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Abstract

A Predator-Prey Model in Deterministic and Stochastic Environments

Master of Science 2012

Chandra Limbu

Applied Mathematics

Ryerson University

We investigate the phase portraits, the uniqueness of limit cycles and the Hopf

bifurcations in the Holling-Tanner models in deterministic and stochastic environ-

ments. We provide the conditions on the parameters to assure saddle, focus and

node. We use numerical simulations to demonstrate our results in the determinis-

tic cases. We also explore the Holling-Tanner model in a stochastic environment

by using numerical simulations. We generalize and improve some new results on

Holling-Tanner model from Lotka-Volterra model on real ecological systems.
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Chapter 1

Introduction

1.1 Background

In recent years, there are many new challenging and exciting problems arising in

mathematical biology and ecology. The horizon of this research is widening as

well as deepening day by day due to the exotic usefulness and importance for

human beings. There has also been a growing concern about the preservation of

the ecological balance in nature, which plays an important role in the harmony

among different species. As a result, mathematical models for populations with

interaction between species have become popular among biologists and scientists

in general. The remarkable exhibition of a variety of dynamical behaviours can be

seen in many plant, insect and animal species. This has stimulated a great interest

in the study of the dynamical systems of populations or ecosystem. For instance,

predator-prey models are widespread and come in many flavours in population

ecology.

The Holling-Tanner models are well known models for studying the interactions of

predator and prey species. The stability of the two interacting species may depend
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upon the intrinsic predator and prey growth rates. Some general assumptions are

considered in the case of interaction of prey-predator systems:

(i) If the two populations inhabit in the same area then their densities are directly

proportional to their numbers. (ii) There is no time lag in the responses of either

populations to changes. (iii) There is an abundance of food supply for prey. (iv)

The prey is the sole source of food for the predator [33].

One of the basic relations between the prey and the predator is given by the

ecological and the social models. This is also the base block of more complicated

food chain, food web as well as biochemical structure.

The Holling-Tanner model was studied for its accuracy in describing the real eco-

logical systems like mite/spider mite, Canadian lynx/ snowshoe hare, sparrow/

sparrow hawk and more by Tanner [33].

The dynamical properties of the Holling-Tanner model equation have been widely

studied. May [28] applied Kolmogorov’s theorem [23] to provide the criterion

for the stability of the interior equilibrium or the existence of stable limit cycles.

May’s method was simplified by Tanner [33]. Murray [29] and Hsu and Huang

[19] provided some general conditions under which the interior equilibrium is a

stable node or focus or an unstable node or focus, respectively, and under which

the Holling-Tanner model equation possesses a stable limit cycle. However, under

these conditions, one can determine that neither the interior equilibrium is a node

nor it is a focus. In addition, an open question left in [19] is whether the stable

limit cycle obtained under a certain condition is unique. We refer to [15, 19, 24]

for the study of the global stability of the Holling-Tanner equation and to [14] for

the study of the existence of the solution. The references [8, 19, 29] discuss the

Holling-Tanner models with delays and other similar systems.
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In this thesis, we study the phase portraits, the Hopf bifurcations, and the exis-

tence and uniqueness of the stable limit cycles near the interior equilibrium of the

equation.

Statement of problems

The main problems are:

1. Extinction can be a natural occurrence caused by an unpredictable catastro-

phe, chronic environmental stress or ecological interactions such as competi-

tion, disease or predation.

2. Many species of animals and plants are at the risk of extinction. Some of

them are wiped out from the world.

3. We need to figure the condition of critical equilibrium point with suitable

values of parameters, so that we can keep preservable size of endangered

species.

Goals

The main objectives of the thesis are the following:

1. To investigate the phase portraits, the uniqueness of limit cycles and Hopf

bifurcations in the Holling-Tanner models.

2. To find different types of equilibria on changing suitable values of parameters.

3. To use numerical simulations to demonstrate our results in the deterministic

cases.
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4. To figure out critical equilibrium size of populations so that it helps to es-

tablish and sustain efficient conservation of species which are at the edge of

extinction as well as it also supports for development of recovery strategies

such as collection of base line information about the threats to a species’

survival and identification of the critical habitat of species.

Methodology

The Holling-Tanner model is nonlinear first order differential equation. First of

all, we will convert our model in nondimensionlization form, so we can reduce six

parameters to three parameters. Then, it will be easy to analyse different types of

equilibria. Furthermore, we use linearization technique to obtain Jacobian matrix

and to investigate the Hopf bifurcation in the Holling-Tanner models. Finally, we

include some graphical approaches with help of numerical stochastic simulations

by using MATLAB.

1.2 Lotka-Volterra system

Volterra (1926) first proposed a simple model for the predation of one species by

another, to explain the oscillatory levels of certain fish catches in the Adriatic.

If X(T ) is the prey population and Y (T ) that of the predator at time T , then

Volterra’s model [29] is:
dX

dT
= a1X − a2XY = X(a1 − a2Y ),

dY

dT
= b1XY − b2Y = Y (b1X − b2),

(1.1)

where a1, a2, b1 and b2 are positive constants.
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Figure 1.1: An eagle is predator and fish is prey.
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Figure 1.2: A lion is predator and a zebra is prey.
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Figure 1.3: This is the ecological pyramid in which the upper part is always

predator and the lower part is always prey.
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Figure 1.4: The energy distribution in ecological pyramid shows that the amount

of energy consumption is decreasing from predator to prey.
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The assumptions in the model are given below: (i) The prey in the absence of

any predation grows unboundedly in Malthussian way; this is the a1X term in

the first part of (1.1). (ii) The effect of the predation is to reduce the prey’s per

capita growth rate by a term proportional to the prey and predator populations;

this is the −a2XY term. (iii) In the absence of any prey for sustenance the

predator’s death rate results in exponential decay, that is, the −b2Y term in the

second part of (1.1). (iv) The prey’s contribution to the predator growth rate

is b1XY ; that is, it is proportional to the available prey as well as to the size of

the predator population. The XY term can be thought of as representing the

conversion of energy from one source to another: a2XY is taken from the prey

and b1XY accrues to the predators.

The model (1.1) is the well known Lotka-Volterra model since the same equation

was derived by Lotka (1920 − 1925) from a hypothetical chemical reaction [29]

when he could exhibit periodic oscillations in chemical concentrations.

As a first step in analysing the Lotka-Volterra model, we nondimensionalise the

system by writing

u(τ) =
b1X(t)

b2

, v(τ) =
a2Y (t)

a1

, τ = at, α =
b2

a1

, (1.2)

and it becomes

du

dτ
= u(1− v),

dv

dτ
= αv(u− 1). (1.3)

In the (u,v) phase plane, we obtain

dv

du
= α

v(u− 1)

u(1− v)
(1.4)

which has the singular points at u = v = 0 and u = v = 1.
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1.3 Basic definitions and notations

1.3.1 Definitions of limit cycle, globally stable, equilibria

and linear or non-linear differential equations

Definition 1.3.1. We wish to study the behaviour of solutions of a two-dimensional

system. 
dx

dt
= f(x, y),

dy

dt
= g(x, y).

(1.5)

by studying the phase portrait in the phase plane [10]. Let (x(t), y(t)) be a solution

of (1.5) that is bounded as t→∞. The positive C+ of this solution is defined to

be the set of points (x(t), y(t)) for t ≥ 0 in the (x, y)- plane. The limit set L(C+)

of the semi-orbit is defined to be the set of all points (x̄, ȳ) such that there is a

sequence of times tn →∞ with x(tn)→ x̄, y(tn)→ ȳ as n→∞. For example, if

the solution (x(t), y(t)) tends to an equilibrium (x∗, y∗) as t→∞, then the limit

set consists of the equilibrium (x∗, y∗). If (x(t), y(t)) is a periodic solution, so

that the semi-orbit C+ is a closed curve, then the limit set L(C+) consists of all

points of the semi-orbit C+. The Poincaré − Benedixon theorem, states that if

C+ is a bounded semi-orbit whose limit set L(C+) contains no equilibrium points,

then either C+ is a periodic orbit and L(C+) = C+, or L(C+) is a periodic orbit,

called a limit cycle, which C+ approaches spirally (either from inside or outside).

Definition 1.3.2. Globally asymptotically stable:

If a limit set contains more than one equilibrium, then it must also contain orbits

joining these equilibria. In essence, we can say that a bounded solution tends

either to an equilibrium or to limit cycle, overlooking such ”unlikely coincidences”

10



as the possibility of a running from a saddle point to itself. Thus, if we can show

that, for a given system, all solutions are bounded but there are no asymptotically

stable equilibrium points, we can deduce that there must be at least one periodic

orbit. This situation will arise in our study of predator-prey systems. If there is

only one periodic orbit, then it must be globally asymptotically stable [10] in the

sense that every orbit tends to it. If there is more than one periodic orbit, each

must be asymptotically stable from at least one side: orbits may spiral toward it

from the inside, from the outside, or both.

Definition 1.3.3. An equilibrium is a solution (x∗, y∗) of the pair of equations
f(x∗, y∗) = 0,

g(x∗, y∗) = 0.

(1.6)

Thus an equilibrium of (1.5) is a constant solution (or critical points) of the system

of differential equations.

Definition 1.3.4. [2] The n-th order differential equation written as

dnx

dtn
+ a1(t)

dn−1x

dtn−1
+ ........ + an−1(t)

dx

dt
+ an(t)x = g(t), is said to be linear if all

the coefficients ai, i = 1, ...., n, and g do not depend on x or any of its derivatives.

Otherwise it is said to be non-linear.

Definition 1.3.5. The system (1.5) is called a planar autonomous system. The

term autonomous means self-governing, justified by the absence of the time variable

t in the functions f(x, y) and g(x, y).

It is assumed that f , g are continuously differentiable in some region D in the xy

plane. A graph which contains all the equilibria and the typical trajectories or

orbits of a planar autonomous system (1.5) is called a phase portrait [10].
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Definition 1.3.6. [2], The Hopf bifurcation is defined as the appearance or dis-

appearance of a periodic orbit through a local change in the stability properties of

a steady point.

It is named in the memory of the mathematician Eberhard Hopf . In a dynamical

system, Hopf bifurcation loses stability in the form of complex conjugate eigenval-

ues of the linearization around the fixed point which crosses the imaginary axis of

the complex plane.

The Hopf bifurcation theorem states sufficient conditions for the existence of pe-

riodic solutions. As one parameter is varied, the dynamics of the system changes

from a stable spiral to a center to an unstable spiral. The eigenvalues of the

linearized system change from having a negative real part to a zero real part to

positive real part. Under certain conditions, there exist periodic solutions.

Consider a system of autonomous differential equations given by

dx

dt
= f1(x, y, r)

dy

dt
= g1(x, y, r), (1.7)

where the functions f1 and g1 depend on the bifurcation parameter r. Suppose

there exists an equilibrium (x∗(r), y∗(r)) of system (1.7) and the Jacobian matrix

evaluated at this equilibrium has eigenvalues α(r) ± iβ(r). In addition, suppose

that a change in stability occurs at the value of r = r∗, where α(r∗) = 0. If

α(r) < 0 for values of r close to r∗ but r < r∗ or if α(r) > 0 for values of r

close to r∗ but r > r∗(also β(r∗) 6= 0) then the equilibrium changes from a stable

spiral to an unstable spiral as r passes through r∗. The Hopf Bifurcation theorem

states that there exists a periodic orbit near r = r∗ for any neighbourhood of the

equilibrium in the xy plane. The parameter r is the bifurcation parameter and r∗

12



is the bifurcation value. The theorem is valid when the bifurcation parameter has

values close to the bifurcation value.

We consider Hopf bifurcation and limit cycles at the equilibrium (0, 0) in the

following system: 
u̇ = au+ bv + p(u, v) := f1(u, v),

v̇ = cu+ dv + q(u, v) := g1(u, v),

(1.8)

where p(u, v) =
∑∞

i+j=2 aiju
ivj and q(u, v) =

∑∞
i+j=2 biju

ivj. The Jacobian matrix

of f1 and g1 at the equilibrium (0, 0) is

A(0, 0) =

 a b

c d

 . (1.9)

If ∆ = |A(0, 0)| = ad− bc > 0, then it follows from the formula (3′) of Section 4.4

in [31] that the Liapunov number, denoted by σ2, of (1.8), is given by

σ2 =
−3π

2b∆3/2

8∑
i=1

ξi, (1.10)

where

ξ1 = ac(a2
11 + a11b02 + a02b11), ξ2 = ab(b2

11 + a20b11 + a11b02),

ξ3 = c2(a11a02 + 2a02b02), ξ4 = −2ac(b2
02 − a20a02), ξ5 = −2ab(a2

20 − b20b02),

ξ6 = −b2(2a20b20 + b11b20), ξ7 = (bc− 2a2)(b11b02 − a11a20),

ξ8 = −(a2 + bc)[3(cb03 − ba30) + 2a(a21 + b12) + (ca12 − bb21)].

The following result is a special case of Theorem 1 and Remark 1 in the section

4.4 of [31] (also see pages 253, and 261-264 in [6]).

Lemma 1.3.7. Assume that ∆ > 0 and a + d = 0 and. Then the following

assertions hold [25]:

13



1. If σ2 < 0 (or σ2 > 0), then the equilibrium (0, 0) is a stable (or unstable)

center or a stable (or unstable) focus with multiplicity one.

2. If σ2 < 0 (or σ2 > 0), then a supercritical (or sub critical) Hopf bifurcation

occurs at (0, 0) of (1.8) at the bifurcation value τ = a+ d = 0.

3. If σ2 < 0 (or σ2 > 0), then a unique stable (or unstable) limit cycle bifurcates

from (0, 0) of (1.8) as bifurcation value τ = a+ d = 0 increases from zero.

Definition 1.3.8. [2] The linearization:

The local stability of an equilibrium is determined by the eigenvalues of the Ja-

cobian matrix. The functions f and g are expanded using Taylor’s formula about

the equilibrium, (x∗, y∗), where u = x − x∗ and v = y − y∗. Assume that f and

g have continuous second-order partial derivatives in an open set containing the

point (x∗, y∗). Then,

du

dt
= f(x∗ + u, y∗ + v) = f(x∗, y∗) + fx(x

∗, y∗)u+ fy(x
∗, y∗)v + fxx(x

∗, y∗)
u2

2

+fxy(x
∗, y∗)uv + fyy(x

∗, y∗)
v2

2
+ ......

= f(x∗, y∗) + fx(x
∗, y∗)u+ fy(x

∗, y∗)v + h1(u, v).

where h1(u, v) = fxx(x
∗, y∗)

u2

2
+ fxy(x

∗, y∗)uv + fyy(x
∗, y∗)

v2

2
+ .......

dv

dt
= g(x∗ + u, y∗ + v) = g(x∗, y∗) + gx(x

∗, y∗)u+ gy(x
∗, y∗)v + gxx(x

∗, y∗)
u2

2

+gxy(x
∗, y∗)uv + gyy(x

∗, y∗)
v2

2
+ ......

= g(x∗, y∗) + gx(x
∗, y∗)u+ gy(x

∗, y∗)v + h2(u, v).

where h2(u, v) = gxx(x
∗, y∗)

u2

2
+ gxy(x

∗, y∗)uv + gyy(x
∗, y∗)

v2

2
+ .......

We assume that h1 and h2 take small values for small u, v. In addition, h1(u, v)

and h2(u, v) tend to zero as u and v tend to zero.
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The linearization of the system, obtained by using f(x∗, y∗) = 0, g(x∗, y∗) = 0

and neglecting the higher-order terms h1(u, v) and h2(u, v), is defined to be the

two-dimensional linear system,

du

dt
= fx(x

∗, y∗)u+ fy(x
∗, y∗)v, (1.11)

dv

dt
= gx(x

∗, y∗)u+ gy(x
∗, y∗)v. (1.12)

Equations (1.11) and (1.12) can be expressed in the following vector form

 du

dt
dv

dt

 =

fx fy

gx gy

×
 u

v


or

d

dt

 u

v

 =

fx fy

gx gy

×
 u

v



Finally, we can write
dZ

dt
= JZ, where Z =

 u

v

 and J =

fx fy

gx gy

.

1.4 Equilibria of the system (1.5)

The solution to the non-linear system (1.6) is characterized by the eigenvalues of

the Jacobian matrix J given below. These eigenvalues depend on the trace and on

the determinant of J. The local stability of an equilibrium is obtained by studying

the eigenvalues of the Jacobian matrix. We have used the fact that f(x∗, y∗) = 0

and g(x∗, y∗) = 0. Then the system linearised about the equilibrium (x∗, y∗) is

dZ

dt
= JZ, where Z = (u, v)T and J is the Jacobian matrix which is evaluated at
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the equilibrium:

A(x, y) = J(x, y) =

 fx(x, y) fy(x, y)

gx(x, y) gy(x, y)

∣∣∣∣
x=x∗,y=y∗

(1.13)

Following [2], the classification of the equilibria (node, saddle, spiral) for non-linear

systems is developed from the classification scheme of linear systems, since the lin-

earisation is only an approximation of the non-linear system.

The nature of the curve can be determined by the characteristic poly-

nomial of the matrix J:

λ2 − tr (J)λ+ det (J) = 0⇒ λ2 − τλ+ ∆ = 0⇒ λ1,2 =
τ ±
√
τ 2 − 4∆

2

where τ is the trace of the Jacobian matrix, ∆ is the determinant of Jacobian

matrix and λ1, λ2 are the eigenvalues.

I Saddle point If ∆ < 0, then the eigenvalues have opposite signs, that is,

λ1 < 0 < λ2. Since the discriminant τ 2 − 4∆ is positive, the eigenvalues are

real. The equilibrium point is called a saddle .

II Stable node If ∆ > 0 and τ 2−4∆ ≥ 0, then the equilibrium point is a stable

node when τ < 0, since both eigenvalues are real and negative.

III Unstable node If ∆ > 0 and τ 2 − 4∆ ≥ 0, then the equilibrium point is

unstable when τ > 0, since both eigenvalues are real and positive.

IV Stable focus If ∆ > 0 and τ 2 − 4∆ < 0, then the equilibrium point is a

stable focus when τ < 0, since the eigenvalues are complex whose real parts

are negative.
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Figure 1.5: The global stability of the origin in the case of linearisation

[13]

V Unstable focus If ∆ > 0 and τ 2 − 4∆ < 0, then the equilibrium point is an

unstable focus when τ > 0, since the eigenvalues are complex with positive

real parts.

VI Center or Focus If ∆ > 0 and τ = 0, then the equilibrium point is a center

or a focus , since the eigenvalues are purely imaginary.

We give a brief introduction of the qualitative theory on phase portraits of planar

systems near equilibria [18, 23] . We denote by A(x∗, y∗) the Jacobian matrix of
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f and g at (x∗, y∗), that is,

A(x, y) =


∂f

∂x

∂f

∂y
∂g

∂x

∂g

∂y

∣∣∣∣
x=x∗,y=y∗

(1.14)

and by |A(x∗, y∗)| and tr(A(x∗, y∗)) the determinant and the trace of A(x∗, y∗),

respectively.

The following results follow from Theorems 3 − 5 of Section 2.10 and Definition

2 of Section 2.6 in [20]. These results have been used in [24, 25] to study some

prey-predator models.

Lemma 1.4.1. Assume that (x∗, y∗) is an equilibrium point of (1.5). Then the

following assertions hold:

(i) If |A(x∗, y∗)| < 0, then (x∗, y∗) is a saddle of (1.5).

(ii) If |A(x∗, y∗)| > 0 and (tr(A(x∗, y∗)))2 − 4|A(x∗, y∗)| ≥ 0, then (x∗, y∗) is a

node of (1.5); it is stable if tr(A(x∗, y∗)) < 0 and unstable if tr(A(x∗, y∗)) > 0.

(iii) If |A(x∗, y∗)| > 0, (tr(A(x∗, y∗)))2 − 4|A(x∗, y∗)| < 0 and tr(A(x∗, y∗)) 6= 0,

then (x∗, y∗) is a focus of (1.5); it is stable if tr(A(x∗, y∗)) < 0 and unstable if

tr(A(x∗, y∗)) > 0.

(iv) If |A(x∗, y∗)| > 0 and tr(A(x∗, y∗)) = 0, then (x∗, y∗) is a center or a focus of

(1.5).

Difference between the Lotka-Volterra model and our Holling-Tanner

predator-prey model

Equation (1.1) is a simple model which incorporates four parameters. After nondi-

mensionalisation, it has one parameter. Any small perturbation will move the so-

lution onto another trajectory which does not lie everywhere close to the original
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trajectory. Consequently, solutions are not structurally stable which is the main

drawback of the Lotka-Volterra model.

Equation (2.1) is our model, also known as the Holling-Tanner model. In this

model, six parameters are reduced into three parameters after nondimensional-

isation. This model is more realistic than the Lotka-Volterra model because we

introduce the logistic growth rate K, per capita birth rate r1(1−X
K

), the predation

rate and the responses to the number killed per predator per time
mX

aY +X
, the

maximum number of prey that can be eaten per predator per time m, a measure

of the quality of the prey as food for the predator h. Finally, we obtain stable (or

unstable) focus, node, and center under suitable values of parameters.
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Chapter 2

The predator-prey interactions

2.1 Formulation of the predator-prey model

In this section, we present the model which we shall analyze. The Lotka-Volterra

equations are a pair of first order, non-linear differential equations which are used

to describe the dynamics of biological systems for the interaction of two species:

the prey and the predator. The Lotka-Volterra [29] predator-prey model was

introduced by Alfred J. Lotka in the theory of chemical reactions in 1910. He

further extended this theory to predator-prey interactions in 1925.

Vito-Volterra developed independently the same equations for statistical analysis

of fish catches in the Adriatic in 1926. Furthermore, the model was developed by

Holling-Tanner in [1959] to study the interactions of prey and predator species.

The study of these models have been of interest to both applied mathematicians

and ecologists. The Holling-Tanner models are governed by the following system
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of two first order differential equations with time T as the independent variable:
dX

dT
= r1X(1− X

K
)− mXY

aY +X
,

dY

dT
= r2Y (1− Y

hX
),

(2.1)

where X(T ) and Y (T ) are the sizes of the prey and of the predator, respectively.

The parameters r1 and r2 are the intrinsic growth rates of the prey and the preda-

tor, respectively. The number K is the carrying capacity of the prey. In other

words, the carrying capacity means the maximum population size of the prey, it

depends on (i) the amount of resources available in the ecosystem, (ii) the size of

the population and (iii) the amount of resources for each individual’s consumption.

The term mX/(aY + X) is called the predation rate and represents the number

killed per predator per time. It is also known as a Holling type II predator re-

sponse [8, 18, 19, 28, 31]. The value m is the maximum number of prey that can

be eaten per predator per time and the parameter a is the half saturation constant

at which the predation rate achieves the value m/2, one half the maximum rate

m. The parameter h is a measure of the quality of prey as food for predator and

hX is the prey-dependent carrying capacity for predator (also see [8, 28, 33] for

these interpretations).

In this thesis, we study the phase portraits, the Hopf bifurcations , and the exis-

tence and uniqueness of stable limit cycles near the interior equilibrium of equation

(2.1). As in [5, 6, 28], we consider the nondimensional system of the equation (2.1).

The new system involves three parameters α, β and δ (see equation (2.3) below).

When α > α1, or α ≤ α1 and α1 =
(1 + β)2

1 + 2β
, we provide the ranges of the three

parameters under which the interior equilibrium can be justified to be a stable (an

unstable ) node or focus. Our results improve the known results in [6, 28], where

the node or focus can be determined. When β = α, we give the ranges of α and
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β under which the Hopf bifurcation occurs and there is a unique limit cycle . In

addition, our results confirm some known results observed and suggested from the

real ecological systems, for example, in [19, 28].

The methodology used here for the local stability is to utilize the well-known re-

sults on the phase portraits of the planar systems near equilibria (see for example

(1.4.1) [18, 23]), where determining the signs of the determinants and of the trace

of the Jacobian matrix at the equilibria plays an important role. We shall pro-

vide the formulas of the determinants and the traces of the matrices in order to

determine their signs. The key method employed here to show that the Hopf bi-

furcation occurs and the unique stable limit cycle exists is the well-known result

on bifurcation theory [23, 33], where the negative Liapunov number is required.

We shall prove that the Liapunov number involved in equation (2.1) is negative

and the proof is not trivial.

2.1.1 Nondimensionalization and meanings of parameters

in the predator-prey model

Let x and y represent the number of prey and predators, respectively. The deriva-

tives
dx

dt
and

dy

dt
indicate the growth rate of the two populations at time t. Fol-

lowing [19], we make the translations:
t = r1T, x(t) =

X(t)

K
, y(t) =

aY (t)

K
,

α =
m

r1a
, δ =

r2

r1

, β =
1

ah
,

(2.2)

then

dX

dT
= K

dx

dt

dt

dT
= Kr1

dx

dt
,
dY

dT
=
K

a

dy

dt

dt

dT
=
K

a
r1
dy

dt
.
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Substituting
dX

dT
,
dY

dT
, X and Y into equation (2.1), we get

Kr1
dx

dt
= r1Kx(1− Kx

K
)−

mKx
K

a
y

a
K

a
y +Kx

,

dx

dt
= x(1− x)− m

r1a

xy

y + x
,

dx

dt
= x(1− x)− α xy

x+ y
.

K

a
r1
dy

dt
= r2

K

a
y(1−

K

a
y

hKx
),

dy

dt
=

r2

r1

y(1− 1

ah

y

x
),

dy

dt
= δy(1− β y

x
).

Then the equation (2.1) becomes
dx

dt
= x(1− x)− α xy

x+ y
:= f(x, y),

dy

dt
= δy(1− β y

x
) := g(x, y),

(2.3)

where α, β, δ > 0.

The biological meaning of the parameters δ, α and β is explained as following

where δ =
r2

r1

> 0. This implies three cases: 0 <
r2

r1

< 1, 0 <
r2

r1

= 1 and
r2

r1

> 1.

In other words, if r2 < r1 then the prey is produced faster than the predator obeys.

If r2 = r1 then the prey and predator have to be cyclic and if r2 > r1 then they

might be extinct.

If α =
m

r1a
> 0 then 0 <

m

r1a
< 1 or 0 <

m

r1a
= 1 or 0 <

m

r1a
> 1. So

it is biologically meaningful to consider the case when α < 1, both species are

sustained since the growth rate of prey is greater than the number of prey killed

by predators at a time. If we allow α to take values greater than or equal to 1 in
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some cases, then the species are eradicated due to the fact that the growth rate is

less than or equal to the number of prey killed by predators at a time.

If 0 < β =
1

ah
< 1, then the product of the maximum number of killed prey and

the measure of the quality of prey as food for predator must be greater than one

for the existence of the species. If 1 ≥ ah, then the species do not exist or they

can be eradicated from nature.

2.1.2 Phase portraits near the interior equilibrium

It is obvious that (1, 0) is an equilibrium of (2.3) and there exists a unique interior

equilibrium (x∗, y∗) of (2.3).

Initially, Alfred J. Lotka extended the Lotka-Volterra system of equations, via the

Kolmogorov model, to the predator-prey interactions, in his book on biomathemat-

ics, in 1925. S. Holling extended further this model in 1959. The Lotka-Volterra

model and Holling’s extensions have been used to analyse the moose and wolf

populations in the Isle Royale National Park [20]. A. Mathi and S. Pathak [27]

modified the Holling-Tanner model to introduce stochastic fluctuations. Lan and

Zhu [24] also further modified the phase portraits, the Tanner models for predator-

prey interactions of the two species.

The following result provides the exact expression of the interior equilibrium

(x∗, y∗) which is useful in this thesis.

Lemma 2.1.1. If β > 0, δ > 0 and 1 + β > α > 0, then the system (2.3) has a

unique equilibrium (x∗, y∗) with x∗, y∗ > 0.

Where x∗ = 1− α

1 + β
and y∗ =

1

β
(1− α

1 + β
).
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Figure 2.1: The region of equilibria lies below the line α = 1 + β and above the

line α = 1.

Proof. To find the equilibria of (2.3), let
x(1− x)− α xy

x+ y
= 0,

δy(1− β y
x

) = 0.
(2.4)

If x 6= 0 and y 6= 0, then (2.4) becomes

(1− x)− α y

x+ y
= 0, (2.5)

(1− β y
x

) = 0. (2.6)

From the equation (2.6), we obtain y =
x

β
. We then substitute y =

x

β
into the
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equation (2.5) and we obtain:

(1− x)− αy

x+ y
= 0,

1− x−
α
x

β

x+
x

β

= 0,

1− x−
x
α

β

x(1 +
1

β
)

= 0,

1− x− α

1 + β
= 0,

x∗ = 1− α

1 + β
,

y∗ =
1

β
(1− α

1 + β
).

Finally, we get 
x∗ =

1

1 + α
,

y∗ =
x∗

α
,

(2.7)

when α = β > 0. From (2.3) and substituting the values of equilibrium point

(x∗, y∗), we get

∂f

∂x
=

∂(x− x2 − α xy

x+ y
)

∂x
= 1− 2x− α[

(x+ y)y − xy
(x+ y)2

]

= 1− 2x− αy2

(x+ y)2
= 1− 2(1− α

1 + β
)− α

(
x∗

β
)2

(x∗ +
x∗

β
)2

= −1 +
2α

1 + β
− α

β2

β2

(1 + β)2
= −1 +

2α(1 + β)− α
(1 + β)2

= −1 +
α(2 + 2β − 1)

(1 + β)2
= −1 +

α(1 + 2β)

(1 + β)2
,
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∂f

∂y
=

∂(x− x2 − α xy

x+ y
)

∂y
= −α[

(x+ y)x− xy
(x+ y)2

]

= − αx2

(x+ y)2
= −α x∗2

(x∗ +
x∗

β
)2

= − αβ2

(1 + β)2
,

∂g

∂x
=
∂(δy − δβy2

x
)

∂x
= −δβy2(

−1

x2
) = δβ

y2

x2
= δβ

x∗2

β2x∗2
=
δ

β
,

∂g

∂y
=
∂(δy − δβy2

x
)

∂y
= δ(1− 2βy

x
) = δ

(
1−

2β
x∗

β

x∗
)

= δ(1− 2) = −δ.

Substituting the values of
∂f

∂x
,
∂f

∂y
,
∂g

∂x
and

∂g

∂y
in equation (1.14), we obtain a

Jacobian matrix in the following form

A(x, y) =

 −1− 2x− αy2

(x+ y)2

−αx2

(x+ y)2

δβ
y2

x2
δ(1− 2βy

x
)

 . (2.8)

Substituting the values of x∗ = 1 − α

1 + β
and y∗ =

1

β
(1 − α

1 + β
) in (2.8), we

derive

A(x∗, y∗) =

 −1 +
α(1 + 2β)

(1 + β)2
− αβ2

(1 + β)2

δ

β
−δ

 . (2.9)

2.2 Stable (or unstable) nodes, focus, center and

saddle near interior equilibrium

In this section we present some new results on the predator-prey model to deter-

mine the types of equilibrium points such as node, saddle, focus and centre. We

also discuss the Hopf bifurcation and the limit cycles.
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The following result shows that the determinant |A(x∗, y∗)| is positive and provides

a formula for |A(x∗, y∗)| which will be used later.

Lemma 2.2.1. Assume that β > 0, δ > 0 and 1+β > α > 0. Then |A(x∗, y∗)| > 0.

Proof. By (2.9), we have

|A(x∗, y∗)| = −δ[−1 +
α(1 + 2β)

(1 + β)2
] +

δ

β

αβ2

(1 + β)2

= δ − αδ + 2αδβ

(1 + β)2
+

αδβ

(1 + β)2
= δ − αδ + 2αδβ − αδβ

(1 + β)2

= δ − αδ + αδβ

(1 + β)2
= δ − αδ(1 + β)

(1 + β)2
= δ − αδ

1 + β
= δ(1− α

1 + β
).

Since δ > 0 and x∗ = 1− α

1 + β
> 0, then |A(x∗, y∗)| > 0.
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Figure 2.2: Solution of rgion of new results
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2.3 Some new results

In this section, we analyze stable or unstable nodes, foci and centres.

Theorem 2.3.1. If δ > 0, β > 0, 1 + β > α > 0 and α1(β) =
(1 + β)2

1 + 2β
. Then the

following hold:

(1) If α > α1 and δ >
α− α1

α1

, then (x∗, y∗) ∈ Ω1 is a stable node or focus of (2.3).

(2) If α > α1 and δ <
α− α1

α1

, then (x∗, y∗) ∈ Ω1 is an unstable node or focus of

(2.3).

(3) If α > α1 and δ =
α− α1

α1

, then (x∗, y∗) ∈ Ω1 is a stable centre or focus of

(2.3).

(4) If 0 < α ≤ α1 and δ > 0, then (x∗, y∗) ∈ Ω2 is a stable node or focus of (2.3) .

Proof. We calculate the trace of the matrix from (2.9),

tr(A(x∗, y∗)) = −1 +
α(1 + 2β)

(1 + β)2
− δ = −[δ + 1− α(1 + 2β)

(1 + β)2
]

= −[δ + 1− α

α1

] = −[δ − (
α− α1

α1

)]. (2.10)

(1) Let α > α1. Then from (2.10),

tr(A(x∗, y∗)) = −[δ − (
α− α1

α1

)] < 0, since α1(β) =
(1 + β)2

(1 + 2β)
. where we have

δ − (α− α1)

α1

≥ 0, and 0 < α1(β) =
(1 + β)2

1 + 2β
< α. So, (x∗, y∗) is a stable node or

focus of (2.3) from lemma 1.4.1.

(2) Let α > α1. Then from (2.10),

tr(A(x∗, y∗)) = −[δ− (
α− α1

α1

)] > 0, since α1(β) =
(1 + β)2

(1 + 2β)
. where δ <

(α− α1)

α1

,

and 0 < α1(β) =
(1 + β)2

1 + 2β
< α. So, (x∗, y∗) is an unstable node or focus of (2.3)

from lemma 1.4.1.

(3) Let α > α1. Then from (2.10),

From (2.10), tr(A(x∗, y∗)) = −[δ − (
α− α1

α1

)] = 0, since α1(β) =
(1 + β)2

(1 + 2β)
. where
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δ =
(α− α1)

α1

, and 0 < α1(β) =
(1 + β)2

1 + 2β
< α. So, (x∗, y∗) is a stable center or

focus of (2.3) from lemma 1.4.1.

(4) Let α ≤ α1. Then from (2.10),

tr(A(x∗, y∗)) = −[δ − (
α− α1

α1

)] < 0, since α1(β) =
(1 + β)2

(1 + 2β)
. where 0 < α ≤ α1

and δ > 0. So, (x∗, y∗) is a stable node or focus of (2.3) from lemma 1.4.1.

In Figure 2.2, Ω1 is the region of the plane which lies below the line α = 1 + β

and above the curve α1(β) =
(1 + β)2

1 + 2β
in the first quadrant. In addition, Ω2 is the

region of the plane which lies below the curve α1(β) =
(1 + β)2

1 + 2β
and the above the

β-axis, in the first quadrant.

Theorem 2.3.2. Assume that β > 0, 1 + β > α > 0 and δ > δ1(β) = 1 + 2β for

β ∈ (0,∞) and δ1(β) ∈ [1,∞). Then (x∗, y∗) is a stable or an unstable node of

(2.3).

Proof. Let ρ = (trA(x∗, y∗))2 − 4|A(x∗, y∗)|.

Substituting the values of trA(x∗, y∗) and |A(x∗, y∗)| from (2.9) on the above
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equation, we derive

ρ = [−1− δ +
α(1 + 2β)

(1 + β)2
]2 − 4δ(1− α

1 + β
)

= (−1− δ)2 + 2(−1− δ)α(1 + 2β)

(1 + β)2
+
α2(1 + 2β)2

(1 + β)4
− 4δ + 4

δα

1 + β

= (1 + δ)2 − 4δ − 2(1 + δ)
α(1 + 2β)

(1 + β)2
+
α2(1 + 2β)2

(1 + β)4
+ 4

δα

1 + β

= (1− δ)2 +
α2(1 + 2β)2

(1 + β)4
+ 4

δα

1 + β
− 2(1 + δ)

α(1 + 2β)

(1 + β)2

= (1− δ)2 +
α2(1 + 2β)2

(1 + β)4
+

2α

(1 + β)2
[2δ(1 + β)− (1 + δ)(1 + 2β)]

= (1− δ)2 +
α2(1 + 2β)2

(1 + β)4
+

2α

(1 + β)2
[2δ + 2δβ − 1− δ − 2β − 2δβ]

= (1− δ)2 +
α2(1 + 2β)2

(1 + β)4
+

2α

(1 + β)2
[δ − (1 + 2β)] > 0.

If δ > δ1(β) = 1 + 2β then (x∗, y∗) is a stable or an unstable node of (2.3). Since

|A(x∗, y∗)| > 0 from Lemma 2.2.1.

Corollary 2.3.3. If α = β = δ > 0, then tr(A(x∗, y∗)) < 0. Thus, (x∗, y∗) is a

stable node or focus of the equation (2.3).

Proof. Substituting δ = α and β = α in equation (2.9), we get

tr(A(x∗, y∗)) = −1− δ +
α(1 + 2β)

(1 + β)2
= −1− α +

α(1 + 2α)

(1 + α)2

=
−(1 + α)(1 + α)2 + α(1 + 2α)

(1 + α)2
=

1

(1 + α)2
{−α3 − α2 − 2α− 1}

= −{(α3 + α2 + 2α + 1)

(1 + α)2
} < 0

Therefore, it is a stable node or focus of the equation (2.3). If α3 +α2 +2α+1 = 0

then tr(A(x∗, y∗)) = 0 at α = −0.2151 + 1.3071i or α = −0.2151 − 1.3071i or

α = −0.5698. So, (x∗, y∗) is a centre or focus of (2.3).
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Theorem 2.3.4. If α = β = δ > 0 and α > 3 +
√

15, then (trA(x∗, y∗))2 −

4|A(x∗, y∗)| > 0 .

Proof. Let ρ1 = (trA(x∗, y∗))2− 4|A(x∗, y∗)|. By substituting δ = α and β = α in

(2.9), we obtain

ρ1 =
(α3 + α2 + 2α + 1)2

(1 + α)4
− 4α(1− α

1 + α
)

=
[α3 + (α + 1)2]2

(1 + α)4
− 4α

(1 + α− α)

1 + α
=

[α3 + (α + 1)2]2

(1 + α)4
− 4α

1 + α

=
1

(1 + α)4
[(α3)2 + 2α3(α + 1)2 + (α + 1)4 − 4α(1 + α)3]

=
1

(1 + α)4
[α6 + (α + 1)2{2α3 + (α + 1)2 − 4α(1 + α)}]

=
1

(1 + α)4
[α6 + (α + 1)2(2α3 + α2 + 2α + 1− 4α− 4α2)]

=
1

(1 + α)4
[α6 + 2α5 + α4 − 6α3 − 6α2 + 1]

=
1

(1 + α)4
[α6 + 2α5 + α2(α2 − 6α− 6) + 1]

=
1

(1 + α)4
[α6 + 2α5 + α2{(α− 3)2 − 15}+ 1] > 0,

where (α − 3)2 − 15 > 0. This implies that α > 3 +
√

15. Thus, (x∗, y∗) is a

stable node of the equation (2.3). If α6 + 2α5 +α4−6α3−6α2 + 1 = 0 then ρ1 = 0

at α = −1.2603± 1.4982i or α = 1.5206 or α = −0.6779± 0.1509i or α = 0.3557.

So, (x∗, y∗) is a stable node of (2.3).

Theorem 2.3.5. If β > 0, δ > 0, 1 + β > α > 0 and α→ 0, then |A(x∗, y∗)| > 0,

trA(x∗, y∗) < 0 and (trA(x∗, y∗))2 − 4|A(x∗, y∗)| > 0.

Proof. We have x∗ = 1− α

1 + β
and y∗ =

1

β
(1− α

1 + β
). If α→ 0 then x∗ = 1 and

y∗ =
1

β
.
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From (2.9), we derive

A(x∗, y∗) =

 −1 +
α(1 + 2β)

(1 + β)2
− αβ2

(1 + β)2

δ

β
−δ

 , (2.11)

=

 −1 0

δ

β
−δ

 . (2.12)

Thus |A(x∗, y∗)| = δ > 0, since δ > 0. (trA(x∗, y∗)) = −1− δ = −(1 + δ) < 0,

and (trA(x∗, y∗))2 − 4|A(x∗, y∗)| = (−1− δ)2 − 4δ = (1− δ)2 ≥ 0. Consequently,

(x∗, y∗) is a stable node of the equation (2.3).

Corollary 2.3.6. When β > 0, δ > 0, 1 + β > α > 0 and β → ∞, the point

(x∗, y∗) is a stable node of the equation (2.3).

Proof. From (2.9), we can write

B(x∗, y∗) := A(x∗, y∗)|β→∞ =

 −1 +
α(1 + 2β)

(1 + β)2

−αβ2

(1 + β)2

δ

β
−δ

 |β→∞, (2.13)

=

 −1 −α

0 −δ

 . (2.14)

Thus, |A(x∗, y∗)| = δ > 0, and trA(x∗, y∗) = −1− δ = −(1 + δ) < 0.

In addition, (trA(x∗, y∗))2 − 4|A(x∗, y∗)| = [−(1 + δ)]2 − 4δ = (1− δ)2 ≥ 0.

This shows that (x∗, y∗) is a stable node of equation the (2.3).

Lemma 2.3.7. When α = β > 0, the following hold:

(1) If δ > δ2(β) =
β2 − β − 1

(1 + β)2
> 0 for β ∈ (

1 +
√

5

2
,∞), then (x∗, y∗) is a stable

node or focus of (2.3).

(2) If δ > δ2(β) =
β2 − β − 1

(1 + β)2
for β ∈ [0,

1 +
√

5

2
], then (x∗, y∗) is a stable node
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or focus of (2.3).

(3) If δ < δ2(β) =
β2 − β − 1

(1 + β)2
for β ∈ (

1 +
√

5

2
,∞), then (x∗, y∗) is an unstable

node or focus of equation (2.3).

(4) If 0 < δ = δ2(β) =
β2 − β − 1

(1 + β)2
for β =

1 +
√

5

2
, then (x∗, y∗) is a center or

focus of equation (2.3).

Proof. From (2.9), we obtain that

C(x∗, y∗) := A(x∗, y∗)|β=α =

 −1 +
α(1 + 2β)

(1 + β)2

−αβ2

(1 + β)2

δ

β
−δ

 |β=α, (2.15)

=


−1− β + β2

(1 + β)2
− β3

(1 + β)2

δ

β
−δ

 . (2.16)

Therefore,

|C(x∗, y∗)| = −δ(−1− β + β2

(1 + β)2
) +

δ

β

β3

(1 + β)2

=
δ

(1 + β)2
[1 + β − β2 + β2] =

δ

1 + β
> 0

tr(C(x∗, y∗)) =
−1− β + β2

(1 + β)2
− δ = −[δ − β2 − β − 1

(1 + β)2
] (2.17)

(1) Let δ > δ2. Then from (2.17),

tr(C(x∗, y∗)) = −[δ − β2 − β − 1

(1 + β)2
] < 0,

when δ − β2 − β − 1

(1 + β)2
> 0. Therefore, we have δ > δ2(β) =

β2 − β − 1

(1 + β)2
> 0 for

β ∈ (
1 +
√

5

2
,∞). Thus, (x∗, y∗) is a stable node or focus of (2.3).

(2) Let δ > δ2. Then from (2.17),

tr(C(x∗, y∗)) = −[δ − β2 − β − 1

(1 + β)2
] < 0,
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when δ − β2 − β − 1

(1 + β)2
> 0. Therefore, δ > δ2(β) =

β2 − β − 1

(1 + β)2
for β ∈ [0,

1 +
√

5

2
].

Thus, (x∗, y∗) is a stable node or focus of (2.3).

(3) Let δ < δ2. Then from (2.17),

tr(C(x∗, y∗)) = −[δ − β2 − β − 1

(1 + β)2
] > 0,

when δ− β
2 − β − 1

(1 + β)2
< 0. Therefore, δ < δ2(β) =

β2 − β − 1

(1 + β)2
for β ∈ (

1 +
√

5

2
,∞).

Thus, (x∗, y∗) is an unstable node or focus of (2.3).

(4) Let δ = δ2. Then from (2.17),

tr(C(x∗, y∗)) =
−1− β + β2

(1 + β)2
− δ = −[δ − β2 − β − 1

(1 + β)2
] = 0,

when δ− β
2 − β − 1

(1 + β)2
= 0. Therefore, δ = δ2(β) =

β2 − β − 1

(1 + β)2
= 0 for β =

1 +
√

5

2
,

and thus, (x∗, y∗) is a center or focus of (2.3).

Theorem 2.3.8. If α = β > 0 and δ3(β) =
1 + β − 2β2

2(1 + β)2
> δ for β ∈ (0, 1), then

(x∗, y∗) is a stable node of the equation (2.3).

Proof. Let us suppose that ρ2 = (trC(x∗, y∗))2 − 4|C(x∗, y∗)|. Then, from (2.16),

we get

ρ2 = [δ +
1

1 + β
− β2

(1 + β)2
]2 − 4

δ

1 + β

= δ2 +
1

(1 + β)2
+

β4

(1 + β)4
+

2δ

1 + β
− 2

δβ2

(1 + β)2
− 2β2

(1 + β)3
− 4δ

1 + β

=
β4

(1 + β)4
− 2δ

β2

(1 + β)2
+ δ2 +

1

(1 + β)2
− 2δ

1 + β
− 2β2

(1 + β)3

= { β2

(1 + β)2
− δ}2 +

(1 + β − 2β2)

(1 + β)3
− 2δ

1 + β

= { β2

(1 + β)2
− δ}2 +

2

1 + β
{(1 + β − 2β2)

2(1 + β)2
− δ}

= { β2

(1 + β)2
− δ}2 +

2

1 + β
{δ3 − δ} > 0,

where δ3 =
1 + β − 2β2

2(1 + β)2
> δ, and
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δ3 := δ3(β) =
1

2(1 + β)2
{1 + β − 2β2} =

1

2(1 + β)2
{−2[(β − 1

4
)2 − 1

16
] + 1}

=
1

2(1 + β)2
{9

8
− 2(β − 1

4
)2} > 0.

We can also write
9

16
> (β − 1

4
)2, thus

3

4
> β − 1

4
which leads to 0 < β < 1.

This shows that, (x∗, y∗) is a stable node of (2.3).

Theorem 2.3.9. When β > 0 , δ > 0, 1 + β > α > 0 and β → 0, the point

(x∗, y∗) is a stable node of (2.3).

Proof. From equation (2.9), we derive

A(x∗, y∗) =

 −1 +
α(1 + 2β)

(1 + β)2
− αβ2

(1 + β)2

δ

β
−δ

 (2.18)

and

|A(x∗, y∗)| = δ{1− α(1 + 2β)

(1 + β)2
}+

δ

β

αβ2

(1 + β)2
= δ{1− α(1 + 2β)

(1 + β)2
+

αβ

(1 + β)2
}

= δ{1− α(1 + 2β − β)

(1 + β)2
} = δ{1− α

1 + β
}

where

lim
β→0
|A(x∗, y∗)| = δ(1− α) > 0.

Since x∗ = 1− α

1 + β
→ (1− α) > 0 as β → 0, we obtain

lim
β→0
{trA(x∗, y∗))} = {−1 +

α(1 + 2β)

(1 + β)2
− δ} = −1 + α− δ

= −(1− α + δ) < 0,

since 1− α > 0. Let ρ3 = (trA(x∗, y∗))2 − 4|A(x∗, y∗)|, then we derive

ρ3 = [1− α + δ]2 − 4δ(1− α) = (1− α)2 + 2(1− α)δ + δ2 − 4δ(1− α)

= (1− α)2 − 2δ(1− α) + δ2 = (1− α− δ)2 ≥ 0.
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Therefore, (x∗, y∗) is a stable node of (2.3).

Theorem 2.3.10. If δ > 0, β > 0, 1 + β > α > 0, δ → 0+ and α > α1(β) =

(1 + β)2

1 + 2β
,

then (x∗, y∗) is an unstable node of (2.3).

Proof. From equation (2.9), we get

tr(A(x∗, y∗)) = −1 +
α(1 + 2β)

(1 + β)2
− δ

= −1− δ +
α(1 + 2β)

(1 + β)2
.

Moreover,

lim
δ→0+

tr(A(x∗, y∗)) = −1 +
α(1 + 2β)

(1 + β)2
=

1 + 2β

(1 + β)2
[α− (1 + β)2

1 + 2β
] > 0,

where α > α1(β) =
(1 + β)2

1 + 2β
.

Let ρ = (tr(A(x∗, y∗)))2−4|A(x∗, y∗)| = [−1−δ+
α(1 + 2β)

(1 + β)2
]2−4δ(1− α

1 + β
), then

lim
δ→0+

ρ = [−1 +
α(1 + 2β)

(1 + β)2
]2 = [

α(1 + 2β)

(1 + β)2
− 1]2 > 0.

We showed that |A(x∗, y∗)| > 0 as δ → 0+, tr(A(x∗, y∗)) > 0 and ρ > 0 as δ → 0+.

So, (x∗, y∗) is an unstable node of (2.3).
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2.4 Hopf bifurcations and limit cycles of (2.3)

In this section, we study the Hopf bifurcation and the limit cycles of equation

(2.3) at the interior equilibrium (x∗, y∗) defined in (2.7). It is well-known that

the necessary condition for the existence of the Hopf bifurcation at (x∗, y∗) is that

|B(x∗, y∗)| > 0 and trB(x∗, y∗) = 0 for α = β > 0. By Lemma 2.3.7(3), we see

that (x∗, y∗) = (x∗,
x∗

α
) satisfies the necessary condition when α ∈ (

1 +
√

5

2
,∞).

In fact, we prove below that the Hopf bifurcation of (2.3) occurs at (x∗,
x∗

α
) for

each α ∈ (
1 +
√

5

2
,∞). We need a well-known result which provides the sufficient

conditions for a system to have Hopf bifurcation and limit cycles at the equilibrium

(0, 0). To state the result, we consider the following system:
u̇ = au+ bv + p(u, v) := f1(u, v),

v̇ = cu+ dv + q(u, v) := g1(u, v),

(2.19)

where p(u, v) =
∑∞

i+j=2 aiju
ivj and q(u, v) =

∑∞
i+j=2 biju

ivj. The Jacobian matrix

of f1 and g1 at the equilibrium (0, 0) is

A(0, 0) =

 a b

c d

 . (2.20)

If ∆ = |A(0, 0)| = ad− bc > 0, then it follows from the formula (3′) of Section 4.4

in [31] that the Liapunov number, denoted by σ2, of (2.19), is given by

σ2 =
−3π

2b∆3/2

8∑
i=1

ξi, (2.21)
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where

ξ1 = ac(a2
11 + a11b02 + a02b11), ξ2 = ab(b2

11 + a20b11 + a11b02),

ξ3 = c2(a11a02 + 2a02b02), ξ4 = −2ac(b2
02 − a20a02), ξ5 = −2ab(a2

20 − b20b02),

ξ6 = −b2(2a20b20 + b11b20), ξ7 = (bc− 2a2)(b11b02 − a11a20),

ξ8 = −(a2 + bc)[3(cb03 − ba30) + 2a(a21 + b12) + (ca12 − bb21)].

The following result is a special case of Theorem 1 and Remark 1 in the section

4.4 of [31] (also see pages 253, and 261-264 in [6]).

Lemma 2.4.1. Assume that ∆ > 0, τ = a+d = 0 and σ2 < 0. Then the following

assertions hold:

(1) The equilibrium (0, 0) is a stable center or a stable focus with multiplicity one.

(2) A Hopf bifurcation of (2.19) occurs at (0, 0) at the bifurcation value τ = a+d =

0.

(3) A unique stable limit cycle of (2.19) bifurcates from (0, 0) of as the bifurcation

value τ = a+ d increases from zero.

Below, we give our main result in this section.

Theorem 2.4.2. Assume that α ∈ (
1 +
√

5

2
,∞). Then the following assertions

hold:

1. (x∗,
x∗

α
) is a stable center or a stable focus with multiplicity one of (2.3).

2. A Hopf bifurcation occurs at (x∗,
x∗

α
) of (2.3) at the bifurcation value τ =

a+ d = 0.

3. A unique stable limit cycle bifurcates from (x∗,
x∗

α
) of (2.3), as the bifurcation

value τ = a+ d increases from zero.

39



Proof. Let u = x− x∗, then x = x∗ + u and v = y − x∗ ⇒ y = y∗ + v =
x∗

α
+ v.

Substituting the values of x and y in equation (2.19), the equations become

u̇ = (x∗ + u)(1− x∗ − u)− α
(x∗ + u)(

x∗

α
+ v)

(x∗ + u) + (
x∗

α
+ v)

:= f1(u, v) (2.22)

v̇ = δ(
x∗

α
+ v){1− β

(
x∗

α
+ v)

x∗ + u
} := g1(u, v) (2.23)

Let c = x∗ +
x∗

α
=

1

1 + α
+

1

α(1 + α)
=

1

α
where x∗ =

1

1 + α
.

Simplifying (2.22), indeed we get,

f1(u, v) = (x∗ + u)(1− x∗ − u)− α[
(x∗ + u)(

x∗

α
+ v)

(x∗ + u) + (
x∗

α
+ v)

]

= (x∗ + u)(1− x∗ − u)− α[
1

c
(x∗ + u)(

x∗

α
+ v)(1 +

u+ v

c
)−1] (2.24)

We use the Taylor’s series expansion from (2.24).

Let f1 = f1(u, v) then

f1 = (x∗ + u)(1− x∗ − u)− α

c
(x∗ + u)(

x∗

α
+ v)[

3∑
n=0

(−1)n(
u+ v

c
)n

+
∞∑
n=4

(−1)n(
u+ v

c
)n]

= (x∗ + u)(1− x∗ − u)− α

c
(x∗ + u)(

x∗

α
+ v)[1− u+ v

c
+ (

u+ v

c
)2

−(
u+ v

c
)3 +

∞∑
n=4

(−1)n(
u+ v

c
)n]

= (x∗ + u)(1− x∗ − u)− α

c
(
x∗2

α
+ x∗v +

x∗

α
u+ uv)[1− u

c
− v

c
+
u2

c2
+

2

c2
uv

+
v2

c2
− u3

c3
− 3

c3
u2v − 3

c3
uv2 − v3

c3
+
∞∑
n=4

(−1)n(
u+ v

c
)n]
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From the above expression, rearranging the constant and the coefficients of u, v,

u2, u v, v2, u3, u2v, uv2 and v3, we derive

f1 = (x∗ − x∗2 − x∗2

c
) + (1− 2x∗ − x∗

c
+
x∗2

c2
)u+ (−αx

∗

c
+
x∗2

c2
)v

+ (−1− x∗2

c3
+
x∗

c2
)u2 + (−2x∗2

c3
+
αx∗

c2
+
x∗

c2
− α

c
)uv + (−x

∗2

c3
+
αx∗

c2
)v2

+ (−x
∗

c3
+
x∗2

c4
)u3 + (3

x∗2

c4
− αx

∗

c3
− 2

x∗

c3
+
α

c2
)u2v

+ (3
x∗2

c4
− 2α

x∗

c3
− x∗

c3
+
α

c2
)uv2 + (−αx

∗

c3
+
x∗2

c4
)v3 +O4(u, v). (2.25)

From (2.19), we obtain that this expression is equivalent to the following expression

f1 = η0 + au+ bv + a20u
2 + a11uv + a02v

2 + a30u
3 + a21u

2v

+ a12uv
2 + a03v

3 +O4(u, v)

= au+ bv + a20u
2 + a11uv + a02v

2 + a30u
3 + a21u

2v

+ a12uv
2 + a03v

3 +O4(u, v). (2.26)

We compare the coefficients of u, u2, uv, v2, u3, u2v, uv2, v3 and the constant from

expressions (2.25) and (2.26).

First of all, we get the following relations in terms of x∗ and c,

then substituting values x∗ =
1

1 + α
and c =

1

α
, we derive

a = 1− 2x∗ − x∗

c
+
x∗2

c2
= 1− 2

1 + α
− α

1 + α
+

α2

(1 + α)2
=
α2 − α− 1

(1 + α)2
,

b = −αx
∗

c
+
x∗2

c2
= − α2

1 + α
+

α2

(1 + α)2
=
−α2 − α3 + α2

(1 + α)2
= − α3

(1 + α)2
(2.27)

a20 = −1− x∗2

c3
+
x∗

c2
= −1− α3

(1 + α)2
+

α2

1 + α

=
−1− 2α− α2 − α3 + α2 + α3

(1 + α)2
= − 1 + 2α

(1 + α)2
,

a11 =
−2x∗2

c3
+ α

x∗

c2
+
x∗

c2
− α

c
=
−2α∗3

(1 + α)2
+

α3

1 + α
+

α∗2

1 + α
− α∗2
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=
−2α3 + α3 + α4 + α2 + α3 − α2 − 2α3 − α4

(1 + α)2
=
−2α3

(1 + α)2
,

a02 =
−x∗2

c3
+
αx∗

c2
=
−α3

(1 + α)2
+

α3

1 + α
=
−α3 − α4 + α4

(1 + α)2
=

α4

(1 + α)2
,

a30 =
−x∗

c3
+
x∗2

c4
=
−α3

1 + α
+

α4

(1 + α)2
=
−α3 − α4 + α4

(1 + α)2
=
−α3

(1 + α)2
,

a21 =
3x∗2

c4
− αx∗

c3
− 2x∗

c3
+
α

c2
=

3α4

(1 + α)2
− α4

1 + α
− 2α3

1 + α
+ α3

=
3α4 − α4 − α5 − 2α3 − 2α4 + α3 + 2α4 + α5

(1 + α)2
=

2α4 − α3

(1 + α)2
,

a12 =
3x∗2

c4
− 2αx∗

c3
− x∗

c3
+
α

c2
=

3α4

(1 + α)2
− 2α4

1 + α
− α3

1 + α
+ α3

=
3α4 − 2α4 − 2α5 − α3 − α4 + α3 + 2α4 + α5

(1 + α)2
=

2α4 − α5

(1 + α)2
,

a03 =
−αx∗

c3
+
x∗2

c4
=
−α4

1 + α
+

α4

(1 + α)2
=
−α4 − α5 + α4

(1 + α)2
=
−α5

(1 + α)2

and η0 = x∗ − x∗2 − x∗2

c
=

1

1 + α
− 1

(1 + α)2
− α

(1 + α)2
=

1 + α− 1− α
(1 + α)2

= 0.

Here η0 = x∗ − x∗2 − x∗2

c
is independent of u and v, thus it is a constant

term which is equivalent to zero.

Now, we expand g1 into the Taylor’s series. Simplifying (2.23), we get

g1(u, v) = δ(
x∗

α
+ v)[1− α

(
x∗

α
+ v)

x∗ + u
]

= δ(
x∗

α
+ v)[1− α(

(
x∗

α
+ v)

x∗(1 +
u

x∗
)
]. (2.28)
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Using the Taylor series expansion of (2.28), we derive

g1(u, v) = δ(
x∗

α
+ v)[1− α(

1

α
+

v

x∗
)(1 +

u

x∗
)−1]

= δ(
x∗

α
+ v)[1− (1 +

αv

x∗
){

3∑
n=0

(−1)n(
u

x∗
)n +

∞∑
n=4

(−1)n(
u

x∗
)n}
]

= δ(
x∗

α
+ v)[1− (1 +

αv

x∗
){1− u

x∗
+

u2

x∗2
− u3

x∗3
+
∞∑
n=4

(−1)n(
u

x∗
)n}
]

= δ(
x∗

α
+ v)[1− {1− u

x∗
+

u2

x∗2
− u3

x∗3
+
α

x∗
v − α

x∗2
uv

+
α

x∗3
u2v + P4(u, v)}

]
Rearranging the coefficients of u, v, u2, uv, v2, u3, u2v and uv2 from the above

expression, we obtain

g1(u, v) = δ(
x∗

α
+ v)[1− 1 +

u

x∗
− u2

x∗2
+

u3

x∗3
− α

x∗
v

+
α

x∗2
uv − α

x∗3
u2v + P4(u, v)

]
= δ[

1

α
u− v − 1

αx∗
u2 +

1

x∗
uv +

1

x∗
uv − α

x∗
v2 +

1

αx∗2
u3

− 1

x∗2
u2v − 1

x∗2
u2v +

α

x∗2
uv2 + P4(u, v)

]
= δ[

1

α
u− v − 1

αx∗
u2 +

2

x∗
uv − α

x∗
v2 +

1

αx∗2
u3

− 2

x∗2
u2v +

α

x∗2
uv2 + P4(u, v)

]
. (2.29)

The expression (2.29) is equivalent to (2.30)

g1(u, v) = cu+ dv + b20u
2 + b11uv + b02v

2 + b30u
3

+ b21u
2v + b12uv

2 + P4(u, v). (2.30)

Comparing the coefficients of u, v, u2, uv, v2, u3, u2v and uv2 from (2.29) and

(2.30), we get c =
δ

α
=
α2 − α− 1

α(1 + α)2
, d = −δ = −(α2 − α− 1)

(1 + α)2
,

b20 = − δ

αx∗
= −(α2 − α− 1)(1 + α)

α(1 + α)2
= −(α2 − α− 1)

α(1 + α)
,
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b11 =
2δ

x∗
=

2(α2 − α− 1)(1 + α)

(1 + α)2
=

2(α2 − α− 1)

1 + α
,

b02 = −αδ
x∗

=
−α(α2 − α− 1)(1 + α)

(1 + α)2
=
−α(α2 − α− 1)

1 + α
,

b30 =
δ

αx∗2
=

(α2 − α− 1)(1 + α)2

α(1 + α)2
=
α2 − α− 1

α
,

b21 =
−2δ

x∗2
= −2(α2 − α− 1)(1 + α)2

(1 + α)2
= −2(α2 − α− 1),

b12 =
αδ

x∗2
=
α(α2 − α− 1)(1 + α)2

(1 + α)2
= α(α2 − α− 1), b03 = 0.

Hence, equations (2.22) and (2.23) can be transformed into the following system
u̇ = au+ bv +

∑3
i+j=2 aiju

ivj +
∑∞

i+j≥4 aiju
ivj

v̇ = cu+ dv +
∑3

i+j=2 biju
ivj +

∑∞
i+j≥4 biju

ivj
. (2.31)

It is easy to verify that under the translation u = x − x∗ and v = y − x∗, the

Jacobian determinant remains unchanged. Hence, by Lemma 2.2.1, we have

∆ = ad− bc = |A(x∗, y∗)| > 0.

This can be written as

∆ = ad− bc = −(α2 − α− 1)2

(1 + α)2
− (−α3)

(1 + α)2

(α2 − α− 1)

α(1 + α)2

=
(α2 − α− 1)(−α2 + α + 1 + α2)

(1 + α)4

=
α2 − α− 1

(1 + α)3
, where α ∈ (

1 +
√

5

2
,∞
)
. It is easy to see that

tr (A) = a+ d =
−(1 + α− α2)

(1 + α)2
+

1 + α− α2

(1 + α)2
=
−1− α + α2 + 1 + α− α2

(1 + α)2
= 0.

We determine the sign of the Liapunov number σ2 from (2.21), substitute the
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values of a, c, a11, bo2 a02,and b11, into ξ1, and get

ξ1 = ac(a2
11 + a11b02 + a02b11)

= −(1 + α− α2)

(1 + α)2

(α2 − α− 1)

α(1 + α)2
[(
−2α3

(1 + α)2
)2

+
(−2α3)α(−α2 + α + 1)

(1 + α)2(1 + α)
+

α4

(1 + α)2

2(α2 − α− 1)

1 + α
]

=
(α2 − α− 1)2

α(1 + α)4
[

4α6

(1 + α)4
+

2α4(α2 − α− 1)

(1 + α)3
+

2α4(α2 − α− 1)

(1 + α)3
]

=
(α2 − α− 1)2

α(1 + α)4
[

4α6

(1 + α)4
+

4α4(α2 − α− 1)

(1 + α)3
]

=
4α4(α2 − α− 1)2

α(1 + α)4
[

α2

(1 + α)4
+

(α2 − α− 1)

(1 + α)3
]

=
4α3(α2 − α− 1)2

(1 + α)4
[
α2 + α2 − α− 1 + α3 − α2 − α

(1 + α)4
]

=
4α3(α2 − α− 1)2

(1 + α)8
(α3 + α2 − 2α− 1).

Substituting the values of a, b, b11, a20, a11 and b02 in equation (2.21) for ξ2,

we derive

ξ2 = ab(b2
11 + a20b11 + a11b02)

=
−(1 + α− α2)

(1 + α)2

(−α3)

(1 + α)2
[
4(α2 − α− 1)2

(1 + α)2

+(
−(1 + 2α)

(1 + α)2
)(

2(α2 − α− 1)

1 + α
) +

2α4(α2 − α− 1)

(1 + α)3
]

= 2
α3(1 + α− α2)

(1 + α)4
[
2(α2 − α− 1)2

(1 + α)2

−(α2 − α− 1)(1 + 2α)

(1 + α)3
+
α4(α2 − α− 1)

(1 + α)3
]

=
2α3(α2 − α− 1)(1 + α− α2)

(1 + α)2(1 + α)4
[2(α2 − α− 1)− (1 + 2α)

1 + α
+

α4

1 + α
]

=
−2α3(α2 − α− 1)2

(1 + α)7
(α4 + 2α3 − 6α− 3).
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Also, substituting the values of c, a11, a02 and b02 in equation (2.21) for ξ3,

we note that

ξ3 = c2(a11a02 + 2a02b02)

=
(α2 − α− 1)2

α2(1 + α)4
[(
−2α3

(1 + α)2
)(

α4

(1 + α)2
)

+2(
α4

(1 + α)2
)(
−α(α2 − α− 1)

1 + α
)]

=
(α2 − α− 1)2

α2(1 + α)4
[
−2α7

(1 + α)4
− 2

α5(α2 − α− 1)

(1 + α)3
]

=
−2α5(α2 − α− 1)2

α2(1 + α)8
[α2 + (α2 − α− 1)(1 + α)]

=
−2α3(α2 − α− 1)2

(1 + α)8
[α2 + α2 − α− 1 + α3 − α2 − α]

=
−2α3(α2 − α− 1)2(α3 + α2 − 2α− 1)

(1 + α)8
.

Moreover, substituting the values of a, c b02, a20 and a02 in equation (2.21) into ξ4,

we see that

ξ4 = −2ac(b2
02 − a20a02)

= (
−2(1 + α− α2)

(1 + α)2
)(
α2 − α− 1

α(1 + α)2
)

[
α2(α2 − α− 1)2

(1 + α)2
+ (
−(1 + 2α)

(1 + α)2

α4

(1 + α)2
)]

=
−2(α2 − α− 1)2

α(1 + α)4

α2

(1 + α)4
[(1 + α)2(α2 − α− 1)2 + α2(1 + 2α)]

=
−2α(α2 − α− 1)2

(1 + α)8
[α6 − 4α4 − 2α3 + 4α2 + 4α + 1 + α2 + 2α3]

=
−2α(α2 − α− 1)2

(1 + α)8
(α6 − 4α4 + 5α2 + 4α + 1).

In addition, substituting the values of a, b, a20, b20 and b02 in equation (2.21) into
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ξ5, we remark that

ξ5 = −2ab(a2
20 − b20b02)

= −2{−(1 + α− α2)

(1 + α)2

(−α3)

(1 + α)2
}[ (1 + 2α)2

(1 + α)4

−(
−(α2 − α− 1)

α(1 + α)
)(
−α(α2 − α− 1)

1 + α
)]

=
2α3(α2 − α− 1)

(1 + α)8
[(1 + 2α)2 − (1 + α)2(α2 − α− 1)2]

=
2α3(α2 − α− 1)

(1 + α)8
[−α3(α3 − 4α− 2)].

Also, substituting the values of b, a20, b20 and b11 in equation (2.21) into ξ6, we

write

ξ6 = −b2(2a20b20 + b11b20)

=
(−α6)

(1 + α)4
[2(
−(1 + 2α)

(1 + α)2
)(
−(α2 − α− 1)

α(1 + α)
)

+2(
(α2 − α− 1)

1 + α
)(
−(α2 − α− 1)

α(1 + α)
)]

=
−α6

(1 + α)4

2(α2 − α− 1)

α(1 + α)3
[(1 + 2α)− (1 + α)(α2 − α− 1)]

=
−2α5(α2 − α− 1)

(1 + α)7
[1 + 2α− α2 + α + 1− α3 + α2 + α]

=
−2α5(α2 − α− 1)

(1 + α)7
(2 + 4α− α3) =

2α5(α2 − α− 1)(α3 − 4α− 2)

(1 + α)7
.

Similarly, substituting the values of b, c, a, b11, b02,
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a11 and a20 in equation (2.21) into ξ7, we derive

ξ7 = (bc− 2a2)(b11b02 − a11a20)

= [
−α3(α2 − α− 1)

α(1 + α)4
− 2

(α2 − α− 1)2

(1 + α)4
]

[
−2α(α2 − α− 1)2

(1 + α)2
− (

−2α3

(1 + α)2
)(
−(1 + 2α)

(1 + α)2
)]

=
2α(α2 − α− 1)

(1 + α)8
[α2 + 2α2 − 2α− 2][(1 + α)2(α2 − α− 1)2 + α2(1 + 2α)]

=
2α(α2 − α− 1)

(1 + α)8
(3α2 − 2α− 2)(α6 − 4α4 + 5α2 + 4α + 1).

Finally, substituting the values of a, b, c, b03, a30, a21, b12, a12 and b21 in equation

(2.21) into ξ8, we get

ξ8 = −(a2 + bc)[3(cb03 − ba30) + 2a(a21 + b12) + (ca12 − bb21)

= −[
(α2 − α− 1)2

(1 + α)4
+ (

−α3

(1 + α)2
)(
α2 − α− 1

α(1 + α)2
)][0− (

−α3

(1 + α)2
)

(
−α3

(1 + α)2
) + 2

α2 − α− 1

(1 + α)2
{2α4 − α3

(1 + α)2
+ α(α2 − α− 1)}

+(
α2 − α− 1

α(1 + α)2
)(

2α4 − α5

(1 + α)2
) +

α3

(1 + α)2
{−2(α2 − α− 1)}]

= −[
(α2 − α− 1)2

(1 + α)4
− α2(α2 − α− 1)

(1 + α)4
][0− −3α3

(1 + α)4

+2
α2 − α− 1

(1 + α)4
{(2α4 − α3) + (α2 + α + 1)(α3 − α2 − α)}

{(α2 − α− 1)(2α3 − α4)

(1 + α)4
− 2α3(α2 − α− 1)

(1 + α)2
}].
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Thus,

ξ8 = − 1

(1 + α)4
(α2 − α− 1)(α2 − α− 1− α2)[

−3α6

(1 + α)4
(2α4 − α3 + α5

+α4 − 2α3 − 3α2 − α) +
α2 − α− 1

(1 + α)2
{2α3 − α4 − 2α3(α2 + 2α + 1)}]

=
(α2 − α− 1)(α + 1)

(1 + α)4
[
−3α6

(1 + α)4
+

2(α2 − α− 1)(α5 + 3α4 − 3α3 − 3α2 − α)

(1 + α)4

+
(α2 − α− 1)

(1 + α)4
(2α3 − α4 − 2α5 − 4α4 − 2α3)].

Taking the common factor for the simplification from the expression above,

we can write

ξ8 =
(α2 − α− 1)

(1 + α)3
[
−3α6

(1 + α)4
+

(α2 − α− 1)

(1 + α)4

(2α5 + 6α4 − 6α3 − 6α2 − 2α− 2α5 − 5α4)]

=
(α2 − α− 1)

(1 + α)3
[
−3α6

(1 + α)4
+

(α2 − α− 1)

(1 + α)4
(α4 − 6α3 − 6α2 − 2α)]

=
(α2 − α− 1)

(1 + α)7
(−3α6 + α6 − 7α5 − α4 + 10α3 + 8α2 + 2α)

=
−α(α2 − α− 1)

(1 + α)7
(2α5 + 7α4 + α3 − 10α2 − 8α− 2).

By adding ξ1 to ξ6 from the above expressions, we get

6∑
i=1

ξi = ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6

=
−2α(α2 − α− 1)

(1 + α)8
(α9 + 3α8 − 5α7 − 16α6

+7α5 + 23α4 + 8α3 − 6α2 − 5α− 1).

where adding ξ7 and ξ8, we can write

ξ7 + ξ8 =
−α(α2 − α− 1)

(1 + α)8
(−6α8 + 4α7 + 30α6

−7α5 − 38α4 − 13α3 + 12α2 + 10α + 2).
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Now, substituting the values of ξ1, ξ2, ξ3, ξ4, ξ5, ξ6,

ξ7 and ξ8 in equation (2.21), we obtain

8∑
i=1

ξi = ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7 + ξ8

=
−2α(α2 − α− 1)

(1 + α)8
(α9 + 3α8 − 5α7 − 16α6 + 7α5 + 23α4

+8α3 − 6α2 − 5α− 1) +
−α(α2 − α− 1)

(1 + α)8(−6α8 + 4α7

+30α6 − 7α5 − 38α4 − 13α3 + 12α2 + 10α + 2)

=
−α(α2 − α− 1)

(1 + α)8
(2α9 − 6α7 − 2α6 + 7α5 + 8α4 + 3α3)

=
−α4(α2 − α− 1)

(1 + α)8
(2α6 − 6α4 − 2α3 + 7α2 + 8α + 3).

Substituting w(α) = α2 − α− 1 in the above expression, we remark that

8∑
i=1

ξi =
−α4w(α)

(1 + α)8
[(α2 − α− 1)(2α4 + 2α3 − 2α2 − 2α + 3) + (9α + 6)]

=
−α4w(α)

(1 + α)8
[w(α)(2α4 + 2α3 − 2α2 − 2α + 3) + (9α + 6)]

=
−α4w(α)

(1 + α)8
[w(α){2α4 + 2α(α2 − α− 1) + 3}+ (9α + 6)]

=
−α4w(α)

(1 + α)8
[w(α){2α4 + 2αw(α) + 3}+ (9α + 6)],

and thus

8∑
i=1

ξi =
−α4

(1 + α)8
[w2(α){2α4 + 2αw(α) + 3}+ w(α)(9α + 6)] < 0,

if w(α) = α2 − α− 1 > 0 for α ∈ (
1 +
√

5

2
,∞).

From equation (2.21), we derive σ2 =
−3π

2b∆3/2

∑8
i=1 ξi < 0, since

∑8
i=1 ξi < 0 and

noting that b = − α3

(1 + α2)
from equation (2.27). The result follows from Lemma

2.4.1.
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Chapter 3

Stochastic Model

3.1 A stochastic mathematical model of the predator-

prey interaction

Deterministic models are stable with a cyclic behaviour in the common period

for the sizes of species populations. However, in practice, stochastic variations

will occur in the values of x and y, which may produce a qualitatively different

behaviour. These variations may lead to an extinction of the predator as a result

of a possible extinction of the prey. Deterministic models may be inadequate for

capturing the exact variability in nature. Then, stochastic models are required

for an accurate approximation of the dynamics of such interactions. The random

fluctuations result in changing some degree of parameters in the deterministic

environment. In nature, real environments are stochastic.

In fact, biological systems are inherently random in nature and the noise plays a

vital role in the structure and function of such systems [28]. Stochastic differential

equation models were introduced by May in [28] to investigate limits to the niche
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overlap in randomly fluctuating environments . This was a quantum leap in the

development of mathematically sophisticated ecological modelling. An important

concept in stochastic modelling is that of a Wiener process.

A Wiener process is a continuous time stochastic process which is named in honour

of Nobert Wiener . It is also known as the standard Brownian motion [17], after

Robert Brown.

Definition 3.1.1. A Wiener process W(t) depends continuously on t ∈ [0, T ] and

satisfies the following conditions:

1. W (0) = 0 (with probability 1).

2. For 0 ≤ s < t, the increment W (t) − W (s) is a random variable nor-

mally distributed with mean zero and variance t − s. It is equivalent to

W (t) −W (s) ∼
√
t− sN(0, 1) = N(0, t− s), where N(0,1) denotes a nor-

mally distributed random variable with zero mean and unit variance.

3. For 0 ≤ s < t < u < v ≤ T , the increments W (t)−W (s) and W (v)−W (u)

are independent random variables.

Definition 3.1.2. The normal distribution is defined as a continuous probability

distribution with a bell-shaped probability density function, which is known as the

Gaussian function

f(x, µ, σ2
1) =

1

σ1

√
2π

e
−

1

2

(x− µ
σ1

)2
, (3.1)

where µ is the mean or expectation and σ2
1 is the variance. If the distribution has

µ = 0 and σ2
1 = 1, then it is called the unit normal distribution.

In general, N(µ, σ2
1) denotes a normal distribution with expected value µ and

variance σ2
1. If the random variable X is distributed normally with expected value

µ and variance σ1
2, then we can write x ∼ N(µ, σ1

2) ∼ µ+ σ1N(0, 1).
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3.2 Itô and Stratonovich integrals

In order to describe the stochastic model we investigate, we need to define the

two different forms of a stochastic differential equations: the Itô form and the

Stratonovich form [3].

Definition 3.2.1. Let [0, T ] ⊂ < and 0 = t0 < t1 < .......... < tn = T be a

discretisation of the time-interval [0, T ] with the largest step being

∆t = max
k∈{0,1,...,n−1}

(tk+1 − tk), then

∫ T

0

f(t)dWt = lim
∆t→0

n−1∑
i=0

f(ti)[W (ti+1)−W (ti)] (3.2)

is called the Itô integral of the function f .

Definition 3.2.2. Let [0, T ] ⊂ < and 0 = t0 < t1 < .......... < tn = T be a

discretisation of the time-interval [0, T ] with the largest step being

∆t = max
k∈{0,1,...,n−1}

(tk+1 − tk) then

∫ T

0

f(t) ◦ dWt = lim
∆t→0

N−1∑
i=0

f(ti+1/2)[W (ti+1)−W (ti)] (3.3)

is called the Stratonovich integral of the function of f , where ti+1/2 =
ti + ti+1

2
.

Thus there is an important difference between the Itô and the Stratonovich inte-

grals, since f is evaluated at the left-end point of the interval in the Itô case and

at the midpoint in the Stratonovich case [3].

The Itô form of a stochastic differential equation can be written in the differential

form

dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t) (3.4)
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for 0 ≤ t ≤ T , where W(t) is a Wiener process.

Stochastic differential equation model for the predator-prey interaction

We can write the stochastic differential equation model for the predator-prey in-

teraction by adding a stochastic term to the model (2.3) as
dx = [x(1− x)− α xy

x+ y
]dt+ σxdWt

dy = δy[1− β y
x

]dt+ σydWt

(3.5)

where W (t) = Wt is a standard Wiener process, or a Brownian motion, on the

time interval [0, T ] and σ is a parameter representing the strength of noise.

Stochastic models are more accurate models for studying important biological

processes. An example of such a biological application in ecology is the study of

the predator-prey interaction.

The deterministic model fails to describe a basic phenomenon of a natural system

in the changing environment which may cause random variations in the predator-

prey growth rate and death rate. The Gaussian white noise, which is a useful

concept to model rapidly fluctuating phenomena and the main source of noise is

that there are inherent uncertainties in an ecological system such as varying seasons

or nutrient inputs. On the other hand, there are considerable human disturbances

that exacerbate the uncertainty in the way an ecosystem responds such as the

global warming which is caused by human activities.
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Chapter 4

Numerical results

4.1 Numerical methods for stochastic continu-

ous models

Many areas of science and engineering are relying on quantitative analysis, as

more complex mathematical models of the real world phenomena become available.

Since most of these models don’t have a closed form exact solution, numerical

approximations are the only tools available for analysing them.

In particular, the Euler-Maruyama method (see for example Higham [17]) is widely

used to approximate the solution of stochastic differential equation models arising

in applications.

Let us consider an Itô stochastic differential equation in the general form:

dx(t) = f(x(t))dt+ g(x(t))dW (t), (4.1)

for 0 ≤ t ≤ T . Here f and g are vector functions , and W is a single Wiener process.

The solution is subjected to the initial condition x(0) = x0, where x0 may be a

random variable. The interval [0, T ] is discretized as 0 = t0 < t1 < ...... < tn = T

55



where tj = j∆t and ∆t =
T

n
for some integer n. The Euler-Maruyama (EM)

method applied to equation (4.1) can be written in the following form

xj = xj−1 + f(xj−1)∆t+ g(xj−1)(W (tj)−W (tj−1)) (4.2)

for j = 1, 2, ....., n.

Depending on the desired properties of the numerical solution, the exact solution

of the SDE may be approximated by strong or weak numerical methods

(see, for example, Higham [17]).

Definition 4.1.1. If xk is the numerical approximation of x(tk) on a grid

0 = t0 < t1 < ...... < tn = T with the largest step ∆t = max
k∈{0,1,...,n−1}

(tk+1− tk) then

the numerical approximation (xk)k is said to converge to x(t) with strong global

order γ > 0 if there exists a constant c > 0 which does not depend on ∆t or on

the grid and ∆t0 > 0 such that

E|xn − x(tn)| ≤ c∆tγ

for any grid with ∆t < ∆t0.

Note that γ can be fractional, since the root mean-square order of a Wiener incre-

ment ∆W = W (t + ∆t) −W (t) is ∆t1/2. The strong approximations are needed

when the numerical solution is required to follow closely the exact solution on

each path. However, when we are interested in obtaining an accurate approxima-

tion of the moments of the exact solution , then weak numerical methods will be

employed.

Definition 4.1.2. If xk is a numerical approximation of x(tk) on a grid 0 = t0 <

t1 < ....... < tn = T with the largest step ∆t = max
k∈{0,1,......,n−1}

(tk+1 − tk) then the
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numerical approximation (xk)k is said to converge to x(t) with weak global order

γ > 0 if , for any fixed T > 0 and any polynomial p, the following holds:

|E(p(xn))− E(p(x(T )))| ≤ c∆tγ,

for any ∆t < ∆t0 for some ∆t0 > 0 where c is a constant which is independent on

∆t and on the grid.

We remark that the Euler-Maruyama method is of strong order of convergence

1

2
and weak order of convergence 1. We recall that the Euler method in the

deterministic framework was of order of convergence 1. The
1

2
strong order of

convergence is due to the presence of the Wiener increments which behave like

W (t+ ∆)−W (t) ∼
√

∆tN(0, 1).

Maiti and Pathak [27] proposed a prey-predator model represented as an Itô

stochastic differential equation driven by one Wiener process. The stochastic prey-

predator systems can be written as:
dx = [x(1− x)− α xy

x+ y
]dt+ σxdWt

dy = δy[1− β y
x

]dt+ σydWt

(4.3)

where Wt is a Wiener process. We consider the following parameters α = 0.05,

δ = 0.2 and β = 0.3 . The initial conditions are x(0) = 0.1 and y(0) = 0.1.

Euler-Maruyama for the stochastic predator-prey model

We apply the Euler-Maruyama method to the system (4.3) and obtain:
x(i+ 1) = x(i) + (x(i)(1− x(i))− α x(i)y(i)

(x(i) + y(i)
)∆t+ σx(i)

√
∆tN(0, 1)

y(i+ 1) = y(i) + (δy(i)(1− β y(i)

x(i)
))∆t+ σy(i)

√
∆tN(0, 1)

(4.4)

for i = 0, 1, ......., n where x(0) = 0.9 , y(0) = 0.7 , δ = 0.22, β = 0.9 , α = 1.6

The number of steps in the mesh is n = 1000, T = 80; ∆t = T/n; The value of
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the parameter σ is varied from σ = 0 to σ = 0.3. When the strength of noise is

increased then the fluctuations of the curve are increased

Figure 4.1 represents the phase-portrait of the stochastic model of the predator-

prey model corresponding to the strength of noise value σ = 0.07.
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Figure 4.1: The phase-portrait of the predator-prey model with low noise(σ =

0.07).

58



0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

N
um

be
r 

of
 p

re
y 

an
d 

pr
ed

at
or

s

Predator−prey limit cycle,sigma=0.02

 

 
prey
predator

Figure 4.2: The evolution in time of the predator and of the prey with low

noise(σ = 0.02).

4.2 Characteristics of noise

We study below the following plots for the prey-predator system:

(i) The evolution in time of the species x and y, respectively.

(ii) The phase portrait of species (x, y).

(iii) Different qualitative behaviour can be studied for a variation of parameters.

Figure 4.1 represents the phase portrait of the prey-predator system. It is helpful

to study the qualitative behaviour of the dynamical systems near the equilibria.

It does not only predict the extinction of species but it also provides insight on

the optimum management of resources existing in nature.

Figure 4.10 is a good example of a sink or an attractor fixed point where an

attractor is a set towards which a dynamical system evolves over time. As t
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Figure 4.3: The evolution in time of the predator and of the prey with medium

noise(σ = 0.07).

increases, the trajectories will spiral around a fixed point and, decreasing will

return in an anticlockwise direction.

In a dynamical system , different types of fluctuations can arise depending on the

intensity of noise. The Gaussian white noise is employed when continuous random

perturbations are present. For our model we observe that (i) When σ = 0.02, the

curve follows closely the deterministic curve, for this small intensity of the noise.

(ii) When σ = 0.07, medium intensity noise, the system exhibits oscillations in the

presence of the Gaussian white noise, in a similar manner as for the deterministic

system. (iii) When σ = 0.2, there are more fluctuations than in the case of the

medium intensity noise with intensity σ = 0.07. Sometimes, the noise leads to

an extremely ”spiky” looking function. (iv) When σ = 1.6, the oscillations of the

system almost decay after this intensity of noise .
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Figure 4.4: The evolution in time of the predator and of the prey with high

noise(σ = 0.2).

We observed that, for a range of strengths of noise between 0.02 ≤ σ ≤ 0.2 the

system preserved its oscillatory dynamics .

Figure 4.8 which contains ten trajectories, shows the solution of the prey and of

the predator species of the stochastic prey-predator system. These trajectories

exhibit a similar pattern with independent fluctuations.

Figure 4.9 represents the mean and the standard deviation over 1000 trajectories

for these species. The standard deviation is more consistent than the mean since

it reduces fluctuations of the number of observations.

Figure 4.1 indicates the predator-prey limit cycle on the equilibrium point. It

provides information about the stable or the unstable limit cycles. If the limit

cycle is unstable then the species may become extinct.
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Figure 4.5: The evolution in time of the predator and of the prey with high

noise(σ = 1.6).
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Figure 4.6: The evolution in time of the predator and of the prey with an increasing

sequence of noises (left σ = 0 and right σ = 0.05).
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Figure 4.7: The evolution in time of the predator and of the prey with an increasing

sequence of noises (left σ = 0.1 and right σ = 0.7).

0 1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

N
um

be
r 

of
 p

re
y 

an
d 

pr
ed

at
or

s

Ten trajectories of predator−prey stochastic model,

 

 
prey
predator

Figure 4.8: Ten trajectories representing the evolution in time of the predator and

of the prey for σ = 0.09.
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Figure 4.9: The evolution in time of the of mean and of the standard deviation of

the predator and of the prey respectively model over 5,000 trajectories.
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Figure 4.10: The phase portrait of the predator-prey model without noise.
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Figure 4.11: Sequence of phase portraits of the stochastic predator-prey model(left

σ = 0, right σ = 0.05).
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Figure 4.12: Sequence of phase portraits of the stochastic predator-prey model (

left σ = 0.09, right σ = 0.3).
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Chapter 5

Conclusion

5.1 Summary

The main focus of this thesis was to introduce mathematical models of biological

systems and techniques for their analysis. The Lotka-Volterra predator-prey equa-

tion is a critical model in ecology. The study of the dynamics in the Lotka-Volterra

model and its generalisation is a key problem in ecology.

In this thesis, we established some new results by using lemma 1.4.1 such as the ex-

istence of stable or unstable equilibrium points under suitable values of parameters

in the models. Two species can coexist in the case of stable condition, otherwise

they might be extinct in the case of unstable condition.

The Gaussian white noise was employed to observe oscillations in stochastic envi-

ronment. The prediction of coexistence of the populations of two species can be

made with the help of observation of fluctuations in the stochastic model.
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5.2 Limitation of research

The region of our new results lies on (β − α) plane below the line α = 1 + β and

above the β − axis, where Ω1 and Ω2 are exact regions of new results. We also

restrict the parameters α > 0, β > 0, δ > 0 and 1 + β > α. Therefore, our new

results do not validate out of these regions Ω1 and Ω2.

The Holling-Tanner model is a nonlinear differential equation, so we analyse the

local stability near the equilibrium after linearisation. Furthermore, we can analyse

the global stability after developing new techniques.

5.3 Future research

Our thesis is useful for future research work regarding the predator-prey model.

We focused on establishing results on certain regions of parameter values. In the

future, we plan to get some results outside these regions.

We need further some techniques and research to analyse different types of equi-

libria on the outside of Ω1 and Ω2. For example, the Holling-Tanner model can be

modified in the form of Leslie-Gower predator-prey systems with harvesting rates.

In addition, we can establish the global stability near the equilibrium according to

(Jordan and Smith, 1999) a Lyapunov function and Poincaré-Bendixon theorem.
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Appendix

Matlab code used for the project:

Appendix one

(1) This MATLAB code is used to draw the figure of phase portrait in Brownian

motion.

clear all; close all;

N=10000; % number of steps to take

T=80; % maximum time

h=T/N; % time step

t=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

%axis([0 2 0 1]); % set axis limits

x=zeros(size(t)); % place to store predator population size

y=zeros(size(t)); % place to store prey population size

tt=zeros(size(t));

x(1)=0.8; % initial prey population

y(1)=0.6; % initial predator population

delta=0.22; beta=0.9; alpha=1.6;

%sigma=0.02; %low strength of noise

sigma=0.07; %medium strength of noise with oscillations

%high strenth of noise

%sigma= 1.5; %highest strength of noise

for i=1:N %start taking steps

x(i+1)=x(i)+(x(i)*(1-x(i))-alpha*x(i)*y(i)/(x(i)+y(i)))*h
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+ sigma*x(i)*randn*sqrt(h);

y(i+1)=y(i)+(delta*y(i)*(1-beta*y(i)/x(i)))*h

+ sigma*y(i)*randn*sqrt(h);

tt(i+1) =tt(i) +h;

end;

hlegl=legend(’prey’,’predator’);

plot(x,y) %phase portrait

xlabel(’Prey’);

ylabel(’Predator’);

title(’Predator-prey limit cycle,sigma=0.07 ’);

Appendix two

(2) In these figures, oscillations appear from σ = 0.02 to σ = 0.2 and

ceases oscillations after σ = 1.6

N=10000; % number of steps to take

T=80; % maximum time

h=T/N; % time step

t=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

%axis([0 2 0 1]); % set axis limits

x=zeros(size(t)); % place to store predator population size

y=zeros(size(t)); % place to store prey population size

tt=zeros(size(t));

x(1)=0.8; % initial prey population
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y(1)=0.6; % initial predator population

delta=0.22; beta=0.9; alpha=1.6;

%sigma=0.02; %low strength of noise

sigma=0.07; %medium strength of noise with oscillations

%sigma=0.2; %higer medium strenth of noise

%sigma=1.6; %high strenth of noise

for i=1:N % start taking steps

x(i+1)=x(i)+(x(i)*(1-x(i))-alpha*x(i)*y(i)/(x(i)+y(i)))*h

+ sigma*x(i)*randn*sqrt(h);

y(i+1)=y(i)+(delta*y(i)*(1-beta*y(i)/x(i)))*h

+ sigma*y(i)*randn*sqrt(h);

tt(i+1) =tt(i) +h;

end;

plot(tt,x, ’-b’, tt, y,’--r’); % plot of evolution of x (red) and y(blue)

hlegl=legend(’prey’,’predator’);

xlabel(’Prey’);

ylabel(’Predator’);

xlabel(’Time’);

ylabel(’Number of prey and predators’);

title(’Predator-prey limit cycle,sigma=0.07 ’);
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Appendix three

(3) The MATLAB code indicate that oscillations change according to strength of

noise.

subplot(2,2,1);

N=1000; % number of steps to take

T=80; % maximum time

h=T/N; % time step

t=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

x=zeros(size(t)); % place to store pred population size

y=zeros(size(t)); % place to store prey population size

tt=zeros(size(t));

x(1)=0.9; % initial prey population

y(1)=0.7; % initial pred population

delta=0.22; beta=0.9; alpha=1.6;

sigma=0; % strength of noise

for i=1:N % start taking steps

x(i+1)=x(i)+(x(i)*(1-x(i))-alpha*x(i)*y(i)/(x(i)+y(i)))*h

+ sigma*x(i)*randn*sqrt(h);

y(i+1)=y(i)+(delta*y(i)*(1-beta*y(i)/x(i)))*h

+ sigma*y(i)*randn*sqrt(h);

tt(i+1) =tt(i) +h;

end;

plot(tt,x, ’-b’, tt, y,’--r’);
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xlabel(’Time’);

ylabel(’Number of prey and predators’);

title(’Predator-prey limit cycle,sigma=0, fig.’);

subplot(2,2,2);

N=1000; % number of steps to take

T=80; % maximum time

h=T/N; % time step

t=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

x=zeros(size(t)); % place to store pred population size

y=zeros(size(t)); % place to store prey population size

tt=zeros(size(t));

x(1)=0.9; % initial prey population

y(1)=0.7; % initial pred population

delta=0.22; beta=0.99; alpha=1.6;

sigma=0.05; % strength of noise

for i=1:N % start taking steps

x(i+1)=x(i)+(x(i)*(1-x(i))-alpha*x(i)*y(i)/(x(i)+y(i)))*h

+ sigma*x(i)*randn*sqrt(h);

y(i+1)=y(i)+(delta*y(i)*(1-beta*y(i)/x(i)))*h

+ sigma*y(i)*randn*sqrt(h);

tt(i+1)=tt(i)+h;

end

plot(tt,x,’b-’,tt,y,’r--’);

xlabel(’Time’);
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ylabel(’Number of prey and predators’);

title(’Predator-prey limit cycle,sigma=0.05, fig.’);

subplot(2,2,3);

N=1000; % number of steps to take

T=80; % maximum time

h=T/N; % time step

t=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

x=zeros(size(t)); % place to store pred population size

y=zeros(size(t)); % place to store prey population size

tt=zeros(size(t));

x(1)=0.9; % initial prey population

y(1)=0.7; % initial pred population

delta=0.22; beta=0.99; alpha=1.6;

sigma=0.09; % strength of noise

for i=1:N % start taking steps

x(i+1)=x(i)+(x(i)*(1-x(i))-alpha*x(i)*y(i)/(x(i)+y(i)))*h

+ sigma*x(i)*randn*sqrt(h);

y(i+1)=y(i)+(delta*y(i)*(1-beta*y(i)/x(i)))*h

+ sigma*y(i)*randn*sqrt(h);

tt(i+1)=tt(i)+h;

end

plot(tt,x,’b-’,tt,y,’r--’);
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xlabel(’Time’);

ylabel(’Number of prey and predators’);

title(’Predator-prey limit cycle,sigma=0.09, fig.’);

subplot(2,2,4);

N=1000; % number of steps to take

T=80; % maximum time

h=T/N; % time step

t=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

x=zeros(size(t)); % place to store pred population size

y=zeros(size(t)); % place to store prey population size

tt=zeros(size(t));

x(1)=0.9; % initial prey population

y(1)=0.7; % initial pred population

delta=0.22; beta=0.99; alpha=1.6;

sigma=0.3; % strength of noise

for i=1:N % start taking steps

x(i+1)=x(i)+(x(i)*(1-x(i))-alpha*x(i)*y(i)/(x(i)+y(i)))*h

+ sigma*x(i)*randn*sqrt(h);

y(i+1)=y(i)+(delta*y(i)*(1-beta*y(i)/x(i)))*h

+ sigma*y(i)*randn*sqrt(h);

tt(i+1)=tt(i)+h;

end;

plot(tt,x,’b-’,tt,y,’r--’);
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xlabel(’Time’);

ylabel(’Number of prey and predators’);

title(’Predator-prey limit cycle,sigma=0.3, fig.5’);

Appendix four

(4) This MATLAB code represents different trajectories of predator-prey limit

cycle.

clear all;close all;

N=1000; % number of steps to take

T=5; % maximum time

h=T/N; % time step

tt=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

axis([0 2 0 1]); % set axis limits

M=5 ; %number of different trajactories

x =zeros(size(tt));

y =zeros(size(tt));

x0 = 0.4; y0 = 0.3; tt(1)=0;

for j=1:M

x(j,1)= x0; % initial prey population

y(j,1) = y0; % initial pred population

end;

delta=0.4; beta=0.6; alpha=0.5;

sigma= 0.09; % strength of noise

meanx=mean(x);

meany=mean(y);
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stdx=std(x);

stdy=std(y);

for j=1:M %index of trajectory

for i=1:N %index of time (start taking steps)

x(j,i+1)=x(j,i)+(x(j,i)*(1-x(j,i))

-alpha*x(j,i)*y(j,i)/(x(j,i)+y(j,i)))*h

+ sigma*x(j,i)*randn*sqrt(h);

y(j,i+1)=y(j,i)+delta*(y(j,i)*(1-beta*y(j,i)/x(j,i)))*h

+ sigma*y(j,i)*randn*sqrt(h);

tt(i+1) =tt(i) +h;

%set(drawprey,’xdata’,[x(i),x(i+1)],’ydata’,[y(i),y(i+1)]);

%drawnow;

end;

end;

for i=1:(N+1)

meanx(i)=mean(x(:, i));

meany(i)=mean(y(:, i));

stdx(i)=std(x(:, i));

stdy(i)=std(y(:, i));

end

for j=1:M

plot(tt,x(j,:), ’-b’, tt, y(j,:),’--r’); % plot of evolution of x

hlegl=legend(’prey’,’predator’);

hold on

end
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xlabel(’Time’);

ylabel(’Number of prey and predators’);

title(’Three trajectories of predator-prey stochastic model’);

Appendix five

(5) This MATLAB code is for mean and standard deviation of trajectories of

Predator-prey limit cycle.

clear all;close all;

N=1000; % number of steps to take

T=20; % maximum time

h=T/N; % time step

tt=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

M=1000 ; %number of different trajactories

x=zeros(size(tt));

y=zeros(size(tt));

tt=zeros(size(tt));

x0 = 0.4;

y0 = 0.3;

tt(1)=0;

for j=1:M

x(j,1)= x0; % initial prey population

y(j,1) = y0; % initial pred population

end;

delta=0.4; beta=0.6; alpha=0.5;

%sigma= 0.1; % strength of noise
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sigma=0.7;

meanx=mean(x);

meany=mean(y);

stdx=std(x);

stdy=std(y);

for j=1:M %index of trajectory

for i=1:N %index of time (start taking steps)

x(j,i+1)=x(j,i)+(x(j,i)*(1-x(j,i))

-alpha*x(j,i)*y(j,i)/(x(j,i)+y(j,i)))*h

+ sigma*x(j,i)*randn*sqrt(h);

y(j,i+1)=y(j,i)+delta*(y(j,i)*(1-beta*y(j,i)/x(j,i)))*h

+ sigma*y(j,i)*randn*sqrt(h);

tt(i+1)=tt(i)+h;

end;

end;

for i=1:(N+1)

meanx(i)=mean(x(:, i));

meany(i)=mean(y(:, i));

stdx(i)=std(x(:, i));

stdy(i)=std(y(:, i));

end

subplot(2,1,1),plot(tt, meanx, ’b’, tt, meany, ’r’)

hlegl=legend(’prey’,’predator’);

subplot(2,1,2),plot(tt, stdx, ’g’, tt, stdy, ’m’)

hlegl=legend(’prey’,’predator’);

78



xlabel(’Time’);

ylabel(’Number of prey and predators’);

title(’mean and std of trajectories of Predator-prey limit cycle fig.8’);

Appendix six

(6) This MATLAB code is for the phase portrait: Lotka-Volterra model.

function yderivative = Project(t,y)

% the right hand side of the system of differential equations which model

% the Holling-Tanner system

delta = 0.2;

beta = 0.3 ;

alpha = 0.05;

yderivative = [y(1).*(1-y(1))-y(1).*y(2)./(alpha+y(1));

y(2).*(delta-beta*y(2)./y(1))];

Appendix seven

clear all; close all;

opts=odeset(’RelTol’,10^(-8));

y0=[0.1;0.1];

[t,y]=ode45(@Project,[0,200],y0,opts);

z0=[0.3;0.28];

[tau,z]=ode45(@Project,[0,200],z0,opts);

plot (y(:,1),y(:,2),’b’,z(:,1),z(:,2),’r’)

xlabel(’x’)
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ylabel(’y’)

title(’phase-space: Holling-Tanner model’)

Appendix eight

(8) This is the mat lab code for phase portrait with different strength of noise.

subplot(2,2,1);

N=10000; % number of steps to take

T=80; % maximum time

h=T/N; % time step

t=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

x=zeros(size(t)); % place to store pred population size

y=zeros(size(t)); % place to store prey population size

%tt=zeros(size(t));

x(1)=0.9; % initial prey population

y(1)=0.7; % initial pred population

delta=0.22; beta=0.99; alpha=1.6;

sigma=0; % strength of noise

for i=1:N % start taking steps

x(i+1)=x(i)+(x(i)*(1-x(i))-alpha*x(i)*y(i)/(x(i)+y(i)))*h

+ sigma*x(i)*randn*sqrt(h);

y(i+1)=y(i)+(delta*y(i)*(1-beta*y(i)/x(i)))*h

+ sigma*y(i)*randn*sqrt(h);

%tt(i+1) =tt(i) +h;

end;

plot(x,y);
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axis([0 1 0 1]); % set axis limits

grid on;

title(’No noise’);

xlabel(’Prey population’);

ylabel(’Predator population’);

subplot(2,2,2);

N=10000; % number of steps to take

T=80; % maximum time

h=T/N; % time step

t=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

x=zeros(size(t)); % place to store pred population size

y=zeros(size(t)); % place to store prey population size

x(1)=0.9; % initial prey population

y(1)=0.7; % initial pred population

delta=0.22; beta=0.99; alpha=1.6;

sigma=0.05; % strength of noise

for i=1:N % start taking steps

x(i+1)=x(i)+(x(i)*(1-x(i))-alpha*x(i)*y(i)/(x(i)+y(i)))*h

+ sigma*x(i)*randn*sqrt(h);

y(i+1)=y(i)+(delta*y(i)*(1-beta*y(i)/x(i)))*h

+ sigma*y(i)*randn*sqrt(h);

%tt(i+1)=tt(i)+h;

end

plot(x,y);
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axis([0 1 0 1]); % set axis limits

grid on;

title(’sigma = 0.05’);

subplot(2,2,3);

N=10000; % number of steps to take

T=80; % maximum time

h=T/N; % time step

t=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

x=zeros(size(t)); % place to store pred population size

y=zeros(size(t)); % place to store prey population size

%tt=zeros(size(t));

x(1)=0.9; % initial prey population

y(1)=0.7; % initial pred population

delta=0.22; beta=0.99; alpha=1.6;

sigma=0.09; % strength of noise

for i=1:N % start taking steps

x(i+1)=x(i)+(x(i)*(1-x(i))-alpha*x(i)*y(i)/(x(i)+y(i)))*h

+ sigma*x(i)*randn*sqrt(h);

y(i+1)=y(i)+(delta*y(i)*(1-beta*y(i)/x(i)))*h

+ sigma*y(i)*randn*sqrt(h);

%tt(i+1)=tt(i)+h;

end

plot(x,y);

axis([0 1 0 1]); % set axis limits
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grid on;

title(’sigma = 0.09’);

subplot(2,2,4);

N=10000; % number of steps to take

T=80; % maximum time

h=T/N; % time step

t=(0:h:T); % t is the vector [0 1h 2h 3h ... Nh]

x=zeros(size(t)); % place to store pred population size

y=zeros(size(t)); % place to store prey population size

x(1)=0.9; % initial prey population

y(1)=0.7; % initial pred population

delta=0.22; beta=0.99; alpha=1.6;

sigma=0.3; % strength of noise

for i=1:N % start taking steps

x(i+1)=x(i)+(x(i)*(1-x(i))-alpha*x(i)*y(i)/(x(i)+y(i)))*h

+ sigma*x(i)*randn*sqrt(h);

y(i+1)=y(i)+(delta*y(i)*(1-beta*y(i)/x(i)))*h

+ sigma*y(i)*randn*sqrt(h);

end;

plot(x,y);

axis([0 1 0 1]); % set axis limits

grid on; title(’sigma = 0.3’);
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