

controlled blob tool performed satisfactorily and was the second most preferred geometric 
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selection technique after the screen brush. Observations and feedback from the user study 

showed that participants had trouble positioning the blob tool in depth and identifying the blob’s 

axis of rotation. This implied that the widget handles for translation and rotation weren’t 

providing enough control and visual depth cue and therefore may have negatively impacted 

results. Improvement to the widget handle design is planned in future work.  The advantage of 

widgets for manipulating the blob is that they are data independent and can be applied to any 

volume image and any selection scenario. In addition, they are a simple and convenient 

mechanism for exploring a volume by controlling the position and size of the preview blob. 

Finally, they are also a powerful UI for precisely controlling and steering a region-grow blob. 

Surface brushes, on the other hand, are somewhat data dependent and therefore noise sensitive as 

they slide around on data iso-surfaces. One is often forced to switch back and forth between 

sliding on data iso-surfaces or a painting plane depending on the selection scenario. When to 

perform this mode switching is often not apparent. The screen brush is a simple and effective 

selection tool for many selection scenarios. However, there are also many selection scenarios 

where it is difficult or impossible to find a view that allows for the separation of target regions 

and surrounding regions. In addition, the screen brush is best suited for selection only and unlike 

the blob tool, is not amenable to volume exploration due to its lack of depth control and its heavy 

dependence on volume rotation.  

 

The experiments performed in this thesis attempt to demonstrate the effectiveness of a system for 

generating effective contextual views by providing multiple, intuitive ROI selection tools that 

can be combined in a serial fashion. The tools are coherently based around the use of a super-

ellipsoid and a single unifying widget-based interface. The blend-able super-ellipsoid blobs 
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complement a transfer function based UI in a volume rendering system by supporting separate, 

and potentially simpler, TFs for the region inside the blobs and for the context region outside. 

Feedback from participants is promising, and further improvements and additional capabilities 

can be made to increase the usability and flexibility of the system. 

5.2 Future Work 

5.2.1 Improved Widget Handles 

 

Figure 62: The translation, rotation, and scale widget handles provided in Unreal Engine 4. 

 

The user study in Chapter 4 suggested that the widget handles weren’t providing enough ease of 

use, positioning control and visual depth cue and this may have negatively impacted the 

performance of the blob tool. In particular, users had trouble positioning the blob in depth and 

rotating it. Game engine and 3D modelling software designers have had many years of 

experience and design iterations to address a similar object positioning problem in 3D views. For 
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example, the transformation widget used in Unreal Engine 4 (Figure 62) is a possible 

replacement to the widget handle design in this thesis, especially for blob rotation. The rotation 

handle suggests its operation and the required mouse movements are easy to perform. In general, 

the advantages of a widget-based UI, demonstrated in part by its widespread and continued use 

in virtually all 3D modeling and game engine software, warrant further investigation into 

alternative handle designs.   

5.2.2 Transfer Function Editor 

Currently our system uses two sliders to determine the minimum and maximum visible voxel 

intensity range. These two sliders represent a simple step function in the alpha channel, with 

anything outside the range set to 0 and everything within it set to 1. While the simplicity of our 

current implementation allows users to quickly create contextual views, it also limits the 

flexibility of our system. Although potentially time consuming, the ability to create custom 

transfer functions gives users the ability to finely tune voxel visibility rules to handle any 

situation and potentially improve selection algorithm performance. For ideas, the transfer 

function editors of other popular medical volume rendering software like 3D slicer, ImageVis3D, 

and LiveVolume were evaluated. The transfer function editor used in LiveVolume was chosen 

for its simple and intuitive design and future implementations of our transfer function editor will 

emulate its design. 
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5.2.3 Accumulation Grid Super-Ellipsoid Field 

 

Figure 63: An illustration of using the gradient of the blob field values for normals versus using 

the gradient of grid values in the accumulation grid. The left two images show the normals 

produced at the boundaries of a blob. The right two images show the boundary normals 

produced by the values in the accumulation grid. 

 

One issue with the accumulation grid is that the super-ellipsoid parameters and associated 

parametric equations that define a ROI are not currently utilized to compute an accurate normal 

vector for voxels on the boundary of a selected ROI. In the current implementation, normal 

vectors for these boundary voxels are roughly approximated from the binary values of the 

accumulation grid and results in the blocky appearance shown in the right most images in Figure 

63. However, each voxel within the accumulation grid also stores an ID of the blob (or blended 

blobs) associated with it. In future work, to conserve the normals shown on the left most images 

in Figure 63, the blob parameters associated with an ID will be used to calculate accurate normal 

vectors for voxels inside an object (i.e. not surface voxels) that are on blob boundaries.    
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