

A STUDY ON APPLICABILITY OF THE SCRUM FRAMEWORK FOR LARGE

SOFTWARE PROJECTS

by

Jaweria Sultana

Bachelor of Engineering

Osmania University, India, 2006

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Canada, 2015

©Jaweria Sultana 2015

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

A STUDY ON APPLICABILITY OF THE SCRUM FRAMEWORK FOR LARGE

SOFTWARE PROJECTS

Jaweria Sultana

M. Sc., Computer Science, 2015

Ryerson University, Toronto, Canada

Abstract

The primary objective of this research is to investigate the adaptability of the Scrum framework

for large scale projects. A two phase approach has been undertaken towards the goal. The first

phase involves conducting a systematic literature review to identify and elaborate scaling

practices used in the current industry. The review also identifies the challenges faced by the

developers when the Scrum framework is used for the development of large projects. The second

phase involves the construction of a simulation model to analyze the dynamic behavior of the

Scrum framework for large projects. The systematic literature review revealed that the major

challenge while scaling Scrum is ensuring good communication among project members. The

communication overhead was incorporated in the system dynamic model of the Scrum

framework. The simulation results showed that there is a reduction in work rate when number of

personnel is increased due to the increasing communication overhead.

iv

Acknowledgments

I would like to express my sincere gratitude to my supervisor Dr. Vojislav B. Mišić, for his

continuous support, patience, motivation and encouragement throughout my graduate studies.

His guidance helped me throughout my research and in writing this thesis. It was a great

privilege to work under his guidance. I am also thankful to the Department of Computer Science

and the School of Graduate Studies at Ryerson University for all the financial and infrastructural

assistance. Lastly, I would like to thank my parents, my husband and my little kids for all their

moral support and love.

v

Dedicated to my parents

vi

Contents
8

1. Introduction .. 1

1.1. Motivation ... 1

1.2. Research Approach ... 2

1.3. Thesis Contribution ... 3

1.4. Thesis Organization ... 4

2. Background and Related Work .. 5

2.1. Agile Software Development ... 5

2.2. The Scrum Framework ... 7

2.2.1. Product backlog .. 9

2.2.2. Sprint backlog .. 10

2.2.3. Sprint Burndown Chart ... 11

2.2.4. Sprint Planning Meeting.. 12

2.2.5. Daily Scrum ... 12

2.2.6. Sprint Review and Retrospective .. 12

2.2.7. Scrum Role .. 13

2.3. Scaling Scrum for Large projects .. 13

2.3.1. Options for Scaling Scrum ... 14

2.4. Systematic Literature Review .. 16

2.5. Related Work ... 16

3. Systematic Literature Review ... 19

3.1. Planning the Review .. 19

3.1.1. Identification of need for Systematic review .. 19

3.1.2. Development of a Review Protocol .. 20

3.1.3. Background ... 21

3.1.4. Research Questions... 22

3.2. Conducting the Review ... 22

3.2.1. Data Sources and search Strategy .. 22

3.2.2. Study Selection Criteria ... 23

vii

3.2.3. Study quality assessment .. 24

3.2.4. Data Extraction .. 25

3.2.5. Data Synthesis ... 30

3.3. Results and Analysis .. 30

3.3.1. Overview of the selected publications .. 30

3.3.2. Classification based on team’s location .. 31

3.3.3. Type of Study .. 31

3.3.4. Research method .. 31

3.3.5. Number of Project members .. 32

3.3.6. Number of Scrum Teams .. 32

3.3.7. Practices identified to Scale Scrum ... 33

3.3.8. Scrum of Scrums (SOS) Review ... 35

3.3.9. Use of Area product Owners (APO’S) and Product Proxy owners (PPO’S) 38

3.3.10. Feature Backlog/Teams/SOS Meetings ... 39

3.3.11. Common Retrospective... 40

3.3.12. Sprint Planning and Review .. 41

3.4. Discussion .. 42

4. System Dynamics Modeling ... 45

4.1. Overview of Modeling and Simulation ... 45

4.2. Introduction to System Dynamics ... 46

4.2.1. Building a System Dynamics model .. 47

4.3. Modeling the Dynamics of the Scrum Framework ... 48

4.3.1. Conceptualization ... 49

4.3.2. Formulation and Construction of SD Model ... 52

4.3.3. Testing and Implementation ... 60

4.4. Results ... 63

4.5. Discussion .. 67

5. Conclusions and Future Work .. 68

 Appendix .. 71

References .. 73

1

Chapter 1

Introduction

1.1. Motivation

Agile methods have proven to be beneficial in small organizations and there has also been

growing interest in using these methods in large organizations. Using agile methods to develop

large systems presents a challenging set of issues [49]. In order to produce lots of software

quickly involving large teams, the agile methods involved must be scaled to meet the task.

Scaling agile methodologies requires some changes to original method to accommodate large

teams. It results in several challenges that has to be figured out and resolved in order to achieve

same quality and productivity these methods gives for smaller projects.

In this thesis, we selected Scrum which is an agile software development framework to work

upon. Scrum is the most popular agile approach used for developing software [27]. Scrum is a

lightweight process framework for agile development and was basically designed for smaller

projects with limited team size [52]. However, in recent years it is widely used for large and

distributed projects as well [33] [23] [44] [22].

Scrum emphasizes on collaboration, functioning software, team self-management, and the

flexibility to adapt to emerging business needs. It employs concepts such as self-directed co-

located teams, time-boxed sprints (duration of work), and regular customer feedback from

working software.

Adapting Scrum for large projects involving many members (greater than ideal size which is

between 7 to 9) requires scaling the Scrum framework as it will be difficult to collaborate and

communicate in large teams. There is a scalable version of Scrum called as Scrum of Scrums

(SOS) which can be used for large projects [36]. According to SOS, in situations where the

Scrum team size exceeds ten people, multiple scrum teams can be formed to work on the project.

2

It uses frequent Scrum of Scrums meetings for inter team coordination and collaboration [36].

How these meetings are coordinated and applied is not reported in [36]. No effective techniques

have evolved to co-ordinate the work of multiple scrum teams and manage dependencies

between them. The SOS approach holding meetings with team’s representatives becomes more

time consuming and unmanageable as the number of teams multiplies. There are lot of empirical

studies which focused on scalability issue of Scrum. But only few of them discussed about

resultant quality and productivity obtained through scaling Scrum. Most of these studies are

carried out through interviews, questionnaires and case studies involving software developers. In

this thesis, we investigate on project management challenges faced by organizations when they

use Scrum for large projects. In addition to this we also outline scaling practices that are

beneficial for such kind of projects. We also designed several causal loops to investigate

relationships between various factors affecting resultant quality and productivity of the Scrum

framework. Using these causal loops, System dynamic model was constructed to analyze the

behavior of the scaled Scrum framework. These findings might help developers to decide the

suitability of the Scrum for their project depending upon project size, members involved and the

deadline. It can direct the developers to focus on the right issues from the beginning of the

project which in turn can reduce development effort and cost.

1.2.Research Approach

This thesis focuses on the applicability of Scrum in large scale software development

organizations. In this context, a large scale means involving many developers more than ideal

size (7 to 9 people) for agile development and can be distributed or not. The objectives of this

study are to investigate management challenges in adopting scrum for large scale projects and to

find and elaborate scaling practices used. To make this study more specific, we try to answer

following research questions through this work:

1. Why to scale Scrum when used for large projects?

2. What are the scaling practices currently used by the industry?

3. Which Scaling practice is widely used and why?

4. What changes are required to the original Scrum framework to make it adaptable to large

projects and what effect does that have on quality and productivity?

5. What are the challenges faced by developers in adopting Scrum for large projects?

3

In order to answer above questions, we adopted a two-phase approach. The first phase involves

conducting a systematic literature review of past empirical research. We included literature from

the past ten years for the review. The main goal of this review is to investigate adaptability of

Scrum for large projects by identifying currently used scaling practices and challenges faced

while adapting them.

The second phase involves the construction of a system dynamics simulation model of the Scrum

framework. First part of this phase involves developing causal loop diagrams illustrating various

factors affecting the Scrum framework. There are several factors that affect productivity,

development effort, velocity and quality and each are interrelated to one another. Causal loops

can help in determining the relationships between various factors. These causal loops and the

results obtained from Systematic literature review are used to develop system dynamics model

which constitutes the second part.

1.3.Thesis Contribution

The main contributions of this thesis are:

 A Systematic literature review that investigates the scalability issue of the Scrum

framework in detail which gives an overview of the current literature at a glance. The

aim of this review is to identify various scaling practices used to scale Scrum and to

identify challenges in adopting them. The studies included in SLR will be analyzed using

thematic analysis.

 The System dynamic simulation model is built to examine the relationships between

various factors that affect the project performance in large scale Scrum. The model is

developed iteratively so that each module can also be used separately depending upon the

area of the interest. The model can help developers in predicting the project completion

time and development cost when calibrated with the project specific parameters.

4

1.4.Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 presents a detailed introduction to the Scrum framework. It is followed by a brief

discussion on the scalability issue of the Scrum. It also presents an introduction to systematic

literature review methodology. It ends with a review on similar kinds of research works.

Chapter 3 details the systematic literature review conducted to investigate scalability issue of the

Scrum framework and also presents the results of the review.

Chapter 4 presents the system dynamic model beginning with an overview of system dynamics

modeling followed by causal loop diagrams and iterations of the model. The results obtained

from the SD model are also analyzed as the concluding part.

Chapter 5 summarizes the thesis and concludes it by providing suggestions for future work.

5

Chapter 2

Background and Related Work

This chapter describes the background needed to understand the Scalability issue of the Scrum.

First Agile software development is briefly discussed, followed by the Scrum framework and

Scrum for large projects in detail. Lastly, it reviews the need of a systematic literature review and

similar studies in this field.

2.1. Agile Software Development

In 2001, several agile thought-leaders agreed on what they called the Agile Manifesto [6] stated

as:

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Some of the principles behind the Agile Manifesto are:

 Customer satisfaction by rapid, continuous delivery of useful software

 Working software is delivered frequently (weeks rather than months)

 Working software is the principal measure of progress

 Even late changes in requirements are welcomed

6

 Close, daily cooperation between business people and developers

 Face-to-face conversation is the best form of communication (co-location)

 Projects are built around motivated individuals, who should be trusted

 Continuous attention to technical excellence and good design

 Simplicity

 Self-organizing teams

 Regular adaptation to changing circumstances

These principles govern all the techniques and rules in the different agile methods, which all

strive to make software development more flexible and overall more successful. The manifesto

bred a movement in the software industry known as agile software development. Agile software

development refers to a group of software development methodologies based on iterative

development, where requirements and solutions evolve through collaboration between self-

organizing cross-functional teams. The various agile methodologies share much of the same

principles, as well as many of the same characteristics and practices. But from an implementation

viewpoint, each has its own set of practices, terminology, and strategies. Well-known agile

software development methods and/or process frameworks include:

 Extreme programming (XP)

 Scrum

 Feature-driven development (FDD)

 Lean software development

 Kanban software development

 Adaptive software development (ASD)

 Agile modeling

 Agile Unified Process (AUP)

7

 Crystal Clear Methods

 Dynamic systems development method (DSDM)

In 2009 and 2010 Forrester Inc. surveyed 1298 and 1093 software professionals respectively,

requesting them to select the methodology that most closely reflected their development

process [64].The respondents identified some of the most in-use agile methodologies, with

Scrum being the most popular. In the following section Scrum framework is discussed in

detail while other agile methodologies are not discussed being out of the scope of this thesis.

2.2. The Scrum Framework

Scrum was introduced by Takeuchi, DeGrace, Schwaber, and others in the late 1990s [52].

Scrum is an agile management framework for incremental product development using one or

more cross-functional, self-organizing teams of about seven people each. It is an iterative, time-

boxed, incremental project management method based on a simple “inspect and adapt”

framework [25]. The Scrum framework is based on a set of values, principles, and practices that

provide the foundation for the project management. It emphasizes decision making from real-

world results rather than assumptions. It provides a structure of roles, meetings, rules, and

artifacts. Teams are responsible for creating and adapting their processes within this framework.

Figure 1 Overview of Scrum (Adapted from the Scrum Premier 2.2[16])

8

Scrum uses fixed-length iterations, called Sprints, which are typically two weeks or 30 days

long. The Sprints are time boxed – they end on a specific date whether the work has been

completed or not, and are never extended [16]. Usually Scrum Teams choose one Sprint length

and use it for all their Sprints until they improve and can use a shorter cycle. Scrum teams

attempt to build a potentially shippable product increment on iteration. The Scrum framework,

shown in Figure 1, is first initiated by collecting requirements in the form of user stories from the

customers, the teams and other stakeholders. All of these user stories are arranged in priority

order in the Product backlog. The high priority items are selected from the product backlog to be

implemented in the next Sprint. During the Sprint, no new items may be added. At the start of

the Sprint, a planning meeting is held where team members figure out how many items they can

commit to, and then create a sprint backlog – a list of the tasks to perform during the Sprint [16].

During each Sprint, the Scrum team works on development of the requirement including its

design, coding, testing to yield fully implemented functionality. At the end, these features are

coded, tested and integrated into the evolving product or system.

For every Sprint, a daily scrum meeting is held for discussing the current progress and

impediments. The result of the each Sprint is a potentially shippable product increment. Thus,

each Sprint provides a working functionality for the product. At the end of the Sprint, the Team

reviews the Sprint with stakeholders, and demonstrates what it has built. Feedback obtained from

participants is incorporated in the next Sprint [16] [32] [51].

The significant benefits Scrum can deliver to business are reflected by the companies that had

adopted it which includes Microsoft [7], Yahoo! [12], Nokia [2], Intel [22] and the Ericsson [23].

According to Schwaber and Beedle [52] there is a list of practices to follow in order to use

Scrum. Schwaber and Beedle [52] divide these practices into seven categories: the Scrum

Master, Product Backlog, Scrum Teams, Daily Scrum Meetings, Sprint Planning Meeting,

Sprint, and Sprint Review.

The subsequent sub-sections reveal the principals and practices behind the power of Scrum.

9

2.2.1. Product backlog

The Product Backlog is a prioritized list of project requirements with estimated times to develop

them into completed product functionality. The Product Backlog is continuously updated to

reflect changes in the needs of the customer, new ideas or insights, moves by the competition,

technical hurdles that appear, and so forth [16]. The product owner is responsible for

prioritization of the product backlog items after consulting from the team and stakeholders

involved. All the entries within the Product Backlog have to be estimated in terms of either story

points, function points or simply point. This estimation can then be used to prioritize entries in

the Product Backlog and to plan releases. The Team and the Product Owner decides the effort

estimate and technical risk estimates for each item in the product backlog.

The larger items in the product backlog are broken into smaller items and assigned individual

priorities. This is referred to as product backlog refinement. The Product Backlog items for the

future Sprints should be small and fine-grained enough that they are well understood by the team

and they make near to concise estimates [16].

 Figure 2 shows a sample product backlog template.

Figure 2 Example of Product Backlog [28]

10

2.2.2. Sprint backlog

The Sprint backlog is a list of tasks identified by the team to be completed during the upcoming

Sprint. During Sprint planning meeting, the team selects the highest priority items from the

product backlog, usually in the form of user stories, and identifies the tasks necessary to

complete each user story. Most teams also estimate how many hours each task will take

someone on the team to complete [52] [16]. Only the team is authorized to change the item

selection within the sprint [52]. The tasks should be detailed in terms of man-hours. The tasks

are measured in hours whereas the product backlog items are measured in relative story points.

The tasks include information about the work that has to be accomplished. Sometimes Sprint

backlog is linked with the product backlog to trace the progress of the product backlog items

[52].

The Sprint Backlog can be kept electronically within e.g. an Excel-Sheet or with cards on a task

board. An example of Sprint backlog in a spreadsheet is shown in Figure 3.

Figure 3 Example of Sprint backlog [65]

During the Sprint, team members are expected to update the Sprint backlog as the tasks are

fulfilled. Many teams will do this during the daily scrum. Every day, the estimated work

remaining in the sprint is calculated and graphed by the Scrum Master in Sprint Burnout chart

illustrated in following section.

11

2.2.3. Sprint Burn-down Chart

Sprint Burn-down Chart is a graph used by the teams to track the development effort remaining

in a Sprint. It shows, each day, a new estimate of remaining work until the Team finishes it. It is

called a burn-down chart as it is downward sloping graph and reaches zero by the last day of the

Sprint [16]. Every day the team member’s work on tasks and the work should decrease every

day. Usually on horizontal axis, time or number of Sprints are plotted while on vertical axis,

work remaining (Story points or man-hours) is plotted.

Figure 4 Sprint Burndown Chart[10][]

Figure 4 Sprint Burn-down Chart [16] [58]

The above chart in Figure 4 shows a Sprint burn-down chart for two weeks (14 days). On X-axis

days are plotted while on Y-axis estimated work remaining is plotted in terms of story points.

The unit used for vertical axis is decided by the team. Every day this chart is updated and dots

are joined to form a line. This line is called as burn-down line. The linear line shown is the

idealized line. It represents a linear progress from day one to the end of the sprint. In the graph

shown above, 50 story points have been selected from the product backlog for the current sprint.

According to the linear line, the remaining work is reached zero at the last day of the Sprint [16].

In Figure 4, since the burn-down line is above the idealized line, it can be inferred that the team

was first behind the estimation. However, the idealized line is reached at the day nine, and the

work remaining is 20 story points.

E
st

im
at

ed
 w

o
rk

 r
em

ai
n

in
g

 (
S

to
ry

p
o
in

ts
)

Days

12

There is another chart used in the Scrum framework called as release burn-down chart which

shows the remaining work in the release. The release burn-down focuses on the requirements

rather than tasks. On the horizontal axis Sprints is plotted instead of days [16]. It means that

Sprint burn-down shows the status of Sprint backlog tasks while release burn-down shows the

status of the product backlog items.

2.2.4. Sprint Planning Meeting

At the beginning of each Sprint, the Sprint Planning Meeting takes place. The maximum duration

of the meeting is five percentage of the Sprint length. The inputs to the Sprint planning meeting

are the team capacity and the product backlog [50]. The meeting is divided into parts, each also

time-boxed. During the first part, the Product Owner presents the highest priority Product

Backlog items to the team. The team and the Product Owner collaborate to help the team

estimate how much Product Backlog it can develop into working software in the upcoming

Sprint. The second part of the meeting focuses on how to implement the items that the team

decides to take on. The team estimates the number of items from the product backlog they can

complete by the end of the Sprint. The higher priority items are first selected for the

implementation.

2.2.5. Daily Scrum

A daily Scrum meeting is a short 15-minute meeting. In the Daily Scrum each member of the

Team reports three things to the other members of the Team [16]:

1. What has been accomplished since the last meeting?

2. What will be done before the next meeting? and

3. What obstacles are in the way?

The Daily Scrum improves communications, collaboration and knowledge about the current

progress. The Scrum Master is responsible for effectively organizing the Daily Scrum.

2.2.6. Sprint Review and Retrospective

After the Sprint ends there is a meeting where people review the Sprint. The Product owner,

ScrumMaster, team and all the stakeholders participate in this meeting. In this review what has

been accomplished in the Sprint is discussed. The Sprint Review is an inspect and adapt activity

for the product [16]. The Sprint review should be no longer than 30 minutes [16].

13

The Sprint Retrospective, which follows the Review, is an inspect and adapt activity regarding

the process and environment. In this meeting, team discusses which practices are proving

beneficial and which are not. It is time boxed for 45 minutes per week of Sprint [16].

2.2.7. Scrum Role

The Scrum framework includes three roles, Product Owner, Team, and Scrum Master.

The Product Owner is the key stakeholder and is responsible for return on investment. The

Product owner prioritizes the product backlog during the Sprint planning meeting. She/He is

responsible for the product backlog being updated, visible, and prioritized all the time [16].

The Team in Scrum is cross functional; for a software product the Team might include people

with skills in analysis, development, testing, interface design, database design, architecture,

documentation, and so on [16]. It includes all the expertise necessary to deliver the potentially

shippable product each Sprint and it should be self-managing [16]. The Team decides how many

items from product backlog to be selected to implement in a Sprint. The Team in Scrum is seven

plus or minus two people [52] [16].The Team works on requirements to develop functional

product and also provides ideas to the product owner to enhance productivity.

The Scrum Master helps the team learn and apply Scrum to attain business value [16]. As the

team is already a self-organizing team, the Scrum Master enhances self-management, cross

functionality, creativity and empowerment [18] [51]. The Scrum Master is the facilitator of the

meetings and is responsible for ensuring that the team members are able to proceed in their tasks.

2.3. Scaling Scrum for Large projects

The Scrum Framework described in [6] [52] [16] works best for a single co-located Scrum team.

However, nowadays the projects and resources are growing enormously and small size team

cannot accomplish the goals in limited time. As a consequence the number of members involved

has to be increased and/or the teams can be distributed. The reasons for this can be unavailability

of experts, project size being too big, low cost usage of resources in different countries or speed

up work by utilizing different time-zones.

14

According to Abrahamsson [2], Scrum is an effective approach for project management with

small, co-located development teams. However, Sutherland and Schwaber [61] argue that Scrum

can also be used for large and distributed teams.

In this thesis, Scaling refers to tailoring original Scrum framework to make it adaptable for large

projects. Larger projects are those which involve more number of people (more than the ideal

size) and may be distributed or not.

According to Schwaber [52] following are the reasons for scaling Scrum:

1. Planning to fulfill functionality more quickly by applying more number of Scrum Teams

to the Product Backlog.

2. When more people are needed for one or more Sprints of a Product backlog than required

for a single Scrum team. A singularity of diverse skills applied at one time may generate

this need, such as developing a user interface framework, secure architecture, and piece

of functionality within one Sprint [52].

All of the basic principles, artifacts, values, roles, and meetings of Scrum have to be considered,

whether Scrum is singular or scaled.

2.3.1. Options for Scaling Scrum

In this section, we describe different ways in which Scrum can be scaled to be used for large

projects.

A typical Scrum team consists of 6-10 people but Jeff Sutherland has successfully scaled Scrum

up to over 800 people [60]. The primary way of scaling Scrum to work with large teams is to

coordinate a Scrum-of-Scrums or a so called Meta-Scrum. With this approach each Scrum team

proceeds as normal but to coordinate the work of multiple teams , Scrum of Scrums meetings

are held in which only team’s representative participates. These meetings are analogous to the

Daily Scrum meeting but do tend to happen weekly rather than daily.These meetings allow teams

to discuss their work, focusing especially on areas of overlap and integration. In many

organizations, having a Scrum of Scrums meeting two or three times a week is sufficient.

15

The problems arise when there is one large product backlog to be divided among teams. It would

be difficult to manage by a single product owner. If multiple product backlogs are used, then the

concept of the area product backlogs can be utilized. The interconnected teams are grouped to

form areas. The product owner’s responsibility is now distributed among multiple people, i.e., to

the area product owners (APO). Each requirement area includes a backlog, i.e., the area product

backlog. The areas are related to features and business, not to the product architecture [35].

Figure 5 shows the scaled Scrum which uses area product owner. This framework requires very

good coordination among teams in order to complete the project successfully.

Figure 5 The Scaled Scrum framework (Adapted from [35])

16

2.4. Systematic Literature Review

A Systematic literature review (SLR) is a secondary study for identifying, evaluating and

interpreting all available research relevant to a particular research question or topic of interest

[31]. Individual studies involved in a systematic review are called primary studies whereas a

systematic review is a form of a secondary study. Case studies are commonly used in most of the

software engineering research, and systematic review can discover and synthesise new results by

grouping several such similar studies.

The most common reasons for conducting Systematic literature review according to [31] are:

 To summarize the existing evidence concerning a treatment or technology e.g. to

summarize the empirical evidence of the benefits and limitations of a specific agile

method;

 To identify any gaps in current research in order to suggest areas for the further

investigation; and

 To provide a framework or background for appropriately positioning of new research

activities

However, systematic reviews can also be undertaken to examine the extent to which empirical

evidence supports/contradicts theoretical hypotheses, or even to assist the generation of new

hypotheses.

2.5. Related Work

This section presents the summary of similar research carried out in this field using Systematic

literature review and System dynamics modeling.

Hussain et al [27] conducted a systematic literature review of the primary studies that reported

using Scrum practices in global software development (GSD) projects. The extracted data from

these studies were used to identify various challenges of using Scrum in GSD. Its only focus was

to study globally distributed projects. They concluded that the use of Scrum practices in GSD

was limited by project’s contextual factors. The review findings also reveal that the temporal,

geographical and socio-cultural distance in distributed projects creates a number of challenges

17

towards GSD communication, coordination and collaboration processes. The most important

among them is communication challenge. In order to use Scrum for GSD, it have to be modified

or extended in a way to overcome these challenges.

The Systematic literature review of agile methods carried out by Dybå and Dingsøyr [17] in

2008 identified 33 primary studies. Their focus was on empirical studies which adopted agile

development. They categorized the studies into four categories namely introduction and

adoption, perceptions of agile methods, human and social factors, and comparative studies.

Extreme programming was found to be the most prominent agile method in terms of citations

and also adoption. The Scrum framework was found to be the most useful method for project

management.

Cardozo et al [11] carried out systematic literature review to find the scientific evidence of the

correlation between the use of Scrum and productivity in Software Projects. It was not clear from

this paper that whether the type of projects considered was small or large. However they reported

considerable improvement in productivity when Scrum was adopted. This SLR reported a failure

in finding sufficient evidence to consider other project aspects, such as communication,

reliability, cohesion, and business value, as a significant outcome, even though they seem to be

incidental benefits, of using Scrum.

In [21], Glaiel et al presented an Agile Project Dynamics model that captured the agile genes as a

separate component of the model and allows experimentation with combinations of practices and

management policies. The agile genes were identified as: Story/feature driven,

iterative/incremental, refactoring, micro-optimizing, customer involvement, team dynamics, and

continuous integration. The goal of this model was to gain insights and recommendations to

integrate agile practices into a large-scale software engineering organization. Glaiel et al

concluded that team Dynamics, feature-driven, and iterative-incremental genes are relatively

easy to implement or adopt, as most of these practices dictate the behavior of the software

development team alone, and do not require much buy-in from other stakeholders in the product

development organization. Whereas the advanced genes such as Continuous Integration and

Customer Involvement require much more coordination and also require buy-in from

stakeholders.

18

Cocco et al in [13] developed a simple system dynamics model for describing the behavior of

Waterfall, Scrum and Lean-Kanban Software development methods. The traditional Waterfall

model was compared by means of simulation techniques with two agile and less prescriptive

process tools, Scrum and Lean-Kanban. The objectives of the study were to identify relationships

and mechanisms within a software project in case of three software development processes. They

concluded that Scrum and Lean-Kanban performed better than waterfall method. They claimed

the resulting behavior of the simulation model to be quite realistic with respect to real projects.

19

Chapter 3

Systematic Literature Review

This part of thesis presents a systematic literature review on adoption of the Scrum for large

scale projects. The Systematic literature review conducted in this thesis has been carried out in

three main stages adopted from the guidelines provided in [31] about conducting a systematic

review. The three stages are:

1. Planning the review

2. Conducting the review

3. Reporting the review

The Systematic literature review (SLR) begins by identifying the need for a review followed by

the development of the review protocol. Each stage and activities associated with it are

illustrated in the following sections.

3.1. Planning the Review

In this stage, the main focus is to identify the need to carry out a review. The steps involved are

described below.

3.1.1. Identification of need for a systematic review

This review has been conducted to find out applicability of Scrum for large projects.

Nowadays Scrum is widely adopted agile framework by software organizations. As

stated in introduction part, Scrum was originally developed for small teams involving 7

to 9 members. However since last decade it has been used for development of large

projects involving hundreds of team members. It has also been tremendously used in

distributed projects where teams are distributed in two or more different countries. There

are several challenges faced while adopting Scrum for such large projects which are

described in these papers [42] [46] [44]. The main challenge is inter team collaboration

and coordination. Most of the available Scrum literature reports the use of scrum of

scrums meetings, use of retrospectives, area product owners and sprint demos. Paasivara

20

et al [42] [46] [44] have illustrated this concept of Scrum adaptability for large and

distributed project with lots of case studies. Their research emphasizes on inter-team

coordination techniques and scaling practices for Scrum. There are ample of empirical

studies carried out to reflect upon scalability issue of the Scrum for large projects. But

only few of them have discussed about the resultant quality and productivity. Through

this literature review we try to find out which practices in particular are used for scaling

Scrum, to what extent these practices are successful and analyze their effect on

productivity and quality. We also identify and shortlist challenges faced by developers

while adopting Scrum for large projects. The findings could be used to ease up the

Scrum adoption by the developers and to focus on the right issues from the beginning of

the project.

3.1.2. Development of a Review Protocol

Review protocol is a complete plan for conducting a systematic review and provides a

method for primary studies selection [31]. This section defines a review protocol which

will be used to carry out the actual study. The protocol is established based on the review

process described in the guidelines for performing the systematic literature review [31].

The review protocol which is adapted for this thesis is illustrated below in Figure 6.

21

Figure 6. Review Protocol

3.1.3. Background

The main goal of this review is to investigate adaptability of the Scrum for large projects by

identifying currently used scaling practices and challenges faced while adopting them. The

motivation behind this review is presented in detail in section 1.1 of this thesis. There are

several practices adapted by organizations through experience to scale Scrum for large projects.

These practices have some effect on quality and productivity of the software developed. The

main goal of this review is to gain deeper understanding of such challenges, scaling practices and

their effect on software productivity and quality. Through this SLR, we try to find answers to the

research questions stated in the following section.

Reporting Results

Synthesis of the Extracted data

Data Extraction Strategy

Study Quality Assessment checklist and Procedure

Study Selection Procedure

Study Selection Criteria

Search Strategy

Research Questions

Background

22

3.1.4. Research Questions

1. Why scale Scrum when used for large projects?

2. What are the scaling practices currently used by the industry?

3. Which Scaling practice is widely used and why?

4. What changes are required to the original Scrum framework to make it adaptable to large

projects and what effect does that it has on quality and productivity?

5. What are the challenges faced by developers in adopting Scrum for large projects?

3.2. Conducting the Review

3.2.1. Data Sources and search Strategy

The aim of a systematic review is to find as many primary studies related to the research

questions in an unbiased manner. Initial searches aimed at both identifying existing

systematic reviews and assessing the volume of potentially relevant studies. The databases

that were searched include ACM Digital Library, IEEEXplore, SpringerLink, and Scopus.

Each database was queried using the strings ‘scaling Scrum,’ ‘Scrum for large scale projects

’and ‘Scaling Agile methodologies’ with the search parameters set to look up in the Article

Title, Abstract and Keyword fields. We searched for literature published between the years

2004 to 2014. It includes articles from conference proceedings and journals/transactions.

The matches from the first stage were reviewed for relevance, which was primarily done by

reading through the titles and abstracts and for few papers even the introduction. All

research studies that were found to be relevant and those whose relevance was still uncertain

were selected for a more detailed analysis in the next stage. In the final stage, all of the

selected studies were read and filtered based on the inclusion and exclusion criteria

mentioned in the next section. Table 1 lists the number of articles found in first and second

stage of screening. The types of papers found were from industry reports, theoretical,

empirical and experimental academic papers.

23

3.2.2. Study Selection Criteria

A study selection criterion is intended to identify those primary studies that provide direct

evidence about the research question [31]. Final stage of selection process is based upon the

inclusion/exclusion criteria. The Inclusion/ Exclusion criteria are presented below:

 Inclusion Criteria

1. Peer reviewed to ensure quality of primary study.

2. Available online to ensure paper accessibility.

3. Research study should be related to at least one research question posed for the review.

4. Paper focuses on adoption of Scrum for large projects either in collocated or distributed

environment.

5. The paper has enough empirical data about the project such as number of teams and

members allocated for each team.

6. The paper should address scaling practices used only for the Scrum rather than some

other agile methodology.

Exclusion Criteria

1. Duplicate copy of the same research study or multiple publications of the same study.

2. Papers which lack numerical data about team members.

3. Any paper that does not possess any of the inclusion criteria was excluded.

Table 1 presents the selected papers in different stages of selection process. Final selection was

based on inclusion/exclusion criteria. After a rigorous search and reading of titles and abstracts,

we found a total of 798 papers. These papers were further read with introduction and few more

sections when required to extract 34 papers. Only studies on projects with more than 10 members

were selected for the final review. Finally, 11 papers were selected for a more detailed review

using inclusion/exclusion criteria.

Table 1 List of found and selected papers

Database No. of publications found 1
st
 stage selection 2

nd
 stage selection(

Included)

ACM Digital Library 73 10 4

IEEE Xplore 36 9 4

SpringerLink 670 11 2

Scopus 19 4 1

Total 798 34 11

24

3.2.3. Study quality assessment

In addition to inclusion/exclusion criteria, Study quality assessment is conducted to evaluate the

validity of the selected studies. Kitchenham [31] discusses quality assessment with regards to

defining the exclusion criteria for the systematic review. Once primary studies are selected,

further detailed quality assessment is desired to allow investigators to evaluate differences in the

implementation of studies. For detailed quality assessment, checklists can be designed using

factors that could bias study results. We prepared a quality assessment checklist shown in Table

2 to assess the quality of selected studies.

Table 2 Quality Assessment Checklist for Selected Studies

No. Question Answer

1 Does the research paper illustrate/describe/state that Scrum Methodology is used? Yes/No

2 Does the study involve large number of personnel and teams? Yes/No

3 Does the paper explicitly address scaling practices used? Yes/No

4 Are the data collection methods adequately defined? Yes/No

5 Are the case studies included in the research paper well addressed empirically? Yes/No

6 Do the results help in answering the research questions? Yes/No

7 Are the challenges faced while scaling Scrum discussed? Yes/No

8 Does the article list any assumptions made? Yes/No

9 Are any negative results reported? Yes/No

Most of the selected studies fulfilled answered “Yes” to all the questions listed in quality

assessment checklist. The studies which answered less than three “No” were also selected.

These studies were included considering their direct relation to the research questions addressed

in this SLR.

25

3.2.4. Data Extraction

During the data extraction phase, the data extraction form was used which was developed in the

review protocol. The purpose of the data extraction phase is to extract the relevant data, later to

be used to prepare summary tables and to answer research questions. During this stage, data was

extracted from each of the 11 primary studies included in this systematic review according to a

predefined extraction form. Some of the studies had two or more case studies which are taken as

individual studies to form a total of 16 studies.

This form enabled us to record full details of the articles under review and to be specific about

how each of them answered our research questions. The Data extraction form is envisioned to

integrate current literature-based results and views about Scrum practices used for large scale

development. Table 3 shows the Data extraction form which we used for our review to gather

data. The columns in this form are populated after reading each paper fully and also reading

references wherever required. Our goal was to tabulate as much information as we can in order

to extract relevant data for our studies.

Table 3 Data Extraction Form

Stud

y

Nam

e

Data

Collection

Method

Location No. of

Member

s

No of

Team

s

Scaling

Practices

Considered

Negative

Feedback

Practices

which prove

to be Positive

Effect on

Productivity/

quality as

reported

S1 Interviews

(19)

Distributed(

4 sites)

170 20 Area Product

Owners,

Common

Sprint Planning,

Scrum-of-

Scrums,

Common Sprint

Demo, and

Common

Retrospective

Common

Retrospective

not working,

SOS and

common

meetings

were not

much favored

by the

participants

APO is

helpful

whereas

Scrum of

Scrums were

not.

Adoption of

scrum

resulted in

quick releases

for customers

to test.

S2

(A)

Interviews

(15)

Distributed(

2 sites)

10 4 Sprint Planning,

SOS, Sprint

review, and

Common

Retrospective

Common

Retrospective

was rarely

used.

Sprint

Planning and

review was

used. SOS

was modified

(weekly status

meeting

between

onshore

project

manager and

offshore team

lead)

Not Reported

26

Stud

y

Nam

e

Data

Collection

Method

Location No. of

Member

s

No of

Team

s

Scaling

Practices

Considered

Negative

Feedback

Practices

which prove

to be Positive

Effect on

Productivity/

quality as

reported

S2

(B)

Interviews Distributed

Sites (2)

11 2 Sprint Planning,

SOS, Sprint

Review,

Common

Retrospective

SOS not

used.

Common

Retrospective

s not used.

(other

meetings and

communicati

on

opportunities

were

considered to

be

sufficient)

Sprint

Planning was

modified

 , Sprint

Review was

used.

Not Reported

 S2(C) Interviews Distributed

Sites(2)

15 5 Sprint Planning,

SOS,

 Sprint review, and

Common

Retrospective

Retrospectives

were also

tailored.

Onshore and

offshore

Teams

 conducted

retrospectives

separately.

SOS, Sprint

Planning were

modified and used

successfully.

Not Reported

 S2(D)

Interviews

Distributed(4)

15

4

Sprint Planning,

SOS,

Sprint review, and

Common

Retrospective

SOS, Sprint

Planning and

Retrospectives

 were modified

 and used

successfully.

Not Reported

 S3 Web-based

Questionnaire

and Survey

Co-located 120 14 Sprint planning,

Sprint Demo,

Internal Software

Documentation,

Retrospectives,

 Open space

office, face to

face communication

Demos and

frequent meetings

seem to be

stressful for

some

individuals.

face to face

communication,

use of task

 boards increase

co-ordination

effectiveness.

Increased

productivity as

well as quality

S4(A

)

Interviews Distributed(

4)

160 20 Scrum-of-

Scrums

SOS

meetings

seem to be

poor for a

team with

disjoint

interest.

Not reported

anything

working well

in this project.

Not Reported

27

Stud

y

Nam

e

Data

Collection

Method

Location No. of

Member

s

No of

Team

s

Scaling

Practices

Considered

Negative

Feedback

Practices

which prove

to be Positive

Effect on

Productivity/

quality as

reported

S4(B) Interviews

(58)

Distributed(2) 25 Scrum-of-Scrums

SOS meetings

seem to be

poor for a team

with disjoint

interest.

But was

successful

 when tailored

with feature

specific

working teams.

SOS meetings

are helpful with

teams working

on similar

feature.

Not Reported

S5 Case Study,

Observation

Co-located 49 7 Scrum of Scrums,

 Feature backlog,

Scrum retrospectives

More than 3

teams /release

were hard to

manage

Team focused on

values,

Commitment,

Transparency,

Teamwork,

No team

competition,

Knowledge

sharing.

*SOS meetings

helpful

Positive effect

on team velocity.

Productivity

increased.

S6 Interviews 5 teams Co-

located,

6 Distributed

88 11 Product backlog Large number of

developers,

time pressure,

Complex

business

process rules,

Fixed

price/final

scope dilemma

Maintain a

designated

backlog of

overflow

task and

technical

improvement,

Increased

testing at

Sprint

checkpoints,

Allocate

 enough time

 to describe

 and

 Communicate

vision.

Factors which

increases

productivity:

High Skills,

Anchored

methodology,

Business and user

involvement and

Collocation and

good

infrastructure.

S7(A) Interviews Distributed

4

150 20 Scaling Product

owner role through

Area product

owners

Lack of

face-face to

communication.

APOS should be

close to the

development

 team, Sprint

planning

meetings

Not Reported

28

Stud

y

Nam

e

Data

Collection

Method

Location No. of

Member

s

No of

Team

s

Scaling

Practices

Considered

Negative

Feedback

Practices

which prove

to be Positive

Effect on

Productivity/

quality as

reported

S7(B) Interviews Distributed

2

170 25 Using proxy

 product owner as

well as product

owner.
distributed product

ownership team

 (PO team) and all

scrum basic

activities.

The

development

teams were not

experienced in

design and

architecture

planning,

The PO team

had two

videoconference

meetings each

week

Locate PO team

close to the

development

teams

Team demos to

PPOs

Not Reported

S8 Case Study Collocated 63 9 SOS,

Sprint demo,

Retrospectives/

reviews

Master product

backlog

ineffective

Agile

estimation

techniques

unsuccessful in

estimating

points, team

velocity.

Difficult to

make common

goal of all team

members.

Same sized

Sprints, Teams

using same tools,

Product backlog

and product

 owner for each

team.

Retrospectives

and reviews

gave good result.

Not Reported

S9 Case

Study/observatio

n

Distributed(3) 210 30 Scrum of Scrums

 (4 questions),

Use of virtual

architecture team

and more

automation.

Challenges in

Dependency

management,

Cross team co-

ordination,

Scrum of

Scrums (4

questions)

creating

redundancy.

Short and

overlapping

release cycles,

)

Provide forums

 to stimulate

collaboration

and

knowledge

sharing between

teams.

 Promote self-

organization and

decentralized

dependency

management,

virtual

architecture

 team and more

automation.

Not Reported

29

Stud

y

Nam

e

Data

Collection

Method

Location No. of

Member

s

No of

Team

s

Scaling

Practices

Considered

Negative

Feedback

Practices

which prove

to be Positive

Effect on

Productivity/

quality as

reported

S10 Interviews Distributed (2) 40 10

Scrum of Scrums,

Demos,

Separate backlogs

for each team.

Video-

conferencing

difficult for

meetings,

Misunderstanding

requirements.

Synchronized 4-

week sprints,

weekly SOS,

Frequent visits,

Unofficial

distributed

meetings, demos,

retrospectives.

Better and

improved

quality,

Better and

frequent

communication

and

Improved

motivation.

S11 Interviews Distributed 25 to

100

10 Scrum basics

 used.

Unclear

requirements,

limited

knowledge of

domain,

technology,

and the

organization,

and

communication

problems

led to uncertain

estimates,

unstable plans

and integration,

and quality

problems with

the consequent

need for rework

Collocation of

some members of

distributed

 teams with

scrum masters

 and product

owners and

regular, well

prepared global

scrum team

meetings

 improves

shared

understanding

and team

coordination,

and reduces

integration

problems

No significant

change in quality

reported by

adopting agile

scrum method.

30

3.2.5. Data Synthesis

Data synthesis involves collecting and summarising the results of the included primary studies

[31]. In the data synthesis phase the results from all the findings were tabulated and summarized

and each question was assessed individually against the findings. We used data extraction table

developed in the previous phase to conduct in-depth analysis. The data was synthesized using

thematic analysis, an iterative thematic synthesis process recommended by [15].

The aim of the thematic analysis was to find answers to the proposed research questions. The

results obtained from this analysis are detailed in the following results section.

3.3. Results and Analysis

In the first stage of selection, 34 papers were identified which addresses the issue of scalability

of Scrum. Each paper was studied in detail by analyzing the context of the study, research

questions, and empirical confirmation of the result. One of our main goals was to find studies

which reported effect of scaling Scrum on productivity and quality. But we found very few

studies reporting the productivity and quality. After thoroughly reading 34 papers, 11 papers

were selected based on inclusion/exclusion criteria described in section 3.2.2.

3.3.1. Overview of the selected publications

Only the papers published between the years 2004 to 2014 were selected for the review so that

latest information can be gathered. Table 4 shows the classification of the different studies

according to the publication year. The gradual increase in number of publications shows the

growing interest of practitioners and researchers in this field. However this table shows data only

for 11 studies selected for SLR whereas we found more than 2000 studies dealing with this issue

in the last ten years.

Table 4 Studies by year of publication

Publication year 2008 2010 2011 2012 2013

Number of

selected papers

3 1 3 2 2

31

The studies S2, S4 and S7 reported results from more than one case study which we take as

individual study for our review. Therefore we reviewed results from 16 studies.

3.3.2. Classification based on team’s location

The Scrum teams for a large scale project can be co-located or distributed in different places

(Cities, States or even Countries). As originally thought that the co-located teams are better to

ensure proper communication and deliver more efficiently than distributed teams. But nowadays

where global software development is increasing and favourable, teams often consist of people

from different parts of the world working together as distributed teams. In our review also, we

found most of the studies dealing with scalability issues have case studies which involved

distributed teams. Table 5 shows the classification on 16 studies based on team’s location.

Table 5 Classification of Studies based on Team's Location

Team’s Location No. of Studies

Distributed 12

Co-located 4

3.3.3. Type of Study

As scalability issue for Scrum deals with the large number of teams, almost all studies found

were conducted on industrial scale. We didn’t find any of the academic studies dealing with

Scrum scalability. All the studies included in this review are conducted in different software

organizations.

3.3.4. Research method

The type of studies varied from industrial online survey, case studies, observations, interviews

and questionnaires. Table 6 shows the type of study reviewed. 12 studies were classified as using

interviews which is the highest among all. Total number of case studies with observation was 3,

while only one study used web based questionnaire and survey.

Table 6 Classification of studies based on Research method adopted

Research method No. of Studies Studies

Interviews 12 S1,S2(A,B,C,D),S4(A,B),S6,S7(A,B),S10,S11

Case studies/Observations 3 S5,S8,S9

Web-based questionnaire and

Survey

1 S3

32

3.3.5. Number of Project members

Only projects with more than 10 members were selected for review as already stated in section

3.2.2. All the case studies selected for the review had more than 50 members involved except 4

case studies described in paper S2 [28].This paper reports a multi-case study that investigates the

impact of key project contextual factors on the use of Scrum practices in GSD [28]. For each

case study in this paper the team members involved were around 10 to 16 but each case study

was a part of larger project. We included this as teams were distributed and each project was a

part of larger project. This kind of situation will allow us to study how collaboration and

communication problems are handled in such cases. Figure 7 below shows number of project

members involved in each of the case studies. The average number of members was around 93

taken from all 16 projects. The highest number of members was 210 in a project of

Salesforce.com’s R&D organization and it was divided into 30 Scrum teams working

simultaneously in a single release code branch.

Figure 7 Classification based on number of project members

3.3.6. Number of Scrum Teams

Figure 8 shows the number of teams in each case study taken for this review. We observed a

common pattern in most of these projects regarding the team size. Out of 16 projects reviewed,

11 projects had a team size ranging from 7 to 9. Other 5 projects had team size less than 7. From

0

1

2

3

4

5

6

7

8

0 to 60 61 to 120 121 to 180 181 to 240

N
u

m
b

e
r

o
f

St
u

d
ie

s

Number of project members

Number of Studies

33

this pattern we can conclude that even in large projects involving hundreds of personnel the ideal

size of Scrum team should be 7 to 8 people per team. The average number of teams per projects

is 13. Most of the teams in these case studies are distributed.

Figure 8 Classification based on number of Scrum teams

3.3.7. Practices identified to Scale Scrum

Through this SLR, we found that Scrum teams use various practices or strategies to support the

use of Scrum practices in large scale projects. We extracted the data related to scaling practices

from Table 2 and we formed a matrix of projects and their respective practices shown in Table 7.

Table 7 Matrix between Studies and their respective scaling practices

 SOS APO’S PPO’S SOS

Modified

Common

Retrospective

Feature

Backlog/Teams/SOS

Meetings

Sprint

Planning

And

Review

S1 X X X X

S2(A) X X X X

S2(B) X

S2(C) X X X X

S2(D) X X X X

S3 X X X

S4(A) X

S4(B) X X X

S5 X X X

0

1

2

3

4

5

6

7

8

9

1 to 10 10 to 20 20 to 30

N
u

m
b

e
r

o
f

St
u

d
ie

s

Scrum teams

Number of Studies

34

 SOS APO’S PPO’S SOS

Modified

Common

Retrospective

Feature

Backlog/Teams/SOS

Meetings

Sprint

Planning

And

Review

S6 X

S7(A) X

S7(B) X X

S8 X X X

S9 X

S10 X X X X

S11 X X

SOS - Scrum of Scrums; APO - Area Product Owner; PPO –Product Proxy Owner

Each of the practice listed in table 7 is briefly discussed in Chapter 2. In this section we discuss

how these practices are applied to real time projects and the challenges that have to be dealt with

when applying them. We plotted a pie graph using data of Table 7. The pie graph in Figure 9

shows the adoption rate of each scaling practice used by the projects. It can be noted from this

pie graph that SOS is the most commonly used practice along with Sprint Planning and review.

In standard Scrum as well as Scaled Scrum, Sprint Planning and Review is mandatory and

common. It has been observed that studies on scalability of Scrum reported mixed results for

each of these practices. In the following few sections, each of this practice and their feedback are

discussed individually.

35

Figure 9 Practices used to scale Scrum Framework

3.3.8. Scrum of Scrums (SOS) Review

It has been observed that SOS technique is widely used to scale Scrum. Most of the studies

included in this review have used Scrum of Scrums technique to develop the projects. However

they have reported some positive as well as negative effects of using SOS. The division of

reviews are shown in Figure 10 below.

Figure 10 Reviews of SOS Practice

0

2

4

6

8

10

12

number of studies

Positive
reviews

25%

Negative
reviews

33%

Neutral
42%

SOS Reviews

36

The study 1[42] discusses an ongoing case study on adopting and scaling Scrum in a large

software development project distributed across four sites. In this case study along with SOS

other scaling practices were also employed. The SOS meetings were conducted daily in which

one representative from each team participated. The participant was responsible for reporting

impediments experienced by the team. The challenge reported in conducting these SOS meetings

was many teams were reluctant to report. Therefore, these SOS meetings in this case study were

not useful and termed as unsuccessful by the developers.

The study 2 [28] presented four different case studies that investigate the impact of key project

contextual factors on the use of Scrum practices in global software development. This study

indicates that the team size had an impact on the Scrum of Scrums practice. For example, in case

A and case B, the offshore teams operated as a single Scrum so the Scrum of Scrums practice

was not used in that project. However, it was modified by holding weekly status meeting

between onshore project manager and offshore team lead to resolve any cross team issues and

dependencies. It was also noted that distance-specific factor such as temporal and geographical

distance also impacted the Scrum of Scrums practice. In Case C, due to the high temporal

distance, representatives from each sub-team used the mechanism adjust working hours to

participate in a weekly status meeting. Similarly, in Case D, due to the geographical distance,

Scrum masters and the project manager participated twice weekly in a status meeting via a

teleconferencing. It was reported that SOS meetings improved team collaboration and created an

environment of high trust. However, it was observed that effective use of Scrum meetings

depends on good collaboration tools and other supporting mechanisms (e.g. adjust working

hours).

In study 4 [46], a multiple case study is presented to show how Scrum-of-Scrum meetings were

applied in two large-scale, globally distributed Scrum projects employing at least 20 Scrum

teams. The results show that the Scrum-of-Scrum meetings involving representatives from all

teams were not useful as the audience was too wide to keep everybody involved and the

participants were reluctant to report thinking it might not be valuable to others. This often ended

up with not reporting anything. Towards a solution to this problem, one of the case projects

introduced feature-specific Scrum-of-Scrums meetings for 3-5 teams working on the same

feature, which turned out to work well.

37

The study 5 [39] showed successful adoption of Scrum of Scrums by scaling team to multiple

feature oriented teams. They demonstrated that separating teams by feature was perfect in order

to focus on the main priorities for the development of the product and to avoid conflicts in

backlog management. In addition to this they also pointed out that it is vital that every new team

formed should have at least one professional with good technical skills and knowledge of Scrum,

backed-up by an experienced ScrumMaster and a Product Owner.

Study 8 [37] employed Scrum of Scrums technique but did not report any positive or negative

issues related with it. The study 9 [4] highlighted the practices that salesforce.com has been

using successfully to scale Scrum and to manage inter-team dependencies. This project had over

30 Scrum teams working simultaneously in a single release code branch. Each business unit has

a weekly Scrum-of-Scrums meeting and there is also a weekly Scrum-of-Scrum-of Scrums.

Sometimes additional Scrum of Scrums was formed if there is a group of teams working closely

together towards a common goal. They were using the 4 question format for the scrum-of-scrums

and reported some redundancy between the team's Scrum-of-Scrums update and the team's status

report. So they decided to use the open format Scrum-of-Scrums in which participants suggest

discussion topics by writing them on the whiteboard at the beginning of the meeting. This

approach made participants more responsible for the content of the meeting which resulted in

more productive and collaborative discussions. Individual team status was not at all discussed in

the Scrum-of-Scrums unless specifically raised as a discussion topic. However the status was

always updated and available in weekly status report. They reported use of weekly status report

as an important complement to Scrum of Scrums. They also pointed out that it is a challenge to

deal with dependency management and cross-team coordination as the number of teams grows.

In study 10[43], Paasivara et al reports a case study on agile practices in a 40 person

development organization distributed between Norway and Malaysia. They described how

Scrum practices were successfully applied like daily scrum meetings, synchronized 4-week

sprints and weekly Scrum-of-Scrums. They identified additional supporting practices for

distributed projects such as frequent visits, unofficial distributed meetings and annual gatherings.

In this project, a weekly Scrum of Scrums meeting was held in which one team member from

each team participated. It is up to the team to select the participant and it is not mandatory that

every time same member is selected. In addition to this all Scrum Masters also participate in this

38

meeting which is half an hour in length. Each team representative tells what his or her team has

been doing since the last meeting, what it plans to do before the next meeting and what kind of

impediments they have. Moreover, they added two additional questions: “Have you put some

impediments in the other team’s way?” and “Do you plan to put any impediments in the other

team’s way?” The goal of these questions was to ensure proper integration. The overall

experience of using Scrum of Scrums practice reported in this paper was positive as it improved

quality and ensured better and frequent communication.

Study 11 [5] reports the results of an interview study of five agile development projects by a

single organization. Basic Scrum practice was used in these projects and specific details on

adoption of SOS practice were not reported. However authors suggested that it is better to have

some members of distributed teams to be collocated with Scrum Masters and Product owners

regularly. They also suggested that well prepared global Scrum team meetings improve shared

understanding and team coordination thus reducing integration problems.

3.3.9. Use of Area product Owners (APO’S) and Product Proxy owners (PPO’S)

Two studies have used Area product owners for scaling Scrum. In study 1[42], Paasivara et al

used Area product owners to scale Scrum. In addition to the main Product owner role, the project

had a team of APOs. Each APO and their respective team were responsible for individual

features in the project. The role of APO was handled by two persons: a system architect and a

product management representative. The system architect worked along with the team and also

communicated with the product management representative. There was no communication

between product management representative and the team. The system architect was collocated

with the team at the main site. Each product area had a couple of development teams, and each

feature would be implemented by a specific team. In this project the role of APOs was very

useful and appreciated.

In Study 7 [45], Paasivara et al again focused on scaling the role of product owner in two large

globally distributed projects each with 20 or more Scrum teams. Case A of this study used APO

to scale Product owner role. APO’s role was same as described in study 1 [42] above. They

39

suggested that APOs should be close to the development team and should conduct frequent

workshops which improve team-APO communication. Case B of this study had a distributed

project ownership team consisting of a Product owner (PO) and ten Product Proxy owners

(PPOs). A large feature can be handled by 3 full time PPOs while a group of small features can

be handled by a single PPO. The idea behind this was to have whole team responsible for all

features. They reported that it is useful to have PO team located closer to the development team.

The PPO was responsible for participating in daily scrums, arranging backlog grooming session,

arranging face to face Sprint Planning, and also participating in team demos.

3.3.10. Feature Backlog/Teams/SOS Meetings

In Study 4 [46], Case B had Feature SOS meetings to solve problem of common SOS meetings.

These meetings were held by 3-5 teams working on the same features. These meetings were

held weekly once. However, the project sill had an integrated SOS meeting once a week and

called it as the Grande SOS meeting.

These Feature SOS meetings were reported as useful by interviewees consulted in case study.

The reason behind their success was people with common interests and goals shared their ideas

and problems together. Grande SOS meetings gave the same negative results as SOS meetings in

other case studies gave. Diverse and least interest of participants attending Grande SOS made it a

failure.

In study 5 [39], multiple feature-oriented teams were used to scale scrum for large project. In this

project special focus was given to the team’s values such as commitment, teamwork and

transparency. The 49 member team was divided along with backlog creating feature teams

working on specific feature backlog. Each team was formed in such a way that it had at least

three experienced Scrum people. Although the backlog was broken into two or more feature

teams, these teams were well collaborated without intra team competitions. It is demonstrated

through this study that dividing teams by feature was the best choice as it was easy to handle

core priorities of the product and to avoid conflicts in backlog management.

Study 10 [43] described a project in which teams had their own backlogs. First the product

backlog was divided among teams. The product owner of each team was responsible for

updating backlog. The teams used a tool called Jira for managing backlogs. In addition to

40

individual team’s backlog, the maintenance team has its own backlog where all product owners

can add fresh issues. These issues are assigned a priority and addressed according to their

criticality. This Jira tool was termed as satisfactory by all the team members. The usage of

divided backlog in this project proved to be beneficial by improving communication and

collaboration between all the team members.

3.3.11. Common Retrospective

Retrospectives are undertaken after the Sprint review by the Scrum team in order to inspect

completed work and plan for improvement in the upcoming Sprint. In study 1 [42], Common

retrospectives were tried using different ways. In the beginning, each team had their team

specific retrospective first and then all teams gathered for a common retrospective. The problems

were created as the team size grew larger and impediments remain unsolved. Therefore team

members reported common retrospectives to be useless. Another way adopted was to conduct

retrospective through an open space, i.e. anyone could suggest a discussion topic. At a time,

several discussions were held and team members reported it as fun rather than a solution to the

problems. Lastly they came up with a new format of common retrospective. The meeting was

held and facilitated by an internal coach, who tried to avoid the earlier mistakes. The participants

were asked to brainstorm the biggest impediments, prioritized them, pick the most important one,

search the cause for it, select one root cause for which they brainstorm solution. Then they

choose one solution for implementation. In the next common retrospective they would follow up

on the implementation of the solution and probably work on the same impediment until it is fully

solved.

In all the three case studies A, C, and D of study 2 [28], common retrospective was used. In case

A, Retrospectives were held in the beginning 5 to 6 Sprints. However, the practice was

withdrawn as the Scrum model was working effectively and any impediments was easily handled

in other meetings. In case study C, Retrospectives were tailored to compensate the temporal

distance between sites and the division of work. Two separate retrospectives were held each for

onshore and offshore teams. In the retrospective, teams discussed successful strategies leading to

work completion, impediments that were encountered and any improvements required. The

results of each site’s retrospective were posted in the project wiki, which was accessible by all

stakeholders. In the beginning, retrospectives were held at the end of every Sprint. Later as

41

things were working smoothly, the time interval was increased to the end of every second Sprint.

In study D, due to the temporal and geographical distances involved, Scrum team members used

the mechanisms such as adjust working hours and teleconference to conduct their retrospective

meetings. They proved to be successful in solving impediments.

In study 3 [34], Retrospectives meetings were held at the end of every iterations and project

members seems to be content with the retrospective meetings as they gain valuable insights

through them. In study 5[39], Retrospectives were initially conducted between cross functional

teams and there was a failure due to disagreement among different teams. Then retrospectives

were conducted between feature teams and they deemed to be successful. In study 8 [37] and

study 10 [43], retrospectives were held in usual manner and reported to be successful.

3.3.12. Sprint Planning and Review

Sprint Planning and Review is inherent to the Scrum framework and used almost in all the case

studies. However team members reported these meeting to be tedious and less beneficial to them

whereas managers termed them as helpful in planning the upcoming Sprints. The common

challenges reported by all the case studies which adopted Sprint planning and Review are:

1. When team members involved in Sprint planning have diverse interest, they hardly

participated in the meetings. Even if they participated they showed no interest in

solving impediments.

2. Moreover if teams are distributed then due to offshore team’s lack of domain

knowledge, the Sprint planning meeting becomes a long time consuming process that

involves additional meetings.

3. Face to face Sprint Planning meetings proved to be beneficial but have to be tailored

when teams and team members increases.

4. Distributed teams face communication problems due to poor network connections.

Misunderstandings were common between distributed teams.

5. Sprint Planning meetings showed substantial improvement when someone guided

them i.e. taking responsibility of the discussion.

However, in all the case studies Sprint Planning and review was used by tailoring it according to

the project and team’s situation.

42

3.4. Discussion

This section discusses how the data extracted from the different studies answered our research

questions. The aim is to provide a synthesized overview of the current available literature

addressing the issue of Scrum’s scalability.

RQ1: Why to scale Scrum when used for large projects?

Larger projects have huge set of requirements which needs a huge workforce. Scrum framework

was originally developed for smaller projects which have around 7 to 10 members. However

when the same Scrum framework has to be used for larger projects it has to be scaled and

sometimes tailored.

RQ2: What are the scaling practices currently used by the industry?

The scaling practices identified through this review are listed below:

1. Scrum of Scrums Review

2. Use of Area Product Owners

3. Use of Proxy Product Owners

4. Tailoring Scrum of Scrums

5. Use of Feature backlog

6. Use of Feature teams

7. Meetings held between feature teams

8. Sprint Planning and review

Each of this practice is discussed in detail in the preceding sections. Each practice has its own

advantages and disadvantages. These practices are tailored according to the project’s situation

i.e. distributed or co-located, project’s size, and team’s convenience.

RQ3: Which Scaling practice is widely used and Why?

It has been observed that Scrum of Scrum technique is widely used to scale the Scrum

framework for large projects. It is used in 8 studies out of 11 selected for this SLR. In this

approach each Scrum team proceeds as normal, but each team has a representative who attends

the Scrum of Scrums meeting to coordinate the work of multiple Scrum teams. These meetings

are somewhat similar to daily Scrum meetings but they are not held every day. They are held

43

once every two weeks or three weeks. The factors leading to successful adoption of Scrum of

Scrum (SOS) technique for scaling Scrum is summarized below:

1. SOS meetings improved team collaboration and create an environment of high trust.

2. Additional SOS meetings can be easily incorporated if there is a group of teams working

closely towards a common goal. It is easy to manage inter team dependencies in such

cases.

3. In study 10 [43], SOS improved quality, ensured better and frequent communication

through frequent visits, unofficial distributed meetings and annual gatherings.

4. Feature specific SOS meetings for teams working on the same feature performed very

well in all the case studies in this SLR.

5. The SOS meetings can be scaled up in a recursive manner.

After careful review of available literature, it can be concluded that SOS technique is used

widely in current industry and it is easy to adapt. In some projects when team size grows, it

might create some problems which can be solved with the use of feature specific teams.

RQ4: What changes are required to the original Scrum framework to make it adaptable to large

projects and what effect does that have on quality and productivity?

In particular, no changes are required to the original Scrum framework to use it for large

projects. In fact following the Scrum guidelines and principles makes it more effective to be used

for large projects. The Scrum framework was initially used for the small project involving 5 to

10 members. It is said that to be effective Scrum teams should have an ideal size of 7 to 10

members. This notion may be the cause for the fallacy that the Scrum framework can only be

used for small projects. However, it can easily be scaled for effective use in larger projects. In

situation where the team’s size exceeds 10 people, multiple Scrum teams can be formed to work

on the project. The Scrum of Scrum technique is the best technique so far to facilitate

coordination among Scrum teams. Multiple Scrum teams work in parallel and they have to be

synchronized through flow of information and frequent communication. The SOS meetings

greatly help to keep the teams synchronized. There are no specific rules defined for the

frequency of SOS meetings. It can be adjusted based on amount of team dependency, project’s

size, geographical distance between teams and level of complexity.

44

Only five studies out of 11 studies reported the effect of scaling Scrum on Productivity and

quality. All of them reported a positive result about the Scrum being used for developing large

projects. Study 1 [42] reported that adoption of Scrum resulted in quick releases for customers to

test. S3 [34], S5 [39] and S6 [23] reported an increase in productivity and quality. The factors

leading to increased productivity were listed as increased team velocity, teams with mixed high

skills, anchored methodology, improved motivation, business and user involvement, colocation,

good infrastructure and frequent communication.

RQ5: What are the challenges faced by developers in adopting Scrum for large projects?

 The challenges while adopting scrum for large projects are:

1. Ensuring good communication between the team members and also between the teams

for a large project. Everyone involved in the project should know the Status of the

project.

2. The major challenge as pointed out by inventor of Scrum Jeff Sutherland is it is difficult

to change the mindset in the organization in general and on management-level in

particular [57]. Team learns agile practices and adopt, but there is a high chance the team

again uses the traditional practices, because of which again productivity degrades.

3. High performing teams rely heavily on open communication, feedback, and motivation.

For a large team it will be difficult to monitor teams.

Through this SLR, it has been observed that the biggest challenge faced in Scaled Scrum is the

assurances of perfect inter team and intra team communication. Due to large team sizes it is

difficult to completely eliminate this communication overhead. However this overhead should be

monitored to control the project’s performance.

45

Chapter 4

System Dynamics Modeling

This chapter presents the second phase of the thesis which involves construction of causal loop

diagrams and a simulation model for Large Scale Scrum. In this part of the thesis we adopt

system dynamics approach to realize a model for analyzing the dynamic behavior of the large

scale Scrum. The results obtained from systematic literature review described in chapter 3 are

used to construct these models. In this chapter we first provide an introduction to system

dynamics so that different concepts used in modeling can be easily understood.

5.1.Overview of Modeling and Simulation

To understand Software process simulation, some important concepts related to modeling should

be understood first. In this section we provide brief concepts related to modeling and simulation.

According to Kellner et al [30]:

1. A model is an abstraction of a real or conceptual complex system. A model is designed to

display significant features and characteristics of the system which one wishes to study,

predict, modify or control. Thus a model includes some, but not all, aspects of the system

being modeled. It provides valuable insights, predictions and answers to the questions it

is used to address.

2. A simulation model is a computerized model which possesses the characteristics

described above and that represents some dynamic system or phenomenon.

3. A software process simulation model focuses on some particular software

development/maintenance/evolution. Since all models are abstractions, a model

represents only some of the many aspects of a software process that potentially could be

modeled namely the ones believed by the model developer to be especially relevant to the

issues and questions the model is used to address.

Kellner et al [30] categorized reasons for using simulations of software processes as: strategic

management; planning; control and operational management; process improvement and

technology adoption; understanding; and training and learning. Software development is a

46

complicated process and requires lot of resources which includes workplace, people, software

resources and documentation. Thus experimentation with software development requires use of

these resources and any misuse of these resources in reality poses a risk in terms of cost as well

as time. In such cases simulation is the best option for any researcher. It allows simulating the

behaviour of the system under different conditions without actually exploiting the resources and

also saves time. Software development process simulation models are used to capture dynamic

relationships and behavior inherent in software development projects as well as process level

concerns.

Two main modeling approaches used for software process simulation are system dynamics

(continuous simulation) and discrete event simulation [39]. System dynamics models [39]

describe the interaction between project factors, but do not easily represent queues and discrete

process steps. System dynamics models describe the system in terms of ‘flows’ that accumulate

in various ‘levels’. The flows can be dynamic functions or can be the result of other ‘auxiliary’

variables. As the simulation progresses in small evenly spaced time increments, it computes the

changes in levels and flow rates. Discrete event models describe process steps, but may not have

enough events to represent feedback loops accurately [39]. Discrete models are often used to

model a manufacturing line where items or ‘entities’ move from station to station and have

processing done at each station. According to Kellner et al [30], each of these techniques has

their advantages and disadvantages as shown in Table 8.

Table 8 Advantages/Disadvantages of system dynamics and discrete event Approach adapted from Kellner et al [30]

 System Dynamics Discrete Event

Advantages Clear representation of the relationships

between dynamic variables

Accurately captures the effects of feedback

Queues and interdependence capture

resource constraints

Attributes allow entities to vary

CPU efficient because time advances at

events

Disadvantages No ability to represent entities or attributes

Sequential activities are more difficult to

represent

No mechanisms for states

Continuously changing variables not

modeled accurately

5.2.Introduction to System Dynamics

System Dynamics (SD) was introduced by Dr. Jay W. Forrester from Massachusetts Institute of

Technology in 1960 to apply engineering principles to social systems [19]. It is used for

modeling and understanding the dynamic behavior of complex systems. The models are built

using cause and effect relationships with the help of causal loop diagrams, Stock-flow diagrams

47

with levels and equations. The equations govern system behavior. Abdel-Hamid and Stuart

Madnick [1] first used system dynamics for software process simulation. Madachy [38] modeled

a more detailed development process. Abdel-Hamid and Madnick’s model [1] was able to

reproduce several predictable project characteristics, suggesting that much of project behavior

was a consequence of relationships between factors.

5.2.1. Building a System Dynamics model

System dynamic models are constructed based on the principle of cause and effect, delay, and

feedback. The basic idea is that actions and reactions have consequences, for example quality

affects sales, and extra staff affects the delivery time. These kinds of cause and effect

relationships are simple but when they are combined by several other long chains of dependent

factors, they can become sophisticated. Feedback is the process which shows how a change in

one factor affects another factor. A feedback loop is a closed sequence of causes and effects, a

closed path of action and reaction. A feedback system is formed from the interconnection of

feedback loops.

In this thesis, we used Vensim PLE [62] software to develop the simulation model. It is a

software program that facilitates the development, exploration, analysis and optimization of

system dynamic models.

Causal loop diagrams are often used in system dynamics to illustrate cause and effect

relationships. In causal loop diagrams arrows represent the relationships between various

variables. An arrow marked positive or s indicates that both variables change in the same

direction i.e. when one increases, the other increases. An arrow marked negative or o indicates

that both variables change in opposite directions i.e. when one increases, the other decreases and

vice versa.

The commonly used constructs in SD models are a level, a rate, an auxiliary variable, a source

and a sink [38]. The definitions of each of them are described below and graphical notations are

presented in Figure 11.

A Level, also called a Stock, represents an element that accumulates or drains over time, e.g.

Work to be done, developed software.

48

A Rate, also called a Flow, represents an action that changes the value of levels over time, e.g.

software development rate, assimilation rate etc. The value of a rate is not dependent on previous

values of that rate; instead the levels in a system, along with other auxiliary variables.

An Auxiliary variable assists in adding details to level and rate elements, e.g. communication

overhead %, or simply constants, e.g. average meeting time.

A Source/Sink is a point of reference for communication with systems or processes outside the

scope of system being developed, e.g. software delivered to customers.

A link is used to represent a dependency between two elements. These are information linkages

which represents information flow between different elements of SD model.

Figure 11 Elements of System dynamic model

5.3.Modeling the Dynamics of the Scrum Framework

For the development of SD model for the Scrum framework, we adopted the four stages of

modeling described in [48].The four stages of modeling are outlined in Table 9, with the detailed

steps of each stage listed under them. We elaborate each modeling stage in detail in the

following sections.

Level A Level B
rate1

Auxiliary variable

link

rate 2

Source

rate 3
Sink

Auxiliary

variable/constant

1. Conceptualization

• Define the purpose of the model

• Define the model boundary and identify key variables

• Diagram the basic mechanisms, the feedback loops, of the system

2. Formulation

• Convert feedback diagrams to level and rate equations

• Estimate and select parameter values

3. Testing

49

Table 9 Stages of SD Modeling adapted from [48]

4.3.1. Conceptualization

The main objective of this thesis is to investigate management challenges in adopting Scrum for

large scale projects. From the first phase of this research i.e. through Systematic Literature

review, we identified several scaling practices used to scale Scrum for large projects. We

outlined advantages and disadvantages of each of them reported in literature. Among them the

most widely used techniques were Scrum of Scrums (SOS) and Sprint planning with review. It

has been observed that Sprint planning with review is already an inherent step in the Scrum

framework which had to be carried out for all kind of projects. SOS is specifically used in larger

projects involving large number of members. Therefore we selected SOS technique to study in

detail by reflecting on its dynamics during software development process. The details pertaining

to operation of SOS technique is discussed in Chapter 2.

The purpose of this model is to examine the relationships between various factors affecting the

performance of the Scrum framework as well as Scaled Scrum. These factors/variables were

identified in the Systematic literature review.

The exogenous inputs to our model are project-specific parameters (project backlog, staff,

number of Sprints, etc.) and project-team specific parameters (productivity, rework discovery

rate, sprint velocity, etc.). Based on such inputs, model simulations capture project performance

as output in terms of cost, schedule, and quality.

Based on results obtained from Systematic literature review, we devised causal loop diagram for

the basic Scrum framework and also for the scaled Scrum framework. In this model we

differentiate the basic Scrum and SOS by varying the number of staff and in some cases project

size. We devise two different causal loop diagrams for Scrum and SOS to highlight explicit

factors which has to be considered while scaling Scrum in SOS. All the variables involved in the

basic Scrum process are also applicable in SOS with some additional variables.

• Simulate the model and test the dynamic hypothesis

• Test the model’s assumptions

• Test model behavior and sensitivity to perturbations

4. Implementation

• Test the model’s response to different policies

• Translate study insights to an accessible form

50

The following set of causal loop diagrams are developed as a basis for the construction of SD

model. These loops include several different relationships that were identified from the available

literature and software development experience. Only a subset of these loops is captured in the

detailed SD model.

Figure 12 shows the causal loop diagram for the Scrum framework. It is simply a representation

of the relationships between the system components that create the dynamic behavior of the

Scrum process. Most of the variables in Figure 11 have been already discussed in detail in

Chapter 2. However we provide a short description of these causal loop diagrams and variables

involved.

Figure 12 Causal loop diagram for the Scrum framework

Product Backlog: The amount of work to be done increases with the increase in requirements

and with any defects detected.

Sprint Backlog: It is the work to be accomplished in each Sprint and increases with an increase

in Sprint velocity and Product backlog.

Sprint work Accomplished: It depends on the productivity of the team. It increases with an

increase in productivity and enhanced through daily scrum meetings.

ProductBacklog

Sprint Backlog
Sprint work

accomplished

+

+

Productivity

No. of Personnel

Work intensity
+

+

Schedule Pressure

+

Sprint Rework

Generation

Undiscovered

rework

Sprint Rework

Discovery rate

+

+

+

-

Time to discover

rework

-

Discovered

rework

Fixed rework

Sprint Work Done

Correctly

-

+

Completed work in

Release

+

+

+

+

Current date

Deadline

Remaining Time

-

+

-

Defects +

+

Communication

Overhead

+

-

Sprint Velocity

+

Daily Scrum

-

+

Quality
-

+

Customer

Involvement

-

-

+

+

Development

effort

-
Time to fix rework

+

+

+

R

51

Sprint rework generation rate: This increases with the increase in Sprint work Accomplished

and causes the reduction on amount of undiscovered rework.

Schedule Pressure: As the Deadline approaches, Schedule pressure on the staff increases which

in turn increases work intensity. At the same time this also results an increase in number of

defects.

Productivity: There is reinforcing loop between number of personnel and communication

overhead which effects productivity. Increasing the number of personnel results in increase in

productivity but however communication overhead resulting from it reduces productivity.

Figure 13 shows the causal loop diagram which includes factors which are specific for large

scale Scrum. All the factors from the basic Scrum causal loop diagram and the factors from

Figure 12 affect the performance of Scaled Scrum.

Figure 13 Causal loop diagram for the scaled Scrum

Project Size: Larger projects involves unprecedented amount of requirements, covers broader

scope, and sometimes time critical. Development of such kind of projects requires large number

of personnel.

Project Size

Number of

Members

Number of Teams

Number of

Meetings

+

+

+

Daily Scrum

SOS Meetings

+

+

Communication

Overhead

Diverse interest of

participants

+

+

Delay

+

lead timeCustomer

satisfaction

-
-

-

Number of

members/team

+

+

-

team collaboration
-

Defects

+

-

-

52

Number of members/personnel: More number of personnel results in an increase in number of

teams which in turn increases number of meetings and daily Scrums.

Communication Overhead: More number of personnel involved increase in number of

communication pathways which results in communication overhead. Moreover communication

overhead also increases if the participants involved have diverse interest. On the other hand,

Team collaboration reduces communication overhead.

Delay: Number of SOS meetings, Daily scrums, and communication overhead increases the delay

which effects the delivery time and hence results in customer dissatisfaction.

4.3.2. Formulation and Construction of SD Model

In this phase of study, we develop a simulation model based on the causal loop diagrams and

data obtained from SLR. Formulation and construction of a model involves iterative elaboration,

construction, and simulation events. The model is constructed iteratively by adding stocks, flows

and variables at each step and testing the model to keep its growing elaboration under control.

Figure 14 shows the first iteration structure of the model. Here we model the basic Scrum

framework by considering its core features.

Figure 14 SD Model Iteration #1 Structure

The following stocks of work exist during software development using Scrum:

Project

backlog

Sprint

BacklogSprint backlog

generation rate

Sprint velocity
project

definition

work

accomplishedwork rate

no.of Sprints

<project
definition>

fraction complete

productivitystaff

project is done

53

Product Backlog: A Product backlog is a set of requirements that are prioritized and it is the

product road map.

Sprint Backlog: The list of tasks/work that the development team must address during the

upcoming Sprint. It basically consists of set of tasks required to complete a feature.

A Project begins with an initial amount of work (Project definition) in the Product Backlog. A

subset of those tasks is moved into the Sprint backlog at the start of each Sprint. This subset of

tasks from product backlog is selected depending upon the Sprint velocity of the team. The

requirements from Sprint backlog are developed depending upon the productivity of the

available staff and the accomplished work is accumulated into the stock Work Accomplished.

All the backlogs are modeled in terms of fungible tasks as their unit. In this first iteration, we

assumed the perfect development of software ignoring the dynamics of the rework cycle. It

means work is accomplished without any errors/rework and accumulates in the stock Work

Accomplished. In this first iteration we have set the following initial input parameters for the

sample project:

 Project definition/size: 500 tasks

Sprint velocity: 25

Staff: 10

Productivity: 0.4

For initial testing of the work rate, we assume an average value of 0.4 tasks / person-day. This

value is selected based on published data sources and other models. The work rate will be:

Work rate = (0.4 tasks / person-day) · (10 people) = 4 tasks/day

With this equation, the work rate will be constant throughout the simulation, the developed

software will rise linearly, and the project completion time can be calculated as:

Project Completion time = (500 tasks)/ (4 tasks/day) = 125 days.

54

The simulation is run and checked against the above calculation and result is shown in Figure 15.

To determine exactly the project completion time we defined a variable called ‘project is done’.

This is used as a Boolean variable and is set to 1 or zero depending upon the fraction of work

remaining. In the model, we set it to be 1 when all work is done and 0 when even one task is

remaining. This can be simply done by using IF THEN ELSE statement. Figure 16 shows that

Project is completed at 125
th

 day when project is done variable reaches 1.

Project is done = IF THEN ELSE (Fraction Complete >=1, 1, 0)

Where, Fraction Complete= work accomplished / project definition

Evolving this model into the next iteration by adding the concept of rework yields the second

iteration of the model as shown in Figure 17, where a Fraction Correct and Complete (fcc)

dictates the percentage of completed work that is correct and defect-free, ending up in the stock

of Work Accomplished. The rest of the work is either incorrect or incomplete and requires

rework, and thus accumulates into the Undiscovered Rework stock.

Figure 15 Work Transfer through backlogs in iteration 1

55

Figure 16 Graph showing Project completion time for iteration 1

Figure 17 SD Model Iteration #2 Structure

Project

backlog

Sprint

BacklogSprint backlog

generation rate

Sprint velocity
project definition

work

accomplishedwork rate

no.of Sprints

<project

definition>

fraction complete

productivitystaff

project is done

undiscovered

rework

time to detect error

lookup

time to discover

rework

fcc

<fraction

complete>

rework discovery

rate

rework

generation rate

56

Continuing with our sample project, assuming an fcc of 90%, It has been found that 50 tasks

worth of rework have been introduced into the system by the 125
th

 day, as shown in the graph in

Figure 18, generated by executing this iteration of the model.

Figure 18 Graph showing additional work

The rework is discovered based on the variable time to discover rework. In real time projects, the

rework is discovered at various stages so look up function is used to model time to discover

rework depending upon the status of the project. To accomplish this, a look up function on

fraction complete is used to drive time to discover rework to a much smaller value towards the

end of the project.

Time to discover rework = time to detect error lookup (fraction complete)

Time to detect error lookup = [(0,0)-(10,10)],(0,5),(0.5,3),(1,0.5),(1.1,0)

The model is now simulated and the result is shown in Figure 19. After adding the rework cycle

to the model, the work takes an additional 14 days for completion.

57

Figure 19 Work Transfer through backlogs in iteration 2

Due to the discovery of rework whose presence is evident in any kind of project, a project that

was planned to complete in 125 days now takes up to 139 days as shown in the output graph in

Figure 20. Therefore, the rework cycle is considered as a heart of the dynamics behind project

performance. Undiscovered rework and defects leads to additional work in the form additional

iterations/Sprints which are unplanned. It has been observed by simulating this model with

varying inputs that project completion time can be reduced by improving fraction correct and

complete (fcc) and discovering rework as soon as possible.

58

Figure 20 Graph showing Project completion time for iteration 2

In iteration 1 and 2 of the model, the experience of staff is assumed to be constant. Increasing the

number of personnel in the model resulted in an increase in work rate and thereby project was

completed sooner for the same value of productivity.

In the next and final iteration of the model, we consider the experience of the personnel involved

in the project and also the communication overhead which resulted with an increase in project

members. The main objective of the model is to investigate the effect of increased personnel on

the project’s performance. Through systematic literature review, we came across several papers

which discussed communication overhead as the main barrier encountered while adopting Scrum

for large projects. In this SD model, the Brooks’s law is incorporated to study the relation

between number of personnel and communication overhead in the Scrum framework.

Fred Brooks first articulated “Brooks’s Law” in the book “The Mythical Man Month: Essays on

Software Engineering” [9] as:

Adding manpower to a late software project makes it later.

59

Brooks's law can be generalized as:

"Adding people to software development slows it down"

The model is evolved to depict effort and time required to complete the project. It allows

tracking the work rate over time and assessing the final completion time to develop the tasks in

project backlog under varying conditions. The model developed represents a nominal case, and

would require calibration to specific project environments.

As time progresses, the number of tasks in Product backlog and Sprint backlog decreases since

they represent user stories remaining to implement. These user stories are processed over time at

the work rate and become work accomplished, so number of in Sprint Backlog decrease as work

accomplished rises. The work rate is constrained by factors such as: the nominal productivity of

a person, the communication overhead %, and the number of personnel.

The number of personnel is divided into new and experienced personnel and effective staff is

total of new and experienced personnel minus the number of personnel providing training for the

new staff. The communication overhead % is described as a non-linear function of the total

number of personnel that need to communicate (0.06𝑛2, where n is the number of people) [1].

The experienced staff needed for training is the training overhead percentage as a fraction of a

full-time equivalent experienced staff. A new person is trained by taking a quarter of experienced

personnel time and the average rate for assimilation of new employee is 20 days.

There is a change in the regular behavior of the system when new personnel are added to the

project. This result in following effects: 1) An increase in communication overhead, 2) An

increase in training overhead, and 3) An increase number of personnel working on the project.

When new person joins the project then they require training which will cost experienced

personnel’s time. Due to an increase in number of personnel, there is an increase in

communication overhead. This communication and training overhead lead to decrease in

productivity. But at the same time an increase in number of staff causes productivity to increase.

The nominal productivity is set to 0.4 tasks /person-day, with the productivities of new and

experienced staff set to (0.8 * nominal productivity and 1.2 * nominal productivity) adapted from

the COCOMO II cost model experience factors [8]. Figure 21 shows the SD model developed for

60

the Scrum framework. It can be noted that in this model only subset of variables are selected

from causal loop diagram devised. This model can be used for small scale projects as well as

large scale projects. This can be done by simply varying the input parameters such as project

size, Sprint velocity, and number of new and experienced personnel to determine the project

performance. The simulation results are discussed in the following result’s section of the thesis.

Figure 21 A System dynamics model for the Scrum framework.

4.3.3. Testing and Implementation

Testing of SD models involves model calibration and validation. Model calibration is the process

of estimating the model parameters to find the similarity between observed and simulated

structures and behaviors [41]. Model calibration is easy when the modeller have the access to

data-sets from real projects. However when no such data sets are available then the issue can be

resolved through judgemental estimation and using data-sets that have been previously made

available online. In this thesis, some of the model elements were calibrated based on data

collected from SLR, some were from developed system dynamics model [1] and remaining

elements were calibrated using judgemental estimation. After the initial calibration the model

Project

backlog

Sprint

BacklogSprint backlog

generation rate

Sprint velocity
project def

work

accomplishedwork rate

no.of Sprints

undiscovered

rework

fcc

time to discover

rework
rework discovery

rate

<project def>
project is done

fraction complete

nominal

productivity

new staff

experienced

staff
assimilation rate

training staff

training overhead

comm overhead

staff

inject rate

overhead

time to detect error

lookup

rework

generation rate

61

was validated using the tests described in the next section. Following that, the model was

simulated and the results obtained were analyzed.

Forrester and Senge [20] described multiple tests which can be used to validate a System

dynamics model. According to Forrester and Senge [20], there is no single test that can be used

to validate a System dynamics model. The validation of System dynamics model is carried out

using a wide range of tests, including tests of model structure and the ability of the model to

mimic real-life behavior. The validation process is performed in two steps. The first step

involved a structural assessment of adjacent elements, model subsystems, and overall model

structure [9]. Once enough confidence in the structural validity of the model had been

established, in the second step the behavioral validity of the system was tested to establish to

relate the model behavior with the information gathered from SLR.

Sterman [59] described twelve tests identified in Table 10 that may be used for structural and

behavioral validation. All the tests were performed except two that were not applicable to this

research. Hence the model was successfully validated.

Table 10 Summary of Model tests (Adopted from [59])

Name of the test Purpose of the test Procedures

conducted in this

research

Test Results

1. Boundary Adequacy Determines whether

the important

concepts are

included in the

model

Model causal

diagrams and

Stock-flow diagrams

were reviewed using

available SLR

Model was

improved

2. Structure Assessment Determines whether

model structure is

consistent with the

relevant descriptive

knowledge of the

system

The major

relationships, input

variables and output

variables are

reviewed using

available similar

kind of models

Passed

3. Dimensional Consistency Determines whether

each equation is

dimensionally

consistent

Verified dimensional

consistency using

Vensim’s inbuilt

tool

Passed

62

Name of the test Purpose of the test Procedures

conducted in this

research

Test Results

4. Parameter Assessment Determines whether

Parameter values are

consistent with

relevant

descriptive and

numerical

knowledge of

system

Each parameter

values are set based

on data collected

from SLR, some

standard laws and

judgemental

estimation

Passed

5. Extreme Conditions Each equation

makes

sense on extreme

input

values

1. Inspecting each

equation

2. Testing response

to extreme

values of each input

Passed

6. Integration Error Determine whether

the results are

sensitive

to the time step

Used different time

steps to ensure

proper results

Passed

7. Behavior Reproduction Determines whether

the model

reproduces

the behavior of the

interest in the system

Model behaviors

compared with

behaviors of

similar SD models

Performed well

8. Behavior Anomaly Establishes the

significance of

important

relationships

by determining

whether

anomalous behavior

arises when the

relationship is

deleted or

modified

If assumptions are

changed or

communication

overhead is removed

the model exhibits

anomalous behavior

Performed well

9. Family Member The model can

generate the

behavior of other

instances in the same

class as the system

the model was built

to mimic

This model is built

for a specific

framework for agile

software

Development called

as Scrum

N/A

10. Surprise Behavior Finding unexpected

behavior

Results imitate the

expected behavior.

Performed well

11. Sensitivity Analysis The impact of

changing

assumptions

Univariate and

multivariate analysis

were carried out by

varying project size,

number of personnel

and productivity

Performed well

63

Name of the test Purpose of the test Procedures

conducted in this

research

Test Results

12. System Improvement Modeling process

helps

change the system

for

the better

The focus of this

study was not

towards the

improvement of the

system

N/A

4.4. Results

A System dynamic model is a tool that allows recurrent exploration of the system, through

changing assumptions and management policies [1]. This model was developed to investigate

the factors affecting the Scrum framework when it is scaled for larger projects involving

enormous workforce. Figure 21 shows the final iteration of the SD model developed for the

Scrum framework. As an application of this model, it is simulated to analyze the difference

between the basic Scrum framework and Scaled version of Scrum. This is simply done by

varying number of personnel and the project size while keeping all other variables the same.

The main factors to affect Scrum performance as identified from SLR are the number of

personnel, number of teams, communication overhead, training overhead and location of

members i.e. whether project members are co-located or distributed. The model is simulated with

the initial parameters as following:

Project size = 1000 tasks

Sprint velocity = 200 tasks / Sprint

Nominal Productivity = 0.4 tasks / day / person

The model is simulated with different staffing conditions and the resultant effect on project

completion time and effort is noted. First the model is simulated with new and experienced

personnel to be 10. The effect of this on work rate is shown in Figure 22. It can be noted that as

the new staff is added to the project, the work rate (software development rate) decreases.

However once the staff is trained and becomes experienced then the work rate increases until the

project is completed. It can also be noted that communication overhead increases with an

64

increase in number of staff. The project completes in 199 days. Figure 23 shows the exhaustion

of work backlogs to complete the project.

Figure 22 Graph plotted between number of Personnel and work rate

Figure 23 Work transfer in SD model

65

Figure 24 Project Completion time by increasing number of personnel (Project size=1000 tasks)

Figure 24 shows the decreasing project completion time with varying number of personnel. In

this simulation, the project size is set to 1000 tasks. It can be noted that when the number of

personnel are increased and all other variables are the same as previous run, the project

completion time increases. This is due to the increase in communication overhead that is created

with an increase in number of people working on the project. Moreover if the new personnel are

added more and more, it results further decrease in work rate as more number of experienced

personnel are training the new staff rather than working on the project.

For each of the simulation experiments, the results are monitored in the form of two project

performance variables. The first performance variable is schedule, project completion time i.e.

how long it will take to fully complete the project. The second one is the Cost, i.e. the amount of

effort that will be required to complete the project. It is measured as the number of man-days

required to complete the project. It can be seen in Figure 25 that as the number of personnel

increases, the development effort also increases. The similar result is obtained when project size

was increased to 5000 tasks as shown in Figure 26.

66

Figure 25 Development effort vs number of personnel

Figure 26 Project completion time by increasing number of personnel (project size=5000 tasks)

The proposed model and the analysis of the data suggest that increasing the number of personnel

increases the productivity but at the same time communication overhead decreases the overall

work rate. In order to keep the model simple, all the variables described in causal loop diagrams

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40

n
u

m
b

e
r

o
f

m
an

-d
ay

s
(d

e
ve

lo
p

m
e

n
t

e
ff

o
rt

)

number of personnel

number of man-days

number of man-days

67

were not included in simulation, so our study has been carried out under some limiting

assumptions that could threaten its validity. The model is simple but can be considered as a

genuine beginning point for further studies. The resultant behaviour of the simulation model

observed is quite realistic, and its behaviour is the same also by changing the project size.

4.5. Discussion

This chapter presented a System dynamics model of the Scrum framework. The model is

constructed in such a way so that it can be used for the basic Scrum framework as well as the

scaled Scrum. This was simply done by increasing the project size and number of personnel. The

scope of the model was limited to analyzing the impact of increasing the project personnel and

observing the work rates. The difference in work rate for different values of personnel was due to

the communication overhead and training overhead resulted from large teams. Results from the

simulation process are in accordance to the information obtained from systematic literature

review conducted. It also addresses the RQ5 indicating that the main factor affecting the

productivity in large teams is the communication. It is near impossible to remove the

communication overhead in case of huge workforce but it can be reduced by using feature teams,

face to face communication, high motivation and high team coordination towards a common goal

rather than competition.

68

Chapter 5

Conclusions and Future Work

Scrum is the most popular agile framework used for project management used at the team level.

Over the past decade, as its popularity grew, the industry began to scale Scrum to suit larger

organizations and achieved mixed results. Many projects used Scrum successfully whereas few

failed dramatically [47] and resulted in abandonment of the Scrum. In some vital and time

critical projects, selection and adoption of software development process plays a very crucial

role. In such projects, there is little or no room to undertake a risk that can cause project’s failure.

Therefore before adopting any development process, one must be confident of its results. This

research has been carried out to provide insights and recommendations for how to scale Scrum to

make it adaptable to large scale projects. These findings might help the developers to decide

whether adopting Scrum for their projects is appropriate or not.

The objective of this thesis is to investigate management challenges in adopting scrum for large

scale projects and to find and elaborate scaling practices used. A two-phased approach was

adopted where in the first phase a systematic literature review was conducted and the second

phase involved the development of a simulation model of the Scrum framework.

The presented SLR was successful in answering all the research questions shortlisted for this

thesis. The practices identified through this SLR to scale Scrum for large projects are Scrum of

Scrums, use of Area Product Owners, use of Proxy Product Owners, tailoring Scrum of Scrums,

use of Feature backlog, use of Feature teams, meetings held between feature teams and Sprint

Planning and review. Scrum of Scrums technique is widely used to scale the Scrum framework

for large projects. The factors such as frequent SOS meetings, team collaboration, feature

specific teams, feature backlog and ability to scale in recursive manner lead to the success of

Scrum of Scrums technique. However the biggest challenge identified when using SOS was

ensuring excellent communication between teams and team members. This might be difficult in

distributed projects due to geographical, temporal distance and socio cultural differences but not

impossible. In today’s world where social networking is at boom and there are thousands of

applications providing uninterrupted video conferencing at minimal rates, ensuring good

69

communication is no longer an impossible task. When teams are co-located or at least closely

placed, even then if the team size and number of teams increase, it will be difficult to coordinate

such large teams towards a common goal. The main challenge identified through this review was

management of communication in large projects.

The presented SD simulation model reflected deeper understanding of the communication

management in large scale projects. It was identified from SLR that a proper communication

among teams is a major challenge while scaling Scrum. In second phase of thesis, System

dynamics was used to analyze dynamic behavior of the Scrum framework by increasing number

of personnel involved. First causal loop diagrams was devised to examine the relationships

between various factors affecting the performance of the Scrum framework. These

variables/factors were identified from the SLR and using judgemental estimation. The causal

loop diagrams provided a clearer view of all the possible parameters which can alter the

performance of the Scrum framework. In large scale Scrum, the main factors that lead to delay or

drop in productivity are communication overhead, number of meetings, number of teams, diverse

interest of team members, training overhead, and team collaboration. The relationships between

all these factors are highlighted using a polarity symbol in causal loop diagrams. To keep the SD

model simple, only a subset of these variables was selected to model in System dynamics.

The SD model developed successfully depicted the behavior of the Scrum framework by

imitating the work flow between the project backlog, Sprint backlog and final product. The

model was developed iteratively in small iterations to ensure the stability of the model at every

step. The rework cycle was added to model to emulate the realistic behavior of the software

projects. Due to the rework effects, a sample project that planned to complete in 125 days took

up to 139 days. This project completion rate depends on the amount of work that is correct and

complete which is modeled using the variable fraction correct and complete (fcc). Therefore by

improving fcc and time to discover rework, the rework effect can be reduced. The SD model was

culminated by adding the communication overhead and training overhead by increasing the

number of members for different project sizes. The goal was to compare the effort and project

completion time by varying number of personnel so that the influence of communication

overhead can be analyzed. The model was successfully validated both in terms of its structure

and behavior using practices recommended by Sterman [59]. In order to model the

70

communication overhead, Brooks’s law [9] was incorporated in our model which has been

discussed and analyzed extensively in the software engineering literature. The model gave

predictable result that with an increase in number of members, there is a decrease in the work

rate due to communication overhead. Moreover if the new employees are added late in the

project, it affects more due to the training overhead required. However, smaller scale increase in

staff will help to reduce the explosive increase in communication overhead. It was observed from

systematic literature review and causal loop diagrams, number of meetings also play an

important role in the SOS technique for large scale Scrum as when extensively performed can

cause a delay in the project completion time. This variable was not modeled in the SD model due

to lack of realistic dataset available from real time software projects. Therefore this study has

been carried out under some limiting assumptions that could threaten its validity. The model

developed can be considered as a genuine beginning point for further studies. The resultant

behaviour of the simulation model observed is quite realistic and showed a similar behavior even

when project size was changed. The SD model developed support the results obtained from SLR

that even though the Scrum framework can be used for developing large projects but can cause

communication problems for very large teams. The findings of this research can direct the

developers to focus on the right issues from the beginning of the project which in turn can reduce

development effort and cost.

Finally this chapter concludes by providing some ideas to extend this research in future. The

model developed in this thesis represents a nominal case, and would require calibration to

specific project environments. The proposed model needs to be further elaborated and validated.

The model can be validated against data obtained from any real time software development

project developed by some company or enterprise. This can give deeper insights and might also

improve the model. The model can be extended by including all the variables described in causal

loop diagrams. System dynamic modeling and simulation is an inexpensive way to gain deep

insights when real time data is unavailable. In this thesis, only the Scrum framework was

considered to develop large projects. Similar kind of studies can be carried out for other agile

methodologies.

71

Appendix

Studies selected for Systematic Literature Review

[S1] Paasivaara, M., & Lassenius, C. (2011, September). Scaling scrum in a large distributed

project. In Empirical Software Engineering and Measurement (ESEM), 2011 International

Symposium on (pp. 363-367). IEEE.

[S2] Hossain, E., Bannerman, P., & Jeffery, R. (2011). Towards an understanding of tailoring

scrum in global software development: a multi-case study. International Conference on

Software and Systems Process, 110–119.

[S3] Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., & Stahl, D. (2013). The Impact of

Agile Principles and Practices on Large-Scale Software Development Projects: A Multiple-

Case Study of Two Projects at Ericsson. 2013 ACM / IEEE International Symposium on

Empirical Software Engineering and Measurement, 348–356.

[S4] Paasivaara, M., Lassenius, C., & Heikkila, V. T. (2012, September). Inter-team

coordination in large-scale globally distributed scrum: Do Scrum-of-Scrums really work? ,

In Empirical Software Engineering and Measurement (ESEM), 2012 ACM-IEEE

International Symposium on (pp. 235-238). IEEE.

[S5] Maranzato, R. P., Neubert, M., & Herculano, P. (2011). Moving back to scrum and scaling

to scrum of scrums in less than one year. Proceedings of the ACM International

Conference Companion on Object Oriented Programming Systems Languages and

Applications Companion - SPLASH ’11, New York, NY, USA, 125-130.

doi:10.1145/2048147.2048186

72

[S6] Hannay, J. E., & Benestad, H. C. (2010). Perceived productivity threats in large agile

development projects. In Proceedings of the 2010 ACM-IEEE International Symposium

on Empirical Software Engineering and Measurement (ESEM '10). ACM, New York, NY,

USA, Article 15, 10 pages. http://doi.acm.org/10.1145/1852786.1852806.

[S7] Paasivaara, M., Heikkila, V. T., & Lassenius, C. (2012). Experiences in Scaling the

Product Owner Role in Large-Scale Globally Distributed Scrum. 2012 IEEE Seventh

International Conference on Global Software Engineering, 174–178.

doi:10.1109/ICGSE.2012.41

[S8] Lyon, R., & Evans, M. (2008). Scaling Up Pushing Scrum out of its Comfort Zone. Agile

2008 Conference, 395–400.

[S9] Babinet, E., & Ramanathan, R. (2008, August). Dependency management in a large agile

environment. In Agile 2008 Conference (pp. 401-406). IEEE.

[S10] Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2008). Distributed Agile Development:

Using Scrum in a Large Project. 2008 IEEE International Conference on Global Software

Engineering, 87–95. doi:10.1109/ICGSE.2008.38

[S11] Badampudi, D., Fricker, S. A., & Moreno, A. M. (2013). Perspectives on Productivity and

Delays in Large-Scale Agile Projects, Agile Processes in Software Engineering and

Extreme Programming, Volume 149, pp 180-194. Springer Berlin Heidelberg

73

References

[1] Abdel-Hamid, T., & Madnick, S. E. (1991). Software project dynamics: an integrated

approach. Prentice-Hall, Inc.

[2] Abrahamsson, P., Salo, O., Ronkainan, J., & Warsta, J. (2002). Agile Software Development

Methods: Review and Analysis. VTT Technical report, p. 107 .

[3] Abrahamsson, P. (2007, October). AGILE Software Development of Embedded Systems. In

ITEA2 symposium, Berlin, Germany (pp. 18-19).

[4] Babinet, E., & Ramanathan, R. (2008, August). Dependency management in a large agile

environment. In Agile 2008 Conference (pp. 401-406). IEEE.

[5] Badampudi, D., Fricker, S. A., & Moreno, A. M. (2013). Perspectives on Productivity and

Delays in Large-Scale Agile Projects, Agile Processes in Software Engineering and Extreme

Programming, Volume 149, pp 180-194. Springer Berlin Heidelberg.

[6] Beck K., Beedle M., Bennekum A., Cockburn A., Cunningham W., Fowler M., Grenning J.,

Highsmith J., Hunt A., Jeffries R., Kern J., Marick B., Martin R., Mellor S., Schwaber K.,

Sutherland J., Thomas D. The Agile Manifesto: 2001, http://agilemanifesto.org/ last visited on

March 12, 2015.

[7] Begel, A., & Nagappan, N. (2007, September). Usage and perceptions of agile software

development in an industrial context: An exploratory study. In Empirical Software

Engineering and Measurement, 2007. ESEM 2007. First International Symposium on (pp.

255-264). IEEE.

http://agilemanifesto.org/

74

[8] Boehm, B. W., Madachy, R., & Steece, B. (2000). Software cost estimation with Cocomo II

with Cdrom. Prentice Hall PTR.

[9] Brooks, F. P. (1975). The mythical man-month (Vol. 1995). Reading, MA: Addison-Wesley.

[10] Cao, L., Ramesh, B., & Abdel-Hamid, T. (2010). Modeling dynamics in agile software

development. ACM Transactions on Management Information Systems (TMIS), 1, 1, Article 5.

[11] Cardozo, E., Neto, J. B. F. A., Barza, A., França, A., & da Silva, F. (2010, April). SCRUM

and productivity in software projects: a systematic literature review. In 14th International

Conference on Evaluation and Assessment in Software Engineering (EASE).Cliffs, NJ

[12] Cloke G. (2007), "Get Your Agile Freak On! Agile Adoption at Yahoo! Music", in AGILE

2007, 2007, pp. 240-248.

[13] Cocco, L., Mannaro, K., Concas, G., & Marchesi, M. (2011). Simulating kanban and scrum

vs. waterfall with system dynamics. In Agile Processes in Software Engineering and

Extreme Programming (pp. 117-131). Springer Berlin Heidelberg.

[14] Cohn, M. (2005). Agile estimating and planning. Pearson Education.

[15] Cruzes, D. S., & Dybå, T. (2011, September). Recommended steps for thematic synthesis in

software engineering. In Empirical Software Engineering and Measurement (ESEM), 2011

International Symposium on (pp. 275-284). IEEE.

[16] Deemer,P., Benefield, G., Larman, C., Vodde, B.(2008). The Scrum Primer Version 2.0,

Scrum Training Institute, available at http://www.scrumprimer.com ,last visited on August

19, 2015.

[17] Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A

systematic review. Information and software technology, 50(9), 833-859.

75

[18] Eskelinen Arto et al. (2010), Scrum Master Course, lecture notes by Reaktor Innovations Oy,

Course at Ericsson, Kirkkonummi Finland. http://reaktor.com/training/ Last visited on

January 12, 2015.

[19] Forrester, J. W. (1995). The beginning of system dynamics. McKinsey Quarterly, 4-17.

[20] Forrester, J. W., & Senge, P. M. (1996). Tests for building confidence in system dynamics

models. Modelling for management: simulation in support of systems thinking, 2, 414-434.

[21] Glaiel, F., Moulton, A., & Madnick, S. (2013). Agile project dynamics: A system dynamics

investigation of agile software development methods. In 31st International Conference of the

System Dynamics Society, pp. 53-63.

[22] Greene, B. (2004, June). Agile methods applied to embedded firmware development. In

Agile Development Conference, 2004 (pp. 71-77). IEEE.

[23] Hannay, J. E., & Benestad, H. C. (2010). Perceived productivity threats in large agile

development projects. In Proceedings of the 2010 ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM '10). ACM, New York, NY, USA,

Article 15, 10 pages. http://doi.acm.org/10.1145/1852786.1852806.

[24] Heikkilä, V. T., Paasivaara, M., Lassenius, C., & Engblom, C. (2013). Continuous release

planning in a large-scale scrum development organization at Ericsson (pp. 195-209).

Springer Berlin Heidelberg.

[25] Herbsleb, J. D., & Moitra, D. (2001). Global software development. Software, IEEE, 18(2),

16-20.

[26] Highsmith, J. A. (2002). Agile software development ecosystems (Vol. 13). Addison-Wesley

Professional.

76

[27] Hossain, E., Babar, M. a., & Paik, H. P. H. (2009). Using Scrum in Global Software

Development: A Systematic Literature Review. 2009 Fourth IEEE International Conference

on Global Software Engineering, 175–184. doi:10.1109/ICGSE.2009.25

[28] Hossain, E., Bannerman, P., & Jeffery, R. (2011). Towards an understanding of tailoring

scrum in global software development: a multi-case study. International Conference on

Software and Systems Process, 110–119.

[29] http://www.scrum-institute.org/The_Scrum_Product_Backlog.php last visited February 10,

2015.

[30] Kellner, M. I., Madachy, R. J., & Raffo, D. M. (1999). Software process simulation

modeling: why? what? how?. Journal of Systems and Software, 46(2), 91-105.

[31] Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele

University, 33(2004), 1-26. http://people.ucalgary.ca/~medlibr/kitchenham_2004.pdf. Last

visited on February 25, 2015

[32] Kniberg, H. (2007). Scrum and XP from the Trenches: How we do Scrum.

http://www.lulu.com/content/899349. Last visited on October 9, 2014.

[33] Laanti, M., Salo, O., & Abrahamsson, P. (2011). Agile methods rapidly replacing traditional

methods at Nokia: A survey of opinions on agile transformation. Information and Software

Technology, 53(3), 276-290.

[34] Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., & Stahl, D. (2013). The Impact of

Agile Principles and Practices on Large-Scale Software Development Projects: A Multiple-

Case Study of Two Projects at Ericsson. 2013 ACM / IEEE International Symposium on

Empirical Software Engineering and Measurement, 348–356.

http://www.scrum-institute.org/The_Scrum_Product_Backlog.php

77

[35] Larman, C., & Vodde, B. (2008). Scaling lean & agile development: thinking and

organizational tools for large-scale Scrum. Pearson Education.

[36] Larman, C., and Vodde, B. (2010). Practices for Scaling Lean & Agile Development: Large,

Multisite, and Offshore Product Development with Large-Scale Scrum (1st ed.). Addison-

Wesley Professional.

[37] Lyon, R., & Evans, M. (2008). Scaling Up Pushing Scrum out of its Comfort Zone. Agile

2008 Conference, 395–400.

[38] Madachy, R. J. (2007). Software process dynamics. John Wiley & Sons.

[39] Maranzato, R. P., Neubert, M., & Herculano, P. (2011). Moving back to scrum and scaling to

scrum of scrums in less than one year. Proceedings of the ACM International Conference

Companion on Object Oriented Programming Systems Languages and Applications

Companion - SPLASH ’11, New York, NY, USA, 125-130. doi:10.1145/2048147.2048186

[40] Martin, R. H., & Raffo, D. (2000). A model of the software development process using both

continuous and discrete models. Software Process: Improvement and Practice, 5(2-3), 147-

157.

[41] Oliva, R. (2003). Model calibration as a testing strategy for system dynamics models.

European Journal of Operational Research, 151(3), 552-568.

[42] Paasivaara, M., & Lassenius, C. (2011, September). Scaling scrum in a large distributed

project. In Empirical Software Engineering and Measurement (ESEM), 2011 International

Symposium on (pp. 363-367). IEEE.

78

[43] Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2008). Distributed Agile Development:

Using Scrum in a Large Project. 2008 IEEE International Conference on Global Software

Engineering, 87–95. doi:10.1109/ICGSE.2008.38

[44] Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2009, July). Using scrum in distributed

agile development: A multiple case study. In Global Software Engineering, 2009. ICGSE

2009. Fourth IEEE International Conference on (pp. 195-204). IEEE.

[45] Paasivaara, M., Heikkila, V. T., & Lassenius, C. (2012). Experiences in Scaling the Product

Owner Role in Large-Scale Globally Distributed Scrum. 2012 IEEE Seventh International

Conference on Global Software Engineering, 174–178. doi:10.1109/ICGSE.2012.41

[46] Paasivaara, M., Lassenius, C., & Heikkila, V. T. (2012, September). Inter-team coordination

in large-scale globally distributed scrum: Do Scrum-of-Scrums really work? , In Empirical

Software Engineering and Measurement (ESEM), 2012 ACM-IEEE International Symposium

on (pp. 235-238). IEEE.

[47] Ralph, P., & Shportun, P. (2013, June). Scrum Abandonment in Distributed Teams: A

Revelatory Case. In PACIS (p. 42).

[48] Randers, J. (Ed.). (1980). Elements of the system dynamics method (pp. 117-139).

Cambridge, MA: MIT press.

[49] Reifer, D.J.; Maurer, F.; Erdogmus, H.(2003), "Scaling agile methods," Software, IEEE ,

vol.20, no.4, pp.12,14, July-Aug. 2003

[50] Schwaber K.(2008), It's Not Scrum If..., Presentation at Stockholm Scrum Gathering Fall

2008, available at http://www.scrumalliance.org/resource_download/441. Last accessed on

March 18 2014.

79

[51] Schwaber K., 2009, Scrum Guide, Online Guide, available at

http://www.scrumalliance.org/resource_download/598. Last accessed on August 5, 2015

[52] Schwaber K., Beedle M. (2001). Agile software development with scrum. Prentice Hall

PTR, Upper Saddle River, NJ, USA

[53] Schwaber K., 2014, Ken Shwaber’s Blog: Telling it like it is. Do you know how to Scale

Scrum? https://kenschwaber.wordpress.com/2014/11/13/do-you-know-how-to-scale-scrum/

Last accessed on April 10, 2015

[54] Schwaber, K. (2004). Agile project management with Scrum. Microsoft Press.

[55] Schwaber, K. (2007). The enterprise and scrum. Microsoft Press.

[56] Schwaber, K., & Beedle, M. (2002).Agile Software Development with Scrum. Prentice Hall

[57] Scrum in Larger Organizations, Part 1 An Interview with Jeff Sutherland by SoftHouse.

Retrieved from http://eng.softhouse.se/downloads/Intervju_Pdf_Small.pdf. Last accessed on

July 28, 2015

[58] Seikola, M. (2010). The Scrum Product Backlog as a Tool for Steering the Product

Development in a Large-Scale Organization (Doctoral dissertation, Aalto University)

[59] Sterman, J. D. (2000). Business dynamics: systems thinking and modeling for a complex

world (Vol. 19). Boston: Irwin/McGraw-Hill.

[60] Sutherland, J. (2001). Agile can scale: Inventing and reinventing scrum in five companies.

Cutter IT journal, 14(12), 5-11.

[61] Sutherland, J., Schwaber, K., & Sutherland, C. J. (2007). The scrum papers: Nuts, bolts, and

origins of an Agile Process. Boston: Scrum, Inc.

[62] Vensim PLE (version 6.3) downloaded from http://vensim.com/free-download/. Last visited

on March, 2014.

https://kenschwaber.wordpress.com/2014/11/13/do-you-know-how-to-scale-scrum/

80

[63] Walker, J., (2013), How to Apply Agile Techniques to Distributed Teams and Large

Projects. Beyond Scrum. http://www.perforce.com/company/newsletter/2013/01/beyond-

scrum-how-apply-agile-techniques-distributed-teams-large-projects. Last accessed on March

25, 2015

[64] West, D. (2011). Water-scrum-fall is the reality of agile for most organizations today.

Forrester Research. http://www.storycology.com/uploads/1/1/4/9/11495720/water-scrum-

fall.pdf. Last accessed on November 10, 2014

[65] www.mountaingoatsoftware.com/agile/scrum/sprint-backlog.Last accessed on January 12,

2015.

http://www.perforce.com/company/newsletter/2013/01/beyond-scrum-how-apply-agile-techniques-distributed-teams-large-projects
http://www.perforce.com/company/newsletter/2013/01/beyond-scrum-how-apply-agile-techniques-distributed-teams-large-projects

