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Abstract

A QUASI-2D FINITE ELEMENT FORMULATION OF ACTIVE
CONSTRAINED-LAYER FUNCTIONALLY GRADED BEAM

© Elena Miroshnichenko, 2007
Master of Applied Science
in the program of
Mechanical Engineering

Ryerson University

A functionally graded (FG) beam with an active constrained-layer damping (ACLD)
treatment is modeled and analyzed. ACLD consists of a passive element, in the form of a
viscoelastic layer bonded to the host structure, and an active constraining element which
is represented by a piezoelectric fiber-reinforced composite (PFRC) laminate. It is
assumed in the current formulation that the field variables are expressible as polynomials
through the thickness of the beam and are cubically interpolated across the span.
Hamilton’s principle is used in the derivation of the equations of motion, which are
solved using the Newmark time-integration method. The versatility of the formulation is
demonstrated using different support mechanisms in the form of analysis of cantilevered,
fixed-end partially-constrained and simply-supported beam cases. The effects of ply
orientation in the PFRC laminate and varying elastic modulus in the FG beam are also

examined.
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Chapter 1 Introduction

Mechanical vibration and noise reduction is a crucial issue in many engineering
systems, ranging from simple mechanism such as automobile parts to large-scale
structures such as airplanes and spacecrafts. It is especially a concern in lightweight
structures, wherein weight addition is not an option for suppressing vibration. Successful
reduction of noise and vibration results in a higher performance and durability of the
machines and structures, as well as creating an improved living/working environment.

A considerable amount of research has been done over the years with regard to the
modeling and control of lightweight composite structures [1-3]. One of the most widely
used conventional methods for suppressing vibrations and noise involves the addition of
damping by bonding a viscoelastic layer to the host structure. This technique can be
enhanced by the addition of an active element in the form of a piezoelectric material
attached to the structure. The resulting configuration is known as ‘smart’ or ‘intelligent’
structure and it is emerging as a promising active-damping technique.

Direct and inverse effects of the piezoelectric materials allow them to be used in
structural applications as sensors and actuators, respectively. The analysis of such
structures requires accurate modeling that takes into account the electromechanical
coupling of the structure. As observed by Stanway et al. [1], piezoelectric sensors and
actuators are widely used in vibration and noise control of smart structures because of
their excellent frequency characteristics and capability in reciprocal conversion between
the electric and mechanical strain energy.

The assumptions which support the classical three-layer theory [4-7] are: 1) the host
beam and the constraining layer deform as Euler-Bernoulli beams, that is, plane cross
sections remain plane and perpendicular to the deflection curve of the deformed beam, 2)
the viscoelastic core behaves as a Timoshenko beam and, consequently, shears, 3) the
axial displacement field in each layer is linear through the thickness and the transverse
displacement is constant throughout the thickness, 4) the core supports only shear load, 5)
perfect bonding exists at the interfaces and no slip occurs between the layers, 6) in-plane
inertia effects are ignored, and 7) small-displacement theory is used. To improve the

model, one has to consider shear and longitudinal energy contributions of all three layers



and, consequently, allow for shear deformations in the facings and normal direct
deformations in the core. The current formulation is based on a Timoshenko beam theory
for each layer; however, for sufficiently thin beams it also captures the assumptions of
Euler-Bernoulli hypothesis.

The present work extends the use of the quasi-two-dimensional finite element model
developed by Bekuit [8] for the vibration analysis. In [8], the author assumed cubic axial
deformation and quadratic transverse deformation along the thickness direction of the
core only. As in [8], at each node of current formulation, through-the-thickness
integration of field variables is carried out analytically, thus reducing what would have
been a two-dimensional problem to a one-dimensional finite element procedure.
Thereafter, a Gaussian quadrature is used to numerically integrate over the span for each
element. This greatly increases efficiency of the computer program and saves
computational time. However, unlike in Bekuit’s three-layer model [8], both the host
beam and middle layer axial displacements are modeled as cubic functions, while
transverse displacements are quadratic functions with respect to z . The top layer
employs a linear interpolation of the axial displacements and constant transverse
displacement, as is common for the three-layer theory mentioned above. The “quasi”
concept follows Nabarrete et al. [9] who developed a quasi-three-dimensional finite
element formulation, where in-plane displacement characteristics are modeled after the
bicubic trial functions and are interpolated through the thickness.

This thesis is concerned with utilizing the aforementioned active-passive damping
technique in a three-layer quasi-two-dimensional finite element beam model. The beam is
made of a functionally graded material (FGM). A viscoelastic material is sandwiched
between the beam and a piezoelectric fiber-reinforced composite (PFRC) laminate
constraining layer. The properties of these materials are discussed in Chapter two. The
passive and active methods for controlling noise and vibration are presented in greater
detail in the next section. In Chapter three, the mathematical formulation of the current
quasi-two-dimensional beam model is presented. This includes the description of the
system, kinematic assumptions, and constitutive equations. Chapter four discusses the
process of developing a finite element model. The extended Hamilton’s principle is used

to derive the equation of motion, which is solved using the Newmark time-integration




method. The fifth chapter presents simulation results, and concluding remarks and

suggestions for the future work are discussed in Chapter six.

1.1 Active Constrained-Layer Damping (ACLD)

The desire to reduce weight in machines and structures for economic benefits
increases the need for vibration control of these structures. Their excitation responses are
dominated by resonant modes that occur at low natural frequencies. These low frequency
vibrations are difficult to control using conventional technologies, which are mainly
passive and effective for high frequency vibration suppression. In these structures, a
viscoelastic layer is often bonded to the host structure to increase the dissipation of
energy. Viscoelastic materials contain long-chain molecules, which are effective at
converting mechanical energy into heat under deformation [1]. When a second layer of
metallic material is bonded on top of the viscoelastic layer, then a certain type of
treatment is produced and is known as a passive constrained-layer damping (PCLD)
treatment [1,2]. Stanway et al. [1] discussed the progression from such treatment to what
is now known as active constrained-layer damping (ACLD), where a piezoelectric layer
acts as the constraining layer. ACLD treatments significantly increase performance by
enabling vibration control at low frequencies. With this upgrade from PCLD to ACLD,
vibration control is possible at both the high modes due to the passive element and low
modes due to active element. The components of ACLD complement each other in that
the active elements allow structures to adapt to a changing environment and remain
within weight and size constraints, while the passive elements provide a fail-safe control
mechanism [1-3, 10-11]. Furthermore, these performance benefits are achieved without
much consequence in terms of cost, weight and complexity.

The passive element, in the form of a viscoelastic damping layer added to one of
the surfaces of the host structure, is subjected to both direct and shear strains upon the
deformation of the beam. The damping layer is introduced to exploit the ability of one of
the strains, mostly shear strain, to dissipate energy at particular areas [1]. The active
element involves an actuator, usually in the form of a piezoelectric layer, which can
increase the beam’s deformation and thus enhance the damping capability of the

viscoelastic layer. In [1], Stanway et al. emphasized practical applications in terms of



structural elements utilized in ACLD, other than the most common application to
cantilevered beam. They also presented various actuator and sensor configurations that
have been investigated by other researchers. The development of some modeling and
control techniques were also discussed. Trindade et al. [2] similarly described various
hybrid vibration damping treatments, modeling approaches and control algorithms used
in the literature. A thorough comparative analysis has been done regarding the different
hybrid active-passive damping configurations that already exist in literature. However,
the authors presented all configurations known to the research world without
distinguishing between the proposed simulated and experimentally investigated options.
Balamurugan and Narayanan [3] highlighted the aforementioned advantages of the
ACLD treatment in their development of a beam finite element model that has been
partially covered with the constrained layer. Further, Gao et al. [10] analyzed a simply-
supported beam using enhanced self-sensing ACL treatment that comprises edge
elements connected to both host structure and piezoelectric layer for the purpose of

transmissibility between actuator and sensor.

1.2 Piezoelectric Element as Actuator and Sensor

An advantage of the piezoelectric element that must be mentioned is its dual nature
in being able to act as both an actuator and sensor. A piezoelectric element is able to
convert mechanical energy into electrical energy and vice versa. The direct effect is
defined as the generation of an electric charge in proportion to an applied force/pressure.
The inverse effect, however, is the opposite and induces an expansion (contraction) of the
piezoelectric ceramic/polymer under an applied electric field parallel to the polarization
direction. Hence, this benefit results in a simplified ACLD configuration due to the
piezoelectric element’s dual nature as a ‘self-sensing’ actuator, whereby sensor and
actuator are truly collocated, thus removing chances of instability [1, 2, 10].

Another configuration was noted by Stanway et al. [1] and Trindade et al. [2],
which consisted only of the elastic beam with the viscoelastic core, the constraining layer
in the form of a piezoelectric actuator and the sensor bonded beside the treatment. This
results in the reduction of the structure to three layers. An ACLD arrangement that is

used in this thesis work closely resembles this configuration presented in both [1] and [2],




where the piezoelectric element acts as an actuator while a sensor/accelerometer provides
the input signal to the controller/amplifier of the system, which, in turn, sends the signal
to excite the piezoelectric actuator. A schematic of the configuration is shown in Fig. 1.1

below.

Controller
Sensor

{1 Elastic material

I Viscoelastic material
I Piczoelectric material

Figure 1.1: ACLD actuator/sensor configuration

Further simplification of this arrangement will result in the sensor/accelerometer being
removed and the self-sensing piezoelectric actuator implemented, as was mentioned in
the previous paragraph.

Many theoretical models have been proposed to describe the interaction between
piezoelectric materials and host structures. Among them, Crawley and de Luis [12]
introduced the fundamental concepts of using piezoelectric materials as actuators and
sensors in ‘intelligent’ structures. Their paper also presented static and dynamic models
of distributed piezoelectric actuators. From the amount of literature surveyed for this
thesis, it is evident that a flurry of research activity continues to go on, validating the
concept of intelligent structures, quantifying the effects of piezoelectric sensors and

actuators, and analyzing the true feasibility of intelligent structures.



Chapter 2 Materials

As was mentioned in the preceding chapter, the system of interest consists of the host
beam, made of FGM, with a bonded viscoelastic layer which is covered with
piezoelectric fiber-reinforced composite (PFRC). The use of this combination of
materials results in a strong, lightweight structure that is suitable for active control. The

following describes each material and its properties.

2.1 Functionally Graded Material (FGM)

FGMs have recently emerged as a new class of materials that exhibit gradual
spatial variation of material properties. Unlike laminated composites, they do not possess
distinct interfaces across which properties abruptly change. In the case of laminates, the
sudden change in properties causes large interlaminar shear stresses, which may give rise
to delamination in the structure [13]. Such damage can be avoided if the properties vary
smoothly across the thickness, as in the case of FGM.

During the past decade, this class of materials has been investigated by many
researchers. Sankar [14], for instance, developed an exact elasticity solution for
functionally graded (FG) beams subjected to transverse loads, where Young’s modulus
was assumed to vary exponentially through the thickness and the Poisson ratio was
constant. Euler-Bernoulli beam theory was adapted to FGM beams and compared to the
elasticity solutions. This was later extended by Sankar and Tzeng [15] by including a
thermal gradient across the thickness of the beam. The authors were able to achieve a
reduction in residual thermal stresses when the variation of thermoelastic constants was
opposite in direction to that of the temperature distribution.

Ray and Sachade [13, 16] derived the exact solutions for the simply-supported FG
plates with integrated layers of PFRC. They also developed a finite element model for the
same composite plate. Liew et al. [17] also developed a finite element formulation for
static and dynamic analysis and control of FGM plates subjected to a temperature
gradient. The authors based their model on a first-order shear deformation theory to

actively control FGM plates using distributed piezoelectric sensor/actuator pairs.




In this thesis, the Poisson ratio v is assumed to be constant because the effect of
variation of Poisson’s ratio on the deformation is much less than that of Young’s modulus
[18]. However, Young’s modulus varies continuously through the thickness of the beam

(z—axis), i.e., E = E(z), according to the volume fraction of constituents defined by an

exponential function. In [18], the exponential function was given as:

E(Z) — Ezel(:+h/'2) Q.1

where the functional material gradient is given as A4 = %ln(El /E,); E, and E, are the

Young’s moduli of the bottom (z = 4/2 ) and top surfaces (z = —h/2) of the FGM plate,

respectively; and /4 is the thickness of the plate.

2.2 Viscoelastic Material

As noted in the previous chapter, viscoelastic materials are often incorporated into
structures to increase passive damping and largely reduce structural vibrations and noise.
There are also a number of techniques associated with modeling a viscoelastic solid,
which has a weak frequency dependence on its dynamic properties over an extensive
frequency range [19]. Therefore, it is important to accurately describe the frequency
dependence of the viscoelastic material. For instance, the frequency band chosen for
applying the curve fitting technique of master curves can be the transition band or the
region of maximum loss factor [20]. However, to use this technique, a number of
additional material parameters are introduced, thus increasing computational effort. Some
of the methods suggested for time-domain analysis of viscoelastic structures include the
anelastic displacement fields (ADF) and Golla-Hughes-McTavish (GHM) models [3, 20,
21]. The Prony series is a classical time-based technique for fitting creep or relaxation
data in the form of exponential functions and is compared to a fractional derivative model
in [22]. The fractional derivative model is another time-domain method which is based on
fractional calculus. In order to use more traditional Kelvin and Maxwell-based models,

more parameters are required to represent viscoelastic material behavior than in the



fractional model [22]. The fractional derivative model, however, is not common in
commercial finite element codes which mainly use the Prony series method.

One of the widely used fractional derivative methods is the four-parameter model, a
dissipation model based on memory mechanism. Caputo and Mainardi developed the
model for hysteretic response of metallic materials by generalizing the integer order
derivatives in the standard solid model to fractional order [22]. This method has been
successful in describing the weak frequency dependence mentioned above. The only
disadvantage associated with using fractional derivative models is the added
mathematical complexity of applying fractional calculus. However, it becomes relatively
simple once the Fourier transform of the fractional derivative constitutive equation is
taken and the expression of the elastic complex modulus in the frequency domain of @ is

obtained as [19]:

E'(w) = E'(w)+IiE"(®) 2.2)

where E'(w) and E"(w) are the storage and loss moduli, respectively, which can be used
to plot and compare master curves to the experimental results.

In the study by Galucio et al. [19], the complex modulus for the one-dimensional

model is shown as:

o'(w) Ey+E, (ior)”
()  1+(ior)”

E(w) = 2.3)
where o and ¢&” are the Fourier transforms of o(¢) and &£(7), respectively; E,
represents the static modulus of elasticity or £” at @ — 0; E_ is the dynamic modulus or

E" at w— o ; t is the relaxation time; and « is the fractional derivative order. To

satisfy the second law of thermodynamics, conditions such as: 0 <a <1, 7 >0 and

E_ > E, must hold true.




2.3 Piezoelectric Fiber-Reinforced Composite (PFRC)

As mentioned in Chapter one, piezoelectric materials have been widely used as
sensors and/or actuators when integrated into a high-performance lightweight smart
structure to actively control its vibration. The performance of such structures highly
depends on the magnitude of the piezoelectric stress/strain coefficients, which are quite
low for the monolithic piezoelectric materials [23, 24]. Therefore, a significant amount of
control voltage must be used to achieve a considerable amount of active damping. To
avoid this, the piezoelectric stress/strain properties must be modified to further improve
the damping characteristics of the smart structures [25]. Piezoelectric composites are
effective in improving flexural vibration control if their fibers are orientated
longitudinally to render a bending mode of actuators. It is also practical to apply a
constant electric field across the thickness of the composite, that is, in a direction
transverse to the fiber direction. The schematic diagram of a lamina of PFRC, which
depicts a representative volume that includes both fiber and matrix, is shown in Fig. 2.1

[25].

Figure 2.1: Schematic diagram of lamina of PFRC [25]

Recent investigations carried out regarding the implementation of PFRC in the
lightweight high-performance flexible structures included the work of Ray and Mallik
[23], and Ray and Sachade [16]. The earlier work by Mallik and Ray [25] showed that the
effective PFRC coefficients are significantly larger than the corresponding piezoelectric
material coefficients. Based on a certain fiber volume fraction, they were able to
determine these effective coefficients of PFRC using a micromechanical analysis, which
will not be discussed in this thesis. As mentioned previously, the fibers are made of

piezoelectric material, which possesses anisotropic properties. In this thesis,



piezoceramics, such as lead-zirconate titanate (PZT), will be used for the role of actuator
in the PFRC laminate layer. This material is usually polarized in the thickness direction
and exhibits transversely isotropic properties in the xy-plane [26].

The authors in [23] developed a finite element model of the smart structure coupled
with the patches of ACLD treatment. The active damping performance of PFRC layer has
been researched for thin symmetric and anti-symmetric cross-ply, and anti-symmetric
angle-ply laminated composite plates. The effect of variation of fiber orientation in the
PFRC layer on the damping characteristics has been investigated and the fiber angle for
which the control authority of the PFRC layer is maximum has also been determined. In
[16], Ray and Sachade derived the exact solutions for the static analysis of FG plates
integrated with a layer of PFRC material. They concluded that the activated PFRC layer
is more effective in controlling vibration of the plates when it is attached to the surface of
the FG plate of minimum stiffness rather than to that of maximum stiffness.

The constitutive equations including the inverse and direct piezoelectric effects of

the PFRC layer, respectively, with respect to xyz (geometric) coordinates will be used in

the following chapter and are given as [27]:

to}, =[0] {e}, ~[e] {£},

{D}k = [g]k {g}k _I:d]k {E}A

where {D}, {E }, { g} and {a} are the electric displacement, electric field, strain and

(2.4)

stress vectors, | O |, [€], and | d | are the elastic, piezoelectric and permittivity constant
p p

matrices, respectively, and & is the ply order in the laminate.
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Chapter 3 Theoretical Formulation

3.1 System Description

The system of interest is a rectangular cross-sectioned three-layer composite beam.
The host beam is made of FGM with varying modulus of elasticity. The beam is bonded
to a viscoelastic layer, which, in turn, is covered with a PFRC laminate layer, as
illustrated in Fig. 3.1. The ACLD configuration in this thesis is adopted from the work of
Stanway et al. [1] and Trindade et al. [2], as was mentioned in Chapter one. Fig. 3.1 shows
a segment of the span (1) that is fully treated with the active-passive constraining layer
and segment (2) which represents only the host beam.

The geometrical parameters of the beam are length L, width b, host beam height

h, , core height 4, and top layer height /,. The mid-surface (z = 0) of the composite
beam structure is at £ distance away from the bottom of the beam, where
h=h, +h,+h,. The material properties of each layer are density p, Young’s modulus

of elasticity £, and Poisson’s ratio v. The layers are assumed to have perfect bonding at

the interfaces, and the adhesive material is thin with infinite stiffness.

r4

+ Controller Amplifier - From Sensor
' X h
2 1 2 h/2
L
PFRC laminate (p) [l Viscoelastic layer (c) FGM beam (b)

Figure 3.1: Schematic of the composite beam
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3.2 FGM Beam (Bottom Layer)

The host beam, also referred to as the bottom layer, consists of the FGM and is
identified by the subscript 4 in the following formulations. The material with varying

elastic modulus or FGM was explained in Chapter two.

3.2.1 Kinematic Assumptions

The axial displacement is interpolated through the thickness by a cubic function,
while the transverse displacement is quadratically interpolated. The displacement vector

u, 1s of the following form:

u(x,z,t a,+az+a,z’ +a.z
ub:{( )}:{0[ : } o)

w(x,z,t) I +lz+1,z’

where the coefficients a,, a,, a,, a,, I,, /, and [, are functions of the spatial variable x

and temporal variable 7. A new vector {@,}" ={a, 4, a, a, I, I, 1,} is introduced such

that:

1 z 22 220 0 0 ~
ub:[o 00 0 1 2 zz} o =[2]{m) G2

12

Using linear strain-displacement relations [28] yields the following:

ou ) 3
& =—=a,, ‘ta z+a, z +a, z
T A r . ; ¥
ow
& =—=1+2lz (3.3)
pos aZ 1 2
au aW 7
V.=—+—=a +2a,z+3a.z"+1 +1 z+1 Z*
Xz 52 ax | 2 3 0,x 1,x 2,x

12




In a compact matrix notation, the strain vector &, can be written as:

. 00 0 1 z 2z 2 0 0 00 0
&=2& =10 0 00000122000[Db]
Ve 1 22300 0 00 0 1 z Z°

where the derivative operator matrix [Db] is given as:
0 1 0 0 0 0 O]
o o 1 0 0 0 O
o 0 o0 1 O 0 O
% 0 0 0 0 0 O
0 % 0 0 0 0 O
0 0 % 0 0 0 O
(2= 5 6 % 0 0 0
O 0 0 O O 1 O
O 0 0 0 0 0 1
0 0 0 0 % 0 O
0O 0 0 0 0 % O
L0 0 0 0 0 0 %]

(3.4)

3.2.2 Constitutive Equations

For an orthotropic FGM where the principal material directions coincide with the

x and z axes, the two dimensional stress-strain constitutive relations are:

13



O-x cll(Z) c13(Z) 0 gx
0,=90.¢=lc5(z) c(z) O g = [c(z)] & (3.5
z.x: 0 0 CSS(Z) 7,‘(:

where o and o represent the normal stress in the x and z directions, respectively, and
7. is the shear stress in the xz plane. Given that the elastic stiffness coefficient ¢;

varies exponentially in the z direction, the elasticity matrix may be written as:

0 0
¢, ¢ 0
_ A(z+h/2) 0 0 . _A(z+h{2) 0
[c(z)]—e ¢y ¢ 0 |=e [Cb] (3.6)
0
0 0

where [cf] is the elastic coefficient matrix located at the bottom surface (z = ~4/2) of

the beam and A is a parameter describing the inhomogeneity of the FGM across the

thickness.

If it is further assumed that the FGM is isotropic at every point and Poisson’s ratio

is a constant through the thickness, then the variation of Young’s modulus is given by

E(z) = E)e***"? with the functional gradient A = %b ln(Ebl/E,?) , where E; and E,

correspond to the Young’s moduli of the bottom and top surfaces of the FGM layer,

respectively. Consequently, the elasticity matrix [c,?] is related to the Young’s modulus

E;} and Poisson’s ratio v, for plane strain assumption by the following expression:

0

E,
[<]- (T+v,)(1-2v,)

v, l-v, 0 3.7
0 0 (1-2v,)/2
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Hence, the constitutive relation becomes:

o, = [cf]e“”h’z) &g, = [Qb]e“ £, (3.8)

where the elastic matrix [Qb] is given as:

0[]

3.2.3 Formulation using Variational Principle

The extended Hamilton’s principle of variations of independent kinematic variables

over time / is written as:

j, (ST —8U + SW)dt =0 3.9)

where 8T = 8T, + T, + 6T, and U =06U, + U, +6U,, are the variations of the kinetic

energy and strain energy, respectively, and oW is the virtual work done by external

forces on the system.

Kinetic Energy

For the FGM beam the first variation of kinetic energy is:

ST, = | p,Sujii, dv (3.10)

Substituting for u, from Eq. (3.2) yields:

5T, =5, | {om,) (1,4, Yvax = p,b [ {67, [1,){ii,} e @.11)
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where the inertia matrix [/, ] is given by:

1 z 22 22 0 0 0
z z2z2 z2 0 0 0
Z2 2 2 0 0 0
[[b] = J.([Zh]r[zb]) dz = _[ 2zt 2 2 0 0 0|d
0 0 0 0 1 z Z2
0o 0 0 0 z z Z
L0 0 0 0 2 24_
Strain Energy
The variational strain energy is:
U, = [ 0,06, dv 3.12)
Substituting for o, from Eq. (3.8) yields:
U, = [[0,)e"&,0, dv G.13)

and using &, from Eq. (3.4), the final expression of the variational strain energy may be

written as:
sU, =b {5} [D,][C,][D, )i} dx (3.14)

where the stiffness matrix [C,] is written as:

16




3.3 Viscoelastic Layer (Core)

The core, or the middle layer, is made of viscoelastic material and is distinguished

by the subscript c.

3.3.1 Kinematic Assumptions

Identical to the mechanical assumptions of the FGM beam, the axial and
transverse displacement fields of the viscoelastic core are interpolated through the

thickness by cubic and quadratic functions, respectively. The displacement vector u_ is

of the following form:

u(x,z,t) Co+Cz+e,z 4z
uC:{( }:{0 o ; } (3.15)

w(x,z,t) my +mz+m,z’

where, as in the previous section, the coefficients ¢,, ¢,, ¢,, ¢;, m,, m, and m, are

functions of the spatial variable x and temporal variable 7. Establishing a new vector

C

@) = {¢y ¢, ¢, ¢y mym; m,} permits the re-write of Eq. (3.15) as:

c
1 z 22 2 00 0 ’ _
He” 00 0 0 1 z zz:| € E[Zf]{uc} (3.16)
m()
ml
m’)

The corresponding strain-displacement components are given as:

_Ou _ 2 3
5X = *a; = cO.x + cl,xZ + cZ,xZ + C3,.‘(Z
ow
=—=m +2m,z 3.17)
z aZ 1 2
_Ou ow _ 30,52 5
Ve = g + a— =c +2¢c,z+3c,z" + my, +m . z+m, 2

17



The strain vector &, takes the following form:

£, 00 0 1 z 2 22 00 00 0

g=3&¢=10 0 0 00 O O 1 2z 0 0 O

Ve 1 223200 0 0 0 0 1 z 2
where the matrix [D, ] is expressed as:

0 1 0 0 0 0 O

0o o1 0 0 0 O

0 0o 0 1 0 0 O

% 0 0 0 0 0 O

0 % 0 0 0 0 O

(D]~ 0O 0 % 0 0 0 O

0O 0 0 % 0 0 O

0O 0 0 0 O 1 0

0 0 0 0 0 0 1

0 0 0 0 % 0 0

0 0 0 0 0 % O

L0 0 0 0 0 0 %

=

3.18)

3.3.2 Constitutive Equations

Elastic Properties

The two-dimensional stress-strain constitutive relation in the xz plane for an

orthotropic material is given as:

18




o ={0.r=|c, ¢ O g =[0.]e. (3.19)

E, 5
[Q‘>]_(1+vy)(1—2vc) v 1-v, 0 (3.20)

Viscoelastic Properties

As mentioned previously in Chapter two, the behavior of the viscoelastic material
at a given time depends not only on a current state of stress or strain, but also on the
material’s history. This behavior is mathematically described by Galucio et al. in [19] by

a four-parameter fractional derivative model as:

de (1)
dt”

G.()+1° d—ad&t;ﬁ =E,[{]e. () +77E, [{] (3.21)

The above equation represents two-dimensional constitutive relation of the viscoelastic

1-v V. 0
1

core with [{] = v, l-v 0 . The fractional derivative
|
—_— vC

a

operator e is approximated by the Griinwald definition as:

a N,
i} d{a( N At _QZAM St~ jAr) (3.22)
J=0

19



t . . . . .
where Af = I is the time step increment, N, is the maximum number of terms of the

Grinwald approximation ( N,<N ), and A,,, represents Griinwald coefficients given by

the recurrence formula:
A, A H p-a-l

p=l

An anelastic strain £ at a given time ¢ can be introduced as:

E=e)-[¢]

' 5.(0)
E

s

This permits the re-write of Eq. (3.21) as:

d¢(t) E, —F

EM)+1” = %e (¢
(D) o z (D)

This variable change reduced the number of fractional derivative terms from two to one,

thus simplifying the equation.

Using the Griinwald approximation from Egq. (3.22) with A4 =1 at j=0, Galucio

et al. [19] show that Eq. (3.25) takes the following form:

s =0-mE=—fog - nZ(H” Z js(z—mz)

p=l

a

T

where the dimensionless constant 77 = —
%+ At

20

(3.23)

(3.29)

(3.25)

i
-

(3.26)




To be consistent with the typical form of a compact matrix notation taken for the

strain vector of the FGM beam, a fictitious anelastic displacement vector {z, (1)}, which

depends on the displacement history, is defined such that the anelastic strain can be

written as:

é(t)= [Z(,][DC,]{[:C(t)} (3.27)

Following Galucio et al. [19], and substituting for £ (¢) from Eq. (3.18) and & (¢) from

Eq.(3.27) at a given time 7 into Eq. (3.26), the displacement {i (7)} is expressed as:

{0} =0~n)

E.-E, _ (yqp-—a-1),. ,
=07 ()}~ 772 [H p_é_] {a (t— jAr)) (3.28)
Rearranging Eq. (3.24) for (1) yields:

g()=E, [¢](e(n-E.(D) (3.29)

Replacing & (¢) in Eq. (3.29) with Eq. (3.26) results in the updated expression of &,(¢) ata

given time ¢:

0 0 J=1\ p=1

G.(1) =E0[§]K1+77E°°E £, Je () +n—= - Z(Hp Je (t—]Az)} (3.30)

For an elastic material, 7 =0 and £, = E. and Eq. (3.30) is reduced to
G.(1)=E,[{]e.(1)=[0.]e.(r). Hence, the constitutive relation of the viscoelastic core

1S:
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a_
0 0 j=l\ p=l p

F.(t)= [Q]Kl + ngE_—EO] () + U%Z[ﬂp_—lj (1 jAt)} (3.31)

3.3.3 Formulation using Variational Principle

Kinetic Energy

i Similar to the formulation of the FGM beam, for the viscoelastic layer the first

variation of kinetic energy is:

ST, = I p.0uii_dv (3.32)

Substituting for »_ from Eq. (3.16) yields:

ST.=p, | jy{&z}r [1.){ii. }dvetx = p.b [ {50} [1.]{ii )b (333)

where the inertia matrix [/,] is identified as:

1 =z 22 22 0 0 0
| z 222 2 0 0 0
22222 0 0 0
[1]=[([zT[2])az=[|= = = = 0 0 o |d
0 0 0 0 1 z =z
0 0 0 0 =z z2 Z°
(0 0 0 0 2 7 Z4J

Strain Energy

The variational strain energy of the core at a given time ¢ is:
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SU (1) = I 5.(1)S¢, dv (3.34)
Substituting for &.(¢) from Eq. (3.31) results in the modified equation:

SU(1) = jU[Q |s.(0)de, du+ Q e, dv+

N, (3.35)
+77 ( j 5 (t— jAt)oe, dv
p=1

The above variation of the total viscoelastic strain energy can be rewritten as:
SU (t) = 8U (t) + 8U (1) + SW.(1) (3.36)
where SU () represents the variation of the elastic strain energy, 5[7(,(1) is the

variational form of the anelastic strain energy, and 5142({) is the virtual work done by the

induced force acting in the viscoelastic layer.

Substituting for ¢ from Eq. (3.18) yields:

U0 =b[ (o} [D.T[C][D){#@0)}dx (3.37)

where the elastic stiffness matrix [C, ] is written as:
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Similarly, the variation of anelastic strain energy 6U .(?) 1s expresses as:

SU.(H=b| (o} [0 [C][D. i (1)} (3.38)

where the anelastic stiffness matrix [Q] is given by:

and the virtual work 5147(,(1) 1s given as:

SW.(1) = 77%2(1—’[ P—Ta—lj xb | {om, VDT [CD.){a - jankds (339

3.4 PFRC Laminate (Top Layer)

The PFRC laminate, or the top layer, is made of piezoelectric fiber-reinforced
composite, as previously explained in Chapter two, and is identified by the subscript p .
The piezoelectric fibers in PFRC are considered to act as the actuator of the beam. The
fibers in each PFRC ply are horizontally reinforced and are aligned at orientation angle

& with respect to the reference plane. There are » number of plies in the laminate.

£

3.4.1 Kinematic Assumptions

Mechanical Field Assumptions

Here, unlike in the preceding subsections, the axial displacement is linearly
interpolated through the thickness and the transverse displacement is constant. The

displacement vector u,,, with the coefficients ¢, e, and n, as functions of the spatial

variable x and temporal variable 7, is of the form:

24
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Y - u(x,z,t) _Jetez (340
lw(x, z,1) ", )

. 7 . .
Defining a new vector {up} ={e, e, n,} yields the modified u, vector:

1 0
PR R

Ou
x 6_ = e().,\' + el,xz
X (3.42)
ou ow
Ve :g+a:el+no¥

gx e(),x el X 8? KY
€, = = tzy =9 1tz T =gyt zK (3.43)
7/ Xz el + nO,.\‘ 0 }/ Xz Kx:

& DY _
g, =[1 z]{ }:[1 z]{ijl{up} (3.44)

where the derivative operator matrices | D° | and | D' | are expressed as:
p ' b p
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0] _ %r 0 O 1] _ O 8c“x O
[D"J{o 1 /} [D"]”[o 0 o}

Electrical Field Assumptions

Two electrostatic assumptions are consideration for the PFRC laminate. First, the

electrical potential variable , is assumed linear within the thickness of the top layer and

is of the following form:

0 ,Z,t
w,(x,z,0) =y (x,0)+ z—‘//—"gc—z) 3.45)
A

0
where y, and (;//” are the electric potential and its gradient at the mid-plane of the
Z

PFRC laminate, respectively.

Second, the axial component of the electrical field is ignored (i.e., £ =0), since

its contribution to the electromechanical energy is negligible in comparison with that of

s’.\ o -

ce—

the transverse component [20]. Also, since the thickness of the PFRC laminate is
relatively thin, the voltage is assumed to be uniformly distributed through the thickness
along the z direction.

Considering the above, the expression of the transverse component of the

electrical field £ then represents a constant field along the z axis as follows:

-7 (3.46)

where V' is the applied voltage in the beam and 4, is the thickness of the PFRC

laminate.
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3.4.2 Constitutive Equations

The piezoelectric fibers are continuous and longitudinal ( x —axis) and subjected
to a constant electric field acting in the direction transverse to the fiber direction or along
the z axis, as was mentioned in the previous subsection. Note that the electric field is
assumed to be the same in both the fibers and the surrounding matrix, where the matrix

material is piezoelectrically inactive [25].

Mechanical Properties

The piezoelectric fibers are transversely isotropic in the 1-2 plane [26] and the

constitutive relation for the PFRC in the principal 1-2-3 directions is of the following

form:
o, [¢,, ¢, ¢, 0 0 0] (g [0 0 e
o, Cr G Gy 0 0 0 £, 0 0 e E
oyl _|as oy 00 0ffe| |0 0 e E‘ o)
T, 0 0 0 ¢, 0 0] |e, 0 e : '
) ) E
7,5 0 0 0 0 c; O] g, e, O ok
o), L0 0 0 0 0 ¢4l (&), LO O 0]

where for the k” ply of the PFRC lamina and 7, j =1,2,3, o,, 7, &

i ©io

¢; are the normal

stress, shear stress, normal strain and shear strain components in the i" direction,
respectively; c; are the effective elastic coefficients derived by micromechanical analysis
[25] at constant electric field; the constants e, denote piezoelectric coefficients; and E,

represents the electric field.

As the piezoelectric fibers are orientated longitudinally in the 1-2 plane, the
transformation from the 1-2-3 coordinate system to a global xyz system must be
performed through a counterclockwise rotation by an angle € about the z axis. The

transformation matrix of trigonometric functions of the mechanical aspect is written as

[29, 30]:
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)
cos” ¢

. 2
sin” &

0
0
0

—sinfcosd sinfcosl

sin’ @ 0 0 0 2sinfcosé |
cos’8d 0 0 0 —2sinfcosb
0 1 0 0 0
(3.48)
0 0 cos@ —siné 0
0 0 sind cosd 0
0 0 0 cos’ @ —sin’ 6|

Similarly, for the electro-mechanical component in Eq. (3.47), the transformation matrix

1S:

(]’

cosd —sinfd 0
=|sinfd cosd O (3.49)
0 0 1

Hence, for the mechanical component, the stress-strain relation in the global coordinate

system becomes:

where [R]

S OO O O =

S O O O~ O

Q Q Q

NN N

S O O = O O

i

-
I

n

S O N O O O

gx X

& )
=11 (¢, LIRITL R L =[0,],4 (3.50)

7, 1y,

Ve e

Vo), Vo),

S b O O O

S O O o O

is used to account for the relationship between the
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tensor shear strain £ and engineering shear strain y and

h o G 0 0
€, Cy Cy 0 0
[C ) ]k = C('; 0(2)3 6(3)3 0 0 0 is the stiffness matrix from Eq. (3.47);
c, 0 0
0 0 0 ¢ O
L0 0 0 0 0 ¢4

Xz

o,., 0,,and o, are the normal stresses in the x, y, and z directions, respectively; 7
and 7 _ are the transverse shear stresses; 7 is the in-plane shear stress; ¢, £,, €., 7,.,

7..»and y . are the corresponding strains.

In the same manner, the stress and electric field relation of Eq. (3.47) is expressed through

the transformation as:

O,
o,
) E\‘ E\’
o. - ol _ '
=TT B =lel B @351)
[
Vg
[0 0 e]
0 e,
. - . . T 0 O e33 .
where the piezoelectric coefficient matrix [e] L= 0 0 is the transpose of [e] .
€
e; 0 O
100 0]

Following the paper by Sun and Huang [27], the assumptions regarding the

reduction of the constitutive relations of Eq. (3.47) are used for the beam problem. After

the stiffness matrix [C p] and the piezoelectric constant matrix [e]: are transformed into
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the matrices [Q :IA_ and [E]: by an angle @ in the xy plane, respectively, the assumption

P
where o. =& =0 is used due to the negligible thickness of the PFRC layer. Once this

modification is applied, the updated constitutive equation including the transformed

matrices [Qﬁl and [E]: is expressed as:

O, OF Qn , 0 0 0O 1 (e 0 0 ¢,

o, Ql 2 0, O 0 Q26 2 0 0 e | £

T = 0 0 Q44 Q45 0 Vep —|@s &5 0 E, (3.52)
T. 0 0 Q45 Q. O Y es & 0 E J,

Tol, _Qm Q:o 0 0 Qﬁ() LWl L 0

- - 2 ) —_ . .
where e, = e, , ¢, = ¢ (cos” @ —sin” §) and €,, = —2¢sinfcosd; and
ey 4 22 2 .4 s 2 2
0, =¢, cos” O+2c,sin" Bcos” O+cy,sin” @ +4c, sin” Gcos” 6
0, = ¢, sin’ Ocos’ O +¢,, (sin4 0+ cos’ 9) +c,, sin’ @cos’ @ —4c,, sin’ Hcos’ O
O = [c,l cos’ @ +c,, (sin’ 6 —cos’ 9)—622 sin’ @+ 2¢,, (sin2 0 —cos’ 0)} sin @ cos &
Y 4 : 2 2 4 2 2
0,, =¢;,;8in” @+ 2c¢,, sin” fcos” @ +c,, cos” 8 +4c,, sin" Gcos™ 4
Oy = I:C“ sin’ 8¢, (sin2 6 — cos’ 9)—c22 cos’ 6-2c¢,, (sin2 0 —cos’ 9)] sinfcosd

2 .2
Q4 =€y C0s” O+cy sin” O
O,s ==, sinfcos @ +cy sinfcosd
Y s 2 2
O, =c,sin" @+cycos” 8

= . .2 2 .2 2 . .0 a
O, =¢,,sin° Bcos® O —2c,, sin> Ocos® G+ c,, sin” Ocos” O + ¢, (sm4 6 —2sin’ Ocos’ O +cos «9)

Another assumption from [27] is that c,=7,=7, = 0 while E,FY . FVy * 0.

Since the piezoelectric fibers are polarized only in the thickness direction, as mentioned

in the previous subsection, then £, = £ =0. Hence, the final reduced constitutive

equation of the k" ply in the PFRC lamina from the transformed Eq. (3.52) is as follows:
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where,
A Qsze Ql2Q66 lest Qvaz
QH QH szQ«, Qze QP Q?7Q66 Qvé QW
A Q45 ~ QlZQéﬁ Q16Q26
28, =| |- Ei=e _Elewe 15 - and
Q QSS Q44 “ ( Q72Q66 Q76 ]en "

L= A is the shear correction factor.

Electrical Properties

[f modeling a self-sensing actuator, the direct piezoelectric effect would be taken

into an account. For completeness, the electrical displacement field D, is given by [26]

and is shown in the principal 1-2-3 directions as:

gl

&,
D, 0 0 0 0 e, 0]

&
Dyt =0 0 0 ¢, 0 O ¢+
DSk e, e, e, 0 0 Ok Vas

713

}/llk

d, 0 07(0
0 d, 0|30 (3.54)
0 0 d,  LEs ),

where the coefficients d, represent the components of the dielectric permittivity tensor at

constant strain.
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d, 0 0
The transformation of the permittivity constant matrix [d| ,=| 0 dyp 0] is
0 0 dy]

implemented in the same way as the above transformations, and results in the modified

electrical displacement relation in the xyz coordinate system which is written as:

&, &,
£ &
D, g'] ¥ 0 g’" 0
D =(T) Tl ) b +(i7) LI o p =2y )+, o
D \ }/J- E‘_ . }/y. E: .
y.\‘_v 1\ j/xy 4
(3.55)

Applying the assumption ¢ =0 yields the following updated constitutive relation from

Eq. (3.55):
gv
D, 0 0 -& g 0 €y 6711 6712 0 0
D=0 0 & & O0|<y.: +ld, dp, O 0 (3.56)
D.J, |& & 0 0 0] |7. 0 05133kf;j,A
Yo,

where d,, =d, cos’0+d,,sin’ 6, d,, = (dy, —d,,)sinfcosb, d,, =d, sin’ 0 +d,,cos’ 6,

and d,; =d,,.

For D} = D} =0, the electrical displacement field D" in the z direction becomes:

Df=¢e,e + g8, + d,E* (3.57)

For the beam assumption of o, = 7,. =7, =0, Eq.(3.57) is, as in the mechanical aspect of

the constitutive relations, reduced to the following equation:
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Df=¢,¢ +d,E* (3.58)

2
~ e, —
— 6631
Whel'e d33 —'_—'—_—_—+d33.

2
szQo(» - Q26

3.4.2.1 Laminate Stiffness Matrix ABD

Mechanical

Using the classical lamination theory [29, 30], the resultant laminate stiffness
matrix ABD can be determined by computing the force and moment resultants at the x -
coordinate on the laminate reference plane (middle of the laminate). See Fig. 3.2 below for
the geometry of an » -layered laminate. The resultant forces and moments acting on the
laminate are obtained by integrating the stresses and moments of the stresses in each ply

through the thickness of the laminate [29, 30].

hpr2 2o 2
7 Middle surface

hp

Layer number

Figure 3.2: Geometry of an 7 -layered laminate.

The stress resultants in the x direction and in shear are the normal force resultant

N, and the shear force resultant N _, respectively, and are given by:

N X 1, /’2 o-x n 2 O-X
{Nx:} - [h”"/z {I’ :}dz B ; J:k»»l {T . }kdz 3.59)

33



Note that the units of the stress resultants are force per unit length in the x direction.

Likewise, the bending moment resultant M and the twisting moment resultant M _ are

as follows:

M, h2 | O, " (o
{M} - J.—h,,/z{f }Zdz = ; J.k {r}A zdz (3.60)

where the units of the moment resultants are moment per unit length in the x direction.

In the above two expressions, the limits z, and z, | are defined by the following

transformation between the reference surface of the beam ( z = 4) and the PFRC laminate

=

reference plane (Z =+ ):

- . h n,
2, =7z, +———2L; szzH+E——' (3.61)

Since the stiffness matrix from Eq. 3.53 does not depend on z, that is, it is constant
within each ply of the PFRC laminate, then the stiffness matrix can be placed outside the
integration over each ply and still be within the summation of force and moment

&o

resultants of each layer. In addition, the strain vector {
K

} from Eq. 3.44 is not a function

of z but is a middle surface value and, thus, can be removed from under both the
integration and summation signs. Taking the above operations [29, 30] into an account
and substituting the lamina constitutive relation from Eq. 3.53, the force and moment

resultants can be expressed in the following matrix notation:
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N, 4, 4, 58 B, B,||k, N, '
N.\': A12 AZZ }/_\-; BIZ B22 Kx: 0
M, B, B, 58 D, Dy ||k, M, ! 3.63
Tl= Py S PO :
M. B,, By 7/,?_- D, D, ||k, 0 369

and

where

B,=1>(0,) (s -2) (3.64)
(

with extensional stiffnesses 4, coupling stiffnesses B, , and bending stiffnesses D,

making up the laminate stiffness matrix known as the 4BD matrix. The ABD matrix
defines the relationship between the stress resultants applied to a laminate, and the
reference surface strain and curvatures [29]. Note that the ABD stiffness matrix

combines the properties of the material, fiber orientation, thickness, and location of each

ply in the laminate [29].
Eq. 3.64 also contains the electrical stress resultant components N” and M,

which show the relation between the stress and the electric field in the PFRC laminate.
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3.4.3 Formulation using Variational Principle

Kinetic Energy

Similar to both the FGM and viscoelastic layers, the variation of the kinetic

energy of the PFRC laminate is:

ST, = ju p,Su i, dv (3.65)

Substituting for u, from Eq. (3.41) yields the following:

1,=p, [ [{ou,} [1,]{, dvex = p,b [ {ou,} [1,]{i,} e (3.66)

where the matrix [1 J is given by:

1 z 0
J-([Zp [Z ) Jz 2 0ldz :
0 0 1

Strain Energy

The total variation of strain energy in the PFRC laminate can be described as:

6U, =5U, + W, (3.67)

where U, denotes the mechanical strain energy and W; , represents the work done by the

electrical force produced by the applied electrical field E. .

The variation of the total mechanical strain energy in the PFRC laminate is:
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SU, = Lapégp dv (3.68)

The stress-strain relation of each ply in the lamina is represented by {ap }k = [Qp ]k &,

where [QP l is the reduced transformed matrix of the individual £” ply, such as

depicted in Eq. (3.53). Expanding Eq. 3.68 yields the following:

sU, = J' i Z J'k S, [Qp ]k g, dzdydx (3.69)
S = TR

£
Further expanding the above strain energy equation and substituting withe, =[1 z]{ 0}
K

from Eq. (3.43), results in:

v (561 O ) se,)'[4 B
sU=[ [ [0 = 20| 5 dzdydx=b [ “lac @30
, X oy = k-1 5](' ZQp Z‘-Qp ‘ K X 5’{ B D K

where the laminate stiffness 48D matrix is obtained after the integration through the z

A4, A B. B D. D,
occurs such as in Eq. (3.64); also, 4= ' 2l g=|n 2| and p=| " |
A12 A22 B12 Bzz D1z D22

& D°
Accordingly, substituting with {’:} = I:Df }{ﬁp} from Eq. (3.44), the final expression of
p

the variational mechanical strain energy becomes:

0" 0
SU, = bL{ggp}T [gﬂ L/; g”:g’l’}{ﬁp}dx (3.71)
J2 P
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The actuator configuration is determined by the method of applying the electric
field to the PFRC laminate. The value of the electric field applied is determined by the
derivative part of the proportional-derivative (PD) controller through a feedback control
system [31]. The feedback signal to the actuator is implemented by specifying a velocity
feedback control gain K, .

As for the virtual work 5WP , the electrical part of the strain energy is expressed

as:

(j e, [e] E dv+ J' E"[d ] SE du) (3.72)

where E={0 0 EZ}T . Since the electrical field £ due to the applied voltage is

constant and known (i.e., Eq. 3.46), the variation of the electrical field is 6E£ =0.

Substituting the latter into Eq. 3.72 yields:

- j' e, [e] E dv (3.73)

17 -

Here, the same process is followed as in the mechanical part of the variation of strain

e, k.
energy. Replacing &, with Eq. 3.44 and substituting the expression [E]: E= { 3'0 }
K

from Eq. 3.53, the above virtual work becomes:

NP
SW bI{éh }T D, T OX d (3.74)
= — U 29 .
P 8 P D,]; M;D
0

where the electric field resultants N? and M are obtained and used in a similar way as

the 4BD matrix from Eq. 3.64.
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Chapter 4 Finite Element Modeling

The representation of the finite element model utilized in this thesis is shown in Fig.

4.1 below.
u . ° . ° 10 z=hw
PFRC
. ] ° L] 9 -on z=he
uw
. . . . J— z=he
Y 4 . . PR Ju— z=hs
w . ® Viscoelastic ® Y y A z=hs
e o ° ® Z 6-mm z=he
¢ hd hd L 5 wmmmeen z=hs
u,w
L4 . L 4 [ ] 5 wemen z=hs
u [ ] [ L ] [ ] 4 z=h
- X
woe ) FGM ) S p— z=he
Y hd b L] ° 2 weeene z=h,
uw - e . . I { ez = b

Figure 4.1: Schematic of a finite element

The element consists of four nodes along the span to allow for a cubic Lagrange
interpolation of the field variable [32]. Each nodal variable, however, is also interpolated
through the thickness with a cubic function for axial displacement and a quadratic
function for transverse displacement in the host and viscoelastic layers, and a linear
function for axial displacement in the PFRC laminate. As a result, ten points are selected
through the thickness for each node, and they are denoted by 4,4, ..., k. These points
are located relative to the geometric mid-surface of the composite beam structure at
z=0.

The global displacement vector of an element is given as:

T
u ={ U, w, Uy, Wy U, Us Wy Ug W, Ug Uy W um} “.1)
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where u; and w, are the axial and transverse displacement magnitudes, respectively,

evaluated at the i” position through the thickness.

From the above, it is determined that each node contains 13 degrees of freedom
(DOF), resulting in 52 DOF for each element. Hence, the elemental displacement vector

q, can be written as:

e

;
T —_— J—
q., = {(],-,} = {un Wiy Uy Wy Uy Us) Wsy Ugy Woy Ugy Ugy Woy Uy ...
4.2)
e Upg Wiy Upg Wy Uy Usy Way Uy Wy Ugy Uy, W, u10.4}

where the index i =1...10 represents the displacement occurring through the thickness

and the index j =1...4 signifies the displacement at the node along the span.

As mentioned earlier in this chapter, the field variable is interpolated along the span

of the structure using cubic Lagrange interpolation shape functions [32], which are the

following:
N, = (3¢+ 1)(3156— (-1
N,. = 9(E+D)(3E-1)(£-1)
N3:=_9(§“)(1§5+1)(§—1) for-leg<l @3
N% _ &+ 1)(351;116)(39&1)
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4.1 FGM Beam (Bottom Layer)

4.1.1 Mapping

The transformation through the thickness of the axial and transverse displacement

is partitioned in the following way.

In terms of the defined coefficients, the transformation is, for the axial displacement:

u, 1
u, 1
u, By
U 1
from which,
a, 1 A
a| |1 h
a, | |1 h,
a, 1 A

The transverse displacement is written as:

which implies that,

oS S
N

=

o

SIS

w

By
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o
Vo W

=

[7,],

“4.4)

4.5)

4.6)



IR 1 b K w, w,
Le=I1 hy K| Sw t=[T].4w @7
[ 1 hy Kk W W
Combining Egs. 4.5 and 4.7 yields the following transformation matrix:
a u,
1 uz
a, u
_ L o] ]
{u,}={a, ;= [O]T 7 us o =T, ] u, (4.8)
IA Pl iw,
A w,
12 WS
where [0] is a 4x3 zero matrix. !
4.1.2 Shape Functions :
The displacement vector u, = {u, u, u, u; w, w, w;} can be expanded as: o
u, :[Nbl Ny Ny Nb4]qc :[Nb] q. 4.9

where, for j=1...4,

[Ne 0.0 0 0 0 0 000000
6 0 N, 0 0 0 0 0000O0O0O0
60 0 0 N, O 0 0000O0O0O
[NyJ=/© 0 0 0 0 N, 0 00000 0
O N, 0 0 0 0 0 000000
0 0O N, 0 0 0 00000 0
0 0 0 0 0 N, 00000 0
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Substituting #, from Eq. 4.9 into Eq. 4.8 yields the newly updated vector { U}

{#@,}=[1][N:] 4. 4.10)

Subsequently, substituting {#,} from Eq. 4.10 into Eq. 3.11, the variation of the kinetic

energy of the FGM beam is finally given as:
51, = pb [ (89l [V,] (L] LIV 4. )/ ds =gl [M]d, @

where [M,]=p,b J:([Nb]r [Tb]r [lb][Tb][Nb])Vldﬁf is the mass matrix of the FGM

beam.

In the above mass matrix formulation,

J | is the absolute value of the determinant
of the Jacobian matrix used to transform the variables from the global coordinate x to the
local coordinate ¢&. In other words, to perform finite element analysis, the element of
length over which the integration is carried out along the x — axis needs to be expressed
in terms of the local coordinate £ with an appropriate change of limits of integration (— 1
and 1) [33].

The same process is followed in formulating the stiffness matrix by substituting

{@,} from Eq.4.10 into Eq. 3.14, the expression of the variational strain energy becomes:

sU, =b][ (54" [B, [C,)[B]d. )| d¢ = 647 [K, i, @.12)

where the stiffness matrix of the FGM beam is [K,] =5 fl([Bb]T [Cb][Bb])lJldtf ,in

which [B,]=[D,][T,][N,].
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Besides converting the limits of integration from in terms of the global coordinate

x to the local coordinate &, another transformation has to take place for the stiffness
matrix to be evaluated. Since the shape functions matrix [N, ] is defined in terms of the
local coordinate, it is necessary to express the global derivative matrix [Db] in terms of

the local derivative.

4.2 Viscoelastic Layer (Core)

4.2.1 Mapping

The transformation through the thickness of the axial and transverse displacement

is expressed in a similar form to that of the bottom layer:

For the axial displacement,

Us U ohg kb R |[<
u 1 hy ki h||c
b= AR A (4.13)
Uy 1 hy hy hllc,
uy ] |1 hy Bk |lc
Taking inverse of the above equation yields,
N -1
G| |V A kg ohg| [ u;
c 1 h, h K u u
l = ’ 62 63 ’ = [T:‘]u ° (4'14)
c, 1 hy hy h U ug
Cs U hy hy By Uy Uy
The transverse displacement is:
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W, 1 hy hi|(m,
w,e=1 h, h{m, (4.15)
W, 1 hy K ||m,
from which,
5
m, 1 hy h 12 W
mo=|1 h & w, e =[T] W, 4.16)
m, 1 h, Kk W, W,
Eqs. 4.14 and 4.16 are combined and expressed as follows:
c, | U
¢ U
c, u
.} = ¢ b= .1, [9] u8 =[T.]u @.17)
cf 3 (7 9 (= |1, ¢ .
[0 (7.1,
m, Wy
m, w,
m, W,

where [()] is a 4x3 zero matrix.

4.2.2 Shape Functions

Similar to the bottom layer, the displacement vector u, = {u; u ug uy wy w, w,} is

expressed as:

M(‘:[N(,l N(.z N'C3 N(,4]qL)=[NC]q 4.18)

€
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where, for j=1...4,

00000N, O 0O O 0O 0 0 0
00000 0 O N, O 0O 0 0 0
00000 0 0O O O N, O 0 0
[N,J=s|f0o 0000 0 0 0 0 0 N, 0 0
00000 0 N, O 0O 0 0 0 0
00000 0 O 0 N, O 0 0 0
00000 0 0 0O 0 0 0 N, O
Substituting u, from Eq. 4.18 into Eq. 4.17 yields:
{u }=[T.][N]q. 4.19)

Similarly, the anelastic displacement vector {i (r)}, which depends on the displacement

history, can be expressed as:

{a}=[T.][N.]4, 4.20)

Following Bekuit’s thesis [8], and substituting Eq. 4.20 at a given time ¢ into Eq. (3.28),

g.(1) can be computed to obtain a similar expression as in [8]:

_ E -E, _ Sy p—a—1) . .
40 =(1-m—= Oqe(t)_UZ[HpTqu(’_JN) @.21)
% J=LA p=t

Next, substituting { E,} from Eq. 4.19 into Eq. 3.33, the variational kinetic energy of

the viscoelastic core is given in its final form as:

PV N A LARLARTA LA RAT

J|dé =69 [M ] (4.22)

€
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where [ pb[ (V] [Z)[7][N.])l|d¢ is the mass matrix of the

¢

viscoelastic core and the Jacobian ‘J \ follows the same principle as that of the FGM

beam.

Substituting {il—c} from Eq. 4.19 into Eq. 3.37, the expression of the variational

strain energy gives:
80, =b | (647 [B.] [C.)[B.]4. )7 |d¢ = 547 [K ], 4.23)

where the stiffness matrix of the viscoelastic layer i 1s bj ( )]J idé‘

in which [B.]=[D,][T.][N.]. As mentioned before, the same coordinate transformations

¢

are followed via the Jacobian as in the FGM beam subsection.

Similarly, the variation of the anelastic strain energy is determined by replacing

{#,} in Eq.3.38 with Eq. 4.19. Thus,

sU (1) =b .[]1(5‘1: 8] C][B(,]éjC)Mdg =5q! [ K, ]d. (4.24)

where the anelastic part of the stiffness matrix of the viscoelastic layer can be written as:

J=ol (8T [C B )lde

. ~ E
From Eq. 3.38, it is also concluded that [Kc] =n—"—
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Lastly, substituting for {#,(r)} from Eq. 4.20 into Eq. 3.39 results in the following

final form of the variation of work SW.(¢):

SW.(1)=n—= Z[H” — IJ b [ (sl [B.] [C.N[BJ{G.(c- jnn})lU|dE = 54T F.(n

O/Ipl

(4.25)

where the induced force in the viscoelastic layer is:

NV

F(t)= n— Z(H” 2 J (.- jAD)}.

j=1

4.3 PFRC Laminate (Top Layer)

4.3.1 Mapping

The transformation through the thickness of the displacement vector takes the

following form for the top constraining layer:

Uy 1 h Offe,
U, =W, = 0 0 1lie (4.26)
u, 1 Ay, 0]in,
Solving for coefficients ¢,, e, and n, yields:
e) 1 h 0] (u,
{ﬁp}: er=/0 0 1 Wy ¢ = Tp]up 4.27)
hn, I oAy Of [u,
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4.3.2 Shape Functions

Following the same process as for the other two layers, the displacement vector

u, = {u, w, u,,} can be expanded in the form:

u,=[N, N, N, N,|a.=[N,]q. (4.28)
where, for j=1...4,
000000O0OO0OO0OON, 0 0
[N,]=l0 000000000 0 N, 0
000000O0O0O0OO O 0 N,

Substituting for u, from Egq. 4.28 in Eq. 4.27 produces the following modified vector {L_lp} :

{EP}E[TJ[N;,]% (4.29)

Afterwards, substituting {iip} from Eq. 4.29 into Eq. 3.66, the variation of kinetic

energy of the PFRC laminate is given as:

o, = e[ (0! v, ] [T [1,)x. )T, Ja)

J|dé=5q][M, ]G, @30

where [Mp] =p,b J:II(I:N[,]T [Tp]r [Ip][Tp][NI,J)Mdf is the mass matrix of the

PFRC laminate and |.J| is the Jacobian.

PROPERTY OF
RYERSON UNIVERSITY LIBRARY
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Similarly, replacing {ﬁp} in Eq. 3.71 and Eq. 3.74 with Eq. 4.29 yields the following

expressions of the variation of strain energy 6U, and virtual work §Wp in the PFRC

laminate:

J|dé =64l K, ]d.

sU,=b l(éqf [Bp]r{; ﬂ[lﬂ]‘?’e]

4.31)
NY
A 0 ,\
sw,=-b[ 54'[B,] oo (V16 = 54 F, 4.32)
0

where the stiffness matrix is [Kp] =b .[_11 [[Bp]r {; g}[Bp]JMdf and the induced

NY
force in the top layer is /= —bfl[Bp]T 1\/([)” |/|d with [ B, | :[g’?}[g][z\/p].
: )
0

4.4 External Force

Apart from the viscoelastic and PFRC laminate work contributions, the virtual

work done by the external force £, which is applied at a certain position &, inan

element, is written as:

T
W, =84 F, [ [N] M7 8(&-&,)dé (433

where [N]=[ NI N, NI N,I]witha13x13 identity matrix / and
M :[O 0000 O0OO0OO0OUOUO0OO0I1 0] is a Boolean mapping vector, which

shows that the virtual displacement is ow; .
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4.5 Numerical Integration

A standard four point Gauss quadrature has been adopted here to numerically

determine the integrals of the above functions of the variable & . Specifically,

[ r&as=3Hr) (434

The positions, & , and weight coefficients, H,, of the Gaussian quadrature are given in

[33]. The integrals from Egs. 4.11, 4.12, 4.22, 4.23, 4.30, 4.31, 4.32 and 4.33 are evaluated using

this principle.

4.6 Equation of Motion

Following the extended Hamilton’s principle from Eq. 3.9, the element governing

equation of motion can be written as:

([M,]+[M]+[ M, ])a.0+([K,]+ [K]+[K]+][ K, ])a.() = F(0)+ F) + F, (1)
(4.35)

where the modified loading F. in the viscoelastic core becomes negative when moved to

the right-hand-side of the equation.

Once the elemental mass and stiffness matrices and force vectors are determined
using the Gaussian quadrature, as was mentioned in the previous section, the global
equation of motion can be assembled using the finite element technique [32] and may be

written as:
[M]§(H+[K]q(t)= F()+ F(t)+ F(1) (4.36)

where [M], [K], F, F and F represent the global mass matrix, stiffness matrix,

external force vector, viscoelastic force vector and electrical force vector, respectively.
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The Newmark time-integration scheme [32, 34] is used to solve the assembled
global equation of motion, Eq. 4.36, after applying the boundary conditions. Some
modifications are carried out in this classical algorithm to incorporate the viscoelastic
property of the core in fractional calculus. The anelastic displacement history is stored as

a new parameter in a matrix. The Newmark parameters =, and y = 4 are used in

order to obtain an unconditionally stable and second-order accurate scheme [19] (See
Appendix A for flow charts of the algorithm utilized in solving the above equation.) The
three-layer model has been simulated using Matlab software (Refer to Appendix C for
Matlab codes.) In addition, the explanation on how the matrix B is implemented into the

code for all three layers is given in Appendix B.
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Chapter 5 Numerical Simulation

A number of simulation tests must be performed in order to verify the resulting
global equation assembled in the previous section. First, the current formulation is
modified so as to be compared to a problem in the literature, such as a sandwich beam
with a viscoelastic core [19] or a cantilever beam with a piezoelectric top layer [8].
Second, the results of the effects of different parameter changes are analyzed and verified
for consistency. Note that, in the parametric study, only the current formulation is used:

FGM beam with the viscoelastic core and the PFRC laminate top-constraining layer.

5.1 Comparison with Results in the Literature

5.1.1 Viscoelastic-Aluminum Sandwich Beam

As was mentioned earlier, an example from the literature [19] is used in this section
to demonstrate the effectiveness of the current Quasi-2D formulation modified to include
only an isotropic sandwich beam with a viscoelastic core. In the example, a cantilevered
sandwich beam with viscoelastic core and symmetrical aluminum faces is as shown in
Fig. 5.1(a). It is discretized along its length with five finite elements and a transverse load

is applied to the free end in the form of a triangular impulse as shown in the Fig. 5.1(b).

F FN)
1 N 1

Aluminum ha

Yok
Aluminum ho

]

L
b 0 2 4 250 t(ms)

@ (b)

Figure 5.1: Viscoelastic-aluminum sandwich beam

The geometry of the beam comprises: L =200 mm as the length, 5 =10 mm as the

width, A, = h, =1 mm as the thickness of the top and bottom layers, and 4, = 0.2 mm as
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the core thickness. The mechanical properties of the elastic faces and the viscoelastic
core along with the fractional derivative model parameters are tabulated in Table 5.1
below. The time step is taken from the example as Af = 0.25 ms and the number of terms

in the Griinwald approximation N =1000.

Table 5.1: Mechanical properties of the viscoelastic-aluminum sandwich beam.

ALUMINIUM ISD112 (at 27°C)
P v E P v E, E, a T
kg / m’ GPa | kg / m> MPa ms
2690 0.345 70.3 1600 0.5 1.5 169.9495 | 0.7915 | 1.4052 %10

The transverse displacement history of the beam’s tip is depicted in Fig. 5.2 for the
cantilevered fully-clamped case. The dynamic response of the Quasi-2D formulation with
constant transverse displacement w in the host (bottom) layer falls between the
conventional method [19] and the Quasi-2D with varying w responses. The phase shift
between each method is explained by the degree of accuracy each formulation adheres to.
The accuracy level can be determined by the number of degrees of freedom chosen for
each element in the following order: 8 DOF for the conventional method, 36 DOF for the
Quasi-2D with constant w, and 52 DOF for the Quasi-2D with varying w. The greater
the number of DOF means the higher the accuracy of the model. The above mentioned
phase shift can be decreased by reducing the aspect ratio (height/length) of the host beam
and, hence, eliminating the need for quadratic through-the-thickness interpolation of the

displacement, as is in the case of the Quasi-2D with constant w.
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Figure 5.2: Dynamic response of viscoelastic sandwich beam fully-clamped

Fig. 5.3 describes the comparison between the fully-clamped and partially-clamped
boundary conditions of the Quasi-2D method with a varying transverse displacement in
the host beam. In the fully-clamped case, one end of the beam is fully supported, while in
the partially-clamped example, both elastic faces are supported and the viscoelastic core
is free at both ends. Both examples depict the same transverse displacement magnitude
and phase, which confirms that the beam is not flexible enough to show any dependency
on the type of boundary condition where there is a lack of constraint on one end of the
viscoelastic core. The reason for the response to overlap could be due to the small

thickness of the viscoelastic core relative to the top and bottom sandwich layers.
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Figure 5.3: Dynamic response of viscoelastic sandwich beam with varying w in host layer

5.1.2 Cantilevered Beam with Viscoelastic Core and Piezoelectric

Constraining Layer

Another example is taken from the literature to verify the accuracy of the current
Quasi-2D formulation, which is modified to consist of an isotropic bottom layer, a
viscoelastic core, and a piezoelectric top constraining-layer, as was the case in the work
by Bekuit [8]. This configuration is shown in Fig. 5.4. The triangular impulse load applied

at the free end is that depicted in Fig. 5.1(b).
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"= Piezoelectric layer (p) [l Viscoelasticlayer(c) . Beam (b)

Figure 5.4: Beam with viscoelastic core and piezoelectric constraining layer

The beam has the following geometrical parameters: L = 300 mm (length), ‘

b =15 mm (width), 4, =3 mm (thickness of host layer), 4, =1 mm (thickness of the
piezoelectric layer) and 4, = 0.2 mm (core thickness). In the example, the time step is

taken as A7 =0.001 s and the number of terms in the Griinwald approximation of the
fractional derivative N =500 . The mechanical properties of the beam are tabulated in |

Table 5.2. The viscoelastic properties of the core are as tabulated in Table 5.1.

Table 5.2: Mechanical and piezoelectric characteristics of the cantilever beam.

ALUMINIUM PZT5SH |
P 1% E P ) Cp3 Ci3 Ces €3 e dy, |
kg/m’ GPa | kg/m’ GPa C/m’ F/m
2690 | 0345 | 70.3 | 7500 126 | 84.1 | 117 23 | 6512331 13x10°®

The results of the controlled tip deflection and the actuation voltage are obtained

for both Quasi-2D formulations with constant and varying w in the host beam and are

plotted in Fig. 5.5. The formulation with constant w is from the work by Bekuit [8]. As

seen from the graph, the dynamic responses for both cases are essentially the same, which
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establishes the consistency of the current formulation with the published results. To
further enhance the phase shift between the two examples, as was observed in the case of
viscoelastic-aluminum sandwich beam in Fig. 5.1, the gain is set to be K, =0.Zero gain
indicates passive damping of the beam, which results solely from the viscoelastic core.
Hence, the difference between the two responses is readily observed in Fig. 5.6(a) as the
system takes longer time to dampen. Also, in Fig. 5.6(b), the phase shift is even more
distinguished due to the greater thickness of the host beam 4, , in which case it is

recommended for transverse displacement to be interpolated quadratically to ensure

higher accuracy.
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Figure 5.5: Tip deflection and control voltage of the Quasi-2D formulation with a PZT5H top layer.
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Figure 5.6: Tip deflection of the Quasi-2D formulation observed in a shorter time period in a passive

case.
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5.2 Parametric Study

In this section, the current Quasi-2D formulation is used in a parametric study. The
parameters of interest are ply angle 6 in the PFRC laminate and Young’s modulus £ in
the host beam. As mentioned previously, the elastic layer or the host beam is made of
FGM and is treated with the viscoelastic layer, which, in turn, is covered by the PFRC
laminate, as seen in Fig. 5.7(a) below. The beam is meshed with five finite elements along

the span. The triangular impulse load is given in Fig. 5.7(b).

FON)

ho

t . 0 2 4 t(ms)
PFRC laminate (p) - Viscoelastic layer (c) FGMbeam (b)
(a (b)

Figure 5.7: Beam with viscoelastic core and PFRC laminate top constraining layer

The geometric characteristics of the composite beam are the following:

L =300 mm (length), b =15 mm(width), A, = 3.75 mm (thickness of host layer),
h,=1mm (thickness of the PFRC layer) and 4, = 0.25 mm (core thickness). The

mechanical and piezoelectric properties of the host beam and top-constraining layer,
respectively, are given in the Table 5.3 below, and the viscoelastic parameters of ISD112
are listed in Table 5.1 in the previous section. The piezoelectric fibers and the matrix of the
PFRC laminate are made of PZTSH and epoxy, respectively. The effective coefficients
of PFRC employed in this thesis were predicted using the micromechanical analysis

performed by Mallik and Ray in [25], while considering the 40% fiber volume fraction.
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Table 5.3: Elastic and PFRC properties of the beam.

FGM PZTSH/EPOXY
P 1% E,, P | G| Cn | Cu | Css=Ch e ds,
kg/m’ GPa | kg/m’ GPa C/m’ F/m
2690 (0345|703 3640 [326(43|72]1.05 1.29 -6.76 | 10.64x107°

Note from the above table that Young’s modulus is chosen as an average value,
which is achieved by integrating the varying elastic modulus through the thickness of the
host beam. The average E in this case is the elastic modulus of the aluminum material.
However, the elastic modulus is varied across the thickness of the beam by manipulating
the functional gradient 1. The greater the gradient indicates the higher the increase or
decrease of stiffness from the bottom to the top surface of the host layer.

With regard to the support mechanism, three types of supports are studied in each
subsection, including the cantilevered, fixed-end and simply-supported beams. For each
case, the effects of ply orientation in the PFRC laminate and functional gradient A in the
host layer are examined. A simple velocity feedback is adopted for the controlled

vibration. See the algorithm flow chart in Appendix A for further explanation.

5.2.1 Effect of Ply Orientation

In order to examine the effect of ply orientation on the dynamic response of the
beam, parameters, like the Young’s modulus in the host layer and the number of plies in
the top layer are fixed or unchanged. A six-ply quasi-isotropic PFRC laminate with the
stacking sequence [0°/8/—60/—8/6/0°], where angle 8 is the fiber angle relative to the
+x axis of each layer, is used. The sequence may be abbreviated to its short form
notation of [0°/+ 8], where subscript S denotes symmetry. The shorthand notation is to
be used in the subsequent investigations of different ply angles.

As mentioned earlier, the functional gradient A =0 in the FGM beam, which

indicates that the elastic modulus is constant throughout the host beam and its material is

homogeneous isotropic.
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5.2.1.1 Cantilevered Beam Case

The cantilevered beam is supported at the left-hand end and free at the other as

seen in the Fig. 5.8.

PFRC laminate (p) [l Viscoelastic layer (c) FGM beam (b)

Figure 5.8: Schematic of a cantilevered beam fully-clamped and entirely covered with ACLD

treatment.

The gain is set to K, =350 V/(m/s) , which is chosen only to best represent the

effects, since the use of higher gain is permitted given that the resulting actuation voltage
is not in the breakdown voltage range, which is approximately 200 V for most
piezoelectric ceramics. The observation time of the beam subjected to an impulse load is
taken to be 1 second. According to fast Fourier Transform (FFT) analysis, the time step is
chosen to be Az =0.001 s and the resulting number of terms in the Griinwald
approximation of the fractional derivative N =1000. The load is the triangular impulse
force applied at the free tip of the beam and given in Fig. 5.7(b).

For various ply orientations, Fig. 5.9 shows the plot of uncontrolled transverse
displacement of the node on the tip of the beam for the case of only passive damping.
Figs. 5.10 and 5.11 depict the controlled tip deflection and the corresponding actuation
voltage, respectively, for each angle 6 arrangement. Comparing Figs. 5.9 and 5.10, the
effectiveness of the active-passive combination of damping is readily noted over the
employment of only a passive element. The responses are independent of the boundary

conditions (i.e., fully-clamped or partially-clamped). This could be due to a very small
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thickness of the viscoelastic layer, which would not be thick enough to increase
flexibility of the beam in the case of partially-clamped boundary conditions.

The PFRC laminate acts as one layer with longitudinal piezoelectric fibers when
the angle & is zero for each ply (See Figs. 5.9(a), 5.10(a) and 5.11(a).) Figs. 5.9(b), 5.9(c) and

5.9(d) depict the results for the following angle orientation: [0°/+90°],, [0°/+ 60°]; and
[0°/+45°], respectively. The same ply orientation order and stacking sequence are

followed in Figs. 5.10(b), 5.10(c) and 5.10(d) for actively controlled deflection and in Figs.
5.11(b), 5.11(c) and 5.11(d) for actuator voltage response. The response in Fig. 5.10(b) shows
a faster damping of the transverse displacement magnitude with a bit of higher initial
response than in Fig. 5.10(a). In the passive case of Fig. 5.9, the better result in terms of
damping occurs with a zero angle € in each ply, as the fibers with zero degree
orientation fully contribute to the bending resistance, while fibers with € =90° do not.
However, since piezoelectric fibers in Fig. 5.10 act as actuators by manipulating the PFRC
laminate, the above observation no longer applies and a better damping result occurs,
instead, in Fig. 5.10(b). In this response, fibers with 8 =90° increase the flexibility of the
beam, which, in turn, enables the constraining layer to be more apt for control.

The response in Fig. 5.10(c) is worse than in Fig. 5.10(a) in terms of attenuation,
while the result of Fig. 5.10(d) exhibits the least damping and does not reasonably m
attenuate the vibration with the observation time of 1 second. The reason could be due to
the relatively low contribution to the bending stiffness matrix D . The actuator voltage
responses in Fig. 5.11 correspond to the deflection responses in Fig. 5.10 because of their
linear relationship to response velocity. It can be noted that the magnitudes of the

voltages are well below the breakdown value of 200V.
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Figure 5.9: Effect of ply angle 0 on the transverse displacement of a tip in a passive cantilevered

beam under fully- and partially-clamped conditions.




Tip Deflection (e-1 mm)

Tip Deflection (e-1 mm)

>

(OPIO°ICPIOPIORIO)

[ Cantilevered fully-clamped -l

—— Cantilevered parially-clamped
'S ' 1 i
02 04 06 08 1
Time (s)
(a)

[0°/60°%-60°-60760°/0°)

T T T

Cantilevered fully-clamped
—— Cantilevered parally-clamped
02 04 06 08 1
Time (s)

(c)

Tip Deflection (e-1 mm)

Tip Deflection (e-1 mm)

[0P90°-90°-90°/90°07)
of T T T T
4
2

of \ U’ \ N“ M

0 ‘\/\N\/\N .I\/\f\f VWA

2t
4})
Cantilevered fully-clamped
Cantilevered partially-clamped
6 L L b —
0 02 04 06 08 1
Time (s)
(b)
[0°145%-45%-45°/45°/0°)
) T r ]
4
2H 4

Figure 5.10: Effect of ply angle 0 on the transverse displacement of a tip in a cantilevered beam

under fully- and partially-clamped conditions with active control.
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Figure 5.11: Effect of ply angle 0 on the actuator voltage of a cantilevered beam under fully- and

partially-clamped conditions.
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The response 1s independent of the stacking sequence for any ply angle in a quasi-
isotropic laminate if active damping is activated. However, Fig. 5.12 indicates that when
only passive damping is considered, that is, the piezoelectric fibers in the laminate
contribute only to the stiffness matrix, the 0° layers are less efficiently located near the
reference surface of the laminate. This is because the stiffness and strength of
longitudinal fibers are not fully utilized if they are located near the reference surface
when bending is the primary response. It is further observed from Fig. 5.12(a) that the

response with [0°/+90°], stacking sequence dampens faster than the response with
[£90°/0°], sequence, which supports the earlier assertion. Fig. 5.12(b) shows a phase

change in the responses beyond 1 second. Note that the thickness of the host beam has

been changed to 4, =1.75 mm to best illustrate this behavior/observation.
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Figure 5.12: Passive damping response of a cantilevered fully-clamped beam with a thin host layer

for varying stacking sequence.
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5.2.1.2 Fixed-End Partially-Constrained Beam Case

A fixed-end beam refers to a beam with both ends clamped as shown in Fig. 5.13

below. Also, the fixed-end beam is only partially constrained in order to take advantage
of the actuation of the PFRC laminate. As seen from the figure, elements 2, 3, and 4 are
constrained with both viscoelastic and PFRC laminate layers, while elements 1 and 5
remain unconstrained. The triangular impulse load (see Fig. 5.7(b)) is applied to the middle

upper node of the element 3 in the transverse direction.

F
1 2 3 4 5
L
PFRC laminate (p) [JIl Viscoelastic layer (c) FGM beam (b)

Figure 5.13: Schematic of a partially-constrained fixed-end beam -

The gain used in this scenario is the same (K, =350 V/(m/s)) as is in the

cantilevered case. The only changes made to the parameter specifications include the

thickness of the host beam, which is reduced to 4, =2.5 mm, and the time period is set to

0.5 seconds instead of 1 second as in the previous example, which results in N =500
terms. Note that modifications are solely made for enhanced presentation and are not
necessarily optimal. Though this case is considered as a different problem from the
cantilever case, one can observe the decreased deflection and higher frequency of
vibration, which are consistent with the form of the boundary conditions.

The deflection is observed at the middle node of the composite beam in the
direction of the applied load. Figs. 5.14 and 5.15 depict the passive and active damping
responses of the transverse displacement at the middle node, respectively. Fig. 5.16 shows

the actuator voltage corresponding to the response in Fig. 5.15. Ply angle orientation is
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illustrated in the same order and form of [0°/+ @], notation as in the previous case. In

general, Figs. 5.14, 5.15, and 5.16 follow the same pattern of response as the Figs. 5.9, 5.10,
and 5.11 of the cantilevered beam, respectively.

Fig. 5.14(a) shows the best result in terms of faster damping, which can be
explained by the same reasoning as was done regarding Fig. 5.9. The response with

[0°/£90°]; from Fig. 5.15(b) also shows a slightly greater damping pattern than in Fig.

5.15(a) due to the enhancement of actuation control in a more flexible PFRC laminate. Fig.
5.15(d) shows the worst damping response, since only a horizontal component of the
fibers contributes to the bending stiffnesses, while, at the same time, the flexibility of the
PFRC laminate is not increased in the bending direction as in the case of Fig. 5.15(b). Fig.
5.16 shows the control voltage response in direct proportionality with the derivative of the

response of Fig. 5.15.
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Figure 5.14: Effect of ply angle 0 on the transverse displacement of a middle point in a passive fixed-

end beam under partially-constrained condition.
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Figure 5.15: Effect of ply angle 0 on the transverse displacement of a middle node in a fixed-end

beam under partially-constrained condition with active control.
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Figure 5.16: Effect of ply angle 0 on the actuator voltage of a fixed-end beam under partially-
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5.2.1.3 Simply-Supported Beam Case

The configuration of this type of support consists of two point supports at each
end of the beam and is shown in Fig. 5.17 such that both axial and transverse

displacements are constrained.

PFRC laminate (p) [l Viscoelastic layer (c) FGM beam (b)

Figure 5.17: Schematic of a simply-supported beam.

The gain K, =350 V/(m/s) as in the previous cases and the host beam thickness
is also reduced to 4, =2.5 mm as in the fixed-end beam case. The observation time

period is 0.5 seconds, as in the previous example, and the number of Griinwald
approximation terms N =500 . The triangular impulse load (see Fig. 5.7(b)) is applied to
the middle node in the transverse direction in the same manner as in the fixed-end beam
case.

Figs. 5.18, 5.19, and 5.20 depict the passive damping, active damping, and actuator
voltage responses, respectively, of the simply-supported beam. Based on these figures, it
is noted that the deflection is higher in the simply-supported beam than in the fixed-end
partially-constrained beam case. This result is compatible with the form of support at
both ends, which is characterized by the number of displacement points clamped. For this
particular case, the lesser number indicates the greater flexibility of the beam and, thus,

higher deflection.

75



Different ply angle arrangements follow the same order as in the previous cases.
Fig. 5.18(a) shows the fastest damping and Fig. 5.18(c) and 5.18(d) describe very slow
attenuation rate due to the same reasons given in the previous subsections. However, in
Fig 5.19, the best damping response is observed in Fig. 5.19(a) rather than 5.19(b), as was the
case in the previous examples. Here, the beam is already flexible enough to enable a
successful actuation of the PFRC laminate with the addition of longitudinal plies
amplifying the bending resistance as well. In Fig. 5.19(b), it is interesting to note a slight
fluctuation of the deflection response even after the most damping is achieved at around
0.2 s. This could be accounted for with the higher frequencies dominating the response.
Since the beam is already flexible enough with only two point supports, the ply

orientation [0°/£90°]; does not contribute to attenuation of the higher frequency

vibration response.

76




[0°MOPIOPIOPIOP/OF) ) [0°/90°1-90P-Q0°/90°/CF)

Middie Point Deflection (e-1 mm)

ddle Point Deflection (e-1 mm)
o

Mi
=3
o

Middle Point Defiection (e-1 mm)

. -08H 1
- A} 4
) ) II—Simsmomdl ) ) . [=—_Simply-supported |
01 02 03 04 05 0 01 02 03 04 05
Time (s) Time (s)
(a) (b)
[0°160°1-60°-60°/60°107) [0PI45%-45%F-45/A51F)

1 - 1 J
08 § 08 )
08 . 08 :
04 . 04 .
02 - 02 1

oH 0
02} - 02H :
04} ; : 04H :
06} 1 06 H
08f : 08}

A Atk 4

) ) ) I—Simwwomodﬂ ) ) . [—_Simply-supported |
0 01 02 03 04 05 0 01 02 03 04 05
Time (s) Time (s)
(c) (d)

Figure 5.18: Effect of ply angle 0 on the transverse displacement of a middle node in a passive simply-

supported beam.
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Figure 5.19: Effect of ply angle 0 on the transverse displacement of a middle node in a simply-

supported beam with active control.
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Figure 5.20: Effect of ply angle 0 on the actuator voltage of a simply-supported beam.
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5.2.2 Effect of FGM Properties

The effect of functional grade in a host beam is studied by fixing each ply
orientation at & = 0° in the PFRC laminate. The host beam stiffness either increases or
decreases with height by varying Young’s modulus £ across its thickness. In the case of
stiffness decreasing (increasing) with height, the higher stiffness is at the bottom (top) of
the host beam. In order to have a varying elastic modulus, one must manipulate the

functional gradient A, which is a function of the top and bottom surface Young’s moduli,
E, and E;, respectively, and thickness of the FGM beam #4, as seen in Section 3.2.2.

Table 5.4 shows how the elastic moduli vary for a given 4. Note that a constant average

E , the elastic modulus of aluminum ( £, = 70.3 GPa), is used for each A . This is done

avg

to permit reasonable comparison.

Table 5.4: Variation of Young’s modulus with respect to functional gradient A .

A =500 A=0 A =-500

GPa GPa GPa
23.876 155.69 70.3 70.3 155.69 23.876

5.2.2.1 Cantilevered Beam Case

The cantilever beam problem remains the same with the parameter specifications
mentioned in Section 5.2.1 and illustrated in Fig. 5.8. The dynamic response is observed
for both fully- and partially-clamped boundary conditions. As seen from Figs. 5.21, 5.22
and 5.23, the response for the two conditions coincide, as was the case in the previous
section.

Figs. 5.21 and 5.22 correspond to the response of the system in the passive and
active states, respectively. Fig. 5.23 represents the actuation voltage response when the

gain of K, =350 V/(m/s) is applied to the composite beam. In Figs. 5.21(a), 5.21(b), and

5.21(c) the passive damping response is shown for the following functional gradients:

A=500, 1=0, and 4 =-500, respectively. The corresponding elastic moduli for the
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bottom and top surfaces of the host layer are as tabulated in Table 5.4. Comparing Figs.
5.21(a) and 5.21(b), one observes a better damping response when the beam is
homogeneously isotropic than in the case of gradual increase of stiffness with height in
the host beam. A functional gradient of 500, as in Fig. 5.21(a), yields lower elastic modulus
at the bottom of the beam and higher Young’s modulus at the interface between the host
and viscoelastic layers. Fig. 5.21(c), however, shows a better result with greater damping
than Fig. 5.21(b), where the host beam stiffness is gradually decreasing from the bottom to
the top. The lack of effectiveness of the greater stiffness at the top surface of the host
layer results because the top surface is located near the reference surface of the total
beam, that is, near what would have been the “neutral axis” if the beam was completely
isotropic. In other words, the greater stiffness and strength of the FG material is not
utilized completely if it is located near the reference surface and if the primary response
is the bending response. Another reason for this trend comes from the increased passive
damping in the vibration of the system, as seen in Fig. 5.21(c). The top surface of the host
beam, being lower in stiffness than the bottom surface and bonded to the viscoelastic
core, increases the shear deformation of the viscoelastic core and, in turn, increases the
passive damping of the beam.

Fig. 5.22 emphasizes the effectiveness of active-passive damping over the sole use
of passive damping in Fig. 5.21. Similar to the passive case, Fig. 5.22(c) also shows a faster
damping with a lower initial response than in Fig. 5.22(a). In spite of the reasons
mentioned above regarding passive damping, the application of negative functional
gradient to the host beam affects active damping as well. This is because the PFRC
laminate/viscoelastic combination layer is now attached to a more flexible surface of the
beam, which can enhance the control by the actuator. The actuator voltage responses in

Fig 5.23 are proportional to the rate of the deflection responses in Fig. 5.22.
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Figure 5.21: Effect of functional gradient i on the transverse displacement of a tip in a passive
cantilevered beam under fully- and partially-clamped conditions.
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Functional gradient lambda = 500 (

stiffness increases with height)
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Figure 5.22: Effect of functional gradient X on the transverse displacement of a tip in a cantilevered
beam under fully- and partially-clamped conditions with active control.
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Functional gradient lambda = 500 (stiffness increases with height)
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Figure 5.23: Effect of functional gradient . on the actuator voltage of a cantilevered beam under

fully- and partially-clamped conditions.
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5.2.2.2 Fixed-End Partially-Constrained Beam Case

A fixed-end beam partially covered with viscoelastic and PFRC laminate
constraining layers is shown in Fig. 5.13 in Section 5.2.1. The parameters remain the same.
The same response pattern is repeated as in the previous case, featuring the response due
to only passive damping in Fig. 5.24, the response with active damping in Fig. 5.25, and the
control voltage response in Fig. 5.26. When comparing Figs. 5.24 and 5.25, note that
incorporation of actuation in the composite beam does not have as significant an effect on
the damping of the system as it does in Figs. 5.21 and 5.22 of the cantilever beam case.

Similar to the previous example, the responses in Figs. 5.24(c) and 5.25(c) highlight a
faster damping trend than in Figs. 5.24(a) and 5.25(a), respectively. The reasoning for this
occurrence is the same as that of the cantilever case. However, in this scenario, the
figures with 4 = —-500 show a slightly higher initial response magnitude than with 4 =0
in Figs. 5.24 and 5.25. This observation reflects the type of support, which, in this case,
constrains two ends of the beam. In Figs. 5.24(c) and 5.25(c), the beam becomes more
flexible as it has more concentrated stiffness in the bottom part and less in the upper part
of the host layer. In Figs. 5.24(b) and 5.25(b), however, the beam is homogeneously
isotropic and hence flexibility of the beam is not increased. This flexibility issue explains
the slightly higher initial response in Figs. 5.24(c) and 5.25(c). The same pattern can also be

seen when comparing Figs. 5.26(b) and 5.26(c).
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Functonal gradient lambda = 500 (stiffness increases with height)
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Figure 5.24: Effect of functional gradient A on the transverse displacement of a middle node in a
passive fixed-end beam under partially-constrained condition.
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Functional gradient lambda = 500 (stifiness increases with height)
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Figure 5.25: Effect of functional gradient A on the transverse displacement of a middle node in a
fixed-end beam under partially-constrained condition with active control.
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Functional gradient lambda = 500 (stiffness increases with height)
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Figure 5.26: Effect of functional gradient i on the actuator voltage of a fixed-end beam under
partially-constrained condition.




5.2.2.3 Simply-Supported Beam Case

The same simply-supported beam shown in Fig. 5.17 and explained in Section
5.2.1 is used in this section. Figs. 5.27 and 5.28 depict the effects of functional gradient A
on the middle node deflection when the beam is damped passively and actively,
respectively. Fig. 5.29 shows the actuator voltage response when the system’s gain

K, =350 V/(m/s), as in the previous sections. Figs. 5.27(c) and 5.28(c) also show the best

results in terms of damping rate. However, as observed in the case of fixed-end beam,
Figs. 5.27(c) and 5.28(c) (for 4 = —-500) show slightly higher initial response than Figs.
5.27(b) and 5.28(b) (A = 0). The reason for this is explained in the previous case, and it is
compatible with the above explanation on the importance of the support mechanism. In
this case, unlike in the cantilevered beam, two opposite corners are constrained thus
limiting much movement in the transverse direction. Making the host beam stiffer at the
bottom rather than at the top surfaces, most likely, enhances the initial flexibility of the
system; however, it reduces the flexibility once the stiffnesses located farther from the
reference axis start contributing to the vibration suppression. Since the flexibility of the
system is greatly limited considering its support mechanism, this type of beam does not
yield to actuation as well as the cantilevered beam does. Fig. 5.29(c) shows the least

voltage required to suppress the vibration of the beam, as observed in the other cases.
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Figure 5.27: Effect of functional gradient X on the transverse displacement of a middle node in a
passive simply-supported beam.
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Functional gradient lambda = 500 (stiffness increases with height)
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Figure 5.28: Effect of functional gradient X on the transverse displacement of a middle node in a
simply-supported beam with active control.
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Functional gradient lambda = 500 (stiffness increases with height)
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Figure 5.29: Effect of functional gradient A on the actuator voltage of a simply-supported beam.




Chapter 6 Summary and Recommendations

The preceding chapters presented a quasi-two-dimensional finite element
formulation for vibration analysis of a functionally graded (FG) beam with active-passive
constrained layer damping (ACLD) treatment. The viscoelastic layer, as part of ACLD
treatment, contributes to passive damping of the structure, while the piezoelectric fiber-
reinforced composite (PFRC) laminate acts as an active constraining layer.

The piezoelectric fibers in the PFRC act as the actuator of the system by means of a
velocity feedback control system. The PFRC laminate comprises six plies, each of which
is orientated at a ply angle @ in the reference plane of the system. Classical laminate
theory is used to determine the ABD constitutive matrix relating force and moment
resultants with strains and curvatures. The Young’s modulus of the FG beam is assumed
to vary exponentially along the thickness of the host beam, while the Poisson’s ratio is
constant over the domain of the beam. A four-parameter fractional derivative model is
used in describing the time-dependent behavior of the viscoelastic material.

The three-layer beam model is built assuming the Timoshenko hypothesis for all
layers. The deformation of the top constraining layer follows the same assumption of a
basic three-layer theory, where the axial displacement is linear through the thickness and
the transverse displacement is constant. In the host beam and the core, however, the axial
displacement varies cubically, while the transverse displacement varies quadratically
through the thickness. The field variables are interpolated through the thickness of the
composite beam using the polynomial expansion, while cubic Lagrange finite elements
are used to interpolate along the span. This formulation results in a smaller number of
degrees of freedom than in other more conventional two-dimensional models, which use
many elements through the thickness to avoid an aspect ratio problem. However, this
model still produces highly accurate results. The formulation is suitable only for small
deformations.

The formulation was compared with two examples from the literature: a viscoelastic-
aluminum sandwich beam and a cantilever beam with viscoelastic and piezoelectric
constraining layers. The parametric study showed superior performance of the active-

passive combination constraining layer over the sole use of passive damping. Three

93




different cases were simulated; namely, the cantilevered, fixed-end partially-constrained
and simply-supported beams. When analyzing the effect of ply orientation, it was noted

that the active cantilevered beam, with [0°/+90°], stacking sequence (i.c., cross-ply),

showed the fastest attenuation rate. However, for passive damping, the best result in
terms of damping rate was observed when the ply angles are all equal to zero. For the
fixed-end beam, a similar vibration pattern was followed, though with smaller amplitude
and higher frequency. In the simply-supported scenario, however, both the actively
controlled and the uncontrolled deflection results showed higher damping rate in the
instance of all longitudinal plies. During the study of the effects of FGM properties on the
vibration suppression, the response with negative functional gradient (i.e., stiffness
decreases with height) yielded the best damping result. This is true in each support case
and during both the active and passive treatments.
Though the current study encompasses several issues, from the development of
quasi-two-dimensional model to the utilization of various materials to enhance the :
structure, there are numerous opportunities for further development. The extension of this
work might contribute to the solution of a problem of noise and vibration reduction,
which is increasing rapidly with the introduction of new components and machines in

today’s industrial world. The future steps to take include the following:

a. Since optimization usually follows the design and development part of the
component process, it must be considered 1n the future work. In the current
formulation and analysis the geometrical parameters were chosen only for the
purpose of presenting the results with a higher quality of observation. Also, the
control gain chosen for each simulation was again based on the need to increase
readability of the results and did not represent the optimum solution. As
mentioned previously, the gain is selectable as long as it does not destabilize the
system and yields control voltage in the safe range of the piezoelectric material.

Determination of control gains can be achieved by using the linear quadratic

regulator (LQR) optimal control theory [3].




With regard to the previous point, optimum location of the active constraining |
layer must also be considered as it may enhance the actuation capability of the

structure. For instance, the PFRC laminate would fully contribute to the damping

of the system if it is located close to the clamped part of the beam, since, at that

point, the flexural moment is the greatest and hence must be counterbalanced

with the moment created by the electrical force induced in the PFRC laminate.

The current formulation can be extended to accommodate dynamic analysis of
plates and/or shells. Using a quasi-three-dimensional finite element model as in
[9], the FG plate with bonded viscoelastic layer and PFRC laminate can be
formulated and analyzed. Bicubic trial functions would have to be incorporated

to model both in-plane (x, y) displacement characteristics. Compared to three-

dimensional finite element analysis, in the quasi-three-dimensional model,

numerical errors associated with element aspect ratio would be avoided [9].

The use of different viscoelastic models can be researched. The four-parameter )
fractional derivative model utilized in this thesis is not readily available in the i
commercial finite element analysis software, such as ANSYS. The Prony series ‘
method or plotting master curves can be incorporated into the viscoelastic layer |

modeling in the future. (

Considering the effectiveness of varying elastic modulus such that the active- ,
passive constraining layer comes in contact with the “softer” side of the host |
beam, the viscoelastic core can also be extended to being functionally graded. j
This could prove effective as the active constraining layer would be bonded to )
the surface of the viscoelastic layer with minimum stiffness and, hence, increase

actuation of the beam.
Furthermore, the current formulation can be verified by experimental study. t

Vibration simulation tests can be performed and the deflection of the beam may

be measured via a sensor and compared to the numerical simulation results. (
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Appendix A — Flow Charts

A-1 Algorithm Flow Chart for Entire Program

MAIN PARENT
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A-2 Algorithm Flow Chart for Newmark Integration Scheme
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Appendix B — Implementation of Matrix B

To incorporate the derivative operator D into the Matlab code the following

adjustments to matrix B are suggested for easier implementation.

For the host beam:

With reference to Eqs. 3.3 and 3.4, the strain vector &, can be written as:

[S}
w

N
N
S

o O

<o O

0 0 1
&g=3¢& ;=0 0 0 O
1 2z 322 0

S O n
o O
o O
o - O

N

N
—_ 0 O
N

ol

N
[\

This permits the partitioning of the derivative operator [ D, ] as follows:

i

0 1 0 0l0 0 0
0 0 1 0l0 0 0
0 0 0 1/0 0 0
7 0 0 0]l0 0 0
0 % 0 o0lo 0 o0
0 0 ¢ 0|0 0 0
[B=llo 0 o %o o o
0o 0 0 ofo 1 o
0 0 0 0|0 0 1
0 0 0 0[Z 0 0
0 0 0 0[0 % 0
(0 0 0 0f0 0 %
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(7,3, [0]

The through-the-thickness mapping matrix is [T b] = { [O]T 7]
bhdw

} from Eq. 4.8 (Where

[0] 1s a 4x3 zero matrix) and the shape functions matrix [N b/] from Eq. 4.9 can be

written as follows:

[N, 00 0 0 0 0 0000 00
0 0N, O 0 0 0 00000 0
0 0 0 0N, 0 0 00000 0
[(v,]={l0 0 0 0 0o N, 0 0000 o0 oWl . o
! : [N,]
bj dw
0 N, 0 0 0 000 00
0 0 0 N, 0 0 00000
0 0 0 0 0 N, 0000 0
where j=1...4.

Since the matrix [Th] is not a function of x, the derivative components of operator
[D,] do not affect the matrix [7,]. Hence, combining Egs. [B - 2] and [B - 3] for an
element yields the newly formulated matrix [Bb] of Eq. 4.12 with implemented operator

[Db] components:

[B,]= (L., =7, B -4]
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The matrix [B,] for the core is formulated in the same manner as for the host beam,

given that the axial and transverse displacements are also expressed through the thickness

by cubic and quadratic functions, respectively.

For the top layer:

The local displacement vector {Ep} is rearranged in such a way as to obtain modified

derivative operator matrices [D[(j] and [D:,] . Consequently, the displacement vector can

be written as:

€,
1 0 ‘ _
””{o 1 o} m =2, ]} [B-5]
el

In accordance with Eq. 3.44, the derivative operator matrices can be combined and

partitioned in the following way:

oz 0 0 “% 0 0 0 00
[Dg}: 0 % 1 || 0 % of+j0 01 By
D;} 0 0 % 0 0 % 0 0 0

0 0 O [0 0 O]

The mapping matrix [T J from Eq.4.27 is also adjusted in agreement with the local

displacement vector change and is given as:

=

(B-7]

S = O
(=]

1
[7]+]0

>
o
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As mentioned previously for the host beam, the matrix [TJ does not depend on the

variable x . Hence, using Egs. [B - 6] and [B — 7] with addition of the shape functions

matrix |:N p] from Eq. 4.28, the modified matrix [B } from Eq. 4.31 is as follows for the

14

PFRC layer:

T aI:NP:I 0o T ||N
[BJ:[’":' ox +g ?) (1)[1’][ P] B8]
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Appendix C — Matlab Codes

C-1 Main File

Main file collects information about system parameters, as well as matrices required
for determination of mass and stiffness matrices for host beam, viscoelastic core, and
PFRC laminate. Then, this program uses a numerical integration function to calculate
global mass and stiffness matrices. Global resultant matrices are attained and boundary
conditions are applied. The code below features the cantilevered fully-clamped boundary
conditions only. Main code also solves the governing equation using the Newmark
integration method and plots the transverse displacement of a node and control voltage

required for actuation.

main_file.m

clear all

% Determination of mass (M) %
% and stiffness (K) matrices %

global F_ext n DOF Theta ply b rho_b rho_c rho_p lambda % global variables

shape_functions(0); % introduces shape functions for the beam
system_parameters(0); % outlines beam's parameters for all three layers

% FGM Host Beam (Bottom Layer) %

global Cb Tb_u Tb_w Nb_u Nb_w Ib % element matrices

host_beam(0); % returns Cy, Ty, I, and Ny, matrices
boolean=0;
[Mb_temp,Kb_temp,dummy]=num_integration(Nb_u,Nb_w,Tb_u,Tb_w,Ib,Cb,0,boolean);

Mb=rho_b.*b*Mb_temp; % Mass matrix of the host beam
Kb=b*Kb_temp: % Stiffness matrix of the host beam

%o Viscoelastic Layer (Core) %

global Cc Tc_uTe_wNc_uNc wlcetaE infE 0 % element matrices

viscoelastic_core(0); % returns C,, T,, I, and N, matrices
boolean=0;
[Mc_temp,Ke_temp,dummy|=num_integration(Nc_u,Nc_w,Tc_u,Tc_w,lIc,Cc,0,boolean);

Mc=rho_c.*b*Mc_temp; % Mass matrix of the viscoelastic layer
Ke=b*Kc_temp; % Stiffness matrix of elastic portion of the core
K_c=(eta.*(E_inf-E_0)./E_0)*Kc; % Stiffness matrix of anelastic portion of the core
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global ABD NM Tp Np Ip % element matrices

piezo_laminate(0); % returns ABD, N, M, T,, I, and N, matrices
boolean=1;
[Mp_temp,Kp_temp,Fp_temp]=num_integration(Np,0,Tp,0,Ip,ABD,NM boolean);

Mp=rho_p.*b*Mp_temp; % Mass matrix of the piezoelectric laminate
Kp=b*Kp_temp; %Stiffness matrix of the piezoelectric laminate
Fp=b*Fp_temp; % Electric force caused by the applied electrical field E,

M=Mb+Mc+Mp; % resultant mass matrix
K=Kb+Kc+K_c+Kp; % resultant stiffness matrix

M(:, 1:DOF)=[]; % deleting column 1 to 13 of the mass matrix

K(:,1:DOF)=[]; % deleting column 1 to 13 of the stiffness matrix

Ke(:,1:DOF)=[]; % deleting column 1 to 13 of the core elastic stiffness matrix \
M(1:DOF,:)=[]; % deleting row 1 to 13 of the mass matrix
K(1:DOF,:)=[]; % deleting row 1 to 13 of the stiffness matrix
Kc(1:DOF,:)=[]: % deleting row 1 to 13 of the core elastic stiffness matrix

F_ext(1:DOF)=[]; % deleting row 1 to 13 of the external force vector |
Fp(1:DOF)=[]; % deleting row 1 to 13 of the electrical force vector

sprintf('Natural frequencies with %d elements and %d ply(ies) used; lambda=%d',n,ply,lambda)
| pi

freq=sort(sqrt(eig(K,M))/(2*pi)); !
fprintf(1,°46.0f'\n" freq(1:10));

disp("');

Ygmmm e Solving the governing equation e %

Ymmm e using Newmark integration SCheme----=====mmm e e cm e %

global Kv N alpha dt

Hw = subs([zeros(1,39) zeros(1,6) 1 zeros(1,6)]); % specifies node ws,
w(l)=0;

Ga=zeros(1,3*DOF*n);

Ga(1,3*DOF*n-6)=Kv; % assigns gain value of K, to node ws, in the last element
% 1nitializing displacement, velocity and acceleration, respectively, at t=0

t=0;

q=zeros(3*DOF*n,1);

q_vel=zeros(3*DOF*n,1);

q_accel=inv(M)*(F_ext-Fp*Ga*q_vel-K*q); % isolates g, in a governing equation
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% anelastic displacement at =0
q_=(1-eta)*((E_inf-E_0)/E_inf)*q;

Q_=zeros(3*DOF*n,N); % storage matrix of the anelastic displacement history
Q_(:,1)=q_; % stores initial q_ vector as a column in the matrix Q

% integration parameters
gamma=0.5;
beta=0.25%(0.5+gamma)"2;

A(l)=1;

for k=1:N % counts number of terms
t=t+dt;

% chooses load type
F_ext=load_type(1,t); % 1- impulse load; 2-impact load; 3-harmonic load:

% predicts displacement and velocity
q_pred=q+dt*q_vel+(gamma-beta)*dt"2*q_accel;
q_vel_pred=q_vel+(1-gamma)*dt*q_accel;

% calculates the modified loading in the viscoelastic core
sum=0;

for j = 1:N-1
A(+1) = ((-alpha-1)/))*A();
if (k+1-j) > 0 % truncation terms
sum = sum + A(j+1)*Q_(:,k+1-j);
else
break
end
end

F_c=-eta*(E_inf/E_0)*Kc*sum; % loads in the core

R=F_ext+F_c-Fp*Ga*q_vel_pred-K*q_pred; % forms residual
q_accel=(M+(0.5*Fp*Ga)*dt+beta*dt"2*K)\R; % evaluates acceleration by solving linear system

% corrects displacement and velocity
q=q_pred+beta*dt"2*q_accel;
q_vel=q_vel pred+gamma*dt*q_accel;

% evaluates and stores the anelastic displacement history
q_=(l-eta)*((E_inf-E_0)/E_inf)*q-eta*sum;

Q_(:k+1)=q_; % stores every q_ vector as a column in the matrix Q.

voltage(k+1) = Ga*q_vel; % calculates voltage by multiplying velocity with gain control
w(k+1) = Hw*q(3*DOF*n-51:3*DOF*n,1)*1e+3; % determines transverse displacement of the node ws,
in the last element

end
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T=[0:dt:N*dt];

figure;plot(T(1:1:N),10*w(1:1:N),"-b") % plots transverse displacement node ws, in the last element
axis([0,1,-6,6.5]);

xlabel('Time (s)"); ylabel('Tip Deflection (e-1 mm)");

legend('Cantilevered fully-clamped',1);

title('[0°/0°/0°/0°/0°/0°]");

hold on

figure;plot(T(1:1:N),voltage(1:1:N),"-') % plots control voltage node ws, in the last element
axis([0,1,-60,60]);

xlabel('Time (s)'); ylabel('Control Voltage (V)');

legend('Cantilevered fully-clamped',1);

title('[0°/0°/0°/0°/0°/0°]"); grid off

hold on

C-2 Introduction of Parameters and General Functions

shape_functions.m
% This function introduces cubic Lagrange interpolation shape functions

function shape_functions(dummy)
global xi Nxi
syms xi % global variable xi

Nxi=[-(3*xi+1)*(3*xi-1)*(xi-1)/16;
9*(x1+1)*(3*xi-1)*(xi-1)/16;
-9*(xi+1)*(3*xi+1)*(xi-1)/16;
(xi+1)*(3*xi+1)*(3*xi-1)/16];

return

system_parameters.m

o This function stores parameters of the beam

function system_parameters(dummy)
global Lb Eb_0 Ec E_0 E_infvb ve rho_b rho_c rho_p scfeta N dt alpha
global h h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 hp hb hc Kv lambda

syms z
N =1000; t = I; dt = t/N; % time parameters, time step dt

L =300e-3; b = 15¢-3; hb = 3.75¢-3; % geometrical parameters

Eb_avg = 70.3e+9; vb = 0.345; rho_b = 2690; scf = 5/6; % mechanical characteristics
(aluminum)

lambda=0; % functional gradient (lambda=In(E;/E)/hy,)

108




/- Viscoelastic Layer (Core) %

Lc = 100e-3; hc = 0.25¢-3; % geometrical parameters

Ymmmmmmm elastic properties-------- %
Ec=1.5¢+6; vc=0.499;
Yo------ --viscoelastic properties--------- %

E_0=Ec; E_inf=69.9495¢+6; rho_c = 1600; % mechanical characteristics
tau = 1.4052¢-5; alpha = 0.7915; eta = tau”alpha/(tau™alpha+dt*alpha); % anelastic characteristics

% PFRC Laminate (Top Layer)---------=-------- %

Lp = 100e-3; hp = le-3; % geometrical parameters
Kv=350; %feedback control gain
rho_p=3640; % PFRC

% Z-Coordinates %

h=hb+hc+hp;

% positions relative to geometric mid-surface of h

h1=-h/2; h2=hb/4-h/2; h3=hb/2-h/2; h4=3*hb/4-h/2; h5=hb-h/2; % FGM beam

hS; h6=hb+hc/4-h/2; h7=hb+hc/2-h/2; h8=hb+3*hc/4-h/2; h9=hb+hc-h/2; % viscoelastic core
h9; h10=h/2; % PFRC-laminate layer

% E,, at the bottom of the beam found from the averaged E,
Eb_O=eval(Eb_avg*hb/(exp(lambda*h/2)*int(exp(lambda*z),z,h1,h5)));
% E, at the top of the FGM layer

Eb_h=Eb_0*exp(lambda*hb);

cubic_interpolation.m

% This function returns reference displacement matrices Z and Z_(bar)

function [Z,Z_]=cubic_interpolation(dummy)
global z

syms z

Z=[122"22z"30000000 1 z2z"2]; :
Z =[000122"22"300000;000000012*2000:12*23*222000000 1 z2"2);

Kinetic_energy.m

% This function accepts the input of Z matrix and the limits of integration and returns matrix I for each
layer

function I=kinetic_energy(Z,z1,22)
global z

I=eval(int(transpose(Z)*Z,z1,22));
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C-3 Functions for Calculation of Elemental Matrices in each Layer
host_beam.m

% This function calculates the constitutive, mapping and interpolation matrices of the FGM host beam

function host_beam(dummy)
global Eb_0 vb scfh hl h2 h3 h4 h5S Cb Tb_u Tb_w Nb_u Nb_w Nb5 u Nb5 w Ib Nxi xi lambda

syms z
(R kinematic assumptions--=-=---==esemmmmmemx %
[Zb,Z_b]=cubic_interpolation(0);

0m === mm oo eee constitutive equations--=-=----=-=mmmmmemex- %
% Determines compliance matrix C, for FGM

Cb_0=(Eb_0./(1+vb)./(1-2*vb)).*[1-vb vb O;vb 1-vb 0;0 0 (1-2*vb)./2]; % plane strain assumption
Qb=exp(lambda*h/2)*Cb_0; % elastic coefficients vary exponentially
Cb=eval(int((transpose(Z_b)*Qb*Z_b)*exp(lambda*z),h1,h5)); % integrates from h, to hs through the
host beam's thickness

=== e mapping---=--=-===--- -- -%
Tb_u=[1 h1 h172 h173;1 h2 h2”2 h2”3;1 h4 h4"2 h4”3;1 h5 h5"2 h5°3](-1); % axial displacement
Tb_w=[1 h1 h172;1 h3 h372;1 h5 h5°2]"(-1); % transverse displacement

fori=1:4
% Determines N, matrix for each shape function

Nbi_u=[Nxi(i) 0 0 0 0 0;0 0 Nxi(i) 0 0 0;0 0 0 0 Nxi(i) 0;0 0 0 0 0 Nxi(i)];

Nbi_w=[0 Nxi(i) 00 0 0 0;0 0 0 Nxi(i) 0 0 0;0 0 0 0 0 0 Nxi(i)];

Nb_u=[Nbi_u zeros(4,7)]:

Nb_w=[Nbi_w zeros(3.6)];

if i=1
Nbl_u=Nb u; Nbl_w=Nb w;
elseif i==2
Nb2 u=Nb_u; Nb2 w=Nb w:
elseif i==3
Nb3_u=Nb_u; Nb3_ w=Nb w;
elseif i=—4
Nb4_u=Nb_u; Nb4 w=Nb w;
end
end
% allocates shape functions in the final N, matrix
Nb_u=[Nbl_uNb2_u Nb3 uNb4 uJ;
Nb_w=[Nbl_w Nb2_w Nb3_w Nb4_w];

Ib=kinetic_energy(Zb,h1,h5); % moment of inertia

return




viscoelastic_core.m

% This function determines constitutive, mapping, and interpolation matrices of the viscoelastic core

function viscoelastic_core(dummy)
global Ec veh5 h6é h7h8 h9 eta E_infE_0 Cc Tc_u Tc_w Nc_u Nec_w e Nxi xi

syms z
0,

o kinematic assumptions %
[Z¢,Z_c]=cubic_interpolation(0);

% constitutive equations %

elastic properties
qtype = 1; % O-plane stress 1-plane strain
if qtype == 1 % elastic coefficients under plane strain assumption
cl1=(1-ve)*Ec/(1-2*ve)/(1+ve);
cl3=vc*Ec/(1-2*vc)/(1+ve);
else % elastic coefficients under plane stress assumption
cll = Ec/(1-ve™2);
cl3 = ve*Ec/(1-ver2);
end
c33=cll;
c55=Ec/(2*(1+vc));
Qc=[cl1 ¢I3 0;c13 ¢33 0:0 0 c55]; % constitutive relation
Cc=eval(int(transpose(Z_c)*Qc*Z_c,h5,h9)); % elastic compliance matrix of the core

0

o mapping %
Tec_u=[1 h5 h572 h53;1 h6 h6"2 h6"3;1 h8 h8/2 h8”3;1 h9 h9"2 h973]*(-1); % axial displacement
Tc_w=[1 h5 h572;1 h7 h772;1 h9 h972]*(-1); % transverse displacement

0,

o shape functions %

for i=1:4

% Determines N, matrix for each shape function

Nei_u=[Nxi(1) 0 0 0 0 0;0 0 Nxi(i) 0 0 0;0 0 0 0 Nxi(i) 0;0 0 0 0 0 Nxi(i)];
Nei_w=[Nxi(i) 00 0 0 0;0 0 Nxi(i) 0 0 0;0 0 0 0 0 Nxi(i)]:
Nc_u=[zeros(4,5) Nci_u zeros(4,2)];

Nc_w=[zeros(3,6) Nci_w zeros(3,1)];

if i==1
Ncl_u=Nc_u; Ncl_w=Nc_w;
elseif i==2
Nc2_u=Nc_u; Nc2_w=Nc_w;
elseif i==3
Nc3_u=Nc_u; Ne3_w=Nc_w;
elseif i=—4
Nc4 _u=Nc_u; Ned_w=Nc_w;
end
end

% allocates shape functions in the final N, matrix
Nc_u=[Ncl_uNc2_uNc3 uNcd uj;
Nc_w=[Ncl_w Nc2_w Nc3 w Ned wl;

Ic=kinetic_energy(Zc,h5,h9); % moment of inertia
return
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piezo_laminate.m

% This function returns constitutive, mapping and interpolation matrices of the PFRC laminate

function piezo_laminate(dummy)

global hp h h9 h10 Tp Nxp Mxp NM ABD Np Ip Nxi xi ply Theta scf Eb_0 vb
syms c¢13 ¢23 ¢33

syms zm d

% PZT5H and epoxy combined properties of fiber-reinforced matrix layer

cl1=32.6e+9; c12=4.3e+9; c22=7.2e+9; c44=1.05e+9; c55=1.29¢+9; c66=c55; % mechanical
characteristics

e31=-6.76; % electric constant

V=1 % nitial value of voltage
Ez=V/hp; % electric field
ply=6: % determines number of plies in the laminate
if ply==3

Theta=[0 pi 0]; % symmetric cross-ply laminate

z_=[-hp/6 hp/6 hp/2];
elseif ply==4
%  Theta=[0 0 0 0]; % symmetric cross-ply laminate

Theta=[pi/6 pi/3 pi/3 pi/6];

z_=[-hp/4 0 hp/4 hp/2];
elseif ply==6
%  Theta=[0 pi/2 -pi/2 -pi/2 pi/2 0]; % symmetric cross-ply laminate
%  Theta=[0 pi/3 -pi/3 -pi/3 pi/3 0]; i
%  Theta=[0 pi/4 -pi/4 -pi/4 pi/4 0];

Theta=[0 0 0 0 0 0];

z_=[-hp/3 -hp/6 0 hp/6 hp/3 hp/2];
end

zk=z_+(h-hp)/2:

Om === mm e kinematic assumptions--------===semmeemme- %
Zp=[102z;0 1 0]; % modified from formulation in order to rearrange the derivative operators for the top
layer only

A=0; B=0; D=0; Nxp=0; Mxp=0;
z_0=-hp/2;
20=z_0+(h-hp)/2;

for k=1:ply

% constitutive relation of the k layer in the laminate
Cp=[cllcl2¢l3000:c12¢22¢23000:c13¢23¢33000;000¢4400;0000¢550;0000 0 c66];
R=[100000;010000;001000;000200;000020;00000 2];

% transformation matrix from principal to global coordinates through a
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% counterclockwise rotation Theta about z-axis

T=[m"2d*20002*d*m;d"2m"2000-2*d*m:001000:000m-d0;000d m 0;-d*m d*m 000
m”2-d"2];

Qp=simple(T*(-1)*Cp*R*T*R"(-1));

Qp=subs(Qp,(d"2+m"2),1); % cos(Theta)"2+sin(Theta)"2=1

Qp=subs(Qp,{m.d}, {cos(Theta(k)),sin(Theta(k))} );

% transformed stiffness constants

Q11=Qp(1,1); Q12=Qp(1,2); Q16=Qp(1,6); Q22=Qp(2,2); Q26=Qp(2,6);
Q44=Qp(4.4); Q45=Qp(4.5); Q55=Qp(5,5); Q66=Qp(6,6);

% transformed and reduced stiffness constants

Q_11=Q11 + (Q16*Q26-Q12*Q66)/(Q22*Q66-Q26"2)*Q12 + (Q12*Q26-Q16*Q22)/(Q22*Q66-
Q26"2)*Q16;

Q_55=0Q55-Q45"2/Q44;

Qp_k=eval([Q_11 0:0 scf*Q_55]); % transformed reduced constitutive matrix

% electrical %
e 31=eval((1-(Q12*Q66-Q16*Q26)/(Q22*Q66-Q26"2))*e31);

% Determination of resultant stiffness matrices
A=A+(zk(k)-z0)*Qp_k;
B=B+(zk(k)"2-20"2)*Qp_k;:
D=D+(zk(k)"3-z0"3)*Qp_k;:
Nxp=Nxp+(zk(k)-z0)*(e_31*Ez);
Mxp=Mxp+(zk(k)"2-z0"2)*(e_31*Ez);
z0=zk(k):

end

B=(1/2)*B;

D=(1/3)*D;

Mxp=(1/2)*Mxp;

ABD=[A B; B D]: % ABD matrix of the PFRC laminate
NM=[Nxp 0 Mxp 0]; % Resultant electric force stiffness vector

0,

Yo mapping %
Tp=[10h9;0 10;1 0 h10]*(-1); % transformation through the thickness
% modified from formulation in order to rearrange the derivative operators for the top layer only

%

for i=1:4
% Determines N, matrix for each shape function
Npi=[Nxi(i) 0 0;0 Nxi(i) 0,0 0 Nxi(i)];
Np=[zeros(3,10) Npi];

shape functions %

if i==
Npl1=Np:
elseif i==2
Np2=Np;
elseif i==3
Np3=Np;
elseif i=—4
Np4=Np;

end
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end
Np=[Np1 Np2 Np3 Np4]; % allocates shape functions in the final N, matrix

Ip=kinetic_energy(Zp,h9,h10); % moment of inertia

return

C-4 Numerical Integration Function
num_integration.m

% This function uses gauss quadrature to calculate the Jacobian and numerically integrate mass and
stiffness matrices

% It also outputs electric force vector for the PFRC laminate layer only

function [M,K,FpJ=num_integration(Nu,Nw, Tu,Tw,I,C,NMp,boolean)
global Nxi xi L DOF F_extn

syms xi

0m=mmm e Defining the number of elements----------mmeuev %
n=5; % number of elements

Le=L/n; % element length

DOF=13; % degrees of freedom per node

Ommm e e Setting parameters----------mmeeemmmmscmcaeo- %

p=0; % counter for each element increment
M=zeros(DOF*(3*n+1),DOF*(3*n+1)); % allocating space for mass matrix
K=zeros(DOF*(3*n+1),DOF*(3*n+1)); % allocating space for stiffness matrix
Fp=zeros(DOF*(3*n+1),1); % allocating space for electrical force vector
F_ext=zeros(DOF*(3*n+1),1); % allocating space for external force vector

if boolean==1 % if the input matrices are of the PFRC laminate
N_temp=Nu; T=Tu;
dNdxi=diff(N_temp,xi); % takes derivative of N with respect to xi

else % input matrices of the host beam or visco core

N_temp=[Nu;Nw];

O=zeros(4,3);

T=[Tu O; O' Tw]; % combined transformation through the thickness matrix
end

0= mm e Gauss Quadrature %
for element=1:n

% four positions located along the span distance Le of each element according to xi values at {-1 -1/3 1/3
I

x1=(element-1)*Le; x2=x1+Le/3; x3=x2+Le/3; x4=x3+Le/3;

xs=[x1;x2;x3;x4];

Jx=transpose(Nxi)*xs;

djxdxi=diff(jx.xi); % (dN,/d,;)*x, calculates the jacobian at each node

Npts=4;
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guasspts=zeros(Npts, 1 ); wghts=zeros(Npts, 1);

Y% Gauss points %o
guasspts(1)=-0.861136311594953; wghts(1)=0.347854845137454;
guasspts(2)=-0.339981043584856; wghts(2)=0.652145154862546;
guasspts(3)=0.339981043584856; wghts(3)=0.652145154862546;
guasspts(4)=0.861136311594953; wghts(4)=0.347854845137454;

Msum=0; Ksum=0; Fpsum=0;
for gp=1:Npts

cxi=guasspts(gp);
J=subs(djxdxi,xi,cxi); % takes the jacobian at each node and replaces it with gauss points
N_m=subs(N_temp,xi,cxi);

M_temp=N_m"*T*I*T*N_m;
Msum=Msum+wghts(gp)*M_temp*abs(J); % numerically integrates mass matrix including the
jacobian

if boolean==1 % if the input matrices are of the PFRC laminate
dN=subs(dNdxi,xi,cxi)*inv(J); % converts dN,/d, to dN,/d,,

B=[T*dN+[0 0 0;0 0 1;0 0 0]*T*N_m; zeros(1,3)*T*N_m]; % incorporates derivative operators
into the B matrix; hence, the modified kinematic assumptions and mapping matrices with respect to
original formulations

Fp_temp=B"*NMp';
Fpsum=Fpsum+wghts(gp)*Fp_temp*abs(J); % numerically integrates electric force vector
including the jacobian

else % input matrices of the host beam or visco core
dNu=subs(diff(Nu,xi),xi,cxi)*inv(J); % converts dN,/d, to dN,/d,;
dNw=subs(diff(Nw,xi),xi,cxi)*inv(J); % converts dN,;/d, to dN,/d,;
Nu_temp=subs(Nu,xi,cxi); Nw_temp=subs(Nw,xi,cxi);

B=[[0100;0010;000 I]*Tu*Nu_temp; Tu*dNu; [0 1 0;0 0 1]*Tw*Nw_temp; Tw*dNw];
% incorporates derivative operator into the B matrix without modification of kinematic
assumptions and mapping matrices with respect to original formulations

end

K_temp=B*C*B;
Ksum=Ksum+wghts(gp)*K_temp*abs(J); % numerically integrates stiffness matrix including the
Jacobian

end

R --Determines global matrices---------==-=-=------%

for k=1:4*DOF
for j=1:4*DOF
M(k+p.j+p)=M(k+p,j+p)+Msum(k,j);
K(k+pj+p)=K(k+p,j+p)+Ksum(k,j);
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end
if boolean==1
Fp(k+p,1)=Fp(k+p,1)+Fpsum(k,1);
end
end

p=p+3*DOF; % element increment in terms of DOF
end % end of element loop

C-5 Load Function
load_type.m

% This function chooses loadtype
function F_ext=load_type(loadtype,t)

global F_ext DOF n
% load is applied to the transverse displacement node wo, in the last element

if loadtype == 1 % impulse load
if t <= 2e-3
F_ext(3*DOF*n-1,1) = 500*t;
else
if t <=4e-3
F_ext(3*DOF*n-1,1) = -500%t + 2;
else
F_ext(3*DOF*n-1,1) = 0;
end
end
else
if loadtype = 2 % impact load
if t <= le-3
F_ext(3*DOF*n-1,1) = 1;
else
F_ext(3*DOF*n-1,1) = 0;
end

else % harmonic load
if t <=41.8888e-3
F_ext(3*DOF*n-1,1) = 0.1*sin(150*t); % initial harmonic load
else
F_ext(3*DOF*n-1,1) = 0*0.1*sin(150*t): % constant zero or harmonic load
end
end
end

return

116










	Ryerson University
	Digital Commons @ Ryerson
	1-1-2007

	A quasi-2D finite element formulation of active constrained-layer functionally graded beam
	Elena Miroshnichenko
	Recommended Citation





