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ABSTRACT

The problem of optimal capital and risk allocation among economic agents, has played a pre-

dominant role in the respective academic and industrial research areas for decades. Typically

as risk occurs in face of randomness the risks which are to be measured are identified with

real-valued random variables on some probability space (Ω,F ,P). Consider a model space

X , and n economic agents with initial endowments X1, · · · , Xn ∈ X who assess the riskiness

of their positions by means of law-invariant convex risk measures ρi : X → (−∞,∞]. In

order to minimize total and individual risk, the agents redistribute the aggregate endowment

X = X1 + · · · + Xn among themselves. An optimal capital and risk allocation Y1, · · · , Yn

satisfies Y1 + · · ·+ Yn = X and

ρ1(Y1) + · · ·+ ρ(Yn) = inf
{ n∑

i=1

ρi(Xi) : Xi ∈ X , i = 1, . . . , n, and
n∑
i=1

Xi = X
}
, (0.1)

where �n
i=1ρi(X) = inf

{∑n
i=1 ρi(Xi) : Xi ∈ X , i = 1, . . . , n, and

∑n
i=1 Xi = X

}
is the

inf-convolution of ρ1, ..., ρn. In 2008, Filipović and Svindland proved that if X is an Lp(P)

for some 1 ≤ p ≤ ∞ and ρi satisfy a suitable continuity condition (i.e. Fatou property), then

Problem (0.1) always admits a solution. To reflect the fact of randomness of risk, we should

consider the model space X chosen for risk evaluations to be as general as possible. The main

contribution of this thesis is Theorem 4.10 has been published in [9]. It extends Filipović

and Svindland’s result from Lp spaces to general rearrangement invariant (r.i.) spaces.
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Chapter 1

Axioms of risk measures and

Fatou-type properties

1.1 Introduction

The theory of risk measures is well-established and has been extensively studied in the

growing field of mathematical finance in the past decades. Measuring the risk of a financial

position is a complex process which is connected with many features in the financial market.

In essence, a risk measure can be viewed as a rule to assign a certain indicator of risk —

typically a capital requirement — to a given financial position of a financial institution. The

problem of optimal capital and risk allocation among several economic agents, or business

units, has played a predominant role in the respective academic and industrial research

areas for decades. These optimal risk allocation problems can be interpreted as problems

that not only to minimize the total risk but also to determine the optimal allocation. In

general, it is a difficult task to find the optimal allocation explicitly and the minimum

of total risk may not be attainable. Föllmer and Schied ([15]), and Frittelli and Gianin

([16]), respectively, has drawn the attention to study these problems using a new kind of

mathematical approach, inf-convolution of risk measures. One important result in ([14], [21],

[9]) showed that the capital and risk allocation problem on L1 space may always admits an
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optimal allocation among the agents if each risk measure involved carries some desirable

properties, e.g., convexity, continuity, and law-invariance. These properties are essential

ingredients of some complex optimal risk allocation problems. Motivated by this result, we

want to investigate the existence of such optimal allocation on a more general framework of

model spaces, rearrangement invariant (r.i.) spaces.

This thesis is organized as follows. In Chapter 1, we discuss the choices of model spaces

and introducing the axioms and Fatou-type properties of risk measures. In Chapter 2,

we study the Fenchel-Moreau duality theorem which has played an important role in the

applications of convex risk measures in the field of risk management. In Chapter 3, we

introduce the inf-convolution of risk measures and deliver the proof of the most useful result

of theorem 2.5 in Filipović and Svindland ([14]). Finally, we extend previous result from L1

space to general r.i. spaces in Chapter 4.

1.2 Model spaces

Measuring the risk of a financial position has to be evaluated based on the model space X .

A function space is a topological space whose points are functions. There are many different

kinds of function spaces. We say a function space over a fixed nonatomic probability space

(Ω,F ,P) is an order ideal of L0 := L0(Ω,F ,P), i.e., a subspace of L0 such that if X ∈ X and

Y is a random variable such that |Y | ≤ |X|, then Y ∈ X . There is an ongoing debate on the

right model space for financial risk measures, i.e. about what an ideal domain of definition for

risk measures would be. Typically, as risk occurs in face of randomness, the risks which are

to be measured are identified with real-valued random variables on some measurable space

(Ω,F). The question which causes debate, however, is which space of random variables one

should use as model space. Since risk is often referred to uncertainty about the underlying

probabilistic mechanism, many scholars argue that model spaces should be robust in the

sense of not depending too heavily on some specific probabilistic model [22]. In the past

decades, the literature usually suggests one of the following model spaces:
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1. L0, the spaces of all P-almost sure (P-a.s.) equivalence classes of random variables for

some probability measure P on (Ω,F).

2. L∞, the spaces of all bounded random variables or P-a.s. equivalence classes of bounded

random variables, i.e.

L∞ :=
{
f ∈ L0 | |f | ≤ c, a.e. for some c ∈ R

}
.

3. Lp (1 ≤ p <∞), the space of P-a.s. equivalence classes of random variables with finite

p-th moment, i.e.

Lp :=
{
f ∈ L0 |

∫
|f |p dP <∞

}
.

The L0 and L∞ spaces satisfy minimal model dependence since in fact they only depend

on the null sets of the probability measure P. The problem with choosing L0, however, is that

these spaces are in general too large to reasonably define aggregation based risk measures on

them. Moreover, if (Ω,F) is not finite, L0 do not allow for a locally convex topology which

make it no longer suitable for optimization problem. On the other hand, the L∞ space that

has been used as model space in the early stage of axiomatic theory of risk measures is a

Banach space, so in particular a locally convex space. However, it is obviously a very limited

space, for example, the random variables with log-normal distribution (under some pricing

probability measure) involved in Black-Scholes market models cannot be incorporated in

L∞. Assuming frictionless markets (i,e. financial markets without transaction costs), there

is no upper bound on the volumes and thus value of financial positions. Hence unbounded

distributions appear quite naturally. In applications, risks with unbounded support and

potentially heavy-tailed distributions are also commonly employed in the insurance business.

From this point of view model spaces should at least be sufficiently large to include these

standard unbounded models, and the Lp spaces have been proposed to resolve this issue.

Problematic though is the strong dependence of Lp on the probability measure P in that it

is not invariant under equivalent changes of measure anymore. When different agents in the

market base their respective evaluations on applying different references probability measures
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respectively or when optimizing the preferences of some agent under constraints given by

some pricing rules, it is in general not clear which reference probability one should choose

and on which (locally convex) model space the analysis should be carried out. Further more,

Lp and L∞ spaces are not everything we can work on. There are many other model spaces

should be interested in our researches, such as Orlicz space and Orlicz heart. Thus, when

measuring the risks, we may want our model space includes as many random variables as

possible to reflect the fact of randomness of risk, and it should not have too much constraints

as well. This led to more general model spaces, so-called rearrangement invariant(r.i) spaces,

whose norms are measured only depends on the distribution of random variables in it. These

spaces have a considerably richer structure than Lp spaces. The following definition of r.i.

space is given in Braverman ([7]).

Definition 1.1 (Rearrangement invariant (r.i.) space). A Banach space X 6= {0} over a

fixed probability space (Ω,F ,P) is said to be an rearrangement invariant (r.i.) space, if the

following conditions hold:

(1) If |X| ≤ |Y | and Y ∈ X , then X ∈ X and ‖X‖ ≤ ‖Y ‖.

(2) if P(X ≤ t) = P(Y ≤ t) for all t ∈ R, i.e., X, Y have same distributions ( written as

X ∼ Y ), and Y ∈ X , then X ∈ X and ‖X‖ = ‖Y ‖.

The main property of r.i. space is that the norm of any element X only depends on the

distribution of X. This is why the probabilistic methods have been used successfully.

Example 1.2. (r.i. spaces)

(1) Lp spaces for 1 ≤ p ≤ ∞;

(2) Orlicz space LΦ and Orlicz Heart HΦ (see chapter 4).

Remark 1.3. For an r.i. space X , it holds that L∞ ⊂ X ⊂ L1 (see Corollary 6.7 in [4]).

As we mentioned that convexity, continuity and law-invariance are the desirable proper-

ties of risk measure we are interested in optimization problems. In particular, the continuity
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properties are useful for applications and are responsible for corresponding representation.

Also, convex duality techniques are desirable and are available as soon as the risk measures

involved admit tractable dual representations. Thus, when applying the inf-convolution

methods in the risk sharing problems, we are interested in whether the inf-convolution of

risk measures preserves these desirable properties on r.i. spaces. In the following chapter,

we start discuss some axioms and Fatou-type properties of risk measures.

1.3 Axioms and Fatou-type properties of risk measures

The axiomatic approach to monetary risk measures was introduced by Artzner et al. ([2]).

The space X is going to describe all possible financial positions X : Ω→ R, where X(ω) is

the discounted net worth of the position at the end of the time period if the scenario ω ∈ Ω

is realized. Given a financial position X in X , a risk measure, we refer to Artzner et al. ([2]),

is defined as

ρ(X) = inf
{
m ∈ R | X +m1 ∈ Aρ

}
,

where Aρ := {X ∈ X | ρ(X) ≤ 0} is the set of all acceptable financial positions ( related

to the preference system). In a point of view, ρ(X) is the minimum capital need to added

to the financial position makes it acceptable.

A map ρ : X → (−∞,∞] is called a monetary risk measure if it satisfies the following

properties:

(1) Grounded property: If ρ(0) = 0 ( so ρ is proper, i.e. it does not coincide with ∞).

(2) Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y ), for all X, Y ∈ X .

(3) Cash invariance: If ρ(X +m) = ρ(X)−m. for all m ∈ R and all X ∈ X .

A monetary risk measure ρ is called a convex risk measure if it satisfies

(4) Convexity: If ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ), for any λ ∈ [0, 1] and all

X, Y ∈ X .
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ρ is called a coherent risk measure if it also satisfies

(5) Positive homogeneity: If ρ(λX) = λρ(X), for all λ ≥ 0 and all X ∈ X .

Continuity property is an important tool for approximation arguments, and in particular

it implies qualitative robustness properties of risk measures which are important for their

application. Continuity property of convex risk measures on Lp and consequences for its

representation have been investigated in detail in Föllmer and Schied ([15]). The Fatou-

type properties are continuity property of risk measures that describes in a rigorous way

how close are our risk evaluations for different financial positions that are expected to have

similar performance. The tractable dual representation is ensured on Lp spaces if the risk

measures have the Fatou property. However, the Fatou property no longer guarantees the

risk measure admits such representation in the general r.i. spaces, such as Orlicz spaces

(see chapter 4). In order to overcome this obstacle, Gao and Xanthos introduced the strong

Fatou property and highlight the importance of strong Fatou property in ([19]), which turns

out to be the right continuity adjustment in the Orlicz space framework.

Let X be an r.i. space. We say that ρ : X → (−∞,∞] has the

1. Fatou property if ρ(X) ≤ lim infn ρ(Xn) whenever (Xn) ⊆ X and X ∈ X satisfy

Xn
a.s.−−→ X and |Xn| ≤ X0

for some X0 ∈ X and all n ∈ N.

2. Strong Fatou property if ρ(X) ≤ lim infn ρ(Xn) whenever (Xn) ⊆ X and X ∈ X satisfy

Xn
a.s.−−→ X and sup‖Xn‖ <∞.

It is clear that the Fatou property is weaker than the strong Fatou property, also it is not

difficult to verify that they coincide on L∞.

Let’s consider a common used risk measure Expected Shortfall as an example. For

α ∈ (0, 1), we define Value-at-Risk at level α by

VaRα(X) := inf
{
m ∈ R : P(X +m < 0) ≤ α

}
, X ∈ L0.
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For α ∈ (0, 1], define Expected Shortfall at level α by

ESα(X) =
1

α

∫ α

0

Varβ(X)dβ, X ∈ L1.

By this definition, Expected Shortfall make sense for any X ∈ L1 and it is well known

that ESα is a coherent risk measure. Note that ES1(X) = E[X], so it has the Fatou proerty

but not the strong Fatou property on L1. Indeed, in view of nonatomicity, take a decreasing

sequence of measurable sets (An) such that P(An) = 1
n

for any n ∈ N. Set Xn = −n1An for

every n ∈ N. Then ‖Xn‖ = 1 for all n ∈ N, Xn
a.s.−−→ 0, but lim infn E[Xn] = −1 < 0 = E[0].

However, when α ∈ (0, 1), the Expected Shortfall does have the strong Fatou property on

any r.i space ([9]).

Proposition 1.4. For α ∈ (0, 1), ESα has the strong Fatou property on any r.i space X .

Proof. Fix any ε ∈ (0, 1 − α). By Egorov’s Theorem, there exist a measurable set B and

n0 ∈ N such that

P(B) < ε, and |Xn −X| < ε on Bc for all n ≥ n0.

Pick any β ∈ (0, α), and take any n ≥ n0. Let m := Varβ(Xn) and m′ := m + ε. It follows

from {X+m′ < 0} ⊆ ({X+m′ < 0}∩B)∪({X+m′ < 0}∩{Xn < X+ε}) ⊆ B∪{Xn+m < 0}

that P(X +m′ < 0) ≤ P(B) + P(Xn +m < 0) ≤ ε+ β, and consequently,

Varβ+ε(X) ≤ m′ = Varβ(Xn) + ε.

Since this holds for any β ∈ (0, α) and any n ≥ n0, integrating with respect to β over (0, α)

implies 1
α

∫ α+ε

ε
Varβ(X) dβ = 1

α

∫ α
0

Varβ+ε(X) dβ ≤ 1
α

∫ α
0

Varβ(Xn) dβ + ε = ESα(Xn) + ε for

all n ≥ n0. Taking infimum over n ≥ n0, we have

1

α

∫ α+ε

ε

Varβ(X) dβ ≤ inf
n≥n0

ESα(Xn) + ε ≤ lim inf
n

ESα(Xn) + ε.

Now, since Var•(X) ∈ L1(0, 1], letting ε→ 0, we have ESα(X) ≤ lim infn ESα(Xn).
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Chapter 2

Fenchel-Moreau Duality theorem

The convex analysis and, especially, the duality theory has surprisingly found in applications

of risk measures in the field of convex optimization. Convex duality methods often lead to

new insight, computational techniques and optimality conditions. In this section we will

study some background theory in convexity, optimization, and convex duality needed to

understand how duality methods are used in mathematical finance. we first recall some

basic notions of convexity theory, such as convex sets, convex functions and properties of

these, based on the presentation of convexity in Rochafellar ([24]). Then we study conjugate

functions and Fenchel-Moreau dual representation theorem refer to Brezis ([8]), which is

the most fundamental theorem in duality theory. Finally we discuss the applications of

Fenchel-Moreau theorem for convex risk measures in Lp spaces.

2.1 Convex and lower semicontinuous functions

A topological space (X , τ) is called a locally convex topological space, if every neighbourhood

of zero includes a convex neighbourhood of zero.

Example 2.1. (Locally convex topological spaces)

(1) (X , ‖·‖).

(2) (X , σ(X ,Y)), where σ(X ,Y) is weak topology.
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Definition 2.2 (Convex set). A subset C ⊆ X is said to be a convex set if

tX + (1− t)Y ∈ C, for all X, Y ∈ C and t ∈ [0, 1].

Moreover, C is said to be a cone if

tX ∈ C, for all X ∈ C and t > 0.

The following are some basic properties of convex sets in a topological vector space:

1. The sum of two convex sets is convex.

2. Scalar multiples of convex sets is convex.

3. The intersection of an arbitrary family of convex sets is convex.

4. Both the interior and the closure of a convex set are convex.

In the following context, X denoted as a locally convex topological space. Let ϕ : X →

(−∞,∞] be a function on X .

Definition 2.3 (Convex function). We say ϕ is convex if the inequality

ϕ(tX + (1− t)Y ) ≤ tϕ(X) + (1− t)ϕ(Y )

holds for all X, Y ∈ X and all t ∈ [0, 1].

Definition 2.4 ((Effective) domain). The effective domain of ϕ denoted by D(ϕ) is defined

as

D(ϕ) = {X ∈ X | ϕ(X) < +∞}.

In what follows, we denote {X ∈ X | ϕ(X) = α} by {ϕ = α} and denote {X ∈

X | ϕ(X) ≥ α} by {ϕ ≥ α}, etc.

Definition 2.5 (Epigraph). The epigraph of ϕ denoted by epi(ϕ) is defined as

epi(ϕ) =
{

[X,λ] ∈ X × R | ϕ(X) ≤ λ
}
.

9



The following are some basic properties of the convex function ϕ:

1. If ϕ has a local minimum M , then M is also a global minimum for ϕ.

2. λϕ is convex for λ > 0.

3. (Effective) domain D(ϕ) is a convex set.

4. ϕ is convex if and only if epi(ϕ) is convex in X × R.

5. ϕ is convex, then for every λ ∈ R the set {ϕ(X) ≤ λ} is convex; but the converse is

not true.

6. The sum of convex functions is convex, e.g. if ϕ1 and ϕ2 is convex, then ϕ1 + ϕ2 is

convex.

7. For X1, · · · , Xn ∈ X , a1, · · · , an ∈ R+, and
∑n

i=1 ai = 1,the following inequality holds:

ϕ(
n∑
i=1

aiXi) ≤
n∑
i=1

aiϕ(Xi).

8. If (ϕi)i∈I is a family of (finite) convex function, then their superior envelope is also

convex, that is ϕ(X) = supi∈I ϕi(X) is convex.

Definition 2.6 (Lower semicontinuous (l.s.c.)). We say ϕ is τ -l.s.c. at a point X0, if for

each λ ∈ R such that ϕ(X0) > λ there exists a neighbourhood U of X0 such that ϕ(X) > λ

for all X ∈ U .

We say ϕ is l.s.c on X if it is l.s.c at every point X ∈ X .

Lemma 2.7. ϕ is τ -l.s.c. if and only if {ϕ ≤ λ} is τ -closed for every λ ∈ R.

Proof. The sublevel sets {ϕ ≤ λ} are closed for all λ ∈ R if and only if {ϕ ≤ λ}c are open for

all λ. But this happens if and only if all Y ∈ {ϕ ≤ λ}c are interior points, which is equivalent

with that for each Y ∈ {ϕ ≤ λ}c there is a neighbourhood U such that U ⊆ {ϕ ≤ λ}c, i.e.

ϕ(U) > λ. But this is the definition of ϕ being lower semicontinuous at the point Y . Since

this argument holds for all Y ∈ X (by choosing different λ), ϕ is lower semicontinuous.

10



The following are some basic properties of l.s.c functions:

1. ϕ is l.s.c. if and only if epi(ϕ) is closed in X × R.

2. ϕ is l.s.c., then for every sequence (Xn) in X such thatXn
τ−→ X, we have lim infn ϕ(Xn) ≥

ϕ(X), and conversely is true if X is a metric space.

3. If ϕ1 and ϕ2 is l.s.c., then ϕ1 + ϕ2 is l.s.c..

4. If (ϕi)i∈I is a family of l.s.c function, then their superior envelope is also l.s.c., that is

ϕ(X) = supi∈I ϕi(X) is l.s.c..

2.2 Fenchel-Moreau theorem and its applications

Another advantage with convex functions in optimization is that one can exploit the duality

properties in order to solve problems. Dual pairs are an extremely useful way of obtaining

locally convex topological spaces. The following definition of dual pair is given in Aliprantis

and Border ([1]).

Definition 2.8 (Dual pair). A dual pair is a pair (X ,Y) of vector spaces together with a

bilinear functional (X, Y ) 7→ 〈X, Y 〉, from X × Y → R, that separates the points of X and

Y. That is

(1) The mapping Y 7−→ 〈X, Y 〉 is linear for each X ∈ X .

(2) The mapping X 7−→ 〈X, Y 〉 is linear for each Y ∈ Y.

(3) If 〈X, Y 〉 = 0 for each Y ∈ Y, then X = 0.

(4) If 〈X, Y 〉 = 0 for each X ∈ X , then Y = 0.

Each space of the dual pair (X ,Y) can be interpreted as a set of linear function on the

other. for instance, each X ∈ X , defines the linear functional Y 7−→ 〈X, Y 〉. Conditions

(1) and (2) are the ones required for the definition of a bilinear functional. The bilinear

functional (X, Y ) 7−→ 〈X, Y 〉 is also called the duality (or the bilinearity) of the dual pair.
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Example 2.9. (Examples of dual pair)

(1) (Rn,Rn) under duality 〈X, Y 〉 =
∑n

i=1 xiyi.

(2) (Lp, Lq) under duality 〈X, Y 〉 =
∫
XY dP for 1 ≤ p ≤ ∞ and 1

p
+ 1

q
= 1.

For a topological vector space (X , τ), the topological dual space of X is the space of all

linear continuous function on X , defined as

(X , τ)′ = {f : X → R | f is linear and τ − continuous}.

If the τ is clear from the context, we will denote (X , τ)′ by X ′. If X is a normed vector

space, the norm dual space of (X , ‖·‖)′ is denoted by X ∗, and is defined as

X ∗ = {f : X → R | f is linear and norm continuous}.

Remark 2.10. The topological dual of (X , σ(X ,Y)) is Y .

The topological dual of X × R is X ′ × R in the sense of the next lemma.

Lemma 2.11. For any function Φ ∈ (X × R)′, there exists (f, k) ∈ X ′ × R such that

Φ([X,λ]) = 〈f,X〉+ kλ, for all X ∈ X and λ ∈ R.

Proof. Let us define 〈f,X〉 = Φ([X, 0]) for all X ∈ X , then f is continuous linear function

since Φ ∈ (X × R)∗, thus f ∈ X ′. let k = Φ([0, 1]), by linearity of Φ we have

Φ([X,λ]) = Φ([X, 0] + λ[0, 1]) = Φ([X, 0]) + λΦ([0, 1]) = 〈f,X〉+ kλ.

A Hyperplane is a set of the form {f = α} , where f is a non-zero linear function on X

and α ∈ R. A hyperplane defines two strict half-spaces, {f > α} and {f < α}, and two

weak half-spaces, {f ≥ α} and {f ≤ α}. The following Hahn-Banach separation theorem

provides a fundamental understanding of the proof of Fenchel-Moreau duality theorem.
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Theorem 2.12 (Hahn-Banach second geometric form). Let X be a locally convex topological

space, A,B be two non-empty convex subsets of X with A∩B = ∅. Assume that A is closed

and B is compact. Then there exists a closed hyperplane {f = α} with f ∈ X ′ that strictly

separates A and B, that is there exists some ε > 0 such that

f(X) + ε ≤ α ≤ f(Y )− ε

for all X ∈ A and all Y ∈ B.

We now come to a central notion of convex duality, the conjugate of a function.

Definition 2.13 (Conjugate function). Let X be a locally convex topological space, and

ϕ : X → (−∞,+∞] be a function such that ϕ 6= +∞ (i.e., D(ϕ) 6= ∅). we define the

conjugate function ϕ∗ : X ′ → (−∞,+∞] to be

ϕ∗(f) = sup
X∈X
{〈f,X〉 − ϕ(X)} (f ∈ X ′)

Note that ϕ∗ is convex and l.s.c. on (X ′, σ(X ′,X )). Indeed, for each fixed X ∈ X the

function f 7→ 〈f,X〉 − ϕ(X) is convex and continuous (and thus l.s.c) on X ′, it follows that

the superior envelope of these functions (as X runs through X ) is convex and l.s.c.

Definition 2.14 (Biconjugate function). Let X be a locally convex topological space. For a

function ϕ : X → (−∞,∞], define the biconjugate of ϕ, ϕ∗∗, to be the conjugate of ϕ∗, so

ϕ∗∗(X) = sup
f∈X ′
{〈f,X〉 − ϕ∗(f)} (X ∈ X )

Proposition 2.15. Let X be a locally convex topological space, assume that ϕ : X →

(−∞,∞] is a l.s.c. convex function and ϕ 6≡ ∞. Then ϕ∗ 6≡ ∞, and in particular, ϕ

is bounded below by an affine continuous function.

Proof. since D(ϕ) 6= ∅, let X0 ∈ D(ϕ) and let λ0 < ϕ(X0). We apply Hahn-Banach second

geometric form theorem in the space X × R with A = epi(ϕ) and B = [X0, λ0] (Since ϕ

is convex and l.s.c., then A is closed and convex, B is compact since it is a singleton). So,
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there exists a closed hyperplane H = [Φ = a] in X ×R that strictly separates A and B, and

function Φ ∈ (X × R)′. By lemma 2.11 , we have

Φ([X,λ]) = Φ([X, 0] + λ[0, 1]) = 〈f,X〉+ kλ

Writing that Φ > a on A and Φ < a on B, we have

〈f,X〉+ kλ > a for all [X,λ] ∈ epi(ϕ)

and

〈f,X0〉+ kλ0 < a

in particular, we have

〈f,X〉+ kϕ(X) > a ∀X ∈ D(ϕ) (2.1)

and thus

〈f,X0〉+ kϕ(X0) > a > 〈f,X0〉+ kλ0

it follows that k > 0 since ϕ(X0) > λ0. Divided by -k in both side of (2.1), we have

〈−1

k
f,X〉 − ϕ(X) < −a

k
for all X ∈ D(ϕ)

therefore ϕ∗(− 1
k
f) < +∞, and ϕ is bounded below, that is

ϕ(X) > 〈−1

k
f,X〉+

a

k
for all X ∈ X

Theorem 2.16 (Fenchel-Moreau dual representation). Let X be a locally convex topological

space, and ϕ : X → (−∞,∞] be a convex function. Then the following are equivalent

(1) ϕ is lower semicontinuous

(2) ϕ admits the representation as: ϕ(X) = supf∈X ′{〈f,X〉 − ϕ∗(f)},

where ϕ∗(f) = supX∈X{〈f,X〉 − ϕ(X)}
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Proof. (2) =⇒ (1) is clear. Indeed, since for each f ∈ X ′ the ϕ∗(f) is convex and l.s.c.

then 〈f,X〉−ϕ∗(f) is convex and l.s.c. on X ′, thus it follows that ϕ is convex and l.s.c since

the superior envelope of these functions (as f runs through X ′) is convex and l.s.c.

(1) =⇒ (2). Let ϕ∗∗(X) = supf∈X ′{〈f,X〉 − ϕ∗(f)}, we want to show that ϕ = ϕ∗∗.

First we prove that the result holds for ϕ ≥ 0.

Note that ϕ∗∗ ≤ ϕ, since 〈f,X〉 − ϕ∗(f) ≤ ϕ(X) for all X ∈ X and for all f ∈ X ′. In

order to show that ϕ∗∗ = ϕ we prove by contradiction. We assume that ϕ∗∗(X0) < ϕ(X0)

for some X0 ∈ X , then ϕ∗∗(X0) is always finite. We apply Hahn-Banach second geometric

form theorem in the space X × R with A = epi(ϕ) and B = [X0, ϕ
∗∗(X0)]. So, there exists

linear continuous function f ∈ X ′, k ∈ R, and a ∈ R such that

〈f,X〉+ kλ > a for all [X,λ] ∈ epi(ϕ),

and

〈f,X0〉+ kϕ∗∗(X0) < a. (2.2)

It follows that k ≥ 0 (fix some X ∈ D(ϕ) and let λ → ∞), here we could possibly have

k = 0.

Let ε > 0, since ϕ ≥ 0, we have

〈f,X〉+ (k + ε)ϕ(X) ≥ a for all X ∈ D(ϕ).

Therefore

ϕ∗(− f

k + ε
) ≤ − a

k + ε
.

It follows from the definition of ϕ∗∗(X0)that

ϕ∗∗(X0) ≥ 〈− f

k + ε
,X0〉 − ϕ∗(−

f

k + ε
) ≥ 〈− f

k + ε
,X0〉+

a

k + ε
.

Thus we have

〈f,X0〉+ (k + ε)ϕ∗∗(X0) ≥ a for all ε > 0.

which contradicts with (2.2).
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Now let us prove the general case.

Fix some f0 ∈ D(ϕ∗) ( by proposition 2.15 we know that D(ϕ∗) 6= ∅). We define

ϕ(X) = ϕ(X)− 〈f0, X〉+ ϕ∗(f0).

Since f0 is linear continuous then f0 is convex l.s.c, thus ϕ is convex and l.s.c., ϕ 6≡ ∞ ( since

ϕ 6≡ ∞ so there is some X ∈ X such that ϕ(X) < ∞, and ϕ∗(f0) < ∞ since f0 ∈ D(ϕ∗)),

and ϕ ≥ 0 (since ϕ∗(f0) ≥ 〈f0, X〉 − ϕ(X)). We know from previous that ϕ∗∗ = ϕ.

Now let us now compute (ϕ)∗ and (ϕ)∗∗. We have

(ϕ)∗(f) = sup
X∈X
{〈f,X〉 − ϕ(X)}

= sup
X∈X
{〈f,X〉 − ϕ(X) + 〈f0, X〉+ ϕ∗(f0)}

= sup
X∈X
{〈f + f0, X〉 − ϕ(X)} − ϕ∗(f0)

= ϕ∗(f + f0)− ϕ∗(f0)

and

(ϕ)∗∗(X) = sup
f∈X ′
{〈f,X〉 − ϕ∗(f)}

= sup
f∈X ′
{〈f,X〉 − ϕ∗(f + f0) + ϕ∗(f0)}

= sup
f∈X ′
{〈f + f0, X〉 − ϕ∗(f + f0)− 〈f0, X〉+ ϕ∗(f0)}

= sup
f∈X ′
{〈f + f0, X〉 − ϕ∗(f + f0)} − 〈f0, X〉+ ϕ∗(f0)

= sup
g=f+f0∈X ′

{〈g,X〉 − ϕ∗(g)} − 〈f0, X〉+ ϕ∗(f0)

= ϕ∗∗(X)− 〈f0, X〉+ ϕ∗(f0)

Writing that (ϕ)∗∗ = ϕ, we obtain ϕ∗∗ = ϕ.

To apply Fenchel-Moreau representation theorem to convex risk measures, the following

extension of a classical theorem of Namioka stating that positive linear functionals on a

Banach lattice are continuous is most useful. A Banach lattice is a real Banach space X
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endowed with an ordering ≤ such that (X ,≤) is a vector lattice, and the norm on X is a

lattice norm, that is, if |X| ≤ |Y | implies ‖X‖ ≤ ‖Y ‖ for all X, Y ∈ X .

Theorem 2.17 (Extended Namioka-Klee theorem [6]). Any proper convex and monotone

increasing functional π : X → (−∞,∞] on a Banach lattice (X , ‖·‖) is continuous on

Iπ := int(D(π)) (the interior of D(π)). Moreover, it admits a dual representation as

π(X) = max
Y ∈X ∗+

{〈Y,X〉 − π∗(Y )}, for all X ∈ int(D(π))

Corollary 2.18. Let ρ : Lp → (−∞,∞], 1 ≤ p ≤ ∞, be a proper convex risk measure.

Then

(1) ρ is continuous on Iρ w.r.t. relative norm topology.

(2) Any finite convex risk measure on Lp, 1 ≤ p ≤ ∞, is continuous.

Theorem 2.19 (Radon-Nikodym theorem). Let µ, ν be two finite measures on (Ω,F) such

that ν � µ (i.e. ν is absolutely continuous with respect to µ, that is, if µ(A) = 0 for any

A ∈ F , then ν(A) = 0). Then there exists a measurable function f ≥ 0 such that

ν(A) =

∫
A

fdµ.

The function f is called Radon-Nikodym derivative and is denoted by dν
dµ

. Equivalently, we

have
∫

Ω
gdν =

∫
Ω
fgdµ for any integrable and measurable function g.

In the following context, the function spaces X we work on are r.i. spaces.

Definition 2.20 (Weak convergent). Let (Xn) be a sequence in X , we write Xn
σ(X ,X ′)−−−−→ X

in X if and only if f(Xn)→ f(X) for every f ∈ X ′.

Definition 2.21 (Order convergent). A sequence (Xn) ⊆ X is said order converge to X in

X , written as Xn
o−→ X, if Xn

a.s.−−→ X ∈ X , and |Xn| ≤ X0 for some X0 ∈ X and for all

n ∈ N.

Definition 2.22 (Order continuous). A linear function f on X is said to be order continuous

if f(Xn)→ f(X) whenever (Xn) ⊆ X and Xn
o−→ X.
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The order continuous dual of a r.i. space X is denoted by X∼n and defined as

X∼n = {f : X → R | f is linear and order continuous}

In general, we have X∼n ⊆ X ∗, but they coincide if X has order continuous norm, i.e., X has

a norm ‖·‖ such that ‖Xn‖ → 0 whenever (Xn) is a sequence in X and Xn ↓ 0.

Lemma 2.23. X∼n ⊆ X ∗.

Proof. Let f ∈ X∼n and (Xn) ⊆ X such that Xn
‖·‖−→ 0. Suppose that f(Xn) 6→ 0. Then

there exists some ε > 0, and a subsequence (Xnk) of (Xn) such that for all k ∈ N, we have

‖Xnk‖ ≤ 1
2k

but |f(Xnk)| > ε. Put Yk =
∑∞

i=k|Xni |, then Yk ∈ X and |Xnk | ≤ Yk ↓ 0. Thus

Xnk

o−→ 0. It follows f(Xnk)→ 0, a contradiction. Therefore f ∈ X ∗.

Theorem 2.24. Let X be a r.i. space, then the following are equivalent:

(1) X∼n = X ∗.

(2) X has order continuous norm.

(3) if Xn
o−→ X in X , then ‖Xn −X‖ → 0.

Proof. (1)⇔ (2) see proof of theorem 2.4.2 in [23].

(2) =⇒ (3). Let Xn
o−→ X in X , then there exists X0 ∈ X such that |Xn| ≤ X0 for all n,

and Xn
a.s.−−→ X. Then |Xn −X|

a.s.−−→ 0, and |Xn −X| ≤ X0 + |X| ∈ X . Now, put

Yn = sup
m≥n
|Xm −X| ≤ X0 + |X|,

then |Xn −X| ≤ Yn for all n, and Yn ↓ 0 in X . By (2) we have

‖Xn −X‖ ≤ ‖Yn‖ → 0.

(3) =⇒ (1). By lemma 2.23, we only need to show that X ∗ ⊆ X∼n . Let f ∈ X ∗, and let

Xn
o−→ X in X , by (3) we have ‖Xn −X‖ → 0, this follows

|f(Xn)− f(X)| = |f(Xn −X)| ≤ ‖f‖‖Xn −X‖ → 0.

Thus f ∈ X∼n .
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Example 2.25. (1). For Lp (1 ≤ p <∞) space, we have (Lp)∼n = (Lp)∗ since Lp has order

continuous norm. Indeed, let Xn ↓ 0, then |Xn|p ↓ 0. By dominated convergent theorem, we

have

‖Xn‖ = (

∫
Ω

|Xn|pdP)
1
p → 0.

(2). L∞ in general does not has order continuous norm. Consider ([0, 1],B[0,1],m), where

m is a Lebesque measure. Let Xn = 1(0, 1
n

] ↓ 0, but ‖Xn‖ = 1 for all n.

Theorem 2.26 (Riesz representation). Let 1 ≤ p ≤ ∞ and 1
p

+ 1
q

= 1. Let φ ∈ (Lp)∼n , then

there exists a unique function Y ∈ Lq such that

φ(X) =

∫
Ω

XY dP, for all X ∈ Lp,

Proof. By knowing the fact that any φ ∈ (Lp)∼n can be expressed by φ = φ1 − φ2, where

φ1, φ2 are positive linear order continuous functions. W.l.o.g. we assume φ ≥ 0.

Step 1. For any A ∈ F , 1A ∈ LP . Put

µ(1A) = φ(1A) ≥ 0.

Claim that µ is a measure and µ� P. Indeed,

1. if P(A) = 0, then 1A = 0 a.s. in LP . Thus µ(A) = φ(0) = 0. In particular, µ(∅) = 0.

2. µ(Ω) = φ(1Ω) <∞.

3. Let (An) ⊆ F be disjointed. Then we have

1⋃n
k=1 Ak

(ω)→ 1⋃∞
k=1 Ak

(ω), and 1⋃n
k=1 Ak

(ω) ≤ 1.

Thus, 1⋃n
k=1 Ak

o−→ 1⋃∞
k=1 Ak

in Lp. It follows φ(1⋃n
k=1 Ak

)→ φ(1⋃∞
k=1 Ak

). By linearity of

φ we have

φ(1⋃n
k=1 Ak

) = φ(1A1) + · · ·+ φ(1An) =
n∑
k=1

µ(Ak).

Then
∑∞

k+1 µ(Ak) = µ(
⋃n
k=1Ak). Thus, µ is a finite measure and µ� P.
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By Theorem 2.19, there exists Y ≥ 0 and measurable such that φ(1A) = µ(A) =
∫
A
Y dP.

Step 2. Let X ∈ Lp and X ≥ 0, then there exists simple function sequence (Xn) ⊆ Lp

such that 0 ≤ Xn(ω) ↑ X(ω) for all ω ∈ Ω. Thus Xn
o−→ X and φ(Xn) → φ(X). On the

other hand, by step 1 and monotone convergent theorem, we have φ(Xn) =
∫

Ω
XnY dP →∫

Ω
XY dP. Thus φ(X) =

∫
Ω
XY dP.

Step 3. For general X ∈ Lp, we have X = X+ −X−, then∫
Ω

X+Y dP = φ(X+) <∞, and

∫
Ω

X−Y dP = φ(X−) <∞.

Thus
∫

Ω
XY dP <∞. So, we have φ(X) = φ(X+)− φ(X−) =

∫
Ω
XY dP <∞.

Step 4. Claim that such Y is unique. Indeed, suppose Y is not unique. Let Y ′ ∈ L0 be

also such that
∫

Ω
|XY |dP <∞ and φ(X) =

∫
Ω
XY dP for all X ∈ Lp. So,∫

Ω

|X(Y − Y ′)|dP <∞ and

∫
Ω

X(Y − Y ′)dP = 0, for all X ∈  Lp.

In particular, by taking X = 1, we have Y − Y ′ ∈ L1. Moreover, we have∫
A

(Y − Y ′)dP = 0, for all A ∈ F .

Thus Y = Y ′ a.s., a contradiction.

Step 5. Claim that Y ∈ Lp. Indeed,

Case (1), for p =∞, take X = Sgn(Y ) :=


1, if Y (ω) > 0

−1, if Y (ω) < 0

0, if Y (ω) = 0.

Then ‖X‖∞ ≤ 1, and

‖Y ‖1 =

∫
Ω

|Y |dP =

∫
Ω

Sgn(Y )Y dP =

∫
Ω

XY dP = φ(X) ≤M‖X‖∞ <∞,

for some M ∈ R, thus Y ∈ L1.

Case (2), for 1 < p <∞, take

Xn =
|Y |q−11{|Y |≤n}Sgn(Y )∥∥|Y |1{|Y |≤n}∥∥ qpq .
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Then ‖Xn‖p = 1. and∫
Ω

XnY dP =

∫
Ω

|Y |q1{|Y |≤n}∥∥|Y |1{|Y |≤n}∥∥ qpq dP =

∥∥|Y |1{|Y |≤n}∥∥qq∥∥|Y |1{|Y |≤n}∥∥ qpq =
∥∥|Y |1{|Y |≤n}∥∥q− qpq

=
∥∥|Y |1{|Y |≤n}∥∥q.

Since
∫

Ω
XnY dP = φ(Xn) ≤ M‖Xn‖p ≤ M for some M ∈ R, then

∥∥|Y |1{|Y |≤n}∥∥q ≤ M for

all n ∈ N. Now letting n→∞, we have ‖Y ‖q ≤M , thus Y ∈ Lq.

Case (3), for p = 1, we want ‖Y ‖∞ ≤ M for some 0 ≤ M ∈ R, in other words, we

want P(|Y | > M) = 0. Now, suppose P(|Y | > M) > 0, so there exists k ∈ N such that

P(|Y | > M + 1
k
) > 0. Let

X =
1{|Y |>M+ 1

k
}Sgn(Y )

P(|Y | > M + 1
k
)
.

Then ‖X‖1 = 1, and∫
Ω

XY dP =

∫
Ω

1{|Y |>M+ 1
k
}|Y |

P(|Y | > M + 1
k
)
dP ≥

∫
Ω

1{|Y |>M+ 1
k
}(M + 1

k
)dP

P(|Y | > M + 1
k
)

= M +
1

k
.

But
∫

Ω
XY dP = φ(X) ≤ M‖X‖1 = M , this is a contradiction. So, Y ∈ L∞. The proof is

completed.

Let C be a subset of X , we say C is closed if its complement Cc is open in X . Equivalently,

C is closed if and only if it contains all of its limit points.

Remark 2.27. C is norm closed if the limit of every norm convergent sequence is also in it.

C is σ(X ,Y) closed if the limit of every weak convergent sequence is also in it. C is order

closed if the limits of every order convergent sequences is also in it.

Proposition 2.28. If a subset C of X is convex, then the following are equivalent

(1) C is norm closed.

(2) C is σ(X ,X ∗) closed.

Proof. (1) =⇒ (2). Suppose C is not σ(X ,X ∗) closed. Then there exists X ∈ Cσ(X ,X ∗) \ C.

Since C is convex and norm closed, by theorem 2.12 there exists a hyperplane strictly separate

X and C. So we can find some function f ∈ X ∗ such that

f(X) + ε < f(Y ) for all Y ∈ C.
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Since X ∈ C
σ(X ,X ∗)

, then there exist a net (Xa) ⊆ C such that Xa
σ(X ,X ∗)−−−−−→ X. Thus

f(Xa) → f(X), this is a contradiction since lima f(Xa) > f(X). Therefore C is σ(X ,X ∗)

closed.

(2) =⇒ (1). Let (Xn) ⊆ C such that Xn
‖·‖−→ X, then for every f ∈ X ∗ we have

f(Xn)→ f(X), thus by definition of weak convergent we have Xn
σ(X ,X ∗)−−−−−→ X. Since we are

assuming that C is σ(X ,X ∗) closed, it follows that X ∈ C.

Lemma 2.29. For every convex risk measure ρ : X → (−∞,∞], the following are equivalent:

(1) ρ has the Fatou property.

(2) {ρ ≤ λ} is order closed for any λ ∈ R.

Proof. (1) =⇒ (2) Take (Xn) ⊆ {ρ ≤ λ} such that Xn
o−→ X. By (1), we have ρ(X) ≤

lim infn ρ(Xn) ≤ λ, thus X ∈ {ρ ≤ λ}.

(2) =⇒ (1). Take (Xn) ⊆ X such that Xn
o−→ X. If lim infn ρ(Xn) =∞, the statement

is clear, otherwise put λ = lim infn ρ(Xn), by passing to a subsequence we assume that

ρ(Xn)→ λ, then for every ε > 0, there exists N ∈ N such that |ρ(Xn)−λ| ≤ ε for all n ≥ N ,

thus ρ(Xn) ≤ λ+ε. Since Xn
o−→ X, we have ρ(X) ≤ λ+ε. Therefore ρ(X) ≤ lim infn ρ(Xn)

since ε is arbitrary small.

An important topic in the theory of risk measures is to determine when a risk measure on

X admits a representation with respect to some duality involving X . The first major result

in this direction was obtained by Delbaen ([12]), who used the space L∞ of all bounded

random variables as model space and considered the dual (L∞, L1).

Theorem 2.30 (Delbaen). For every convex risk measure ρ : L∞ → (−∞,∞], the following

are equivalent:

(1) ρ is σ(L∞, L1)-l.s.c.

(2) ρ has the Fatou property.
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In this case, ρ admits representation via dual terms as follows:

ρ(X) = sup
Y ∈L1

{E[XY ]− ρ∗(Y )}, for all X ∈ L∞.

If in addition ρ is a coherent risk measure, then ρ admits a more simplified representation

as

ρ(X) = sup
Y ∈Q

E[−XY ] for all X ∈ L∞,

Where Q is a set of nonnegative random variables with expectation 1.

In above theorem, the set Q can be interpreted as a set of probability distributions

(scenarios) and the risk measure of X is obtained as the worst expected loss over the set

of scenarios (stress tests). In general, such dual representations play an important role

in optimization problems and portfolio selection. The representation in theorem 2.30 is

connected with condition (1) σ(L∞, L1)-l.s.c. of ρ via the Fenchel-Moreau duality theorem

in convex analysis. Here, σ(L∞, L1)-l.s.c. of ρ refers to the property that the sets

{ρ ≤ λ} = {X ∈ L∞ | ρ(X) ≤ λ}

are σ(L∞, L1) closed for any λ ∈ R. On the other hand, condition (2) in Theorem 2.30 is

equivalent to the fact that the sets {ρ ≤ λ} are closed with respect to dominated convergence

of sequences.

As consequence of the Fenchel-Moreau theorem one obtains the following representation

result of convex risk measures on Lp spaces (see Kaina and Rüschendorf ([21])).

Theorem 2.31 (Representation of convex risk measures on Lp). Let ρ : Lp → (−∞,∞],

1 ≤ p <∞, be a proper convex risk measure. Then the following are equivalent:

(1) ρ is σ(Lp, Lq)-l.s.c..

(2) ρ is ‖·‖-l.s.c..

(3) ρ(X) = supY ∈Lq{E[XY ]− ρ∗(Y )}, for all X ∈ Lp.

(4) ρ has Fatou property, i.e. ρ(X) ≤ lim infn ρ(Xn) whenever Xn
o−→ X.
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Proof. (1) ⇐⇒ (2). By lemma 2.7 it is equivalent to show that {ρ ≤ λ} is ‖·‖ closed ⇐⇒

{ρ ≤ λ} is σ(Lp, Lq) closed for every λ ∈ R, and this immediately follows by proposition 2.28.

(1)⇐⇒ (3). This is a consequence of Fenchel-Moreau theorem.

(2) =⇒ (4). Take (Xn) ⊆ Lp such that Xn
o−→ X, since Lp (1 ≤ p < ∞) has order

continuous norm, by theorem 2.24 we have Xn
‖·‖−→ X. Then by (2) we have ρ(X) ≤

lim infn ρ(Xn).

(4) =⇒ (2). Let (Xn) ⊆ {ρ ≤ λ} such that Xn
‖·‖−→ X, then there exists a subsequence

Xnk such that ‖Xnk −X‖ ≤ 1
2k

for all k ∈ N. Put Yk =
∑∞

i=k|Xni −X|, then Yk ∈ LP and

|Xnk −X| ≤ Yk ↓ 0. Thus Xnk

o−→ X. By (4), we have X ∈ {ρ ≤ λ}.

A coherent risk measure on Lp have a more simplified representation as in the following

theorem.

Theorem 2.32 (Representation of coherent risk measures on Lp). Let ρ : Lp → (−∞,∞],

1 ≤ p <∞, be a proper coherent risk measure and lower semicontinuous (w.r.t. ‖·‖p), Then

ρ admits the following representation:

ρ(X) = sup
Y ∈Qp

E[−XY ], X ∈ Lp.

where Qp := {Y ∈ Lq+ | ρ∗(−Y ) = 0 and E[Y ] = 1}.

Proof. Step 1, by theorem 2.31 we have ρ(X) = supY ∈Lq{E[XY ]− ρ∗(Y )}, X ∈ Lp. Choose

Z ∈ Lp such that ρ(Z) <∞. From positive homogeneity of ρ, then for any λ > 0 we have

ρ∗(Y ) = sup
X∈LP

{E[XY ]− ρ(X)}

= sup
λX∈LP

{E[λXY ]− ρ(λX)}

= sup
X∈LP

{λE[XY ]− λρ(X)}

=λρ∗(Y )

Since λ is an arbitrary positive number, we must have ρ∗(Y ) = 0, or ∞.
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Step 2, suppose W ∈ Lq and ρ∗(W ) = 0. Let A = {ω |W (ω) > 0} and set X = 1A, then

0 ≤ X ∈ Lp and E[XW ] ≥ 0. For any λ > 0, we have λX + Z ≥ Z, then by monotonicity

of ρ we have

λE[XW ] + E[ZW ] =E[(λX + Z)W ]

≤ ρ(λX + Z) + ρ∗(W )

≤ ρ(Z) + ρ∗(W ) <∞

Since λ is arbitrary positive number, we have E[XW ] = E[W1A] = 0. Thus W ≤ 0 a.s..

Define

Q := {Y ∈ Lq | ρ∗(−Y ) = 0}.

By the preceding argument we have that Y ≥ 0 a.s.. In fact ρ(−Y ) =∞ for any Y ∈ Lq\Q.

Thus we have ρ(X) = supY ∈Q E[−XY ].

Step 3, for any m ∈ R, by cash invariance of ρ we have

ρ(Z)−m = ρ(Z +m1) = sup
Y ∈Q
{−E[ZY ]−mE[Y ]},

hence, for any Y ∈ Q and any m ∈ R we have

ρ(Z) ≥ −E[ZY ] +m(1− E[Y ]).

Therefore, E[Y ] = 1. This complete the proof.

Example 2.33 (Representation of the Expected Shortfall on L1 ). For α ∈ (0, 1], the

Expected Shortfall risk measure ESα : L1 → R has the following representation

ESα = sup
Q∈Zα

EQ[−X]

where Zα := {Q |Q� P, and dQ
dP ≤

1
α
} (see proof of theorem 4.39 in [15] pg.184).

We can see from above that ESα(X) is equal to the worst case of the expected losses of

the position X over a given set of probability models.
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Chapter 3

Inf-convolution of risk measures on L1

In general, the risk sharing problem refers to a problem that allocating a risky position in

an optimal way among several agents. It can be interpreted as a problem that not only to

minimize the total risk but also to determine the optimal allocation. In this chapter, we

study the inf-convolution of risk measure on L1 space.

In mathematical language, the risk sharing problem can be described as following:

• Let X be the set of possible discounted financial net worth at a fixed future date.

• n is the number of agents.

• ρi is the risk measure of agent i.

• The set of allocation of a position X ∈ X is defined as follows

A(X) =
{

(X1, ..., Xn) | Xi ∈ X and
n∑
i=1

Xi = X
}
.

• The risk sharing problem is to solve the optimization problem

arg min
(X1,...,Xn)∈A(X)

ρ1(X1) + ...+ ρ(Xn). (∗)

where arg min stands for arguments of the minimum, and it is a collection of the points

of the domain of some function at which the function values are minimized.
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Definition 3.1. An allocation (Xi) ∈ A(X) is called Pareto optimal allocation (POA) if for

any other allocation (Yi) ∈ A(X) such that

ρi(Yi) ≤ ρi(Xi), it holds that ρi(Yi) = ρi(Xi), for 1 ≤ i ≤ n.

We say an allocation (Xi) ∈ A(X) is comonotone if there exist increasing functions

f1, · · · , fn : R→ R such that
∑n

i=1 fi = IdR and Xi = fi(X) for all i. These functions fi are

obviously 1-Lipschitz-continuous.

It is generally not easy to find the optimal allocation explicitly. The inf-convolutions of

risk measure introduced in Barrieu and El Karoui (2005) has provided a new mathematical

approach to the risk sharing problems.

Definition 3.2 (Inf-convolution). Given the functionals ρi : X → (−∞,∞], i = 1, . . . , n,

their inf-convolution is defined by

�n
i=1ρi(X) = inf

{ n∑
i=1

ρi(Xi) : Xi ∈ X , i = 1, . . . , n, and
n∑
i=1

Xi = X
}
, X ∈ X .

The inf-convolution is said to be exact at X if there exists an allocation (X1, · · · , Xn)

of X such that �n
i=1ρi(X) =

∑n
i=1 ρi(Xi). Such a minimizing allocation is called an optimal

allocation of X. The inf-convolution is said to be exact if it is exact at every X ∈ X .

Hence, the following proposition gives the connection of (∗) and definition of Pareto optimal

allocation in risk sharing problem.

Proposition 3.3. Consider the risk allocation problem with finite convex risk measures

ρi : L1 → R, i = 1, · · · , n, and assume that
⋂n
i=1D(ρ∗i ) 6= ∅. Then for an allocation

(Zi) ∈ A(X) the following are equivalent:

(1) (Zi) is a Pareto optimal allocation.

(2) �n
i=1ρi(X) =

∑n
i=1 ρi(Zi).

(3) There exists Y ∈ L∞ such that ρi(Zi) = E[ZiY ]− ρ∗i (Y ), 1 ≤ i ≤ n.
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Proof. (2) =⇒ (1) is obvious. Indeed, by definition of �n
i=1ρ we have �n

i=1ρ(X) =∑n
i=1 ρi(Zi) ≤

∑n
i=1 ρi(Wi) for any other allocation (Wi) ∈ A(X). If ρi(Wi) ≤ ρi(Zi) for

all 1 ≤ i ≤ n, we must have ρi(Wi) = ρi(Zi). Thus (1) holds.

(1) =⇒ (2). Suppose that (Zi) is a Pareto optimal allocation in A(X). Let mi ≥ 0 for

all 1 ≤ i ≤ n such that
∑n

i=1mi = m ∈ R. Then Zi + mi ≥ Zi for all i, by monotonicity

of ρi we have ρi(Zi + mi) ≤ ρi(Zi) for all i. But (Zi) is a Pareto optimal allocation then

ρi(Zi +mi) = ρi(Zi) for all i, thus

n∑
i=1

ρi(Zi) ≥ �n
i=1ρi(X) ≥

n∑
i=1

ρi(Zi)−m =
n∑
i=1

ρi(Zi +mi) =
n∑
i=1

ρi(Zi).

(2) =⇒ (3). Suppose (2) holds, this implies that �n
i=1ρi(X) is finite because each ρi is

finite, by corollary 2.18 �n
i=1ρi is norm continuous on L1. Thus by theorem 2.17, there exists

Y ∈ L∞ such that

�n
i=1ρi(X) = E[XY ]− (�n

i=1ρi)
∗(Y ).

Since (�n
i=1ρi)

∗(Y ) =
∑n

i=1 ρ
∗
i (Y ) (see lemma 3.8), we have

n∑
i=1

ρi(Zi) = �n
i=1ρi(X) = E[XY ]−

n∑
i=1

ρ∗i (Y ) =
n∑
i=1

(E[ZiY ]− ρ∗i (Y )).

Since for all 1 ≤ i ≤ n, ρi(Zi) ≥ E[ZiY ]−ρ∗i (Y ), then we must have ρi(Zi) = E[ZiY ]−ρ∗i (Y )

for all i.

(3) =⇒ (2). Suppose (3) holds. Since ρi is finite, then �n
i=1ρi is finite and thus is norm

continuous on L1. By theorem 2.31 and definition of �n
i=1ρi, we have

�n
i=1ρi(X) ≥ E[XY ]− (�n

i=1ρi)
∗(Y ) =

n∑
i=1

(E[ZiY ]− ρ∗i (Y )) =
n∑
i=1

ρi(Zi) ≥ �n
i=1ρi(X),

thus, �n
i=1ρi(X) =

∑n
i=1 ρi(Zi).

In optimization of capital and risk allocation problem, the existence of an optimal allo-

cation is always to be interested. The following theorem in Filipović and Svindland ([14])

states that the capital and risk allocation problem always admits a solution via contracts

whose payoffs are defined as (increasing Lipschitz-continuous) functions of the aggregate risk

X. We note that this extremely useful fact is often assumed in economic contract theory.
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Theorem 3.4 (Filipović and Svindland). Let ρi : L1 → (−∞,∞], i = 1, . . . , n, be l.s.c.

convex, cash-additive, law-invariant functionals. Then �n
i=1ρi : X → (−∞,∞] is l.s.c. con-

vex, cash-additive, law-invariant, Moreover, for each X ∈ L1 there exist increasing functions

fi : R→ R, i = 1, . . . , n, such that
∑n

i=1 fi(x) = x for every x ∈ R and

�n
i=1ρi(X) =

n∑
i=1

ρi(fi(X)).

In other words, �n
i=1ρi : L1 → (−∞,∞], i = 1, . . . , n is exact, and amongst the optimal

allocations of any X ∈ L1, there always is a comonotone one.

The proof of Theorem 3.4 relies on the following Lemmas and proposition.

Lemma 3.5. For all X ∈ L1, and Z ∈ L∞ we have that∫ 1

0

qX(s)qZ(s)ds = sup
X̂∼X

E[X̂Z] = sup
Ẑ∼Z

E[XẐ], (3.1)

where qX : (0, 1)→ R, and qX(s) = inf{x ∈ R |P(X ≤ x) ≥ s} (see lemma 4.55 in [15]).

We denote the convex order by � on L1, that is , X � Y ⇐⇒ E[u(X)] ≥ E[u(Y )], for

every convex function u : R→ R.

Lemma 3.6. Let X, Y ∈ L1, then

X � Y ⇐⇒
∫ 1

0

qX(s)g(s)ds ≥
∫ 1

0

qY (s)g(s)ds (3.2)

for all increasing g : (0, 1)→ R such that both integrals exist (see lemma 2.2 in [11]).

We say ρ is law-invariant if ρ(X) = ρ(Y ) whenever X, Y ∈ X have the same distribution

(written as X ∼ Y ). A subset C ⊂ X is said to be law-invariant if it contains all the random

variables that have the same distribution as some element in it.

Lemma 3.7. Let ρ : L1 → (−∞,∞] be a proper l.s.c. convex function; then the following

are equivalent:

(1) ρ is law-invariant.

(2) ρ∗ is law-invariant, where ρ∗(Z) := supX∈L1{E[XZ]− ρ(X)} for Z ∈ L∞.
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Proof. (1) =⇒ (2) By definition of ρ∗ and (3.1) we have that

ρ∗(Z) = sup
X∈L1

{E[XZ]− ρ(X)}

= sup
X∈L1

{ sup
X̂∼X

(E[X̂Z]− ρ(X̂))}

= sup
X∈L1

{
∫ 1

0

qX(s)qZ(s)ds− ρ(X)}

since the last expression depends on the distribution of Z only, so if W ∼ Z on L∞, then

ρ∗(W ) = ρ∗(Z), thus ρ∗ is law-invariant.

(2) =⇒ (1), since ρ is l.s.c. convex function, by Fenchel-Moreau theorem and (3.1), for

X ∼ Y we have that

ρ(X) = ρ∗∗(X) = sup
Z∈L∞

{E[XZ]− ρ∗(Z)}

= sup
Z∈L∞

{sup
Ẑ∼Z

E[XẐ]− ρ∗(Ẑ)}

= sup
Z∈L∞

{
∫ 1

0

qX(s)qZ(s)ds− ρ∗(Z)}

= sup
Z∈L∞

{
∫ 1

0

qY (s)qZ(s)ds− ρ∗(Z)}

= ρ(Y )

Lemma 3.8. For ρi : L1 −→ (−∞,∞], i = 1, · · · , n, be proper convex function, then

(�n
i=1ρi)

∗(Y ) =
n∑
i=1

ρ∗i (Y ).

for all Y ∈ L∞. Moreover, if ρi is law-invariant, then (�n
i=1ρi)

∗ is also law-invariant.

Proof. It is enough to prove when n = 2, the rest follows by induction.
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by definition of convex conjugate, we have

(ρ1�ρ2)∗(Y ) = sup
X∈L1

{E[XY ]− ρ1�ρ2(X)}

= sup
X∈L1

{E[XY ]− inf
X1+X2=X

{ρ1(X1) + ρ2(X2)}}

= sup
X∈L1

{E[X1Y ] + E[X2Y ]− sup
X1+X2=X

{−ρ1(X1)− ρ2(X2)}}

= sup
X1+X2=X∈L1

{E[X1Y ]− ρ1(X1) + E[X2Y ]− ρ2(X2)}

= ρ∗1(Y ) + ρ∗2(Y ),

for all Y ∈ L∞. If Z ∼ Y in L∞, then by Lemma 3.7 we have that

(ρ1�ρ2)∗(Y ) = ρ∗1(Y ) + ρ∗2(Y ) = ρ∗1(Z) + ρ∗2(Z) = (ρ1�ρ2)∗(Z).

Thus (ρ1�ρ2)∗ is law-invariant.

Lemma 3.9. Let ρ : L1 → (−∞,∞] be a proper l.s.c., law-invariant convex function. If

X � Y , then ρ(X) ≥ ρ(Y ). Moreover, ρ is dilatation monotone, i.e. ρ(E[X|G]) ≤ ρ(X) for

all X ∈ L1 and all sub-σ-algebras G ⊂ F

Proof. Since ρ is l.s.c. convex function, by Fenchel-Moreau theorem and (3.2), for X � Y

we have that

ρ(X) = ρ∗∗(X) = sup
Z∈L∞

{E[XZ]− ρ∗(Z)}

= sup
Z∈L∞

{
∫ 1

0

qX(s)qZ(s)ds− ρ∗(Z)}

≥ sup
Z∈L∞

{
∫ 1

0

qY (s)qZ(s)ds− ρ∗(Z)}

= ρ(Y )

Moreover, we have E[X|G]) � X. Indeed, by Jensen’s inequality, for any convex function

u, we have u(E[X|G]) ≤ E[u(X)|G] for all X ∈ L1 and all sub-σ-algebras G ⊆ F . Thus

E[u(E[X|G])] ≤ E[E[u(X)|G]] = E[u(X)]. By definition of convex order, we have E[X|G]) �

X. By previous result we have that ρ(E[X|G])) ≤ ρ(X).
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Lemma 3.10. Let A := {(f, g) | f, g : R −→ R are increasing, f + g = IdR }, then f, g are

1-Lipschitz-continuous functions for (f, g) ∈ A.

Lemma 3.11. Let fn : R −→ R, n ∈ N, be a sequence of increasing 1-Lipschitz-continuous

functions such that fn(0) ∈ [−K, K] for all n ∈ N, where K ≥ 0 is a constant. Then

there is a subsequence (fnk)k∈N of (fn)n∈N and an increasing 1-Lipschitz-continuous functions

f : R −→ R such that limk→∞ fnk(x) = f(x) for all x ∈ R.

Proof. Since fn is increasing 1-Lipschitz-continuous function, and fn(0) ∈ [−K, K] for all

n ∈ N, then we have that

|fn(x)| ≤ |fn(x)− fn(0)|+ |fn(0)| ≤ |x|+ |fn(0)|.

this guarantees that fn(x) ∈ [−K,K + x] if x ≥ 0 and fn(x) ∈ [−K + x,K] if x ≤ 0. Hence,

by a procedure familiar from the standard proof of the Arzelâ-Ascoli theorem, we are able

to extract a subsequence (fnk)k∈N of (fn)n∈N such that limk→∞ fnk(q) exists for all q ∈ Q. In

fact, we can show that sequences (fnk(x))k∈N must converge for all x ∈ R. Indeed, for ε > 0,

and choose q ∈ Q and N0 ∈ N such that |q − x| < ε/3 and |fnk(q) − fnl(q)| ≤ ε/3 for all

k, l ≥ N0. Then we have

|fnk(x)− fnl(x)| ≤ |fnk(x)− fnk(q)|+ |fnk(q)− fnl(q)|+ |fnl(q)− fnl(x)|

≤ 2|x− q|+ |fnk(q)− fnl(q)|

<ε,

then fnk(x) is Cauchy sequence in R, thus it must converge to some f(x) := limk→∞ fnk(x).

It is easy to verify that f is an 1-Lipschitz-continuous increasing function due to the fact

|f(x)− f(y)| = lim
k→∞
|fnk(x)− fnk(y)| ≤ |x− y|

Proposition 3.12. For any allocation (Y, Z) of X ∈ L1, there is (f, g) ∈ A such that

f(X) � Y and g(X) � Z, where

A =: {(f, g) | f, g : R −→ R are increasing, f + g = IdR }.
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Proof. Step 1; By Jensen’s inequality and lemma 3.9, we have that (E[Y |X],E[Z|X]) is an

allocation of X which is at least as good as (Y, Z), that is, E[Y |X] � Y and E[Z|X] � Z.

Let h1, h2 : R → R be measurable functions such that h1(X) = E[Y |X], h2(X) = E[Z|X].

Clearly, we may assume that h1 + h2 = IdR. If h1 and h2 are increasing, we are done; if not,

we will improve this allocation as showed in step 2. During the remainder of this proof we

may restrict ourselves to improve allocations (Y, Z) of type Y = h1(X) and Z = h2(X) for

some measurable functions h1, h2 : R→ R such that h1 + h2 = IdR.

Step 2: Suppose that X is a simple random variable, i.e., X =
∑n

i=1 xi1Ai for a partition

of A1, · · · , An of Ω and real numbers xi such that xi 6= xj for i 6= j. Let yi := h1(xi) and

zi := h2(xi). Then h1(X) =
∑n

i=1 yi1Ai and h2(X) =
∑n

i=1 zi1Ai . We set x := (x1, · · · , xn),

y := (y1, · · · , yn), z := (z1, · · · , zn), and pk := P(Ak), k = 1, · · · , n. Let π be a permutation

of {1, · · · , n} such that

xπ := (xπ(1), · · · , xπ(n)) ∈ D := {x̃ ∈ Rn | x̃1 ≤ x̃2 ≤ · · · ≤ x̃n}.

Observe that (h1(X), h2(X)) is comonotone if and only if yπ, zπ ∈ D. For the sake of brevity,

we may and do assume w.l.o.g. that x ∈ D already. Supposing that (y, z) is not comonotone,

i.e., y /∈ D or x /∈ D or both, the following algorithm by M. Landsberger and I. Meilijson

transfers (y, z) into a comonotone allocation:

Since (y, z) is not comonotone, there must exists an i such that y1 ≤ · · · ≤ yi, z1 ≤ · · · ,≤

zi but either yi+1 < yi or zi+1 < zi. W.l.o.g. let us assume that zi+1 < zi. Then there is a

smallest j such that zi+1 < zj. For k = j, · · · , i, we set

ynewk = yk +
pi+1∑i+1
l=j pl

(zj − zi+1) and znewk = zk −
pi+1∑i+1
l=j pl

(zj − zi+1).

whereas

ynewi+1 = yi+1 −
∑i

l=j pl∑i+1
l=j pl

(zj − zi+1) and znewi+1 = zi+1 +

∑i
l=j pl∑i+1
l=j pl

(zj − zi+1).

The other coordinates of y and z are left unchanged. Finally, set y := ynew and z := znew

and repeat the procedure in case the output is not comonotone.
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Let (Y new, Znew) := (
∑n

i=1 y
new
i 1Ai ,

∑n
i=1 z

new
i 1Ai). Firstly, (Y new, Znew) is obviously an

allocation of X; secondly, we claim that Y new � Y and Znew � Z, i.e., each cycle of the

algorithm improves the allocation. In order to show that Y new � Y and Znew � Z, Let

u : R→ R be any convex function. We put

α :=
pi+1∑i+1
l=j pl

∈ (0, 1) and λk =
zj − zi+1

zk − zi+1

∈ (0, 1].

and recall that convexity is equivalent to

u(b)− u(a)

b− a
≤ u(c)− u(a)

c− a
≤ u(c)− u(b)

c− b
, ∀a < b < c.

We compute

i+1∑
k=j

u(znewk )pk =
i∑

k=j

u(znewk )pk + u(znewi+1 )pi+1

=
i∑

k=j

u(zk − α(zj − zi+1))pk + u(zi+1 + (1− α)(zj − zi+1))pi+1

=
i∑

k=j

u(zk − αλk(zk − zi+1))pk + u(zi+1 + (1− α)(zj − zi+1))pi+1

=
i∑

k=j

u((1− αλk)zk + αλkzi+1)pk + u((1− α)zj + αzi+1)pi+1

≤
i∑

k=j

[(1− αλk)u(zk) + αλku(zi+1)]pk + [(1− α)u(zj) + αu(zi+1)]pi+1

=
i+1∑
k=j

u(zk)pk + (1− α)(u(zj)− u(zi+1))pi+1 − α
i∑

k=j

λk(u(zk)− u(zi+1))pk

≤
i+1∑
k=j

u(zk)pk + (1− α)(u(zj)− u(zi+1))pi+1 − α
i∑

k=j

(u(zj)− u(zi+1))pk

=
i+1∑
k=j

u(zk)pk,

the last inequality above is due to the fact that λk(u(zk)− u(zi+1)) ≥ u(zj)− u(zi+1), Thus

we have E[u(znew)] ≤ E[u(z)], and it implies Znew � Z. A similar computation for Y new

shows that Y new � Y .
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Step 3: Let X be any integrable random variable in L1. Let (Yn)n∈N and (Zn)n∈N be

sequences of simple random variables such that |Yn| ≤ |Y | and |Zn| ≤ |Z| for all n ∈ N, and

Yn
a.s.−−→ Y and Zn

a.s.−−→ Z in L1. Then Xn = (Yn + Zn)
a.s.−−→ X in L1. By step 2, for each

n ∈ N, there exists a comonotone improvement (fn(Xn), gn(Xn)) of (Yn, Zn). choose N ∈ N

such that ‖Yn‖1 ≤ ‖Y ‖1 + 1, ‖Zn‖1 ≤ ‖Z‖1 + 1, and ‖Xn‖1 ≤ ‖X‖1 + 1, for all n ≥ N . Since

all fn (and gn) are 1-Lipschitz-continuous, we have that |fn(0)| ≤ |Xn| + |fn(Xn)|. Taking

the expectations on both sides yields

|fn(0)| ≤ E[|Xn|] + E[|fn(Xn)|] ≤ E[|Xn|] + E[|Yn|],

because fn(Xn) � Yn and function x 7→ |x| is convex. Hence, if n ≥ N , we get |fn(0)| ≤

‖X‖1+‖Y ‖1+2 := K1 and similarly |gn(0)| ≤ ‖X‖1+‖Z‖1+2 := K2, and thus fn(0), gn(0) ∈

[−K,K] for K := max{K1, K2}. Therefore by Lemma 3.11, there is a subsequence (fnk)k∈N

of (fn)n∈N and a 1-Lipschitz-continuous increasing function f : R → R such that f(a) =

limk→∞ fnk(a), a ∈ R. Now it is easily verified that (gnk)k∈N converges pointwise to the

1-Lipschitz-continuous increasing function g := IdR − f . Hence, the sequence fnk(Xnk)
a.s.−−→

f(X), and gnk(Xnk) = (Xnk − fnk(Xnk))
a.s.−−→ g(X). Since

|fnk(Xnk)| ≤ |Xnk |+K ≤ |Y |+ |Z|+K

for large enough K ∈ N, we can apply the dominated convergence theorem, which yields

f(X), g(X) ∈ L1 and ‖f(X) − fnk(Xnk)‖1 → 0, ‖g(X) − gnk(Xnk)‖1 → 0, for k → ∞.

Moreover, we have that

E[|f(X)|] = lim
k→∞

E[|fnk(Xnk)|] ≤ lim
k→∞

E[|Ynk |] = E[|Y |],

and similar proof for g. Hence, (f(X), g(X)) is a comonotone allocation of X satisfying

f(X) � Y and g(X) � Z. This complete the proof.

Now based on the lemmas and proposition established above, we can start the proof of

Theorem 3.4 as follows.

Proof. First note that it is enough to prove for n = 2, the rest follows by induction.

Step 1. ρ1�ρ2 is proper, convex, and cash-invariant.
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1. ρ1�ρ2 is convex.

Indeed, since ρ1, ρ2 is convex, then for λ ∈ [0, 1], and X1, X2, Y1, Y2 ∈ L1, such that

X1 +X2 = X ∈ L1, and Y1 + Y2 = Y ∈ L1, we have that

ρ1(λX1 + (1− λ)Y1) + ρ2(λX2 + (1− λ)Y2)

≤λρ1(X1) + (1− λ)ρ1(X2) + λρ2(Y1) + (1− λ)ρ2(Y2)

≤λ(ρ1(X1) + ρ2(X2)) + (1− λ)(ρ1(Y1) + ρ2(Y2)).

By taking infimum over X1 +X2 = X first and then over Y1 + Y2 = Y we have that

ρ1�ρ2(λX + (1− λ)Y )

= inf
X1+X2=X,Y1+Y2=Y

{ρ1(λX1 + (1− λ)Y1) + ρ2(λX2 + (1− λ)Y2}

≤λ inf
X1+X2=X

{ρ1(X1) + ρ2(X2)}+ (1− λ) inf
Y1+Y2=Y

{ρ1(Y1) + ρ2(Y2)}

=λρ1�ρ2(X) + (1− λ)ρ1�ρ2(Y ).

2. ρ1�ρ2 is proper and cash-invariant. Indeed, since ρi for i = 1, 2 is convex and law-

invariant, by Lemma 3.9 then ρi is dilatation monotone, i.e, ρi(E[X|G]) ≤ ρi(X), for

X ∈ L1. By cash-invariance, we have that ρi(X) ≥ ρi(0 +E[X]) = ρi(0)−E[X] for all

X ∈ L1. Hence,

ρ1�ρ2(X) = inf
X1+X2=X

{ρ1(X1) + ρ2(X2)}

≥ inf
X1+X2=X

{−E[X1]− E[X2] + ρ1(0) + ρ2(0)}

= − E[X] + ρ1(0) + ρ2(0).

So ρ1�ρ2 is proper and ρ1�ρ2(0) = ρ1(0) + ρ2(0)) < ∞. Furthermore, for all m ∈ R,

we have that

ρ1�ρ2(X +m) = inf
Y ∈L1
{ρ1(X1 +m− Y ) + ρ2(Y )} = ρ1�ρ2(X)−m

due to the cash-invariance of ρ1.
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Step 2. ρ1�ρ2(X) = inf(f,g)∈A{ρ1(f(X)) + ρ2(g(X))}, X ∈ L1, where

A := {(f, g) | f, g : R→ R are increasing, f + g = IR }.

Proof of Step 2 is immediate consequence of Proposition 3.12 and Lemma 3.9.

Step 3. ρ1�ρ2 is exact, and for each X ∈ L1, there exists a comonotone optimal

allocation.

Suppose that X ∈ L1 is such that ρ1�ρ2(X) =∞. Then every allocation (f(X), g(X)),

(f, g) ∈ A, is optimal. Now let X ∈ D(ρ1�ρ2) (i.e. ρ1�ρ2(X) <∞) and choose a sequence

(fn, gn) ∈ A, n ∈ N, such that ρ1�ρ2(X) = limn→∞(ρ1(fn(X)) + ρ2(gn(X))). By the cash-

invariance we may assume that fn(0) = gn(0) = 0 for all n ∈ N. Hence, by Lemma 3.11 there

is a subsequence (fnk)k∈N of (fn)n∈N and a 1-Lipschitz-continuous and increasing function

f : R→ R such that f(a) = limk→∞ fnk(a) for all a ∈ R. Clearly, the sequence fnk(X)
a.s.−−→

f(X) and gnk(X) = (X − fnk(X))
a.s.−−→ g(X), where g := IdR− f is a 1-Lipschitz-continuous

increasing function. Since |fnk(X)| ≤ |X| and |gnk(X)| ≤ |X| for all k ∈ N, we may apply

the dominated convergence theorem and get f(X), g(X) ∈ L1 and ‖f(X) − fnk(X)‖1 →

0, ‖g(X)− gnk(X)‖1 → 0 for all k →∞. On the one hand, by l.s.c. of ρ1 and ρ2, we have

ρ1�ρ2(X) = lim
k→∞

(ρ1(fnk(X)) + ρ2(gnk(X)))

≥ lim inf
k→∞

ρ1(fnk(X)) + lim inf
k→∞

ρ2(gnk(X))

≥ρ1(f(X)) + ρ2(g(X)).

On the other hand, by the definition of inf-convolution, we have that ρ1�ρ2(X) ≤ ρ1(f(X))+

ρ2(g(X)). Thus ρ1�ρ2(X) = ρ1(f(X)) + ρ2(g(X)) and the (f(X), g(X)) is an optimal

allocation of X.

Step 4. ρ1�ρ2 is l.s.c. and law-invariant.

1. ρ1�ρ2 is l.s.c..

To show that ρ1�ρ2 is l.s.c. is enough to show that Aρ1�ρ2 is norm closed, where

Aρ1�ρ2 := {X ∈ L1 | ρ1�ρ2(X) ≤ 0}.
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Let (Xn) ⊆ Aρ1�ρ2 such that Xn
‖·‖−→ X in L1. We will show that X ∈ Aρ1�ρ2 .

According to Step 3, there are (fn(X), gn(X)) ∈ A, n ∈ N, such that 0 ≥ ρ1�ρ2(Xn) =

ρ1(fn(Xn)) + ρ2(gn(Xn)). By the cash-invariance again, we may assume that fn(0) =

gn(0) = 0 for all n ∈ N. Similarly to Step 3, by applying Lemma 3.11, we find a

subsequence (fnk , gnk)k∈N of (fn, gn)n∈N and (f, g) ∈ A such that fnk(Xnk) converges

to f(X) in L1 and gnk(Xnk) = Xnk − fnk(Xnk) converges to g(X) in L1. By l.s.c. of ρ1

and ρ2 we have

ρ1�ρ2(X) ≤ ρ1(f(X)) + ρ2(g(X))

≤ lim inf
k→∞

ρ1(fnk(Xnk)) + lim inf
k→∞

ρ2(gnk(Xnk))

≤ lim inf
k→∞

{ρ1(fnk(Xnk)) + ρ2(gnk(Xnk))}

≤ 0.

Thus X ∈ Aρ1�ρ2 , and therefore Aρ1�ρ2 is norm closed. By cash-invariant of ρ1�ρ2, we

have that {ρ1�ρ2 ≤ m} is norm closed for all m ∈ R. Hence ρ1�ρ2 is l.s.c..

2. ρ1�ρ2 is law-invariant follows Lemma 3.7 and Lemma 3.8. Indeed, by Lemma 3.8 we

have (ρ1�ρ2)∗ is law-invariant since ρ1 and ρ2 are law-invariant, and by Lemma 3.7 we

have ρ1�ρ2 is law-invariant.
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Chapter 4

Inf-convolution of risk measures on

rearrangement invariant spaces

In this chapter, we will extend the results of inf-convolution of risk measures in Filipović and

Svindland theorem from L1 space to more general r.i. spaces, e.g. Orlicz spaces. We also

show that the strong Fatou property is preserved by inf-convolution of risk measures on r.i.

spaces. This ensures that the inf-convolution of risk measures also admits a tractable dual

representation.

4.1 Orlicz space

We give below some basic results of Orlicz spaces. For more detail, see Edgar and Sucheston

([13]) and Cheridito and Li ([10]).

Definition 4.1 (Orlicz function). A function Φ : [0,∞)→ [0,∞) is called an Orlicz function

if it satisfies:

(1) it is convex, i.e. Φ(λt1 + (1− λ)t2) ≤ λΦ(t1) + (1− λ)Φ(t2), for any λ ∈ [0, 1].

(2) it is increasing, i.e. if t1 ≤ t2, then Φ(t1) ≤ Φ(t2).

(3) Φ(0) = 0 and limt→∞
Φ(t)
t

=∞.
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Example 4.2. (Examples of Orlicz function)

(1) Φ(t) = tp

p
for p > 1

(2) Φ(t) = et − 1, and Φ(t) = et − t− 1

Convex conjugate of Orlicz function will appear to be linked to the duality of Orlicz

spaces. We define the conjugate function Ψ of Φ as

Ψ(s) = sup{ts− Φ(t) : t ≥ 0}, s ≥ 0.

From the restriction (3) of definition of Orlicz function, Ψ is finite-valued and is also an

Orlicz function; moreover, its conjugate is Φ.

The Orlicz space of Φ is the collection of all the measurable random variables X : Ω→ R

such that E[Φ(X
a

)] <∞ for some a > 0, is denoted by LΦ, i.e.

LΦ := LΦ(Ω,F ,P) = {X ∈ L0 | E[Φ(
X

a
)] <∞, for some a > 0}.

For any X ∈ LΦ, we define the Luxemburg norm of X as

‖X‖Φ := inf{a > 0 | E[Φ(
X

a
)] ≤ 1}.

Equivalently, LΦ can also be described as

LΦ = {X ∈ L0 | ‖X‖Φ <∞}.

Indeed, if X ∈ LΦ, then E[Φ(X
n

)] <∞ for some integer n. But |X|
n
→ 0 a.s., then Φ(X

n
)→ 0

a.s. (here we assume that Φ(t) < ∞ for some t > 0). By dominated convergence theorem

we have E[Φ(X
n

)] ≤ 1 for some n, and thus ‖X‖Φ <∞. Conversely, if ‖X‖Φ <∞, it is clear

that X ∈ LΦ.

The subspace of LΦ consisting of all X ∈ LΦ such that E[Φ(X
a

)] < ∞ for all a > 0 is

called the Orlicz heart of LΦ and is denoted by HΦ. It is clearly that HΦ ⊆ LΦ. In fact, we

have that L∞ ⊂ HΦ ⊆ LΦ ⊂ L1. The restriction on Φ eliminate the case where LΦ coincides

with L∞ or L1.
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Proposition 4.3. In general, we have L∞ ⊂ HΦ ⊆ LΦ ⊂ L1

Proof. We first show that L∞ ⊂ LΦ. Let X ∈ L∞, then there exists 0 < c ∈ R such that

|X| ≤ c a.e. Let E ⊆ Ω such that |X| > c on Ec, then∫
Ω

Φ(
|X|
a

)dP ≤
∫
E

Φ(
|c|
a

)dP = Φ(
|c|
a

)P(E).

We can choose a ∈ R such that Φ( |c|
a

) <∞, then we have
∫

Ω
Φ( |X|

a
)dP <∞, thus X ∈ LΦ

Now we show that LΦ ⊂ L1. Let X ∈ LΦ, then we have
∫

Φ( |X|‖X‖Φ
)dP ≤ 1. Since Φ is

convex, there exists λ > 0 such that Φ( |X|‖X‖Φ
) ≥ λ |X|

‖X‖Φ
( for increasing convex function Φ,

there exists λ > 0 and x0 > 0 such that Φ(x) ≤ λx for all x ≥ x0). Thus we have∫
λ(
|X|
‖X‖Φ

)dP ≤
∫

Φ(
|X|
‖X‖Φ

)dP <∞,

so we have X ∈ L1, thus LΦ ⊂ L1.

Under the Luxemburg norm ‖·‖ the Orlicz space LΦ is a Banach space. Moreover, the

Orlicz Heart HΦ is a norm closed subspace of LΦ, that is, if sequence (Xn) ⊆ HΦ and

Xn
‖·‖−→ X, then X ∈ HΦ (see Theorem 2.1.11 in [13]).

The following proposition shows that Orlicz space LΦ is a rearrangement invariant func-

tion space. This means if X is a random variable that has same distribution as some Y ∈ LΦ,

then X ∈ LΦ and ‖X‖ = ‖Y ‖.

Proposition 4.4. LΦ is an r.i. space.

Proof. Let X be a random variable that has the same distribution as Y ∈ LΦ, i.e. P({|X| >

t}) = P({|Y | > t}) for all t > 0. It is enough to show that∫
Φ(|X|)dP =

∫
Φ(|Y |)dP.

Since Φ is strictly increasing (except possibly where it is 0), we have that P({Φ(|X|) > t}) =

P({|X| > Φ−1(t)}). Then

41



∫
Φ(|X|)dP =

∫ ∞
0

P({Φ(|X|) > t})dt

=

∫ ∞
0

P({|X| > Φ−1(t)})dt

=

∫ ∞
0

P({|Y | > Φ−1(t)})dt

=

∫ ∞
0

P({Φ(|Y |) > t})dt

=

∫
Φ(|Y |)dP.

4.2 Dual representation of risk measures on Orlicz space

It is known since Delbaen ([12]) that a convex risk measure ρ is σ(L∞, L1) lower semicontin-

uous if and only if ρ has the Fatou property on L∞, and such ρ admits a nice dual represen-

tation via the Fenchel-Moreau duality theorem. By theorem 2.31, a convex risk measure ρ

has Fatou property if and only if ρ is σ(Lp, Lq)-lower semicontinuous for 1 ≤ p ≤ ∞. It has

been an open question since Biagini and Frittelli ([6]) whether these equivalent conditions

for a convex risk measure continue to hold on the general Orlicz space LΦ. The following

theorem in Gao et al. ([17]) shows that a convex risk measure ρ on LΦ has the strong Fatou

property if and only if it is σ(LΦ, HΨ)-lower semicontinuous.

Theorem 4.5 (Gao and Xanthos). Let ρ : LΦ → (−∞,∞] be a proper convex risk measure,

the following are equivalent:

(1) ρ is σ(LΦ, HΨ)-lower semicontinuous

(2) ρ admits the representation: ρ(X) = supY ∈HΨ{E[XY ]−ρ∗(Y )} for any X ∈ LΦ, where

ρ∗(Y ) = supX∈LΦ{E[XY ]− ρ(X)}, for any Y ∈ HΨ.

(3) ρ has strong Fatou property, i.e. ρ(X) ≤ lim infn ρ(Xn) whenever sup‖Xn‖ < ∞ and

Xn
a.s.−−→ X.
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The following theorem in Gao et al. ([18]) shows that under the assumption of law-

invariance, a convex risk measure ρ has strong Fatou property is equivalent to the Fatou

property and to σ(LΦ, LΨ) (respectively σ(LΦ, HΨ), σ(LΦ, L∞))-lower semicontinuous on

Orlicz space.

Theorem 4.6 (GLMX). Let ρ : LΦ → (−∞,∞] be a convex risk measure and law-invariant.

Then the following are equivalent:

(1) ρ has the Fatou property.

(2) ρ has the strong Fatou property.

(3) ρ is σ(LΦ, L∞)-lower semicontinuous.

(4) ρ is σ(LΦ, LΨ)-lower semicontinuous.

(5) ρ is σ(LΦ, HΨ)-lower semicontinuous.

The following dual representation of functionals with the Fatou property is an immediate

consequence of the above theorem and Fenchel-Moreau duality theorem.

Corollary 4.7. Let ρ : LΦ → (−∞,∞] be a law-invariant, convex risk measure and has

Fatou property. Then ρ(X) admits the following representation:

ρ(X) = sup
Y ∈L∞

{E[XY ]− ρ∗(Y )}

where ρ∗(Y ) = supX∈LΦ{E[XY ]− ρ(X)}.

4.3 Inf-convolution of risk measures on r.i. spaces

The following theorem in ([9]) asserts that a law-invariant convex risk measure on an r.i.

space that has the strong Fatou property can be extended uniquely to a law-invariant convex

risk measure on L1 with the Fatou property. This is an important result that allow us extend

theorem 3.4 from L1 to any r.i. spaces.
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Theorem 4.8. Let X be an r.i. space, let ρ : X → (−∞,∞] a law-invariant convex risk

measures that has the strong Fatou property. Then ρ is σ(X , L∞) lower semicontinuous and

it extends uniquely to a law-invariant convex risk measure on L1 with the Fatou property.

The result of ρ is σ(X , L∞) lower semicontinuous ensures ρ admitting a dual representa-

tion via L∞ space. The following version of Komlos’ Theorem is also useful.

Proposition 4.9. Let (Xn) be a norm bounded sequence of random variables in an r.i. space

X , then there exists a random variable X (not necessarily in X ) and a subsequence (Xnk)

of (Xn) such that the arithmetic means of all subsequences of (Xnk) converges to X almost

surely, that is, 1
k

∑k
j=1Xnj

a.s.−−→ X.

With preceding theorem and proposition, we now can start to establish the main result

of this paper, that is, inf-convolution of risk measures preserves the strong Fatou property

on r.i. spaces, and the infimum in the definition of inf-convolution is attainable everywhere.

Theorem 4.10. Let X be an r.i. space over a fixed nonatomic probability space, and ρi :

X → (−∞,∞], i = 1, . . . , n, be law-invariant convex risk measure with the strong Fatou

property. Then �n
i=1ρi : X → (−∞,∞] is a law-invariant convex risk measure, and exact,

and has the strong Fatou property. Moreover, for each X ∈ X there exist increasing functions

fi : R→ R, i = 1, . . . , n, such that
∑n

i=1 fi(x) = x for every x ∈ R and

�n
i=1ρi(X) =

n∑
i=1

ρi(fi(X)).

Proof. It is enough to prove when n = 2, the rest follows by induction. For i = 1, 2, ρi is

law-invariant convex risk measure with the strong Fatou property. By theorem 4.8, each ρi

extends to a functional ρi : L1 → (−∞,∞] that is law-invariant convex risk measure with

Fatou property, thus is || · ||1 lower semicontinuous on L1. Let ρ1�ρ2 : L1 → (−∞,∞] be

the inf-convolution of ρ1 and ρ2. Clearly,

ρ1�ρ2(X) ≤ ρ1�ρ2(X) for any X ∈ X .

Now, pick any X ∈ X . By Theorem 3.4, there exist increasing functions f1, f2 : R → R

such that f1(x) + f2(x) = x for each x ∈ R and ρ1�ρ2(X) = ρ1(f1(X)) + ρ2(f2(X)). Since
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ρ1, ρ2 are cash-additive, without loss of generality we may assume that f1(0) = f2(0) = 0.

By lemma 3.10 we have that f1 and f2 are 1-Lipschitz functions and thus |fi(X)| ≤ |X| for

i = 1, 2. Since X is an order ideal of L0, we have that fi(X) ∈ X for i = 1, 2. Therefore,

ρ1�ρ2(X) = ρ1(f1(X)) + ρ2(f2(X)) = ρ1(f1(X)) + ρ2(f2(X)) ≥ ρ1�ρ2(X).

It follows that ρ1�ρ2(X) = ρ1(f1(X))+ρ2(f2(X)) = ρ1�ρ2(X), implying that ρ1�ρ2 is exact

and ρ1�ρ2 extends ρ1�ρ2. By Theorem 3.4, ρ1�ρ2, and therefore, ρ1�ρ2, is law-invariant.

It remains to show that ρ1�ρ2 has the strong Fatou property. Pick an arbitrary m ∈ R,

and consider the sublevel set C := {X ∈ X : ρ1�ρ2(X) ≤ m}. Let (Xn) be a norm bounded

sequence in C that a.s.-converges to X ∈ X . It suffices to show that X ∈ C. By the

exact solution described above, we can find Yn, Zn ∈ X with Xn = Yn + Zn, |Yn| ≤ |Xn|,

|Zn| ≤ |Xn|, and ρ1�ρ2(Xn) = ρ1(Yn) + ρ2(Zn). Note that (Yn), (Zn) are norm bounded

sequences in X . Applying Proposition 4.9 twice, we can find strictly increasing (nj) and

two random variables Y, Z ∈ L0 such that 1
k

∑k
j=1 Ynj

a.s.−−→ Y and 1
k

∑k
j=1 Znj

a.s.−−→ Z. Since

| 1
k

∑k
j=1 Ynj | ≤

1
k

∑k
j=1|Xnj |

a.s.−−→ |X|, we get that |Y | ≤ |X|, so that Y ∈ X . Similarly, we

have Z ∈ X . Note also that Y + Z = X and that ( 1
k

∑k
j=1 Ynj) and ( 1

k

∑k
j=1 Znj) are both

norm bounded sequences in X . Thus, applying the strong Fatou property and convexity of

ρi’s, we get that

ρ1�ρ2(X) ≤ρ1(Y ) + ρ2(Z)

≤ lim inf
k

ρ1

(1

k

k∑
j=1

Ynj

)
+ lim inf

k
ρ2

(1

k

k∑
j=1

Znj

)
≤ lim inf

k

∑k
j=1 ρ1(Ynj)

k
+ lim inf

k

∑k
j=1 ρ2(Znj)

k

≤ lim inf
k

(∑k
j=1 ρ1(Ynj)

k
+

∑k
j=1 ρ2(Znj)

k

)
= lim inf

k

(∑k
j=1 ρ1�ρ2(Xnj)

k

)
≤ m.

This proves that X ∈ C and completes the proof of the proposition.

Proposition 4.11. Let ρi : X → (−∞,∞], i = 1, . . . , n, be coherent and law-invariant risk

measure with the strong strong Fatou property. Then �n
i=1ρi : X → (−∞,∞] is coherent,
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law-invariant, and exact, and has the strong Fatou property. In particular, �n
i=1ρi admits

the following representation:

�n
i=1ρi(X) = sup

Y ∈Q
E[−XY ]

where Q = {Y ∈ L∞+ |
∑n

i=1 ρ
∗
i (−Y ) = 0, and E[Y ] = 1}.

Proof. Let ρ̂(X) = �n
i=1ρi(X), by theorem 4.10 we have ρ̂ is a law-invariant convex risk

measure and has strong Fatou property on X . Then by theorem 4.8, ρ̂ is σ(X , L∞)-lower

semicontinuous. Also, it is easy to verify that ρ̂ has positive homogeneity thus a coherent risk

measure. Applying Fenchel-Moreau theorem we have that ρ̂ admits following representation:

ρ̂(X) = sup
Y ∈Q

E[−XY ],

where Q = {Y ∈ L∞+ |
∑n

i=1 ρ
∗
i (−Y ) = 0, and E[Y ] = 1}.

As was mentioned previously, for α ∈ (0, 1), the ESα is a coherent risk measure with the

strong Fatou property on any r.i. spaces, and ESα is law-invariant by its definition. The

following inf-convolution of two Expected shortfall risk measures provide a concrete example

for solving an optimal allocation in risk sharing problem.

Example 4.12. For any 0 < β ≤ α < 1, we have the following (see the proof of theorem

4.39 in [15]):

ES∗α(−Y ) =


0 0 < Y ≤ 1

α

∞ otherwise

, and ES∗β(−Y ) =


0 0 < Y ≤ 1

β

∞ otherwise

,

Thus, by proposition 4.11, we have

(ESα�ESβ)(X) = sup
Y ∈L∞+ ,ES∗α(−Y )+ES∗β(−Y )=0, E[Y ]=1

E[−XY ] = ESα(X)

So, if we have two Expected shortfall risk measures ESα and ESβ with 0 < β ≤ α < 1, then

their inf-convolution is exact, and it is equal to the ESα. In this case, the allocation will be

putting total position X only on the company with risk measure ESα.
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