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IMPROVING THE MEASUREMENT QUALITY OF SMALL
SATELLITE STAR TRACKERS

Tom Dzamba, Doctorate of Philosophy, Aerospace Engineering
Ryerson University, Toronto, September 2013

Recent demand from the small satellite community has led to the development of a new
series of star trackers that are specifically designed for small satellites. These units represent
substantial improvements in mass, power consumption and cost over traditional star trackers,
but suffer slightly in terms of accuracy and availability performance. The primary factors
inhibiting their performance are the use of significantly smaller optics, and commercial off
the shelf components (COTS). This thesis presents a series of strategies for improving the
performance of small satellite star trackers (SSSTs). These goals are realized through the
development of offline calibration procedures, flight software, validation tests, and optical
trade studies to guide future development.

This thesis begins with the development of a target-based focusing procedure that enables
precision control over the focus of the sensor optics. This improves the detection perfor-
mance for dim stars, and ultimately increases the availability of the attitude solution. Flight
software is developed to compensate for the effects of electronic rolling shutters, which reside
on most COTS image detectors. Combined with a developed camera calibration procedure,
these tools reduce the uncertainty with which a star tracker can measure the direction vec-
tors to stars in view, ultimately increasing sensor accuracy. Integrated tests are performed
to validate detection performance in dynamic conditions. These tests specifically examine
the effect of slew rate on star tracker detection, and availability performance. Lastly, this
thesis presents a series of optical trades studies that seek to identify design requirements for
high performance SSSTs. The trends in availability and accuracy performance are exam-
ined as a function of different lens/detector configurations as well dual/triple-head sensor
configurations.

Together, these strategies represent tools that aim to improve small satellite star tracker
performance and guide future sensor development.

Thesis Supervisor: Dr. John Enright
Associate Professor, Ryerson University, Department of Aerospace Engineering
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Optical Aberrations The departure of the performance of an optical system from
the predictions of paraxial optics.

Point Spread Function The impulse response of the optical system, commonly used
to approximate the shape of imaged stars.

Principal Point The coordinates of the intersection of the optical axis with
the virtual image plane, illustrated in Figs. 3.2 and 3.3.
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Tolerable Slew Rate Maximum cross-axis angular slew rate, |ωxy|, for which a
star of given magnitude, m, can be detected.
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Nomenclature

fc (kP ) A function denoting the inverse camera model as described in Sec-
tion 3.1.1.D, where kP represents the measured star centroid defined
in the pixel frame

a, b, b1, b2 Coefficients of sinusoidal intensity pattern

Ao, Bo, a2 a1 a0 Coefficients of the shape model used the describe the intensity distribu-
tion of star in the presence of sensor slew, see Eq. (4.16)

BT Lit Pixel Threshold (detector counts)

cs Pixel width scaling parameter

D Diameter of the sensor optics (m)

f Focal length of the sensor optics (m)

F# Ratio of focal length, f , to lens diameter, D of the sensor optics

fs Spatial frequency of sinusoidal intensity pattern (cycles/pixel)

G Pillbox (P) intensity scaling parameter for Symmetric Gaussian Pillbox
Combination (SGP)

h1 Symmetric Gaussian (SG) blur kernel

h2 Pillbox (P) blur kernel

h3 Symmetric Gaussian Pillbox Combination (SGP) blur kernel

I (m, n) Image intensity at pixel (m, n)

Imax, Imin Maximum and minimum image intensity, respectively (detector counts)

Imodel Modeled intensity of sinusoidal intensity pattern

j1, j2 Radial distortion coefficients - Forward Model

Jp = (ap, bp, cp, dp) Parameters used to define plane image detector

k1, k2 Radial distortion coefficients - Inverse Model

M (fs) Modulation transfer between object and image, expressed as a fraction
of the ideal value of 1.

MA Measured Modulation Transfer Function (MTF) - from image of Focus
Calibration Target (FCT)
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mo, no Location of the principal point, expressed in pixels, with respect to
origin of the detector array (defined as [0,0] on the image detector)

MS Simulated MTF - based on simulated image of blurred FCT

ms Stellar magnitude

mt Stellar detection threshold

Nm Number of rows of the image detector

Ncal Survey size for the camera calibration procedure

Ncyc Number of cycles in the Siemens Sinusoidal Star Pattern (SSSP)

q Parameter describing the shape of the paraboloid

QCVT Cost function used to fit the orientation and position of the FCT with
respect to the star tracker

Qc Error function that describes the angular Mean-Squared Error (MSE)
between the sensor-based, and lab-based star vectors

Qint Cost function for fitting the sinusoidal intensity model given by Eq. (2.7)

QMTF Cost function for fitting the simulated MTF, MS

R Radius of blur circle (m)

rsssp Radial distance, in pixels, form the SSSP center

Ri Point Spread Function (PSF) radius of diffraction limited optical system
(Airy disc) (m)

s Distance (along optical axis) of image detector from principal point

Se The ideal integrated intensity of a star

trow MTP9031 row read out time (s)

te Exposure time (s)

tm Readout time for the midpoint of the exposure of row m

tx Time delay between end of exposure of Image-0 and beginning of expo-
sure for Image-1 (s)

u Distance (along optical axis) of object from principal point (m)

v Distance (along optical axis) of image from principal point (m)
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z Distance between image detector and focal modeled focal surface for
position (x, y) on the image detector

ai,Ci Star vector of i-th star found in image-0, expressed in the image-0 instan-
taneous camera frame, Ci. Each image-0 instantaneous camera frame
is described as a rotated version of the image-0 epoch camera frame,
defined halfway through the readout of row 1, image-0. The rotation
is described by the row location of the star centroid, mi, and the body
rate of the star tracker, ωC , as given in Eq. (3.32)

as,i, al,i Modeled star vectors for the i-th star of the calibration set, based on
sensor and lab parameters, respectively

aS Point on the image detector, defined in the sensor frame

bj,Ej Star vector of j-th star from image-1, expressed in the image-1 instan-
taneous camera frame, Ej. Each image-1 instantaneous detector frame
is described as a rotated version of the image-1 epoch frame, defined
halfway through the readout of row 1, image-1. The rotation is de-
scribed by the row location of the j-th star centroid, mj, and the body
rate of the star tracker, ωC , as given in Eq. (3.32).

di, df Initial and Final positions of the star centroid over the coarse of an
image exposure during angular motion

dδ Focal plane displacement of a star centroid during the course of an image
exposure (including the effects of the Electronic Rolling Shutter (ERS)).
This is equivalent to δp mapped onto the focal plane.

gI = (gx, gy)I Image plane coordinates of star centroid mapped from the incoming star
vector, ac

hD =
[
hx hy hz

]T
D

Position of distorted star centroid hI , mapped into the detector frame
(accounting for the effects of decentering and prism distortion)

hI =
[
hx hy

]T
I

Image plane coordinates of star centroid, gI , after accounting for the
effects of radial distortion - denoted as the distorted star centroid

jD =
[
jx jy

]T
D

Detector array coordinates of the star centroid gI .

kP =
[
mn

]T
P

Row/Column coordinates of jD, expressed in pixels within the pixel
frame

nS Normal of the image detector, defined in the sensor frame

p Star vector, a, at the beginning of the image exposure (in the presence
of sensor slew)

pD Location of arbitrary point, p, in the detector frame
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pS Location of arbitrary point, p, in the sensor frame

pT Location of arbitrary point, p, in the focal calibration target frame

q Star vector, a, at the end of the image exposure (in the presence of
sensor slew)

sδ Focal plane displacement of a star centroid during the course of an image
exposure (excluding the effects of the ERS).

UL, UC Direction of the star source, expressed in the lab and camera frame
reference frames, respectively

uT = (xT , yT , zT ) Position of the target, with respect to the sensor (m)

(x, y) Row and column centroid-referenced image plane coordinates (pixels)

ha = [h , ho] Detector size (mm)

(m, n) Row and column image plane coordinates (pixels)

(m, n)cent Row and column image plane coordinates of the star centroid (pixels)

CCoCi Rotation from i-th image-0 instantaneous camera frame to image-0
epoch frame, Co. Image-0 epoch frame is defined as the instantaneous
camera frame half way through the exposure of row 1, image-0

CCoEo , CEoCo Rotation from the image-1 epoch frame, Eo, into the image-0 epoch
frame, Co, and vice versa

CDI , CID Rotation from the image plane to the detector frame, and vice versa.
CDI is described as a X-Y Euler angle set parameterized by ψ1, ψ2. CID

is described as a X-Y Euler angle set parameterized by γ1, γ2.

CEoEj Rotation from j-th image-1 instantaneous camera frame to image-1
epoch frame, Eo. Image-1 epoch frame is defined as the instantaneous
detector frame half way through the exposure of row 1 in image 1

CEM , CME Transformation from the mount frame to the end-effector frame, and
vice versa. Described by X-Y-Z Euler angle rotation parameterized by
φ1, φ2 φ3. CME = CT

EM

CLE, CEL Transformation from the end-effector frame to the lab frame, and vice
versa. Described by X-Y-Z Euler angle rotation parameterized by θ1, θ2 θ3.
CEL = CT

LE

CMC , CCM Transformation from the camera frame to the mount frame, and vice
versa. Described by 1-2-3 Euler angle rotation parameterized by α1, α2 α3.
CCM = CT

MC
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P Covariance of the star tracker attitude solution

RT Orientation of the FCT with respect to the sensor frame, expressed as
a rotation matrix parameterized by X-Y-Z Euler angle set (φt, θt, ψt)

Sb (x, y) Focal plane intensity distribution of a star in the presence of sensor slew

Si (x, y) Intensity distribution of a star during static imaging conditions

αp Nominal PSF radius (pixels)

α = (α1, α2, α3) Camera rotation angles (radians)

δp Vector displacement of a star vector during the course of an image ex-
posure (including the effects of the ERS)

δs Vector displacement of a star vector during the course of an image ex-
posure (excluding the effects of the ERS)

ωC Star tracker angular slew rate radians/s

φ = (φ1, φ2, φ3) Mounting angles (radians)

σpix Centroid error

θ = (θ1, θ2, θ3) Commanded gimbal angles (radians)

∆p Distance of the paraboloid from the image detector

δz Displacement from ideal focus, along the optical axis (m)

ηQ The quantum efficiency of the image detector

γ1, γ2 Inverse model detector rotation angles (radians)

γp Pixel size (m)

λ Wavelength of light emitted by imaged star (m)

ψ1, ψ2 Forward model detector rotation angles (radians)

ρo Distance of centroid from the principal point (pixels)

σbs Cross-boresight error of the star tracker attitude solution

σe Detector read noise (electrons)

σi Angular error of a star vector

σSG Symmetric Gaussian (SG) shape parameter

σtot Total error of the star tracker attitude solution

θFOV = [θx , θy] ST-16 field of view (radians). θx denotes the minor-axis FOV, while θy
denotes the major-axis FOV.
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Chapter 1

Introduction

Recent demand from the small satellite community has led to the development of a new
series of star trackers that are specifically designed for this class of satellite. These units
represent substantial improvements in mass, power consumption and cost over traditional
star trackers, but suffer slightly in terms of accuracy and availability performance. The
primary factors inhibiting their performance are the use of significantly smaller optics, and
Commercial-Off-The-Shelf (COTS) components. Both of these factors negatively impact the
performance of a star tracker by either reducing the number of stars the sensor can detect,
or decreasing the accuracy with which detected stars are related to star direction vectors.
This study presents a series of strategies for improving the performance of Small Satellite
Star Trackers (SSSTs). These strategies are realized through the development of offline
calibration procedures, flight software, validation tests, and optical trade studies to guide
future development.

1.1 Motivation

1.1.1 Pointing Requirements for Small Satellites

Over the past decade, there has been rapid growth in the number of small satellite missions.
Microminiaturization of electronics has allowed for a dramatic increase in the capability of
small satellites while maintaining very low cost. Since small satellites are ordinarily built in 1
to 3 years, with minimal budgets, there is a higher tolerance for risk compared to traditional
satellites [Wertz et al. 2011]. This allows small satellites to take advantage of new technol-
ogy much faster than traditional satellite programs, leading to equally capable spacecraft,
developed for a fraction of the cost. Although communication, technology demonstration,
and education are traditional small satellite applications, Earth Observation (EO) missions
are rapidly becoming the most popular.
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Chapter 1. Introduction

The usefulness of EO data is related to the accuracy with which these observations can be
registered with known ground locations (i.e. geolocation). The success of this task is di-
rectly dependent on knowledge of the spacecraft’s position and attitude. Since the advent
of modern low-cost Global Positioning System (GPS) receivers, which provide more than
sufficient position accuracy, attitude accuracy has become the limiting factor in ground reg-
istration for small satellites. Attitude determination of small satellites is typically provided
by sensor suites that incorporate measurements from several different instruments such as
magnetometers, sun sensors, and rate gyros. These solutions work well for accuracies greater
than one arcminute (≈ 0.01 ◦). However, for accuracies better than this, practical solutions
typically involve a star tracker.

1.1.2 Miniaturizing Star Tracker Technology

Star trackers are high-accuracy, three-axis attitude determination sensors that utilize unique
patterns formed by stars to determine the attitude of a spacecraft. Typical current generation
star trackers provide attitude accuracies on the order of 1-10 arcseconds, have a mass of 1-5
kg, consume 5 W− 10 W of power, and cost several hundreds of thousands of dollars. These
requirements typically exclude a star tracker as a potential attitude sensor for small satellites.

In the last five years, a new breed of star trackers has emerged designed specifically for
small satellites. These units provide attitude accuracies on the order of 10-30 arcseconds,
weigh less than 400 g, consume less than 2 W of power, and cost significantly less than their
predecessors. Although these new Small Satellite Star Trackers (SSSTs) are relatively coarse
compared to existing star trackers, they represent significant improvements over current
small satellite attitude determination capabilities.

1.1.3 Development of the ST-16 Small Satellite Star Tracker

One of these recently developed SSSTs is the ST-16 star tracker. The ST-16 star tracker
is a fully integrated single unit that weighs 90 g and has a peak power requirement of 1W.
Ground testing supports an accuracy claim of 7 arc-seconds (cross-axis), but better results
are expected once on-orbit. The ST-16 has been successful in the marketplace with approxi-
mately $1.5M in sales and 11 flight units have already delivered for a number of astronomical
and EO missions. The first launch of the ST-16 is expected in early 2014. An image of the
ST-16 is shown in Fig. 1.1 and some key specifications are listed in Table 1.1. For more
information, please see [Enright et al. 2010] or [Dzamba et al. 2010].

The ST-16 was developed specifically for nanosatellites through a joint venture between
Ryerson University’s Space Avionics and Instrumentation Laboratory (SAIL) - of which I
am a part of, Sinclair Interplanetary (SI) and the Space Flight Laboratory at the University
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1.1 Motivation

Figure 1.1: The ST-16 star tracker with Canadian quarter

Table 1.1: ST-16 Specifications

Size 59 x 56 x 31.5 mm

Top-Level Parameters
Mass ≈ 90 g (without baffle)
Power < 1 W peak, < 0.5 W average

Accuracy 7 arcseconds ≈ 0.002◦

Availability > 99.99%

Field of View 7.5◦ × 10.5◦ (half angle)

Optical Design
F# 1.2

Focal Length 16 mm
Aperture 13 mm

Manufacturer Marshall Optics

Pixel Size 2.2µm

Image Detector

Detector Dimension 1944 rows, 2592 columns
Row Read Time 43.9µs

Read Noise 3.5 e−

Conversion Factor 7 counts/e−

Manufacturer Aptina
Product ID MTP9031

Stellar Detection
< 5.75

Performance Parameters
Threshold

Catalog Size 3746 stars
Slew Tolerance 2 ◦/s

Nominal Star Radius 6 pixels (13.2µm)
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Chapter 1. Introduction

of Toronto. The work presented in this thesis stems from my involvement and contributions
to the design, development, and continued production of the ST-16 SSST.

My initial role in the development of the ST-16 was mainly to develop lab facilities and
procedures that provide characterization, calibration, and validation capabilities for the pro-
duction of ST-16 flight units. Over the course of the project, my roles have evolved to include
the development of novel algorithms, and analytical performance models used to steer fu-
ture SSST design iterations. I continue to be involved in the production of ST-16 flight
units, employing several of the developed approaches and techniques for unit production,
characterization and validation testing.

This thesis captures the developed theory, techniques, and lessons learned during the devel-
opment of the ST-16. Although some details are specific to this design, most of the developed
concepts have wider applicability.

1.2 Fundamentals of a Star Tracker

In simple terms, star trackers consist of three main components: a set of optics, an image
detector, and a microcomputer. The optics and the detector are used to provide an image
of the star field which is then processed by the microcomputer to compute the attitude
solution. This section describes the basic processing chain for a star tracker and discusses
how we quantify star tracker performance.

1.2.1 Operations

The processing chain for a typical star tracker can be summarized by four basic operations:
image acquisition, image processing, star identification, and attitude estimation. These
operations are briefly described below.

Image Acquisition The camera (composed of the optical system and the image detector)
generates a digital image of the star scene in the Field of View (FOV) of the lens. The image
is a summation of both incoming star light and detector noise. The size and shape of each
star image is dependent on the quality, and the focus of the optics. Since stars are commonly
modeled as point sources of light at an infinite distance, in static imaging conditions, the
size and shape of each star in the image can be approximated by the Point Spread Function
(PSF) of the sensor optics. If the camera is moving during imaging, the star image is blurred
along a path defined by the motion of the sensor.

Image Processing The on-board computer is used to process the acquired image in two
main phases: star detection and direction vector formulation. Star detection involves identi-
fying collections of bright pixels likely caused by stars and then calculating the stars’ centroid
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of illumination. This is generally achieved using thresholding and some simple logic of what
a star should look like. These centroids are then related to star direction vectors using an
optical model of the sensor.

Star Identification The microcomputer searches the on-board catalog for patterns that
correspond to the set of detected star vectors. Although only two matched stars are required
for a final attitude solution, geometric ambiguity in star patterns typically requires at least
three stars for an initial match. We refer to this initial match (i.e. without a priori attitude
information) as the Lost-In-Space (LIS) problem.

Attitude Solution Using both the detected and corresponding matched inertial sets of
star vectors, the attitude of the sensor can be determined using one of several solutions to
the Wahba problem [Wahba 1965, Keat 1977, Shuster & Oh 1981]. This attitude is then
related to the attitude of the spacecraft through knowledge of sensor alignment which is
generally specified by an alignment feature on the housing. Precise measurements of the
transformations from the alignment feature to both the sensor-frame and the spacecraft-
frame are critical for the elimination of attitude biases.

1.2.2 Measures of Performance

The performance of a star tracker is generally described by two parameters: accuracy and
availability [Liebe 2002]. Accuracy refers to the uncertainty of the final attitude solution that
comes out of the selected method of solving the Wahba problem. For star trackers, accuracy is
generally on the order or arc-seconds and is commonly expressed in two components: a cross-
axis component, and an about bore-sight roll component. It is common for the roll accuracy
of a star tracker to be significantly worse than the cross-axis accuracy. Availability is defined
as the fraction of the celestial sphere that an attitude solution is possible. This definition
is revisited in Chapter 4 which explores different definitions of star tracker availability that
explicitly include the presence of angular motion during imaging.

1.3 Objectives and Contributions

There are two notable differences between Small Satellite Star Trackers (SSSTs), and con-
ventional star trackers. They are:

Small Satellite Star Trackers (SSSTs) utilize COTS components. These compo-
nents can offer increased performance due to their use of advanced technologies and are less
expensive than traditionally used space qualified components. However, COTS components
possess increased variability in build quality, and their performance and survivability in the
space environment must be tested and validated.
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Small Satellite Star Trackers (SSSTs) use small optics. This requirement can be
traced to the size constraints imposed by the intended spacecraft (small satellites). A smaller
lens aperture collects fewer photons, which ultimately results in the star tracker detecting
fewer stars.

Both of these factors negatively impact the performance of a star tracker by either reducing
the number of stars the sensor can detect, or decreasing the accuracy with which detected
stars are related to star direction vectors. This thesis demonstrates how accuracy and avail-
ability can be improved through the following innovations:

1. Improve the image quality. This entails maximizing the detection performance of the star
tracker through improvements to the Signal-to-Noise Ratio (SNR) of imaged stars. Increas-
ing detection performance directly improves availability and ultimately also the accuracy
performance of the star tracker attitude solution.

2. Reduce the star vector error budget. The accuracy of the star tracker attitude solution
is directly related to the angular uncertainty of measured star vectors. Decreasing this
uncertainty, results in increased accuracy performance.

3. Validate sensor performance during motion. Angular motion during imaging causes the
image of a star to smear, decreasing detection performance and ultimately availability. De-
scribing this drop in availability leads to better performance characterization and identifies
potential improvements for future detection routines.

4. Develop SSST production practices. Lab-based calibration routines can help maximize sensor
performance by determining critical sensor parameters, unique to each individual sensor. The
routines can also be used to validate sensor performance after environmental testing.

These goals are realized through the development of offline calibration techniques, online
algorithms (flight software) and integrated tests. Lessons learned from the development of
these approaches are then applied to conduct a series of optical trade studies with the aim of
evolving the design of the ST-16 in order to improve sensor performance. A brief description
of each contribution is given below.

SSST Focusing Procedure [Chapter 2]. The detection performance of a star tracker
is driven by the size and shape of the PSF of the sensor optics. Minimizing the size of the
PSF would ideally improve the SNR of star images. However, due to pixel saturation and
sampling effects, there is trade-off between minimizing noise contribution (tight focus) and
improving localization accuracy (broad, unsaturated light distribution). I develop a target-
based focusing procedure that utilizes the MTF of the sensor optics to enable precision
control of the detector position and orientation.

Camera Calibration Model [Section 3.1]. The accuracy performance of a star tracker
is directly dependent on the accuracy with which imaged stars can be converted to incoming
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star vectors. This transformation is achieved through the use of an optical model based on
the internal geometry of the sensor. I develop a calibration procedure for the ST-16 SSST
based on repeatedly imaging a collimated pinhole source at several different orientations using
a three-axis motorized gimbal. The sensor geometry is estimated through a minimization
guided by the error between modeled star positions and the actual measured star positions.

Electronic Rolling Shutter (ERS) Compensation [Section 3.2]. Common in many
modern imaging detectors, ERS present challenges for use in star trackers. These detectors
suffer from geometric distortions if images are taken while the satellite is rotating. I present
an analytical model of the ERS distortion tailored to the characteristics of star-field images.
This model is used to develop a series of algorithmic corrections that estimate spacecraft
angular velocity from sequential image pairs and remove the ERS effects from measured star
positions. These routines are implemented on the ST-16 and verified using simulation and
laboratory testing. These tests show that the developed ERS corrections are able to preserve
accurate scene geometry with body rates of up to 3 deg/s.

Slew Tolerance Tests [Chapter 4]. The performance of a star tracker is largely based
on the availability of its attitude solution. Several tests exist to assess the availability under
static conditions, however these rarely reflect true operating conditions. To acquire results
of higher fidelity, attitude engineers are generally forced to utilize mission specific details to
generate a true sky track. I develop analytical models that describe the effects of slew rate
on detection performance. These models are then used to describe sensor availability at rate,
using simulations. I validate these models with lab tests that involve an ST-16 prototype, a
motion platform, and a single star source.

Optical Trade Studies for Improving SSST Performance [Chapter 5]. This chapter
presents a series of system performance models for nanosatellite star trackers. Recent trends
in EO missions have led to a demand for arcsecond-level accuracy attitude estimates at body
motion rates of up to 1 ◦/s. I develop models to predict sensor availability and accuracy in
terms of a number of optical design parameters. Starting from the baseline optical design of
ST-16, I explore strategies for improving sensor accuracy. I highlight distinctive features of
the trade-space relative to more conventional star tracker design, discuss system-level trends,
and provide analysis of promising point designs. Results from these trades are valuable for
prioritizing further SSST development.

These contributions can be grouped into three main categories: design characterization and
verification, unit production and validation, and novel algorithms. Design characterization
and verification describe the capabilities of the ST-16 from a performance standpoint. Unit
production and validation techniques are critical for the preparation ST-16 flight units.
Lastly, novel algorithms enhance star tracker performance by compensating for hardware
non-idealities and providing additional attitude information. Fig. 1.2 describes how the
contributions of this thesis fit within these three categories and the benefits they provide.

Figure 1.3 summarizes how these contributions tie into the typical processing chain of a
star tracker. The developed focusing procedure helps to control the size and shape of star
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Figure 1.2: Breakdown of thesis contributions.
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Figure 1.3: Typical star tracker operations and research contributions

images, enabling increased detection performance. The camera calibration model, and the
ERS correction routine minimize the error budget associated with converting star centroids
to star direction vectors. Reducing the uncertainty in these vectors, increases the accuracy
of the star tracker attitude solution. Lastly, the examination of star tracker slew tolerance
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not only provides valuable performance validation, but also helps identify promising avenues
for improving detection performance at rate.

1.4 ST-16 Star Tracker: Design Limitations

Several top level design decisions were made during the development of the ST-16 that make
various processing routines more challenging. Of particular importance is a constraint on
interface bandwidth, and the desire to have stateless star tracker operations.

The constraint on the interface bandwidth between the star tracker and the user is driven
primarily from savings in weight, volume, circuit simplicity, and connector reliability. Since
very little data (attitude, covariance, rate, etc.) is required to fully report the star tracker
attitude solution, interface bandwidth is typically minimal. Traditional electronic commu-
nication interfaces (e.g. USB) would not only be wasteful in terms of mass, and volume,
but also introduce risk because they possess little to no flight history. For these reasons, the
ST-16 utilizes a serial-based communication interface. This constrains image processing to
take place only onboard the star tracker itself, rather than the unit being used as a typical
camera - providing an image to the user.

The decision to keep the routines used onboard the ST-16 stateless (requiring no a prior
attitude information), arose primarily from concerns over hardware reliability within the
space radiation environment. By effectively restarting the ST-16 processor with each atti-
tude measurement, the impact of radiation induced upsets was mitigated. Although this
feature improves reliability, stateless processing also has its consequences. The dominant
consequence being the Lost-In-Space (LIS) problem must be solved for each measurement.
This improves tolerance to sudden changes in attitude, where a typical star tracker operating
in a tracking mode would lose lock. However, this also increases processing time, effectively
decreasing update rate.
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Chapter 2

Image Quality and Detection
Performance

Star tracker performance is directly dependent on the number of stars visible to the sensor
and the accuracy with which the centroid of these stars can be found. These metrics are
primarily driven by the size and shape of the Point Spread Function (PSF) of the sensor optics
which is set by the focus and quality of the imaging optics. Minimizing the size of the PSF
would ideally improve the Signal-to-Noise Ratio (SNR) of star images, increasing detection
performance of dim stars. However, due to pixel saturation and sampling effects, there is
a trade-off between minimizing noise contribution (tight focus) and improving localization
and centroiding accuracy (broad, unsaturated light distribution).

The chapter details a procedure for focusing the optics of a nanosatellite star tracker. The
procedure utilizes the Siemens Sinusoidal Star Pattern (SSSP) to measure the Modulation
Transfer Function (MTF) of the sensor. The MTF is related to the PSF of the sensor optics
which is then used to guide focusing corrections to the position and orientation of the image
detector. Initial results show the procedure is capable of measuring the position of the image
detector with an average error of approximately 0.055mm. This translates into control over
the size of the PSF to an approximate size of 20 pixels, for the ST-16 optical configuration.

2.1 Introduction

The performance of a star tracker depends on it’s sensitivity to starlight, the Field of View
(FOV), the accuracy of the star centroid, the star detection threshold, the number of stars
within the FOV, the internal star catalog, and the calibration of the sensor [Liebe 2002].
SSSTs will naturally have smaller optics than existing star trackers due to size constraints.
This limits their sensitivity to starlight, and in turn decreases the numbers of detectable
stars within each image. To mitigate these effects, we seek to maximize the star detection
threshold which is a product of the background noise of the image detector and the size
of an imaged star’s PSF [Liebe 2002]. Selecting a low-noise image detector addresses the
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first of these two factors, however the size of imaged stars’ PSF is a function of the sensor
focus. A tight focus minimizes the size of the PSF, maximizing the measured intensity of
the brightest pixel. However, too tight of a focus and the ability to accurately centroid each
PSF is impaired [Rufino & Accardo 2003]. Achieving a desired spot size is a difficult and
often time consuming task. This chapter develops a low cost focusing procedure for all star
trackers that will allow users to focus star trackers to a selected spot size using only a few
calibration images.

The motivation for this focusing procedure is to focus the recently developed ST-16 star
tracker. The design of this unit allows manual adjustment to the position and orientation of
the detector with respect to the sensor optics. This allows for focus adjustments in both the
standard along-boresight (piston) sense, as well as in a detector orientation (tip/tilt) sense.
This does provide an added capability to reduce variations in spot size across the sensor
FOV. However, these additional degrees of freedom make it difficult to apply common star
tracker focusing techniques. The focusing procedure I develop utilizes a calibration target
to provide a closed-loop solution for the required focus adjustment given a desired spot size.

I begin with a more in depth discussion on the effects of focus on sensor performance and
review some of the existing focusing techniques. The second subsection then presents the
SSSP and its use in the measurement of a sensor’s MTF. Following this, I introduce a
focus error model that relates the measured MTF of an optical system to a specific detector
position and orientation. The fourth subsection highlights some of the specifics required for
implementing the focusing procedure. Lastly, I present some preliminary lab results using
the developed focusing procedure.

2.1.1 The Impact of PSF Spot Size on Star Tracker Performance

A star tracker determines attitude by solving what is known as the Wahba problem: Given
two sets of n vectors, where n≥2, find the rotation matrix which brings the first set into the
best least square coincidence with the second [Wahba 1965]. In the case of a star tracker, the
first set of vectors are the known positions of stars on the celestial sphere. The second set
are direction vectors to imaged stars that are calculated from the image plane coordinates
of the star centroids. The accuracy of these measured centroid positions greatly impacts the
accuracy of the resulting attitude solution [Liebe 2002].

The most commonly used method for determining star centroids from images is the first-
moment centroiding technique, which can reliably attain sub-pixel accuracy [Liebe 1995,
Rufino & Accardo 2003]. This technique can be briefly described as the ratio of first-order
spatial moments to zero-order ones and is expressed mathematically as:

(m,n)cent =
1∑

m

∑
n

I [m,n]

(∑
m

∑
n

mI [m,n] ,
∑
m

∑
n

n I [m,n]

)
, (2.1)
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2.1 Introduction

where [m,n] are row and column image plane coordinates specified in pixels, (m,n)cent are
the image plane coordinates of the star centroid, and I [m,n] is the image intensity at the
pixel [m,n]. This technique yields a maximum level of centroid accuracy when the radius of
the PSF (spot size) is approximately 3-5 pixels [Rufino & Accardo 2003]. I briefly summarize
the reasoning behind this desired PSF radius below.

If we consider the optics of a star tracker to be diffraction limited, at an ideal focus, stars
will appear as Airy discs with a radius equal to Ri according to Eq. (2.2):

Ri = 1.22λF#, (2.2)

where λ is the wavelength of light emitted by the imaged star, and F# is the f-number of
the sensor optics. Using a typical F# for star trackers (≈ 1.0), the radius of this disk is
generally significantly smaller than a single pixel. This mitigates the benefit provided by
the above centroiding algorithm, limiting the centroid accuracy to a single pixel. To prevent
this, star trackers are normally purposely defocused, by a small distance thereby increasing
the size of the PSF which becomes a circular blur [Rufino & Accardo 2003, Hopkins 1955].
The radius of the blur circle, R, from a point source at an infinite distance is related to the
displacement from ideal focus, δz, by the equation:

2R =
δz
F#

. (2.3)

The spot size is denoted as the diameter of the blur circle = 2R. Increasing the radius of
the PSF is beneficial because it provides additional sampling points of the stars illumination
pattern which improves centroid accuracy. However, there is a trade-off between increasing
sampling and the contributions of detector noise. As the spot size of the imaged PSF is
increased, the SNR of the measured signal is effectively decreased. If the SNR falls too low,
variations in detector noise can begin to impact the location of the first-moment centroid
or worse, prevent the star from being detected at all. For these reasons, it is desirable to
maintain as tight of a focus as possible, while not negatively impacting the accuracy of the
centroiding technique. See Fig. 2.1 for an illustration of how the above mentioned variations
in focus impact the PSF spot size and in turn, centroid accuracy.

2.1.2 Existing Focusing Techniques

One common approach to focusing star trackers is to iteratively image a collimated point
source and adjust the sensor focus based on imaged PSF spot size. This method does have
an advantage in that the collimated point source accurately represents a star at an infinite
distance. A disadvantage of this method is that each image gives a limited perspective on
the level of focus across the entire detector plane. Due to various optical aberrations that
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Figure 2.1: PSF spot size vs. star tracker focus.

cause radial and angular variations in the ideal focal plane [Malacara 2007,Born et al. 2000,
Mahajan 1998a,Mahajan 1998b], many images of the collimated point source must be taken
before an appropriate focus adjustment can be calculated.

Unlike focusing star trackers, focusing cameras is generally is done by imaging various nat-
urally occurring scenes, or focus calibration targets. Each image is first assessed by some
measure of focus using a predefined focus metric [Krotkov 1987,Groen et al. 1985]. The focus
of the camera is then iteratively changed and a new image taken, until a maximum value of
the focus metric is found [Subbarao & Choi 1993]. A disadvantage of most of these metrics
is that the measure of focus is not easily related to the distance of the image detector from
the focal plane of the sensor optics. Instead, these metrics generally only provide a relative,
instantaneous measure of focus. On consumer cameras, this iterative focus adjustment is
usually implemented with an auto focus mechanism. This allows for quick refocusing to
objects at various distances. Star trackers generally do not have the ability to actively alter
their focus.

From an image processing standpoint, there are benefits to using the entire image for focus-
ing, especially when the scene is a focus calibration target. Firstly, each image can provide
a more spatially representative measure of focus when compared to focusing using a single
PSF. If a target is used instead of a just any available scene, we can insure that all regions of
the FOV are equivalently represented according to the defined focus metric. An additional
benefit of a focus target is that it may be able to attain spatially-based focus information
from each image that can be used to determine detector tip and tilt.
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2.2 Measuring Focus

2.1.3 The Focusing Mechanism of the ST-16 Star Tracker

Inside the sensor housing of the ST-16 there is a single circuit board which carries both
the processor and the detector. The lens is rigidly mounted to the chassis, and focus is
achieved by moving the detector; which is mounted to the chassis, by three focus screws,
each with a thread pitch of 0.45 mm (0.00125 mm of travel per 1◦ of rotation). By moving
certain combinations of the screws, both the standard piston adjustment as well as additional
tip/tilt adjustments of the detector can be achieved. Figure 2.2 shows the sensor cross section
and focusing mechanism layout.

SENSOR BODY

HIGH STIFFNESS
SPRINGS

IMAGE DETECTOR

ADJUSTABLE
FOCUSING NUTS

SENSOR
OPTICS

1 2

3

IMAGE
DETECTOR

ADJUSTABLE
FOCUSING NUTS

DETECTOR ORIGIN
PIXEL: (0,0)

Figure 2.2: ST-16 Focusing mechanism.

2.2 Measuring Focus

The focus of an optical system can be characterized by the range of spatial frequencies
that it can resolve [Krotkov 1987, Pentland 1987, Subbarao & Choi 1993]. Poorly focused
systems are only capable of resolving low frequencies while well focused systems can resolve
frequencies up to their Nyquist frequency.

2.2.1 The Modulation Transfer Function

The image of an optical system can be formed as a convolution of the system’s PSF and
the object being imaged. Let O (x, y) represent the intensity of the object, and hpsf (x, y)
represent the PSF, then the resultant image is calculated as:
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I (x, y) =
∞∑

n1=−∞

∞∑
n2=−∞

O [n1, n2]hpsf [x− n1, y − n2] (2.4)

Consider now, imaging a modulating intensity pattern described as a sinusoid with an arbi-
trary spatial frequency, fs. If Imax denotes the maximum intensity of the pattern, and Imin,
denotes the minimum intensity, then let C denote the normalized amplitude of the intensity
pattern, which is referred to as the contrast. This is mathematically defined as:

C =
Imax − Imin
Imax + Imin

. (2.5)

Isolating one wavelength of this pattern, and applying Eq. (2.4), it can be seen from Fig.
2.3a that image of the single wavelength is wider than the original object wavelength. This
change in shape is due to the physical size and shape of PSF.
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Figure 2.3: Imaging a modulating intensity pattern.

If we now consider imaging a portion of the modulating intensity pattern, shown in Fig. 2.3b,
several wavelengths (or cycles) in length, it is not difficult to imagine that images of neigh-
boring cycles will overlap and interfere. The result of this interference on the modulating
intensity pattern will be a decrease in the observed contrast of the modulating pattern.

Holding the PSF constant and increasing the spatial frequency of the modulating pattern
will have a similar effect but larger in magnitude. Since the wavelength is now smaller, the
amount of overlap between neighboring cycles will be larger, and therefore the observed con-
trast of the modulating pattern will be less. Changing the size of the PSF has a similar effect.
Larger PSFs cause more contrast attenuation, while smaller PSFs cause less attenuation.
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2.2 Measuring Focus

The ability of the optical system to transfer contrast between the object and the image
is defined by the Modulation Transfer Function (MTF) which is a function of the spatial
frequency, fs, of the modulation. This is mathematically defined as:

M (fs) =
Cimage (fs)

Cobject (fs)
(2.6)

Where M (fs) is the modulation transfer for a specific spatial frequency and is expressed as
a fraction of the ideal modulation transfer of 1.0. The MTF refers to the entire set of M (fs)
values for all fs.

Figure 2.4 shows several MTFs of a simulated system at various levels of defocus. Notable
differences in modulation transfer are seen as the level of defocus is increased.

2.2.2 The Siemens Sinusoidal Star Pattern

A common approach to MTF measurement is to use the Siemens Sinusoidal Star Pattern
(SSSP). This pattern consists of numerous pie-shaped regions that vary angularly in intensity
according to a sinusoidal relation, see Fig. 2.5 for an example. This provides a continuous
range of spatial frequencies, specified by the size and number of cycles in the pattern. The
analysis of image contrast versus spatial frequency is performed along a series of concentric
circular paths that are traced around the pattern center. The spatial frequency of the
intensity variation decreases with increasing radius. The notion of this analysis is that as
one travels from the lowest spatial frequency (outer edge) towards the center, we will reach
a radial distance where we can no longer resolve the intensity variations of each cycle due to
the attenuation caused by the shape and size of the PSF. The focusing procedure developed
in this chapter utilizes the approach developed by Loebich et al. to measure the MTF using
the SSSP. This approach is briefly described below, for more detail see [Loebich et al. 2007].
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Figure 2.4: Example modulation transfer function.
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Figure 2.5: Example Siemens sinusoidal star pattern (72 cycles).

Let the number of cycles, or line pairs, of light/dark variation in the SSSP be denoted as
Ncyc. If the SSSP is divided into np equal pie-shaped segments, each segment will have mp

cycles per segment, where mp = Ncyc/np. Following Loebich et al, each of these segments
will be used to compute a separate MTF which can then be used to examine any differences
in observable frequencies across regions of the image detector. For clarity, let each mp-cycle
segment be called a section and numbered 1-8, see Fig. 2.7.

The resolvability of a specified spatial frequency fs, is measured through the detected modu-
lation, M (fs), of the sinusoidal variation in image intensity along a concentric circular path
defined by a specific radial distance from the SSSP center. Cimage is the contrast measured in
the image of the SSSP, and Cobject is the contrast of the of the SSSP. The latter is determined
by sampling the image of the SSSP in both white and black regions that have large areas of
uniform color, thereby removing the effects of defocus on measuring intensity. The contrast
of the image, Cimage, can be related to a corresponding set of parameters that define the
intensity of the observed sinusoidal relation. This relation is defined as:

Imodel(φf ) = a+ b1cos(φf 2πmp) + b2sin(φf 2πmp) (2.7)

where φf is a variable representing the angular displacement from beginning of an SSSP
segment, np, to the end – see Fig. 2.6, b =

√
b21 + b22 is the amplitude of the sinusoid and a

represents it’s mean value. The relation defined by Eq. (2.7) is fit to the measured image
intensity, Iimage, along a single cycle at fixed radial distance, rSSSP, to determine the contrast,
Cimage = b/a. Using a bounded minimization of the Mean-Squared Error (MSE) between
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2.2 Measuring Focus

the measured image intensity, Iimage, and the modeled intensity, Imodel, model parameters a,
b1, and b2 are estimated. The MSE is defined as:

Qint =
1

l

l∑
1

(Iimage − Imodel)
2 (2.8)

where l is the number sample points along one cycle length. These sample points are selected
as the pixels that fall under the concentric circular path defined by rSSSP as shown in Fig. 2.6.
The spatial frequency corresponding to the contrast measurement is determined using the
relation:

fs =
Ncyc

2πrsssp
(2.9)

where fs is the spatial frequency measured in cycles/pixel and rsssp is the radial distance, in
pixels, of the sample point from the SSSP center.

To minimize the effects of image noise, instead of fitting the sinusoidal relation given by
Eq. (2.7) to single cycle at a time, mp cycles, or one section is fit at a time. This process
is repeated through a range of spatial frequencies (radial distances) to get corresponding
measures of contrast versus spatial frequency. Each section of the SSSP is used as a mea-
surement of the spot size local to that region of the image. Figure 2.7 is an illustration of
this whole procedure.

SSSP Center

Figure 2.6: Schematic of φf .
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FIT SINUSOIDAL MODEL TO 1 DETERMINE CONTRAST1
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TO DETERMINE SECTION MTF2

3 REPEAT (2) FOR EACH SECTION 
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Figure 2.7: Flowchart for MTF calculation from the SSSP.

2.3 Modeling Focus Error

The previous section explained how the MTF can be used to assess levels of focus based
on resolvable spatial frequencies. This section introduces a preliminary framework to relate
the MTF of a system to a corresponding focus error based on planar focal surface imaging
model. Stated briefly, the approach is to first simulate the measured defocus through the
application of a blur kernel to an artificially generated image of a Focus Calibration Target
(FCT). The simulated defocused image is then matched with the real star tracker image
based on the MSE between their measured MTFs. Once a match is found, the focus error is
described by the specifications of the applied blur kernel. This is related to the distance of
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2.3 Modeling Focus Error

the image detector from the lens (focus error) through a geometric model. First, I present
the procedure for blur simulation used to measure the spot size of the defocused PSF. Then I
discuss the optical model that was used to relate the measured PSF spot size to focus error.

2.3.1 Blur Simulation

Blur due to defocus can be approximated by a convolution of the system PSF and the desired
scene [Subbarao & Choi 1993,Groen et al. 1985,Krotkov 1987]. Assuming the target/scene
is also at significant distance, the blurred image can be modeled as a convolution of the
defocussed PSF and a focused image of the target. Determining the size of this blur circle
directly from the blurred image of a scene is difficult. Instead, I propose to indirectly
measure the size of the blur circle by matching the MTFs of actual blurred images to MTFs
of simulated images, blurred with PSFs of varying size and shape.

I investigate the use of three different blur kernels to accurately simulate the blur due to
defocus of an SSSP. Each kernel is specified by a set of parameters that is fit based on the
similarity of the defocus blur to that seen in actual defocused images. This similarity is
defined by a cost function, QMTF, which is based on the MSE between the measured MTFs
from the simulated and actual blurred images, denoted as MS and MA, respectively. Let the
set of kernel parameters be specified by Hf , then the cost function is defined as:

QMTF =
1

g

g∑
1

(MA −Ms)
2 (2.10)

where g is the number of sample points within each MTF, and where MS = f(Hf ). Beginning
with an artificially generated image of the scene, the FCT, composed of numerous SSSPs,
I iteratively blur the artificial image with three different blur kernels specified by their
respective shape parameters. I compare the resultant MTFs, MS and MA, using Eq. (2.10).
Linear interpolation is used to calculate the simulated modulation transfer values, MS, for
a direct comparison against measured the modulation transfer, MA, at the corresponding
measured spatial frequencies. A nonlinear minimization of the cost function, Eq. (2.10), is
then used to find the set of kernel parameters, Hopt, that correspond to the lowest MSE
between the two MTFs.

Various approximations to the shape and size of a defocused PSF are discussed in literature
[Hopkins 1955,Pentland 1987,Groen et al. 1985,Krotkov 1987,Rufino & Accardo 2003]. The
most common of these are the Symmetric Gaussian (SG) and the circle of equal intensity, or
Pillbox (P). Each of these PSF approximations have slightly different effects on the simulated
modulation transfer of a blurred image. The SG kernel has the tendency to act as a low pass
filter and heavily attenuate higher frequencies similar to the effects of diffraction. While on
the other hand, the P kernel evenly attenuates all frequencies, more similar to defocus. Most
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optical systems have PSFs that are a combination of both diffraction and defocus [Rufino &
Accardo 2003]. This results in a blur kernel that is a combination of both the SG and the
P. Experimentation is generally used to determine which of the commonly used models for
PSF best represents the defocus in your system. Therefore, as part of this chapter I evaluate
the use of all three blur kernels to assess which best represent the actual measured MTF of
the defocused FCT. We now briefly describe the parameter set, H, used to define the size
and shape of each of the three specified blur kernels.

The first blur kernel used is the SG spot. The shape of a specific SG blur kernel is defined
by a single parameter, σSG, through the following relation:

h1(x, y) =
1

2πσ2
SG

e
−x

2+y2

2σ2
SG (2.11)

where (x, y) are the pixel coordinates. The shape parameter, σSG, is related to the blur circle
radius, R, through the linear equation:

σSG = cbR (2.12)

where cb is a constant that is greater than zero. Subbarao states an approximate value for
cb of 1/

√
2 from practice [Subbarao & Choi 1993]. The second approximation to the shape

of the defocused PSF is the circle of equal intensity, also known as a pillbox. The size of the
pillbox is directly defined by its radius, pr, through the following equation:

h2(x, y) =

{
1,

0,

√
x2 + y2 ≤ pr

elsewhere
(2.13)

The last of the three models used is based on the combination of both the SG and P as
suggested by Rufino and Accardo [Rufino & Accardo 2003]. We define this PSF as Symmetric
Gaussian Pillbox Combination (SGP) which is described as the sum of a SG blur kernel
specified by a shape parameter, σ, and a scaled P blur kernel specified by a radius, pr, and
a relative intensity, G, with respect to the SG. This is defined with the expression:

h3(x, y) = h1(x, y, σ) +G h2(x, y, p) (2.14)

The radius of the P kernel within Eq. (2.14) is constrained to be larger than the SG kernel
and is therefore the dominant parameter used to specify the size of the blur circle. As
mentioned above, the accuracy of each blur model will be evaluated based on it’s similarity
to the real defocused image attained with the star tracker. This is evaluated through blur
simulation, MTF measurement, and finally MTF comparison using Eq. (2.10). I now move
on to introduce optical framework to relate the size of the blur circle, specified by the
parameters of each blur kernel, to the local focus error of the image detector.
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2.3 Modeling Focus Error

2.3.2 Defocus in Imaging Systems with a Planar Focal Surface

In a simple imaging system, the size of the blur circle, 2R, can be related to local focus
error, |s− v|, through ray optics. This represents an approximate model that is only valid
in a small circular region around the optical axis. I utilize the framework of this paraxial
approximation to build an extension to this model that is then used to evaluate the focus
error across the detector. I first present a summary of the basic paraxial approximation given
by Subbarao et al. [Subbarao & Choi 1993] and then develop the paraxial model extension
in the following subsection.

The process of image formation for a simple camera, using a thin lens model, is shown in
Fig. 2.8. If we envision a point object, P , at distance of u in front of the lens, then it’s focused
image, P ′, will appear on the image plane, a distance v behind the lens. This distance, v,
can be found through the lens formula:

1

f
=

1

u
+

1

v
(2.15)

where f is the focal length of the system. I assume that the system is circularly symmetric
around the optical axis. If the position or orientation of the image detector change, the light
from point object, P , will no longer be focused onto a single point P ′ in the image plane.
Instead, light from the object will be spread over a circular region commonly referred to as
the blur circle. This circle will have a radius R, which I denote as the blur radius. From
similar triangles, the radius of the blur circle can be expressed as a function of lens aperture,
D, and the distance from the lens to the image plane, v, as:

2R

D
=
s− v
v

(2.16)

The focus error can be found through Eq. (2.16) if the blur radius is determined through
blur simulation. This relation is:

|s− v|
v

=
2R

D
(2.17a)

|s− v| = v
2R

D
=

(
1

1
f
− 1

u

)
2R

D
(2.17b)
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Figure 2.8: Image formation with a simple camera and planar focal plane.

2.3.3 Defocus in Imaging Systems with a Curved Focal Surface

The imaging model shown in Fig. 2.8 makes the assumption that the focal surface is planar.
This is valid only under the paraxial approximation. As we begin to factor in various
aberration terms, it can be seen that the focal surface in most simple imaging systems is in
fact a curved surface. One of the most common optical aberrations, known as field curvature,
causes variations in spot size across a planar image detector as a function of radial distance
from the optical axis, see Fig. 2.9. Due to these effects, the relation between blur radius, R,
and focus error, |s− v|, is not linear as portrayed with Eq. (2.17).

As an extension of the paraxial model shown in Fig. 2.8, I define the focal surface as a
single paraboloid. If I assume the focal surface is symmetrical around the optical axis, I can
describe the paraboloid with two parameters, q and ∆p through the relation:

z =

(
x2 + y2

q2

)
+ ∆p (2.18)

where (x, y) are pixel coordinates, q describes the shape of the paraboloid, and ∆p describes
its distance from the image detector. I define the detector as a planar surface, centered on
the optical axis at the origin of the reference frame. The plane is described with a set of
parameters Jp using:

apx+ bpy + cpz + dp = 0 (2.19)
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Figure 2.9: Defocus in a simple imaging system with a curved focal plane.

where Jp = (ap, bp, cp) and dp = 0 by definition of the plane location. The axial distance
(parallel to the optical axis) between the focal surface and the detector plane is defined as
the local focus error |s− v|, and is expressed as:

|s− v| =
(
x2 + y2

q2

)
+ ∆p+

apx+ bpy

cp
(2.20)

Using Eq. (2.17) I can relate the determined blur radius to the relative distance between
the focal surface and the detector plane. I define a cost function, Q|s−v|, to express the
MSE discrepancy between the predicted and measured set of focus errors for a given set
of pixel coordinates and a set of paraboloid and detector plane parameters, q, ∆p, and Jp,
respectively. This function is defined as:

Q|s−v| =

∑i
1(δM − δP )2

i
(2.21)

where δM = |s− v|M, and δP = |s− v|P represent the measured and predicted local focus
errors, and i is the number of focus error points available. Through the use of a nonlinear
minimization of Eq. (2.21), I determine the set of paraboloid and plane parameters that best
describe the calculated focus errors. I then use these determined parameters to calculate
the focus adjustment necessary to move the detector array to be coincident with the focal
surface along the optical axis. This is then given through the relation:

zs(xs, ys) = ∆p+
apxs + bpys

cp
(2.22)
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where (xs, ys) are the coordinates of the focus adjustments nuts shown in Fig. 2.2 with respect
to the center of the image detector. This model should provide a better resolution of the
detector position from focus error data than the first planar model described in Section 2.3.2.

2.4 Focusing Procedure

A Focus Calibration Target (FCT) was created based on a grid of 3×3 SSSPs; see Fig. 2.10.
The target is approximately 100 cm × 75 cm (40” × 30”) in size and was printed at a
resolution of 300dpi (dots per inch). Circular Vision Targets (CVTs) were added to the
center and perimeter of each SSSP to allow for accurate target registration. Each SSSP is
approximately 25 cm × 25 cm (10” × 10”) and has 144 sinusoidal variations in intensity
(cycles). In this section, I describe the specific steps and details used to perform some initial
testing with the developed focus procedure. Figure 2.11 provides the reader with a flowchart
of the required operations.

2.4.1 Keystone Correction

When the FCT is not aligned orthogonal to the boresight axis of the star tracker, the images
of the target will appear trapezoidal instead of rectangular. This deformation is referred to
as the image keystone. When imaging the FCT, key-stoning causes the images of individual
SSSPs to become non-circular making it difficult to carry out the planned analysis along
paths of constant spatial frequency. This problem is mitigated by remapping these paths

Figure 2.10: Focus calibration target.
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Figure 2.11: Flowchart of focus calibration procedure.

onto the image of the FCT through a system model and a set of calibrated parameters. The
system model, shown in Fig. 2.12, utilizes three frames of reference: the target frame, the
camera frame, and the detector plane designated by the subscripts: T, S, and D, respectively.

There are six model parameters that describe the position, uT = (xT , yT , zT ), and the
orientation, φt, θt, ψt, of the FCT with respect to the star tracker. The transformation from
the target frame to the sensor frame is then expressed as:

pS = RT pT + uT (2.23)
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Figure 2.12: System model for keystone correction.
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where RT is a rotation matrix defined by a X-Y-Z Euler angle set, parameterized by βT ,
and pS, pT denote the coordinates of a point in the S and T-frames, respectively. By using
a simple pinhole model for image formation and assuming an approximate detector position
equal to the focal length of the star tracker optics, f , the transformation of coordinates
from the sensor frame into the detector frame can be defined using some simple algebra for
line-plane intersection. I begin by defining the detector plane with a point, aS = [0, 0,−f ],
and a normal, nS = [0, 0, 1] expressed in the sensor frame. The transformation of a point
from sensor coordinates, pS, to detector coordinates, pD, is then defined as:

pD = −pS t (2.24)

where,

t =
(aS · nS)− (pS · nS)

(−pS · nS)
(2.25)

This model is utilized to map the ideally concentric circular paths of spatial frequency onto
the keystoned image of the FCT. I then extract image intensity values along these paths in
order to measure the star trackers MTF at various points along the detector.

Calibration of the six model parameters is done through a minimization of the Root-Mean-
Squared (RMS) error between the measured CVT coordinates and a set of projected CVT
coordinates given their actual separation on the target. Let pT represent a set of equally
spaced points in the target frame that correspond to the CVTs placed at the center of each
SSSP. Let pD represent the projection of these points into the detector frame, where the
transformation from T-D is given by Eqs. (2.23) to (2.25). Given initial coordinates for pT ,
I can calculate the corresponding RMS error between pD and the actual imaged coordinates
of the center CVTs, lD, through the following expression:

QCVT =

√
(pD,x − lD,x)2 + (pD,y − lD,y)2

nCV T
(2.26)

where nCVT is the number of CVTs, and

~pD = f (uT , φt, θt, ψt) (2.27)

A nonlinear bounded minimization routine is used to determine the set of model parameters
that describe the smallest error between the known and imaged CVT positions. This is done
in a two-step process to reduce computational time. The initial step utilizes only 9 of the
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2.4 Focusing Procedure

FCT’s CVTs that are placed at the center of each SSSP. The imaged location of each CVT
is determined by convolving a simulated image of the CVT with the image of the FCT and
centroiding the resultant metric using Eq. (2.1). This coarse fit of the system parameters
allows us to make approximations to the location of the remaining 36 edge CVTs (located
along the perimeter of each SSSP). The precise image coordinates of each of these edge CVTs
are then determined through the same convolution/centroid process. The locations of these
36 edge CVTs are then added the initial 9 center CVTs to perform a secondary fine fit of
the model parameters. Figure 2.13 shows the fitted CVT positions on an image of the FCT.
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Figure 2.13: Keystone correction applied to the focus calibration target.

2.4.2 Calculation of Focus Error

A series of images of the FCT were taken with the ST-16 star tracker to provide some initial
results of the presented framework. Using the calibrated keystone model described above, I
extracted intensities from specified paths along a series of images of the FCT. As described
within Section 2.2, intensities are sampled across circular paths of constant frequency. Each
circular path is separated into 8 segments, each containing m = 18 cycles of light/dark
variation. I use a fixed sampling density of 30 points per cycle length that results in a total
of 540 sample points for each 18 cycle arc. From the observed intensity pattern I calculate
a modulation value by fitting the sinusoidal model defined by Eq. (2.7). One corresponding
spatial frequency is calculated per arc through the use of Eq. (2.9) and the mean radial
distance of each sample point. This process is repeated for 70 radii that are equally spaced
between the values of 25-90% of the imaged SSSP radius. This forms the imaged MTF for
a specific section that is designated with the numbers 1-8.

Following the MTF measurement phase, three blur radii were iteratively calculated for each
MTF by fitting kernel parameters defined by Eqs. (2.11) to (2.14) to the measured MTF.
Blur simulation was achieved by a two-dimensional convolution of the specified blur kernel
and a sample portion of a single SSSP. Using the calculated values for blur radii, I then
determined the local focus error for each section through Eq. (2.17). The focus error results
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were then used to calibrate the geometric model based on a paraboloid focal surface, given
by Eq. (2.20).

2.5 Focusing Results

A series of initial tests were conducted to assess the performance of various segments of
the developed procedure. Each test consisted of a series of images taken at various focus
settings where the relative adjustments from image to image were known. The focusing
procedure was then used to assess each image and return the position and orientation of the
image detector. Additionally the performance of the three different blur kernels was tested
to determine which best simulates the defocus seen in our image sets. I first discuss some of
these preliminary results pertaining to blur simulation and then present some initial results
of measured detector positions at various levels of defocus.

2.5.1 Accuracy of Blur Simulation

The framework developed for this focusing procedure relied on the size of the PSF being
known. This was indirectly determined through the simulation of blur due to defocus using
an artificial image of the FCT and three different blur kernels. These kernels were the
symmetric Gaussian, the pillbox and a combination of the two described by Eq. (2.14). The
accuracy of their blur simulation was assessed by the Mean-Squared Error (MSE) between
the MTFs of the actual and simulated blurred images, defined by Eq. (2.10). Although the
performance of the three kernels did fluctuate with various levels of defocus, their ordering
in terms of accuracy remained constant. The symmetric Gaussian distribution proved to
best represent the imaged defocus. This was followed by the combination of the symmetric
Gaussian and pillbox, and finally the pillbox alone. Table 2.1 shows average values of the
residuals, given by Eq. (2.10) at three different focus settings.

Table 2.1: Average MTF Residuals at 3 Focus Settings

Image Spot Size Symmetric Gaussian Pillbox Combination(SGP)

1 20 pixels 0.0872 0.0976 0.0953
2 30 pixels 0.0630 0.0701 0.0705
3 40 pixels 0.0352 0.0514 0.0404

Although the SG distribution does clearly show to be the best of the three kernels, in some
cases there was still a relatively significant discrepancy between the MTF of real blurred
image and the simulated blur. This discrepancy mainly occurs at higher spatial frequencies
which the SG kernel tends to attenuate heavily, see Fig. 2.14b. The performance of the kernel
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2.5 Focusing Results

is quite high at lower levels of focus (larger blur circles), see Fig. 2.14a. However as we begin
to move more into focus and the MTF ceases to drop off at a certain frequency, the simulated
MTF no longer closely maps the true MTF of the defocused image. This misrepresentation of
the blur due to defocus inevitably causes discrepancies in the determined spot size. Although
some success was achieved by scaling the measured spot sizes by a constant amount, this
limits the accuracy performance of the focusing procedure as we approach desired focus
positions.

Further examinations need to be completed on the accuracy of using circular blur kernels
in blur simulation. Additionally, future work should also investigate the effectiveness of
determining the size of the PSF directly from the MTF measurements through the use of
the inverse Fourier transform.

2.5.2 Accuracy of Detector Positioning

The second preliminary test of the focusing procedure was the accuracy assessment of the
determined detector position and the orientation. A series of images were taken at vari-
ous focus levels with known adjustments between them. Focus adjustments ranged from
0.225mm (1/2 turn of the focusing screws) to 0.0563mm (1/8 turn of the focusing screws;
see Fig. 2.2). The determined focus error at each image was then used to fit the paraboloid
model discussed above. The changes in calculated detector position were compared against
the measured change in focus error. Initial results show the average discrepancy between
commanded and measured focus adjustments was approximately 0.055mm, or about 1/8th
of a turn on the focusing screws. According to Eq. (2.3), this limits sensor focus to a blur
circle diameter of just over 20 pixels. Although this is encouraging for initial testing, blur
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Figure 2.14: Accuracy of MTF reproduction.
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Chapter 2. Image Quality and Detection Performance

circle diameters of less than 10 pixels are required for desired focus levels of the ST-16 star
tracker.

2.6 Summary and Future Work

I have developed the framework for a focusing procedure for star trackers. The procedure
provides the ability to determine the position and orientation of the image detector given
a single image of the developed FCT. Initial results show that focus adjustments of up to
0.055 mm can be traced through the procedure. Although these preliminary results are
encouraging, several improvements to the procedure are required before it can be effectively
used to achieve desired focus levels.

Future work should include the examination of non-symmetric PSF models to improve the
mathematical representation of the shape of the PSF better as desired focus is approached.
For the ST-16, this should begin with models that incorporate the effects of astigmatism
which have been found to be a dominant aberration from experimental testing. This will not
only enable better focus control but also provide the ability to characterize lens performance.
The latter can be incorporated into star tracker detection routines to increase detection
performance.

Although this work has not addressed this at all, an important investigation would be to
define what an optimal focus would be, by examining the variation in PSF shape and intensity
throughout the FOV.

2.7 Contributions to the Field

The use of the SSSP to measure the MTF, and the use of the MTF to describe the focus
of an optical system is not novel. I have drawn on these tools to develop a framework for
focusing a special type of a camera, a star tracker. This differs from typical cameras in
that it doesn’t contain a motorized focus control mechanism, and the desired application is
imaging stars which are effectively at an infinite distance.

The framework I have developed consists of the FCT, a corresponding analysis procedure,
and initial testing to tune the analysis procedure to the specific performance of the ST-16
lens. The FCT is designed to describe the focus of the star tracker at numerous points
throughout the FOV. The analysis procedure I have developed, incorporates commonly used
techniques to measure the MTF in one location within the FOV. Repeating this process
throughout the FOV is novel as the tip/tilt of the detector is not typically addressed. I
have tested three different blur kernels to assess which best represents the lens of the ST-16.
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Figure 2.15: Summary of contributions for focusing procedure.

Lastly, I have assessed the preliminary performance of this method in focusing the ST-16
star tracker. These contributions are summarized in Fig. 2.15.

Compared to existing star tracker focusing methods, a significant benefit of the developed
calibration procedure is that it requires far fewer images. Additional benefits are that it
does not require any special hardware and can be implemented on other optical devices that
require precise focus calibration.
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Chapter 3

Star Vector Error

A star tracker’s accuracy is the uncertainty in its orientation measurement. This is closely
related to the accuracy with which the sensor can measure the direction vectors to the stars
in view. This process is typically achieved in two phases:

1. The image of the star must first be located precisely on the detector. This
is accomplished by the detection routine which incorporates knowledge of sensor focus to
identify and separate the intensity distribution of stars from the image background and find
their centroids. This was discussed in detail in Chapter 2.

2. The detector position of the star must be related to a corresponding star vector.
This is accomplished through the use of an optical model, typically known as a camera
model, and may also include algorithms that correct for various centroid errors introduced
by hardware components.

This chapter discusses the elements of this second phase. I begin with description of the
developed camera model and an associated calibration process which estimates the model
parameters. I then present an algorithm that was developed to compensate for the effects
Electronic Rolling Shutter (ERS) which is utilized on most CMOS image detectors.

3.1 Camera Calibration

Camera models relate image plane coordinates to object space coordinates. These models
are based on a set of parameters that describe the internal geometry of the camera, lens
behavior, and the orientation and position of the camera with respect to some target. Ac-
curate knowledge of these parameters is crucial for applications that involve quantitative
measurements such as dimensional measurements, depth from stereoscopy, and motion from
images. Knowledge of these parameters is acquired through the use of a camera calibration
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Chapter 3. Star Vector Error

procedure. Typically, this procedure consists of imaging a target that has numerous struc-
tured features (structure is known a prior), several times in different camera orientations.
Based on the measured location of these features, various techniques exist for determining
the camera model parameters [Wang et al. 2008,Weng et al. 1992,Sturm et al. 2010].

This section describes the camera model and associated calibration procedure used to cal-
ibrate the ST-16 star tracker. The camera model used is based primarily on the work of
Wang et al. with an extension to describe the specifics of the lab setup at SAIL. A calibra-
tion procedure, consisting of an acquisition procedure and a parameter optimization routine,
was then developed around the extended camera model. This calibration procedure pro-
vides knowledge of 11 sensor parameters critical for the accurate formulation of star vectors
from image plane coordinates of star centroids. In addition to providing accurate star mea-
surement capabilities, the developed calibration routine is also employed to validate sensor
performance following environmental testing. For typical ST-16 flight units, environmental
testing includes thermal cycling and vibration testing, please see Section 3.1.2.E for more
information.

The extension of the camera model as well as the formulation of the parameter estimation
routine represents a collaborative contribution between myself and my supervisor, Dr. John
Enright. The developed acquisition procedure, performance assessment of the parameter op-
timization, and formulation of the entire camera calibration into a production routine used to
both initially calibrate and then validate ST-16 flight units represents my own contributions.
A summary of the contributions is shown in Fig. 3.1.
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Figure 3.1: Summary of contributions for camera calibration procedure.

3.1.1 Camera Model

Most camera models typically describe the transformation from 3D world coordinates to 2D
coordinates on the image plane using a set of model parameters. In the case of a star tracker,
the camera model describes the transformation from body-referenced star vectors to image
detector coordinates. I denote this transformation as the forward model, and denote the
inverse transformation (image detector coordinates to body-referenced star vectors) as the
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inverse model. The camera model used is based on the work of [Wang et al. 2008]. This model
accounts for elements of both radial and tangential distortion which have been found to be
prevalent in the imaging optics of the ST-16. First, I introduce the pinhole camera model
approximation. Second, I provide a basic description of the modeled geometric distortions.
Lastly I provide descriptions of both the forward and inverse camera models developed for
camera calibration and star tracker processing.

3.1.1.A Basic Pinhole Model

Let (x, y, z)C represent the coordinates of any star vector a within a camera-centered refer-
ence frame defined by (XYZ)C as shown in Fig. 3.2. Assuming a pinhole optics model, we
can map this direction vector to a set of corresponding coordinates on the ideal image plane
using the relation:

[
xJ
yJ

]
=
−f
zC

[
xC
yC

]
(3.1)

where the ideal image plane is defined by (XY Z)J , and f is the effective focal length of
camera optics. The (X,Y)J axes of the image plane are parallel to the (X,Y)C axes, and
represent the ideal location of the image detector. The ZJ axis is chosen to be coincident with
ZC which represents the optical axis of the camera optics. Therefore, (x, y)J represent the
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Figure 3.2: Camera model reference frames.
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ideal image plane coordinates of the incoming star vector ac with respect to the intersection
of the optical axis with the image plane, which is denoted as the principal point.

This mapping of 3D coordinates to a 2D image plane using a pinhole camera is a perspective
projection, followed by a 180◦ rotation of the whole image. To simplify future expressions,
the need for image inversion is removed by modeling the image plane as a virtual image
defined by (XYZ)I in Fig. 3.2. This changes Eq. (3.1) to:

gI =

[
gx
gy

]
I

=
f

zc

[
xC
yC

]
(3.2)

For the remainder of this section, the virtual image plane is referred to as simply the image
plane and is denoted with the subscript I.

3.1.1.B Geometrical Distortions

Due to several types of imperfections in the design, manufacture, and assembly of lenses
composing the optical system, the expression given by Eq. (3.2) does not reflect the true
image plane position of point gI . This expression must be revised to include geometrical
distortions of the form:

[
jx
jy

]
=

[
gx
gy

]
+

[
δx(gx, gy)
δy(gx, gy)

]
(3.3)

where g = (gx, gy) are the distortion-free image coordinates, j = (jx, jy) are the distorted
image coordinates, and δx, δy are positional errors due to various geometric distortions. Fol-
lowing the model described by Wang et. al, three types of geometric distortions are included
in the camera model: radial distortion, decentering distortion, and thin prism distortion. I
briefly review the basic definition and model for each distortion, for more detail see [Wang
et al. 2008].

Radial distortion is mainly caused by flawed radial curvature of the lens elements. This type
of distortion manifests itself as an inward or outward displacement of a given image point
from its ideal location based on its distance from the optical axis. The contribution of radial
distortion is given by:

δx,r = x(k1ρ
2 + k2ρ

4) (3.4)

δy,r = y(k1ρ
2 + k2ρ

4) (3.5)

where k1, k2 are the coefficients of radial distortion and ρ =
√
x2 + y2 is the radial distance

from the principal point on the image detector.
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Decentering distortion is caused by the misalignment of lens elements. While thin prism
distortion arises from tilt of the optics with respect the image detector. Both of these types
of distortions have both radial and tangential components.

Traditionally, decentering distortion and thin prism distortion have been mathematically
treated as independent. However, [Wang et al. 2008] states that they physically cannot
be separated and introduces a new formulation that describes the combined effects of both
decentering and prism distortion as a rotation of the image plane. This rotation is specified
as a X-Y Euler angle set parameterized by two angles, ψ1, and ψ2. This new rotated image
plane is labeled the ’detector’ frame and denoted with the subscript ’D’, see Fig. 3.2. The
origin of this frame is defined by the location of the principal point.Following Wang’s model,
this rotation is given as:

RDI = Rx(ψ1) ·Ry(ψ2) =

 1 0 0
0 cosψ1 sinψ1

0 − sinψ1 cosψ1

 cosψ2 0 − sinψ2

0 1 0
sinψ2 0 cosψ2

 (3.6)

Typically, ψ1 and ψ2 are very small, which leads Wang to apply the small angle approxima-
tion, reducing Eq. (3.6) to:

RDI (ψ1, ψ2) ≈

 1 0 −ψ2

0 1 ψ1

ψ2 −ψ1 1

 (3.7)

3.1.1.C Forward Camera Model

Using Eqs. (3.2), (3.4), (3.5) and (3.7), the transformation of incoming star vectors to image
plane centroid coordinates (forward model) is described by the following series of operations:

1. Given a star vector, aC , defined in the camera frame, the image plane coordinates of the star
centroid, gI =

[
gx , gy

]T
I

, are calculated using Eq. (3.2).

2. The ideal image plane position of the star centroid, gI , is then shifted to a distorted centroid,
hI , on the ideal image plane due to the effects of radial distortion. Where hI is given by:

hI =

[
hx
hy

]
I

= (1 + k1ρ
2 + k2ρ

4)

[
gx
gy

]
I

(3.8)

3. To account for the effects of decentering and prism distortion, the distorted centroid, hI , is
rotated into the detector frame, denoted by the subscript ”D”. This rotation, denoted as
RDI , is specified by the coefficients of decentering and prism distortion, ψ1 and ψ2. The
location of hI in the detector frame is given by:
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hD =

hxhy
hz


D

= RDI hI = RDI

hxhy
0


I

(3.9)

4. The detector array (defined by the detector frame X̂D, ŶD axes) coordinates of the star
centroid, jD, are found by tracing a ray from the theoretical pinhole to point hD. This ray
intersects the distorted detector array at point jD, which is calculated as:

jD =

[
jx
jy

]
D

=
f

ψ1hy,D − ψ2hx,D + f

[
hx
hy

]
D

(3.10)

5. These detector array centroid coordinates are then converted into corresponding pixel coor-
dinates using:

kP =

[
m
n

]
P

=

[
mo

no

]
+

1

γp

[
−jx
cs jy

]
D

(3.11)

where γp is the size of each pixel, cs is a scaling parameter used to represent non-symmetric
pixel dimensions, and [mo, no] is the location of the principal point with respect to the origin
of the detector array (pixel [0,0] on the image detector and illustrated by (o,m, n) as shown
in Fig. 3.3).

The reference frames used in the camera model are summarized in Table 3.1.

3.1.1.D Inverse Camera Model

The camera model presented in Section 3.1.1.C describes the transformation of star vectors
defined in the camera frame to star centroids on the image detector. Typical star tracker
processing requires the inverse of this model, star centroids to star vectors.
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Figure 3.3: Detector frame of reference.
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Table 3.1: Definition of Camera Model Reference Frames

Frame Symbol Origin X̂ Ŷ Ẑ

Camera C
Theoretical

Lens
Pinhole

Negative Row
Direction

Column
Direction

Optical Axis

Image Plane I
Principal

Point
Negative Row

Direction
Column

Direction
Optical Axis

Detector D
Principal

Point
X̂I rotated

through RDI

ŶI rotated
through RDI

Complete RH
vector triad

Pixel P Pixel [0, 0] Row Direction
Column

Direction
Coincident
with ẐD

The formulation of Eq. (3.8), prevents the forward model from simply being inverted. This
is due to the fact that Eq. (3.8) cannot be explicitly solved for [hx, hy]I , given a distorted
image plane coordinate [gx, gy]I , due to the ρ2 and ρ4 terms. As a result, given a set of
distorted image plane coordinates, gI , the undistorted version is typically found by solving
a similar relation given by:

gI =

[
gx
gy

]
I

= (1 + j1ρ
2 + j2ρ

4)

[
hx
hy

]
I

(3.12)

where

ρ =
√
h2x,I + h2y,I (3.13)

and j1, j2 are inverse radial distortion coefficients, different from k1, k2 of Eq. (3.8).

Beginning with star centroid coordinates on the image detector, this inverse model is de-
scribed by the following steps:

1. Beginning with the location of the star centroid given in pixel-frame coordinates [m,n]P , as
shown in Fig. 3.3, convert the row/column pixel frame centroid coordinates, kP , into detector
frame coordinates, jD, defined with respect to the principal point. This transformation is
given by:

jD =

[
γp (m−mo)
γpcs (n− no)

]
(3.14)

2. Using the detector frame coordinates of the star centroid, jD, calculate the contributions
of geometric distortions by reapplying Eqs. (3.8) and (3.9) with different ψ1, ψ2, k1, and k2
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parameters. The parameters used for the inverse model are denoted as γ1, γ2, j1, and j2,
respectively. The effects of decentering and prism distortions are removed using:

jI =

jxjy
jz


I

= RID

jxjy
0


D

(3.15)

where

RID ≈

 1 0 −γ2
0 1 γ1
γ2 −γ1 1

 (3.16)

3. The image plane coordinates of this centroid are then found by tracing a ray from the
theoretical pinhole to point jI . This ray intersects the image plane at point hI , given by:

hI =

[
hx
hy

]
I

=
f

hy,Iγ2 − hx,Iγ1 + f

[
jx
jy

]
I

(3.17)

4. The effects of radial distortion are then removed through Eq. (3.12).

5. Two points are now known for each star, the theoretical pinhole, and the image plane centroid
coordinates, gI = [gx,I , gy,I , f ]T. Therefore the direction to each star is:

aC =

gx,Igy,I
f

 (3.18)

This is normalized to get:

âC =
aC
||aC ||

(3.19)

The required inverse model parameters are summarized in Table 3.2. The inverse and forward
models are summarized by the flow diagrams shown in Fig. 3.4.

3.1.2 Calibration Procedure

Application of the both the forward and inverse camera models requires knowledge of key
model parameters that describe the quality of the optics and internal sensor geometry. These
are typically determined in a laboratory setting using some form of calibration procedure.
Most calibration procedures involve imaging a calibration target, which consists of multiple
identifiable features, and processing the resultant images. By analyzing the spacing between
features, one typically can form estimates of the camera model parameters. Since a star
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Table 3.2: Summary of Inverse Camera Model Parameters

Parameter Symbol Comments

Focal Distance f Nominal distance between theoretical pin-
hole, and detector plane. Measured along the
optical axis.

Radial Distortion
Coefficients

j1, j2

Decentering/Prism
Distortion Angles

γ1, γ2 Rotation angles describing the orientation of
the image detector.

Principal Point mo, no Row and column of optical axis intersection
with image detector. Measured from pixel
(0,0)

Y-axis Scale Factor cs Scaling factor accounting for non-symmetric
pixel dimensions.

tracker is designed to image sources that are effectively at infinite distances, the developed
calibration procedure is based on repeatedly imaging a star source, rather than calibration
target. This is achieved using a motorized gimbal to continuously change the orientation of
the star tracker, effectively simulating incoming star vectors from various directions.

First, this I briefly describe the lab setup used for the procedure. Then I introduce the model
used to relate commanded gimbal positions to incoming star vectors. Following this I discuss
the optimization routine used to form estimates of the model parameters. Lastly, I present
results of this calibration and discuss how they are critical for star tracker processing and
validation testing.

3.1.2.A Lab Setup

The lab setup used for the calibration procedure consists of a 3-axis motorized gimbal, an
autocollimator, and a collimated star source. The motorized gimbal accepts positioning
commands directly from the user in the form of a three element vector, Θ =

[
θ1, θ2, θ3

]T
.

The parameters (θ1, θ2, θ3) are the commanded angles for each joint of the motorized gimbal.
Figure 3.5 shows an image of the motorized gimbal and labels the axes of rotation, Table 3.3
lists of key specifications for each joint of the gimbal. The ST-16 star tracker is mounted to
an interface plate that is attached to the gimbal’s 3-axis. The star source is a fiber-coupled
halogen lamp that illuminates a pinhole and is collimated by a telescope. Collimation is
achieved by passing the light through the telescope in a direction opposite to that of normal
operation. The telescope is a Black Diamond ED80 with focal length of 600 mm and a
diameter of 80 mm. The separate alignment procedure is used to measure the direction of
the star source relative to the gimbal’s 3-axis.
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Figure 3.4: Flow diagrams of forward and inverse camera models.

Table 3.3: Newport Motorized Gimbal Specifications

1-Axis 2-Axis 3-Axis

Part ID RVS240PP RV120PP RV80PP
Repeatability 0.001◦ 0.001◦ 0.002◦

Resolution 0.001◦ 0.001◦ 0.0001◦

3.1.2.B Lab Model

The lab model describes the relationship between commanded platform angles and camera-
referenced star vectors. Similar to the camera model, this relationship is based on a set of
parameters that describe the lab geometry. Before we take an in-depth look at the model, lets
define 4 frames of reference that serve as stepping stones towards establishing the relationship
between commanded gimbal angles and camera-referenced star vectors.

Lab Frame The first reference frame I define is the lab frame. This is a fixed frame of
reference defined by the home position of the motorized gimbal. The origin is at the center
of rotation of the gimbal while the X-axis, X̂L, always points vertically upwards and the
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Figure 3.5: Three-axis motorized gimbal.
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Figure 3.6: Lab model reference frames.
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Z-axis, ẐL, points along the homed platform 3-axis. The Y-axis, ŶL, completes the right-
handed orthogonal coordinate system.

End-Effector Frame This frame of reference is fixed to the axes of the motorized gimbal.
The (X̂E, ŶE, ẐE) axes are defined by the positions of the Joint-1, Joint-2, and Joint-3 axes.
The origin is defined as the center of rotation of the motorized gimbal.

Mount Frame This frame is defined by external alignment features on the body of the star
tracker. The X̂M axis lies roughly in line with the serial connector used to communicate with
the star tracker, see Fig. 3.6b. The ẐM axis is coincident with the normal to the back of the
sensor, but defined in the opposite direction (roughly the direction the sensor faces). The
ŶM axis completes the right-handed orthogonal coordinate system. The origin is defined as
the center of rotation of the motorized gimbal.

Camera Frame The last frame is defined by the location of the theoretical pinhole and the
orientation of the sensor optics and image detector. The (X̂C , ŶC axes are defined roughly
in the direction of increasing rows and columns on the image detector, respectively. The
ẐC axes is defined by the optical axis of the optics. The origin of this frame is defined by
the location of the theoretical pinhole. This definition is consistent with the camera frame
definition used in Section 3.1.1.D.

These frames are illustrated in Fig. 3.6. We now define the respective transformations that
are required to convert commanded gimbal angles to camera-referenced star vectors.

Lab-End Effector Transformation

The rotation from the lab to end-effector reference frame follows a simple X-Y-Z Euler angle
set, but the sense of the first and third rotations are reversed. Thus if θi is the commanded
angle to joint-i, then the transformation is:

CLE = Rx(−θ1)Ry(θ2)Rz(−θ3) =

 c2c3 −c2s3 −s2
−s1s2c3 + c1s3 s1s2s3 + c1c3 −s1c2
c1s2c3 + s1s3 −c1s2s3 + s1c3 c1c2

 (3.20)

where ci = cos θi, and likewise for si. The lamp position is expressed in arbitrary units of
the form:

UL =
[
Ux Uy 1

]T
(3.21)
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End Effector-Mount Transformation

The rotation between the end-effector and mount frame describes a static rotational bias
between the 3-axis of the motorized gimbal, and the sensor mounting plate. These rotations
cannot be determined by the conventional sensor calibration procedure; they must be mea-
sured by a special facility alignment procedure. The choice of representation is arbitrary, so
for simplicity we adopt another X-Y-Z rotation:

CEM = Rx(φ1)Ry(φ2)Rz(φ3) =

 c2c3 c2s3 −s2
s1s2c3 − c1s3 s1s2s3 + c1c3 s1c2
c1s2c3 + s1s3 c1s2s3 − s1c3 c1c2

 (3.22)

Mount-Camera Transformation

This transformation takes us from the physical mounting on the interface plate, into the
camera frame. The origin of the camera frame is at the theoretical lens pinhole. Allowing
an arbitrary tip-tilt-roll rotation between these frames, I express this rotation with another
X-Y-Z Euler angle set parameterized by: α1, α2, α3. This rotation is given as:

CMC = Rx(α1)Ry(α2)Rz(α3) =

 c2c3 c2s3 −s2
s1s2c3 − c1s3 s1s2s3 + c1c3 s1c2
c1s2c3 + s1s3 c1s2s3 − s1c3 c1c2

 (3.23)

No translation is necessary for the transformation from the mount frame into the camera
frame. This is due to the fact that the light source being imaged is a wide collimated beam.
Motion, both along the axis of the light source, and perpendicular to the axis, will have
no effect, provided the lens aperture stays within the beam diameter during the calibration
procedure.

Using Eqs. (3.20) to (3.23), the direction of the star source in the detector frame can be
expressed as:

UC = CCMCMECELUL (3.24)

where CCM = CT
MC , CME = CT

EM , and CEL = CT
LE. The parameters associated with the

lab model are summarized in Table 3.4.

3.1.2.C Parameter Estimation

The inverse camera model described in Section 3.1.1.D describes the conversion of image
detector star coordinates into camera-referenced star vectors. Star vectors generated from
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Table 3.4: Summary of Lab Model Parameters

Parameter Symbol Comments

Joint Angles θ1, θ2, θ3
Joint angles as commanded to the motion
platform

Mount Rotations φ1, φ2, φ3

Angles between joint-3 and mounting plate.
Must be measured by special facility align-
ment.

Camera Rotations α1, α2, α3 Angles between the mount and sensor optics

the camera model are labeled as sensor -based star vectors and denoted with the subscript
s. Similarly, the lab model defined in Section 3.1.2.B also describes star vectors, but this
set is based on the commanded gimbal angles. These star vectors are labeled as lab-based
star vectors and denoted with the subscript l. Both of these models depend on a number
of parameters that define the internal geometry of the sensor, the quality of the optics, and
the geometry of the lab setup. To determine these parameters, an optimization routine was
developed that utilizes the discrepancy between sensor-based star vectors and lab-based star
vectors to guide a bounded nonlinear minimization.

The motorized gimbal is used to conduct a Ncal-point survey of the sensor FOV. This survey
is arranged as a grid of equally spaced points on the image detector. At each orientation,
the star source is imaged and the commanded gimbal angles and detected star centroids
are recorded. Employing both the inverse camera model, and the lab model, this data is
converted into a set of Ncal sensor-based star vectors, as,C , and Ncal model-based star vectors,
al,C , both expressed in the camera frame. An error function, Qc, is defined as the angular
MSE between corresponding sets of star vectors. This is expressed as:

Qc =
1

Ncal

Ncal∑
i=1

arccos(âTs,i · âl,i)2 (3.25)

where as,i and al,i represent the sensor-based and lab-based star vector for the i−th point
of the survey. This calibration procedure is summarized in the flow diagram shown Fig. 3.7.
Using Eq. (3.25) as the cost function, I utilize MATLAB to run a 3-step bounded nonlinear
minimization to determine the desired lab and camera model parameters. The stepped
minimization is used to improve the repeatability of the calibration in terms of specific
parameters values. The starting values, as well as the upper and lower bounds for each
parameter are summarized in Table 3.5.

This 3-step minimization is described by the following individual minimizations:

1. Using all 300 points, the first minimization entails only a subset of the camera model pa-
rameters (f,mo, no) and the camera-rotations (α1, α2, α3) from the lab model. The starting
values for each parameters are given in Table 3.5.
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Table 3.5: Summary of Calibration Starting Values

Parameter Symbol Unit
Initial
Value

Lower
Bound

Upper
Bound

Camera Rotations α1, α2, α3 radians 0, 0, 0 −π
4
,−π

4
,−π

4
π
4
, π
4
, π
4

Focal Length f m 16× 10−3 15× 10−3 17× 10−3
Y-axis scale factor cs N/A 1 0.95 1.05

Principal Point mo, no pixels 972, 1296 778, 1036 1166, 1555
Radial Distortion j1, j2 N/A 0, 0 −108,−104 108, 104

Decentering/Prism
Distortion

γ1, γ2 radians 0, 0 −0.175, −0.175 0.175, 0.175

Lab Model

Camera Model

Commanded 
Platform Angles

Light Source 
Direction

Image‐Plane 
coordinates of 
detected stars

Vector Difference 
(angle)

Calculate 
Error

Lab‐based 
star vectors

Sensor‐based 
star vectors

,  	,  Camera Rotation

Focal Length

, 

Column‐scaling

Radial Distortion

,  Decentering/Prism 
Distortion

,  Principal Point

Interface Plate 
Mount Angles

Nonlinear 
Minimization

Parameter 
Estimates

Figure 3.7: Layout of camera calibration procedure.

2. Following this, a second minimization is used to determine the camera model distortion
parameters (j1, j2, γ1, γ2).

3. Lastly, a full re-optimization of all camera model and lab model parameters is run, using the
results of the previous minimizations as their initial guesses.

3.1.2.D Results

Using a Ncal = 300 point survey, typical residual errors between the sensor-based and lab-
based star vectors are approximately 3.5 × 10−5 radians (≈ 2.0 × 10−3 degrees). This is
equivalent to approximately 0.2 pixels of error on the image detector. A plot of the residual
error between the lab-based and camera-based star vectors is shown in Fig. 3.8. The residual
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vectors are drawn from the camera-based star vectors toward to the lab-based star vectors,
given the fitted calibration parameters and the commanded joint angles.

Although minor, Fig. 3.8 shows structure in the residual errors of the optimization process.
This structure indicates that at least some un-modeled parameters exist that have an impact
on the local position of a star vector. Future work is required to understand this residual
structure which is suspected to come from the accuracy of the motorized gimbal.

The mean error across the detector, 0.2 pixels, is currently sufficient for the target per-
formance parameters of the ST-16. The total procedure, including survey acquisition and
optimization, requires approximately 30 minutes to complete.

3.1.2.E Validation Procedure

In addition to using the camera calibration procedure to initially calibrate ST-16 flight units
following manufacture, this procedure is utilized to validate sensor performance following
environmental testing. Typical environmental tests for ST-16 flight units include vibration
testing and thermal cycling. Following each of these tests, the performance of each flight unit
is validated by conducting another 300-point survey and assessing the residuals based on the
set of model parameters determined in the initial calibration. Although this doesn’t represent
a novel contribution to the field, the validation procedure is critical to the preparation of
ST-16 flight units.

3.1.3 Summary and Future Work

The accuracy performance of a star tracker is directly dependent on the accuracy with
which imaged stars can be converted to incoming star vectors. This transformation is based
on knowledge of various intrinsic sensor parameters which cannot be practically measured
individually. I have developed a lab-based calibration procedure that determines these pa-
rameters using a motorized gimbal and collimated star source.

Table 3.6: Calibrated Model Parameters - Typical Case

Parameter Symbol Unit Calibrated Value

Camera Rotations α1, α2, α3 radians [−1.52, 2.03, −1.53]× 10−3

Focal Length f m 15.9959× 10−3
Y-axis scale factor cs N/A 0.9998

Principal Point [mo, no] pixels 1100.5, 1207.3
Radial Distortion j1, j2 N/A −1.416× 107, −0.108× 103

Decentering/Prism
Distortion

γ1, γ2 radians [1.94, −6.61]× 10−3
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Figure 3.8: Camera calibration residuals. Vectors show error from sensor-based star vectors to
lab-based star vectors.

The procedure is based on analytical models that describe i) the transformation between
the star tracker image detector and the sensor optics, and ii) the location of the simulated
star source with respect to the star tracker, based on the commanded gimbal orientation.
I estimate the sensor geometry through a minimization guided by the error between the
modeled star position, based on the known orientation of the motorized gimbal, and the
measured star position from the image detector. The residual error in star vector formulation
is approximately 3.5× 10−5 radians which equates to approximately 0.2 pixels on the image
detector. Although this is sufficient for current performance targets of the ST-16 star tracker,
this process must be refined to achieve accuracy performance on the order of 1 arcsecond.

Future work is required to understand the limiting factors in the calibration residuals. The
accuracy of the gimbal is suspected to be the dominant source of error. The orthogonality of
the axes needs to be verified, and the effect of wobble about each joint needs to be examined.
Additional improvements may lie in more complex centroiding routines that rely on models
of the PSF shape.
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3.2 ERS Compensation

Electronic Rolling Shutters (ERSs), common in many modern imaging detectors, present
challenges for use in star trackers. These detectors suffer from geometric distortions if images
are taken during satellite motion. This section presents an analytical model of the ERS
distortion tailored to the characteristics of star-field images. This model is used to develop
a series of algorithmic corrections that estimate spacecraft angular velocity from sequential
image pairs and remove the ERS effects from measured star positions. These routines are
implemented on the ST-16 star tracker and verified using simulation and laboratory testing.
Simulations show that the residual angular velocity measurement errors are dominated by
centroid noise (∼ 0.007◦/s, 1−σ). The simulations are also supported by laboratory testing,
which shows that the developed ERS corrections are able to preserve accurate scene geometry
with body rates of up to 3◦/s.

3.2.1 Introduction

Many low-cost COTS detectors make use of a readout technology known as a ERS. These
systems rarely have mechanical shutters, so the detector exposure is controlled electrically.
To avoid the need to sample all of the image pixels at once, each row of the detector is
released from reset at a slightly different time. The total exposure time for each row remains
constant, but the rows are not exposed simultaneously — each row is offset in time by a
small amount. If the camera (or scene) is not moving during the exposure, the image from
an ERS-equipped detector is identical to an ideal imaging system. However, any motion
in the camera or scene introduces geometric distortions in the resulting image. This is in
addition to any blurring effects due to the motion.

Previous work for ERS modeling and correction has been mainly focused on correcting entire
images for use in robotic vision algorithms [Liang et al. 2005, Liang et al. 2008, Ait-Aider
et al. 2007]. These are generally dense scenes where feature identification and correspon-
dence can be challenging. In addition, these problems generally need to address local velocity
variations that stem from moving objects in the image [Nicklin et al. 2006]. In comparison,
with the exception of Earth or Moon incursions, star tracker images can be modeled as
blurred point sources against a dark background, all of which are effectively at an infinite
distance. This greatly simplifies the task of feature detection, correspondence, and cor-
rection. Furthermore, the range of inquiry can be confined to distortions resulting from
body-frame rotational motion; translations are not significant. These simplifications allow
for the utilization of relatively simple models to analyze and correct for the effects of the
ERS.

The research presented in this section represents a combination of collaborative work between
myself and my supervisor, Dr. John Enright, and my own personal contributions. This
research can be broken into five main segments, shown in Fig. 3.9. The first three of these
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represent developed routines that model the effects of ERS on star tracker performance,
estimate the angular rate of the sensor using a pair of images, and heuristically match stars
between this pair of images. The latter two segments represent validation of the developed
correction routines. Segments 1, 2, and 4 were done collaboratively between John Enright
and I. Segment 3, the matching routine, represents the work of John Enright and is briefly
mentioned for context. The last segment that involved the integrated lab testing of the
developed routines represent solely my own work. This authorship is summarized in Fig. 3.9.
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Integrated Lab Tests
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Results3

Examining Dynamic Availability4
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From Literature

Simulation Tests

3 Matching Routine

Figure 3.9: Summary of contributions for ERS compensation.

3.2.2 Framework for ERS Corrections

The proposed sensor processing scheme corrects for ERS effects using a pair of sensor im-
ages. The algorithm requires little persistent state information, has modest computational
requirements, and does not rely on external sensors such as rate gyros. Although these rou-
tines were developed for a specific sensor (i.e., the Sinclair Interplanetary ST-16), adapting
this algorithm to other hardware should be straightforward. This subsection reviews the
steps involved in typical star tracker processing and presents detailed models of the effects
of the ERS on the sensor’s measurements. These models help us understand the ERS dis-
tortions and serve as a framework for the developed corrections. The algorithms detailed in
this study form the basis of the processing routines used onboard the Sinclair Interplanetary
ST-16 star tracker.

The developed approach assumes that two images, taken in close succession are available.
These images are denoted as Image-0 and Image-1, respectively. It is assumed that raw
image processing corrects for the dark-levels and extracts likely star centroids from both
images, but does not apply any geometric rectification. The proposed processing scheme
then begins by making two passes through the data. In the first pass, the body rates of the
sensor are estimated in the camera frame of reference, denoted as ωC . Then in the second
pass, local corrections are made to centroid locations and the resulting star vectors. This
processing sequence is summarized in Fig. 3.10. The remainder of this subsection elaborates
on each of these processing steps.
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Figure 3.10: The ERS compensation processing sequence.

3.2.2.A Conventional Image Processing

Although the developed ERS corrections operate independently from conventional star tracker
processing, they do rely on a number of assumptions concerning the outputs of these pro-
cessing steps. In particular, the developed corrections rely on typical star tracker routines
to extract promising stars from the raw detector image (i.e., Star Detection), and secondary
routines to convert centroid coordinates into detector-frame star vectors (i.e., the Camera
Model). The latter routines can involve corrections for optical aberrations and are described
in detail in Section 3.1.

Star centroid measurement relies, at least implicitly, on the PSFs that are expected to
be found in detector images. Although the spacecraft motion is continuous and each row is
offset in time from the next, the geometric distortions caused by the ERS are most significant
when considering the geometry between stars. In the neighborhood of a single star they are
less important. Consider a moving star tracker without an ERS. Over the duration of an
exposure, the instantaneous star centroid will trace a path on the detector from di to df .
This will create a streak in the star tracker image as this path is convolved with the PSF of
the sensor. Figure 3.11 shows an actual star image taken using a ST-16 star tracker and a
3-axis motorized gimbal slewing at 2 ◦/s. These images were taken using the gimbal system
described in Section 3.1.2.A.

We assume that we known enough about the shape of the nominal PSF to estimate the
midpoint of this track. If we also assume that centroid track is linear, then the midway
point is the average of the endpoints.

dt =
df + di

2
(3.26)

Furthermore, for symmetric PSFs, this midpoint can be calculated with a simple first-
moment centroid of the image intensity as given in Eq. (2.1). This summation need only
be evaluated in the neighborhood of a star, not the whole image. In the remainder of this
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Figure 3.11: Star image showing blurring due to sensor motion.

section, detector plane coordinates will refer almost exclusively to star centroids. For nota-
tional simplicity, henceforth the notation (m,n) refers to the row/column position of a star
centroid as defined in the pixel frame described in Fig. 3.3.

Once the centroid location of a star is known, a calibrated camera model, fc, as described
in Section 3.1.1 by Eqs. (3.14) to (3.19), is used to transform the centroid coordinates in the
pixel frame, kP , into a corresponding direction vector, ac, expressed in the camera frame, c.
E.g..,

ai,C = fc (kP [mi, ni]) (3.27)

where ai,C is the direction vector of the i-th star detected in image-0, and kP (mi, ni) are
the associated centroid coordinates in the pixel frame, expressed as row/column coordinates
in pixels.

3.2.2.B Vector Correction

Each row in an ERS-equipped detector is exposed at a slightly different time. The primary
effect of this process is to introduce a row-dependent rotation between star vectors in an
image. Although this is the final correction in the developed processing sequence, under-
standing this phenomena and its correction is key to understanding the rest of the developed
ERS-compensation routine.

Given the exposure duration, te, and the row-to-row time offset, trow (given in Table 1.1),
the midpoint of the exposure of row m occurs at time:
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tm =
te
2

+mtrow m ∈ 0 . . . Nm − 1 (3.28)

where Nm is the number of rows on the image detector. For convenience, the constant term
from Eq. (3.28) can be dropped by defining the epoch of the image (i.e., t = 0) to be the
midpoint of the exposure of the first image row, specified by m = 0. For the remainder of
this chapter, Co is used to denote the camera reference frame at epoch of image-0.

When the camera is in motion with angular rate ωC , the body frame is constantly rotating.
Applying the camera model to two star centroids, (m1, n1) and (m2, n2), obtained from
different areas of the image, yields star vectors in different reference frames:

a1,C1 = fc (kP [m1, n2])

a2,C2 = fc (kP [m2, n2]) (3.29)

Provided the angular rate is not too high, the rotation between these two frames can be
approximated as an infinitesimal rotation θ×, given by:

CC1C2 =
(
I + θ×

)
(3.30)

Over the relatively short duration of the exposure, it is assumed that ωC remains constant.
Using the observation that an angular velocity vector represents an instantaneous axis of
rotation, and substituting the time equations from Eq. (3.28), we get:

CC1C2 =
(
I + trow (m2 −m1)ω

×
C

)
(3.31)

If we let Co define the instantaneous camera frame at the epoch (e.g., t = 0) of image-0,
then the ERS correction rotation for a given centroid location is:

CCoCi = I + trowmiω
×
C (3.32)

where Co is refers to image-0 epoch frame, and Ci refers to an instantaneous image-0 camera
frame. Therefore, as long the rotation rate ωC is known, the ERS-corrected star-vectors at
the epoch of image-0 can be calculated using:

ai,Co =
(
I + trowmiω

×
C

)
fc (kP [mi, ni]) (3.33)

The notation for star vectors, centroid coordinates, and image frames for the developed ERS
routines is summarized in Table 3.7.
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Table 3.7: Motion Estimation Notations

Quantity Image-0 Image-1

Row mi mj

Column ni nj
Star Vector ai bj

Epoch Frame Co Eo
Star Frame Ci Ej

3.2.2.C Rate Estimation

Applying the above vector correction relies on knowledge of the angular velocity of the star
tracker. If external sensors are available, the angular velocity may be able to be measured
directly. However, it was our desire for the developed ERS compensation routine not to have
this external dependency. Estimating motion by tracking features between image is a staple
technique in computer vision. In contrast to general computer vision problems, star tracker
scenes are relatively simple. This subsection presents a simplified algorithm for estimating
body rates by tracking stars between a sequential pair of images. This algorithm requires
association of stars between images, but does not require an absolute match to the onboard
star catalog.

The corrections for stars in Image-0 are given by the rotation matrices calculated from
Eq. (3.32). Similar corrections can be written for stars in Image-1:

CEoEj = I + trowmjω
×
C (3.34)

bj,Eo = CEoEjbj,Ej (3.35)

where, bj,Ej is the direction vector of the j-th star found in image-1, expressed in the j-th
instantaneous camera frame, bj,Eo is the direction vector of the j-th star found in image-1,
expressed in the image-1 epoch frame defined as the instantaneous camera frame half way
through the exposure of row 1, image-1. This can be written in terms of the inter-exposure
time (known from ST-16 processing routines), tx, as:

CCoEo = I + txω
×
C (3.36)

If the measurements were perfect, the star vectors from both images could be equated if
rotated into a common frame, Co:

(
I + trowmiω

×
C

)
ai,Ci =

(
I + txω

×
C

) (
I + trowmjω

×
C

)
bj,Ej (3.37)
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Discarding higher order rotational terms, and simplifying gives:

ai,Ci =
(
I− trowmiω

×
C

) (
I + txω

×
C

) (
I + trowmjω

×
C

)
bj,Ej

ai,Ci ≈
[
I + {trow (mj −mi) + tx}ω×C

]
bj,Ej

=
[
I + τijω

×
C

]
bj,Ej (3.38)

where τij = trow (mj −mi) + tx. The angular velocity of the star tracker can be estimated by
using the observed star vectors ai,Co and bj,Eo . Rearranging this relationship into the form
of a linear least-squares problem in ωC gives:

[
I + τijω

×
C

]
bj,Ej = ai,Ci

τijω
×
Cbj,Ej = ai,Ci − bj,Ej

−τijb×j,EjωC = ai,Ci − bj,Ej (3.39)

This equation can be written as:

AijωC = dij (3.40)

where

Aij = − (trow (mj −mi) + tx) b
×
j,Ej

(3.41)

and

dij = ai,Ci − bj,Ej (3.42)

Concatenating the matrices form from each pair of vectors results in the linear least squares
system:

AωC = d (3.43)

which has the solution:

ωC =
(
ATA

)−1
ATd (3.44)
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This can be computed efficiently in block form:

ωC =
(∑

AT
ijAij

)−1∑(
AT
ijdij

)
(3.45)

where the summations are evaluated over the matched pairs of vectors. The RMS error in
the fit is then:

σω =
‖AωC − d‖√

NM

(3.46)

where NM is the number of matched stars.

The above derivation presupposes that the mapping M between stars in the two exposures,
i.e., M : i → j, is known. This is realized using a heuristic approach to mapping between
two images described in detail in [Enright & Dzamba 2012].

3.2.2.D Centroid Correction

The models introduced in the preceding subsections describe the macro-effect of the ERS
on inter-star geometry, and derive a rate estimation algorithm that can operate using ERS-
skewed star vectors. However, because the ERS time offsets apply to each sequential row,
measurable effects can be observed during the exposure of individual stars.

A model for the displacement of a star centroid on the image detector over the course of
an image exposure, including the effects of ERS, is now developed. This displacement is
denoted as the track, and is represented with the symbol dδ. Let p denote the star vector of
any arbitrary star at the beginning of an exposure. Let q denote the direction vector to the
same star at the end of the exposure. Both vectors are expressed in instantaneous camera
frames. Each of these vectors are expressed in terms of their components, e.g.:

p =

 px
py
pz

 (3.47)

Using a pinhole optics model, the focal-plane position of the star centroid corresponding to
the star vector, p, is given as:

dp =
f

pz

[
px
py

]
(3.48)
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A similar expression holds for dq. If the rotation over the course of an exposure is modeled
as an infinitesimal rotation caused by the angular velocity, then:

q = Cp (3.49)

where

C =
(
I−∆tω×C

)
(3.50)

and ∆t is time required for the full exposure of the star (greater than te due to the effects of
ERS, full definition given by Eq. (3.57)). The displacement over the star exposure can then
be found from:

q = p+ δp =
(
I−∆tω×

)
p (3.51)

and thus

δp = −∆tω×Cp = ∆t

 ωzpy − ωypz
ωxpz − ωzpx
ωypx − ωxpy

 (3.52)

Most star trackers have fairly narrow FOVs — the ST-16 has a minor-axis FOV of 7.5◦ —
thus for moderate rotation rates we can assume that:

pz ≈ qz (3.53)

Hence, the displacement of the centroid in the focal plane over the course of the PSF exposure
is:

dδ =
f ∆t

pz

[
ωzpy − ωypz
ωxpz − ωzpx

]
(3.54)

We can divide by the pixel size, γp, to get the track displacement in pixels

dδ =
f ∆t

γp pz

[
ωzpy − ωypz
ωxpz − ωzpx

]
(3.55)
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The total extent of the blurred PSF from a single star depends on the time duration ∆t
that appears in this expression. This time-span begins when the first pixel in an imaged star
begins its exposure and ends, when the last pixel completes. Due to the row-to-row time
offsets caused by the ERS, this depends in part on the motion in the row-wise direction. The
total height of the PSF image, in terms of number of rows, is given by H. H can be related
to motion of the centroid by using the track displacement in the x-direction from Eq. (3.55).
This is expressed as:

dδx = H − 2αp (3.56)

where αp is the radius of the PSF in pixels. The total time required for this exposure is:

∆t = (H − 1) trow + te (3.57)

Equating Eq. (3.56) to the track displacement in the x-direction described by Eq. (3.55),
and substituting in Eq. (3.57) gives

f ((H − 1) trow + te)

γp pz
(ωzpy − ωypz) = (H − 2αp) (3.58)

Solving for H gives

H =
trow − te − 2αpγppz

f(ωzpy−ωypz)

trow − γppz
f(ωzpy−ωypz)

(3.59)

This expression is valid as long as the terms involving the ω-components are non-zero (in
the zero-motion case, Eq. (3.58) gives the trivial result H = 2αp). It is assumed that
centroid measurement algorithms identify the point half-way along the centroid track on the
focal plane, i.e., displaced dδ/2 from the initial centroid position dp. Thus, for a given ωC
Eq. (3.59), Eq. (3.57), and Eq. (3.55) can be used to predict where the measured centroid
will lie. Moreover, if row readout time, trow, is set to 0, the same set of expressions can
be used to predict performance of an ideal sensor without an ERS. The change in centroid
location, due to the ERS effect is then:

ders =
1

2

(
dδ − dδ|trow=0

)
=
f (H − 1) trow

2γppz

[
ωzpy − ωypz
ωxpz − ωzpx

]
(3.60)

and thus the ERS-corrected centroids can be found from:
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[
m′i
n′i

]
=

[
mi

ni

]
− ders (3.61)

Two effects are potentially important when considering how the ERS affects star tracker
performance. First, the sensor motion can cause a bulk centroid offset across the whole
detector. If uncorrected, this will introduce inaccuracy in the final attitude estimate from
the sensor, but because the relative geometry between stars is not affected, the sensor’s
ability to match stars is not impaired. However, any change in the relative displacement,
ders, from one part of the detector to another will distort the relative geometry of the detected
stars. This latter effect will interfere with the star tracker’s ability to match stars.

Figure 3.13 shows the magnitude of the centroid correction for different types of rotations.
This value is insensitive to the position in the FOV for rotations about the x- and y-axes.
In fact, this can be seen from Eq. (3.59) and Eq. (3.60). For rotations about the boresight
(i.e., z-axis) the magnitude of the correction is roughly proportional to the distance from
the boresight axis. In this case, we assume a star at the minor edge of the FOV, θx, where
the ERS effect will be largest, see Fig. 3.12.

The corrections are largest for y-axis rotations. This motion creates the most coupling
between the ERS effects and the sensor motion (and also leads to the asymmetry about
zero rotational speed). Motion about the x-axis creates a moderate, symmetric correction.

Theoretical 
Pinhole

Minor‐axis 
FOV

Major‐axis 
FOV

Image 
Detector

Figure 3.12: Field of view schematic.

62



3.2 ERS Compensation

Although it is difficult to see at this scale, the correction resulting from z-axis rotations is
asymmetric and also depends on star location in the FOV.

This effect of z-axis rotations are examined closer in Fig. 3.14. The figure shows the mag-
nitude of the maximum centroid displacement relative to any other point on the detector.
ay, ax denote the vector components of the star vector aC . The figure illustrates the scale of
this displacement, typically 0.08-0.15 pixels, as well as the the asymmetry of the ERS effect.
This asymmetry is caused by coupling between z-axis rotations and the ERS displacement:
for positive ay, the motion and the row-readout move in opposite directions; for negative
ay, the effect is reversed. For the ST-16 sensors, optical calibration gives a mean residual
error equivalent to approximately 0.2 pixels, so uncorrected centroid displacement will have
a noticeable effect on the overall accuracy of star vector determination.

3.2.3 Results

In the preceding section, I presented a series of algorithms designed to compensate for ERS
effects in star tracker images and permit effective star tracking. For these techniques to
be useful, the rate estimates derived from ERS-skewed star images must be accurate, and
the modeled corrections must be effective in undoing the ERS distortions in the star vector
measurements. This problem of algorithm verification is approached using a combination of
simulation and laboratory testing.
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Figure 3.13: Variation of ERS correction with angular velocity.
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Figure 3.14: Relative centroid displacements under z-axis motion.

3.2.3.A Simulations

Simulations allow rapid evaluation of the ERS compensation routines using realistic distri-
butions of stars. Scenes can easily be generated for arbitrary sensor orientations, optical
configurations, and body rates. The primary objective of these simulations was to evaluate
the accuracy of the rate estimation algorithm.

Each scene for the simulation is generated based on the optical parameters of the ST-16 star
tracker, specifically the ST-16 FOV (15◦×21◦). The source catalog for this simulation is the
Yale Bright Star Catalog [Hoffleit & Warren Jr 1991]. The starting sensor orientation was
randomly generated for each scene, parameterized by right ascension, declination and bore-
sight roll. Each component of angular velocity is independent and uniformly distributed on
−2 ≤ ωi < 2◦/s. Sensor orientation is propagated numerically between exposures, assuming
constant angular velocity. For each exposure the simulation calculates the stars in view, and
their true directions relative to the detector frame of reference. ERS effects are then applied
and the camera model (Section 3.1.1) is used to calculate the detector locations of the star
centroids. The simulation uses tx = 0.1 and trow = 43× 10−6s.

Detection uncertainty is introduced by adding Gaussian noise of 0.2 pixels to both com-
ponents of the star centroids. This noise represents the typical amount of centroid uncer-
tainty that is observed following the camera calibration procedure discussed in Section 3.1.2.
Blurred star images could be simulated at the pixel level, however, this extra step requires
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significantly more time to construct each scene. It was judged that the fidelity of noisy
centroid detection was sufficient for this study. Once the centroid locations are chosen, the
brightest 10 stars were selected from each image and the developed ERS compensation rou-
tines were applied. The ST-16 applies a similar selection heuristic to the stars detected in
each image.

The angular velocity statistics for a trial involving 104 random scenes are shown in Table 3.8.
The no-motion statistics are drawn from a smaller trial of 103 scenes with zero angular
velocity. Because the mean errors were very small — suggesting zero overall bias in the ω
estimates — only the standard deviations are reproduced. Errors in the zero-motion case are
dominated by the centroid noise. Larger errors observed for ωz are expected as star tracker
roll estimates are very sensitive to small centroid displacements. The motion trials show
modest increases in the ωz and ωx components, but a relatively large jump in ωy. Closer
examination of the angular velocity estimates revealed a cross-axis coupling between the
ωy and ωz components, see (Fig. 3.15). Large roll rates introduce a variable bias into the
estimates of ωy. This effect is not apparent in the other axes.

We suspect that the cross-axis bias is a shortcoming of the linearized rate estimator derived
in Section 3.2.2.C. Although these rate estimates are sufficiently accurate to compute the
necessary ERS corrections, they are not particularly good as standalone rate measurements.
Additional tests showed that a relatively simple fix could be used to eliminate most of the
bias effect. This fix is described by the following operations:

1. Calculate corrected star vectors for each of the paired images using the raw rate estimate.

2. Find the rotation between exposures using an optimal vector rotation estimator (e.g., q-
Method [Keat 1977], QUEST [Shuster & Oh 1981], ESOQ2 [Mortari 2000], etc)

3. Compute a revised estimate of ω from the exact frame-to-frame motion.

Table 3.8 and Fig. 3.15 show the effect of this secondary correction applied to the simulated
test cases. Error statistics are virtually identical to the zero-motion case and the coupling
between axes is absent. Although this step requires some additional processing, it is felt that
the improvements in accuracy are enough to justify the additional computational cost. The
ST-16 currently uses ESOQ2 to calculate the inertial attitude solutions, so an additional
execution of the algorithm is unlikely to require more than a few milliseconds to complete.

Table 3.8: Angular Velocity Determination

Component σ (No motion) deg/s σ (With Motion) deg/s σ(Motion + ESOQ2 ) deg/s

ωx 0.0074 0.0083 0.0072
ωy 0.0075 0.0245 0.0075
ωz 0.0536 0.0597 0.0551
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Figure 3.15: Cross-axis estimator bias.

3.2.3.B Laboratory Tests

As an extension to the simulation tests described in the previous section, the developed ERS
corrections were tested in the laboratory using an engineering model ST-16 star tracker and
a motorized three-axis gimbal. Although these tests cannot reproduce arbitrary star scenes,
laboratory trials do allow for testing of the embedded, on-line correction routines, during
real motion. The primary objectives of these laboratory trials were to verify the modeled
corrections were effective in reducing ERS distortions in the star vector measurements, and
to examine the effectiveness of the ESOQ2 rate estimator in removing the cross-axis bias.

The setup of these tests consisted of the sensor attached to a motorized, three-axis gimbal,
viewing a star scene comprised of three point sources. The geometry of this three-star
pattern was parameterized by a set of three arc lengths: Side-a, Side-b, and Side-c, which
were measured through a separate set of static trials. Each test consisted of single-axis
rotations, with rates of −3 . . . + 3◦/s, applied separately to both the x− and y−axes. The
trials for each rate consisted of 50 separate measurement of the star pattern geometry. These
measurements were then averaged to minimize the effects of random sensor noise and gimbal
inaccuracy, and then compared against the geometry of the three-star pattern in static
conditions. The experiment was repeated both with and without the ERS corrections.

Figure 3.16 and Fig. 3.17 show errors in the arc length measurements, for both ωx and
ωy motion, with and without the developed ERS corrections. It can be seen that in both
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trials, the ERS corrections reduce the arc length error to approximately the same level as
the variability seen during the zero motion trials. The thick dotted line in Fig. 3.16 and
Fig. 3.17 represents the 1σ variability of these zero motion tests.

From Fig. 3.16, it can be seen that for a pure ωy spin, ERS effects significantly degrade the
arc length measurements for Side-b and Side-c whereas Side-a is mostly unaffected. This
is due to the orientation of the star pattern relative to the body motion. The endpoints
of Side-a span relatively few rows, and therefore see little motion during the ERS exposure
shift. In most of the trials the arc-length error is less than the standard deviation of the
stationary case. Figure 3.17 shows the effect of ωx motion. The qualitative results are similar
to the first case — the ERS corrections minimize errors in Side-b and Side-c, while Side-a
sees little error at all — but the cause of this behavior is different. Side-a spans the largest
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Figure 3.16: Errors in star pattern geometry for column-wise motion (ωy).
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Figure 3.17: Errors in star pattern geometry for row-wise motion (ωx).

number of image rows, but it sees little change because most of the endpoint displacement
is in the column direction.

These tests were repeated under a z-axis rotation in order to confirm the presence of the
rate bias in ωy and verify that the ESOQ2 rate estimates remove this secondary effect. To
make the cross-axis effect more pronounced a primary rotation about z was combined with a
small amount of cross-axis motion. Figure 3.18 shows laboratory measurements of this bias
using both the raw and ESOQ2 estimated rates. Although the ESOQ2 correction greatly
reduces the magnitude of the bias, some residual rate dependent bias is still visible.

It is believed that this remaining bias is caused by synchronization uncertainty between the
platform motion and the star tracker measurements. This premise is based on the structure
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observed in the arc length errors as a function of rate as showed in Fig. 3.16b, Fig. 3.16c,
Fig. 3.17b and Fig. 3.17c. Future work is required to verify this hypothesis.

-3 -2 -1 0 1 2 3
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025


z
(deg/s)


y(d

eg
/s

)

 

 
Raw Estimate
ESOQ Estimate

Figure 3.18: Laboratory measurements of the cross-axis estimator bias.

3.2.4 Summary and Future Work

When evaluating detectors for new star tracker designs, engineers are faced with a potentially
troublesome trade-off: limit the detector choices to those with simultaneous row exposure;
accept the added complexity of a mechanical shutter; or restrict the operating regime to
very small angular velocities. The developments presented in this section offer a means of
removing ERS distortions without the need for additional instruments. These algorithms are
computationally simple and can easily be adapted to sensors with different optical designs
and processing concepts.

The specific contributions of this research are:

1. Analytical models (coarse and fine) of the effects of ERS distortion on star centroid locations.

2. Algorithms to estimate rate from pairs of detector images and correct ERS effects.

3. Initial simulation-based verification of the compensation routines that characterize rate es-
timation accuracy and computational complexity.
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4. An embedded implementation of the processing routines, validated by laboratory testing.
These tests clearly demonstrate effectiveness of the ERS compensation under realistic imag-
ing conditions.

These algorithms are quite mature and have been deployed on a commercial sensor. Nonethe-
less, ongoing studies aim to improve the algorithm performance and better characterize the
effectiveness of the corrections. In particular, the cross-axis bias effect must be better un-
derstood and algorithm testing should be expanded to include night-sky observations.

Further research is necessary to understand the source of the cross-axis bias and additional
testing is required to verify the effect in laboratory results. The proposed secondary ESOQ2
correction is effective in improving the rate estimation accuracy, but this effect may be able
to be removed in the initial determination step.

Laboratory testing is able to verify that the ERS software is able to estimate sensor body rate
and preserve the geometry of simple scenes. Extensive night-sky tests with the ST-16 have
validated star tracking and attitude estimation functions but these experiments have used
only static observations. A valuable experiment would be to verify our ERS compensation
routines operate correctly during slewing maneuvers under the night sky. Future work is
required to qualify a motorized mount to enable precision slew control during field trails.

Although some aspects of algorithm development have been shaped by the specific operating
concept of the ST-16 star tracker, this approach to ERS compensation is applicable to a wide
array of sensor designs. If rate estimates are independently available (e.g, from rate gyros
or an external state estimator), the ERS corrections can be applied without the need for the
rate estimation step. Additionally, star trackers with dedicated tracking modes can dispense
with the paired imaging and integrate rate estimation into their frame-to-frame processing.
Designers need not choose between effective star tracking and simplified hardware design —
they can have both.
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Verifying Slew Tolerance

The performance of a star tracker is largely based on the availability of its attitude solution.
Several tests exist to assess the availability under static imaging conditions, however these
rarely reflect true operating conditions. To acquire results of higher fidelity, we are generally
forced to utilize mission specific details to generate a true sky track. This study attempts
to bridge this gap between low fidelity general solutions and high fidelity, mission specific
solutions by providing intermediate-level solutions that explicitly address the effects of sensor
slew and incorporate pixel-level detection logic. Specifically, I describe, model, and test the
effects of slew rate on star tracker performance using results from the newly available ST-
16 nanosatellite star tracker. I conclude this chapter with comparisons of spatially defined
availability and sky tracks that can be calculated for specific missions.

4.1 Introduction

Satellites that require high accuracy attitude estimates (< 1 arc-min) generally employ the
use of star trackers. These sensors operate by taking images of the star field and matching
observed patterns to an onboard catalog. For most star trackers, the availability of this
attitude measurement is generally greater than 99% [Liebe 2002]. However, in many cases,
the satellites that employ star trackers are required to change their attitude; either contin-
uously, as with Earth Observation (EO) satellites, or periodically, as with space telescopes.
For star trackers onboard such satellites, angular motion during imaging (slew) causes stars
to smear out over a larger number of pixels than they would occupy in static imaging con-
ditions. This reduces the Signal-to-Noise Ratio (SNR) of the imaged star, which decreases
detection performance of dim stars. Detecting less stars in each image ultimately impairs
the accuracy and availability of the star tracker attitude solution. Each star tracker claims
to be tolerant of some amount of sensor slew; however, it is difficult to quantify the exact
impact this angular motion has on sensor performance.

This chapter investigates the effects of slew rate on the availability performance of a star
tracker. Specifically, I develop an analytical model for the intensity distribution of a star
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smear. I combine this model with star detection logic in a simulation-based approach to
evaluate the effects of slew rate on star tracker availability. I verify these results through lab
testing, and discuss further verification using field tests. Lastly, I propose two new measures
of star tracker availability that can be used to quantify the availability performance of a star
tracker in the presence of sensor slew. These new measures represent different degrees of
availability fidelity at corresponding degrees of applicability (in terms of specific missions).
Although numerical results of this chapter are specific to the ST-16 star tracker, the models
and methods developed are applicable to any star tracker with only minor modifications.

Before beginning with any discussion on slew rate tolerance, it is imperative to understand
how sensor slew impacts the performance of a star tracker. The remainder of this section
defines star tracker availability, introduces the ST-16 test sensor, and outlines the methods
that are used to measure detection performance as a function of slew rate.

4.1.1 Star Tracker Availability

The performance of a star tracker is generally described by two parameters: availability
and accuracy. Accuracy is defined by the uncertainty in the attitude estimate. Availability
is defined as the fraction of the celestial sphere, also known as firmament, over which a
reliable attitude solution is possible. This chapter only examines the effects of sensor slew
on availability. For more information on how sensor slew affects star tracker accuracy, please
see Chapter 5.

The key requirement for a star tracker attitude solution is detecting a sufficient amount of
stars in each image. The required number of detected stars, denoted as Nmin, varies depend-
ing on the operating mode of the star tracker and the performance of the matching algorithm.
If no previous attitude information is known, at least three stars are generally required to
solve the Lost-In-Space (LIS) problem using star tracker measurements [Wahba 1965,Shuster
& Oh 1981, Spratling & Mortari 2009]. This limit of three stars stems not from the solu-
tion for attitude , known as Wahba’s problem - which only requires two stars, but from the
identification of stars within an image. If only two stars are detected in an image, typically
not enough information is known to identify one star from another. Therefore, at least one
additional star is required.

This lower bound of Nmin = 3 represents the most optimistic case that implies the matching
algorithm can correctly identify each star based on the respective 3-star pattern. Due to
pattern ambiguity in the star catalog, this lower bound is commonly increased to Nmin = 4
which is a more conservative representation of matching performance. Once the attitude of
the spacecraft is known, the star tracker can switch into a tracking mode. In this mode,
only two stars are generally required in each image to determine the incremental change in
attitude between sequential images (Nmin = 2). For this chapter, it is assumed that pattern
ambiguity is not a limiting factor and the availability of an attitude solution is defined
by at least three detectable stars in the FOV. One problem with this definition is that it
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conflates stochastic effects (star detection) with non stochastic effects (star distribution, slew
rates, tracking modes, etc.) and therefore is difficult to quantify over a range of operating
conditions.

Throughout the design and development process of a star tracker, several different models
are used to predict the availability performance of the sensor.

The lowest fidelity models generally assume idealized (static) imaging conditions and are
useful for examining top level performance of candidate optical systems [Liebe 2002,Dzamba
& Enright 2013]. These models are typically based on a fixed stellar detection threshold,
mt, which is used in conjunction with the FOV to determine the number of detectable stars
for a given sensor orientation. Repeating this calculation over a survey of all possible sensor
orientations yields an idealized measure of star tracker availability. The fixed mt is typically
defined by a minimum SNR set by the noise of the image detector and size of the PSF. This
type of model is summarized by the first row of Fig. 4.1.

A step up from the lowest fidelity, are various models that explicitly include the effects of

Metric Principle Detection Required
Information

Useful For

• Ideal
• Static

• Fixed stellar detection 
threshold: 

• Count detected stars in 
FOV ( required)

• defined by a desired SNR
• SNR based on PSF size and 

detector noise

• Minor‐axis FOV
• Static 
• Static PSF Diameter
• Detector Noise
• Desired SNR
• Star Catalog

• Initial Optical 
Design

• Noisy
• At Rate

• Stellar detection 
threshold varies with 
slew rate: 

• Count detected stars in 
FOV ( required)

• defined by a desired SNR
• SNR based on size of star smear + 

shot noise and detector noise
• All pixels within star smear are 

assumed to be identifiable. (Full 
star intensity is measured)

• Minor‐axis FOV
• Variable 
• Fixed Slew Rate
• Static PSF Diameter
• Detector Noise
• Star Catalog

• Performance
Prediction

GAP IN AVAILABILITY TESTS

• Detected
• At Rate

• Stellar detection 
threshold varies with 
slew rate: 

• Count detected stars in 
FOV ( required)

• is based on detection routine
• Focal plane intensity distribution 

of star smear is modeled
• Pixels within star smear are 

identified using detection logic 
(Not all star intensity is measured)

• Minor‐axis FOV
• Variable 
• Fixed Slew Rate
• Static PSF Diameter
• Detector Noise
• Star Catalog
• Detection Routine

• Design Validation
• Detection 

routine analysis

GAP IN AVAILABILITY TESTS

• Operational • Utilize mission info and 
reference maneuvers to 
calculate sky track

• Stellar detection 
threshold varies with 
slew rate: 

• Count unambiguous star 
patterns in FOV

• is based on detection routine
• Focal plane intensity distribution 

of star smear is modeled including 
effects of optical aberrations

• Pixels within star smear are 
identified using detection logic 
(Not all star intensity is measured)

• Matching routine eliminates 
spurious star detections

• Full FOV shape
• Variable 
• Variable Slew Rate
• Variable PSF Diameter 

(optical aberrations)
• Detector Noise
• Star Catalog
• Detection Routine
• Matching Routine

• Mission Planning

High fidelity 
results but 
mission 
specific

Low fidelity 
results but 
widely 
applicable

THIS 
STUDY

APPLICABILITY

FIDELITY

Figure 4.1: Commonly used types of availability testing.
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slew rate. These models utilize a dynamic stellar detection threshold that is based on the
slew rate, mt = f (ω) [Accardo & Rufino 2001, Liebe et al. 2004]. These models account
for the size of the smear, but do not explicitly consider the intensity distribution within the
smear itself. The typical assumption with these models is that all of the signal (starlight)
is detected, not by the image detector, but separated from the background image noise by
the star detection routine. Similar to model described in first row of Fig. 4.1, detection of
a specific star is defined by a minimum SNR. However, in this case, the SNR is based not
only by the noise of the image detector and size of the PSF, but by the length of star smear.
These models are summarized by the second row of Fig. 4.1.

On the opposite end of the fidelity spectrum, we have various high fidelity models. These
models produce more accurate results but they rely on specific information about mission
orbits and maneuvers. Availability is measured along the specific orientation track the sensor
will follow on the celestial sphere. This track is defined by dynamics of the spacecraft. Star
detection is assessed by the exact detection routines employed on the star tracker. These
models can include the effects of optical aberrations on the PSF, as well as the effects of
bright bodies (Sun, Moon, other planets). Furthermore, these models would typically revise
the definition of availability from having at least Nmin detectable stars in the FOV to having
a detectable non-ambiguous star pattern in the FOV. These models would typically be used
to predict the availability performance of a spacecraft following launch. These models are
summarized by the last row of Fig. 4.1.

There is currently a gap in available performance models between those which yield high
fidelity results and those which are not specific to a particular mission. This work attempts
to bridge this gap and provide some intermediate models of availability. The aim is to
increase the fidelity of the availability model while not limiting its applicability to any specific
mission. This work explicitly considers the effects of sensor slew, star detection logic, and
the commonly modeled effects of star distribution on star tracker availability. Figure 4.1
summarizes the metrics, required knowledge and potential application of the common types
of availability testing.

For the purpose of this chapter, three types of availability are defined to describe the tran-
sition from the general and heavily idealized to mission specific models of availability shown
in Fig. 4.1:

1. Spatial Static Availability. No motion of the sensor during an image exposure. Availability
is calculated using a large set of discrete sensor orientations that are equally spaced along
the celestial sphere. At each orientation, I determine if at least three stars are detected based
on the sensor FOV and a fixed stellar detection threshold, mt. This definition represents the
idealized static model described by the first row of Fig. 4.1.

2. Spatial Dynamic Availability. Sensor is moving at a constant rate during image exposure.
Availability is still evaluated at discrete sensor orientations; equally spaced along the celestial
sphere, but now with a detection threshold dependent on the slew rate. Unlike the second

74



4.1 Introduction

row of Fig. 4.1, detection is not based on a desired SNR, but actually determined by detection
logic employed by the ST-16. This represents the model described by the third row of Fig. 4.1.

3. Along-track Dynamic Availability. Sensor is moving at a constant rate during image expo-
sure. Availability is calculated only along the specific path (sky track) and at specific slew
rates the sensor orientation will follow as a result of mission dynamics. Similar to spatial
dynamic availability, detection is determined by detection logic employed by the ST-16. This
represents an approximate version of the bottom row of Fig. 4.1.

4.1.2 The ST-16 Star Tracker

Consistent with the rest of the thesis, the Sinclair Interplanetary ST-16 star tracker is used
as the baseline sensor. For detailed information about the sensor, please see Table 1.1.
Although the results of this work reflect some preliminary performance characteristics of
this device, the developed approach is generalizable to other star trackers.

The ST-16 star catalog contains all stars of stellar magnitude 5.75 or brighter — 3746 stars
in total, drawn from Yale Bright Star catalog (YBS) [Hoffleit & Warren Jr 1991]. Using
mt = 5.75 as the stellar detection threshold, in combination with the ST-16 half-axis FOV,
θx = 7.5◦, the spatial static availability of the ST-16 attitude solution is calculated to be
> 99.9%. This is calculated by testing a large number (10,000) of sensor orientations for at
least Nmin = 3 detectable stars in the FOV. The tested orientations are distributed evenly
across the celestial sphere using the method described by [Marantis et al. 2009].

Figure 4.2 shows a distribution map of the number of stars within the ST-16 FOV as a
function of sensor orientation. From this figure we can see how uneven the star distribution
is across the celestial sphere. When pointing near the celestial equator, more than 10 stars
in the FOV are typical. Conversely, in the neighborhood of the celestial poles, many views
see only three stars (see Fig. 4.3). These regions of sparse star distribution are directly
dependent on the sensor FOV and the range of detectable stellar magnitudes.

One of the main contributions of this chapter is that it enables the incorporation of detection
logic into the availability analysis of a slewing star tracker. The detection scheme used
onboard the ST-16 can be briefly summarize by describing three threshold values:

Lit Pixel Threshold - This value defines the minimum intensity of an image pixel that
is considered to be lit by starlight as opposed to just sensor noise. Pixels that are above
this threshold are labeled lit pixels. The ST-16 utilizes a lit pixel threshold of 120 detector
counts out of a possible 4095 (constrained by the image detector’s 12-bit Analog-to-Digital
Converter (ADC)).

Number of contiguous pixels - This defines the minimum number of contiguous lit pix-
els that each candidate star must possess before it can be considered as a valid detection.
The ST-16 requires at least six contiguous pixels.
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Chapter 4. Verifying Slew Tolerance

Integrated Intensity Threshold - This value describes the minimum integrated intensity
(summed intensity) of all contiguous lit pixels that compose a candidate star. Candidate
stars above this threshold are considered valid detections. Typical ST-16 operation requires
an integrated intensity of 1000 detector counts per a star.

Figure 4.2: Spatial static star distribution map (0 ◦/s).
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Figure 4.3: Sky regions with poor star availability (0 ◦/s).
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4.1.3 Testing the Performance of Star Detection

Sensor slew during an image exposure spreads the light from each star over a larger region of
the detector than compared to static imaging conditions. Given that the areal density of the
detector noise is approximately constant, as the incoming light spreads over more pixels, the
integrated SNR over a star image drops. The processing routines used onboard the ST-16
subtract out most of the detector dark response, so the SNR reduction appears as a decrease
in the apparent brightness of imaged stars. At some point the integrated intensity (summed
detector response) of a star will drop below the threshold of reliable detection. Therefore, as
the slew rate increases, the range of stellar magnitudes that the ST-16 can detect decreases.
This reduces the number of detectable stars in the working catalog, ultimately leading to
a drop in availability. Fig. 4.4 shows the change in availability for various limiting stellar
detection thresholds.

As part of this work, I examine the efficiency of three methods that can be used to determine
the performance of star detection as a function of slew rate. The results from these methods
can be used to define the stellar detection threshold in terms of slew rate, mt = f (ω), which
can then be related to availability. The methods I examine are:

� Simulations: I derive an analytical model to calculate the shape and intensity of an imaged
star in the presence of sensor slew. This is combined with the detection scheme implemented
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onboard the ST-16 to determine the rate at which a star of given magnitude would cease to
be detected.

� Lab Tests: The ST-16 star tracker is placed onto a three-axis motion platform capable of
accurately slewing at a prescribed rate. While slewing, images are taken of a collimated light
source. This strategy represents an improved level of realism as the actual star tracker and
onboard routines are used for image formation and processing.

� Field Tests: This strategy involves moving the star tracker at fixed rates while collecting
night sky images. Atmospheric factors introduce variability into images taken with this
strategy. However, these effects can be mitigated with the selection of an observation site
with good viewing conditions and a high-accuracy telescope drive system.

Each of these methods represent a different level of realism for a different cost (material and
labor). I compare the performance of these methods and examine which method is the most
beneficial at different points of the sensor development process.

4.2 Modeling the Effects of Sensor Slew

Since stars are effectively point sources of light, the shape of an imaged star is equivalent
to the PSF of the optical system. During nominal imaging conditions, this is commonly
approximated by a symmetric two-dimensional Gaussian distribution. In the presence of
sensor slew, the symmetric Gaussian is elongated along the direction of motion forming a
blurred image.

This section begins by discussing the effects of slew rate in different directions. Following
this, I develop two analytical models for the intensity and shape of a star image taken at a
given rate. I combine these models with shot noise and detector noise to simulate a realistic
PSF. I then apply detection logic equivalent to that used on-board the ST-16 star tracker to
determine the tolerable slew rate for the given stellar magnitude.

4.2.1 Types of Sensor Slew

It is useful to separate the slew rate of a star tracker into two components: a roll component
(ωz), and a cross-axis component (ωxy). Each component results in a different effect, with
a different relative magnitude. If we neglect the effects of optical aberrations and consider
a pinhole imaging model, a purely cross-axis rotation (ωz = 0) results in linear star streaks
on the focal plane of the star tracker. The length of each streak, so, is dependent only on
the rate of rotation, ||ωxy|| =

√
ω2
x + ω2

y , the exposure time, te, and the focal length of the
sensor optics, f . The length of every star streak for a purely cross-axis slew is given by:
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sca = f tan (ωxy te) (4.1)

For a pure boresight roll, stars will appear as streaks in the shape of circular arcs, centered
about the axis of rotation. Similar to the cross-axis case, the length of each arc is dependent
on the roll rate, ||ωz||, and the exposure time. However, instead of scaling directly with focal
length, the arc length scales with distance from the axis of rotation (in this specific case, the
boresight). Practically, the largest distance from the boresight that a star can be detected
at rate is at the edge of the minor-axis FOV. If we let h denote the minor dimension of the
image detector, the maximum arc length of a star tracker is given as:

sr = (h/2) tan (ωz te) (4.2)

Since the focal length of the optics is always significantly larger than the dimension of the
detector, we can see that cross-axis slew rates will cause larger streak lengths. Comparing
Eq. (4.1) and Eq. (4.2), we can see that even at the largest off-axis distance, h/2, the cross-
axis streak length is still larger than the roll streak length by a factor of 2f/h. For the
ST-16, this factor works about to be ≈ 7.5.

Therefore, a pure cross-axis slew produces the maximum streak length of any slew rate, for a
given magnitude. Since the streak length is the primary factor that impacts star detection,
this chapter limits its investigation of slew rate on star detection to cross-axis slews only.

4.2.2 Intensity Model

The number of photo-electrons from a single star is given by [Reed 1993] as:

Se = ηQteAφ0 · 10
−2
5
(ms,1−ms,0) (4.3)

where ηQ is the mean quantum efficiency of the detector; te, is the observation time; A, the
aperture area; φ0 the stellar flux from a reference star; and ms,1, and ms,0 are the apparent
stellar magnitudes of both the star in question and the reference star. Stellar magnitudes are
defined with respect to a negative logarithmic scale. Dimmer stars represent larger values
of ms, while brighter stars represent decreasing values of ms, which can include and surpass
the origin defined by ms = 0. Our sun has a stellar magnitude of approximately -26.74.

Following [Reed 1993] and making judicious assumptions about stellar type and wavelength
band, φ0 = 1.8 × 1010m−2s−1 is used for a magnitude zero star reference star, (ms,0 = 0).
Incorporating this change into Eq. (4.3) and expressing A in terms of the aperture diameter,
D, gives:
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Se =
1

4
ηQteπD

2φ0 · 10−
2
5
ms,1 (4.4)

where ms,1 is now simply denoted as ms, representing the stellar magnitude of a desired star.

4.2.3 Shape Model

The PSF of a star from a non-rotating spacecraft can be approximated as a symmetric
Gaussian distribution. The intensity distribution on the focal-plane can be modeled by the
function, Si (x, y), given as:

Si (x, y) =
Se

2πσs2
e
−
[
(x−xc)2+(y−yc)2

2σs2

]

=
Se

2πσ2
s

e
− r2

2σs2 (4.5)

where Se is the ideal integrated intensity of the imaged star given by Eq. (4.4), σs describes
the size of the PSF (can be measured during calibration), (xc, yc) is the location of the star’s
centroid, and r is the radial distance of a point (x, y) from the centroid. Equation (4.5) is
commonly used to model the intensity distribution of a star for static imaging conditions.
When the star tracker is moving, the centroid of an imaged star moves during the course
of an exposure forming a elongated streak. If we define the star vectors at the beginning
and end of an exposure as p and q, we can model this motion as an infinitesimal rotation
through an angle teω as described by:

q =
(
I3x3 − teω×

)
p (4.6)

where ω× denotes the skew-symmetric matrix of the angular velocity vector ω and te is the
star tracker exposure time. The vector difference can be written as:

δs = q − p = −te
[
ω×
]
p (4.7)

In the ST-16 operating regime, defined by a maximum acceptable slew rate of 2 ◦/s, it is
assumed that the loci of the centroids in the detector plane appear as linear segments with
displacement, sδ, specified in pixels. This is given by:
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sδ =

[
sδ,x
sδ,y

]
=

f te
γppz

[
ωzpy − ωypz
ωxpz − ωzpx

]
(4.8)

Using Eq. (4.8) the integrated response at a point (x, y) of the elongated PSF is defined
as a function of the initial centroid position, (xi, yi), and the focal plane displacement, sδ.
Eq. (4.5) is rewritten to include the elongation of the PSF as:

Ss (x, y, t) =
Se

2πσ2
s

e
− r(t)

2

2σ2s (4.9)

where t is the time from the beginning of the PSF exposure, and r2 from Eq. (4.5) is now

r2 =

(
xi +

sδ,xt

te
− x
)2

+

(
yi +

sδ,yt

te
− y
)2

(4.10)

The quantities (xi, yi) are the detector frame coordinates of the star centroid at the beginning
of the exposure and (x, y) are detector frame coordinates of an arbitrary point of interest.
Substituting Eq. (4.10) into Eq. (4.9), expanding Eq. (4.9), and collecting like terms, we get:

Ss (x, y, t) =
Se

2πσ2
s

ez (4.11)

where

z = a2t
2 + a1t+ ao (4.12)

and

a2 = −
[

(d2δ,x + d2δ,y)

2σ2
st

2
e

]
(4.13)

a1 =

[
dδ,x (x− xi) + dδ,y (y − yi)

σ2
ste

]
(4.14)

a0 =
− (xi

2 + x2 + yi
2 + y2) + 2 (xi x+ yi y)

2σ2
s

(4.15)

We now integrate Eq. (4.11) with respect to time and get the focal-plane intensity distribution
of an imaged star in the presence of angular rates:
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Sb (x, y) =

∫ te

0

Ss (t) dt = AoBo e
1

4a2
4a0a2−a21 (4.16)

where

Ao =
Se

2πσ2
s

(4.17)

Bo =

√
π

2
√
−a2

[
erf

(
1

2

a1√
−a2

)
− erf

(
1

2

2a2te + a1√
−a2

)]
(4.18)

Given an angular rate and a static intensity, this derivation gives the shape and intensity
distribution of a star imaged during sensor slew.

4.3 Star Detection at Rate

Employing the analytical models developed in the previous sections, simulations are used to
examine how the measurable intensity of a star is affected by the slew rate of the sensor. The
results of these simulations are compared with lab trials that utilized a motion platform, a
ST-16 engineering model, and a collimated light source. This discussion is concluded with
an examination into the potential accuracy and benefit of acquiring field results at rate.

4.3.1 Simulation Tests

Using the developed analytical models for the shape and intensity distribution of a star,
given by Eqs. (4.4) and (4.16), simulation tests are performed to accomplish two objectives.
The first objective is to examine the decrease in the measurable intensity of a star (integrated
intensity), as a function of slew rate. The second objective is to determine the maximum
slew rate at which a star of given magnitude can be detected. This maximum slew rate is
referred to as the tolerable slew rate. Each simulation consists of iteratively simulating a
star image for a range of slew rates, adding some typical imaging noise sources, and then
applying a detection scheme equivalent to the one used onboard the ST-16. This process is
summarized by the following steps:

1. Using Eqs. (4.4) and (4.16) the shape and focal plane intensity distribution of the star is
calculated. This gives the value of each pixel within the star image on the image detector.
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2. The ideal signal from step 1 is then combined with two typical imaging noise sources: shot
noise and detector read noise. Shot noise describes a random variation in the observed
amount of photoelectrons due to the discrete, quantum nature of light. It is typically modeled
as a Poisson distribution with λ (x, y) = Sb (x, y) [Holst & Lomheim 2007]. Read noise is
essentially a summation of typical image detector noise sources and is generally modeled as
a zero mean, normally distributed random variable with σe = 3.5e−, where e− is electrons.

3. The resulting image is quantized in two steps. First, a scaling parameter of 7 detector
counts/e− is applied. This corresponds to the gain of the ST-16’s image detector, the
MTP9031 (see Table 1.1). Second, the signal is converted into a 12-bit integer to reflect
the 12-bit ADC of the MTP9031.

4. The last part of the process applies the ST-16 detection routine described in Section 4.1.2
to determine if the star would be detected, and if so, measure its integrated intensity.

Utilizing the process summarized above, images are simulated for stars of varying stellar
magnitude and at slew rates of 0 − 3 ◦/s. At each slew rate, the integrated intensity is
recorded, as measured by the ST-16 detection routines. Figure 4.5 shows the measured
integrated intensity as a function of increasing slew rate for set of stellar magnitudes, ms,
where ms defines the intensity of each star as per Eq. (4.4). The line at the bottom of the
graph represents the integrated intensity threshold of the ST-16.

The trend of decreasing integrated intensity with increasing slew rate is similar for each
stellar magnitude. The rate of this decrease in integrated intensity, referred to as the loss
rate, begins at a shallow value and gradually increases. At a particular slew rate, which
varies depending on the brightness of the star, the loss rate reaches a maximum value after
which (for larger slew rates) it begins to decrease.

The overall trend in changing loss rates of integrated intensity is due to the shape of the star,
which is modeled as symmetric Gaussian. Since most of a star’s intensity is concentrated
at the centroid, the loss of integrated intensity for increasing slew rates is gradual, for small
slew rates. However, once the peak of the star smear begins to reach the integrated intensity
threshold, a large amount of lit pixels can be lost all of a sudden. The only remaining
lit pixels are those closest to the centroid track which typically contain substantially more
intensity (≥ ×2) than their immediate neighbours. The intensity within these center pixels,
can be initially hidden due to the effects of pixel saturation. As the light from a saturated
pixel is spread across a region of several pixels, an instantaneous increase can sometimes be
seen in the integrated intensity of a star as previously undetected light is now detected by
the neighbouring pixels, see Fig. 4.5.

The results of these simulations are used to determine the maximum tolerable slew rate for a
given stellar magnitude. This is achieved by examining when the ST-16 detection algorithm
loses a star of a given magnitude. Figure 4.6 shows the tolerable slew rates for stars with
stellar magnitudes between 3.8 and 5.8.
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Figure 4.5: Simulated star intensity at varying slew rates.

4.3.2 Lab Tests

To evaluate the accuracy of the simulation tests, a series of lab trials was conducted using a
ST-16 engineering model, a 3-axis motorized gimbal, and a star source. The star source is a
fiber-coupled halogen lamp that illuminates a pinhole and is collimated by a telescope. Star
intensity is adjusted with neutral density filters and a variable attenuator.

Each trial consisted of testing the detection performance of a given stellar magnitude at a
range of slew rates. The intensity model given by Eq. (4.4) was used to match the static
response of the ST-16 to the desired stellar magnitude. For each intensity, 30 images were
taken at each slew rate spanning from 0 ◦/s to 3 ◦/s in 0.25 ◦/s steps. The mean value of
these 30 measures of integrated intensity was then used for each angular rate to mitigate the
random effects of shot noise and read noise.

The results of these tests are displayed in Fig. 4.7. Markers indicate the integrated intensity
measured during lab trials, denoted in the figure as Lab. Full lines represent results attained
through simulation for corresponding beginning star brightnesses. These simulation-based
results are denoted in the figure as Sim.

There is strong correspondence in trends of decreasing integrated intensity. However, the lab
results appear generally brighter than the simulation results by an approximately constant
amount. This error was traced to a discrepancy in the number of lit pixels between the
simulation and lab-based trials. It is believed that this discrepancy arises from the effects
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Figure 4.6: Tolerable slew rates for ST-16 star detection.

of residual dark current in the images taken with the ST-16. Although the ST-16 employs
routines to eliminate dark current, a small non-zero mean component and separate random
varying component of dark current remain following the correction. This residual non-zero
mean component increases the intensity of the image background which leads to a larger
amount of lit pixels in lab images. Future work is required to model this residual dark
current in the simulation-based trials.

4.3.3 Field Tests

The final method examined for assessing detection performance was the use of field images.
For static tests, field trials generally involve taking a star tracker out on a clear night and
imaging the stars under the night sky. For assessing tolerable slew rate, additional equipment
is required to move the star tracker at a precise angular rate while imaging. Several problems
exist with both types of testing that can cause significant discrepancies in the measured
integrated intensity of imaged stars. In this section, these inaccuracies and how they impair
our ability to get useful measurements of detection performance are examined.

Several environmental factors associated with static field trials can impair the measurements
of the integrated intensity of a given star. These include, but are not limited to: scintillation,
high altitude cloud cover, aerosols and light pollution. Careful selection of a testing site far
from any bright lights (cities) can effectively minimize the effect of the last of these error
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Figure 4.7: Star intensity at varying slew rates using lab tests.

sources. However, scintillation, high altitude cloud cover, and aerosols cause effects that
continuously vary with time and therefore are harder to remove. Scintillation causes rapid
variations in the apparent brightness of stars due to turbulence in the Earth’s atmosphere.
This can cause a star to appear brighter or dimmer than it nominally would. Due to the fact
this effect is a result of Earth’s atmosphere it cannot be avoided with field trials. However,
the mean value of multiple intensity measurements of the same star over a short period of
time can be used to increase the accuracy of the intensity measurement. Cloud cover and
aerosols have a continuously varying attenuation effect on the measured integrated intensity
of a given star. In many cases, careful planning and monitoring of forecast weather conditions
can help mitigate these effects but they cannot be removed completely.

In addition to environmental factors, several internal factors can contribute to the inconsis-
tency in measured integrated intensity. Most notable are the effects of optical aberrations.
These effects lead to changes in the size and shape of the imaged star as a function of off-
axis distance. As discussed earlier in this chapter, changes in the size and shape of the PSF
directly impact the measured integrated intensity of the star. Given that any useful field
image contains many stars which are generally located at several off-axis angles from the
optical axis, this effect introduces variations even within a single image.

As an example of the types of described variations, Fig. 4.8 shows the results of three different
field trials compared to the intensity model given by Eq. (4.4). Field trials 1 and 2 were
taken a single day apart in two different locations both of which were located a great distance
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Figure 4.8: Comparing field results.

away (>50km) from any surrounding bright lights and were taken on days which the cloud
cover was reported to be clear. Field trial 3 was taken several months later at a location
approximately 20 km from a major city center and was also taken on a day in which the
cloud cover was reported to be clear.

Fig. 4.8 shows the variability present in measurements of integrated intensity from field
trials, even in static conditions. Under dynamic conditions, the errors introduced by these
variations quickly overcome the effects of slew rate. This severely impairs the accuracy of
measuring the tolerable slew rate for any given stellar magnitude. This method can still be
used as a coarse validation of detection performance, but the result will be a conservative
estimate of the actual integrated intensity of star.

4.4 Along-Track Dynamic Availability

Throughout this study, several different approaches have been presented that can be used
to predict the availability of the ST-16 star tracker at various slew rates. Both Figs. 4.6
and 4.7 support the conclusion that the ST-16 can detect stars dimmer than magnitude 5.0
at a slew rate of 1 ◦/s. In Fig. 4.4, it can be seen that a detection limit of magnitude 5.0
still corresponds to a dynamic spatial availability of approximately 94%. This is illustrated
by Fig. 4.9 which shows the distribution of the number of stars that would be detected by
the ST-16 given a specific orientation, at a slew rate of 1◦/s. Comparing this to Fig. 4.3,
it can be seen that even a small drop in the range detectable stellar magnitudes results in
large change in the spatial availability of the attitude solution.
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Figure 4.9: Spatial dynamic availability map of the ST-16 star tracker (1 ◦/s).

These availability calculations are based on instantaneous assessments of visible stars, not
actual tracks of the sensors across the sky. These measures of availability are useful for
generalizing the performance of the sensor; however, they do not accurately reflect the avail-
ability that would be seen during an actual mission. This type of mission-specific availability
is heavily dependent on the path that the sensor traces along the celestial sphere and the
slew rates the sensor experiences. This brings us back to the final definition of availability
listed in Section 4.1.1, along-track dynamic availability.

Using a known path along the celestial sphere we can calculate the along-track dynamic
availability using the tolerable slew rate limit from Fig. 4.6 and the star distribution along
the chosen path. As mentioned earlier, the calculated values for this type of availability
vary greatly depending on the chosen path and slew rates. To illustrate this dependence I
examine the along-track dynamic availability for a set of simple orientation tracks of star
tracker slewing at a constant rate. Each orientation track is defined by an inclination, i,
with respect to the celestial equator and represents a great circle on the celestial sphere,
see Fig. 4.10. To calculate the along-track dynamic availability of the orientation track,
I sample the orientation track at 1000 equally spaced orientations. At each orientation,
I utilize the tolerable slew rates defined by Fig. 4.6 to determine if the number of stars
that would be detected at each orientation, Nobs, satisfies Nmin, the required number of
stars for the star tracker attitude solution. Repeating this calculation for all 1000 sample
orientations gives the fraction of the orientation track over which an attitude solution is
possible, which I denote as the along-track dynamic availability of orientation track. This
analysis is repeated for different orientation tracks defined by (−90◦ ≤ i ≤ 90◦), at constant
slew rates |ω| = 1.0◦/s, 1.5◦/s, 2.0◦/s, and 3.0◦/s.

Figures 4.11 and 4.12, and Table 4.1 show the variation in along-track dynamic availability
due to slew rate and orientation track inclination for both tracking (Nmin = 2) and Lost-In-
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Figure 4.10: Schematic of orientation tracks.

Space (LIS) (Nmin = 3) attitude solutions. For comparison I overlay a series of horizontal
lines that indicate the determined spatial dynamic availability at each respective slew rate.
It is evident from Figs. 4.11 and 4.12 that the along-track dynamic availability of a star
tracker attitude fix is strongly dependent on the specific path the sensor follows. Just from
the simple orientation tracks shown, it can be seen that the along-track dynamic availability
can differ from the calculated spatial dynamic availability by more than 15%.

Determining the along-track dynamic availability of a star tracker can be a challenging
task. One needs to model the mission dynamics quite accurately to be able to predict the
path the sensor will follow along the celestial sphere. In addition, one needs to establish
the relationship between the stellar magnitude of a given star and the tolerable slew rate
(see Fig. 4.6). Given that the latter task is independent of the selected mission and has
been shown to be measurable using lab/ground tests, it could be provided by the sensor
manufacturer. If these tasks can be achieved; even with a simplified set of dynamics, some
rough bounds on star tracker availability can be determined. These can then be used as a
coarse tool for star tracker feasibility studies and/or trade studies for star tracker placement.

Slew Rate (◦/s)
Spatial Dynamic
Availability (%)

Along-Track Dynamic Availability (%)
Mean Max Min

1.00 99.4 / 96.8 98.2 / 94.7 100.00 / 99.3 91.5 / 85.8
1.50 89.5 / 73.6 89.5 / 75.2 97.1 / 89.6 73.7 / 60.7
2.00 79.2 / 58.7 79.7 / 56.2 91.8 / 72.5 66.8 / 40.6
3.00 45.6 / 21.0 47.6 / 22.4 62.3 / 30.8 26.7 / 8.5

Table 4.1: ST-16 Along-track dynamic availability statistics. (Nmin = 2 /Nmin = 3)
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Figure 4.11: Examples of ST-16 along-track dynamic availability, Nmin = 2.
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Figure 4.12: Examples of ST-16 along-track dynamic availability, Nmin = 3.

4.5 Summary and Future Work

The main goal outlined at the beginning of this study was to model the effect of slew rate
on star tracker performance. This was achieved by a three-part solution. First, I developed
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two analytical models to describe the effects of slew rate on the PSF shape and intensity
distribution. Second, I used this model to relate the detection performance of a star tracker
to the slew rate through simulations, which were confirmed by lab tests. Third, I used this
measured relationship between detection performance and slew rate to calculate star tracker
availability under dynamic conditions.

Good correspondence was seen between the results from the simulations and those from lab
tests. Both of these indicated that the ST-16 satisfies the design requirement of maintaining
high availability (> 99.9%) while tracking a ground target from LEO (slew rate ≈ 1 ◦/s).
In comparison, field trials were shown to be a poor choice for measuring the tolerable slew
rate. This is due to variations in the measurable integrated star intensity caused by several
parameters internal and external to the sensor.

I finished the study with a brief examination of along-track dynamic availability for a set of
simple mission dynamics. It was seen that the along-track results do vary from the calculated
spatial dynamic availability. However, the latter can serve as a first-cut approximation of
star tracker availability performance. The calculation of along-track dynamic availability
requires knowledge of mission details and the relationship between tolerable slew rate and
stellar magnitude. Using methods described in this study, the latter part of this solution can
be achieved. If one can then attain even a simplified understanding of the expected mission
dynamics, we can begin to form bounds on the availability performance of a star tracker.
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Chapter 5

Optical Trade Studies for Future Star
Tracker Development

This chapter presents a series of system performance models for nanosatellite star trackers.
Many Earth-observing missions rely on spacecraft body motion to track ground targets.
These operational scenarios lead to requirements for arc-second-accuracy attitude estimates
during body motion at rates of up to 1 ◦/s. Achieving these performance targets with a small
sensor presents a challenge. This chapter develops models to predict sensor availability and
accuracy in terms of a number of optical design parameters. Starting from the baseline
optical design of the Sinclair Interplanetary ST-16, I explore several strategies for improving
the sensor accuracy. I highlight distinctive features of the trade-space relative to more
conventional star tracker design. This work includes an overview of system-level trends and
an analysis of promising point designs. Results from these trades are valuable for prioritizing
further development.

5.1 Introduction

There is increasing demand for arc-second-level attitude measurement accuracy in micro-
and nanosatellites. Star trackers are the most promising technology for achieving this at-
titude knowledge, but most extant designs are poorly suited for the requirements of this
class of mission. The performance priorities required of these sensors differ from conven-
tional applications giving rise to a variety of trade-offs during design. This chapter develops
analytical models of star tracker performance and uses these tools to redesign the Sinclair
Interplanetary ST-16 star tracker to achieve arc-second level performance.

The ground registration of payload imagery can benefit significantly from arcsecond-level
attitude knowledge. The increasing interest in performing this type of mission with micro-
or nanosatellite class spacecraft creates a niche for a small, high accuracy star tracker. Top-
level analysis of the demands of such a device suggests the following performance targets:
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� 1 arc-second (i.e., ∼ 4.8µrad) accuracy, while slewing at

� 1◦/s , to track a target on the Earth’s surface from Low Earth Orbit (LEO), with

� 99% availability of a robust attitude fix.

These requirements — particularly the need for accuracy while slewing — distinguish SSSTs
from most conventional designs. Several design features of the ST-16, notably a rate tolerance
of > 2 ◦/s and stateless (i.e., zero acquisition time) processing model, were selected to address
reference scenarios similar to those presented above. The primary deficiency of the ST-16
is currently its accuracy. Some redesign is necessary to bring the performance down to the
sub-arcsecond level. The goal of this chapter is to explore evolutionary changes to the sensor
design that would allow it to meet our performance targets while leaving the overall sensor
architecture intact.

In an earlier study [Enright et al. 2012], preliminary models of availability and accuracy were
developed for sensors evolved from the ST-16. This study explored simple optical redesigns
to improve quantitative performance, but also made semi-quantitative assessments of the
contributions of a variety of secondary factors (e.g., stellar aberrations, thermal distortion,
etc.) to the sensor error budget. The findings of this study suggested that contributions
from many error sources could be minimized with software corrections and minor physical
changes. The results of the optical redesign were less conclusive. The simplified models of
sensor accuracy were not responsive to changes in parameters such as pixel size. Without a
fair assessment of the impact of these parameters on performance, it was difficult to come to
firm conclusions on directions for design optimization. The goal of this chapter is to extend
the models used in earlier research and better explore the optical trade-space.

Other researchers have formulated performance models for star trackers: Liebe, et al. [Liebe 2002,
Liebe et al. 2002], have considered the role of physical design parameters in sensor accuracy;
Hancock, et al. [Hancock et al. 2001], have examined centroid error through the use of de-
tailed models of detector noise. One limitation of these previous studies is the common
assumption of symmetric PSFs, and hence negligible motion and image smear during expo-
sure. Many star trackers can operate at the rates outlined in our reference scenario – several
operational reports exist in the literature, e.g., [van Bezooijen 2003,Rogers et al. 2009] — but
I am not aware of models designed to predict star tracker accuracy during slews. The models
presented in this chapter take sensor motion into account when predicting both availability
and accuracy, and thus extend the capabilities of previous techniques.

In the following sections, I introduce the primary design parameters and define the scope
of the trade studies that follow. I then present two analytical models that can be used to
estimate sensor performance in terms of our primary measures of effectiveness: availability
and accuracy. In Section 5.3, I apply our models to a series of trade studies. These trades
evaluate performance both of discrete point-designs (based on COTS components) and a
broader assessment of possible implementations.
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The research presented in this chapter is a synthesis of my own contributions and work done
in collaboration with my supervisor, Dr. John Enright. Both of the developed analytical
performance models (availability and accuracy) represent collaborative contributions. These
models were then utilized to carry out three types of trade studies: availability, accuracy,
and combination of the two, which is dubbed as integrated trades. Of these three trade
studies, the first represents a collaborative contribution while the latter two are both my
own contributions to this body of research. I summarize this authorship in Fig. 5.1.

Analytical Performance Models

Availability Trade Studies

Accuracy Trades Studies
Personal Contributions

Collaborative Work

From Literature / Other Authors

1

2

3

Integrated Trades Studies4

Figure 5.1: Summary of contributions for optical trade studies.

5.2 Optical Performance Models

The goal of this chapter is to evaluate a family of star trackers that could reasonably be
evolved from the baseline ST-16 design. I select promising design candidates and attempt to
find COTS components (e.g., detectors, lenses) that could realize these designs. The validity
of a design is influenced by two primary metrics: availability and accuracy. Availability
indicates the fraction of the sky where a good attitude fix is possible; accuracy considers
the magnitude of the error in these attitude estimates. Given requirements for these two
metrics, we can identify regions of the optical design space where performance will meet our
requirements.

A few parameters can be used to describe the optical characteristics of the star tracker
camera (Fig. 5.2). Basic imaging properties of the lens can be expressed in terms of the
f -number, F#, and the lens diameter, D. The focal length is simply the product of these
two quantities:

f = F#D (5.1)

Further properties of the detector such as pixel size, γp and detector height, ho can be related
to the camera resolution and FOV, θx. This simple set of parameters abstracts away many
details of the lens design, but these quantities are sufficient to capture important aspects of
system performance.
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γh

f θ

D

Figure 5.2: An illustration of basic optical design parameters.

5.2.1 Availability Model

Availability is defined as the fraction of the sky over which a given star tracker design will
give a reliable attitude fix. This subsection presents an analytical model that describes the
availability of a star tracker’s attitude solution. The model predicts the stellar magnitude
of the dimmest star able to be detected. I label the brightness of this dimmest star as the
threshold magnitude and denote it with mt. Using the predicted threshold magnitude and
a catalog of known stars, we can predict the number of visible stars in an arbitrary sensor
orientation. Repeating this calculation over the whole sky allows us to calculate availability.

The model presented here is abstraction of the simulation based model presented in Sec-
tion 4.2. In Section 4.2, star detection was assessed by effectively an exact replica of de-
tection routines utilized by the ST-16 star tracker. Furthermore, the tolerable slew rate for
a star of given stellar magnitude was determined through an open loop simulation. In this
chapter, star detection is instead expressed through an analytical relation dependent on a
required Signal-to-Noise Ratio (SNR). This relation analytically includes the effects of slew
rate.

5.2.1.A Signal-to-Noise Contributions

The number of photo-electrons from a single star is given by Eq. (4.4). The noise during
the readout is a function of the number of pixels included in the star image. Assuming
a rotationally symmetric static PSF, of radius, αp (in pixels), and pixel size, γp, we can
calculate the number of pixels that contribute noise. If the sensor is not moving, this is:

Mstatic = dπα2
pe (5.2)

where the delimiters denote the value described by πα2
p must be rounded up to next integer.

When motion is present we must consider the added motion of the star centroid on the
image detector during the course of an exposure. Considering only cross-boresight motion,
the length of this centroid motion, labeled the track length, is given by:
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so =
f tan (ω te)

γp
=
F#D tan (ω te)

γp
(5.3)

where ω is the magnitude of the angular velocity vector ω (assuming only cross-boresight
motion, e.g. ωx and ωy). The result of Eq. (5.3), so, is equivalent to the magnitude of sδ
given in Eq. (4.8). The total number of pixels in the PSF is therefore:

Mtotal = πα2
p + 2αpso = πα2

p + 2αp
F#D tan (ωte)

γp
(5.4)

Translating the number of pixels into an expected noise depends on the dominant noise
sources. The regime where we are using the MT9P031 (ST-16 image detector, see Table 1.1)
seems only weakly dependent on exposure time. This suggests that we are dominated by
read-noise. Neglecting the weak time dependence we can write the expected noise standard
deviation as:

Ne =
√
Mtotalσe (5.5)

This leads to an expression for the expected SNR, Rt:

Rt =
ηQteπD

2φ0 · 10−
2
5
ms

4σe

(
πα2

p +
2αpF#D tan(ωte)

γ

)1/2 (5.6)

To achieve a specified target SNR, Rt, we can solve for the corresponding threshold magni-
tude, mt:

mt = −5

4
log10

(
αp (παpγp + 2F#D tan (ωte))R

2
tσ

2
e

γp (ηQteπD2φ0)
2

)
(5.7)

Thus, stars of this magnitude or brighter should always be detectable.

5.2.1.B Estimating Availability

To evaluate availability one must assess the number of visible stars in a range of sensor
orientations. Star visibility depends on the threshold magnitude calculated from Eq. (5.7),
the size of the FOV, and the target region of the sky. Using the popular SKY2000 catalog
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[Myers et al. 2001] as our reference for star properties and distribution. For simplicity we
will consider a circular FOV, with angular radius, θx, determined by the minor axis of the
detector, h. The extent of the FOV is determined by the optical design of the system:

θx = arctan
h

2f
= arctan

(
h

2DF#

)
(5.8)

The number of stars necessary for an attitude fix depends on the star tracking algorithms
employed in the sensor. The algorithms employed by different sensors are quite varied, but
many star trackers distinguish between matching (i.e., identifying stars in view, with or
without a priori attitude knowledge), and tracking (i.e., following known stars across the
FOV). These definitions suggest the following classifications:

� Fewer than two visible stars. Matching and tracking are impossible.

� Two visible stars. Tracking possible (but not implemented by current ST-16), matching
impossible.

� Three visible stars. Tracking possible, minimum observation for matching.

� Four or more stars. Good conditions for both matching and tracking.

Instead of a single availability metric one could define three distinct quantities — i.e., 2−Star,
3−Star, and 4+-Star — however, for simplicity the results in this study use the 3−star pre-
dictions. Depending on the final operating conditions, the assumptions behind the three and
four-star categories may need further study. If enough of the star triangles are ambiguous,
four-star scenes may represent the minimum number for reliable matching. This chapter
does not assess triangle ambiguity in the availability calculations.

5.2.2 Accuracy Model

Accuracy is defined as the magnitude of the error in the attitude estimates of the star tracker.
This subsection develops a simulation-based accuracy model based on the intensity model
given by Eq. (4.16) and the simulation based procedure described in Section 4.2.3.

Beginning with Sb given in Eq. (4.16), shot noise and detector read noise, parameterized by
σe, were added to the ideal intensity distribution to simulate a more realistic star image. This
intensity distribution was then quantized in the same fashion as described in Section 4.2.3,
to simulate an actual image. Pixels that receive 4095 detector counts of illumination or
more are considered saturated. From here onwards, the analysis of the respective star image
differs from that presented in Chapter 4.
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For this portion of the thesis, I consider a simplified version of the ST-16 star detection
routines. Any pixels whose response is greater than a fixed threshold, BT , are considered lit
pixels and are included in the centroid calculation. Groups of contiguous lit pixels are can-
didate stars and centroid positions are estimated for each candidate using the first moment
of illumination, given by Eq. (2.1), for all non-saturated lit pixels in each group. On the
ST-16 there are several additional checks to prevent false detections caused by noise, but
low-signal sensitivity is governed by BT .

Equation (4.8) describes the centroid motion over the span of an image exposure, neglecting
the effects of ERS. Assuming the true centroid, dt is located exactly midway between these
two points, it can be calculated as:

dt = di +
sδ
2

(5.9)

where di is the centroid at the beginning of the exposure, and sδ is the focal displacement
of the star centroid, neglecting the effects of ERS. The centroid error is then the magnitude
of the difference between true, dt, and estimated, de, centroid locations:

εpix = ||dt − de|| (5.10)

where de is the measured star centroid, calculated as the first moment of illumination of the
star image, given by Eq. (2.1). The centroid error, ε, is a zero mean, normally distributed
random variable with σ = σpix. The standard deviation, σpix, represents the uncertainty
in the centroid position which can be related to the angular uncertainty of the star vector
using:

σθ = tan−1
(
σpixγp
f

)
(5.11)

The accuracy of a single star tracker attitude solution, using an arbitrary star scene, can
be estimated from the angular uncertainty associated with any arbitrary star vector. If σi
denotes the expected angular uncertainty σθ of the i-th star vector, and assuming optimal
weighting assigned to the set of star vectors, ai,C , the attitude covariance is given by Schuster
[Shuster & Oh 1981] as :

P =

{
N∑
n=1

1

σ2
i

(
I− ai,CaTi,C

)}−1
(5.12)

This covariance matrix is expressed in terms of a infinitesimal error vector, φ =
[
δφx δφy δφz

]T
,

where the δφj are the error rotations about the three body axes, defined by the camera frame.

99



Chapter 5. Optical Trade Studies for Future Star Tracker Development

The first two elements of the diagonal can be used to approximate the cross-boresight accu-
racy:

σ2
bs = P11 + P22 (5.13)

The total attitude error is given by the trace:

σ2
tot = P11 + P22 + P33 (5.14)

The presented approach can be used to give the accuracy estimate for any arbitrary star
tracker image.

5.3 Optical Design Trades

Using the performance models developed in the preceding section, this section explores op-
tical design options that will meet the target requirements. The primary goal of these trade
studies is to highlight promising redesigns for the ST-16, but more generally, it is valuable
to understand any general trends that can be found in this design space. I explore factors
affecting each of the target metrics individually, but also examine their interaction.

The bounds placed on the model parameter values reflect constraints imposed by our target
application, and a certain degree of engineering judgment. To ensure that the sensor size
remains fairly small, I consider lens diameters between 12 mm and 50 mm. As a rule of
thumb, most star trackers use fast optics (i.e., low F#), so these trade studies concentrate
on lenses between F# = 1.0 and F# = 2.0. Detector parameters are chosen based on the
properties of the Aptina MT9P031 (used in the ST-16), and the CMOSIS CMV4000 (a
promising 4MP detector with larger pixels). Table 5.1 shows the key parameter values for
both parts. The latter detector has some desirable design features (e.g., a global shutter),
but also serves to illustrate the effect of changing the pixel size.

Table 5.2 shows the baseline optical parameters for ST-16 star tracker as well as three
reference point designs. The reference designs represent interesting regions of the trade-
space. The subsections that follow discuss the performance of these designs in greater detail.
All of the following scenarios use the ST-16 baseline exposure of 100 ms.

5.3.1 Availability Trades

Broadly speaking, increasing the number of stars in view of the star tracker will increase its
availability. Two basic approaches will increase the number of stars in the FOV: enlarging
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Table 5.1: Optical Trade Study Detectors

Parameter MT9P031 CMV4000

h (mm) 4.28 11.3
ηQ 0.5 0.5

αp (pixels) 5 5
te (s) 0.1 0.1
γp (µm) 2.2 5.5
σe− 3.5 13
Rt 10 10

ω (◦/s) 1.0 1.0

Table 5.2: Reference Optical Designs

Designation 1 (Baseline) 2 3 4

Manufacturer Marshall Custom Navitar Navitar
Detector Aptina Aptina CMOSIS CMOSIS
F# 1.2 1.0 1.4 0.95

D (mm) 12 12 35 52
θx(
◦) 7.5 10.1 6.4 6.4

Mass (g) 15 217 489

the field of view and raising mt (i.e., allow the sensor to detect dimmer stars). The specific
mechanisms for achieving these ends are related to the optical design parameters. We can
increase the size of the FOV by enlarging the detector (i.e., increasing h), or reducing the
focal length f . The primary mechanism for improving mt is to collect more photons; i.e., by
increasing D or te. There is a trade-off in several of these parameters, particularly D and f
and the optimal resolution of this will depend on the regime (static, or motion) in which we
are operating.

To examine this trade off, the availability curves for several candidate designs are compared
at different body rates. Fig. 5.3 shows the availability at rest; Fig. 5.4 shows the same designs
at ω = 1 deg./s. Note the curves for the two designs that use the MT9P031 detector (h =
4.3 mm). At rest, the larger lens solution provides an advantage over a larger FOV. When
moving, these results are reversed: the larger FOV maintains better optical performance.
This inversion is a consequence of the distribution of stars across the celestial sphere. Narrow
fields of view see longer, dimmer star tracks. The increased sensitivity is not sufficient to
compensate for the restricted view. Although the absolute limit of this results was not
assessed, this trend holds in a variety of model conditions for the MT9P031 detector.

The preference for D over θx does not seem to hold for the larger CMOSIS detector. Some
insight into this behavior can be gained by plotting the availability curves against the FOV
size (Fig. 5.5).

Here it is seen that the small lens and large detector (D = 12.0mm, h = 11.3mm) corre-
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Figure 5.3: Effect of F# on availability (ω = 0 ◦/s).
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Figure 5.4: Effect of F# on availability (ω = 1 ◦/s).
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sponds to a very wide FOV. Developing a star tracker in this region of the design space
would require dealing with a host of secondary factors that are not well represented in the
developed performance models. Implementing a low aberration lens to these specifications
would be challenging, and several system level complications also arise (e.g, bright body
incursions, baffle dimensions, etc.). The opposite configuration, a large lens and a small
detector (D = 50.0mm, h = 4.3mm), corresponds to a small FOV. From Fig. 5.5, we can
see that the availability performance of this configuration is very sensitive to changing FOV.
These designs are judged to be impractical at this time.

The most promising design candidates for evolving the ST-16 appear to lie in two categories:
The MT9P031 detector and a small lens (similar to the current design), or the CMV4000
and a large lens. In terms of the FOV, these two families overlap. These results help guide
the definition of four reference point designs shown in Table 5.2.

The designs in Table 5.2 were selected based on the availability results and a survey of
existing commercial lenses. Custom designed optics are feasible, but this work estimates the
performance that could be achieved using only primarily commercial components. Contour
plots of the availability trade-space (Fig. 5.6) can be used to help guide component selection.
These plots illustrate how changing both lens aperture, D, and F# simultaneously affects
the availability performance. Design-1 represents the current ST-16 design. Design-2 is
similar to the current ST-16, with a slightly faster lens (and wider field of view). Design-3
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Figure 5.5: Effect of field of view radius, θx, at ω = 1 ◦/s.
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and Design-4, share the same CMOSIS detector and field of view, but demonstrate the effect
of differing F# values.
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Figure 5.6: Design space for CMV4000 detector (ω = 1 ◦/s), contours show availability.

5.3.1.A Accuracy Trades

Imaging in the presence of motion spreads the photons from an imaged star over increasing
numbers of pixels. This effect generally decreases SNR, but can sometimes have a positive
effect when pixel saturation is considered. The accuracy profile for a given hardware con-
figuration is a function of the brightness of the star(s) being imaged. Figure 5.7 shows the
dependence between stellar magnitude of an arbitrary star and the associated angular error
in the star direction vector. Different mechanisms contribute to the elevated errors for very
bright and very dim stars.

For bright stars, centroid error is dominated by saturated pixels. For dimmer stars, centroid
error becomes dominated by the combined effects of shot noise, read noise and the thresh-
olding used within the ST-16 detection routine. Figure 5.8 shows the relative magnitude
and trends of these noise components. Signal quantization is modeled but had a negligible
effect on accuracy compared to the other factors.

The accuracy profiles of each of the four reference designs shown in Fig. 5.7 are similar. In
each profile, there is an obvious region of minimum star vector error corresponding to some
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optimal stellar magnitude, flanked on either side by regions of increasing star vector error.
For brighter stars (decreasing stellar magnitudes), the star vector error is driven by pixel
saturation effects. For dimmer stars (increasing stellar magnitudes), the star vector error is
driven by thresholding effects. In either case, the increased error is due to a loss of lit pixels
(defined as any pixel whos response is greater than a fixed threshold, BT , but not saturated),
which ultimately reduces the accuracy of the centroid estimate - This is due to a decrease in
the number of intensity measurements used in Eq. (2.1).

This suggests that for each hardware design, there exists a stellar magnitude that maximizes
the number of pixels below the saturation limit of the detector and above the minimum
threshold. The width of this inner region of low angular star vector error is relatively
insensitive to hardware changes. Lens or detector changes tend to shift the optimal stellar
magnitude towards either brighter or dimmer stars. This can give a net benefit because of
the abundance of dim stars in the sky.

Although these simulations do not clearly suggest hardware changes they do highlight direc-
tions for improving the star centroid estimation.

5.3.2 Integrated Trades

Using the combined general results of both the availability and accuracy trials, I evaluate the
performance of our reference designs against our targets. Table 5.3 shows the fraction of the
sky that meets the σtot ≤ 4.8µrad specification, with at least three stars in view. The first row
of the table shows results for the unmodified Reference Designs. Clearly, this performance
is inadequate as only a small fraction of the sky meets the accuracy specification. These
results should not be surprising, particularly for the designs closest to the current ST-16
optics, namely, Design-1 and Design-2. The next few rows of Table 5.3 explore the impact of
specific hypothetical processing improvements. Although I do not specify exactly how these
would be implemented; I examine the expected impact to help guide further development.
These improvements include:

Improvement in accuracy for overexposed stars - Currently, the centroid accuracy de-
grades as the pixels forming the PSF become saturated. If this phenomena can be avoided,
there will be an improvement in centroid accuracy for bright stars.

Tighter focus - Detector noise is one of the primary factors affecting the accuracy of the
star centroid. Decreasing the size of the PSF will reduce the contributions of detector noise,
improving overall performance. Here I consider halving the PSF radius i.e., αp = 2.5 pixels.

Multi-head solutions (Table 5.4) - The presented simulations of star availability can
easily incorporate the effects of multiple fields of view. Here I evaluate dual head and triple
head configurations composed of identical star trackers, mounted orthogonal to the primary
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Table 5.3: Sky Fraction Meeting Accuracy Specification (single-head)

Processing Ref. 1 Ref 2 Ref. 3 Ref. 4

Baseline 0.057 0.073 0.085 0.141
Bright Star 0.063 0.081 0.100 0.166

Tighter focus 0.081 0.118 0.124 0.204
σpix ≤ 0.2 0.100 0.131 0.135 0.217
σpix ≤ 0.1 0.150 0.186 0.187 0.305
σpix ≤ 0.05 0.262 0.338 0.348 0.633
σpix ≤ 0.01 0.986 0.999 0.998 1.000

Table 5.4: Sky Fraction Meeting Accuracy Specification (multi-head)

Processing Dual Head Triple Head
Ref. 1 Ref 2 Ref. 1 Ref. 2

Baseline 0.067 0.091 0.068 0.093
Bright Star 0.091 0.122 0.094 0.127

Tighter focus 0.143 0.256 0.151 0.275
σpix ≤ 0.2 0.230 0.331 0.249 0.361
σpix ≤ 0.1 0.502 0.565 0.542 0.595
σpix ≤ 0.05 0.697 0.747 0.712 0.759
σpix ≤ 0.01 1.000 1.000 1.000 1.000

sensor. For these cases I evaluate the accuracy, from Eq. (5.13), using all the stars across all
the FOVs.

The tabulated effects for these cases are cumulative (i.e, each assumes the preceding improve-
ments). Even with all of the changes, the fraction of the sky compliant with our accuracy
specification is still low. The different optical design solutions represented by the reference
designs show small improvements over the baseline case, but centroid errors remain too high.
The final rows of Table 5.3 and Table 5.4 show the effect of artificially capping the centroid
error, σpix, at different fractions of a pixel. Each of these cases assume the preceding im-
provements of the first three rows. Performance increases gradually from σpix = 0.2 pixels
to σpix = 0.05 but quite dramatically as we approach σpix = 0.01.

Table 5.5 shows the required centroid cap (in pixels) to meet the accuracy specification
for 90% of the sky with the four single-head reference designs and two dual-head designs.
Ensuring these targets can be met may be quite challenging, particularly at the body-rates
implicit in these scenarios, but it seems clear that any compliant design will require significant
improvements in σpix.
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Table 5.5: Required Centroid Caps for 0.90 Sky Fraction Meeting Accuracy Specification

Single Head Dual Head
Ref. 1 Ref 2 Ref. 3 Ref. 4 Ref. 1 Ref 2

0.017 0.021 0.020 0.033 0.026 0.032

5.4 Summary and Future Work

This chapter presented a number of performance models useful for the systems design of
micro- and nanosatellite star trackers. By explicit inclusion of the effect of body motion dur-
ing image exposure, these models are able to estimate performance in operational scenarios
where the star tracker must maintain an accurate attitude estimate during high rate motion.
A specific motivation for this inquiry is to explore possible design evolution of the Sinclair
Interplanetary ST-16 star tracker to allow arc-second level accuracy.

Examining the variation of availability in response to the design parameters yielded an
interesting finding. Whereas at rest, a large aperture can improve availability by allowing
the sensor to detect dim stars, the trade-off changes during slewing. At the target body
rates, large FOVs are preferred over sensitivity to dim stars. Secondary considerations such
as baffle design will ultimately limit the practicality of very large FOV star trackers. Several
promising point-designs were selected between θx = 6 ◦ and θx = 10 ◦. These designs combine
the baseline MT9P031 with a relatively small lens, or the CMV4000 with a large lens. Little
advantage is gained from using a large lens with Aptina detector or a small lens with the
CMOSIS.

The design trade-offs shown have also illustrated how detection accuracy depends on image
characteristics. Making accurate centroid measurements is a necessary precondition for ac-
curate attitude measurements. Large magnitude, unsaturated PSFs need very little help to
yield accurate star measurements. Rather, the key challenge of meeting the target require-
ments is maintaining good accuracy in off-nominal conditions. Changes to optical design
parameters can yield minor accuracy improvements, but dramatic changes will require a
reevaluation of our star detection routines. Saturated and marginal detections present dif-
ferent image characteristics, but smarter image processing using more explicit models of the
smeared PSF may allow more accurate detection.

Several solutions were found that meet the accuracy requirement for at least 90% of the sky
with each reference design. In all cases, algorithmic and hardware changes are necessary to
achieve the required centroid accuracy of 0.015-0.030 pixels, particularly when the PSF is
significantly elongated. Centroid accuracy on the order of 0.01 pixels has been demonstrated
by [Rufino & Accardo 2003], but it is unclear whether their techniques can be applied under
the relatively high target body rate. The most favorable solutions appear to be either a single
or dual-head Design-2 sensor. Although I do not have an COTS lens to use for comparison,
I expect that such a design would be less massive than a single Design-4 solution.
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One dimension of systems design that has deliberately been omitted from discussions within
this chapter is the relationship between the star tracker and other components of the attitude
estimation system. The presence of good quality rate measurements and a recursive estimator
(e.g., EKF or similar), could produce attitude estimates that meet the target specification
even if individual measurements did not. Such an approach would likely be part of any
integrated system. However, by restricting my discussions to deal only with individual
measurements, the presented results remain general and do not rely on assumptions about
starting conditions. Future work should aim to present a hybrid assessment of accuracy that
can balance the conservative predictions of the presented approach with benefits of an online
estimator.
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Chapter 6

Conclusions

Star trackers have traditionally been reserved for larger spacecraft due to their size, power
consumption, and cost. Motivated by growing demand from the small satellite community for
sub-arcminute attitude accuracy, a new breed of star trackers has been developed specifically
for small satellites. These Small Satellite Star Trackers (SSSTs) comply well with small
satellite constraints on size, power and cost. However, they are relatively coarse when
compared against traditional star trackers. The primary factors limiting the performance
of SSSTs are the use of significantly smaller optics and Commercial-Off-The-Shelf (COTS)
components. The effects of these factors are: reduced detection performance, reduced star
coordinate-vector mapping accuracy, and decreased performance in off-nominal operating
conditions.

This thesis has presented several strategies to mitigate these factors through the development
of offline calibration routines, flight software, and validation tests. The impact of each
strategy has been assessed through a series of simulations, laboratory tests and field trials
using a prototype of the newly available ST-16 Small Satellite Star Tracker. Based on the
knowledge gained from these specific developments, I have also conducted a series of optical
trades studies aimed at guiding future development towards a sub-arcsecond SSST.

This chapter reviews the contributions of this dissertation, highlighting the improvements
in sensor performance, added benefits and also the limitations of the developed work. Fol-
lowing this, I examine promising avenues for further small satellite star tracker performance
improvements and conclude with a few final remarks.

6.1 Summary of Contributions and Future Work

The contributions of this thesis seek to improve the accuracy and availability of the SSST
attitude solution. To achieve this, I break down the star tracker operational chain and
develop specific improvements for each major step. I present four groups of contributions:
improving image quality, reducing the star vector error budget, verifying slew tolerance, and
optical trades studies for further SSST improvement. This section provides a brief overview
of each contribution and makes some specific suggestions for future work.
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6.1.1 Improving Image Quality

The detection performance of a star tracker is driven by the size and shape of the PSF of
the sensor optics. Minimizing the size of the PSF would ideally improve the SNR of star
images. However, due to pixel saturation and sampling effects, there is a trade-off between
minimizing noise contribution and improving localization accuracy.

Chapter 2 describes the developed target-based focusing procedure that utilizes the MTF of
the sensor optics to measure the current position and orientation of the image detector. This
procedure enables precise control over the focus of the sensor allowing one to achieve desired
PSF sizes that maximize detector performance. Results show that the model of the PSF you
use to determine MTF is important. After testing three different PSF shapes, I found the
symmetric Gaussian produces the most consistent results. Using this model, the developed
focusing procedure was able to determine the focus error with an accuracy of 0.055mm. This
provides control over the PSF size down to a size of approximately 20 pixels, which is useful
for coarse focusing. Further refinement is required before this method can be used to finely
focus star tracker flight models.

The most attractive avenues for future improvement of the developed focusing procedure are
higher fidelity models of the sensor PSF. Incorporating even the most basic optical aberra-
tions will improve the performance of the developed focusing routine in the neighborhood of
desired PSF sizes.

6.1.2 Reducing the Star Vector Error Budget

The accuracy performance of a star tracker is directly dependent on the accuracy with which
detected stars can be converted to incoming star vectors. This transformation is based on
the knowledge of the intrinsic sensor parameters and the correction of any hardware induced
distortions. This dissertation makes two significant contributions to reducing the error in
star vector formation: an offline camera model calibration procedure, and flight software to
compensate for the effects of the Electronic Rolling Shutter (ERS).

6.1.2.A Camera Model Calibration

The accuracy performance of a star tracker is directly dependent on the accuracy with
which imaged stars can be converted to incoming star vectors. This transformation is based
on knowledge of various intrinsic sensor parameters which cannot practically be measured
individually. I have developed a lab-based calibration procedure that determines these pa-
rameters using a motorized gimbal and collimated star source.

The procedure is based on analytical models that describe i) the transformation between
the star tracker image detector and the sensor optics, and ii) the location of the simulated
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star source with respect to the star tracker, based on the commanded gimbal orientation.
I estimate the sensor geometry through a minimization guided by the error between our
modeled star position, based on the known orientation of the platform, and the measured
star position on the detector. The residual error in star vector formulation is approximately
3.5×10−5 radians which equates to approximately 0.2 pixels on the image detector. Although
this is sufficient for current performance targets of the ST-16 star tracker, this process must
be refined to achieve accuracy performance better than 1 arcsecond.

6.1.2.B Electronic Rolling Shutter (ERS) Compensation

When evaluating detectors for new star tracker designs, engineers are faced with a potentially
troublesome trade-off: limit the detector choices to those with simultaneous row exposure;
accept the added complexity of mechanical shutters; or restrict the operating regime to the
very small angular velocities. Section 3.2 develops a means of removing ERS distortions
without the need for additional instruments.

This section develops a series of algorithms that compensate for the effects of the ERS.
These corrections are based on developed analytical models that account for the effects of
ERS distortion on star centroid locations and estimate slew rate of the sensor. I have verified
these routines through simulation and laboratory tests that involve embedded implementa-
tion onboard the ST-16 star tracker. Simulation results show the residual angular velocity
measurement errors are dominated by centroid noise (≈ 0.07◦, 1 − σ). Laboratory results
shows that the developed ERS corrections are able to preserve accuracy scene geometry with
body rates of up to 3◦/s.

The developed algorithms have been deployed on the commercial versions of the ST-16.
Nonetheless, ongoing studies aim to improve the algorithm performance and better char-
acterize the effectiveness of the corrections. In particular, future work is aimed at better
understanding the cross-axis bias effect and expanding algorithm testing to include night-sky
observations. Although some aspects of our algorithm development have been shaped by the
specific operating concept of the ST-16 star tracker, I feel that developed approach to ERS
compensation is applicable to a wide array of sensor designs.

6.1.3 Verifying Slew Tolerance

Sensor slew spreads starlight over a larger number of pixels when compared with static
imaging conditions. This reduces the SNR of the imaged star and impairs centroid accuracy.
For dim stars, this can reduce the probability of detection. Each star tracker claims to be
tolerant of some amount of sensor slew, however, it is difficult to measure the exact impact
this angular motion has on sensor performance. Chapter 4 develops several approaches to
measure the effect of slew rate on sensor performance from the ground.
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The main objective of this work was to model the effect of slew rate on star tracker per-
formance. This was achieved in three basic steps. First I formulated an analytical model
to describe the effects of slew rate on the PSF shape and intensity distribution of a star
image. Second, I employed this model to describe detection performance as a function of
slew rate. Lastly, I used this relationship to predict star tracker availability at slew rates of
0−3◦/s. As a final contribution, I examined the concept of along-track dynamic availability.
Unsurprisingly, these results can vary quite substantially from calculated spatial dynamic
availability performance. However, the latter can serve as a first-cut approximation.

The calculation of along-track dynamic availability requires knowledge of mission details and
the relationship between tolerance slew rate and detectable stellar magnitudes. Using the
techniques presented in this study, we can achieve the latter part of this solution. If one can
then attain even a simplified understanding of the expected mission dynamics, we can being
to form bounds on the availability performance of the star tracker.

6.1.4 Evolving a Sub-Arcsecond Small Satellite Star Tracker

Many Earth-observing mission rely on spacecraft body motion to track ground targets. These
scenarios lead to requirements for arc-second accuracy attitude estimates during body motion
rates of up to 1 ◦/s. Achieving these performance targets with SSST presents a challenge.

Chapter 5 presents a number of performance models useful for the design of micro- and
nanosatellite star trackers. By explicit inclusion of the effect of body motion during image
exposure, I am able to estimate performance in operational scenarios where the star tracker
must maintain an accurate attitude estimate during high rate motion.

Starting from the baseline optical design of the ST-16, I have explored strategies for im-
proving the sensor accuracy to the sub-arcsecond range. This study highlights distinctive
features of the trade-space relative to more conventional star tracker designs and is valuable
for prioritizing further SSST development.

6.2 The Final Word

In addition to typical challenges faced by all star trackers, SSSTs suffer from decreased
performance caused by small optical systems and the use of COTS components. This thesis
has demonstrated that these challenges can be successfully mitigated through a combination
of offline calibration routines, online algorithms and integrated tests. This multifaceted
approach to sensor development has aided the rapid development of the ST-16 star tracker
which appears to be having initial success in the marketplace. Although the procedures and
algorithms described in this thesis were developed alongside the ST-16, they are applicable
to other star trackers.
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