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ABSTRACT 

FLUTTER SUPPRESSION OF AN AIRFOIL 

USING NEURO-FUZZY CONTROL

© Chim Meng, 2003 
Master of Applied Science 

in the program of 
Mechanical Engineering 

Ryerson University

Flutter, a self-excited vibration of wings and control surfaces, can lead to 

catastrophic failure of aircraft structures. Classical methods have been applied 

successfully for flutter suppression and for increasing the flutter critical speed. 

With the demand of higher speed and more flexible aircraft, more advanced 

active flutter control techniques are required.

hi this study, a neuro-fuzzy methodology for flutter suppression of a two 

dimensional airfoil is explored. A MATLAB simulation environment is used for 

the modeling and analysis. The airfoil model is simulated according to a set of 

aero elastic equations of motion. A neuro-fuzzy controller, called NEFCON, is 

then embedded in the airfoil model for increasing the flutter speed.

NEFCON learns from the motion of the airfoil and automatically produces 

fuzzy rules. The simulation results show that these fuzzy rules can successfully 

increase the critical flutter speed. The performance of the fuzzy rules is tested 

with different airfoil parameters.
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Chapter 1 Introduction

1.1 Purpose

The aircraft bring a new era in the human history. They make our dream of 

flying like a bird come true. In developing the aircraft, many diverse 

fundamental laws of nature are applied, some of which invoh s aeroelasticity 

[1], Among aero elastic phenomena, flutter, the self acti'' ited divergent 

oscillations of the aircraft wings and control surfaces, has caused intensive 

studies. Traditional control methods have been applied succès fiilly in flutter 

prevention.

Artificial intelligence has already numerous applications in vai ous industries 

despite its short history, but its application in the aerospace area is quite new. 

When implemented in flutter suppression, artificial intelligence is often used to 

optimize classical control laws.

In the present study, the author will utilize the neuro-fuzzy methc'd to suppress 

flutter of an airfoil. Flutter suppression of an airfoil is achieved by moving a 

flap attached to the airfoil. In the next chapters, the author will explain neural
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networks theory, fuzzy logic theory and neuro-fuzzy method. The equations 

used to simulate the airfoil model and to develop the neuro-fuzzy controller 

model will be also presented. Finally, the author will present the flutter 

suppression results of the neuro-fuzzy controller and suggestions for future 

study.

1.2 Flutter

1.2.1 Flutter Definition

Flutter which is critical for an aircraft’s operation is an aerodynamics induced 

oscillation of a wing, tail, or control surface. For a clear facet of this physical 

phenomenon, let us consider a cantilever wing, without sweepback and without 

flap, mounted in a wind tunnel at a small angle of attack and with a rigid 

support at the root. The wing oscillation will damp gradually to its original 

(stable) position after a transient shake when there is no air flow passing around 

the wing. When the airspeed increases gradually in the wind tunnel, the wing 

oscillation will first damp faster. As the ..peed increases flirther, a point can be 

reached at which the damping of the wing rapidly decreases, and there is a 

certain speed at which an oscillation can just maintain its amplitude. This speed 

is called the flutter speed. At speeds above this critical one, a small accidental 

disturbance of the wing can serve as a trigger to initiate an oscillation of great 

violence, which can result in a total structural failure in just seconds [2].



An aircraft wing is continuous and has an infinite number of degrees-of- 

freedom. For most practical theoretical studies, the simplified model of an 

airfoil wing with finite degree-of-fteedom is used. A two degree-of-freedom 

airfoil model is shown in Figure 1. The model will be described later in detail in

Mean Position

Elastic Axis 
/  Center of Mass

I I • 
I "

b -

b ■

Figure 1. Three degree-of-freedom airfoil model (Alighanbari 2000)

Chapter 2. The flutter motion of the airfoil has both flexural and torsional 

components (Figure 2). Classical binary flutter requires at least two degree-of- 

freedom; for example, plunge and pitch degree-of-freedom. The phase shift 

between plunge and pitch motions plays an important role in the flutter 

phenomenon. It is mainly this phase difference that causes the flutter.



Flexural
deform ation

Torsional
deformation-

Figure 2. Airfoil deformations

1.2.2 Flutter Suppression

The critical effect of flutter has been attracting a lot of attention for several 

decades especially when people want to design faster fighter aircraft. Before the 

1930s, little was known about flutter. Flying in those days did really need to 

take great risks with the new sports. It is almost impossible to know how many 

brave souls succumbed to flutter. In the 1930s, airplanes were expected to 

achieve high speed with better engines available. At that time, flutter analysis 

and prevention became more serious especially for faster fighter aircraft. There 

are basically two types of flutter suppression; passive flutter suppression and 

active flutter suppression.

a. Passive Flutter Suppression

This method includes mass balancing and stiffening of aircraft structure. From 

the data analysis on several aircraft in which wing flutter has been observed, and 

on others that showed no tendency to flutter, the following critical flutter speed 

equation for aircraft wings with mass-unbalanced ailerons was found [2]:



(Ucr -  the critical mean flutter speed, feet per second; œ = the
^Kr

fundamental frequency of the wing in torsional oscillation in still air, radians per 

second; c = the length of the vibrating portion of the wing, feet; kcr = the critical 

reduced frequency, 0.9+0.12 radian). From this Ucr equation, it is obvious that 

the flutter speed can be raised by increasing the wing torsional stiffness. 

Systematic study has shown that mass balancing can increase critical flutter 

speed substantially [2]. Passive flutter suppression is sometimes achieved 

through an automatic control system, which can be referred to as semi-active 

flutter suppression. By using a microcomputer controlled micromotor to adjust 

the stiffiiess, Yang et al [3] increased the flutter speed of a two-dimensional 

wing effectively with this semi-active method.

Passive flutter suppression is an easy way to increase critical flutter speed. 

However, as it increases the aircraft weight in order to raise flutter speed, it may 

not be practical if  light aircraft with high flutter speed are expected.

b. Active Flutter Suppression

With the demand of higher speed and light-weight aircraft and to overcome the 

shortcomings of passive flutter suppression, a new control method, called 

“active-suppression” was c weloped in the 1970s. Here, an onboard automatic 

control system actuates a control-surface on the wing in response to sensed 

structural motion of the an bil-flap in order to suppress flutter. The first active 

control practice was carried out by the U.S. Air Force in their Load Alleviation



and Mode Stabilization(LAMS) program, which resulted in a Boeing B-52 

bomber flying 10 knots faster than its open-loop flutter speed.

1.3 Artificial inteiiigence

1.3.1 Artificial Neural Networks

Artificial neural networks, often referred to as neural networks, is a branch of 

artificial intelligence (AT). It is developed based on present understanding of the 

human brain. There are various definitions of neural networks. Initially, a neural 

network is a parallel processor modeling the human brain that can learn [4]. It 

resembles the human brain in two ways: 1) acquiring knowledge through a 

learning process; 2) storing knowledge as the inter-neuron weights which are 

the connections among neurons that represent the inputs’ contribution to the 

outputs.

Research about the human central nervous systems began as early as the Middle 

Age, but their detailed structure was only revealed a century ago. The brain’s 

most basic components—neurons—are connected through trillions of synapses 

[4]. Each neuron (Figure 3) is composed of a central body, called soma, a 

number of root-like extensions, called dendrite, and a main transmission line, 

called axon.



4  P arts of a  
Typical NervB C ell

Dendrites- Accept inputs

Soma : P rocess the inputs

Axon : Turn the processed inputs 
into outputs

Synapses: The electrochemical
contact between neurons

Figure 3. Biological neural network

Signals are transmitted electrically or chemically in the neural networks. The 

electrical transmission is within a neuron, while the chemical one happens 

among the neurons. The soma electrical potential changes as receiving chemical 

from synapses. When this potential reaches a certain level, an electrical pulse is 

transmitted by the axon and reaches other synapses, causing them to change the 

potential.

One of the most important characters of a neural network is its plasticity. It can 

form new connections or modify the strength among neurons in response to the 

circumstance changes. Even though single neuron is not as powerful as silicon 

logic gates, the brain can perform much faster by organizing neurons than the 

fastest computer in existence today [4,5,6] .

Learning ability is another critical character of a biological neuron network. In a 

person’s early days, the connections in the nervous systems are formed at a very



fast manner while learning the outside world. Later on, these connections may 

be modified when new knowledge is available. This also leads to attempts to 

mimic the biological neural network for scientific computation.

An artificial neuron is analogous to a biological neuron (Figure 4). It is the basic 

computing cell in artificial neuron networks. The inputs, either from external 

circumstances or other neurons within the neuron network, are first summed up. 

Then, the difference between this summation and the threshold is passed to the

Computing Part

-M Sum Output

Threshold 

Figure 4. Artificial neuron

activation function. There are four common activation functions used for 

different purposes: step, sign, linear and sigmoid functions (Figure 5). In the 

backpropagation neural network, normally the sigmoid function is used [4]:

y s i g m o i d :

l+e"
The terms in biological neuron networks and artificial neuron

networks are summarized in Table 1.



step function sign function sigmoid function

+1
L i

+1

w

-1 — -  -1

i
+1 -----------

-1

linear function

+1

y//near  j y

Figure 5. Neural networks activation functions

Biological Term Artificial Term Function
Axon Connection Signals transmission 

channel
Dendrite Connection Signal receiving, 

carrying for processing 
cell

Neuron Neuron Basic unit of neftvorks
Soma Sum, Activation 

Function
Computing cell

Synapse Weights Knowledge
representations

Table 1. Biological neural network and artificial neural networks terms

The first artificial neuron model was introduced by W. McCulloch and W. Pitts 

in 1943. In the recent two decades, this artificial branch has expanded more 

rapidly than ever before. A lot of neural networks models are proposed [4, 5] 

and their applications have been mentioned quite often. In this study, the author 

will only discuss the feedforward backpropagation neural networks that will be



used in this study. The introduction on others types of neural networks is 

available in [5],

A multiple layer neural network is composed of an input layer, an output layer 

and at least one hidden layer. Every layer is made up of a number of neurons. 

The input layer neurons accept the external signals and pass them to the next 

layer neurons for process; the output layer neurons export the neural networks’ 

outputs. The neurons in the hidden layer(s) act as signal processors. The weights 

pattern of a neural network is formed in the learning stage and can be changed if 

the neural networks is on-line. The number of hidden layers can be more than 

just one, but the increase in the hidden layers will increase the computation time 

dramatically. In practice, three-layer neural (Figure 6) networks are capable of 

approximating continuous functions to any degree of accuracy [7]. Here, the 

author will explain the supervised learning process with a three-layer 

feedforward backpropagation neural network (Figure 6). The typical learning 

process includes initialization, input feedforward and error backpropagation. 

Before starting the learning process, one should prepare the training data sets 

and know the expected results.

10



Input Feedforward

Xi

t

m

OutputInput Hidden
Layer Layer Layer

Error Backpropogation 

Figure 6. Three-layer neural networks

a. Initialization:

The weights and threshold levels for the neural networks are set to random 

numbers uniformly distributed within a narrow range. Normally, this range is 

± 2.4/F/, where F/ is the total number of inputs of a neuron [5].

b. Input Feedforward:

During this stage, the training data and expected outputs are presented to the 

neural networks. The neural networks will do the calculation based on the

11



provided inputs and pass the training data or calculated intermediate results 

from one layer to the next layer. The output layer will present the final 

calculated results.

c. Error Backpropagation;

In this stage, the errors between the neural networks produced outputs and the 

expected output is calculated and passed from the output layer to the input layer. 

The weights in the neural networks are adjusted.

d. Iteration;

Iterate the steps b and c by presenting a new set o f training data until the defined 

error is satisfied or other termination criteria are reached.

So far, the author has discussed the supervised training. The neural networks 

structure pattern for the same problem will not be unique. Its parameters depend 

on lots o f factors, such as initial weights, learning rate, etc. There are also other 

learning algorithms in [4] and [5].

1.3.2 Fuzzy Logic

The fuzzy set concept was founded by Lofti Zadeh in 1964. It extended the 

classical two-value logic. Even though founded in 1960s, fuzzy logic was not 

accepted as a scientific theory until 1980s after a wide range successful 

applications [4]. Fuzzy sets, linguistic variables and fuzzy IF-THEN rules are 

the most basic concepts in fuzzy logic.

12



a. Fuzzy sets:

Unlike classical (crisp) logic, the fuzzy set has a smooth boundary. This fuzzy 

set concept can express knowledge more naturally. For example, when people 

talk about engine power, in classical logic, there is an accurate value (say 

30hps) that splits the power domain into two subsets: weak and strong. The 

engine with power higher than 30hps will be said to be strong, while the engine 

whose power is less than 30hps will be said to be weak. But what about a 

29.9hps engine? According to classical logic, it will be weak, but in fact, it is 

still quite strong. So in fuzzy logic, this can be expressed as a membership 

function value, say it is strong with a 0.8 membership function value (Figure 7).

Strong strong

0.8
0.50.5

0 10 20 30 10 2040 50 0 30 40 50

(a) (b)

Figure 7. Classical (crisp)(a) and fuzzy(b) sets

Hence, instead of yes-or-no in classical logic, the element and set relationship is 

expressed in a matter of degree with value from 0 to 1 in fuzzy logic. The 

membership value is said to be zero when an element is completely out o f a set; 

it is one when an element is totally in a set; and G~1 when an element is 

partially in a set.

13



There are four commonly used fuzzy logic ra ^.;hip functions: triangular, 

trapezoid, Gaussian and sigmoid function (Figure 8). No standards exist for 

fuzzy function selection. As a guideline, a membership function can be decided 

by consulting the experts in the relevant area, constructing formula, or learning 

it from the system performance. It is worth pointing out that with a simple 

formula and high computation efficiency, triangular and trapezoid membership 

functions are popular in fuzzy set partition, especially in control.

I

(a) Triangular

0.5

(c) Gaussian

■È

(b) Trapezoid

§

I 0.5

(d) Sigmoid

Figure 8. Fuzzy logic membership functions
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b. Linguistic variables:

The linguistic variable concept is the foundation in fuzzy logic. It is the 

combination of both sj'mbolic variables and numeric variables. The universe of 

discourse is expressed in a series of fuzzy sets, such as weak, medium and 

strong for the engine power example, so the linguistic variables can be 

described quantitatively with corresponding fuzzy terms, such as “ engine 

power is strong”. When a crisp value is given for the power, a degree of 

membership value can be found in a corresponding fuzzy set. This application 

will be seen later when fuzzy inference is presented.

c. Fuzzy rules:

The fuzzy rule concept was first introduced by Lofti Zadeh in 1973 [4]. A fuzzy 

rule is a statement that associates an antecedent in the “i /” part with the 

consequent in the ''then” part. It is also called the fuzzy "IF-THEN” rule. 

Unlike classical rules, a variable in a fuzzy rule’s antecedent is expressed in 

fuzzy values, and the conclusion is also given in fuzzy values that should be 

defuzzified. The following two rules show the difference:

Conventional logic. I f  the engine power is hisher than 30hps, Then the 

propulsion force is 200Ns.

Fuzzy logic: I f  the engine power is strons. Then the propulsion force is high.

The antecedent part of a fuzzy rule may include more than one condition, and 

the consequent part may also have more than one conclusion.

15



In the above discussion, it may have been noticed that both antecedent and 

consequent parts of a fuzzy rule are fuzzy values. But in real world engineering 

applications, the inputs are given in numerical values and the outputs are 

expected in crisp values. So a fuzzy rule must be interpreted. There are two 

common inference methods: Mamdani and Sugeno. In this study, the Mamdani 

inference method is used and the author will show this method with the 

following two inputs, one output system. The three fuzzy rules for the example 

are as follows:

1) IF the engine power is medium AND the friction is low 

THEN the speed is high.

2) IF the engine power is strong OR the fic tio n  is normal 

THEN the speed is normal.

3) IF the engine power is low 

THEN the speed is low.

The Sugeno inference method is introduced in [4]. Input fuzzification, rule 

evaluation, summation of fuzzy rules and defuzzification are the four steps in 

the Mamdani inference [4] :

Stage 1. Input Fuzzification:

In practical engineering applications, the inputs are given in numerical values. 

They are first converted to membership values in appropriate fuzzy sets, say for 

IShps engine input, the membership values are 0.53 in a weak set and 0.3 in a 

medium set [Figure 9(a)].

16



Stage 2. Rule Evaluation;

The fuzzy operations are applied to antecedents of fuzzy rules for finding 

consequent membership values with the clipping method [Figure 9(b)-(d)].

For example, as shown in the figure, the “ylA©” is the operation for 

intersection-minimum, so the resulting consequent membership value for Rule 1 

is min[/i^g^,.„„ {enginepower),/Ui^^^ifriction)] = min[0.3,0.5] =0.3.

Stage 3. Fuzzy rules summation:

The clipped result of the individual fuzzy rule is unified to get one fuzzy result 

as shown in the lower part of Figure 9(e).

Stage 4. Defuzzification:

This is the final stage to get the crisp or numerical output from the fuzzy logic 

system for real world applications.

There are two common defuzzification methods: mean of maximum(MOM) and 

centre of gravity(COG). In this study, the COG is introduced. The formula for

p^{x)xdx
this method can be expressed as COG -    [4], where a and b are the

upper and lower limits of the output universe. In practice, an approximation to

17



b

this integration is adopted, COG =  . This means that the universe of

x=a

discourse is divided into a limited number of points and the output is evaluated 

based on these points indicated by the arrow in the lower part of Figure 9(e)].
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i.3 .3 Neuro-fuzzy Systems

Neural networks and fuzzy logic systems are both universal approximators and 

have seen a lot of successful real world applications. Both systems have their 

advantages and disadvantages. For neural networks, knowledge can be learned 

through backpropagation process, but it is difficult to explain neural networks, 

so it works as black box. For fuzzy logic systems, knowledge can be clearly 

expressed in fuzzy rules, but the fuzzy rules and the partition of the universe of 

discourse need expert knowledge, which limits its application.

It is natural to explore the possibility of combining these two artificial 

intelligent models to overcome their disadvantages. The hybrid system, 

normally called neuro-fuzzy systems, is first introduced by Lee and Lee [8 ] in 

the early 1970s. The neuro-fuzzy systems have a similar structure with multiple 

layer neural networks (Figure 10). The inputs are fed forward and the errors are 

backpropagated in the learning stage. As shown in Figure 10, a neuro-fuzzy 

system normally consists of one input layer, three hidden layers and one output 

layer.

Each layer has its particular function:

Layer one:

This is the input layer which communicates with external circumstances. The 

crisp inputs accepted externally are passed to the next layer. This layer does not 

process these crisp inputs.
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Figure 10. Neuro-fuzzy structure

Hidden layers:

The first hidden layer represents the antecedents of fuzzy rules. Its neuron 

number equals the total fuzzy sets of all the inputs in fuzzy rules. For the 

example used in sectionl.3.2, tliere are two inputs and each input universe is 

divided into three fuzzy sets, so s ix (2x3) neurons are included in this layer. 

Wlien crisp inputs enter this layer, their membership values are decided. For 

example, IShps engine power membership values are 0.3 in the weak set and 

0.53 in the medium set. To decide the membership values, the triangular 

activation functions are used in this example. The parameters of the activation
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functions can be adjusted in the learning stage in order to achieve expected 

neuro-fuzzy system outputs. The parameters effect on the membership value can 

he shown with Figure 11.

0 10 20 30 40 50

0.5
0.35

Figure 11. Activation function parameter effect

The second hidden layer represents the fuzzy rules with its neurons. Its neuron 

number equals that of the fuzzy rules. For this example, the hidden neurons 

number is tliree. The fuzzified results from the first hidden layer enter this layer 

to produce fuzzy rules output membership values. Fuzzy set operations will be 

apphed if there is more than one antecedent in the fuzzy rules. In rule one of the 

example in section 1.3.2, the “AND”(min) operation is applied resulting in a 

membership value of 0.3.

Hidden layer three represents die membership function values of the fuzzy 

rules’ consequent. If there is more tlian one input from the fuzzy rule layer, then 

the union fuzzy operation will be applied for the final membership function 

values.
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Output layer: This layer produces the final crisp output using different 

defuzzification methods, such as COA or MOM.

The learning process of a neuro-fuzzy system can be the same as that of 

feedforward backpropagation neural networks. When a set of training inputs is 

provided to a neuro-fuzzy system, the output is produced and then compared 

with its expected value. The difference or the error will be backpropagated in 

order to modify the activation function and the weights.

Expert knowledge can be applied to a neuro-fuzzy system as in a standard fuzzy 

logic system; or appropriate sets of representative data can be used to train a 

neuro-fiizzy system to produce a set of fuzzy rules.

1.4 Previous works in flutter control

To the author’s knowledge, there are no reports on the application of neuro- 

fuzzy controller in flutter suppression. The author will hence review some of the 

active flutter suppression works with the other methodology.

Haley and Soloway [9] validated the effectiveness of generalized predictive 

control in flutter suppression. This generalized predictive control was 

implemented to control the trailing-edge of an airfoil in a transonic wind tunnel. 

The experimental results showed that this control method with control 

parameters derived from the simulation model can increase critical flutter speed 

significantly.
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Mukhopadhyay [10] designed suppression control laws using classical, linear 

quadratic Gaussian and minimax techniques. The control laws, based on the 

analytical state-space equations of the wing, adopted trailing-edge accelerator 

signals as flutter suppression inputs. The tests in a wind tunnel showed that the 

designed control laws could suppress flutter.

Crowther and Cooper [11] used neural networks in flutter prediction during 

flight flutter testing in aircraft manufacturing. The neural networks method 

prediction results were compared with the prediction results of a statistical 

method and the noise effect was also investigated. The authors concluded that 

the neural networks method showed improved accuracy under the noise-free 

condition. Under the noisy condition, neural networks prediction accuracy 

remained good if it was trained with noisy data, but the statistical method was 

unacceptably poor.

Scoot and Pado [12] were the first who presented experimental applications of 

neural networks on flutter suppression for an airfoil with a trailing-edge and 

upper- and lower-surface spoilers in a transonic wind tunnel. Neural networks 

were applied to flutter suppression in three ways. First, a neural network was 

trained to generate gains for every control law under different Mach number and 

pressure. The control laws with neural networks generated gains improved the 

flutter suppression over a fixed-gain control. Secondly, a neural network was 

used to produce flutter control signals based on the data derived from the plant 

model. The third flutter suppression application of neural networks was the
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inverse model control. Both simulation and experimental results showed the 

successful performance of the last two methods in flutter suppression.

1.5 Objective o f the thesis

Flutter can cause dramatic structure failure in a matter of seconds. Before 

thel930s, little was known about flutter. After that time, when airplanes were 

expected to achieve high speed and light weight, flutter analysis became more 

serious, especially for faster fighter aircraft.

Both passive and active methods can suppress flutter successfully. But passive 

suppression application is limited by its way on flutter suppression, and active 

flutter suppression can be applied in many different ways and will need 

complete understanding of airfoil behavior.

The present study intends to analyze a two-dimensional airfoil performance 

with flap as a controller and develop a neuro-fuzzy system to suppress the 

flutter and increase critical flutter speed. The neuro-fuzzy system will learn 

from the airfoil behavior. The fuzzy rules for flutter suppression will be 

produced by the neuro-fuzzy system automatically. The neuro-fuzzy results will 

be analyzed and compared with classical control methods.

1.6 Thesis overview

This study explores the neuro-fuzzy applications in airfoil flutter suppression. 

The significant point of this application is the attempt to develop a neuro-fuzzy 

system that can generate the effective fuzzy rule base automatically.
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Chapter 1 includes two parts. The first part presents the theory on flutter and the 

previous approaches to flutter suppression. In the second part, the theory about 

neural netv,'orks, fuzzy logic and neuro-fuzzy system is introduced. The reasons 

for choosing neuro-fuzzy system are explained.

Chapter 2 deals with the airfoil motion equations. Eight ordinary differential 

equations(ODE) used for the Simulink® model are presented. The airfoil-flap 

combination model is built based on these ODEs under Simulink® environment.

The soflware(NEFCON) which is used in this study as the control part is 

introduced in Chapter 3. Detailed descriptions of NEFCON, NEFCON model 

and the complete model are available in this chapter.

Chapter 4 presents the fuzzy rule base generated by neuro-fuzzy system, the 

control result and the comparison of neuro-fuzzy result with other control 

schemes.

Chapter 5 provides the conclusion of this study and suggestions for future 

research.
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Chapter 2 Governing Equations & 
Simulation Model

2.1, Mathematical model

Aeroelasticity is the theory dealing with the interaction between structures and 

aerodynamic forces. Two deformations, pitching and plunging, are considered 

in the flutter analysis of aircraft wings. Instead of analyzing a three dimensional 

wing, a three-degree-of-freedom (3D0F) airfoil with a flap is considered for 

preliminary study on neuro-fuzzy flutter suppression in this thesis.

The airfoil-flap combination (Figure 12) employed here consists of an airfoil 

and a trailing edge flap. The combination is mounted by a transitional and a 

torsional springs at the elastic axis. The plunging deflection denoted by h is 

measured at the elastic axis and is positive in the downward direction. The 

airfoil rotation about the elastic axis is represented by a and is positive nose-up. 

The flap is fixed to have only angular deflection (fi) about the flap hinge, 

positive for the flap tail down. The airfoil-flap combination has a chord of 2b. 

The elastic axis is located at a distance bai, from the mid-chord, the mass center 

of the entire airfoil is located at a distance bxa from the elastic axis and the flap
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hinge is located at a distance hcp from the mid-chord. The mass center of the 

flap is at a distance bxp from the flap hing . All distances are positive toward the 

trail edge.

C.G . o f  E n tire  xA.!rfoil

- o -

iC .G. o f  A ile ro n -^  
A ile ron  H inge /

Figure 12. Three degree-of-freedom airfoil-flap (Alighanbari, 2000)

For active flutter suppression of the airfoil in this study, the control command 

rotation y5c should be applied to the flap. This Pc command can be derived from 

different control laws, such as classical feedback control techniques, linear 

quadratic Gaussian theory, eigenspace techniques and the aerodynamic energy 

method. In this study, the following rotation command [13] will be applied to 

the flap. The control result will be compared with that of the neuro-fuzzy 

control algorithm;
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where a is the airfoil pitch angle, ^ = h/h is nondimensional plunge 

displacement, and Tea, Tea, Tea, Tca are control gains.

The denominator, s^+2^/c„s+A;^ , is the transfer function for a second order

system with damping Ç and natural frequency kn. In practical control, the aj, Q 

and kn parameters which decide the damping amount should be determined to 

optimize the control system. The transfer function equation (2-1) can be 

converted to the following time domain form [13]:

(T « + a rT o q )f"+ (T ..+ a rT o .)= " -A + 2 ft.% # '+ T ,

T<„a-Æ) = 0 (2-2)
where is the flap angle and ( )' denotes differentiation with respect to

nondimensional time r.

2.2. ODE and Control Model

Governing aeroelastic equations of the airfoil-flap combination are given as a 

set of ordinary differential equations (ODEs) by Alighanbari [14];

+7722(2 + 7722/9 + 772̂  ̂ + 772g(2 + 772g/9 + m^a + m /̂3 +

772jiyi+ 772]2T2 ""0 (2-3)

72,̂  +7120! +713/9 + 7 2 4 ^ +72g(% + 72g/9' + TlgO! + 71g/9 + 72; + Tl,;)/] (2-4)

+ ? 2«  +  93/9 ' +  ?4^ + 950:' +  + 9gO! + 99/9 + 9 ,1^1 +  912^2 =  -qi3 A  (2-5)
11 1 It 2̂ 21 " ' ' Û .7̂ 10 '

-fl^ (—-o/,)q: -a ^ y -— +yi  = + —------------- /9 (2-6)
z i;r  7T

-Cw^" -1-72= Cvv«' + ^ ^ ! ^ / 9 '-d ^y2  (2-7)
I  I k  k

T ’s are given in Appendix I;

772 ’s, 71 ’s and q ’s are given in Appendix II;
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aw,bw,Cw,dw and a/, are given in Nomenclature', 

y  I and y  2 are auxiliary variables.

The /3c is the flap control command used to suppress flutter. We can now use 

Simulink® to solve these second order ODEs.

To illustrate the Simulink® model building method and procedure, we will use 

the following simple second order ODE :

9 y  + 2 3 y + 4 5 y  = 80 (2-8)

This equation can be rewritten as;

y  “  — (—23y — 45y + 80) (2-9)

Now Simulink® must be started and a window for building a new model should 

be open. Then “Integration” blocks from the “Continuous”; “Scope” block from 

the “Sink” and the “Gain” blocks from the “Math” in the “Simulink” library are 

dragged into the new model window. These blocks should be connected 

according to the given equation (Figure 13). In this new model, one 

“Integration” block represents y" and the output from this block is equal to y ' or 

input to y ' block; the other “Integration” block is y'. The above equation 

(equation 2-9) means that the input of y ” is the right side, so the cormection 

shown in the lower part of Figure 13 can be built and connected to y"  block 

input. The output from y"  block is connected to y ' block for final y  result. A
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scope block is connected to the y ' block output port for graphic result. For the 

function explanations on these blocks, one may refer to Matlab® Help.

intergrator2 S c o p eintergratorl

G aini

Gain

1/s □1/s

C onstan t

Figure 13. Sample ODE model in Simulink®

In a similar way, the author develops the Simulink® model for the airfoil-flap 

combination (equation 2-3~equation2-7). The detailed procedure is given in 

Appendix III. The model is shown in Figure 14.
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With this Simulink® model, the critical flutter speed of the airfoil-flap 

combination is found to be 17 = 6.139(Figure 15), which is in agreement with 

the eigenvalue method. The proposed neuro-fuzzy controller will be included 

later in this Simulink® model for flutter suppression.

0.4

0.3

0.2

i ' - 0.1

- 0.2

- 0.3

-0.4

15000 300 1200600 900
Nondimensional time(-c)

(a) nondimensional plunge displacement at flutter speed (U= 6.139)

12

£ - 4

-8

-12
3 0 0 GOO

N o n d i m e n s i o n a l  t ime(x. )
9 0 0 1 5 0 0

(b) pitch displacement at flutter speed (17= 6.139) 

Figure 15. Airfoil displacement without controller
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Figure 15. Airfoil displacem ent w ithout controller
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Chapter 3 NEFCON and Flutter 
Control

3.1 NEFCON in troduc tion :

Artificial neural network is inspired by the human brain and has been 

successfully applied in many fields, such as classification, recognition, and 

controls. Neural network’s distinguishing characteristic is that it can learn and is 

adaptive to a changing environment. Neural networks can leam from given 

information to adjust itself to produce required results. Unfortunately, people 

don’t know how it does this. Fuzzy logic can represent human knowledge in a 

natural way. The expert knowledge for fiizzy logic can be expressed in fuzzy 

“ZF-TTffiN” rules. Expert knowledge on a system must be available for fuzzy 

logic application [4, 5].

The disadvantage of neural networks is that it works as a black box, which 

means it can not be interpreted. For fuzzy logic, its application is limited by the 

availability of expert knowledge. So, the combination of these two systems, 

neuro-fuzzy system, which adopts the neural networks’ learning ability and
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fuzzy logic’s knowledge representation, can overcome the shortcomings. The 

combined neuro-fuzzy system can leam and express itself in a set of rules.

Neuro-Fuzzy Controller, which will be referred to as NEFCON, is a neuro- 

fuzzy system that adopts reinforcement learning. Under reinforcement learning 

algorithm, the controller does not rely on the accurate solution of the control 

problem, instead the controller can leam to control a system by the 

reinforcement signal or error signal. NEFCON controller uses an error signal in 

the learning process. It is supposed that the desired state of system is known. 

The difference between the current state of system and the desired state of 

system can be expressed in a suitable way. The knowledge of a certain problem 

can be used by NEFCON for practical control, or it can also leam from scratch 

if  no knowledge of a problem is available. After learning the behavior of the 

system which will be controlled, NEFCON can express the control law for the 

system in a set of fuzzy rules.

The NEFCON system, like other neuro-fuzzy systems, has the multiple-layer- 

perceptron (ML?) structure (Figure 16). The NEFCON, that is used here for 

explanation, has two inputs (^/ and ^2), five rules (Ri-Rs) and one output ( 7 7 ). 

The inputs to the neuro-fuzzy system are the state variables of the system to be 

controlled, and the output of the NEFCON system will be applied to the system 

as a control command. The neurons in the only hidden layer correspond to the 

fuzzy rules. For instance, R2  can be:

is Â i‘̂  and ^ 2  is A2  ̂ then 77 is
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Figure 16. NEFCON structure diagram (Nurnberger, Nauck and Kruse)

where cindB^^^ are the fuzzy sets of inputs ^i, ^  and output p

respectively.

The connections between the input layer and the fuzzy rule layer, and between 

the fuzzy rule layer and the output layer are fuzzy weights. This is shown in 

Figure 17. For classical neurons, the connections between two layers are crisp 

numbers used as weights. For NEFCON, these weights are actually fuzzy 

membership function values decided by the inputs and membership flmction in 

corresponding fuzzy sets.
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classical neuron NEFCON rule layer NEFCON ouput layer

Figure 17. Classical neuron and NEFCON comparison

As shown in Figure 16 by the ellipse, some connections share the same weights.

For example, the input to rule R4  and R5  connections share tire same ,

which means the linguistic variable for input in tire antecedent part of R4  and 

R5  comes from the same fuzzy set. The shared weights will be modified 

identically for aU fuzzy rules in the learning process if necessary.

3.2 NEFCON learning algorithm

Wlren control laws are not available for a system control problem, the NEFCON 

controller can be used as it can learn from scratch and express the control law in 

a set of fuzzy rules. This procedure begins by learning the behavior of the 

system to be controlled. The NEFCON learning algorithm includes two stages: 

learning fuzzy rules and learning fuzzy sets.

a. Learning fiizzy rules:
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This stage is dedicated to building an initial fuzzy rule base. There are two 

classes of rule learning: décrémentai rule learning and incremental rule learning.

The author will present the incremental rule learning here. Details on the 

décrémentai rule learning are available in [16].

The incremental rule learning consists o f two phases. In phase one, the highest 

membership function values are calculated in corresponding fuzzy sets for each 

newly entered set o f state variables. If there are no rules in the existing fuzzy 

rule base with these variables in the antecedent, an output is “guessed” based on 

present error. The fuzzy rule produced is added to the fuzzy rule base. This 

phase is repeated the number of stipulated times. In phase two, this input set is 

propagated through the NEFCON system to update the existing fuzzy rules 

contribution. This can also be iterated the number of predefined times. In this 

phase, fiizzy rules which are used less than a certain percentage are deleted from 

the rule base.

b. Learning the fiizzy sets:

It is assumed that the fuzzy rule base which is built the way described in last 

section is adequate, and the possible lack of performance is due to an 

inappropriate rule organization. The purpose o f the learning fuzzy sets is to 

modify the membership functions o f the NEFCON system for optimal 

performance.
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The difference betw'een the desired output and the current output will be used as 

a reinforcement signal. This process is very similar to the backpropagation 

process in the neural networks. The reference signal is backpropagated from the 

output layer to the input layer. Only the parameters of the membership function 

activated in the fuzzy rules at present stage will be modified to reduce the error. 

This indicates that those fuzzy rules which are not applied to the current state 

will not be changed. At the same time, the fuzzy rules with higher activation are 

assumed to have a bigger influence. This will also affect the modification 

degree together with the learning rate and the error value. This process will be 

repeated for a predefined number of times.

3.3 Control model with NEFCON

The NEFCON controller is added to the airfoil-flap combination model, which 

was built in section 2.2 based on the set of airfoil aeroelastic equations of 

motion (equation 2-3~2-7) under the Simulink® environment.

3.3.1 New NEFCON creation

The author simplifies the Simulink® model built in section 2.2 by creating an 

airfoil subsystem(named “Airfoil Model”, orange part in Figure 18) with 

outputs; a , p, a  and p, and input; Pc. The “Nefcon System” coming with 

the NEFCON software is added into the airfoil window (Figure 18). The two 

small windows of Figure 18 are used for new NEFCON controller parameters 

setting. “Nefcon Signal Generator” is selected as NEFCON signal generator is
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used, and “Nefcon Learning System” will be used to leam the airfoil-flap 

control. According to equation (2-2), the author will use four inputs—̂ , a , E, and 

a —for flutter suppression. The final result is shown in the upper part of Figure 

18.
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3.3.2 NEFCON learning set-up

The NEFCON controller is now ready to learn to control the airfoil system. 

Before starting tlie NEFCON controller to learn the airfoil system behavior, one 

should set up the learning environment first. Figure 19 shows the ‘N^efcon 

Control” window for set-up.

_ _ _ .........................  M R

The MEFCOH Mode!

Rie Edit Window Help

Etiw Definition 

—

- O  Input Preprocessing 
(4  inputs )

- O

Learning Algorithm

Furzÿ ÊontTofe

-<3l

Start tine  

Stop line

1 0.0 . S elected  M odel 1 ;,nuW  .3do!ar]irf,E : i l
1 j Stop 1 I

f“  I» S t a d *  :
Create R eset Help D ose

Status: . < j 

S topped  [7 Init R  Rule P I R R u le P 2  R Optimize R  Control

Figure 19. Nefcon Control window

3.3.2.1 Error definition (Figure 20)

There are four choices for error definition:

a. Using a Fismatix:
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This method uses a fuzzy inference system for error definition. As there are four 

inputs into the controller, the inference system will be too complicated, so it is 

not used here.

b. Using Input One as error:

The input one means the difference between the desired state value and the 

current response. In this airfoil-flap system, there are many inputs and this input 

can not be modified, so it is not selected.

c. Bounded error calculation:

The NEFCON bounded signal generator is used to calculate tlie error. This 

method is not used here as the author does not select bounded signal generator 

which is used for manual error set up.

d. Using a Matlab Function:

In this method, the error range can be easily controlled and hence the learning 

process. Thus, it is adopted in this study (Figure 20).
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Figure 20. Nefcon error definition

3.3.2.2 Input processing (Figure 21)

This window is designed to define tlie input number, input range and gains. For 

the flutter suppression problem, the sets are;

Input

Number Range Gain

4
No.l No.2 No.3 No.4

1
-2 -2 -1.5-1.5 -2 -2 -1.5-1.5

Output 1 N/A N /A N/A N/A 1

Table 2. NEFCON input setting
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Figure 21. Nefcon input processing

33.2.3 Learning algorithm (Figure 22)

This window is divided into two parts: rules learning and optimization.

Rule learning:

There are four types of learning algorithms which can be selected:

a. Bottom-Up Learning:

The universe of discourse of inputs and outputs is evenly partitioned. The 

equally distributed membership flmctions are assigned to each partitioned set. 

The number of the partition and the membership ftinction types can be defined 

in the “Partitioning” column. The rule base is initially empty. If any prior rule 

base is loaded through “fismatrix” column, then its membership fimctions and 

rules will be the initial data and more rules will be added during the learning
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stage. Under tliis learning algorithm, the fuzzy rule base is initially empty and 

new rules are added by learning the system to be controlled, so this guarantees 

that every rule is active in system control and is selected in this thesis.

The learning rate is set to 1; rules used less than 5% will be deleted in phase 

two. The cycle time of this airfoil-flap combination is found to be very small, so 

the learning time is set to 90 seconds. The cycle numbers in two phases are all 

set to one.

b. NEFCON:

The universe of discourse of inputs and outputs is evenly partitioned. The 

equally distributed membership functions are assigned to each partitioned set. 

The number of partitions and the membership function type can be defined in 

the “Partitioning” column. If prior rule base is loaded through “fismatrix”, then 

its membership function and rules will be the initial data. Otherwise, a full set of 

rules will be produced based on the number of inputs, output and fuzzy sets.

The “bad” rules will be deleted during the learning process. As this is 

décrémentai algorithm which is not selected for this study, so this “NEFCON” 

is not used.

c. Disable_Tnitial Fismatrix:

The fuzzy rule learning process is disabled. A valid initial rule base must be 

loaded in the “fismatix”. As the effective control rules are not available, this 

algorithm can not be adopted in this study.
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Figure 22. Nefcon learning algorithm

d. Disabled_Current Fismatrix;

The Fizzy rule learning process is disabled. And the current rule base will be 

used as initials. As the initial fuzzy rules are not available, this algorithm can 

not be used here.
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Optimization:

The fuzzy rule base is optimized by shifting and/or modifying the support of the 

fuzzy sets. There are tliree possible optimization methods. The NEFCON 

I(modified) optimization method is introduced as before in section 3.2.b. It uses 

the cunent enor to modify the membership function. The NEFCON II 

optimizes the membership fimctions based on the error change trend. If the 

optimization is disabled, then no optimization will be made. The NEFCON I 

method is adopted with four cycles at 10'  ̂ learning rate, where the learning rate 

will decide fuzzy sets shifting and/or modifying degree.

3.3.3 NEFCON training

Up to now, all the learning parameters have been decided, except the airfoil-flap 

structural data, initial motion data and speed. All these data are included in an 

m-file called initmSdof and should be connected to the model by the Matlab® 

command:

set j)aram('airfoilalleron3dof', 'InitFcn 'initmSdof) 

where:

“aiffoilaileronSdof’: the name of the model to assign tlie initial value; 

“InitmSdof”'. the m-file contains the initial values to be assigned to the model.

After the learning environment for NEFCON is set up, the learning process can 

be ignited by “Simulate” (Figure 18). The cycle of the airfoil-flap combination 

oscillation is very small, so the learning time is set to Üie 90sec. During this



period, tlie NEFCON system will get enough motion information about lire 

airfoil-flap combination. Anotlier point to be mentioned is that after a niunber of 

trials on NEFCON learning, it is found that the produced flap comrnand(y5c) 

should be magnified by a gain before apphed to flutter suppression.

The NEFCON is trained at a speed higher than the critical flutter speed. The 

fuzzy rules produced at higher speed can successfully suppress flutter that 

happened at a low speed after the amplifier is adjusted.

The final fuzzy rule base is given in the standard Matlab® Fuzzy Conholler 

window (Figure 23) with ten rules.

Rule Editor: NEFC0N_HSBETA69
'Edi: ;•

1 If Iinpi.it1 i? :e1 and l in p u tî r  zel and  (inpulS is zel and  (input4 is zel then (output is ml7l (1
2. If (inputt is ze) and (input2 is ze) and (inputs is pz) and  (input4 is ze) then (output is m(7) (1)
3. If (hp u tl is nz) and  (inpul2 is ze) and (inpul3 is ze) and (inpul4 is ze) then (output is m(6) (1 )
4. If (inputi is pz) and  (inpul2 is ze) and  (inpul3 is ze) and  (inpul4 is ze) then  (output is m(8) (1)
5. If (inputi is ps) and  (inpul2 is ze) and  (input3 is ze) and (inpul4 is ze) then (output is mil 0) (1 )

I G. If (inputi is ns) and (inpul2 is ze) and  (input3 is ze) and  (input4 is ze) then (output is mf4) (1 )
7. If [inputi is ns) and  (inpul2 is ze) and  (input3 is nz) and  (inpul4 is ze) then (output is mf4) (1)
9. If (inputi is nz) a n d  (inpul2 is ze) and  (inputS is nz) and  (inpul4 is ze) then  (output is m(4) (1)
9. If (inputi is ps) and  (input2 is ze) and (inputs is pz) and (input4 is ze) then (output is mil 0) (1 )
10. If (inputi is pz) and (inputs is ze) and (inputs is pz) and  (input4 is ze) then (output is mfl 01 (1 )
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Figure 23. NEFCOIM produced fuzzy rule base 
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Chapter 4 Flutter Suppression

In tliis chapter, both the neuro-fuzzy control and the modified energy method 

(equation 2-2) are implemented in flutter suppression. The flutter suppression 

results of these two methods are compared. The neuro-fuzzy controller flutter 

suppression performance is tested under different conditions.

4.1 Modified Energy Method Flutter Control

The modified energy based control method (equation 2-2) is implemented in a 

Simulink® model (Figure 24). There are basically three parts in this model: 

controller (red), airfoil model (orange) which is built in Chapter 2 and results 

display (gray). The inputs to the controller are the acceleration (f ), velocity (^) 

and displacement (^  in plunge and acceleration (or"), velocity (or) and 

displacement (or) in pitch. These conhol inputs come from the airfoil-flap model 

(orange part). Tlie output of the controller (fic) passes to the airfoil model for 

flutter suppression. The airfoil model is designed to simulate the airfoil motion 

in plunge, pitch and flap rotation. The display part uses Simulink® scope blocks 

to show graphically the airfoil motion.



For an airfoil-flap combination, the modified energy method based conholler 

(equation 2-2) is implemented with the following parameters which have been 

used by other researchers [13]: ^  = 100, = 0.25, % = -0.5,

r j=  0.25, i-p = 0.0015 andx^= 0.002. For a control surface that covers 20% of

the airfoil chord, cp = 0.6; and Tcç = 0, Tea = -1.86, Tqç = 4 and Tca = 2.8- 

4(a/,+0.4). The coefficients in the hansfer function (equation 2-1) are decided by 

optimization: ar = 4, 0.6 and k„ = 0.04. No structural damping is considered

in this study. The critical airfoil-flap flutter speed without conhol is foimd to be 

U = 6.139 (Figure 25). Witli conhol applied ^equation 2-2), the critical fluher 

speed can be increased up to U = 8.25 (Figure26). [/nstable condition occurs at 

critical fluher speed (U — 6.139) under modified energy conhol. However it is 

not a part of this study, the author does not explore this problem.

A nim a tion

Airfoil M odel
C o n tro l le r

Figure 24. Energy method based flutter suppression scheme

54



12

- 4

-8

1 5 0 03 0 0 9 0 0 12006 0 0
N o n d i m e n s i o n a l  tim eCx)

(a) pitch displacement below flutter speed {U= 6)

12

i
s-

-8

-12
3 0 0 6 0 0

N o n d i m e n s i o n a l  t i m e ( x )
9 0 0 1200 1 5 0 0

(b) pitch displacement at flutter speed (U  =  6.139)

8 0

GO

4 0

20

-20
- 4 0

-GO

- 8 0
3 0 0 6 0 0

N o n d i m e n s i o n a l  t i m e ( x )
9 0 0 1 5 0 0

(c) pitch displacement above flutter speed (U  =6.16) 

Figure 25. Airfoil-flap flutter speed at U= 6.139 without control
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Figure 26. Airfoil-flap flutter speed at i7= 8.25 with control

56



The following figures (Figure 27, Figure 28) show the airfoil motion both 

without and with modified energy control at U= S.
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(a) nondimensional plunge displacement

(b) pitch displacement 

Figure 27. Airfoil motion without control at [7=8

(a) nondimensional plunge displacement 

Figure 28. Airfoil motion with control at 17= 8
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Figure 28. Airfoil motion with control at C/= 8

4.2 NEFCON flutter suppression

The NEFCON fuzzy rule base produced in the previous chapter has been 

optimized and is applied for flutter suppression.

The neuro-fuzzy rule base is loaded into the NEFCON controller for the airfoil- 

flap system. The learning and optimization processes are disabled.

As the fuzzy rule base used here is produced at speed U =6.9, the magnifying 

factor must be optimized for other lower speeds. A set of amplifying factors 

applied to different speeds can be found in Table 3.

Speed 6.14 6.3 6.7 6.9

gain 0.9 1.1 1.11 1.2903

Table 3. NEFCON amplifying gains for different speeds
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Based on the above set of data, Matlab polynomial fitting method is used to find 

an equation on speed-gain relation which can be expressed as: Gain = 

94.1*i7^+614.3*i7-1335.5. This equation must be put in the Simulink® model of 

the NEFCON model.

The fuzzy rules can suppress flutter successfiilly and quickly for speeds up to 

6.7. Figure 29 and Figure 30 show the performance of the Nefcon controller. 

When speed increases to U = 6.9, tlie suppression happens slowly and drift 

happens at x = 1500 (Figure 31).

2.5
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(e) nondimensional plunge displacement

I S O

1 DO

SO

- s o

(b) pitch displacement 

Figure 29. Flutter suppression (Z7= 6.139)
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Figure 30. Flutter suppression (17=  6.7)
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Figure 31. Flutter suppression {U = 6.9)
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Figure 31. Flutter suppression {U = 6.9)

4.3 Neuro-fuzzy control and energy method control 

comparison

Both of the control methods can successfully suppress flutter. Witli the modified 

energy control method, the plunging displacement amplitude will f'rst jump to a 

higher level; whereas under the NEFCON control, the plunging displacement 

amplitude is maintained within a small range and then will be suppressed 

(Figure 29 u Figure 31). So under the modified energy method, the airfoil-flap 

combination needs to be stronger to resist the higher plunge deformation.

The energy method can suppress flutter at much higher speeds such as U -  S 

(Figure 28), but not the NEFCON method.

The significant result from this study is that the neuro-fuzzy control 

methodology can be applied to flutter suppression successfully without any
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prior control command knowledge required. The NEFCON controller adopted 

in this study can learn itself from the motion of the airfoil-flap to produce a set 

of fuzzy rules for flutter suppression. The NEFCON controller can then use 

these fuzzy rules to suppress the flutter successfully. The NEFCON control 

method should be considered first in flutter suppression.

4.4 Neuro-fuzzy controller p ./fb; : ,ance test

In this section, two performance tests Oi. die fuzzy rules produced in Chapter 3 

are implemented. First, the value of the o parameter is changed slightly (±2%) 

for fuzzy rule sensitivity test. Second, four parameters-m^ cop.ra and rp- will be 

increased with a higher percent (say 10%) of the initial values to find out the 

flutter suppression performance of the fuzzy rule base under the new airfoil-flap 

system. The author will also try to find out which parameters are critical to the 

flutter suppression in the second test.

4.4.1 Sensitivity Test—2% change in

2% increase in parameter (cô  = 0.204)

The neuro-fuzzy controller can successfully suppress flutter until the airspeed is 

6.7 (Figure 32, Figure 33). When airspeed reaches 6.9, the amplifying factor 

should be changed to 1.315 for successful flutter suppression (Figure 34). The 

successful flutter suppression at airspeed 6.7 indicates that the slight change in 

the parameter co  ̂does not affect the neuro-fuzzy controller performance.
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Figure 32. Neuro-fuzzy control under cô  = 0.204 and U = 6.139
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Figure 33. Neuro-fuzzy control under = 0.204 and U = 6.7
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Figure 33. Neuro-fuzzy control under o)̂  -  0.204 and U = 6.7
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Figure 34. Neuro-fuzzy control under = 0.204 and U= 6.9 with 
(amplifying factor = 1.315)
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2% decrease in parameter (a)̂  = 0.196)

From Figure 35-Figure 37, the same conclusion as that in previous section on 

the neuro-fuzzy controller’s perfonnance can be drawn for this decreased cô  

parameter.
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Figure 35. Neuro-fuzzy control under cô  = 0.196 and U = 6.139
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Figure 36. Neuro-fuzzy control under 0.196 and t/=  6.6
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Figure 37. Neuro-fuzzy control under (o^= 0.196 and U =  6.9 
(amplifying factor = 1.268)
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Figure 37. Neuro-fuzzy coutrol under (o^= 0.196 and C/= 6.9 
(amplifying factor = 1.268)

4.4.2 Performance under new system— 10% parameters 
increase

Unlike the slight (±2%) parameter change, a 10% increase will change the 

critical airfoil-flap combination flutter speed (Table 4). The performance test 

starts at the new flutter speeds and continues at several critical speeds.

10% increased 
parameter

Cüp ra rp

New flutter speed 6.07 &149 &59 6.153

Table 4. New critical flutter speed under increased parameters

At new flutter speed

The following figure (Figure 38) indicates that the neuro-fuzzy controller can 

successfully suppress flutter at new flutter speeds.
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Figure 38. Neuro-fuzzy control at new flutter speeds

Air speed U =  6.65

It can be seen in Figure 39 and Figure 41 that the increase of two parameters 

{o)̂ ,rcf) will not degrade the nemo-fuzzy control performance in flutter 

suppression. After changing the amplifying factor produced by the equation- 

4.8*!/ -94.1*!/+614.3*!/-1335.5 to 1.0(for a>p) and 0.9(for r^), the neuro-ftizzy 

conholler can suppress flutter better under the increased a>p and (Figure 43, 

Figure 44) compared with the results shown in Figure 40 and Figure 42 . As the 

air speed increases, the control result will become more and more sensitive to
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the amplifying factor of the neuro-fuzzy controller output. The equation 

produced by the regression method for amplifying factor calculation is not 

accurate enough, so the adjustment of this amplifying factor does not indicate 

that the neuro-fuzzy controller is inefficient.
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Figure 39. Neuro-fuzzy control at (Of=0.22 with other parameters unchanged
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Figure 40. Neuro-fuzzy control at oip= 1.55 tvith other parameters unchanged
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Figure 41. Neuro-fuzzy control at ra ~ 0.55 with other param eters unchenged
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Figure 41. Neuro-fuzzy control at /■„ = 0.55 with other parameters unchanged
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Figure 42. Neuro-fuzzy control when rf= 0.0426 with other parameters unchanged
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Figure 43. Neuro-fuzzy control at (o^ 1.55 with other parameters unchanged
(amplifying factor 1.0)
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Figure 44. Neuro-fuzzy control at rp= 0.0426 with other parameters unchanged
(amplifying factor 0.9)
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Figure 44. Neuro-fuzzy control at 0.0426 with other parameters unchanged
(amplifying factor 0.9)

Air speed U = 6 . 7

At this air apeed, the neuro-fuzzy controller will not be able to suppress flutter 

with increased o)  ̂(Figure 45). The increase in ra does not affect the neuro-fuzzy 

control flutter suppression (Figure 47). After changing the amplifying factor to 

1.05(for cop) and 0.9(for rp), the neuro-fuzzy controller can successfully 

suppress flutter with increased parameters- cop and rp. The reason for this 

change can be the same under U = 6.65 (Figure 46, Figure 48).

73



0.8

0 .5

0.2

z  J  -0.2

-0.4

- 0.6

- 0.8

2 505 0 100 160
N on tjim ensm nal tirnG(r)

(a) nondimensional plunge displacement

I S

1 O

- 5

- 1  O

5 0 1 0 G 1 5 0
N o n d i m e n s i o n a l  t im e(-c )

2 5 0 3 0 0

(b) pitch displacement 

Figure 45. Neuro-fuzzy coutrol at o)f=2.2 with other parameters unchanged
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Figure 46. Neuro-fuzzy control at o )^  1.55 with other parameters unchanged
(amplifying factor 1.05)
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Figure 46. Neuro-fuzzy control at co/= 1,55 with other parameters unchanged
(amplifying factor 1.05)
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Figure 47. Neuro-fuzzy control at r« = 0.55 with other parameters unchanged
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Figure 48. Neuro-fuzzy control at rp= 0.0426 with other parameters unchanged
(amplifying factor 0.9)

Air speed U = 6.9

At this air speed, the neuro-fuzzy controller will work only under the increased 

(Figure 49).This is not surprising as the fuzzy rules used here are produced at 

this speed (U  -  6.9) and the parameter changes will affect the neuro-fuzzy 

controller’s performance easily.
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From the performance of the neuro-fuzzy controller’s performance at different 

air speeds under increased airfoil-flap combination parameters, it can be 

concluded that the fuzzy rules are capable in flutter suppression.
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Figure 49. Neuro-fuzzy control when = 0.55 with other parami :ers unchanged
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Chapter 5 Conclusion

The neuro-fuzzy controller application to the flutter suppression of a three 

degree-of-freedom airfoil-flap combination in a two-dimensional 

incompressible in viscid flow is studied. The airfoil Simulink® model is 

simulated according to a set of airfoil aeroelastic equations of motion. A 

NEFCON controller is then included in the Simulink® model of the airfoil to 

learn the airfoil behaviour and increase the critical flutter speed. A fuzzy rule 

base with ten rules is produced by the NEFCON controller from learning the 

dynamic behavior of the airfoil.

The NEFCON output, flap rotation command, is decided by the fuzzy rules and 

magnified by a gain. The NEFCON controller can increase critical flutter speed 

by 12.4%.

For the purpose of comparison, the modified energy control law is also applied 

on the same airfoil-flap combination. When the modified energy method is 

applied, the plunging displacement first jumps to a high level and then reaches a 

stable state. The modified energy method increases the critical flutter speed by 

35%. The present study shows that the neuro-fuzzy control methodology can be
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successfully applied to flutter suppression without any prior knowledge of the 

flutter suppression command required.

Further research is suggested on the application of neuro-fuzzy control in flutter 

suppression of airfoils. Further study is required to improve the NEFCON 

controller’s performance by adjusting its structural parameters, finding out why 

the gain factor must be applied and why different gain factors are needed for 

training and control.
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Appendix I  Equations fo r  T ŝ

1 TT l=  —X scb X (2 + cb e ta ')+ cb e ta  x acs

T 3 = (—+ cb e ta“ ) X acs“ +0.25 x cbeta x scb x acs x (7+2 x cbeta") 
8

-  —  X  ( l-c b e ta “ )(5 x cbeta" +4)
8

T 4=-acs+cbeta x scb

T 5 = (l-c b e ta " )-a c s“ + 2 x  cbeta x scb x acs

1 ) 1  ?T 7 = (—+ cbeta") X acs+ — x cbeta x scb x (7+2 x cbeta )
8 8

1 ■)T 8=  — X  scb X  (2 X  cbeta"+  l)+ cb e ta  x  acs

T 10=scb+acs
T l  l= acs  X (1 -2 x cbeta)+scb x (2 -cbeta)
T 12=scb X (2+cbeta)-acs x (2 x cbeta+1) 
where;

9
zbeta = rbeta~ + {cbeta — ah) x xbeta

ahbar = -— ah 
9

scb = y[ — cbeta~ 
acs = axccos{cbeta)
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Appendix II Simulink® blocks for m's, n ŝ 
and a's

These are the m's, n's and q's equations;

m, = ju + l 

M

m r,
xalphax /J — Uf, _

?ri: _  —Tl + xbcta xTtxju
7 t X / J

niA = 2
U X Iw+zetaxi x omegaxi x p  

U x p

=
2 X /w(0.5 — +1

nu =■ -T4 + lwxTU
/ T X  p

m-, ^ omegexi ̂
U

TOS =•
2 xlw
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2x.lwxTlOmg  --------------- :
TlXJU

772 ,0  =0;

-27721 1 = ---

- 2
m^2 -  •
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xalpbax/2—af̂
g î

mlpha~ x u  

+  0 . 1 2 5 + ralpha~ x p
H") — ^

ralpha~ x p

zbeetaxKX  / i + H x q ^  -T lxcbe ta -T l  _

l ' O l p l l C r  X K X p

/K{l+2xa, )
"4 =— 7 -^ — ; 

ralpha x p

[-IxJJxajj xhv-Uxlw+U^x(0.5-ajj)+2xzetaalphaxralpha~ x p
,

Uxralpha'xp

T l \ + l x ' n —hvxT\\+lxTAxa,.-lxTAxcheta-2xT% -xlxa], x /w x 7 1 1
«6 = ^  ;ralpha xrcxp

Hj  = 0 ,

-hvxU~ + ralpha' x p —2 x I w x x U ~
’h — —- - — ,

ralpha xJJ x p

7 1 0 - 2 x a .  x /M 'x 7 1 0 + r 4 -/w x J 1 0  
"9=-------------- T T l------------------- :ralpha x n x p

’ho

l + 2 x a .
«11= ■41 -  , , 2ralpha x p

l+2xai,
”i2 -  rr~ ï -• 

ralpha x p
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-T \  + xbeta xzrx u
q̂  -  r y i  '

Tvxrbeta x / i

zbetaxKX u + Tlxa,, - T lx c b e ta - T l
q , = ---------------- :------— 1 -----------------------;

n X rbeta x  /j

-T3  -r rbeta" x n ' x a
~ , 2 2 ’ rheta x k  x  j j .

ri2x/w
 ; T~n X rbeta" x jj.

licbeta" -  l\\jl-cbeta~ —6 x T l - 3 x T A + 6xTl2xlw{0.5-ah)
q.  = ----------------------------------------------  — -------------------------------------------;

6x7tx rbeta" x n

Axzetabetaxomegabetaxrbeta" XTT" x ja -v U x T \lx h v x T \\—U x 74x711
2xUXrbeta" xn~ x ja

h  =0;

712x/w
% =— — 1— ; n X rbeta x fx

% =
-U" xTAxTlO + U" xT5 + omegabeta" xrbeta" xtP' x fx+U~ x712x /w x710

rbeta" xU" XTT" x jj.

?io — 0;

-712
1 TT"! 'TV xrbeta xfj.

-712
I n  TT^ ’TV X rbeta" x u

(  omegabeta\
" " i — E T - j
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The followings show the Simulink® models of ms, ns and qs:

m1 m2

0 - K D
Ï  0'Jt2 Î  Out3*  Out1 xalpha xbetamu reciprocal

ProductC onstant Product

mu

mu
mu

OuM

mu xalpha xbeta

mu Gain

m3

C onstant

P roduct P roduct
< 3

OuWP roductP roduct P roduct
C onstant

C onstan t

muC onstan t
P roduct

mu

mu

om egaxr

m4 m5
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Product
Product

muOut1

O uti

omegaxi K I 3
0Ut7Product square

omegaxi

T11 mu Gain

m6

mu

—MUD
Outs

Constant

Product

mu

anh L_Constant ' 

Iw2

O utl

T1Q

Product

Gain

m7

Out9 Constant

mu

Product

h-Km)
OutlQ

mu

tn8 m9 m11

Constanti

mu

mul

alpha

Productl

hKD
Gum

xalpha

mu
Product

mu

ah

ah

ralpha

ralpha

Products
Outl 2

m12

square

n1

Constant

0.125

Outl 3Constant

Product

square

ralpha

ralpha ralpha 
— square 
m u -----------------

mu

n2
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Outl

G u l l

ProductcbE ta

-K ID
Out14

c b e ta

ProductO utl

ProductG ain

mu

mu
Product

Productra lp h a
raplha Gain

-iw

-KH)
Outl 5

Product
Constant

C o n s ta n t

Product

ralpha

ralpha ralpha

mu

ra lp h a  s q u a re  

n3 n4

C onstan t

ze taa lpha

ze taa lpha

u

C onstan t

ah

ah

C onstan t

tw

Product

-+0-K 3E )
O ut16

P roduct

mu

ralpha

Product

Product

ralpha
ralphqT4
sq u are

n5

C o n stan t

Outl Product

Outl

Outl

712 P roduct

Copstan t

Product -Km
O utl 7ProductOutl

ProductT5

cbe ta

cbe ta

P roductralpha ♦  u

ralpha ralpha Gam

0  square --------------

mu n6
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“ Out18Constant

Product
T 13

ProductConstant
Product

Constant

Constant
Productralpha

square
ralpha

- K Î D
Outl  3

Product
mu

mu

U*2
reciprocalsquare ralpha ralpha Gain

mu

mu

Out1

Out1

ralpha

ralpha

n8
square

n9

ah

Constant

Product

ralphaH Z}-
ralpha ralpha 

square

n11

Constant

Const;

Product

KS)
Out20

Product
Product

ralpha
square

I ralpha j— ► u

ralpha

xtieta
f e u

K S )
Out21

Xbeta Gam %

m u  H  Product f  -------

n12

mu

g
T9

roeta

rbeta rbeta
square

Gain

qi

Product

-K2D
Out22

Outl

T15

Outl

T14
Product Constant

cbeta -

Outlcbeta

Product Products T17r>
Product

rbeta -

rbeta Gain square
Gain Product

Producth
Outl

rbeta
zbeta mu rbeta rbeta Gain

 isquare
m u --------------------mu

mu muGain
rbeta

rbeta
squarerbeta

q2 q3 q4
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FenConstant

Gaincüeta

cbeta 
square

- f > -
Gain

Oullcbeta

T18
Dut1

T20

O u tl
Products

T19

Gain4 — ► V

rbeta

rbeta
square!

rbeta

Products

mu

mu2
an

Constant

zetabeta
Product

om egabeta

rbeta

rbeta Gain square

mu

mu

-K2D
Out27

i n s t a n t  r»

Outl
Productl 0

P ro d tk rT22

Product
O u tl

T21
q5 q6

O u tl

T24

rbeta

rbeta

mu

rbeta
square

T '
Gam

mu

q8

Product

O u ll

T27

O u tl

T25

-K2D
Out28

O u tl

T7B

O u tl

T26

rbeta

Product

rbeta Gam

om egabeta

om egabeta

Product

u
square

q3

Product

Product

->0-K2D
Out29

result
square

u tl

f29 Gain

rbeta û
rbeta rbeta Gain 

square

Product

O u tl —

T30 Gam

Out3D rbeta

rbeta rbeta Gain 
square

Product

om egabeta iu
-M3D

o u ts i

om egabeta

-ul
û  [xiD

Out32

Product
square

q11
q12 q13
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Appendix III Ordinary differential equations
calculation

+m2a + ^ 4 ^ +m^a +mj<^+ m^a-t-mg/S+ +
m,2>’2 =  0  ( 2 - 3 )

«[4̂  + « 2«  +«3/5 +«4^ +n^a +«6/5 + « g « +779/5+ «i + « 12>’2 = 0 (2 -4)

+ 9 2 ° :  + 93^  + 9 4 ^  + 95° :  + 9 6 ) 5  +  9 8 ° : + 9 9 / ^  +  9 i  i ^ i + 9 i 2 > ’2  -  " 9 i 3 / ^ c  ( 2 - 5 )

In order to solve the a  and /?, the above equations are rewritten as;

my<  ̂ +  7772°: + « ^ 3 / 5  =  - ( 7774( ^ + 7775(2: +  777g/5 +  7777̂  +  7?7g(2: + 7 7 7 9 /5 +  777] I> > 1 + 77712372)

77j(^ +772(2: + « 3 / 5  -  - ( « 4 ( ^  + « 5 < %  + « 6 ) 5  +  » 8 &  + « 9 ) 5 +  « l l 7 l + « 12^ 2 )

9i^"+92a" +  93/?" =  - ( 9 4 ^ + 9 5 « + 9 6 /  +  98« + 99^ + 9 i m + 9 i 2 y 2 + 9 i 3 ^ )

The right parts of the above three equations are expressed in the following way: 

S =  -(7774^ +  7775a + 7« 6/5 +  7777)̂ +  7ng(2: +  7« 9/5 +  7«i ,371+T«i2372)

T = -(«4<#' + «5a +«6/5 +«ga + «9/5 +«1,^1+« 1 2 ^ 2 )

U =  - ( 94  ̂ +95°: +96^ +9b°: + 99-5 + 9ii>’i + 912T2 +9i3^c) 

so:

7«i^ +7«2<% +7«3/5 = S  

«((^ +«2<2: + « 3 /5  = T  

9 ,^' +92°: +93)5' = U
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Solving these new formed equation, we have;

 ̂ = -(/Z2X%-»3xg2)xS/rH-(/?^x%-y?^xg2)xT/D-(m^XM2-m;XM2)xljyD

a  = (njXÇ3-n3xgj)xS/D-(wîjxg3-/?î3XÇj)xT/D-(-77îixn3+/ï^x/îi)xU/D 

/? = -(») xg2-»2Xgj)xS/Df(y?^xg2-fM2Xgr;)x'iy[H-(-7?^ XMg+zy^x/zJxU/D

where:

D =  - m |  X M2 X ^ 3  +  m ^  X M3 X ^ 2  +  X ?M2 X ^ 3  -  X /M3 X ^ 2  -  g ;  X ^ 2  X »3 +

X ̂ 3 X «2

We can now build the airfoil-flap combination model under Simulink® (see 

Figure 14 ).
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Appendix IV  M -files fo r  simulation

Initial condition:

% This file contains the airfoil-flap structure parameters, initial motion 

information

% and energy control law parameters. This file will be called every time when 

% simulation begins.

11= 100; 

cof= 0.2;

(üj3= 1.5; 

r„ = 0.5;

=  sqrt(0.0015); 

ai, = -0.5;

Xa = 0.25;

Xp =  0.002 ;

= 0.6; 

4f =  0; 

G = 0; 

4)9 = 0;

/w =  1; 

aw =  0.165; 

bw = 0.0455; 

cw = 0.335; 

dw = 0.3;

[/= 6 .9 ;

Tc^=0;

Tea = -1.86;

T%= 0.0698;

Tga = 2.8;
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ttT — 4; 

C=0.6;

kn = 0.04;
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Animation:
fonction [sys,xO]=AIRFOIL_Anim(t,x,u,flag,ts);

% AIRFOIL_Anim S-fonction for animating the motion of a 3D0F airfoil-flap. 

% The animation shows the relative pitch and plunge motions and the 

% associated control surface deflections.

% This file is written based on bact_anim.m by 

% Marty Waszak, 7-31-95 

% NASA Langley Research Center

% Hampton, VA 23681-0001

(804) 864-4015 

% m.r.waszak@larc.nasa.gov

global yAF xAF xFP yFP AIRFOIL 

% global icount B_Movie

if  flag = 2 ,

if  any(get(0,'Children')=AIRFOIL), 

if strcmp(get(AIRFOIL,'Name'), AIRFOIL Animation'), 

set(0,'currentfigure', AIRFOIL);

xyA F=[...

-12 0 

8 0 ]; 
xyFP=[...

8 0 

12 1 ];

xAF=xyAF(:,l); yAF=xyAF(:,2);
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xFP=xyFP(;,l); yFP=xyFP(:,2);

dLE = abs(xAF(l));

dH2 = abs(xAF(2));

dFP = abs(xFP(2) - xFP(l));

hscale = 50; 

ascale = 50*pi/l 80; 

dscale = 10*pi/180; 

bias = -2*dscale;

xi = -u(l)*hscale/5; 

alpha = u(2)*ascale; 

beta = ti(3)*dscale;

xLE = -dLE*cos(alpha); yLE = xi + dLE*sin(alpha);

x H 2 -  dH2*cos(alpha); yH2 — xi - dH2*sin(alpha);

xFP = xH2 + dFP*[cos(beta)]; 

yFP = yH2 - 30*dFP*[sin(beta)];

xl=[xLE; xH2]; 

x2=[xH2; xFP];

yl=[yLE; yH2]; 

y2=[yH2; yFP];

hndl_vec=get(gca, 'UserData') ; 

hndll = hndl_vec(l);
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hndl2 = hndl_vec(2);

set(hndll,'XData',xl,'YData',yl);

set(hndl2,'Xdata',x2,'YData',y2);

drawnow;

% icount = icount + 1 ;

% B_Movie(:,icount) = getframe;

end

end

sys-[];

elseif flag —  4 % Return next sample hit

% ns stores the number of samples 

ns = t/ts;

% This is the time of the next sample hit. 

sys = (1 + floor(ns + le-13*(l+ns)))*ts;

elseif flag = 0 ,

% Initialize the figure for use with this simulation 

AIRFOIL_AnimInit('AIRFOIL Animation') ;

[flag, AIRFOIL] =figflag('AIRFOIL Animation'); 

axis([-15 15-15 15]); 

hold on;

xyAF=[...
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-12 0 

8 0 ]; 
xyFP=[... 

8 0  

12-1 ];

xAF=xyAF(:,l); yAF=xyAF(:,2); 

xFP=xyFP(:,l); yFP=xyFP(:,2);

xl=[xAF]; yl=[yAF]; 

x2=[xFP];y2=[yFP];

% Draw the reference line for the model 

plot([-15 15],[0 0],'w','LineWidth',l); 

plot([0 0],[-10 10],'w','LineWidth',l); 

text(-12,-12,'(This is only for motion demos, purpose!)')

%

hndl=plot(xl,yl,'y',x2,y2,'r',x3,y3,'g','EraseMode','background','LineWidth,3); 

hndl=plot(xl,yl,'y',x2,y2,'r','EraseMode','normal','LineWidth',3); 

s et(gca, 'U s erD ata', [hndl]) ;

%set(gcf,'Color','w');

% icount = 1 ;

% B_Movie(:,icount) -  getframe;

sys=[0 0 0 3 0 0];

% sys=[0 0 #outputs #inputs 0 0];

xO=[];

end;
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Animation initialization:

function figNumber=AIRFOIL_AnimInit(namestr)

% BACT_ANIMINIT Initializes a figure for the BACT SIMLfLINK animation.

% Ned Gulley, 6-21-93

% Copyright (c) 1984-94 by The MathWorks, Inc.

if (nargin == 0)

namestr = 'SIMULINK Animation';

end

[existFlag,figNumber]=figflag(namestr);

if -existFlag,

% Now initialize the whole figure... 

position=get(0,'DefaultFigurePosition');

position(2) = [50]; 

position(3:4)=[400 300]; 

figNumber=figure(...

'Name'.namestr,...

'NumberTitle','off,...

'BackingStore','off,...

'Position',position); 

axes(...

'Units','normalized',...

'Position',[0.05 0.05 0.70 0.95],...

'V isible','off,...

'DrawMode', 'fast') ;

%=
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% Information for all buttons

labelColor=[0.8 0.8 0.8];

yInitPos=0.90;

top=0.95;

bottom=0.05;

left=0.80;

btnWid=0.15;

btnHt=0.10;

% Spacing between the button and the next command's label 

spacing=0.04;

% The CONSOLE frame

frmBorder=0.02;

yPos=0.05-frmBorder;

fimPos=[left-frmBorder yPos btnWid+2*frmBorder 0.9+2*frmBorder]; 

h=uicontrol( ...

'Style','frame',...

'Units','normalized',...

'Position',fraiPos,...

'BackgroundColor',[0.5 0.5 0.5]);

%=

% The CLOSE button 

labelStr='Close'; 

callbackStr='close(gcf)'; 

closeHndl=uicontrol( ...

'Style','pushbutton',... 

'Units','normalized',...

'Position',[left bottombtnWid btnHt],... 

'String',labelStr,...
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'Callback',callbacks tr);

end;

cla reset;

set(gca,'DrawMode','fast'); 

axis off;
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