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ABSTRACT

FLUTTER SUPPRESSION OF AN AIRFOIL
USING NEURO-¥FUZZY CONTROL

© Chun Meng, 2003
Master of Applied Science
in the program of
Mechanical Engineering
Ryerson University

Flutter, a self-excited vibration of wings and control surfaces, can lead to
catastrophic failure of aircraft structures. Classical methods have been applied
successfully for flutter suppression and for increasing the flutter critical speed.
With the demand of higher speed and more flexible aircraft, more advanced

active flutter control techniques are required.

In this study, a neuro-fuzzy methodology for flutter suppression of a two
dimensional airfoil is explored. A MATLAB simulation environment is used for
the modeling and analysis. The airfoil model is simulated according to a set of
aeroelastic equations of motion. A neuro-fuzzy controller, called NEFCON, is

then embedded in the airfoil model for increasing the flutter speed.

NEFCON learns from the motion of the airfoil and automatically produces
fuzzy rules. The simulation results show that these fuzzy rules can successfully

increase the critical flutter speed. The performance of the fuzzy rules is tested

with different airfoil parameters.
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Chapter 1 Introduction

1.1 Purpose

The aircraft bring a new era in the human history. They make our dream of
flying like a bird come true. In developing the aircraft, many diverse
fundamental laws of nature are applied, some of which invol-z aeroelasticity
[1]. Among aeroelastic phenomena, flutter, the self activ ited divergent
oscillations of the aircraft wings and control surfaces, has cuused intensive

studies. Traditional control methods have been applied succes fully in flutter

prevention.

Artificial intelligence has already numerous applications in var ous industries
despite its short history, but its application in the aerospace area is quite new.

When implemented in flutter suppression, artificial intelligence is often used to

optimize classical control laws.

In the present study, the author will utilize the neuro-fuzzy methcd to suppress
flutter of an airfoil. Flutter suppression of an airfoil is achieved by moving a

flap attached to the airfoil. In the next chapters, the author will explain neural



networks theory, fuzzy logic theory and neuro-fuzzy method. The equations

used to simulate the airfoil model and to develop the neuro-fuzzy controller
model will be also presented. Finally, the author will present the flutter

suppression results of the neuro-fuzzy controller and suggestions for future

study.

1.2 Flutter

1.2.1 Flutter Definition

Flutter which is critical for an aircraft’s operation is an aerodynamics induced
oscillation of a wing, tail, or control surface. For a clear facet of this physical
phenomenon, let us consider a cantilever wing, without sweepback and without
flap, mounted in a wind tunnel at a small angle of attack and with a rigid
support at the root. The wing oscillation will damp gradually to its original
(stable) position after a transient shake when there is no air flow passing around
the wing. When the airspeed increases gradually in the wind tunnel, the wing
oscillation will first damp faster. As the .peed increases further, a point can be
reached at which the damping of the wing rapidly decreases, and there is a
certain speed at which an oscillation can just maintain its amplitude. This speed
is called the flutter speed. At speeds above this critical one, a small accidental
disturbance of the wing can serve as a trigger to initiate an oscillation of great

violence, which can result in a total structural failure in just seconds [2].

[\



An aircraft wing is continuous and has an infinite number of degrees-of-
freedom. For most practical theoretical studies, the simplified model of an
airfoil wing with finite degree-of-freedom is used. A two degree-of-freedom

airfoil model is shown in Figure 1. The model will be described later in detail in

Mean Position_» g

Mid-Chord . Elastic Axis
A
h i e \\ Center of Mass
H P T ——_ N P
Y o e e
[ =TT 7
H T,
i i O
'{ ! ; ; !
[ 1
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e i ¥ ;
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E—— ;
i b ]
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Figure 1. Three degree-of-freedom airfoil model (Alighanbari 2000)

Chapter 2. The flutter motion of the airfoil has both flexural and torsional
components (Figure 2). Classical binary flutter requires at least two degree-of-
freedom; for example, plunge and pitch degree-of-freedom. The phase shift
between plunge and pitch motions plays an important role in the flutter

phenomenon. It is mainly this phase difference that causes the flutter.
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Figure 2. Airfoil deformations

1.2.2 Flutter Suppression

The critical effect of flutter .has been attracting a lot of attention for several
decades especially when people want to design faster fighter aircraft. Before the
1930s, little was known about flutter. Flying in those days did really need to
take great risks with the new sports. It is almost impossible to know how many
brave souls succumbed to flutter. In the 1930s, airplanes were expected to
achieve high speed with better engines available. At that time, flutter analysis
and prevention became more serious especially for faster fighter aircraft. There

are basically two types of flutter suppression: passive flutter suppression and

active flutter suppression.
a. Passive Flutter Suppression

This method includes mass balancing and stiffening of aircraft structure. From
the data analysis on several aircraft in which wing flutter has been observed, and
on others that showed no tendency to flutter, the following critical flutter speed

equation for aircraft wings with mass-unbalanced ailerons was found [2]:



UCI' = i
2k,

cr

(U, = the critical mean flutter speed, feet per second; w = the

fundamental frequency of the wing in torsional oscillation in still air, radians per
second; ¢ = the length of the vibrating portion of the wing, feet; k., = the critical
reduced frequency, 0.9+ 0.12 radian). From this U,, equation, it is obvious that
the flutter speed can be raised by increasing the wing torsional stiffness.
Systematic study has shown that mass balancing can increase critical flutter
speed substantially [2]. Passive flutter suppression is sometimes achieved
through an automatic control system, which can be referred to as semi-active
flutter suppression. By using a microcomputer controlled micromotor to adjust
the stiffness, Yang et al [3] increased the flutter speed of a two-dimensional

wing effectively with this semi-active method.

Passive flutter suppression is an easy way to increase critical flutter speed.
However, as it increases the aircraft weight in order to raise flutter speed, it may

not be practical if light aircraft with high flutter speed are expected.

b. Active Flutter Suppression

With the demand of higher speed and light-weight aircraft and to overcome the
shortcomings of passive flutter suppression, a new control method, called
“active-suppression” was ¢ :veloped in the 1970s. Here, an onboard automatic
control system actuates a control-surface on the wing in response to sensed
structural motion of the ai ‘oil-flap in order to suppress flutter. The first active

control practice was carried out by the U.S. Air Force in their Load Alleviation



and Mode Stabilization(LAMS) program, which resulted in a Boeing B-52

bomber flying 10 knots faster than its open-loop flutter speed.

1.3 Artificial Intelligence

1.3.1 Artificial Neural Networks

Artificial neural networks, often referred to as neural networks, is a branch of
artificial intelligence (AI). It is developed based on present understanding of the
human brain. There are various definitions of neural networks. Initially, a neural
network is a parallel processor modeling the human brain that can learn [4]. It
resembles the human brain in two ways: 1) acquiring knowledge through a
learning process; 2) storing knowledge as the inter-neuron weights which are
the connections among neurons that represent the inputs’ contribution to the

outputs.

Research about the human central nervous systems began as early as the Middle
Age, but their detailed structure was only revealed a century ago. The brain’s
most basic components—neurons—are connected through trillions of synapses
[4]. Ez%ch neuron (Figure 3) is composed of a central body, called soma, a

number of root-like extensions, called dendrite, and a main transmission line,

called axon.
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Synapses: The electrochemical
contact between neurons

Figure 3. Biological neural network

Signals are transmitted electrically or chemically in the neural networks. The
electrical transmission is within a neuron, while the chemical one happens
among the neurons. The soma electrical potential changes as receiving chemical
from synapses. When this potential reaches a certain level, an electrical pulse is
transmitted by the axon and reaches other synapses, causing them to change the

potential.

One of the most important characters of # neural network is its plasticity. It can
form new connections or modify the strength among neurons in response to the
circumstance changes. Even though single neuron is not as powerful ax silicon

logic gates, the brain can perform much faster by organizing neurons {nan the

fastest computer in existence today [4,5,6] .

Learning ability is another critical character of a biological neuron netwerk. In a

person’s early days, the connections in the nervous systems are formed at a very



fast manner while learning the outside world. Later on, these connections may
be modified when new knowledge is available. This also leads to attempts to

mimic the biological neural network for scientific computation.

An artificial neuron is analogous to a biological neuron (Figure 4). It is the basic
computing cell in artificial neuron networks. The inputs, either from external
circumstances or other neurons within the neuron network, are first summed up.

Then, the difference between this summation and the threshold is passed to the

Computing Part

Threshold
Figure 4. Artificial neuron
activation function. There are four common activation functions used for
different purposes: step, sign, linear and sigmoid functions (Figure 5). In the

backpropagation neural network, normally the sigmoid function is used [4]:

5‘5"“°‘d=————1+ ~ - The terms in biological neuron networks and artificial neuron
S

networks are summarized in Table 1.



step function sign function sigmoid function linear function

A A
1 p—— o p— +1 +1

> > —> >
—1 I - 1 -1 —1 !-- 4

step _ 1 le 2 O Ysign - +1 leZ 0 sigmoid — 1 Ylinear X
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Figure 5. Neural networks activation functions
Biological Term Artificial Term Function
Axon Connection Signals transmission
channel
Dendrite Connection Signal receiving,
carrying for processing
cell
Neuron Neuron Basic unit of networks
Soma Sum, Activation Computing cell
Function
Synapse Weights Knowledge
representations

Table 1. Biological neural network and artificial neural networks terins

The first artificial neuron model was introduced by W. McCulloch and W. Pitts
in 1943. In the recent two decades, this artificial branch has expanded more
rapidly than ever before. A lot of neural networks models are proposed [4, 5]
and their applications have been mentioned quite often. In this study, the author

will only discuss the feedforward backpropagation neural networks that will be




used in this study. The introduction on others types of neural networks is

available in [5].

A multiple layer neural network is composed of an input layer, an output layer
and at least one hidden layer. Every layer is made up of a number of neurons.
The input layer neurons accept the external signals and pass them to the next
layer neurons for process; the output layer neurons export the neural networks’
outputs. The neurons in the hidden layer(s) act as signal processors. The weights
pattern of a neural network is formed in the learning stage and can be changed if
the neural networks is on-line. The number of hidden layers can be more than
just one, but the increase in the hidden layers will increase the computation time
dramatically. In practice, three-layer neural (Figure 6) networks are capable of
approximating continuous functions to any degree of accuracy [7]. Here, the
author will explain the supervised learning process with a three-layer
feedforward backpropagation neural network (Figure 6). The typical learning
process includes initialization, input feedforward and error backpropagation.
Before starting the learning process, one should prepare the training data sets

and know the expected results.

10



Input Feedforward

Input Hidden Output
Layer Layer Layer
Error Backpropogation

Figure 6. Three-layer neural networks

a. Initialization:

The weights and threshold levels for the neural networks are set to random
numbers uniformly distributed within a narrow range. Normally, this range is

+2.4/F;, where F; is the total number of inputs of a neuron [5].

b. Input Feedforward:

During this stage, the training data and expected outputs are presented to the

neural networks. The neural networks will do the calculation based on the

11



provided inputs and pass the training data or calculated intermediate results
from one layer to the next layer. The output layer will present the final

calculated results.

c. Error Backpropagation:

In this stage, the errors between the neural networks produced outputs and the
expected output is calculated and passed from the output layer to the input layer.

The weights in the neural networks are adjusted.

d. Iteration:

Iterate the steps b and ¢ by presenting a new set of training data until the defined

error is satisfied or other termination criteria are reached.

So far, the author has discussed the supervised training. The neural networks
structure pattern for the same problem will not be unique. Its parameters depend
on lots of factors, such as initial weights, learning rate, etc. There are also other

learning algorithms in [4] and [5].

1.3.2 Fuzzy Logic

The fuzzy set concept was founded by Lofti Zadeh in 1964. It extended the
classical two-value logic. Even though founded in 1960s, fuzzy logic was not
accepted as a scientific theory until 1980s after a wide range successful
applications [4]. Fuzzy sets, linguistic variables and fuzzy IF-THEN rules are

the most basic concepts in fuzzy logic.

12



a. Fuzzy sets:

Unlike classical (crisp) logic, the fuzzy set has a smooth boundary. This fuzzy

set concept can express knowledge more naturally. For example, when people

talk about engine power, in classical logic, there is an accurate value (say

30hps) that splits the power domain into two subsets: weak and strong. The
engine with power higher than 30hps will be said to be strong, while the engine
whose power is less than 30hps will be said to be weak. But what about a
29.9hps engine? According to classical logic, it will be weak, but in fact, it is

still quite strong. So in fuzzy logic, this can be expressed as a membership

function value, say it is strong with a 0.8 membership function value (Figure 7).

A A
| Strong ! Strong
0.8
0.5 0.5 -
! f I [ l I l [,
0 10 20 30 40 50 0 10 20 30 40 50
(a) (b)

Figure 7. Classical (crisp)(a) and fuzzy(b) sets

Hence, instead of yes-or-no in classical logic, the element and set relationship is
expressed in a matter of degree with value from O to 1 in fuzzy logic. The
membership value is said to be zero when an element is completely out of a set;

it is one when an element is totally in a set; and O~1 when an element is

partially in a set.

13



There are four commonly used fuzzy logic m - rship functions: triangular,
trapezoid, Gaussian and sigmoid function (Figure 8). No standards exist for
fuzzy function selection. As a guideline, a membership function can be decided
by consulting the experts in the relevant area, constructing formula, or learning
it from the system performance. It is worth pointing out that with a simple
formula and high computation efficiency, triangular and trapezoid membership

functions are popular in fuzzy set partition, especially in control.
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2 2 (
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(a) Triangular (b) Trapezoid
4
g o
§ 1= 2 1 -
3 .
N 2, !
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g
8 ., E >
(¢) Gaussian (d) Sigmoid

Figure 8. Fuzzy logic membership functions
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b. Linguistic variables:

The linguistic variable concept is the foundation in fuzzy logic. It is the
combination of both symbolic variables and numeric variables. The universe of
discourse is expressed in a series of fuzzy sets, such as weak, medium and
strong for the engine power example, so the linguistic variables can be
described guantitatively with corresponding fuzzy terms, such as “ engine
power is strong”. When a crisp value is given for the power, a degree of
membership value can be found in a corresponding fuzzy set. This application

will be seen later when fuzzy inference is presented.

c. Fuzzy rules:

The fuzzy rule concept was first introduced by Lofti Zadeh in 1973 [4]. A fuzzy
rule is a statement that associates an antecedent in the “if”’ part with the
consequent in the “then” part. It is also called the fuzzy “IF-THEN" rule.
Unlike classical rules, a variable in a fuzzy rule’s antecedent is expressed in
fuzzy values, and the conclusion is also given in fuzzy values that should be

defuzzified. The following two rules show the difference:

Conventional logic: If the engine power is higher than 30hps, Then the

propulsion force is 200Ns.

Fuzzy logic: If the engine power is_strong, Then the propulsion force is high.

The antecedent part of a fuzzy rule may include more than one condition, and

the consequent part may also have more than one conclusion.
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In the above discussion, it may have been noticed that both antecedent and
consequent parts of a fuzzy rule are fuzzy values. But in real world engineering
applications, the inputs are given in numerical values and the outputs are
expected in crisp values. So a fuzzy 1le must be interpreted. There are two
common inference methods: Mamdani and Sugeno. In this study, the Mamdani
inference method is used and the author will show this method with the

following two inputs, one output system. The three fuzzy rules for the example

are as follows:

1) IF the engine power is medium AND the friction is low
THEN the speed is high.

2) IF the engine power is strong OR the friction is normal

THEN the speed is normal.
3) IF the engine power is low

THEN the speed is low.
The Sugeno inference method is introduced in [4]. Input fuzzification, rule
evaluation, summation of fuzzy rules and defuzzification are the four steps in

the Mamdani inference [4]:

Stage 1. Input Fuzzification:

In practical engineering applications, the inputs are given in numerical values.
They are first converted to membership values in appropriate fuzzy sets, say for
18hps engine input, the membership values are 0.53 in a weak set and 0.3 in a

medium set [Figure 9(a)].
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Stage 2. Rule Evaluation:

The fuzzy operations are applied to antecedents of fuzzy rules for finding

consequent membership values with the clipping method [Figure 9(b)-(d)].

For example, as shown in the figure, the “AND” is the operation for

intersection-minimum, so the resulting consequent membership value for Rule 1

is min[ p,,.4:.m (enginepower), p;,..( friction)} =min[0.3,0.5]=0.3.
Stage 3. Fuzzy rules summation:

The clipped result of the individual fuzzy rule is unified to get one fuzzy result

as shown in the lower part of Figure 9(e).

Stage 4. Defuzzification:

This is the final stage to get the crisp or numerical output from the fuzzy logic

system for real world applications.

There are two common defuzzification methods: mean of maximum(MOM) and

centre of gravity(COG). In this study, the COG is introduced. The formula for

I} 4 aa

J.a Hy(x)dx

this method can be expressed as COG = [4], where @ and b are the

upper and lower limits of the output universe. In practice, an approximation to
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b
D Ha(x)x

this integration is adopted, COG =—‘=—:—— This means that the universe of

> ()

xX=q
discourse is divided into a limited number of points and the output is evaluated

based on these points indicated by the arrow in the lower part of Figure 9(e)].
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1.3.3 Neuro-fuzzy Systems

Neural networks and fuzzy logic systems are both universal approximators and
have seen a lot of successful real world applications. Both systems have their
advantages and disadvantages. For neural networks, knowledge can be learned
through backpropagation process, but it is difficult to explain neural networks,
so it works as black box. For fuzzy logic systems, knowledge can be clearly
expressed in fuzzy rules, but the fuzzy rules and the partition of the universe of

discourse need expert knowledge, which limits its application.

It is natural to explore the possibility of combining these two artificial
intelligent models to overcome their disadvantages. The hybrid system,
normally called neuro-fuzzy systems, is first introduced by Lee and Lee [8] in
the early 1970s. The neuro-fuzzy systems have a similar structure with multiple
layer neural networks (Figure 10). The inputs are fed forward and the errors are
backpropagated in the leaming stage. As shown in Figure 10, a neuro-fuzzy
system normally consists of one input layer, three hidden layers and one output

layer.
Each layer has its particular function:

Layer one:

This is the input layer which communicates with external circumstances. The
crisp inputs accepted externally are passed to the next layer. This layer does not

process these crisp inputs.
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v_
Input Hidden %‘:;‘;t
Layer Layer
Figure 10. Neuro-fuzzy structure
Hidden layers:

The first hidden layer represents the antecedents of fuzzy rules. Its neuron
number equals the total fuzzy sets of all the inputs in fuzzy rules. For the
example used in sectionl.3.2, there are two inputs and each input universe is
divided into three fuzzy sets, so six(2 x 3) neurons are included in this layer.
When crisp inputs enter this layer, their membership values are decided. For
example, 18hps engine power membership values are 0.3 in the weak set and
0.53 in the medium set. To decide the membership values, the triangular

activation functions are used in this example. The parameters of the activation
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functions can be adjusted in the learning stage in order to achieve expected

neuro-fuzzy system outputs. The parameters effect on the membership value can

be shown with Figure 11.

05

Figure 11. Activation function parameter effect

The second hidden layer represents the fuzzy rules with its neurons. Its neuron
number equals that of the fuzzy rules. For this example, the hidden neurons
number is three. The fuzzified results from the first hidden layer enter this layer
to produce fuzzy rules output membership values. Fuzzy set operations will be
applied if there is more than one antecedent in the fuzzy rules. In rule one of the
example in section 1.3.2, the “AND”(min) operation is applied resulting in a

membership value of 0.3.

Hidden layer three represents the membership function values of the fuzzy
rules’ consequent. If there is more than one input from the fuzzy rule layer, then

the union fuzzy operation will be applied for the final membership function

values.
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Output layer: This layer produces the final crisp output using different

defuzzification methods, such as COA or MOM.

The learning process of a neuro-fuzzy system can be the same as that of
feedforward backpropagation neural networks. When a set of training inputs is
provided to a neuro-fuzzy system, the output is produced and then compared
with its expected value. The difference or the error will be backpropagated in

order to modify the activation function and the weights.

Expert knowledge can be applied to a neuro-fuzzy system as in a standard fuzzy
logic system; or appropriate sets of representative data can be used to train a

neuro-fuzzy system to produce a set of fuzzy rules.

1.4 Previous works in flutter control

To the author’s knowledge, there are no reports on the application of neuro-
fuzzy controller in flutter suppression. The author will hence review some of the

active flutter suppression works with the other methodology.

Haley and Soloway [9] validated the effectiveness of generalized predictive
control in flutter suppression. This generalized predictive control was
implemented to control the trailing-edge of an airfoil in a transonic wind tunne].
The experimental results showed that this control method with control
parameters derived from the simulation model can increase critical flutter speed

significantly.
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Mukhopadhyay [10] designed suppression control laws using classical, linear
quadratic Gaussian and minimax techniques. The control laws, based on the
analytical state-space equations of the wing, adopted trailing-edge accelerator
signals as flutter suppression inputs. The tests in a wind tunnel showed that the

designed control laws could suppress flutter.

Crowther and Cooper [11] used neural networks in flutter prediction during
flight flutter testing in aircraft manufacturing. The neural networks method
prediction results were compared with the prediction results of a statistical
method and the noise effect was also investigated. The authors concluded that
the neural networks method showed improved accuracy under the noise-free
condition. Under the noisy condition, neural networks prediction accuracy
remained good if it was trained with noisy data, but the statistical method was

unacceptably poor.

Scoot and Pado [12] were the first who presented experimental applications of
neural networks on flutter suppression for an airfoil with a trailing-edge and
upper- and lower-surface spoilers in a transonic wind tunnel. Neural networks
were applied to flutter suppression in three ways. First, a neural network was
trained to generate gains for every control law under different Mach number and
pressure. The control laws with neural networks generated gains improved the
flutter suppression over a fixed-gain control. Secondly, a neural network was
used to produce flutter control signals based on the data derived from the plant

model. The third flutter suppression application of neural networks was the
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inverse model control. Both simulation and experimental results showed the

successful performance of the last two methods in flutter suppression.

1.5 Objective of the thesis

Flutter can cause dramatic structure failure in a matter of seconds. Before
the1930s, little was known about {lutter. After that time, when airplanes were
expected to achieve high speed and light weight, flutter analysis became more

serious, especially for faster fighter aircraft.

Both passive and active methods can suppress flutter successfully. But passive
suppression application is limited by its way on flutter suppression, and active
flutter suppression can be applied in many different ways and will need

complete understanding of airfoil behavior.

The present study intends to analyze a two-dimensional airfoil performance
with flap as a controller and develop a neuro-fuzzy system to suppress the
flutter and increase critical flutter speed. The neuro-fuzzy system will learn
from the airfoil behavior. The fuzzy rules for flutter suppression will be
produced by the neuro-fuzzy system automatically. The neuro-fuzzy results will

be analyzed and compared with classical control methods.

1.6 Thesis overview

This study explores the neuro-fuzzy applications in airfoil flutter suppression.
The significant point of this application is the attempt to develop a neuro-fuzzy

system that can generate the effective fuzzy rule base automatically.
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Chapter 1 includes two parts. The first part presents the theory on flutter and the
previous approaches to flutter suppression. In the second part, the theory about
neural networks, fuzzy logic and neuro-fuzzy system is introduced. The reasons

for choosing neuro-fuzzy system are explained.

Chapter 2 deals with the airfoil motion equations. Eight ordinary differential
equations(ODE) used for the Simulink® model are presented. The airfoil-flap

combination model is built based on these ODEs under Simulink® environment.

The software(NEFCON) which is used in this study as the control part is

introduced in Chapter 3. Detailed descriptions of NEFCON, NEFCON model

and the complete model are available in this chapter.

Chapter 4 presents the fuzzy rule base generated by neuro-fuzzy system, the
control result and the comparison of neurc-fuzzy result with other control

schemes.

Chapter 5 provides the conclusion of this study and suggestions for future

research.
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Chapter 2 Governing Equations &
Simulation Model

2.1. Mathematical model

Aeroelasticity is the theory dealing with the interaction between structures and
aerodynamic forces. Two deformations, pitching and plunging, are considered
in the flutter analysis of aircraft wings. Instead of analyzing a three dimensional
wing, a three-degree-of-freedom (3DOF) airfoil with a flap is considered for

preliminary study on neuro-fuzzy flutter suppression in this thesis.

The airfoil-flap combination (Figure 12) employed here consists of an airfoil
and a trailing edge flap. The combination is mounted by a transitional and a
torsional springs at the elastic axis. The plunging deflection denoted by # is
measured at the elastic axis and is positive in the downward direction. The
airfoil rotation about the elastic axis is represented by a and is positive nose-up.
The flap is fixed to have only angular deflection (f) about the flap hinge,
positive for the flap tail down. The airfoil-flap combination has a chord of 25.
The elastic axis is located at a distance bay, from the mid-chord, the mass center

of the entire airfoil is located at a distance bx, from the elastic axis and the flap
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hinge is located at a distance bcg from the mid-chord. The mass center of the

flap is at a distance bxp from the flap hing . All distances are positive toward the

trail edge.

Mean Position

o — .--A\}']-ﬁ ! %
- \\"\,_& 4 B

lc.a. of Aiteraiv~
Aileron Hinge  /

- i

e ;'

Figure 12. Three degree-of-freedom airfoil-flap (Alighanbari, 2000)

For active flutter suppression of the airfoil in this study, the control command
rotation S should be applied to the flap. This . command can be derived from
different control laws, such as classical feedback control techniques, linear
quadratic Gaussian theory, eigenspace techniques and the aerodynamic energy
method. In this study, the following rotation command [13] will be applied to

the flap. The control result will be compared with that of the neuro-fuzzy

control algorithm:
5° 5
- = [T ]{ } ; +2§k S+k2[ Ger T ]{a} @-1)
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where o is the airfoil pitch angle, ¢ = A/b is nondimensional plunge

displacement, and Tez, Tecq, Tae, Tge are control gains.
The denominator, s*+2¢ k,st+k> , is the transfer function for a second order

system with damping { and natural frequency k,. In practical control, the ar, &
and k, parameters which decide the damping amount should be determined to
optimize the control system. The transfer function equation (2-1) can be
converted to the following time domain form [13]:

( Tci:+aTTGE_)5“+(Tca+aTTGa)a" 'ﬂ:+2§k)z (Tcéf""Tcaal':B;)J‘-k/% (TcE_§+

T.e-B.)=0 (2-2)
where S is the flap angle and ( )' denotes differentiation with respect to

nondimensional time t,

2.2. ODE and Control Model

Governing aeroelastic equations of the airfoil-flap combination are given as a

set of ordinary differential equations (ODEs) by Alighanbari [14]:

mé +mya +myf +muE +msa +mgf +mal +mga+mgf+
myy+mypy; =0 (2-3)
mE +ma +mf +ngE +nsaFngfB +nga+ngB+my v +nppy, =0 (2-4)

G + 30 + @3B +quf +950 +4f +q5a +qof+qun +daYs =-QisfB. (2-5)

" 1 1 Tll " 1 ' a IIO '

'aw§ _aw(—z__ah)a _awgﬂ th=aat Mﬂ_ ﬂ _bwyl (2'6)
" 1 " 711 v voe, 710

-cy & ——cw(;—ah)o: —cwgﬂ +y, =c, & +J’—Tﬂ—~ﬂ —d., ) 2-7)

T’s are given in Appendix I;

m’s, n’s and q’s are given in Appendix II;
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av, by, ¢, dyy and ay, are given in Nomenclature;

y; and y, are auxiliary variables.

The £ is the flap control command used to suppress flutter. We can now use

Simulink® to solve these second order ODEs.

To illustrate the Simulink® model building method and procedure, we will use

the following simple second order ODE :
9y +23y +45y =80 (2-8)

This equation can be rewritten as:

y' = =(=23y —45y +80) (2-9)

1
9
Now Simulink® must be started and a window for building a new model should
be open. Then “Integration” blocks from the “Continuous”; “Scope” block from
the “Sink™ and the “Gain” blocks from the “Math” in the “Simulink” library are
dragged into the new model window. These blocks should be connected
according to the given equation (Figure 13). In this new model, one
“Integration” block represents y" and the output from this block is equal to y' or
input to y' block; the other “Integration” block is y' The above equation
(equation 2-9) means that the input of y” is the right side, so the connection
shown in the lower part of Figure 13 can be built and connected to y” block

input. The output from y" block is connected to y’ block for final y result. A
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scope block is connected to the y’ block output port for graphic result. For the

function explanations on these blocks, one may refer to Matlab® Help.

1

—L—b— 1/s yﬁbﬂs 4 ]

intergrator intergrator2 Scope

Gain

Gain2

Constant

Figure 13. Sample ODE model in Simulink®

In a similar way, the author develops the Simulink® model for the airfoil-flap

combination (equation 2-3~equation2-7). The detailed procedure is given in

Appendix III. The model is shown in Figure 14.
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With this Simulink® model, the critical flutter speed of the airfoil-flap
combination is found to be U = 6.139(Figure 15), which is in agreement with
the eigenvalue method. The proposed neuro-fuzzy controller will be included

later in this Simulink® model for flutter suppression.

0 3CIIU EC']D 960 12|UU 1500
Nondimensional time(t)
(a) nondimensional plunge displacement at flutter speed (U= 6.139)
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(b) pitch displacement at flutter speed (U= 6.139)

Figure 15. Airfoil displacement without controller
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Chapter 3 NEFCON and Flutter
Control

3.1 NEFCON introduction:

Artificial neural network is inspired by the human brain and has been
successfully applied in many fields, such as classification, recognition, and
controls. Neural network’s distinguishing characteristic is that it can learn and is
adaptive to a changing environment. Neural networks can learn from given
information to adjust itself to produce required results. Unfortunately, people
don’t know how it does this. Fuzzy logic can represent human knowledge in a
natural way. The expert knowledge for fuzzy logic can be expressed in fuzzy
“[F-THEN” rules. Expert knowledge on a system must be available for fuzzy

logic application [4, 5].

The disadvantage of neural networks is that it works as a black box, which
means it can not be interpreted. For fuzzy logic, its application is limited by the
availability of expert knowledge. So, the combination of these two systems,

neuro-fuzzy system, which adopts the neural networks’ learning ability and
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fuzzy logic’s knowledge representation, can overcome the shortcomings. The

combined neuro-fuzzy system can learn and express itself in a set of rules.

Neuro-Fuzzy Controller, which will be referred to as NEFCON, is a neuro-
fuzzy system that adopts reinforcement learning. Under reinforcement learning
algorithm, the controller does not rely on the accurate solution of the control
problem, instead the controller can learn to control a system by the
reinforcement signal or error signal. NEFCON controller uses an error signal in
the learning process. It is supposed that the desired state of system is known.
The difference between the current state of system and the desired state of
system can be expressed in a suitable way. The knowledge of a certain problem
can be used by NEFCON for practical control, or it can also learn from scratch
if no knowledge of a problem is available. After learning the behavior of the
system which will be controlled, NEFCON can express the control law for the

system in a set of fuzzy rules.

The NEFCON system, like other neuro-fuzzy systems, has the multiple-layer-
perceptron (MLP) structure (Figure 16). The NEFCON, that is used here for
explanation, has two inputs (£; and &), five rules (R;~Rs) and one output (7).
The inputs to the neuro-fuzzy systemn are the state variables of the system to be
controlled, and the output of the NEFCON system will be applied to the system
as a control command. The neurons in the only hidden layer correspond to the

fuzzy rules. For instance, R, can be:

IF& is AV and £, is A then 1 is BY.
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Figure 16. NEFCON structure diagram (Nurnberger, Nauck and Kruse)

where Al(l) , Agu and BY are the fuzzy sets of inputs &;, & and output n

respectively.

The connections between the input layer and the fuzzy rule layer, and between
the fuzzy rule layer and the output layer are fuzzy weights. This is shown in
Figure 17. For classical neurons, the connections between two layers are crisp
numbers used as weights. For NEFCON, these weights are actually fuzzy
membership function values decided by the inputs and membership function in

corresponding fuzzy sets.
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classical nevron NEFCON rule layer NEFCON ouput layer

Figure 17. Classical neuron and NEFCON comparison

As shown in Figure 16 by the ellipse, some connections share the same weights.
For example, the input to rule R4 and Rs connections share the same ugl) )

which means the linguistic variable for input &; in the antecedent part of R4 and
Rs comes from the same fuzzy set. The shared weights will be modified

identically for all fuzzy rules in the learning process if necessary.

3.2 NEFCON learning algorithm

When control laws are not available for a system control problem, the NEFCON
controller can be used as it can learn from scratch and express the control law n

a set of fuzzy rules. This procedure begins by learning the behavior of the
system to be controlled. The NEFCON learning algorithm includes two stages:

learning fuzzy rules and learning fuzzy sets.

a. Learning fuzzy rules:
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This stage is dedicated to building an initial fuzzy rule base. There are two

classes of rule learning: decremental rule learning and incremental rule learning.

The author will present the incremental rule leamning here. Details on the

decremental rule learning are available in [16].

The incremental rule learning consists of two phases. In phase one, the highest
membership function values are calculated in corresponding fuzzy sets for each
newly entered set of state variables. If there are no rules in the existing fuzzy
rule base with these variables in the antecedent, an output is “guessed” based on
present error. The fuzzy rule produced is added to the fuzzy rule base. This
phase is repeated the number of stipulated times. In phase two, this input set is
propagated through the NEFCON system to update the existing fuzzy rules
contribution. This can also be iterated the number of predefined times. In this
phase, fuzzy rules which are used less than a certain percentage are deleted from

the rule base.

b. Learning the fuzzy sets:

It is assumed that the fuzzy rule base which is built the way described in last
section is adequate, and the possible lack of performance is due to an
inappropriate rule organization. The purpose of the learning fuzzy sets is to

modify the membership functions of the NEFCON system for optimal

performance.
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The difference between the desired output and the current output will be used as
a reinforcement signal. This process is very similar to the backpropagation
process in the neural networks. The reference signal is backpropagated from the
output layer to the input layer. Only the parameters of the membership function
activated in the fuzzy rules at present stage will be modified to reduce the error.
This indicates that those fuzzy rules which are not applied to the current state
will not be changed. At the same time, the fuzzy rules with higher activation are
assumed to have a bigger influence. This will also affect the modification
degree together with the learning rate and the error value. This process will be

repeated for a predefined number of times.

3.3 Control model with NEFCON

The NEFCON controller is added to the airfoil-flap combination model, which
was built in section 2.2 based on the set of airfoil aeroelastic equations of

motion (equation 2-3;2-7) under the Simulink® environment.

3.3.1 New NEFCON creation

The author simplifies the Simulink® model built in section 2.2 by creating an
airfoil subsystem(named “Airfoil Model”, orange part in Figure 18) with
outputs: &, a, B, §', o and B', and input: .. The “Nefcon System” coming with
the NEFCON software is added into the airfoil window (Figure 18). The two
small windows of Figure 18 are used for new NEFCON controller parameters

setting. “Nefcon Signal Generator” is selected as NEFCON signal generator is
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used, and “Nefcon Learning System” will be used to learn the airfoil-flap
contrcl. According to equation (2-2), the author will use four inputs--§, o, £ and
a—for flutter suppression. The final result is shown in the upper part of Figure

18.
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3.3.2 NEFCON learning set-up

The NEFCON controller is now ready to learn to control the airfoil system.
Before starting the NEFCON controller to leari: the airfoil system behavior, one
should set up the learning environment first. Figure 19 shows the “Nefcon

Control” window for set-up.

-4 NefconControl . "

Fle Edt Window Help - S “
The NEFCON Model l
Enor Definition S aa— Leamirig Algorithm .~
== input Premo&éséiﬁg v oo - Furzy Eontroller f
{4inputs) )
Start time 0.0 " Selecied Model -

i
. o avwded 3dofanet - o ‘_'_t" - !

| | o s |
Stop lime 180‘0 " Cycles. - ‘g . ‘Simd té‘ l i

Create l N o Pesst j ‘ Help : Close : ;
.S}Iatu‘s_: , . . . ; S I < 1 . l '
 Soped Pt M RuePl W RueF2 Opinze IV Conko

Figure 19. Nefcon Control window

3.3.2.1 Error definition (Figure 20)

There are four choices for error definition:

a. Using a Fismatix:
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This method uses a fuzzy inference system for error definition. As there are four
inputs into the controller, the inference system will be too complicated, so it is

not used here.

b. Using Input One as error:

The input one means the difference between the desired state value and the
current response. In this airfoil-flap system, there are many inputs and this input

can not be modified, so it is not selected.

c. Bounded error calculation:

The NEFCON bounded signal generator is used to calculate the error. This

method is not used here as the author does not select bounded signal generator

which is used for manual error set up.

d. Using a Matlab Function:

In this method, the error range can be easily controlled and hence the learning

process. Thus, it is adopted in this study (Figure 20).
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EditEmn - ‘ N Help - ] Close

Figure 20. Nefcon error definition

3.3.2.2 Input processing (Figure 21)

This window is designed to define the input number, input range and gains. For

the flutter suppression problem, the sets are:

Number Range Gain
Input 4 No.1 No.2 No.3 No.4 !
-2~2 1 -1.5~1.5 | -2~2| -1.5~15
Output 1 N/A N/A N/A N/A 1

Table 2. NEFCON input setting
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Figure 21. Nefcon input precessing

3.3.2.3 Learning algorithm (Figure 22) -

This window is divided into two parts: rules learning and optimization.

Rule learning:

There are four types of learning algorithms which can be selected:

a. Bottom-Up Learning;:

The universe of discourse of inputs and outputs is evenly partitioned. The
equally distributed membership functions are assigned to each partitioned set.
The number of the partition and the membership function types can be defined
in the “Partitioning” column. The rule base is initially empty. If any prior rule
base is loaded through “fismatrix” column, then its membership functions and

rules will be the initial data and more rules will be added during the learning
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stage. Under this learning algorithm, the fuzzy rule base is initially empty and
new rules are added by learning the system to be controlled, so this guarantees

that every rule is active in system control and is selected in this thesis.

The learning rate is set to 1; rules used less than 5% will be deleted in phase
two. The cycle time of this airfoil-flap combination is found to be very small, so
the learning time is set to 90 seconds. The cycle numbers in two phases are all

set to one.

b. NEFCON:

The universe of discourse of inputs and outputs is evenly partitioned. The
equally distributed membership functions are assigned to each partitioned set.
The number of partitions and the membership function type can be defined in
the “Partitioning” column. If prior rule base is loaded through “fismatrix”, then
its membership function and rules will be the initial data. Otherwise, a full set of
rules will be produced based on the number of inputs, output and fuzzy sets.

The “bad” rules will be deleted during the learning process. As this is
decremental algorithm which is not selected for this study, so this “NEFCON”

is not used.

c. Disable Initial Fismatrix:

The fuzzy rule learning process is disabled. A valid initial rule base must be
loaded in the “fismatix”. As the effective control rules are not available, this

algorithm can not be adopted in this study.
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Figure 22. Nefcon learning algorithm

d. Disabled Current Fismatrix:

The fuzzy rule leaming process is disabled. And the current rule base will be

used as initials. As the initial fuzzy rules are not available, this algorithm can

not be used here.
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Optimization:

The fuzzy rule base is optimized by shifting and/or modifying the support of the
fuzzy sets. There are three possible optimization methods. The NEFCON
I(modified) optimization method is introduced as before in section 3.2.b. It uses
the current error to modify the membership function. The NEFCON II
optimizes the membership functions based on the error change trend. If the
optimization is disabled, then no optimization will be made. The NEFCON I
method is adopted with four cycles at 10™ learning rate, where the learning rate

will decide fuzzy sets shifting and/or modifying degree.

3.3.3 NEFCON training

Up to now, all the learning parameters have been decided, except the airfoil-flap
structural data, initial motion data and speed. All these data are included in an
m-file called initm3dof and should be connected to the model by the Matlab®
command:

set_param(‘airfoilaileron3dof’, InitFcn’, 'initm3dof’)

where:

“airfoilaileron3dof”: the name of the model to assign the initial value;

“initm3dof”". the m-file contains the initial values to be assigned to the model.

After the learning environment for NEFCON is set up, the learning process can
be ignited by “Simulate” (Figure 18). The cycle of the airfoil-flap combination

oscillation is very small, so the learning time is set to the 90sec. During this



period, the NEFCON system will get enough motion nformation about the
airfoil-flap combination. Another point to be mentioned is that after a number of
trials on NEFCON learning, it is found that the produced flap command(f.)

should be magunified by a gain before applied to flutter suppression.

The NEFCON is trained at a speed higher than the critical flutter speed. The
fuzzy rules produced at higher speed can successfully suppress flutter that

happened at a low speed after the amplifier is adjusted.

The final fuzzy rule base i1s given wmn the standard Matlab® Fuzzy Controller

window (Figure 23) with ten rules.

2. If (inputl is ze} and {input2 is ze) and {input3 s pz] and (inputd is ze) then [output ismf7) (1)
3.1 {input? is n2) and {input2 is ze) and {input3 is ze} and (input4 is ze] then {output is mf6) (1}
4. If (input] is pz) and ({input2 is 2e) and {input3 is ze) and (inputd is ze) then [output is mi8] (1) i
5. If (inputl is ps) and (input2 is ze] and {input3 is ze) and {inputd is ze) then (output is mf10] (1] it
B. If inputl is ns} and (input2 is ze] and (input3 is ze} and (inputd is ze] then (output is mf4} (1) Eh
7. :f (inputl is nsj and (input2 is ze) and (input3 is nz) and {inputd is ze) then {output is mf4] (1}
9.
q.1
1

. i,

T TR

f (input! is nz) and (input2 is ze) and {input3 is nz) and (inputd is ze) then (output is mi4) (1]
f {inputl is ps} and (inpul2 is ze} and (input3 is pz) and {inputd is ze] then (oulput is mf10} (1) E
0. 1 {inputt is pz) and (input2 is ze) and (input3 is pz) and (inputd is ze) then {output is mfI0) {1)

‘Delete 1ule

Figure 23. NEFCON produced fuzzy rule base
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Chapter 4 Flutter Suppression

In this chapter, both the neuro-fuzzy control and the modified energy method
(equation 2-2) are implemented in flutter suppression. The flutter suppression
results of these two methods are compared. The neuro-fuzzy controller flutter

suppression performance is tested under different conditions.
4.1 Modified Energy Method Flutter Control

The modified energy based control method (equation 2-2) is implemented i a
Simulink® model (Figure 24). There are basically three parts in this model:
controller (red), airfoil model (orange) which is built in Chapter 2 and results
display (gray). The inputs to the controller are the acceleration (&_‘"), velocity (&)
and displacement () in piunge and acceleration (a"), velocity () and
displacement (&) in pitch. These control inputs come from the airfoil-flap model

(orange part). The output of the controller (f,) passes to the airfoil model! for

flutter suppression. The airfoil model is designed to simulate the airfoil motion
in plunge, pitch and flap rotation. The display part uses Simulink® scope blocks

to show graphically the airfoil motion.
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For an airfoil-flap combination, the modified energy method based controller
(equation 2-2) is implemented with the following parameters which have been

used by other researchers [13}: u# = 100, x, = 023, a = -0.5,
1@3= 0.25, r} =0.0015 and xg= 0.002. For a control surface that covers 20% of

the airfoil chord, ¢ = 0.6; and Tz = 0, Teq = -1.86, Tge = 4 and Tge = 2.8-
4(a;+0.4). The coefficients in the transfer function (equation 2-1) are decided by
optimization: ar =4, £= 0.6 and k, = 0.04. No structural damping is considered
in this study. The critical airfoil-flap flutter speed without control is found to be
U= 6.139 (Figure 25). With control applied (equation 2-2), the critical flutter
speed can be increased up to U = 8.25 (Figure26). Unstable condition occurs at
critical flutter speed (U = 6.139) under modified energy control. However it is

not a part of this study, the author does not explore this problem.

Signal
Mixer

) et
Alrfoil Model

Contraller

Figure 24. Energy method based flutter suppression scheme
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The following figures (Figure 27, Figure 28) show the airfoil motion both

without and with modified energy control at U = 8.
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Figure 27. Airfoil motion without control at U=8§
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Figure 28. Airfoil motion with control'at U= 8
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Figure 28. Airfoil motion with control at U= §

4.2 NEFCON flutter suppression

The NEFCON fuzzy rule base produced in the previous chapter has been

optimized and is applied for flutter suppression.

The neuro-fuzzy rule base is loaded into the NEFCON controller for the airfoil-

flap system. The learning and optimization processes are disabled.

As the fuzzy rule base used here is produced at speed U =6.9, the magnifying

factor must be optimized for other lower speeds. A set of amplifying factors

applied to different speeds can be found in Table 3.

speed

6.14

6.3

6.7

6.9

gain

0.9

1.1

[.11

1.2903

Table 3. NEFCON amplifying gains for different speeds
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Based on the above set of data, Matlab polynomial fitting method is used to find
an equation on speed-gain relation which can be expressed as: Gamn = 4 8*P-
94.1*UP+614.3*-1335.5. This equation must be put in the Simulink® model of

the NEFCON model.

The fuzzy rules can suppress flutter successfully and quickly for speeds up to
6.7. Figure 29 and Figure 30 show the performance of the Nefcon controller.
When speed increases to U = 6.9, the suppression happens slowly and drift

happens at 7= 1500 (Figure 31).
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Figure 29. Flutter suppression (U = 6.139)
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Figure 30. Flutter suppression (U= 6.7)
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Figure 31. Flutter suppression (U = 6.9)

60



Pitch displacement{deg)

L N 2
w] 300 600 200 1200 1500
Nondimensional tiem(zt)

(b) pitch displacement

Figure 31. Flutter suppression (U= 6.9)

4.3 Neuro-fuzzy control and energy method control

comparison

Both of the control methods can successfully suppress flutter. With the modified
energy control method, the plunging displacement amplitude will f'rst jump to a
higher level; whereas under the NEFCON control, the plunging displacement
amplitude is maintained within a small range and then will be suppressed
(Figure 29U Figure 31). So under the modified energy method, the airfoil-flap

combination needs to be stronger to resist the higher plunge deformation.

The energy method can suppress flutter at much higher speeds such as U = 8

(Figure 28), but not the NEFCON method.

The significant result from this study is that the neuro-fuzzy control

methodology can be applied to flutter suppression successfully without any
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prior control command knowledge required. The NEFCON controller adopted
in this study can learn itself from the motion of the airfoil-flap to produce a set
of fuzzy rules for flutter suppression. The NEFCON controller can then use
these fuzzy rules to suppress the flutter successfully. The NEFCON control

method should be considered first in flutter suppression.

4.4 Neuro-fuzzy controller p- ¥ - :ance test

In this section, two performance tests o.. .te fuzzy rules produced in Chapter 3
are implemented. First, the value of the ¢ » parameter is changed slightly (2%)
for fuzzy rule sensitivity test. Second, four parameters-w;, wp r, and rg- will be
increased with a higher percent (say10%) of the initial values to find out the
flutter suppression performance of the fuzzy rule base under the new airfoil-flap

system. The author will also try to find out which parameters are critical to the

. flutter suppression in the second test.

4.4.1 Sensitivity Test—2% change in ws

2% increase in parameter (w;= 0.204)

The neuro-fuzzy controller can successfully suppress flutter until the airspeed is
6.7 (Figure 32, Figure 33). When airspeed reaches 6.9, the amplifying factor
should be changed to 1.315 for successful flutter suppression (Figure 34). The

successful flutter suppression at airspeed 6.7 indicates that the slight change in

the parameter @, does not affect the neuro-fuzzy controller performance.
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Figure 32. Neuro-fuzzy control under w; = 0.204 and U = 6.139
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Figure 33. Neuro-fuzzy control under w;= 0.204 and U= 6.7
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Figure 34. Neuro-fuzzy control under w;= 0.204 and U = 6.9 with
(amplifying factor = 1.315)
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2% decrease in parameter (v = 0.196)

From Figure 35~Figure 37, the same conclusion as that in previous section on

the neuro-fuzzy controller’s performance can be drawn for this decreased ¢

parameter.
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Figure 35. Neuro-fuzzy control under w; = 0.196 and U= 6.139
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Figure 36. Neuro-fuzzy control under w;= 0.196 and U= 6.6
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Figure 37. Neuro-fuzzy control under ws=0.196 and U = 6.9
(amplifying factor = 1.268)
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Figure 37. Neuro-fuzzy control under w;= 0.196 and U =6.9

(amplifying factor =1.268)

4.4.2 Performance under new system—10% parameters

increase

Unlike the slight (x2%) parameter change, a 10% increase will change the

critical airfoil-flap combination flutter speed (Table 4). The performance test

starts at the new flutter speeds and continues at several critical speeds.

10% increased g wg ¥ rg
parameter
New flutter speed 6.07 6.149 6.59 6.153

Table 4. New critical flutter speed under increased parameters

At new flutter speed

The following figure (Figure 38) indicates that the neuro-fuzzy controller can

successfullly suppress flutter at new flutter speeds.
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Figure 38. Neuro-fuzzy control at new flutter speeds

Air speed U = 6.65

It can be seen in Figurc 39 and Figure 41 thaf the increase of two parameters
(wgry) will not degrade the neuro-fuzzy control performance in flutter
suppression. After changing the amplifying factor produced by the equation-
4.8+U°-94.1%¥P+614.3%J-1335 5 to 1.0(for wp) and 0.9(for 7), the neuro-fuzzy
controller can suppress flutter better under the increased wp and 5 (Figure 43,
Figure 44) compared with the results shown in Figure 40 and Figure 42 . As the

air speed increases, the control result will become more and more sensitive to
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the amplifying factor of the neuro-fuzzy controller output. The equation
produced by the regression method for amplifying factor calculation is not
accurate enough, so the adjustment of this amplifying factor does not indicate

that the neuro-fuzzy controller is inefficient.
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Figure 39. Neuro-fuzzy control at @:~0.22 with other parameters unchanged
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Figure 44. Neuro-fuzzy control at r,= 0.0426 with other parameters uuchanged
(amplifying factor 0.9)

Air speed U= 6.7

At this air speed, the neuro-fuzzy controller will not be able to suppress flutter
with increased w; (Figure 45). The increase in #, does not affect the neuro-fuzzy
control flutter suppression (Figure 47). After changing the amplifying factor to
1.05(for wp) and 0.9(for rp), the neuro-fuzzy controller can successfully
suppress flutter with increased parameters- wp and rp. The reason for this

change can be the same under U = 6.65 (Figure 46, Figure 48).
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Air speed U= 6.9

At this air speed, the neuro-fuzzy controller will work only under the increased
rq (Figure 49).This is not surprising as the fuzzy rules used here are produced at

this speed (U = 6.9) and the parameter changes will affect the neuro-fuzzy

controller’s performance easily.
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From the performance of the neuro-fuzzy controller’s performance at different
air speeds under increased airfoil-flap combination parameters, it can be

concluded that the fuzzy rules are capable in flutter suppression.
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Chapter 5 Conclusion

The neuro-fuzzy controller application to the flutter suppression of a three
degree-of-freedom  airfoil-flap combination in a two-dimensional
incompressible inviscid flow is studied. The airfoil Simulink® model is
simulated according to a set of airfoil aeroelastic equations of motion. A
NEFCON controller is then included in the Simulink® model of the airfoil to
learn the airfoil behaviour and increase the critical flutter speed. A fuzzy rule
base with ten rules is produced by the NEFCON controller from learning the

dynamic behavior of the airfoil.

The NEFCON output, flap rotation command, is decided by the fuzzy rules and
magnified by a gain. The NEFCON controller can increase critical flutter speed

by 12.4%.

For the purpose of comparison, the modified energy control law is also applied
on the same airfoil-flap combination. When the modified energy method is
applied, the plunging displacement first jumps to a high level and then reaches a
stable state. The modified energy method increases the critical flutter speed by

35%. The present study shows that the neuro-fuzzy control methodology can be
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successfully applied to flutter suppression without any prior knowledge of the

flutter suppression command required.

Further research is suggested on the application of neuro-fuzzy control in flutter
suppression of airfoils. Further study is required to improve the NEFCON
controller’s performance by adjusting its structural parameters, finding out why

the gain factor must be applied and why different gain factors are needed for

training and control.
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Appendix I Equations for T's

T1l= —;—x scb x (2+cbeta2)+cbeta X acs
T3=(—;—+cbeta2) x acs”+0.25 x cbeta x scb x acs x (7+2 x cbeta?)

-%x (1 -cbetaz)(s X cbeta2+4)
T4=-acs+cbeta xscb

T5=(1-cbeta®)-acs?+2 x cbeta x scb x acs

T7=(%-‘rcbeta2) X acs+ %x cbeta xsch x (7+2 x cbetaz)

T8= %v schx(2x cbeta” +1)+cbeta x acs
J

T10=scb+acs
T1l=acsx (1-2xcbeta)+schb x (2-cbeta)
T12=scb x (2+cbeta)-acs x (2 x cbeta+1)

where:
o)
zbeta = rbeta” +(cbeta —ah) x xbeta

ahbar = l —ah
2

. 2
sct =\1—cheta”

acs = arccos(cbeta)
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Appendix I~ Simulink® blocks for _m's, n's
and q's

These are the m's, n's and ¢'s equations:

nmy =—'—'—#+1;
y7i
iy = xalphax p—a, :
u
—T1+xbetax wx u
7n3 = )
TX U
— U xIw+ zetaxi x omegaxix |1
4 — & 3
Uxu
_ 2><Zw(0.5—ah)+1;
U
—T4+MmwxT11
nl6 = s
XU
2
(omegexi)"
U
2xlw
mg = )
J7.

&5



_ 2xlwa10_

m
? XU
myg =0,
~2
my =—;
U
-2
nzlz =-—
u

36



xalphax p—ay
0=

ralpha2 xu

a,?,‘ +0.125+ ralpha2 XU
nz s

ralpha2 X U

, zbeetax wx p+Tixay —T1xcbeta~T7

} ralpha2 XX ’
Mm(1+2xay)

) H
ralpha”x p

[—Q.x Uxay»xw-U xlw-.LU] x(0.5~a;,)+2x zetaalpha xralpha® x i )

ng = ;
> Usxralpha® x 1
T11+2xT1=IwxT114+2xT4xa, —2xT4x cheta—2x T8 —x2xa; xlwxT11
g = :
: ralpha® s wx
ny =0;
—hwxU? +ralpha® x H=2xhwxay xU?
g = ;
8 ralpha2 xU? xu
T10—-2xay, xhwxT10+T4—iwxT10
ng = 3 ;
ralpha” x7x u
Mo =0;
1+2Xah
=T
ralpha®x u
1+2xaq,
My=—"—""73:
ralpha”x j1
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_ —Tl+xbetaxaxu

q =
l 7 % rbeta® X U
g0 = zhetaxmwx u+Tlxa, —Tlxcbeta-T7
2 mxrbeta® x ’
~T3+rbeta’ xw’ X )
q} = B 2 )
rbeta” x " x u
gu= T12x1lw
* % rbeta* X [ ’
2(cbeta2 —1>\/1—cbeta2 —6xT1-3xT4+6xT12%hw(0.5— ah)
(IS = B ;
bxaxrbeta” x
4 x zetabeta x omegabeta x rbeta> x7° XU+UxT12xhwxTH-UxT4xT11
46 = 2. 2 ’
2xUxrbeta” xw™ x u
g7 =0;

_ T2x hy

g =
nxrbetazxy’

_ —U*xT4xT10+U? ><T5+omegabeta2 x rbeta® x 12 x;H»U2 xT12xIwxT10

q - bl
’ rbetalezx,-:zx;l
710 =0;
g = -T12
b nxz'betazxy’
-T12
qi2 =

‘) 3
mxrbeta”x u

_( omegabeta 2
q13 U
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my -

mu  reciprocal

Constant

X

Product

X

Product
mui

efaxi

zetaxi

omegaxi

Product

omegaxi

mé

The followings show the Simulink® models of s, ns and gs:
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¥alpha + 2 beta
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Xalpha Xbeta
a }"—"‘ out plx
ah - +
Product T [} ;
Product
>
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Product oud 4
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Appendix Il Ordinary differential equations
calculation

mlfn +m2a" +m3ﬂ" +m4§' +m5a' +m6ﬂ’ +m7é_f+m8a -r-m9ﬂ+ml lyl -t~
mypy; = 0 (2-3)

nlfu +n2a" +n3,8" +n4§' +n5a' +n6,B' +ngo+ngS+ny +nppy, = 0 (2-4)

Q& +ar0 +q38 +04E +45a +46f +qs0 + a0+ +aya = ~di3fe (2-5)

In order to solve the £, « and 3, the above equations are rewritten as:
mé +ma +myfi = -(my +msa +mgfl +mgS+mga+mof+myy +mny)
mé +ma +mf = -(mé +nsa +ngf +nga+ngf+nyy +n5,)

GE +q:0 + @3B = -(qal +qs +qf +qga+ o+ +2Y2 +q135:)

The right parts of the above three equations are expressed in the following way:
S=-(my& +msa +mgff +m&+mga+mofi+my y +myy,)
= -(m¢ +nsa +ngf +ngo+ngf+n Y +ny¥9)

U= -(q4¢ +gs5a +q¢B +q30+ 998 +q11 Y1 + @129 + 013 8,)
SO:
mlfu +m2a" +m3ﬂ" = S

nlf“ +n20£" +n3ﬂ" =T

@& +qa +q3f =U
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Solving these new formed equation, we have:
5" = -(1y X5 - 13 X gy ) X S/DH(my X g3 - 1y % gp)) X T/D-(1my x 13 - 3 x 1y ) x U/D

a = (nxgy-nyxq)xS/D-(my x g3 -my xg) X T/D-(-my x 15+ x 1 ) x U/D

=
[

= -(m xgy -1y xq) ) xS/DH(my x gy -1y Xy )X T/DH-my X1y +my xn )xU/D
where:

D = -my X1y X gy +My XAy X Gy +1 XMy XG3 —Hy XMy X Gy — ) XMy XNy +

g1 XMy Xny

We can now build the airfoil-flap combination model under Simulink® (see

Figure 14).
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Appendix IV M-files for simulation

Initial condition:

% This file contains the airfoil-flap structure parameters, initial motion
information
% and energy control law parameters. This file will be called every time when

% simulation begins.

u=100;
we=0.2;

wp = 1.5;

ro = 0.5;

rg = sqrt(0.0015);
ap = -0.5;

xz = 0.25;
xg=0.002;
cp=0.6;
¢e=0;
(a=0;
p=0;
w=1;

aw = 0.165;
bw = 0.0455;
cew = 0.335;
dw = 0.3;
U=6.9;
Tee=0;

Tco =-1.86;
Tge= 0.0698;
Tg,=2.8;

96



ar=4;
{=0.6;
kn = 0.04;
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Animation:

function [sys,x0]=AIRFOIL Anim(t,x,u,flag,ts);
% AIRFOIL_Anim S-function for animating the motion of a 3DOF airfoil-flap.
% The animation shows the relative pitch and plunge motions and the

% associated control surface deflections.

% This file is written based on bact anim.m by
% Marty Waszak, 7-31-95

% NASA Langley Research Center

% Hampton, VA 23681-0001

% (804) 864-4015

% m.r.waszak@larc.nasa.gov

global yAF xAF xFP yFP AIRFOIL

% global icount B_Movie
if flag==2,
if any(get(0,'Children')=—AIRFOIL),
if stremp(get(AIRFOIL, Name'),' AIRFOIL Animation'),

set(0,'currentfigure', AIRFOIL);

xyAF=[ ...

xAF=xyAF(:,1); yAF=xyAF(:,2);
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xFP=xyFP(:,1); yFP=xyFP(:,2);
dLE = abs(xAF(1));
dH2 = abs(xAF(2));

dFP = abs(xFP(2) - xFP(1));

hscale = 50;
ascale = 50*pi/180;
dscale = 10*pi/180;

bias =-2*dscale;

xi = -u(1)*hscale/s;

alpha =u(2)*ascale;

beta = u(3)*dscale;

XLE = -dLE*cos(alpha); yLE = xi + dLE*sin(alpha);
xH2 = dH2*cos(alpha); yH2 = xi - dH2*sin(alpha);
xFP = xH2 + dFP*[cos(beta)];

yFP = yH2 - 30*dFP*[sin(beta)];

x1=[xLE; xH2]; yl=[yLE; yH2];
x2=[xH2; xFP]; y2=[yH2; yFP];

hndl vec=get(gca, UserData');
hndll = hndl vec(1);
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hndl2 = hndl vec(2);

set(hndll,'XData’,x1,"YData',y1);
set(hndl2,'Xdata',x2,"YData',y2);

drawnow;

% icount = icount + 1;

% B Movie(:,icount) = getframe;

end

end

sys=(l;

elseif flag == 4 % Return next sample hit

% ns stores the number of samples

ns = t/ts;

% This is the time of the next sample hit.
sys = (1 + floor(ns + le-13*(1+ns)))*ts;

elseif flag==0,
% Initialize the figure for use with this simulation
AIRFOIL AnimInit( AIRFOIL Animation');
[flag, AIRFOIL] =figflag('AIRFOIL Animation');
axis([-15 15 -15 15]);

hold on;

xyAF=] ...
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-120
807;
xyFP=[ ...
80
12-1;

xAF=xyAF(;,1); yAF=xyAF(:2);
xFP=xyFP(:,1); yFP=xyFP(:,2);

x1=[xAF]; yl=[yAF];
x2=[xFP]; y2=[yFP];

% Draw the reference line for the model
plot([-15 15],[0 0],'w",'LineWidth',1);
plot([0 01,[-10 10],'w','LineWidth',1);
text(-12,-12,'(This is only for motion demos. purpose!)')

%

hndl=plot(x1,y1,'y",x2,y2,1',x3,y3,'g','EraseMode', background','LineWidth',3);
hndl=plot(x1,yl,'y',x2,y2,r",/EraseMode','normal','LineWidth',3);

~ set(gea,'UserData’,[hndl]);
%set(gct,'Color','w");

% icount=1;

% B_Movie(:,icount) = getframe;

sys=[0 003 00];
% sys=[0 0 #outputs #inputs 0 0];
x0=(];

end;
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Animation initialization:

function figNumber=AIRFOIL_AnimInit(namestr)
% BACT_ANIMINIT Initializes a figure for the BACT SIMULINK animation.

% Ned Gulley, 6-21-93
% Copyright (c) 1984-94 by The MathWorks, Inc.

if (nargin == 0)
namestr = 'SIMULINK Animation’;

end
[existFlag,figNumber]=figflag(namestr);

if ~existFlag,
% Now initialize the whole figure...
position=get(0, DefaultFigurePosition");
position(2) = [50];
position(3:4)=[400 300];
figNumber=figure( ...
"Name',namestr, ...
"NumberTitle','off, ...
'‘BackingStore','off, ...
'Position',position);
axes( ...
"Units','normalized’, ...
"Position',[0.05 0.05 0.70 0.95], ...
"Visible','off, ...
"DrawMode', 'fast");

%
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% Information for all buttons

labelColor={0.8 0.8 0.8];

yInitPos=0.90;

top=0.95;

bottom=0.05;

left=0.80;

btnWid=0.15;

btnHt=0.10;

% Spacing between the button and the next command's label

spacing=0.04;

%
% The CONSOLE frame

frmBorder=0.02;

yPos=0.05-frmBorder;

frmPos=[left-frmBorder yPos btnWid+2*frmBorder 0.9+2*frmBorder];

h=uicontrol( ...

'Style','frame’, ...

"Units','normalized', ...

'"Position’,frmPos, ...
'BackgroundColor',[0.5 0.5 0.5]);

%
% The CLOSE button
labelStr='Close';
callbackStr="close(gcf)';

closeHndl=uicontrol( ...
'Style','pushbutton’, ...
'Units','normalized, ...
'Position',[left bottom btnWid btnHt], ...
'String',labelStr, ...
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'Callback’,callbackStr);

end;
cla reset;

set(gca,' DrawMode', 'fast');

axis off;
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