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Abstract

A FINITE ELEMENT TECHNIQUE FOR PREDICTING THE
SOUND ABSORPTION AND TRANSMISSION COEFFICIENTS OF
MATERIALS

© Scott Higginson, 2006
Master of Applied Science
in the program of
Mechanical Engineering

Ryerson University

An efficient displacement-based finite element procedure is developed to
investigate sound propagation in one-dimensional acoustic systems. The systems
considered involve components made up of air and acoustic porous and solid materials,
with the air boundary subjected to a sinusoidal sound source. Each component is modeled
using higher order three node finite elements. Continuity of acoustic velocity and force
equilibrium are satisfied at the interface between the air and the porous/solid media. The
global equations of motion for the acoustic systems are assembled using the Lagrange
multipliers method. The finite element procedure is implemented by means of MATLAB.
The code is used to calculate various acoustic parameters including the sound absorption
coefficient for a representative porous material and the sound transmission loss for
several materials. The predicted results presented are in excellent agreement with

available analytical solutions, which have been validated by published experimental data.
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CHAPTER ONE - INTRODUCTION

Noise is an ever present industrial pollutant whose impact on society is a
considerable and increasing concern. In recent years, much legislation has evolved in an
attempt to recognize and combat the problem of noise pollution. Various studies have
recognized noise as a threat to human well being. As such, an increased demand for
sound insulation and noise control solutions has developed making noise and vibration
major factors in the design and marketability of a wide range of products and

infrastructure [1].

1.1 The Noise Problem

In general, a noise control problem can be divided into three elements: source, path,
and receiver. The source may be a machine or appliance, a highway, or any number of
mechanical noisemakers that are common in society. The path may be a direct airborne
path, a structural path through walls, or a complex path made up of a combination of air
and solid materials. The receiver is a person, or group of persons receiving the unwanted
sound [2].

The most effective means of controlling noise is at its source. However, it is not
always possible to attain acceptable noise levels in the engineering phase, or by
modifying current products and infrastructure. The next best way to control sound is by
attenuating as much sound energy as possible along its path from the source to the
receiver. The three mechanisms of noise control important to this thesis are:

e Reflection of sound energy back toward the source

e Transmission of sound energy

e Absorption of sound energy



However, other mechanisms such as material damping, vibration isolation, and the
elimination of alternate paths for sound propagation are also of importance. When efforts
to reduce noise at its source or along the path of transmission are insufficient, measures

such as using ear plugs and limiting exposure time can be used to protect the receiver [2].

1.2 Noise Regulations

Noise regulation is an important aspect of governments’ responsibility around the
globe. General noise standards are set where they will affect the health and hearing of
workers. Regulations are set to limit the noise of everything from motor vehicles,
airports, and machines to stereo levels in apartment buildings. In the United States, the
Occupational Safety and Health Administration (OSHA) sets regulations designed to
protect workers engaged in interstate commerce. The Department of Housing and Urban
Development (HUD) has developed regulations for sound insulating characteristics of
walls and floors, and sets guidelines for permissible noise levels in residential areas [2].

In combating the problem of noise pollution, it is necessary to use a means of
measuring noise levels and a system of classification. The decibel (dB) is used for this. It
is a number based on sound intensity or sound pressure. The lowest audible sound that
the human ear can detect is used as the reference point for determining the decibel level
of a noise. At 140 dB or more, acute pain is experienced; however, any noise rating
above 80 dB produces physiological effects, and long term exposure to noise above 90
decibels will cause permanent damage to a person’s hearing. Some common noise values
are given in Table 1-1. Many governments have enacted noise control ordinances that

dictate a maximum decibel level for various noise sources.

Table 1-1 - Common noise sources and levels [2]

Source . dBlevel

Calm breathing 10dB

Normal talking, 1 m distance 40— 60 dB
Major road, 10 m distance 80-90dB
Jack hammer, 1 m distance approx. 100 dB
Rock Concert 100-130dB
Jet plane, 30 m distance 150 dB




Noise generally consists of many tones with varying rates of vibration or
frequencies. Frequencies expressed in cycles per second or Hertz (Hz) usually are in the
range of 20 Hz to 20,000 Hz. This range is often referred to as the audible range as it is
bounded by the threshold of human hearing. Acoustic waves whose frequencies are
below the audible range are referred to as infrasonic, whereas those with frequencies
above the audible range are called ultrasonic waves. Industrial noise, generally, will be

made up of sound waves which encompass the spectrum of 100 Hz to 8,000 Hz [2].

1.3 Numerical Analysis of Acoustics Problems

The issues associated with the experimental study of noise control, such as cost,
complexity, and time constraints have led to growing interest in the development of
numerical techniques to accurately and efficiently predict acoustic properties of various
materials and systems. In many acoustic problems, the interaction between air and
structures has a significant effect on the response of the structure and the attenuation of
sound energy, and so this interaction needs to be properly taken into account. The finite
element method has found growing use in the acoustic field for predicting the acoustic
properties of both solid and porous materials that are used in fluid/structure systems. The
goal of this research is to produce a novel numerical technique for predicting sound
transmission phenomena in one-dimensional coupled air/solid systems. A displacement
based finite element method is developed and employed to investigate the one-
dimensional sound propagation through fluid, solid and porous media.

Early work in one-dimensional acoustics problems was done by Gladwell [3,4],
who determined that a fluid/structure problem could be formulated variationally either
entirely in terms of displacement or forces. Craggs [5,6,7,8] published a series of papers
on applications of the finite element to acoustics using Gladwell’s variational approach.
Craggs [5] used a mixed formulation to describe the behavior of a window-room system.
This mixed formulation showed good agreement with analytical predictions; however, a
large number of degrees of freedom was required for an accurate solution. This suggests

that a consistent field variable across the system is desired for computational efficiency.



Craggs [6,7] went on to develop finite element models to describe both a damped
acoustic system and a porous absorbing material. The formulations allow for a number of
input and output nodes, and use pressure as the field variable. The absorption model was
based on the Raleigh model for an absorbing material given by Morse and Ingard [9],
which will be discussed in later chapters. Results from his finite element models showed
good agreement with exact analytical solutions for various test cases. Craggs [8] then
presented a procedure to link the acoustic and porous models. The goal was to investigate
and successfully satisfy the continuity of pressure conditions at the interface of the two
components. The procedure was illustrated and tested using a one-dimensional coupled
acoustic absorption model to calculate the specific acoustic impedance and absorption
coefficient for a porous material. The results compare favourably with the exact solution.

The finite element analysis of acoustic fluid/structure interaction problems has been
carried on by other researchers; however, there appears to be a gap in the published
research regarding the one-dimensional prediction of various acoustic parameters. In a
paper by Everstine [10], several finite element formulations which can be used to solve
structural acoustic and fluid/structure interaction problems are presented. Formulations
based on fluid pressure, displacement, velocity potential, and displacement potential are
examined and shown to be valid field variables for formulating acoustic problems. The
formulations presented in further papers deal with two- and three-dimensional systems.
However, a great deal of practical information can be obtained from one-dimensional
acoustic systems, and there appears to be a lack of research regarding the prediction of
acoustic parameters for these systems.

The objective of this thesis is to present a novel finite element procedure for sound
propagation in different media using acoustic displacement as the field variable. The
wave equation considered herein is one-dimensional, although the procedure may be
extended to handle two- or three-dimensional problems.

The one-dimensional formulation presented in this thesis is implemented using
MATLARB to take advantage of the built-in functions and algorithms. The MATLAB
code developed in this thesis can be used to accurately and efficiently predict the sound
absorption coefficient and the sound transmission loss through different media for plane

waves. The reason for developing a procedure rather than attempting to use commercially



available finite element packages is that they cannot be used with confidence to deal with
the air/solid interaction. The acoustic systems considered in this thesis involve
components consisting of air and a porous or solid material. Boundary and interface
conditions are identified and satisfied at the interface between the two components.
Various test cases are explored and the results are compared to other independent

solutions available in the literature.






CHAPTER TWO — ACOUSTIC FUNDAMENTALS

2.1 Acoustic Waves

Acoustic waves are pressure disturbances which can propagate through
compressible solids, liquids, and gasses. They are longitudinal waves, meaning that the
particles transmitting the wave oscillate in the direction of propagation of the wave. This
produces alternate regions of compression and rarefaction in the medium. The total sound
energy may be considered as the sum of the kinetic and potential energies. The kinetic
energy is the result of the motion of the particles in the medium, and the potential energy
is due to the elastic displacement of those particles. Sound waves can be reflected,
refracted, scattered, transmitted, and absorbed [11].

This thesis deals with plane acoustic waves which can be defined as disturbances
with no variations in acoustic pressure, density, particle displacement and velocity in any
direction other than the direction of propagation. The wave fronts are planes
perpendicular to the direction of propagation and parallel to one another at all times. It is
also assumed that (1) there are no viscous effects for non-porous materials, (2) the fluid
medium is homogenous and continuous, (3) the process is adiabatic, and (4) the fluid
medium is isotropic and perfectly elastic. The development of the plane wave equation

and its solution can be found in [11].

2.2 Acoustic Impedance

The specific acoustic impedance of a material is an important property which is
needed to determine the reflection and transmission of acoustic waves at the boundary of

two dissimilar media and to assess the absorption of sound in a medium.



The acoustic impedance for progressive plane waves in a coupled system is a
complex quantity given by:
[2-1]
z=Pe_z +iz,
Ve

where p. denotes a complex acoustic pressure as a function of x and t, v denotes the

corresponding complex acoustic velocity as a function of x and t, and i> =—1. The real

component, Z,_, is referred to as the acoustic resistance and the imaginary component,

Z,.» as the acoustic reactance of the medium [11]. Further information about the acoustic

impedance pertaining to progressive plane waves can be found in Appendices A, B, and

C.

2.3 Sound Absorption

When a sound wave propagates through a medium, some of its energy is
dissipated by the medium. The source of the energy loss can be attributed to the
following mechanisms: viscous losses, heat conduction losses, and losses associated with
molecular exchanges of energy [1]. ‘

Sound absorbent materials generally find use as enclosures, wall coverings and
wrappings where they aid to reduce reverberant build-up of sound and hence increase
sound transmission losses. Sound absorption is very useful in applications where it is

necessary to keep reflected sound energy to a minimum.

2.3.1 Sound Absorbing Materials

Porous materials lend themselves well to use as absorbing materials. According to
Zwikker and Kosten [12], there are three major parameters that significantly influence the
acoustic absorption characteristics of a rigid porous material. They are the flow

resistivity, the porosity, and the structure factor.



Flow Resistivity (R)
The flow resistivity is a measure of the viscous resistance to a steady flow of fluid
(e.g., air) through the pores or interstices of the porous material. The resistance gives rise
to a static pressure gradient, dp/0x. The flow resistivity, R, is defined by means of the
following relationship:
- RV =0p/ox [2-2)
where V" is the volume flow rate per unit cross sectional area [1].

Porosity (Q)

The porosity, which is a dimensionless parameter, is the ratio of volume of voids
to the total volume of the porous material. Porosity influences the effective
compressibility or bulk modulus of the fluid. It normally falls between 0.90 and 0.95 for
effective absorption materials. [1]

Structure Factor (Kj)

The structure factor, which is also a dimensionless parameter, expresses the
influence of the geometric form of the pores on the effective density of the fluid. The
vibrating fluid undergoes accelerations in various directions as a result of the irregular
pore shapes found in a porous material. This increases the effective fluid density and so
decreases the effective speed of sound. The structure factor generally lies in the range of
1.2-2.0.

The conceptual Raleigh porous model proposed by Morse and Ingard [9] has been
modified by Craggs [6] through introduction of the structure factor, porosity, and
resistivity for application of the generalized Rayleigh model to a sound absorbing
material. The material’s sound absorption behavior in a coupled air/porous body system
can be modeled by using an effective speed of sound, an effective density, and damping

(or resistivity), which are given by:
c, =¢ /K ,Q

P2 = (K:/Q)pl +Rfiw
C,=R [2-3]



where ¢, is the effective speed of sound, ¢, is the speed of sound in air, p, is the
effective density, p, is the density of air, and C, is the damping coefficient associated

with the porous material. Note that p, is a complex quantity involving i = ~J—1.The

development of the wave equation for a porous material is given in Appendix B.

2.3.2 Absorption Coefficient

The absorption coefficient represents the fraction of incident sound energy that is
absorbed by a material on a scale of 0 (0%) to 1 (100%), assuming that the acoustic
energy penetrating the material is absorbed, and that the solid does not vibrate (no
particle motion). For a coupled air/porous body system, the absorption coefficient, is

given by (see Appendix B):

4Re(2) [2-4]
(Re(z; )+1) +(1m(z; )}

In this expression Re(Z ,') and Im(Z,' ) are, respectively, the real and imaginary

o, =

components of the so-called input impedance of the air/porous body system and p, c, is
the characteristic impedance of the air. Also, it can be shown from equation [A-22] of
Appendix A that:

rd 21| Zon [2-5]
pic, | (cosk,L, +z;, sink,L, f +22 sin? kI

and,
1ml Z N _ (sink,L, -z, cosk,L, Ycosk,L, +2z,, sink,L, )-z2 cosk,L,sink,L, [2-6]
Picy (cosk,L, +z;, sink,L, 422 sin? kI,

Here, k, = 27f /c, is the wave number of the air, L, is the air column length, and z,, and

z,, are the real and imaginary parts of the acoustic impedance of the porous material
given by:

z;, =Re{W, cothy, L, }/ pic,
and z;, = Im{W, coth 7, L, }/ p\c,
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where W, =\i,p, , K, = p,ct[Q, p, =K,p,|Q+Riw, y=iwp,/x, ,and L, is
the porous body length. (See Appendix B.)

2.4 Sound Transmission

-

The phenomenon of sound transmission is used extensively in the design of
partitions and barriers to control noise. When a sound wave impinges on the boundary of
a solid medium, the vibrational response of the solid radiates sound energy into the
surrounding air [1]. The transmission of sound energy through a solid medium depends
on the amount of sound energy radiated to the air on the opposite side of the solid from

that which the sound is incident upon.

2.4.1 Transmission Loss

Transmission loss in a solid is the accumulated decrease in acoustic intensity as
an acoustic pressure wave propagates through the solid. For steady state conditions, there
exists an exact analytical solution for the sound transmission behavior of single thick
solids. The derivation of this solution is detailed in Appendix C.

The transmission coefficient represents the fraction of incident sound energy that
is transmitted into a material on a scale of 0 (0%) to 1 (100%), assuming that none of the
acoustic energy penetrating the material is absorbed. The transmission coefficient is the
ratio of the acoustic power of the transmitted wave to that of the incident wave and is
given by:

4 [2-7]

a, =

2
4cos’ k,L, + P2l | PG | g2 k,L,
pic P26

where k, =27f/c, , L, refers to the length of the solid, and p, ¢, is the characteristic

impedance of the air. From this, the transmission loss for the system can be calculated as:

1 [2-8]
TL(dB)= IOIOg(—

t
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2.4.2 Mass Law

The mass law is a practical rule that applies to most materials in certain frequency
ranges [11]. (It has been verified by experimental data [11].) It involves the assumption
that the solid medium in the system is perfectly rigid. This results in a specific acoustic
impedance which is entirely reactive (imaginary). The procedure for obtaining the mass
law can be found in Appendix C. Equation [C-50] of this Appendix gives the

transmission loss of a solid obeying the mass law as:

7o, [2-9]

TL(dB) = 2010g,0( ]+ 20log,, f

161
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CHAPTER THREE - FINITE ELEMENT FORMULATION

A displacement-based finite element formulation of one-dimensional sound
propagation through solid and porous media is developed. A displacement based
formulation is chosen over the pressure based formulations used by Gladwell [3] and
Craggs [5] for a number of reasons. In a displacement based formulation, Hamilton’s
variational principle can be used to derive the system’s equations of motion and boundary
conditions, and the interface conditions between two media can be defined without the
need to define the direction of wave propagation.

One of the advantages of this formulation is that it offers a high level of
computational efficiency. As such, three-node higher order, non-isoparametric finite
elements are used to model the wave propagation in the one-dimensional acoustic
systems under consideration. Each of the three nodes has two degrees of freedom, the
acoustic displacement and its derivative with respect to position (i.e., the gradient). These
two degrees of freedom are exactly what are needed to correctly formulate the interface
conditions. This three-node finite element allows quintic polynomials to be used as the
shape function for acoustic displacement. The benefits of this are realized when dealing
with systems having large wave numbers, i.e., high frequency sound propagating in a
thick solid.

When sound propagation across different media is studied, it is often necessary to
formulate and implement interface conditions. According to Craggs [5], when two media
are linked together, it may be assumed that there exists an incompressible fluid boundary
layer whose dimensions are small compared with the acoustic wavelength. This ensures
that the two media have continuous acoustic displacements and acoustic pressures across

the interface. For the one-dimensional situation, the pressure on either side of the
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boundary layer can be related to the displacement gradient through compressibility or
bulk modulus, for fluids, and modulus of elasticity, for solids.

The equations of motion for the one-dimensional acoustic system shown in Figure
3-1 are presented and the finite element model of the system is developed. The system is
excited by the harmonic motion of a rigid piston at the left end of the tube. To study the
sound absorption and sound transmission loss through the solid, it is assumed that the
sound waves either terminate or are transmitted to the ambient air at the right end of the

tube. However, other boundary conditions can be implemented.

Rigid piston
uflh = U, sinof

N

Qz X3

Figure 3-1 — Three component sound system

3.1 Variational Principle

In dealing with linear waves in the multi-component system depicted in
Figure 3-1, the following assumptions are made:

(1) No ambient fluid flow;

(2) Heat transfer associated with acoustic waves is negligible;

(3) The fluids are inviscid,

(4) Walls of the tube are smooth, rigid and adiabatic;

(5) The cross section of each media is much smaller than its length.

‘The longitudinal displacement or acoustic displacement is used as the field
variable for a column of solid or porous material. With this displacement field, the
velocities and stresses inside the material can be easily obtained. For a column of fluid
with no flow, one of the following three field variables can be chosen: acoustic pressure,

acoustic displacement, and acoustic velocity. For consistency, in the case of the solid, the
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fluid’s acoustic displacement is chosen as the field variable. From this, the acoustic
velocity and acoustic pressure in the fluid can be calculated. This choice also makes it
easier to derive the ordinary differential equations for transient and steady state responses
of an acoustic system to excitations through Hamilton’s principle [14].

When deriving the equations of motion for a system with multiple media, it is
prudent to begin by studying a single one-dimensional, unconstrained medium, as shown

in Figure 3-2.

Boundary 1 |

Ok

Y
Figure 3-2 — single unconstrained component

For generality, k refers to the k-th medium or system component. The associated acoustic
material and geometric properties are:

p, - density

¢, -speed of wave propagation

E, -modulus of elasticity for solids, or compressibility for fluids

C, - damping coefficient per unit cross-sectional area

I, -length of component

A, - cross-sectional area

By the extended Hamilton’s principle [14], the equations of motion of a single medium
can be determined by

f [3-1]
Jlot, +57,., =0

h

Here, L, is known as the Lagrangian and is defined by T} — V., where T, represents

kinetic energy in the system and ¥, represents potential energy; 8W,,, represents the

virtual work done by distributed non-conservative forces and the damping force; and t is

time.
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In terms of acoustic displacement, the acoustic wave equation under the above

assumptions is given by [11]:

1 %u d'u _ 3-2]

where c represents the speed of sound, u is the acoustic displacement, t is time, and x is

direction of propagation.

3.2 Finite Element Formulation for a System Component

The component equations of motion may be obtained from the wave equation and
Galerkin’s weak form of the variational principle [13], or using the Lagrange multipliers
method. Here, it shall be developed using the Lagrange multipliers method.

Suppose that the k-th system component is modeled using N, , one-dimensional,

three node finite elements, as shown in Figure 3-3.
0 /2 i

Figure 3-3 — three node higher order element

The acoustic displacement, u, , varies with the local axial co-ordinate, €, as

u, =[NOID ] {7}, (0<E<1,,) 13-31
where [N (§)] is the shape function matrix; [De ]k is the element geometric matrix; and

fu. }k is the element nodal displacement vector. These quantities are defined as follows:

(1) [3-4]

g
g |
§3

E_,4
&

[NE)] "=+
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The kinetic and potential energies can be written as:
13-7]
Lo = ST )
13-8]

Xk

where [Me]k is the element mass matrix, and [Ke]k is the element stiffness matrix,

defined by
[3-9]

v.), =1, 1:[']‘pkAk [N@r[zv(a)]da}[a]k

Ik.], =[D61:{"[pkc:/1 [”’N@] ["'N@}a}

And the component nodal displacement, {i}, , is given by:

[3-10]
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1 (., ) [3-11)
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1
€ node 1
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{ }A £ node 2 f 2
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{} -
E node nn J g ké'nn) X

where subscript nn represents the number of nodes in the k-th component.
The element displacement vector can be related to the component displacement

vector through a transformation matrix as follows:

l e—)gJ {ﬁ}k 13-12]
The kinetic and potential energies can be re-written in component form as:
1. = [3-13]
T, = -Z-{u}:[M]k {u}k
[3-14]

AR

where i represents the nodal velocity, and the component mass and stiffness matrices are
given by:
Nex [3-15]
T
[M]k = Z[Te-»g ]k [Me [Te——)g ]k
e=1
[3-16]

[k]. = 2[ TSk,

If damping is present in the component, the non-conservative distributed damping
force will do work. For viscous damping, the effect can be considered through a Raleigh

dissipation function, U, , which is given by:

Loty as = bl o

Here, C, is the damping coefficient; [C], is the damping matrix, which is written in

element and component form as follows:
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[3-18]

[c.], =[D.]; !J CAINET [N(é)]dé}[De ],

13-19]

[c], = 2[7; Ilclr.,]

For a Rayleigh material, the generalized damping force vector may be obtained from the

following relation:
ou . [3-20]
{an}- == .k =—[C 17
k a {ﬁ}: ]k { }k
The work done by the generalized force vector for a virtual displacement of
8{ir}; is given by:
SVVIK‘.k = 6{17}: {an }k I3-21]

When the component nodal displacement vector is chosen as the generalized co-

ordinate, it can be shown that Hamilton’s principle yields the following from [3-1]:

d dL, N v, L, 0 [3-22]
dt ofil, ofuf, ofwh
If one substitutes [3-13] and [3-14] and [3-17] into[3-22], the equations of motion for a

single unconstrained component in terms of the nodal displacement vector are given as:
], i}, + [l ik + [k dah = 0 [3-23]

where # represents nodal acceleration. For a system made up of multiple components,
the above equation describes each component individually. Interaction between
components is done by coupling the individual equations of motion through

displacements at the interfacial nodes.

3.3 Boundary Conditions

According to Hamilton’s principle [14], the natural boundary conditions at each

end of a component are either:
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(1)- the acoustic displacement is prescribed, or

(2) the acoustic pressure is zero.
The first case includes situations where the boundary moves with a rigid piston and
where sound propagation terminates. The second case is generally not encountered in
practice for components of ﬁnite size. Besides these two natural boundary conditions,
there may be non-natural, or forced, boundary conditions imposed on the system. These
boundary conditions may include inertial, stiffness and damping elements.

Referring to Figure 3-1, where the left end of Fluid 1 is coupled to the movement
of the rigid vibrating piston, the acoustic velocity at the first node must be equal to that of
the piston. For a harmonic excitation at a single frequency, this acoustic velocity may be

written as:

1y (x,,0)[, o =y (t) =V cos @1+, sin oot 13-24]

where u denotes velocity, ¥, and ¥V, are the sine and cosine components of the
acoustic velocity and @ =27 is the frequency of excitation of the system. [3-24] can be
written in terms of the acoustic displacement as follows:

u, (x, ’t)lx,=0 =u,(t)=U,, cosot+U,, sinmt [3-25]

Here, Uy, =V,./® and U,, =-V,, / ®.

3.4 Interface Conditions

It is assumed [7] that, at the interface between two components,
(1) the acoustic displacements or velocities of the components on the two sides of
a thin and incompressible boundary layer are identical in the direction normal
to the interface, and
(2) the acoustic pressures on the two sides of the boundary layer are also
identical.
These conditions ensure that there is continuity and force balance across a thin boundary

layer separating the two components. For the acoustic system in Figure 3-1, there are
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three components, two interfaces and four interface conditions. Using the co-ordinates

shown in Figure 3-1, these interface conditions are given by:

"I(xl’t)l.‘,ﬂ, =u,(x,,t)

“,1=0, p] (x"t)l.tﬁll =p2(x27t)

x=0

|3-26]

u,(x,,1) e, =t (x3,t)|x|:0 » Py (x,,1) et = P3 (,\‘3,t)|x‘=0

Use of higher order finite elements introduces the displacement gradient or acoustic
strain, € = du/dx, into the element nodal displacement vector. For any component, the

acoustic pressures and displacements are related through

13-27]

pk =—(pc2§£) =_pkclfek7 k:13273
ox ),

The negative sign in this equation is due to the fact that compression of a medium
corresponds to a positive acoustic pressure and negative acoustic strain, and rarefaction
of a medium corresponds to a negative acoustic pressure and positive acoustic strain. By
substituting [3-26] into [3-27], the interface conditions can be written in terms of acoustic

displacement and acoustic strain as

[3-28]

2 2
u, (x, ’t)|x.=l. =u,(Xy,1) =0"P1€1 &) (x, ’t)||X.=I. =P,C2€,(X,1) =0

[3-29]

2 — 2
u, (x2’t)|xz=:, =u, (x3,t)|x " P,CyE,(x,,1) e, = P3C3Es (x3,t)|L‘=0
1= 3

These interface conditions are valid for waves propagating in either direction, that is, for
transmitted and reflected waves. If one made use of the acoustic velocity or pressure as
the field variable in the derivation of the equation of motion, separate expressions for

transmitted and reflected waves would be required.

3.5 Assembly of the Equations of Motion

Recalling the assumptions made in Section 3.1, the equations of motion for each

of the components in the three component acoustic system may be written as
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[M ]l {ﬁ}l + [K ]1 {‘7}1 =0 [3-30]
[M ]2 {a}z + [C]2 {ﬁ}z + [K ]2 {17}2 =0 [3-31]

(M ]3 {’7}3 +[K ]3 {5}3 =0 ) [3-32]

These component equations must be modified to satisfy the boundary and interface
conditions described in Sections 3.3 and 3.4, respectively. The first fluid column is
directly adjacent to the harmonically vibrating piston; so, from [3-25], it is known that the
acoustic displacement of the first node of the first column of fluid must be equal to the

piston displacement, i.e.,
@) =u, (1) 13-33]

If sound is assumed to terminate on the right side of the solid component, the last node of

the second air component must have zero acoustic displacement, i.e.,

(@,),=0 [3-34]

m

However, if it is assumed that the right end of the second fluid column is exposed to open
ambient air, the acoustic pressure must be zero, and so the acoustic strain must be zero,

1.€.,
(Enn )3 = 0 [3-35]

These boundary conditions may be implemented by modifying the stiffness and mass
matrices, or using the penalty method.

Since the acoustic displacement of the first node of the first column of fluid is
prescribed, the equation associated with this particular degree of freedom can be deleted
from the equations of motion. The modified equations of motion for the first fluid column

can be written as |
[m], {17}1 + [1? ]1 {#}, ={0},. coswr +{0},, sin wt [3-36]

where [IZ’ 1 is the matrix resulting from the removal of the column and row relating to the

first node in [K]; {0}, and {Q},, are the acoustic force vectors given by
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r(K 2 =My, )U 0c \ 13-37]
(K w—M;,0 kjm
{Q}lc =9 :

(K o1 = Mg, 00 )UOc
0

r(Kz.l - MZ.I(DZ )UOS ‘ [3-38]

{ } (K3" -My,’ )UOs

Q 1s — )

(K6.l - M(,_l(oz bo:
0

J

The boundary condition on the right end of the second fluid column can be
implemented by modifying the mass and stiffness matrices, or through the penalty
method, by replacing the second to last or last diagonal element (depending on the

condition) in [K ]3 with k_ . The modified equations of motion for the third component

can then be written as
M), §i}, + K], = {0} 13-39)

where [E L is the modified stiffness matrix due to the implementation of the boundary

conditions.

The four interface conditions for the acoustic system having three components

can be written in matrix form as follows:
AR R S = .
E] 2 - 0 a’l _lml l, El 3 0 aZ Enn2 2
o @}, - [R, Yz, }, ={ob.{w, 3, - [R, }iw, 1, = {0} [3-41]

where, o, =p,clA,[p,c 4, [3-42]

o, = p2c22A2 /pscafAs

23



Note, in this Acase, A= A;= A;. To implement these interface conditions into the global
equations of motion of the acoustic system, it is necessary to add to the Lagrangian the

potential associated with the work done by the constraint forces, which is defined as [13]:

r={w ), -Ir Y, ) Y in+{@ ), -7, Y ), [ e

where {f} and {g} represent constraint forces between two media at their interfaces / and

[3-43]

J, respectively.
Incorporating this, the modified equations of motion in partitioned form, along

with the constraint equations, are written for each component as

2= ~ ~ — 3-44
[MOO M0/:| {uo} +|:Koo KOIJ {uo} _{Qo(t)} +{ 0 } [ ]
. ~ ~ _ = T
My, M, y LU ), Ko Ky, W)y 0 1 [Rl] f
M n M 10 M u E, Cu CIO CIJ ‘71 13-45]
M ol M 00 M oJ ﬂo + Co: Coo COJ ’—"0 +
_M JI M Jo M s EJ 2 CJI CJO CJJ 2 ﬁ.l 2
KII KIO Eu ﬂl _f 0
Ko Koo Koy | qitgp =9 0 o+ 0
_KJI Ko Ky ) U, 0 [RJ]T'g
I:MJJ MJO] {"71} +I:EJJ EJO:’ {EJ} ={—g} 13-46]
MO.I Moo 1 ’70 3 KOJ Koo 3 170 3 0

where subscripts O, 1, J refer to interior, first interfacial and second interfacial degrees of
freedom, respectively. Equations [3-41] through [3-46] represent a complete set of

dynamic equations for the acoustic displacements and constraining forces between two

adjacent media.
After some simple matrix operations to remove the constraining forces, a set of

inhomogeneous governing differential equations written in terms of the modified

displacement vector is given as

[M]g {ff}g + [C]g {fi}g + [K]g {ﬁ}g = {Q}gc cos? +{Q}gs sin ¢

[3-47]
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where,

({ir, )]
i}
= @) o), - e, - {19
_ 0 § 0
{”J }2
{Eo }3 )
|3-48]
M00], [v1,.) 0 0 0
M) M, ) +[RT M, LRI [RTIM,], (R, ) [Mm,], 0
[M], =] o (Mo, ).[R,] [Moo], [M,,], 0
0 (M, ][R,] Myl My, )+ (R T M, )[R, (R, T (M),
0 0 0 Mo, LR, ] Mool |
[3-49]
r[{{OO}I I?OI 1 0 0 0
[KIO [I?ll ]I + [RI ]T EII ]2 [Rl] [RI ]T [EIO ]2 [Rl ]T [ﬁl.l ]2 0
k], =| o %o, )[R,] [Bo0). Ko 0
0 %, L [R,] Kol [RuL+R TR LIR] (R T[R,)
| 0 0 0 %, LIz, ] [%o0
[3-50]
[0 0 0 0 0]
o [&][c,LIrR] [RTIC,), [R]Ic,], o
[C]g =10 [COI ]2 [R, ] [COO ]2 [COJ ]2 0
o [c,LIr] [0, [c,, o
0 0 0 0 0
[3-51)
3.6 Solution Procedure
To determine the steady-state propagation of a sinusoidal acoustic wave in the
one-dimensional acoustic tube, one assumes a solution in the form:
{u}g ={u}, cos ot +{u}, sin wt 13-52]
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By substituﬁng [3-52] into [3-47] and comparing the coefficients associated with the sine

and cosine harmonics, one obtains the following:

[[K -o’M],  -dc], } {{U }:} ~ {{Q}gc} [3-53]

ocl, [kl -e’M], |l{UL]) " i@k

This equation can be solved for the nodal acoustic displacements and strains for the sine
and cosine components. The acoustic pressure and acoustic velocity can then be

determined by

e ==lpc’e), = (p. ), cost +(p, ), sin wt [3-54]

v, =u, =(u,), cosax +(u,), sinax [3-55]

where (p,), =—(pc’e.),, (p, ), =—pc’€, ), 1, = du, /dt, and subscripts s and ¢

represent the sine and cosine components, respectively.

It is often helpful to give the acoustic pressure in the complex domain as follows:

—— e
It can be shown that the real and imaginary parts, (pg.) and (p,,, ), of the complex

acoustic pressure are related to the sine and cosine coefficients in [3-54] by

(Pre)s = (P,
(B )i =(2,)s [3-57]

Similar relationships hold for other acoustic quantities such as acoustic displacements

and acoustic velocities.

3.7 Finite Element Program

It is necessary to validate the finite element procedure formulated here. To do so,
the procedure must be implemented and a series of test cases explored for which exact
analytical solutions exist for comparison. It was decided that MATLAB would be used to

code the finite element procedure.
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MATLAB is an integrated technical computing environment that combines
numeric computation, advanced graphics and visualization, and a high-level
programming language. It is especially designed for, and contains algorithms to carry out,
matrix computations, namely, solving systems of linear equations, computing eigenvalues
and eigenvectors, factoring matrices, etc., thus making it ideal for programming the finite
element technique. ,

The technique was coded using various modules to increase the versatility of the
program, and ease program debugging. The modules used were: input, element equations,
global equations, solution, and post processing. All the pertinent system information was
defined in the input module. This information was passed onto the element equations
module where the mass, stiffness, and damping matrices describing each component in
the acoustic system were developed. The global equations module assembled the various
element matrices into a single mass, stiffness, and damping matrix describing the system
as a whole. The solution module solved the developed system of equations, outputting the
pressure and velocity field of the acoustic system. The post-processing module
manipulated these data to calculate acoustic parameters such as impedance, absorption
coefficient, and transmission loss. Flow charts detailing the operation of the finite

element code can be found in Appendix D.
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CHAPTER FOUR — RESULTS AND DISCUSSION

It is necessary to validate the finite element procedure before the methodology can be
applied to more general acoustics problems. This is done through a series of test cases
for which exact analytical solutions exist. Following validation, the method can be

applied to practical sound transmission loss problems.

4.1 Impedance Tube

The first test case deals with the propagation of sound through a column of air within
a hollow rigid tube and the interaction of the sound with an acoustic material,
characterized by a specific acoustic impedance, Z*, at the end of the tube, as shown in
Figure 4-1.

Rigd piston
uL = U, sinof

N

Figure 4-1 — Impedance Tube

The air is excited by an oscillating piston, for which the displacement is defined as:

u,(t)=U,sinoxr

where @ =271 . The piston’s velocity is given by:

v,()=du,/dt =U,wcosat
=V, cosax
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A portion of the resulting acoustic energy is absorbed by the acoustic material as dictated
by its specific acoustic impedance, Z~ , defined as
7' =7, +iz; =21
H(L)
where p(L) and v(L) are complex values of pressure and velocity, respectively, at the
end of the tube.
Under steady state conditions, the combination of incident and reflected waves
within the tube creates a standing wave. The exact analytical solution for the complex

pressure everywhere is given in Appendix A.

Finite Element Solution

In the displacement-based model, the acoustic material, which has resistive and
reacting components, is equivalent to a massless piston subjected to the constraints of a
linear spring and viscous damping elements (%, and d, ), as shown in Figure 4-2.

Rigd piston
u{h = U, smof

AN

Fluid (p,c)

04 L ol

Figure 4-2 - Impedance tube. Equivalent representation for use in the finite element procedure

The equilibrium condition of the massless piston yields the following relationship:

p(L)=ku(L)+d v(L) [4-1]
where p(L), u(L) and v(L) represent the pressure, displacement and velocity at the air-
solid interface. To determine the relationship between the acoustic impedance and the

values of k, and d,, these values are defined as:

p(L) =Re{p(L)e™}
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u(L) = Refii(Lye™ } [4-2]

(L) = Ref(L)e ™ }
where p,, i1, and v, are, respectively, the complex amplitudes of the harmonic acoustic

pressure, displacement and velocity at the air-solid interface. [4-1] can be re-written in

complex form by substituting [4-2] as follows
pL) =k a(L)+d v(L) 14-3]

To obtain the values of the reactance and resistance coefficients from the real and
imaginary parts of the specified acoustic impedance, the relationship between complex

displacement and complex velocity is used. This relationship is as follows:

V 4-4
i =22 A
—iw
Combination of [4-3] and [4-4] yields:
P pe_ k, . do [4-5]
V(L) pcw  pc
Thus, it follows that:
, . 14-61
ke gz ey
peca pc
and,
[4-7]

k,=Z,pco, d, =Z,pc

The reactance and resistance coefficients are incorporated into the finite element
formulation by adding them to the global stiffness and damping values associated with

the node at the air-solid interface.

4.1.1 FEM Validation

Numerical results were obtained using eight three-node finite elements and the
analytical solution in [3-54] for two different sets of parameters, which are given in Table

4-1. The real and imaginary parts of the spatial component of the acoustic pressure field
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along the entire length of the one-dimensional air column are compared in Figure 4-3
through Figure 4-6.

Acoustic pressure (Pa)

-10 4

15 4

Table 4-1 — FEM Validation test cases

15 1%

System
Casel | Case2
Density p (kg/m3) 1.2 1.2
Speed of Sound | ¢ (m/s) 341 341
Input Velocity U, (mfs) 0.01 0.01
Frequency f (Hz) 1000 1000
Length L (m) 1.705 | 1.6709
Impedance 4+0i 4+3i
ol ‘.
02 04 08 12 14 16 18

Axial distance from the piston (m)

©0 FEM - Real = Analytical - Real

Figure 4-3 Case 1- Real pressure field, (n=8)
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Acoustic pressure (Pa)
EN =)

.
N
s

]
w

-4

0.2 0.4 0.6 08 1 12 14 16
Axial distance from the piston (m)

o FEM -Imaginary Analytical - Imaginary

9! y

Figure 4-4 Case 1 - Imaginary pressure field, (n=8)

Acoustic pressure (Pa)
(=] -

D
-
L

2

02 0.4 0.6 0.8 1 12 14 16
Axial distance from the piston (m)
0 FEM - Real ===Analytical - Real

Figure 4-5 Case 2- Real pressure field, (n=8)
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10

Acoustic pressure (Pa)
o

0 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8
Axial distance from the piston (m)

O FEM - Imaginary === Analytical - Imaginary

Figure 4-6 Case 2 - Imaginary pressure field, (n=8)

It can be seen that the results from the finite element procedure are in excellent
agreement with the analytical solutions. The RMS error, using 8 finite elements, is much

less than 1% across the pressure field in each case. This error is defined as:

N 2
E=100% X(PF_PPAN_AL] /N,,

[4-8]

i=1 ANAL
where Prgyis the FEM pressure, P4y, is the analytical pressure, and Nj, is the number of

axial positions considered.

4.1.2 Sensitivity Analysis

Having confirmed that the finite element procedure is capable of predicting the
standing wave pressure field in the impedance tube accurately, it is necessary to perform
a sensitivity analysis to optimize the computational efficiency of this technique.

It can be assumed that the number of elements required for an accurate finite
element solution is based on the number of waves present in the system. The frequency
and length are therefore the determining factors in calculating an appropriate finite

element mesh. The sensitivity analysis is carried out using the system parameters given in ,

34



Table 4-2. By varying the oscillation frequency of the piston and the number of elements
used in the solution, one can determine the number of elements required to accurately

describe a single wave.

Table 4-2 — System parameters for sensitivity study

System
Sensitivity

Density P) (kg / m3) 1.2

Speed of Sound c (m/s) 341

Input Velocity U, (m/s) |0.01
Length L (m) 1.55
Impedance 4+3i1
Frequency f (Hz) Variable
Number of Elements | n Variable

For the given system, the RMS error propagation for both the pressure amplitude
and phase angle is shown in Figure 4-7. As expected, increasing the number of elements

in the finite element mesh increases the accuracy of the solution.

100
90
80 1
70 1

60 J\

Error (%)

22 27 32 37 42 47 52
Number of elements (n)

—o— Error - Pressure amplitude —x— Error - Phase angle

Figure 4-7 Error propagation of finite element scheme
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For this systém, less than a 20% RMS error required at least 14 elements, less than 10%
RMS error required at least 16 elements and less than a 1% RMS error required at least
21 elements. Figure 4-8 and Figure 4-9 depict the various RMS errors associated with the
pressure amplitude and phase angle. The element requirements for the system with a
varying number of waves can be seen in Figure 4-10. This figure shows that the
relationship between the number of waves (N,,) in a column of air of length L, and the
number of three-node finite elements (n) required to described the system with a
prescribed error ( E %) relative to the analytical solution is essentially linear, with:
n(1%)/N,, =2

n(10%)/N, =1.5

and, n(20%)/N, =1.2

25

Pressure amplitude (Pa)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Axial distance from the piston (m)

<1% emror — — —<10% emor ----- <20% error === Analytical

Figure 4-8 Comparison of RMS errors associated with pressure amplitude for a single wave
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Phase angle (deg)

-50 4

-150 -

-200 T v — v v -
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Axial distance from the piston (m)
<1% ermor — — — <10% error

------ <20% error Analytical

Figure 4-9 Comparison of RMS errors associated with the phase angle for a single wave

100 1
80
E
§ o
€
2
3
s
]
£
2 40
20 4
0 5 10 15 20 5 30 35 40 45 50
Number of waves (Nw)

---a---20% error —e— 10% error —s— 1% emor

Figure 4-10 — Variation of element requirements with number of waves for a solution accuracy

within 1%, 10%, and 20%
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The wave length in a system can be calculated from:
c 14-9]

A=<
S

Knowing the wave length, the number of waves present in the air column can be

calculated from:

4-10
N = L [4-10]
A

Hence, the element requirements are given by:

2L [4-11]
nreq (1 % = 7
1.5L [4-12]
and
> 5 [4-13]
g (20%) = 225

The choice of a three-node higher order finite element was driven by the desire
for high computational efficiency. For comparison, a two-node element was used to solve
the same system and the error propagation can be seen in Figure 4-11. A comparison of
Figure 4-7 and Figure 4-11 shows that nearly 25 times the number of elements are
required to produce results within 20%, 10% and 1% RMS error when compared with the
three-node higher order element used in this thesis. The element requirements for the
two-node scheme are not only computationally demanding, but the use of so many
elements can cause errors in the stiffness matrix because the system becomes over
constrained. The length of each element becomes much smaller than its area, and this can

artificially increase the stiffness of each element leading to poor results.
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Figure 4-11 - Error propagation of two-node finite element scheme

To further validate the finite element model, it is prudent to investigate the effects
of varying parameters such as length, frequency and impedance to ensure the

methodology is accurate for a wide range of systems.

4.1.3 Effect of Length

To show the finite element method is valid for systems of varying length,
numerical results were obtained using twelve three-node finite elements and the
analytical solution derived in Appendix A for two different sets of parameters, which are
given in Table 4-3. The pressure amplitude and phase along the entire length of the one-

dimensional air column are compared in Figure 4-12 through Figure 4-15.
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Pressure amplitude (Pa)

Table 4-3 — System parameters for studying the effect of length

System
Case L1 | Case L2

Density p (kg/m*) |12 1.2
Speed of Sound | ¢ (m/s) 341 341
Input Velocity U, (m/s) 0.01 0.01
Frequency 1 (Hz) 1000 1000
Length L (m) 1.5 2.0
Impedance 4+3i 4+3i1
02 04 06 08 ' 12 14 16 18

Axial distance from the piston (m)

0 FEM == Analytical

Figure 4-12 Case L1 - Pressure amplitude, (n=12)
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Figure 4-13 Case L1 - Phase angle, (n=12)
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Figure 4-14 Case L2 - Pressure ampl
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Axial distance from the piston (m)

© FEM === Analytical

Figure 4-15 Case L2 - Phase angle, (n=12)

Again, it can be seen that the results from the finite element procedure are in good
agreement with the analytical solutions. The RMS error, using twelve elements, is less
than 1% for both the pressure amplitude and phase angle in each case. To gain further
insight into the effect of tube length on the pressure f'ield, and to further validate the finite
element model, the peak pressure amplitude is plotted against various tube length for the

system described in Table 4-4.

Table 4-4 - System parameters for studying the effect of length on peak pressure

System
Case L3

Density p (kg [m® ) 1.2
Speed of Sound | ¢ (m/s) 341
Input Velocity U, (m/s) 0.01
Frequency 1 (Hz) 1000
Length L (m) Variable
Impedance 4+3i

A plot of the peak pressure amplitude versus tube length is shown in Figure 4-16

for tubes of length 1.4 m to 1.8 m, where a solution is obtained from the finite element
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method at 0.005 m intervals. The results show that the peak pressure amplitude varies
with length and oscillates in a repeating manner between a maximum of approximately
25 Pa, and a minimum of approximately 4 Pa. The pattern was shown to repeat for
lengths outside of the bounds of this plot, 1 m through 10 m. It can be seen that the finite

element solution predicts the peak pressure amplitude pattern and is in good agreement

with the analytical solution.

30

25

Peak pressure amplitude (Pa)
> S

-
o
N

14 1.45 1.5 1.55 1.6 1.65 1.7 175 18
Tube length (m)

o0 FEM = Analytical

Figure 4-16 Case L3 - Effect of varying tube length on peak pressure amplitude (n=12)

From this, it can be concluded that the accuracy of the finite element method is
unaffected by changes in tube length provided an appropriate number of elements are

used to model the system.

4.1.4 Effect of Frequency

To show the finite element method is valid for systems of varying frequency,
numerical results were obtained using three-node finite elements and the analytical
solution for two different sets of parameters, which are given in Table 4-5. The pressure
amplitude and phase along the entire length of the one-dimensional air column are

compared in Figure 4-17 through Figure 4-20.
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Pressure amplitude (Pa)

Table 4-5 - System parameters for studying the effect of frequency

System
Case F1 | Case F2
Density p (kg/m*) |12 1.2
Speed of Sound | ¢ (m/s) 341 341
Input Velocity U, (m/s) 0.01 0.01
Frequency S (Hz) 1000 2000
Length L (m) 1.55 1.55
Impedance 4+3i1 4+3i
0 02 04 06 08 1 12

Axial distance from the piston (m)

0 FEM = Analytical

Figure 4-17 Case F1 — Pressure amplitude, (n=10)




Pressure amplitude (Pa)

200

Phase angle (deg)
o

-150
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Axial distance from the piston (m)

o FEM =——Analytical

Figure 4-18 Case F1 - Phase angle, (n=10)
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Figure 4-19 Case F2 — Pressure amplitude, (n=20)
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Figure 4-20 Case F1 - Phase angle, (n=20)

Again, it can be seen that the results from the finite element procedure are in good
agreement with the analytical solutions. The RMS error is less than 1% for both the
pressure amplitude and phase angle in each case. Further validation and insight into the
effect of frequency on the accuracy of the finite element solution, peak pressure
amplitude and phase angle can be gained by plotting the peak pressure amplitude against
frequency for the system described in Table 4-6.

Table 4-6 - System parameters for studying the effect of frequency on peak pressure

System
Case F3

Density p (kg / m3) 1.2

Speed of Sound | ¢ (m/s) 341

Input Velocity U, (m/s) 0.01
Frequency f (Hz) Variable
Length L (m) 1.55
Impedance 4+3i

A plot of the peak pressure amplitude versus frequency is shown in Figure 4-21
for a frequency range of 1000 Hz to 2000 Hz, where a solution is obtained from the finite

element method at 10 Hz intervals. The number of elements used in the finite element
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solution was varied between 10 (1000 Hz) and 20 (2000 Hz) depending on the frequency,
acéording to the sensitivity analysis in section 4.1.2. The results show that the peak
pressure amplitude varies with frequency and oscillates in a repeating manner between a
maximum of approximately 25 Pa, and a minimum of approximately 4 Pa. The pattern
was shown to repeat for frequencies outside of the bounds of this plot, 1 Hz through
10,000 Hz. It can be seen that the finite element solution predicts the peak pressure
amplitude pattern and is in good agreement with the analytical solution.

30
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Figure 4-21 Case L3 - Effect of varying frequency on peak pressure amplitude (n varies with
frequency from 10 to 20)

It can be concluded that the accuracy of the finite element method is unaffected
by changes in frequency, for a range of 0 Hz to 10,000 Hz, provided that an appropriate

number of elements are used to model the system

4.1.5 Effect of Impedance

To show the finite element method is valid for systems of varying acoustic
impedance, numerical results were obtained using a varying number of three-node finite

elements and the analytical solution derived in Appendix A for two different sets of
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parameters, which are given in Table 4-7. The pressure amplitude and phase along the
entire length of the one-dimensional air column are compared in Figure 4-22 through

Figure 4-25.

Table 4-7 - System parameters for studying the effect of impedance

System
Case I1 | Case 12
Density P) (kg / m3) 1.2 1.2
Speed of Sound | ¢ (m/s) 341 341
Input Velocity U, (m/s) 0.01 0.01
Frequency 1 (Hz) 1000 1000
Length L (m) 1.55 1.55
Impedance 12+1.21 | 1.2+12i
14
12
10 4
:
g !
4] 9
2 \ a ! v ‘ Y
0 T r T T - . -+
o 0.2 04 0.6 0.8 1 1.2 14

Axial distance from the piston (m)

© FEM — Analytical

Figure 4-22 Case I1 — Pressure amplitude, (n=10)
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Figure 4-23 Case 11 - Phase angle, (n=10)
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Figure 4-24 Case 12 — Pressure amplitude, (n=10)

49




200

Phase angle (deg)
o

-100 4

4150 4

-200 v v T T T v v
0 0.2 0.4 0.6 0.8 1 1.2 14
Axial distance from the piston (m)

© FEM =—Analytical

Figure 4-25 Case 11 - Phase angle, (n=10)

It can be seen that the results from the finite element procedure are in good
agreement with the analytical solutions. The RMS error is less than 1% for both the
pressure amplitude and phase angle in each case. Further validation and insight into the
effect of impedance on the accuracy of the finite element solution, peak pressure
amplitude and phase angle can be gained by plotting the peak pressure amplitude for
various real and imaginary impedances for the system described in Table 4-8.

A plot of the peak pressure amplitude versus the real component of impedance is
shown in Figure 4-26 for a real impedance range of 0.01 to 15, where a solution is
obtained from the finite element method at intervals of 0.5. The result shows that the
peak pressure amplitude increases with increasing real impedance (increasing spring
constant) signifying that as the real impedance increases, less energy is absorbed by the
material. It can be seen that, again, the finite element solution is in good agreement with

the analytical solution.
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Table 4-8 - System parameters for studying the effect of impedance on peak pressure

System
Case I3 Case 14
Density Ap (kg /m’) 1.2 1.2
Speed of Sound | ¢ (m/s) 341 341
Input Velocity U, (m/s) 0.01 0.01
Frequency S (Hz) 1000 1000
Length L (m) 1.55 1.55
Impedance (Variable)+3i | 4+(Variable)i
1
2
8
"0 : : : : " % T

Real component of impendace

—0—FEM = Analytical

Figure 4-26 Case I3 - Effect of varying the real component of impedance on peak pressure amplitude
(n=10)
Figure 4-27 shows a plot of the peak pressure amplitude versus the imaginary
component of impedance for an imaginary impedance range of 0.01 to 15, where a
solution is obtained from the finite element method at intervals of 0.5. The result shows

that the peak pressure amplitude initially decreases, signifying that the imaginary
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component of the impedance aids in absorption, as expected. However, as the imaginary
impedance increases beyond 3.5, the peak pressure amplitude increases because the
system becomes over-damped, effectively increasing the acoustic resistance. The finite

element solution is clearly in good agreement with the analytical solution.

14

12 4

15

10 4

Peak pressure amplitude (Pa)

o FEM == Analytical
Figure 4-27 Effect of varying the imaginary component of impedance on peak pressure amplitude
(n=10)

It can be concluded that the accuracy of the finite element method is unaffected by
changes the real and imaginary components impedance of the absorbing material,

provided an appropriate number of elements are used to model the system.

4.2 Sound Absorption

Sound absorption is an important aspect of noise control which has applications to
a wide range of acoustic problems. To study sound absorption in a porous medium of
finite length, which does not bend, an acoustic system having two components, air I and a

porous solid 11, as depicted in Figure 4-28, is investigated.
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-1-0 x-—I-L

Figure 4-28 — Two component system used for sound absorption analysis

In this system, the air is excited by an oscillating piston with specified velocity
amplitude and excitation frequency. The incident wave, initially traveling in the positive
x-direction, impinges on the boundary between air I and porous solid 1l located at x=0.
A reflected wave is generated in air I and a transmitted wave is generated in porous solid
11. At the right end of the porous material, x = L, the sound terminates. So, a portion of
the sound energy transmitted to the porous material is absorbed by the material, and the
rest is reflected back into air 1. The system will reach a steady state when the rate that
sound energy is reflected back into air I plus the rate at which it is absorbed by porous
solid II equals the rate of arrival of the incident energy. For this steady state condition,
the absorption coefficient of the material can be calculated. For the system described
above, under steady state conditions, the exact analytical solution is given by equation
[B-72], which involves the specific acoustic impedance of the porous material, and
equation [B-73], which involves the specific acoustic impedance at the location of the
piston. The latter impedance is referred to as the input specific acoustic impedance of the
system. Both equations give the same results because, physically, there is no absorption
of acoustic energy in the air, i.e., the air does not affect the absorption process in the

porous material.

Finite Element Solution

To calculate the absorption coefficient of the porous material using the finite
element method, a unit velocity amplitude is prescribed at the piston, for convenience.

The acoustic impedance is defined as:

z=Lc-7 +iz, [4-14]
Ve
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where p. denotes a complex acoustic pressure as a function of x and t, and v denotes

the corresponding acoustic velocity as a function of x and t. Both are evaluated by the FE
procedure using equation [4-14]. The absorption coefficient is then calculated by

substituting the real and imaginary components of the calculated acoustic impedance (Z,

and Z,) into the expression for the absorption coefficient:

— 4Z, (plcl) [4-15]
’ [ZR +(plcl )]2 +le

The calculation of the acoustic impedance can be done in two ways: method (1)
using conditions at the piston location and method (2) using conditions at the interface
(x=0). A comparison of the results for each method is presented later. At the right end

of the system, x = L, the displacement is zero (1 = O) . This ensures that no sound

emerges from the porous material, as required physically.

4.2.1 Absorption Coefficient

The absorption coefficient is calculated for the same case as that examined by Craggs [7]
for both methods. The porous material is given a structure factor of unity and a porosity

factor of unity (K, =1, Q =1), and the resistivity (R) is allowed to vary. The results are

presented for five values of resistivity and for excitation frequencies varying between 0
and 16 kHz at 500 Hz intervals. The system parameters are given in Table 4-9. Equation
[4-11] suggests that the use of seven finite elements for the porous material, and fourteen
finite elements for the air column would achieve results within 1% RMS error. However,
Craggs [7] modeled his system using ten finite elements for the air column and five finite
elements for the porous material. For consistency, Craggs’ element scheme was used. As

will be shown, it produces sufficiently accurate results.
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Table 4-9 — System properties used for absorption coefficient calculation

System

Sensitivity
Density p (kg / m3) 1.2
Speed of Sound c (m/s) 341
Input Velocity U, (m/s) 1
Length air L (m) 0.05
Length air L (m) 0.025
Frequency S (Hz) 0-16kHz
Porosity Q 1
Structure factor K 1
Resistivity R rayls/m | 2000

5000

10,000

20,000

50,000

Finite element predictions of the absorption coefficient are shown in Figure 4-29
for the system using conditions at the face of the piston (method 2). Excellent agreement
is seen between the analytical and finite element predictions. The RMS error is no more
than 1.6% for any value of resistivity tested. The results using conditions at the face of
the porous material (method 1) are shown in Figure 4-30. Agreement between the finite
element and analytical predictions is good at low frequencies; however, above 4 kHz the

results deteriorate. The RMS percentage error is a maximum of 5.2% for a resistivity of

10,000 rayls.
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Figure 4-29 Variation of absorption coefficient with frequency. Comparison of exact solution and
finite element prediction for various resistivities. Method 1: conditions at the face of the piston. 10
elements for the air, 5 finite elements for the porous material.
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Figure 4-30 - Variation of absorption coefficient with frequency. Comparison of exact solution and
finite element prediction for various resistivities. Method 2: conditions at the face of the porous
material. 10 finite elements for the air, 5 finite elements for the porous material.
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It was found that the 5 element mesh that Craggs [7] used for the porous material,
and which was adopted here, was too crude to produce good agreement between the
numerical and analytical results for method 2. When the mesh was refined, the results
shown in Figure 4-31 were obtained. It can be seen that there is excellent agreement with
the analytical solution and the finite element predictions. The RMS percentage error is a

maximum of 1.6%.

1.2

Absoption coefficient

0 2000 4000 6000 8000 10000 12000 14000 16000

Frequency (Hz)
© FEM - 2000 Rays/m 0 FEM - 5000 Rayls/m x FEM - 10,000 Rayls/m
+ FEM - 20,000 Rayls/m o FEM - 50,000 Rayls —— Analytical Solution

Figure 4-31 - Variation of absorption coefficient with frequency. Comparison of exact solution and
finite element prediction for various resistivities. Method 2: conditions at the porous interface. 14
finite elements for the air, 7 finite elements for the porous material.

The excellent agreement shown between the finite element and analytical
predictions of the porous material’s absorption coefficient serves to validate the finite
element formulation. As well, these results demonstrate that the displacement based finite
element formulation produces more accurate results than the pressure based formulation
used by Craggs [7] for the same computational effort.

It should be noted that, at the time of Craggs publication [7], it was thought that
the dominant mode of wave propagation in a porous material was longitudinal. It has

since been shown by Kang and Bolton [15] that the model used for the porous material
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(Zwikker and Kosten [12]) is not always valid and that longitudinal waves may not

dominate in a porous material in practice.

4.3 Transmission Loss

The transmission of sound from one fluid medium to another through a solid
partition is an important aspect of noise control which has applications to a wide range of
practical acoustic problems. The following section explores the transmission of sound
through a thick solid of finite length, which does not bend. To study the sound
transmission loss through a thick solid medium, an acoustic system having three

components air 1, solid II, and air 111, as depicted in Figure 4-32 , is investigated. The

characteristic impedances of the media are given by (p,c,), (0,¢,), (05¢3)-

xLO le

Figure 4-32 — three component system used in TL analysis

In this system, an incident plane acoustic wave, denoted i, originates from a
sinusoidally vibrating piston with prescribed velocity amplitude and excitation frequency.
The incident wave, initially traveling in the positive x-direction, impinges on the
boundary between air I and solid II located at x=0. A reflected wave, 1, is generated in
air I, and a transmitted wave, t, is generated in solid II. The transmitted wave travels
through the solid until it impinges on the boundary between solid II and air II located at
x=L. At this point, a reflected wave is generated in solid II, and a transmitted wave is
generated in air III. Since only the sound transmission loss as the sound propagates
through the solid is of interest, the sound is assumed to be completely absorbed at some
distance downstream from the solid material on the right edge of the of air III. This
assumption ensures that the sound transmission loss calculations are not affected by
sound reflected at the downstream boundary of the system under consideration. The

system will reach a steady state when the rate that sound energy is reflected back into air
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I, plus the rate at which it is transmitted into air III equals the rate of arrival of the
incident energy. For this steady state condition, the transmission loss across the system

can be calculated using [2-7] and [2-8], and the mass law can be checked using [2-9].

Finite Element Solution

It is not necessary to model the third medium, i.e., air 111, in the finite element
approach. Instead, the third medium can be replaced by an equivalent system of a

massless piston subjected to the constraints of a linear spring element (£, ) at the second

boundary, x =L, as shown in Figure 4-33. This procedure is similar to that used to model

the acoustic material in section 4.1.

Figure 4-33 — Equivalent finite element model for TL analysis

Since the third component is air, the normalized specific acoustic impedance at x = L is
given by Z,, = p,c,. This can be incorporated into the finite element formulation by
adding its real and imaginary components to the values of the systems global stiffness
and damping matrices associated with the node at x=1L.

The detailed development of the working equations for sound transmission used
in the finite element approach can be found in Appendix C. Under steady-state sound

propagation conditions, the acoustic impedance can be defined as:

=P [4-16]
%

c
where p. denotes a complex acoustic pressure as a function of x and t, and v, denotes

the corresponding acoustic velocity as a function of x and t. Both are evaluated by the FE
procedure at x =0 using Equation [4-16]. With the acoustic impedance known, the sound

transmission coefficient may be calculated using:
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' IZ + (plc]]

where p,c, is the characteristic impedance of air. The transmission loss is given by:

-

TL(dB) = 1010g(i] 14-18]
Numerical results, obtained using the finite element method for a wide range of

engineering materials and system geometries are presented in the next section.

4.3.1 Applications

The transmission loss for five engineering materials commonly used in acoustics
applications, shown in Table 4-10, are calculated using the finite element procedure for a
wide range of frequencies (up to 10,000 Hz), and material lengths (0.1m, 0.25m, 0.5m).
These materials represent a wide range of densities and speeds of sound. The results are
plotted and compared to the analytical and mass law predictions of transmission loss. The

results are presented below in Figure 4-34 through Figure 4-48.

Table 4-10 — Materials and their propertiesrused in TL investigation

MATERIAL - DENSITY SPEED OF SOUND
p (kg/m*) ¢ (mfs)
Drywall 700 1100
Pine Wood 400 3500
Concrete 2600 3100
Lead 11300 1200
Aluminium 2700 5150

The number of elements required to accurately calculate the transmission loss in
each case is given in the legend of each plot. The required number of elements was based
on the sensitivity analysis of Section 4.1.2 and adjusted for different frequencies. Some
plots may show a range of elements, for example, n = 2-5. This represents the number of
elements required at the lower and upper frequency boundaries of the plot. The number

of elements required over the frequency range always fall within those bounds.
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Drywall
The first test case involves drywall (Figure 4-34 to Figure 4-36), which has both a

low density and a low speed of sound. It is a commonly found material in construction
projects, most often used in the construction of walls in residential buildings. As such, the
transmission characteristics are of great interest.

Excellent agreement is found between the predicted analytical and finite element
transmission loss, with the RMS percentage error for each length being well below 1%.
The element requirements for an accurate solution increase with increasing length. A
solid of length 0.1m requires 2 elements to accurately predict transmission loss, while a
length of 0.25m requires a maximum of 5 elements at high frequencies, and a length of
0.5m requires a maximum of 9 elements at high frequencies.

In each of the plots, there exist various system resonances at which the
transmission loss approaches zero. For each solid length, the peak transmission loss is
approximately 60 dB. However, as the solid length increases, the location of the
frequency associated with the peak transmission loss becomes lower since the solid’s
natural frequency decreases as the length increases. This is why there is only one
resonant frequency in the plot associated with a length of 0.1m and nine resonant
frequencies in the plot associated with a length of 0.5m. For frequencies lower than the

first resonant frequency, the transmission loss is in good agreement with the mass law.
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Figure 4-34 - Comparison of analytical and FE transmission loss predictions for drywall (L=0.1m)
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Figure 4-35- Comparison of analytical and FE transmission loss predictions for drywall (L=0.25m)
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Figure 4-36 Comparison of analytical and FE transmission loss predictions for drywall (L=0.5m)

Pine Wood

The next case involves pine wood (Figure 4-37 to Figure 4-39), which has a very
low density and a fairly high speed of sound, a typical characteristic of many woods.
Wood is one of the most commonly used resources in construction projects. Examples of
its use include the framing of walls in various structures and homes. As such, it is
important to understand the transmission characteristics of pine wood.

Excellent agreement is found between the analytical and finite element
transmission loss predictions. The RMS percentage error for each length is well below
1%. Only two elements are required to produce an accurate solution regardless of the
solid length. This is due to the high speed of sound in the solid, which causes a longer
wavelength than in a material with a lower speed of sound, such as drywall.

The high speed of sbund also causes the first system resonance to fall outside the
10 kHz range for the 0.1m solid. Predictably, as the solid length increases, the resonances
appear lower in the frequency range, showing up for both the 0.25m and 0.5m lengths.
For each solid length, the peak transmission loss is approximately 65 dB. Agreement with

the mass law is good before approaching a system resonance.

63



120

80 - -

Transmission loss (dB)

20 |

100 1000 10000
Frequency (Hz)

— Analytical - ----- Masslaw o FEM(n=2, RMS ermror <<1%)

Figure 4-37 - Comparison of analytical and FE transmission loss predictions for pine wood (L=0.1m)
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Figure 4-38 - Comparison of analytical and FE transmission loss predictions for pine wood
(L=0.25m)
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Figure 4-39 - Comparison of analytical and FE transmission loss predictions for pine wood (L=0.5m)

Concrete

The next case involves concrete (Figure 4-40 to Figure 4-42), which has a
moderately low density and a fairly high speed of sound. Concrete can be found in just
about any building application. Often used to create foundations, walls, and barriers in
larger structures, concrete and its transmission characteristics, are of great interest to the
field of acoustics.

Excellent agreement is found between the analytical and finite element
transmission loss predictions. The RMS percentage error for each length is well below
1%. Due to the high speed of sound, only two elements are required to produce an
accurate solution, regardless of the solid length.

The high speed of sound also causes the first system resonance to fall outside the
10 kHz range for the 0.1m solid. However, as the solid length increases, the resonances
appear lower in the frequency range, showing up for both the 0.25m and 0.5m lengths.
For each solid length, the peak transmission loss is approximately 79 dB. Agreement with

the mass law is good before approaching a system resonance.
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Figure 4-40 - Comparison of analytical and FE transmission loss predictions for concrete (L=0.1m)
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Figure 4-41 - Comparison of analytical and FE transmission loss predictions for concrete (L=0.25m)

66



120

-
-

@
o
N

Transmission loss (dB)
3

’Y
o

20

100 1000 10000
Frequency (Hz)

w— Analytical -« ---- MassLlaw o FEM (n=2, RMS error <<1%)

Figure 4-42 - Comparison of analytical and FE transmission loss predictions for concrete (L=0.5m)

Lead

The next case involves the analysis of lead (Figure 4-43to Figure 4-45), which has
a very high density and a very low speed of sound. Lead is not a typical practical material
in construction, or acoustics problems, but its material properties make it ideal to test the
limits of the finite element approach, lending greater confidence to the results.

Again, excellent agreement is found between the analytical and finite element
transmission loss predictions. The RMS percentage error for each length is well below
1%. Due to the low speed of sound, only a minimum of two elements and maximum of
eight elements are required to produce accurate results for the various frequencies and
solid lengths.

The low speed of sound also yields many resonances within the 10 kHz frequency
range, especially for increasing length. For each solid length, the peak transmission loss
is approximately 85 dB. Agreement with the mass law is good before approaching a

system resonance, as expected.
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Figure 4-43 - Comparison of analytical and FE transmission loss predictions for lead(L=0.1m)
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Figure 4-44 - Comparison of analytical and FE transmission loss predictions for lead(L=0.25m)
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Figure 4-45 - Comparison of analytical and FE transmission loss predictions for lead (L=0.5m)

Aluminium

The next case involves aluminium (Figure 4-46 to Figure 4-48), which has a
moderately low density and a high speed of sound. Aluminium is replacing wood in some
building applications, and is currently becoming more popular as a framing material for
residential homes. As it finds greater application in areas where noise is concerned, its
transmission characteristics will become more important.

Excellent agreement is found between the analytical and finite element
transmission loss predictions. The RMS percentage error for each length is well below
1%. Due to the high speed of sound, only two elements are required to produce an
accurate solution, regardless of length.

The high speed of sound also causes the first system resonance to fall well outside
the 10 kHz range for the 0.1m length, and just outside for the 0.25m length. However, for
the 0.5m length, a system resonance appears. For each length, the peak transmission loss
is approximately 85 dB. Agreement with the mass law is good before approaching a

system resonance, as expected.
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Figure 4-46 - Comparison of analytical and FE transmission loss predictions for aluminium (L=0.1m)
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Figure 4-47 - Comparison of analytical and FE transmission loss predictions for aluminium
(L=0.25m)
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Figure 4-48 - Comparison of analytical and FE transmission loss predictions for aluminium (L=0.5m)

For all tested materials, frequencies and lengths, the finite element prediction of
transmission loss shows excellent agreement with the analytical prediction. As expected,
agreement is shown with the mass law at low frequencies before system resonances
occur. The RMS percentage error between the exact analytical solution and the finite
element solution in each case is well below 1%. This agreement further enhances the
confidence in the present finite element procedure.

Element requirements vary depending on solid length and the speed of sound in
the solid material according to [4-11]. This suggests that a solid material that has a low
speed of sound requires more elements as the length of solid material increases. This was
shown in the test cases, where drywall and lead required more elements than the
materials with higher speeds of sound for an accurate solution.

Every system tested showed signs of resonances at some solid length. At
resonance, the transmission loss across the solid approaches zero. Materials with a low
speed of sound showed a greater number of resonances. Drywall, which had the lowest
speed of sound, showed nine resonances for the system with a 0.5m length. Conversely,
aluminium, which has the highest tested speed of sound, showed only one resonance for

the 0.5m length.
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In each case, the peak transmission loss is reached before the first resonance, and
again in between resonances. The peak value for each material does not change with
varying length, but rather occurs at different frequencies as a result of the resonance
dependency on length. The peak transmission loss value for each material is shown in
Tt/xble 4-11. 1t can be seen that the material with the highest characteristic impedances
(aluminium) has the highest peak transmission loss, while the material with lowest

characteristic impedance (drywall) has the lowest peak transmission loss.

Table 4-11 - Peak transmission loss for tested materials

MATERIAL | PEAK TRANSMISSION LOSS | CHARACTERISTIC IMPEDANCE
(dB) (rayls)

Drywall 59.5 77000

Pine Wood 65.7 1575000

Concrete 79.9 8060000

Lead 84.4 13560000

Aluminium 84.6 13905000

This analysis gives insight into some of the critical design aspects that can be used
to design a thick, non-bending, solid material barrier to maximize sound transmission
loss. A material should be chosen with maximum characteristic impedance and the
highest possible speed of sound to ensure that the bairier’s resonances fall outside of the
intended operating frequencies. The geometric properties of the solid also play a role, as
increasing the length decreases the frequencies at which resonance occurs. So, a
relatively thin barrier with a high density and speed of sound will produce the most

effective barrier to sound transmission.
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CHAPTER FIVE — CONCLUSIONS AND FUTURE WORK

Recent years have seen an increased demand for sound insulation and noise control
solutions. As a result, there has been a research focus on developing and implementing
numerical modeling techniques for acoustic problems. The goal of the present research
was to develop an accurate and computationally efficient finite element formulation for
one-dimensional sound propagation through solid and porous materials. The finite
element procedure developed made use of three-node higher order, non-isoparametric
finite elements and quintic polynomials as the interpolation function to increase
computational efficiency. The acoustic displacement based procedure was coded using
MATLARB to obtain the pressure and velocity fields in various acoustic systems, and this
information was used to calculate acoustic parameters such as the absorption coefficient
of porous media and the transmission loss in solid media.

The finite element procedure was applied to three acoustic systems. The first of
these systems was the impedance tube. Here, the finite element procedure was used to
predict the standing pressure field in the air column. Compared with the analytical
solution, the finite element procedure showed excellent agreement. This system was also
used as the basis of a sensitivity analysis which provided a means of estimating the
number of finite elements required for high accuracy.

The second acoustic system studied in this thesis was a coupled air/porous solid
system. Agreement between the analytical and finite element predictions of the
absorption coefficient in the solid was again excellent. This system validated the
development and implementation of interface conditions in multiple component systems.

The final acoustic system investigated was a coupled air/non-porous solid system
which was utilized to predict the transmission loss for a variety of acoustic materials and

barrier geometries. In each case, excellent agreement was found between the finite
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element solution and the corresponding analytical predictions. This analysis showed that
barrier resonances are a key factor in limiting the effectiveness of a noise control barrier
over a wide range of frequencies.

A preliminary goal of this research was to investigate transmission loss of double
panel systems with various panel connectors. By studying the various connections, a
means of effectively connecting the panels for maximum transmission loss can be
determined. This goal was not pursued here due to time constraints.

In the future, the present one-dimensional formulation can be used to investigate the
acoustic properties of multiple component sound systems, i.e., systems with three or more
air and solid components. In such an analysis, multiple solid components could be
connected via spring and dampers and the effect of this coupling analyzed. This
information could produce insight into the effects of various connectors on the
transmission of sound through multiple connected media.

The one-dimensional approach is limited in its application as it does not capture
bending or shear waves in the system. These waves are present in many acoustic systems
including thin panels and absorbing materials. As such, the next step would be to extend
the finite element formulation to two and even three dimensions. The two- or three-
dimensional finite element procedure could be used 'to study a variety of practical
acoustic structures, including the double panel system. In addition, experimentation
would be required to validate the numerical predictions. Adapting the one-dimensional
finite element procedure presented in this thesis to two- or three- dimensional problems
to handle acoustic systems of increasing complexity will afford a better understanding of,

and the ability to control, noise pollution.
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Appendix A — Impedance Tube

Consider a rigid tube containing air that is excited by a harmonically oscillating
rigid piston, as shown in Figure A-1. The oscillation of the piston creates one-
dimensional acoustic pressure waves which propagate through the tube and impact an
acoustic material with a normalized specific acoustic impedance, z". The acoustic
material reflects and absorbs a certain amount of the acoustic energy. Under steady state
conditions, the combination of an incident and reflected acoustic pressure wave creates a
standing pressure wave in the tube. The equations describing this standing pressure wave
shall be developed under the assumptions that the fluid in the tube is inviscid and the
process is adiabatic.

Rigid piston
uLf) = U, sin of

N

Figure A-1 -~ Impedance Tube

The piston’s displacement at any time, t, is described by:

up(t) = U, sin [A-1]

where, @ =271 . The piston’s velocity is given by:

A-2
vo(t)=du° 1y = Upcosax =V, cos ax A-2]
The equation governing the acoustic pressure field in a tube is given by [11]:
0’ plx,2) o 9% p(x,t) [A-3]
ot? ox?

where c is the speed of sound in air, and pl(x,¢) is the acoustic pressure.

Since the wave generated by the piston is harmonic, the acoustic pressure, p(x,t), can be

taken to be of the form:
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plx,r)=Rele™ p(x)] 1A-4]
where ¢ represents the time dependence of the pressure field, i 2=—1,and p(x)isa
complex function of x representing the spatial dependence of the pressure field. j}(x)is
given by:

B(x)= pe(x)+ip, (x) [A-5]
where p,(x) and p, (x) are the real and imaginary parts, respectively, of p(x). It should

be noted that the time dependence of p(x,¢) can be based on ¢ . In that case, p(x)

becomes: p(x)= p,(x)-ip,(x).

From, [A-4] and [A-5], the actual pressure field is given as:

plx,1)= pp(x)cosax + p, (x)sin ax [A-6]

The corresponding velocity field is given by

v(x,t)= Rele ™5 (x)] [A-7]
where ¥(x) is a is a complex function of x representing the spatial dependence of the

.

velocity field. ¥(x) is given by:

H(x) = v (x)+iv, (x) [A-8]
where ,(x) and ,(x) are the real and imaginary parts, respectively, of %(x) . From

[A-7] and [A-8], one obtains the actual velocity field as:

W(x,) = v, (x)cos @t +v,(x)sin ax [A-9]

The normalized specific acoustic impedance is defined as

z(x) =z (x)+iz, (x) = M [A-10]

#(x)

where zg and z, are, respectively, the real and imaginary parts of z, and W = pc is the

characteristic impedance of air with a density p and speed of sound c.
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For an incident acoustic pressure wave:

pi(x1)=Rele™ p, ()] 1A-11]

The corresponding incident velocity wave is given by:

: [A-12
)= 221 !
with, 5 (x)= 2 (x)
w

Similarly, for a reflected acoustic wave,

p,(x1)=Rele™ p, (x)] [A-13]
and,
v (x,t)= ___p,(x,t) A-14]
r ? W
with, 5 ()= L (x)
w

From the governing equation for the acoustic pressure field, [A-3], and [A-4], it follows

that:

r . [A-15]
cle ™ —g 12) - f)(— i(o)2 e’ =0
X

With i =—1, since e # 0, one obtains

25 [A-16]
371;+ Kp=0

where k= w/c.

The acoustic system shown in Figure A-1 is subject to the following boundary
conditions: At x =0, the acoustic velocity is equal to the piston velocity, so from [A-2]

and [A-9],

v(0,£)=v,(0)cos ax +v,(0)sin ax [A-17]
=V, cosax
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The normalized specific acoustic impedance at x = L is that of the acoustic material

positioned at the end of the tube. So, from [A-10]:

D A-18
z(L)=—IiL)LWi=z‘=z;;+iz;2 (A28

¥(L)
Note that Z* = p(L)/9(L) and z" =Z" /W .

Under steady state conditions, a standing pressure wave exists in the tube caused

by the combination of the incident pressure wave, p; (x,t) , and the reflected pressure
wave, p, (x,t). The complex amplitudes of p; and p, are given by:
)= Ace® 19
P, (x) =B.e™
where, in general, A. and B are complex constants dependent on the system’s
boundary conditions. Note that acoustic energy is absorbed at x =L, so |B| <|4c|- From
[A-19]:

p(x)=p(x)+ b, (x)= Ace™ + Bee™ [A-20]
and from [A-12] and [A-14], '
[A-21]

5(2) = 5, ()45, (x) = [—I—}Ace"‘" _Bc]

pe

It can be shown that the solution of [A-16], subject to the boundary conditions
described by [A-17] and [A-18] is:

coskL —iz" sinkL

ﬁ(x)=(pcVo){

z' cos k(L - x) —isin k(L - x)} [A-22]

where, ﬁ(x)= pe(x)+ip,(x) and z* =z} +iz;.

It can be further shown that:

Pr(x)= A,z coskx [A-23]
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d . '
o P, (x ) =sinkx+ B, coskx [A-24]

where the constant 4, is given by:

1 [A-25]
AO = 2 2, " . *
cos” kL + (zR +z,”— l)sm 2kL + z,; cos2kL

and the constant B, is given by:

(27 + 2 =1)sin 2kL [A-26]

2

B, = Ao[ +z, cos 2/4

Using equations [A-23] and [A-24], the standing pressure wave resulting from the

propagation, reflection and absorption of acoustic energy in the tube can be predicted.
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Appendix B — Absorption Coefficient

Consider a rigid tube containing air excited by a harmonically oscillating rigid
piston, as shown in Figure B-1. The oscillation of the piston creates one-dimensional
acoustic pressure waves which propagate through the tube and impact a porous absorbing
material at x =0. The porous material is backed by a perfectly hard wall, such that no
sound emerges downstream of the solid. The only mechanism of sound attenuation is

absorption by the porous material.

xlo x

Figure B-1 - Two component air/porous solid system

B-1 Characteristic acoustic impedance of a porous material

The characteristic acoustic impedance of a medium, which is denoted by W, is a
material property (which may be complex or real) and characterizes the acoustic behavior
of the medium in isolation. For a non-porous material in which there is no absorption of

sound, e.g., air, W is real and is given by [11]:
W = pc [ B-1]
where p is the density of the material, and c is the speed of sound in the material. For a

porous material in which sound absorpfion (i.e., dissipation of acoustic energy) occurs, W
is complex, and the expression for W is derived as follows.
For steady state flow of air through the pores or interstices of a porous material,

the viscous resistance to flow results in a static pressure gradient, (dp/0x), , and the flow

resistance, R, is defined via the following expression [1]:
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B-2
ox ),

where p is the fluid pressure and V' is the volume flow per unit cross-sectional are of the

material.

The momentum equation for.inviscid motion of the air in the pores give rise to a

pressure gradient, (dp/dx),, , which is given by [1]:

Y _ (Kp (B3
ox ), Q Jor

where p, is the density of the free air, and K| and Q are, respectively, the structure

factor and porosity of the porous material.
Combination of equations [ B-2] and [ B-3] yields the modified equation of

motion of the air within the porous material, which is given by:
»_() (% (B4
ox \ox ) \ox),
__ K K, py av _RY
Q Jor

It should be noted that, for simple harmonic motion at an angular frequency @, v’ o< e .

Hence,
Y o ie™ o ian”
ot
ie.,
, ( 1 )av' [ B-5]
vV=|—
iw ) ot
where i =+/~1, and equation [ B-4] yields:
p_ [(K.p )V, R| [ B-6]
ox Q at iw| ot
Now, for free air, the momentum (Euler) equation is given by:
ap v [ B-7]
- pl at
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It is evident from a comparison of equation [ B-6] and [ B-7] that the term in brackets in

[ B-6] is an effective density, p,,i.e.,
Clearly, p,, is a complex quantity. The parameters K, Q and R serve to alter (reduce)
the speed of propagation of sound in the porous material relative to free-air speed of
sound, ¢,, and to attenuate the acoustic energy in the material.
For free air, the continuity equation is given by:
ﬁz_[i}ée .
ox K, |ot
Here, k; is the bulk modulus of air given by

2 B-10
Ky = PG [B-10]
where ¢, is the speed of sound in free air. For the porous material, the continuity equation
is[1]:
o’ 1 \op | B-11]
ox | K, |or

In this expression, k, is an effective bulk modulus given by:

K> :K']/Q:plclz/Q IB-12]

The effective speed of sound in the porous material, c,, is defined via the
following expression [1]:
022 = clz/(kzg) [B-13]
From equations [ B-10], [ B-12] and [ B-13] it follows that:

_ 2 B-14
K, = p,K,c, [ !

Hence, equation [ B-11 becomes:
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3 _( i op [ B-15]

From [B-15],

aZvl 1 \aZp | B-16]
x| pK.e, Jort ’
And from equations [B-4] and [B-15],
) __[(K.p \azv'_'_ R op [ B-17]
o’ Q Jox | pK.c, |ot
Combination of [B-16] and [B-17] yields:
1P, (R | _.:9p B
Qo | pK, ot 7 ox?

Equation [B-18] is the modified one-dimensional wave equation for a porous material.

Note that, in free air, K, =1, Q=1,and R=0, so c22 = cl2 and [B-18] becomes:

02 , 07 | B-19]
) f‘ =G f
ot ox”

which is the classical one-dimensional plane wave equation for a non-porous material

[11].
The solution of equation [B-18] for harmonic motion in a porous material takes
the form:
p.(x,t)=A.e"e™ [ B-20]
In this expression, p, is a complex pressure, 4, is the complex amplitude of the pressure

wave, and ¥is a complex quantity called the propagation constant. This quantity is

defined as:

y=a+if [ B-21]
where « is the attenuation constant, and f is the phase constant. Substitution of [B-20]

into [B-18] yields the following expression for the propagation constant:

y=iayp,/x, [ B-22]
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From equation [B-6], for harmonic motion,

dp v’ [ B-23)

Hence, from [B-20], the complex velocity, v (x,?), corresponding to the complex

pressure, p. (x,t), is.given by:

ie.,

. =iap,v, [ B-24]
Now, by definition, the characteristic acoustic impedance of the porous material is given

by [12]:

w=Le [ B-25]
vC
Hence, from equation [B-22] and [B-24],
i) [ B-26]
w="2P2 - P2K;

where p,, the complex effective density, is given by equation [B-8], and x; is given by
equation [B-12]. Clearly the characteristic acoustic impedance of a porous material is a

frequency dependent, complex quantity.

B-2 Specific acoustic impedance of a porous material in a
coupled system

Consider a one-dimensional plane sound wave propagating through the coupled

four-component air/solid system depicted in Figure B-2.
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%<0

x=0 x=L2 x=L3

Figure B-2 — Four component air/solid system

Each component can be characterized by a characteristic acoustic impedance W, and

complex pressure and velocity waves given by, respectively,

Pl )= e = (x) 527
and, v, (x',1)= plnt)/W =™ plx )W |B-28]
where, p(x)=Ae™

with x” and y depending on the component and the propagation direction. If absorption

occurs in a given component, then W for that component (a porous material), is complex
and a > 0. (Refer to equation [B-21].) If absorption does not occur in a given
component, then W for that component (a non-porous material) is real and is given by

W = pc, where p is the density of the component and c is the speed of sound in the
component; also, @ =0 and B =27f/c,i.e., fis th'e same as the wave number, k.

In the upstream air body (i.e., for x <0), there is a (complex) incident wave and a
(complex) reflected wave, with reflection occurring at the interface located at x=0. In
the solid bodies, there are transmitted waves and reflected waves, with reflection

occurring at the interfaces located at x=L, and x = L,. In the downstream air body (i.e.,

for x> (L, +L,)), there is only a transmitted wave. For a component with an incident or

transmitted wave and a reflected wave, the total complex pressure is given by:

pc(x’t)':pci/t('x’t)+pcr(—x>t) [B-29]

=e"[p,, (x)+ p,(-x)]

And the corresponding total complex velocity is given by

v, (x,1)=e“[p,,(x)- b, (= x)|/w [ B-30]
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Note that the propagation direction for a reflected wave is opposite that for an incident or

transmitted wave, so x’becomes x for an incident or transmitted wave and — x for a

reflected wave. The relevant pressures and velocities for the system are as follows:

Component 1 (Air)

and,

where,
and,
with

Also, x<0.

Component 2 (Solid 1)

and,

where,

and,

-

Pa (x,t)= eia'ﬁl (x)
Vei (x”)z e, (x)

hlx ) = A7 +B,e"

v (x)= (A. e =B, e )/Wl

[4

W,=pc, and y, =ik =i27f[c,

Po (xat) = eiaxﬁz (x)

Vo (1) = €%, (x)

132 (x) = Ac2e-hx + B02e+nx

v (x) = (Acze""’ — B, )/ W,

[ B-31]

| B-32]

| B-33]

[ B-34]

| B-35]

[ B-36]

[ B-37]

[ B-38]

If solid 1 is a porous material, then W, will be complex, and ¥, =a, +if3,; if solid 1 is a

non-porous material, then W, will be real and given by W, = p,c, , and

v, =ik, =i27f [c, . Also, 0<x<L,.

Component 3 (Solid 2)

Pes(x,1) =" ps ()
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and, v5(x,1)= ey (x) [ B-40]

where, Pi(x)=4 c3e"-‘("'L’) + B_,e™” (x-L2) [ B-41]
and, ,(x)= (4,07l t) - B i, [ B-42]

If solid 2 is a porous material, then W, will be complex, and 7, = +if3;; if solid 2 is a
non-porous material, then ¥, will be real and given by W, = p,c,, and ¥; =ik, =i27f /.

Also, L, <x<(L, +L,).

Component 4 (Air)

pcd(x,t)zeia"ﬁ4(x) [ B-43]
and, vy (x,1) = €, (x) [ B-44]
where, Di(x)=4,e7" (r{ba+Ls] [ B-45]
and, 5y (x) = (470D ) | B-46]

with W, = p,c,, and 7, =ik, =i27f /c, .
Since the pressures and velocities are continuous at the interfaces, the following
boundary conditions must be satisfied
At x=0
Pa(0,1)=p,(0,2)
Hence, from equations [B-33] and [B-37],
A,+B,=A4,+B, [B-47]
Also, v, (0,£)=v,(0,)
Hence, from [B-34] and [B-38],
(4, - B, )W, =(4,-B,)/W, [ B-48]

Similarly, at x=L,
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From equations [B-37] and [B-41]

Ac2e_r2Lz + Br:Zeﬂ,ZL2 = Ac3 + Bc3 | B.49]
And, from equations [B-38] and [B-42]
(Acze-nl-2 — B e )/ w,=(4,-B, )/ W, | B-50]

The specific acoustic impedance of component 2 (solid 1) is defined at x=0 as
follows:

Zz* _ P (O’t) — ?ﬂ (O) [ B-51]

vc2 (O’ t) vc2 (O)
Hence, from equation [B-37] and [B-38]
Z' '= I/VZ(AcZ + Bcz)

; [ B-52)
Ac2 - BcZ
Also, from equations [B-47] and [B-48], it follows that
Zz' — I/I,l(Ar:l + Bcl) l B-53]
Acl - Bcl
The complex amplitude ratios associated with Z, are given by:
RcZ = Bc2 /Ac2 l B-54]
and,
Rcl = Bcl /Acl l B-55]
Hence, from equations [B-52] and [B-53] it follows that
Z; = W_z(!_ia) [ B-56]
(1 - Rc2)
and,
2' — I/Vl(l-'-lacl) [ B-57)
(1 - Rcl )
The specific acoustic impedance of component 3 (solid 2) is defined at x=L; as
follows:

2= Pa01)_ $a0) [ B-58]
ch (O, t) vc3 (O)
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Hence, from equation [B-41] and [B-42]
Z‘ — VV?)(AcS +B03)
’ Ac3 -B c3
Also, from equations [B-49] and [B-50], it follows that

~YaL, +7,L, )
7= /A (Acze +B,,e
3T =Ly _ +7:L,
A,e B.,e

The complex amplitude ratios associated with Z, are R_,, given by [B-54], and
R_, which is defined as:
Rc3 =B c3 / Ac3
From equations [B-59] and [B-61], it follows that,
2 )
(1 - Rc3)
And from equations [B-54] and [B-60]

-

~Yaly _ +7,L;
e R.,e

Equation [B-63] yields
et (Z; ~ I/'Vz )

¢ el (z: 4 w,)
From equations [B-56] and [B-64], it follows that
7w Z; coshy,L, + W, sinh 9, L,
? 72 Z:sinhy,L, + W, coshy,L,

| B-59]

[ B-60]

[ B-61]

| B-62]

| B-63]

[ B-64]

[ B-65]

Now, suppose that component 2 (solid 1) is a porous material and that component

3 (solid 2) is a perfectly hard wall with L3<<L,, such that it reflects all the sound that

impinges on it. In other words, no sound emerges through component 3 into component 4

(air). This means that, in equation [B-61], 4, =B, i.e., R, =1. Hence, from equation

[B-62]
Z = V’?(1+Rcs) e

I_Rc3)

and, from equation [B-65], it follows that
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cosh 7,1, +( W, sinh .1, ) [ B-66]

Z, = limJW, 7 Z;]
Zy >0
| sinh7,L, +(——2 cosh,L, ]
3
_ Wz[c?sh Y.L, ]
sinh 7,L,

Thus, for a coupled two-component air/solid system involving a porous material with a
perfectly hard backing, the specific acoustic impedance of the porous material is given
by:

Z, =W,cothy, 1, [ B-67]
where the characteristic acoustic impedance of the material, W,, is given by equation [B-

26], and the material’s propagation constant, ¥, , is given by equation [B-22].

It should be noted that, for this two-component system, at x=L,, from equation
[B-42], with 4, =B, v, =0, i.e., the complex velocity at the end of the porous

material is zero. Hence, with respect to the finite element technique, the boundary

condition at x=L, is that the displacement is zero.

B-3 Absorption Coefficient

For the above coupled air/solid system involving a porous material with a
perfectly hard backing, no sound emerges from the material. Thus, all the acoustic energy
in the material is absorbed. This means that the acoustic power absorbed must equal the
acoustic power associated with the incident wave (in the air upstream of the material)
minus the acoustic power associated with the reflected wave. Now, the acoustic power

associated with a complex harmonic pressure wave with an amplitude 4, is directly

’ [11]. Hence, the incident acoustic power is directly proportional to

proportional to |4,

? The (sound

Bcl

A_|” and the reflected acoustic power is directly proportional to

cl

power) absorption coefficient, ¢, , is defined as the fraction of the incident acoustic

power that is absorbed; so, it is given by:
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2

2 2

— |Acl _ Bcl =1_£¢i
’ Acl i A"l
From equation [B-55], it follows that
o,=1-|R, :
From equation [B-57], it follows that
Rcl = ZZ‘ — le
Z,+W
or, since W, = p,c
_Z-pa
cl *
Z,+ pic
Hence, from equations [B-69] and [B-70],
. 2
IZz - p,c,|
a=l-"——>r
IZz + plcll

where Z, is given by equation [B-67]. With Z, expressed as

Zy=Zog +iZy,
equation [B-71] yields
o =1- I[Z;R — PG ]+iZ;l|2
’ |[Z;R + p]cl]-l'iZ;llz

_ 4Z;R (plcl)
[Z;R + plcl]Z + Z;f

With
Z;R = Z;R/plcl
and,

* *
2y, =2y, /plcl

equation [B-72] can be written as
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It should be noted that the absorption coefficient can be expressed in terms of the so-
called input specific acoustic impedance of the system, Z, . This impedance is defined via

the complex acoustic pressure and velocity at the location of the piston, x=-L, i.e.,

g Palr==L,1) _ pa-1)_ pul-1)
] Vc,(X=—L,,t) ﬁcl(—Ll) Vs

since ¥,,(~Z,) is the amplitude of the piston velocity. With Z, expressed as

Z, =Zy +iZ,

z;R = ZI‘R/pIcl
and,

2;1 = Z;I/plcl

it can be shown that the absorption coefficient is also given by

4z, [ B-74]

R )

From equation [A-22], with pc=p,c,, k=k;, L=1,,and z' =z,, it can be shown that

z,, and z,, for the air are related to z,, and z,, for the porous material, as follows:

Z = Z2r [ B-75]
(cosk,L, +2;, sink L | +z2sin® kI,
and,
. _(sink L, +z,, cosk L \cos kL +z,, sinkL )z cos kL, sin kL, [ B-76]

2y

(cosk,L, +z;, sin kL | +z2sin’ k I,
Both equations [B-73] and [B-74] give the same result because, physically, there is no
absorption of acoustic energy in the air upstream of the porous material, i.e., the air does

not affect the absorption process that occurs in the porous material.
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Appendix C - Transmission Coefficient and Transmission Loss

Consider a rigid tube containing air that is excited by a harmonically oscillating
rigid piston, as shown in Figure C-3. The oscillation of the piston creates one-
dimensional acoustic pressure waves which propagate through the tube and impact solid
material at x =0. Air is assumed to be downstream of the solid, such that sound may be

transmitted into it from the solid at x = L. The only constraint on L is that it is finite.

Figure C-3 — Three component system

The incident wave, i, traveling in the positive x-direction, impinges on the
boundary between air I and solid II located at x = 0. A reflected wave, r, is generated in
air 1, and a transmitted wave, t, is generated in solid II. The transmitted wave travels
through the solid until it impinges on the boundary between solid II and air III located at
x = L. At this point, a reflected wave is generated in solid 11, and a transmitted wave is
generated in air III. Since only the sound transmission loss as the sound propagates
through the solid is of interest, the sound is assumed to be completely absorbed at some
distance downstream from the solid material at the right edge of the of air III.

The complex sinusoidal acoustic pressure waves relevant to the system are as
follows:

Component I (Air 1)

Incident pressure wave, i
P Pair = Acle'(m‘ b [C-1]
Reflected pressure wave, o= le,.( or+x) (C-2]
cr (4]
The total acoustic pressure wave, _ [C-3)
Po = Pein + Pen
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where, x<0, A, and B,, are complex amplitudes, @ =27, f being the frequency, k,
is the wave number given by k, = @/c, , ¢, being the speed of sound in medium 1.

Component II (Solid 1)

Transmitted wave, Pur = Acze'(“""z") Co4]

-

Reflected wave, P, = B.,e @ [C]

The total acoustic pressure wave,

P2 = Par t Por2 IC-6]

where, 0<x< L, 4, and B,, are complex amplitudes, £, is the wave number given by

k, = w/c, , c, being the speed of sound in medium II.

Component III (Air 2)

The total and transmitted acoustic pressure wave,

i(or-ky (x-L1)) [C-T7]

L]

Pes = Pey = A€

where, x> L, A, is a complex amplitude, k, is the wave number given by &, = w/c;, c,

being the speed of sound in medium III.

The complex acoustic velocity waves relevant to the system are as follows:

Component I (Air 1)

Incident velocity wave, ilat—
Var = 4, (or kl)/(plcl) [C-8]

Reflected velocit i
eflected velocity wave, S Bcle'(“”"') /( pc,) [ C-9]

crl
The total acoustic velocity wave,

vcl = vcil + vcrl l C-IO]

where, x <0 and p, is the density of medium 1.
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Component II (Solid 1)

Transmitted velocity wave ilar—
’ Vep = A, for kZ)/(pzcz)

Reflected velocity wave, i+
Vo =—Be (oxsha )/ (pzcz)

The total acoustic velocity wave,

ch = vciZ + vcr2

where, 0<x<L,and p, is the density of medium II.

Component 111 (Air 2)

The total and transmitted acoustic velocity wave,
i(wr—kqy(x-L
Ve3 = vc13 = ACSe (orkole=1)

where, x> L, and p, is the density of medium III.

| C-11]

[ C-12]

[ C-13]

[C-14]

The boundary conditions of the model are based on the fact that the acoustic

pressure and velocity must be continuous across the boundaries at x =0 and x= L. The

boundary conditions are as follows:

Atx=0

pcl = pc2
or,

Pir ¥ Py =Pzt Pera

Hence, Acl + Bcl = Ac2 + Bc2
And,

Ve = Ver
or,

v

cil + vcrl = vch + vcr2
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[ C-15]

[ C-16]

[ C-17]

[ C-18]

[ C-19]



Hence,
(Acl _Bcl)': (SICI }Acz +Bc2)

Atx=L

ch = pc3
or, _

pch +pcr2 - pc13
Hence, —ik,L ik,L
A(:Ze : +Bc2e r= Ac3

And, _

Vez = Ve3
or,

vci2 + vch = vch

Hence,
—ik,L il Y_ | P22
(Ac2e ! —Bc2e ! )_( }ACS

£i6

From these boundary conditions, it follows that

24 0kt =14 | 2222 11y
P3C;
so,
c, + p,c iky
CA4,= PiC; + 6 AchL
2p5cy
and
2B e =|1-| L= |14,
P3¢

Bcz = P3C3 — PG, Ac3 —ik,L
2p5¢5

so,

104

[ C-20]

| C-21]

[ C-22]

| C-23]

| C-24]

[ C-25]

[ C-26]

[ C-27)

[ C-28]

[ C-29]

[ C-30]



The (complex) specific acoustic impedance of the solid is given by

Z; =& [ C-31]
vcl

where p., denotes a complex acoustic pressure, and v,, denotes the corresponding

acoustic velocity evaluated at the boundary of the medium of interest. This acoustic
impedance depends on frequency and material properties, as will be established.

At x=0, it follows that

7 (4,+B,)pc) [ C-32)
* Acl - Bcl

From the boundary conditions, [ C-32] becomes

7' = (M picr)cosk, L +i(pyc, ) sink, L 1C-331
: (pyc,)cosk,L+i(pyc, ) sink,L
Since medium I and medium III are the same, [ C-33] becomes
| C-34]

7" = (2,02 X1 )cosk, L +i(p,c, ) sink, L
* (pyc,)cosk,L+i(p,c, ) sink,L

Clearly, Z, depends on frequency ( since k =27f/c ) and on the density (p,) and the

bulk modulus (k= p,c2) of the solid.

By definition, the reflection coefficient for the present system is given by

R 2 [ C-35]

c

a, =
where ch|2 represents the ratio of the acoustic power reflected by the solid (component
IT) to the acoustic power incident on the solid. Since the acoustic power associated with a

complex pressure wave with an amplitude 4, is directly proportional to |Ac|2 [11],it

follows from equations [C-1] and [C-2] that |R, % s given by:
X , ﬁ 2 [ C-36]
‘ Ac]

One can therefore define R, as follows:
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B [ C-37)

which is the complex amplitude ratio associated with Z_ . It is evident that, for the present

system, the acoustic power transmitted into and through the solid (component II) is the
difference between the incident acoustic power and the reflected acoustic power in the

upstream air (component I). Accordingly, the transmitted power is directly proportional

| , and the so-called (sound power) transmission coefficient, which is the

cl

to |4,

ratio of the transmitted acoustic power to the incident acoustic power is given by:

2 2 C-38
_ Acll - Bcl [ ]
( 2
|4
=1-a,
=1-|R[’
Combination of equations [C-32] and [C-37] yields:
7= (1+ R Xpc) [ C-39)
1-R,
Hence, !
R = Z, - pg [ C-40]
©Z+pe
From [ C-40], it follows that
7~ el e
a=1-1—
Z + plcll

From equations [C-34] and [C-41], the transmission coefficient is given by

4 [C-42]

a, =

2
4cos’ k,L+ PoC y P& sin® k, L
Pc PG

For typical solids that are used as acoustic barriers,
P2Cy 2> Pr6

So [ C-42] becomes,
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4 [ C-43]

o, =

2
dcos’ k,L+ Pl sin® k,L
Pic

By definition, the transmission loss for the system is given by

TL(dB)=10log,,(1/a, ) [ C-44]

The following condition applies to most materials under certain geometric and
frequency constraints. If ~0.05< L <~1m, ¢, 2~1,000m/s, p, 2~1,000 kg/m3 ,
~10< f £1,000Hz, and k, <7 then

o} [ C-45]
P2% | sin? k,L >>4cos’ k,L
P&
So, [ C-43] becomes
4(plcl )2 | C-46]
o, = >
(pc, ) sin® k, L

If L<0.1m, ¢, 2~1,000m/s, and f <5,00Hz, then sink,L = k,L, so [ C-46] becomes
2 C-47
a =|-PG 1 ! :
=
e, J\ S

The density of the solid is given by

M, [ C-48]
P2 =

A,L
where M; is the mass of the solid, and A, is its cross sectional area. The area density of
the solid is given by

M ) [C-49]
o,=—==p,L
2 4, P2

So, from [ C-47] and [C-49], the TL is given by
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[ C-50]

TL(dB) = 2010g,0(”02 ]+ 20log,,
p

16
This represents the classical mass law for solid acoustic barriers, which has been verified
by experimental data for various materials and certain frequency ranges [11].
It should be noted that the specific acoustic impedance of the system at x=L is the
characteristic acoustic impedance of air, since, from equations [C-7] and [C-14],
Z(x=L)= ps(L.1)fv,(Ly1)
= PsC = PG
Moreover, with the respect to the present finite element technique, the boundary
condition at x=L is that there is a pressure force acting on the solid due to the pressure in

component III (i.e., the air downstream of the solid).
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D-1 Impedance Tube

{ INPEDANCE )

INPUT
Excitation, Component
properties, Geometry

v

D
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FINITE ¢ Calculate element ANALYTICAL
ELEMENT requirements SOLUTION
SOLUTION

Generate element matrices
v
Generate global matrices
Apply boundary conditions
Solve equation of motion
h J
Refine solution using
. . . OUTPUT
mterpolation function Pressure field
Calculate RMS error
between finite element and
analytical predictions
OUTPUT
RMS error




Matlab Code

IMPEDANCE (Impedance.m)

%Calculation of finite element and analytical pressure field, with RMS error comparison.
clear;

clc;

format short g;

hold;

%System definition
o/

%Excitation

f=10000; Vocos=0; Vosin=10"-2; Vo=10"-2; w=2*pi*f; uocos=-Vocos/w; uosin=Vosin/w;
%Geometric

L=1.5; Area=1;

%Medium

row=1.2; c=341; Zrstar=4; Zistar=3; k=Zistar*row*c*w; d=Zrstar*row*c;
%Finite Element Specific

for n=1:1:120

% n=10;

np=20;

le=L/(n);

%Analytical Specific

K=w/c;

%Call Finite Element Solution
ImpedancewallFE

%Call Analytical Solution
DP=n*np-(n-1);
Impedancewall Analytical

% Peak pressure error
PrsinANmax=max(PrsinAN);
PrcosANmax=max(PrcosAN);
PrsinFEmax=max(PrsinFE);
PrcosFEmax=max(PrcosFE);

Esin(n,1)=abs((PrsinFEmax-PrsinANmax)/PrsinANmax*100);

Ecos(n,1)=abs((PrcosFEmax-PrcosANmax)/PrcosANmax*100);

if Esin(n,1)<=1 & Ecos(n,1)<=1 & Esin(n-1,1)<=1 & Ecos(n-1,1)<=1
=n
break

end

end

plot(Esin)

figure;

plot(Ecos)

%RMS Error

difsin=PrsinFE-PrsinAN;

difcos=PrcosFE-PrcosAN;

for i=i:1:DP
Pdiffsin(i,1)=((difsin(i,1)/PrsinAN(i,1))*100)"2;
Pdiffcos(i, 1)=((difcos(i,1)/PrcosAN(i, 1)) *100)"2;

end

AVGsin=sum(Pdiffsin)/DP;
AVGcos=sum(Pdiffcos)/DP;

RMSEsin(n,1)=sqrt(AVGsin);

111



RMSEcos(n,1)=sqrt(AVGcos);
if RMSEsin(n,1)<=10.0 & RMSEcos(n,1)<=10.0 & RMSEsin(n-1,1)<=10.0 & RMSEcos(n-1,1)<=10.0

break
end
end
plot(RMSEsin)
figure;
plot(RMSEcos)

% Pressure Plots FE and AN
plot(x,PrsinFE,'d")

figure;

plot(x,PrsinAN)

xlabel('Axial distance from the piston, x(m)')
ylabel('Imaginary part of acoustic pressure, P(Pa)")
legend('Finite Element','Analytical')

figure;

hold;

plot(x,PrcosFE,'d")

figure;

plot(x,PrcosAN)

xlabel('Axial distance from the piston, x(m)")
ylabel('Real part of acoustic pressure, P(Pa)")
legend('Finite Element','Analytical')

FINITE ELEMENT SOLUTION (ImpedancewallFE.m)

%Finite element Impedance wall Pressure Calculations

%int(transpose(N)*N,z,0,le)= !
intN=[le,1/2¥1e/2,1/3*1e"3,1/4*1e"4,1/5*1e/5,1/6*1e76;1/2*1e/2,1/3*1e3,1/4*1e14,1/5*1e75,1/6 *1e76,1/T*1e~T;1/3* et
3,1/4%1e4,1/5*1e"5,1/6%1€76,1/7*1e”7,1/8*1e/8;1/4*1e74,1/5*1e15,1/6%1e6,1/7*1e7,1/8*1e/8,1/9%1e79;1/5*1e”5,1/6 ¥le
~6,1/7*1e77,1/8%1e"8,1/9*1e"9,1/10*1e710;1/6*1e16,1/7*1e27,1/8*¥1e/8,1/9*1"9,1/10*1e*10,1/1 1 *leM 1 1];
%int(transpose(Nprime)*Nprime,z,0,le)=
intNprime={0,0,0,0,0,0;0,1e,1e"2,1e”3,1e*4,1e/5;0,1e"2,4/3*1e/3,3/2*1e"4,8/5*1e"5,5/3%1e/6;0,1e*3,3/2 *1e*4,9/5*1er 5,2 *
1e6,15/7*1e/7;0,1e74,8/5*1e5,2*1e"6,16/7*1e77,5/2*1e/8;0,1e75,5/3 *1e6,15/7*1e7,5/2*1e/8,25/9*1e"9];

D1=[1,0,0;0,1,0;-23/1e"2,-6/1e,16/1e2];

D2=[0,0,0;0,0,0;-8/le,7/1e”2,-1/1e];
D3=[66/1e"3,13/1e"2,-32/1e"3;-68/1e"4,-12/1e/3,16/1e4;24/1e”5,4/1e4,0];
D4=[32/1e"2,-34/1e3,5/1e"2;-40/1e*3,52/1e"4,-8/1"3;16/1e/4,-24/1e"5,4/1e74];

De=[D1,D2;D3,D4]; %element geometric matrix

%Element matrices

o/
/0

me = row*Area*transpose(De)*intN*De; %element mass matrix
ke = row*c"2*Area*transpose(De)*intNprime*De;  %element stiffness matrix

%Global matrices
o/
for i=1:1:(6*n)-2*(n-1)
for j=1:1:(6*n)-2*(n-1)
totalm(i,j)=0; %zero mass matrix
totalk(i,j)=0; %zero stiffness matrix
totald(i,j)=0; %zero damping matrix
end
end

112



%Global Stiffness assembly and Global Mass assembly
for m=1:n
a=0;
b=0;
for i=(4*(m)-3):(4*(m)-3+5)  %Counts for rows
a=atl;
b=0;
for j=(4*(m)-3):(4*(m)-3+5) %Counts for columns
b=btl;
totalk(i,j) = totalk(i,j)+ke(a,b);
totalm(i,j) = totalm(i,j)+me(a,b);
end
end
end

%Effects of Impedance

o/
/0

totald((6*n)-2*(n-1),(6*n)-2*(n-1))=0; %zeroes impedance damping
ndof=(6*n)-2*(n-1)-1;

totalk(ndof,ndof)=totalk(ndof,ndof)+k;
totald(ndof,ndof)=totald(ndof,ndof)+d;

%adds impedance stiffness to total stiffnes matrix

%adds impedance damping to total damping matrix

%Equation of motion

o/
/0

Qsin=(totalk(1:(6*n)-2*(n-1),1)-totalm(1:(6*n)-2*(n-1),1)*w”2)*uosin;
Qcos=(totalk(1:(6*n)-2*(n-1),1)-totalm(1:(6*n)-2*(n-1),1)*w”2)*uocos;

% Qsin=-totalm(1:(6*n)-2*(n-1),1)*-uosin*w”2+totalk(1:(6*n)-2*(n-1),1)*uo;
% Qcos=totald(1:(6*n)-2*(n-1),1)*uo*w;

%remove first row and first column from matrices
totalk=totalk(2:(6*n)-2*(n-1),2:(6*n)-2*(n-1));
totald=totald(2:(6*n)-2*(n-1),2:(6*n)-2*(n-1));
totalm=totalm(2:(6*n)-2*(n-1),2:(6*n)-2*(n-1));
fcos=Qcos(2:(6*n)-2*(n-1),1);
fsin=Qsin(2:(6*n)-2*(n-1),1);

%Solution
Al=totalk-totalm*w"2;
A2=-totald*w;
A3=-A2;

A4=Al,;
A=[A1,A2;A3,A4];
force=[fcos;fsin];

x=inv(A)*force;

%Application of the ahape function
0/,

=0;

for i=1:1:((6*n)-2*(n-1)-1)
=ith
uc(j,1)=x(,1);

end

J=0;

for i=((6*n)-2*(n-1)):1:((6*n)-2*(n-1)-1)*2
=ith
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us(j,1)=x(i,1);
end

ucos=[uocos;uc];
usin=[-uosin;us];

delta = le/(np-1);

i=1; -
for element=1:n
i=i-1;
in1=2*element-1; in2=2*element; in3=2*element+1;
ndof(1)= 2*in1-1; ndof(2)= 2*inl;
ndof{3)= 2*in2-1; ndof(4)= 2*in2;
ndof(5)= 2*in3-1; ndof(6)= 2*in3;
Ucos=[ucos(ndof{1),1);ucos(ndof{2),1);ucos(ndof(3),1);ucos(ndof(4),1);ucos(ndof(5),1);ucos(ndof(6),1)];
Usin=[usin(ndof{1),1);usin(ndof(2),1);usin(ndof(3),1);usin(ndof(4),1);usin(ndof(5),1);usin(ndof(6),1)];

for inp=1:np
i=it+l;
zl=delta*(inp-1);
xx(i,1)=le*(element-1)+delta*(inp-1); %records global position
Nprime=[0,1,2*z1,3*z1/2,4*21"3,5%21"4];
PrcosFE(i,1)=-row*c"2*Nprime*De*Ucos;
PrsinFE(i,1)=row*c*2*Nprime*De*Usin;

end

end

ANALYTICAL SOLUTION (Impedancewall Analytical.m)

%ANALYTICAL SOLUTION '
%SOUND TRANSMISSION IN A PISTON-CYLINDER ARRANGEMENT
Denom=(cos(K*L))*2+(Zrstar*2+Zistar*2)*(sin(K*L))"2+Zistar*(sin(2*K*L));
Ao=(Zrstar*2+Zistar*2-1)*sin(2*K*L)/2+Zistar*cos(2*K*L);

o/

x = linspace(0,L,DP);
Prstar=Zrstar*cos(K*x)/Denom;
Pistar=sin(K*x)+Ao*cos(K *x)/Denom;
PrcosAN=transpose(Prstar*row*c*Vo);
PrsinAN=transpose(Pistar*row*c*Vo);
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D-2 Absorption Coefficient

INPUT
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Matlab Code

ABSORPTION (AP1.m)

%Sound Propogation in Air and Porous Material
%Coupled FE Analysis

clear;

clc;

format short g; .
hold;

%System Definition
%GENERAL
count=0;
for £=1:500:16000
count=1;
% =16000;
Vo_cos=107"-2; Vo_sin=0; w=2*pi*f; A=.01; Uo_cos=-Vo_sin/w; Uo_sin=Vo_cos/w;
% w=2*pi*f; A=1; Uo_cos=1; Uo_sin=0;
%AIR
R_air=0; row_air=1.2; c¢_air=341; L_air=0.05;
% %SOLID
R_solid=2000; row_solid=1.2; L_solid=0.025; c_solid=341 ;dampcoeff_solid=R_solid;
% R_solid=25¢3; Omega=1; Ks=5; row_solid=1.2*Ks; L_solid=0.054;
c_solid=341*sqrt(Ks/Omega);dampcoeff_solid=R_solid;
%FINITE ELEMENT
% n_air=10; n_solid=5; ;
np=20;

%FINITE ELEMENT
n_air=(2*L_air*f)/c_air;
n_solid=(2*L_solid*f)/c_solid;

if n_air <=2
n_air=2;
else
n_air=round(n_air);
end
if n_solid <=2
n_solid=2;
else
n_solid=round(n_solid);
end
% n_air=15;
% n_solid=30;
n=n_airtn_solid; np=20;
le_air=L_air/n_air; le_solid=L_solid/n_solid;
L=L_airt+L_solid;

nn_air=4*n_air+2;

nn_solid=4*n_solid+2;

nn=4*n+2;

n=n_airtn_solid;

le_air=L_air/n_air; le_solid=L_solid/n_solid;
L=L_airtL_solid;

nn_air=4*n_air+2;
nn_solid=4*n_solid+2;
nn=4*n+2;

%Develop Air Element Matrices
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AP2

%Develop Porous Solid Element Matrices

AP3

%Assemble Global Mass, Stiffness, Damping Matrices
AP5

% absorption coeeficient calculation
% at air boundary
% presOc=PrcosFE_air(1,1);
% presOs=PrsinFE_air(1,1);
% pO=complex(presOc,pres0s);
% v0=complex(-usin1(1,1)*w,ucos1(1,1)*w);
Y%at porous boundary
presOc=PrcosFE_air(n_air*np-(n_air-1),1);
presOs=PrsinFE_air(n_air*np-(n_air-1),1);
pO=complex(presOc,pres0s);
v0=complex(-usin1(nn_air-1,1)*w,ucos!(nn_air-1,1)*w);
%input impedance and absorption coeeficient calcs
z0=p0/v0;

20=20/(row_air*c_air);
zz0r(count, 1)=real(zz0);
zz0i(count,1)=imag(zz0);
abscoe(count, 1)=(4*zz0r(count,1))/((zz0r(count,1)+1)*2+2zz0i(count,1)*2)
freq(count,1)=f;
end

FINITE ELEMENT AIR (AP2.m)

%Sound Propogation in Air and Porous Material

%Air FE formulation

% global mg_air kg_air

%Air Geometric Matrix

D1_air=[1,0,0;0,1,0;-23/le_air*2,-6/l¢_air,16/le_air*2];

D2_air=[0,0,0;0,0,0;-8/le_air,7/le_air"2,-1/le_air];

D3_air=[66/le_air*3,13/le_air"2, -32/]e air'3;-68/le_air*4,-12/le_air*3,16/le_air*4;24/le_air"5,4/le_air*4,0];
D4_air=[32/le_air*2 -34/]e air3,5/le alr"2 -40/le_air*3,52/le_air™4,-8/le_air*3;16/le_air*4,-24/le_air*5,4/le : airt4];

De_air=[D1_air,D2_air;D3_air,D4_air];

%Element Matrices
%int(transpose(N)*N,z,0,le_air)=
intN_air
=[le_air,1/2*le_air*2,1/3*le_air*3,1/4*le_air*4,1/5*le_air"5,1/6*le_air*6;1/2*le_air*2,1/3*le_air*3,1/4*le_air™4,1/5*]
e_air5,1/6*le_ alr’\6 1/7*le_air"7;1/3*le_air*3,1/4*le_air"4,1/5*]e_air*5,1/6*le_air*6,1/7*le_air*7,1/8*le_air*8;1/4*le
_air’4,1/5%1e_air"5,1/6*le_air*6,1/7*le_air*7,1/8*le_air8, l/9*le :_air*9;1/5%le_air5,1/6*le_air"6,1/7*le_air*7,1/8*le_
air's, 1/9*le_air"9, 1/10%1e_ > air*10;1/6*le_air6, I/7*le air’7,1/8*le_air"8, ]/9*le air*9,1/10%le > air*10, 1/11%e > airt] l],
%mt(transpose(anme)*anme z,0,le_air)=
intNprime_air=[0,0,0,0,0,0;0,le_air,le_air*2,le_air"3,le_air*4,le_air*5;0,le_air*2,4/3*le_air*3,3/2*lc_air4,8/5*le_air*
5,5/3*1e_air*6;0,le_air"3,3/2*le_air*4,9/5*le_air"5 2*]e air*6,15/7*le_air*7;0,le_air*4,8/5*1e_air"5, 2*le > air*6,16/7*1
e_air'7, 5/2*le air*8;0,le_air’5, 5/3*le air"6,15/7*le_air*7,5/2*le_air*8,25/9*1e_air*9];

me_air=row_air*A*transpose(De_air)*intN_air*De_air; %element mass matrix
ke_air=row_air*c_air*2*A*transpose(De_air)*intNprime_air*De_air; %element stiffness matrix

%Global Solid Matrices
mg_air((6*n_air)-2*(n_air-1),(6*n_air)-2*(n_air-1))=0; %zero mass matrix
kg_air((6*n_air)-2*(n_air-1),(6*n_air)-2*(n_air-1))=0; %zero stiffness matrix

%Global Stiffness assembly and Global Mass assembly

for m=1:n_air
a=0;
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b=0;
for i=(4*(m)-3):(4*(m)-3+5)  %Counts for rows
a=a+l;
b=0;
for j=(4*(m)-3):(4*(m)-3+5) %Counts for columns
b=b+l;
mg_air(i,j)=mg_air(i,j)+me_air(a,b);
kg_air(ij)=kg_air(i,j)+ke_air(a,b);
end
end .
end

FINITE ELEMENT POROUS (AP3.m)

%Sound Propogation in Air and Porous Material
%Porus Solid FE formulation

%Solid Geometric Matrix

D1_solid=[1,0,0;0,1,0;-23/le_solid"2,-6/le_solid,16/le_solid"2];
D2_solid=[0,0,0;0,0,0;-8/le_solid,7/le_solid"2,-1/le_solid];
D3_solid=[66/le_solid"3,13/le_solid*2,-32/le_solid"3;-68/le_solid"4,-
12/1e_solid"3,16/1e_solid"4;24/le_solid"5,4/le_solid"4,0];
D4_solid=[32/le_solid"2,-34/le_solid"3,5/le_solid"2;-40/le_solid"3,52/le_solid"4,-8/le_solid"3;16/le_solid"4,-
24/1e_solid"5,4/le_solid™4];

De_solid=[D1_solid,D2_solid;D3_solid,D4_solid];

%Element Matrices

%int(transpose(N)*N,z,0,le_solid)=
intN_solid=[le_solid,1/2*le_solid"2,1/3*]e_solid"3,1/4*le_solid*4,1/5*le_solid"5,1/6*le_solid"6;1/2*le_solid*2,1/3*]
e_solid*3,1/4*le_solid"4,1/5*le_solid"5,1/6*le_solid"6,1/7*le_solid"7;1/3*le_solid"3,1/4*le_solid"4,1/5*le_solid"5,]
/6*le_solid™6,1/7*le_solid"7,1/8*le_solid"8;1/4*le_solid"4,1/5*]e_solid"5,1/6*le_solid"6,1/7*le_solid"7,1/8*le_solid
~8,1/9*le_solid"9;1/5*1e_solid"5,1/6*le_solid"6,1/7*le_solid"7,1/8*le_solid"8,1/9*le_solid"9,1/10*]le_solid*10;1/6*le
_solid"6,1/7*le_solid"7,1/8*1e_solid"8,1/9*le_solid"9,1/10*le_solid*10,1/11*le_solid*11];
%int(transpose(Nprime)*Nprime,z,0,le_solid)=
intNprime_solid=[0,0,0,0,0,0;0,le_solid,le_solid*2,le_solid"3,le_solid*4,le_solid"5;0,le_solid*2,4/3*]e_solid"3,3/2*le
_solid"4,8/5*le_solid"5,5/3*le_solid"6;0,le_solid"3,3/2*]e_solid"4,9/5*le_solid"5,2*le_solid"6,15/7*le_solid"7;0,le_s
olid*4,8/5*1e_solid"5,2*le_solid"6,16/7*le_solid*7,5/2*1e_solid*8;0,le_solid"5,5/3*le_solid"6,15/7*1e_solid"7,5/2*1e
_solid"8,25/9*1e_solid"9];

me_solid=row_solid*A *transpose(De_solid)*intN_solid*De_solid; %element mass matrix
ke_solid=row_solid*c_solid"2*A*transpose(De_solid)*intNprime_solid*De_solid; %element stiffness matrix
de_solid=dampcoeff_solid*A*transpose(De_solid)*intN_solid*De_solid; %element damping matrix

%Global Solid Matrices
mg_solid((6*n_solid)-2*(n_solid-1),(6*n_solid)-2*(n_solid-1))=0; %zero mass matrix
kg_solid((6*n_solid)-2*(n_solid-1),(6*n_solid)-2*(n_solid-1))=0; %zero stiffness matrix
dg_solid((6*n_solid)-2*(n_solid-1),(6*n_solid)-2*(n_solid-1))=0; %zero damping matrix

%Global Stiffness assembly and Global Mass assembly
for m=1:n_solid
a=0;
b=0;
for i=(4*(m)-3):(4*(m)-3+5)  %Counts for rows
a=atl;
b=0;
for j=(4*(m)-3):(4*(m)-3+5) %Counts for columns
b="btl;
mg_solid(i,j)=mg_solid(i,j)*+me_solid(a,b);
kg_solid(i,j)=kg_solid(i,j)*ke_solid(a,b);
dg_solid(i,j)=dg_solid(i,j)+de_solid(a,b);
end :
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end
end

%Application of the R matrix
alpha=(row_air*c_air"2*A)/(row_solid*c_solid"2*A);
R=[1,0;0,alpha];

temp_mgl=transpose(R)*mg_solid(1:2,1:2)*R;
temp_mg2=transpose(R)*mg_solid(1:2,3:6);
temp_mg3=mg_solid(3:6,1:2)*R; -
mg_solid(1:2,1:2)=temp_mgl;
mg_solid(1:2,3:6)=temp_mg?2;
mg_solid(3:6,1:2)=temp_mg3;

temp_kgl=transpose(R)*kg_solid(1:2,1:2)*R;
temp_kg2=transpose(R)*kg_solid(1:2,3:6);
temp_kg3=kg_solid(3:6,1:2)*R;
kg_solid(1:2,1:2)=temp_kgl;
kg_solid(1:2,3:6)=temp_kg2;

kg solid(3:6,1:2)=temp_kg3;

temp_dgl=transpose(R)*dg_solid(1:2,1:2)*R;
temp_dg2=transpose(R)*dg_solid(1:2,3:6);
temp_dg3=dg_solid(3:6,1:2)*R;
dg_solid(1:2,1:2)=temp_dg1;
dg_solid(1:2,3:6)=temp_dg2;
dg_solid(3:6,1:2)=temp_dg3;

ASSEMBLY AND SOLUTION (AP5.m)

%Assemble total global Mass, Stiffness, and Damping Matrices and Solve acoustic displacement vector

%Assemble Total Global Matrices

%Zero matrices
totalm(nn_air+nn_solid-2,nn_airtnn_solid-2)=0;
totalk(nn_airtnn_solid-2,nn_airtnn_solid-2)=0;
totald(nn_air+nn_solid-2,nn_airtnn_solid-2)=0;

for i=1:nn_air
for j=1:nn_air
totalm(i,j)=totalm(ij)+mg_air(i,j);
totalk(i,j)=totalk(i,j)+kg_air(i,j);
end
end
a=0;
b=0;
for i=(nn_air-1):(nn_air+nn_solid-2)
a=atl;
b=0;
for j=(nn_air-1):(nn_air+nn_solid-2)
b=b+1;
totalm(i,j)=totalm(i,j)+mg_solid(a,b);
totalk(i,j)=totalk(i,j)+kg_solid(a,b);
totald(ij)=totald(i,j)+dg_solid(a,b);
end
end

%Equation of motion

[ YA
/0

Qcos=(totalk(1:nn,1)-totalm(1:nn,1)*w”*2)*Uo_cos;
Qsin=(totalk(1:nn,1)-totalm(1:nn,1)*w"2)*Uo_sin;
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fcos=Qcos;
fsin=Qsin;

%Boundary Condition

%Apply Boundary condition at right end
totalk(nn-1,:)=[];

totalk(:,nn-1)=[1;

totalm(nn-1,:)=[1;
totalm(:,nn-1)=[1;

totald(nn-1,:)=[1;
totald(:,nn-1)=[);

fcos(nn-1,:)=[1;
fsin(nn-1,:)=[];

%remove first row and first column from matrices
totalk=totalk(2:nn-1,2:nn-1);
totald=totald(2:nn-1,2:nn-1);
totalm=totalm(2:nn-1,2:nn-1);
fcos=Qcos(2:nn-1,1);

fsin=Qsin(2:nn-1,1);

%Solution
Al=totalk-totalm*w"2;
A2=-totald*w;
A3=-A2;

Ad=Al;
AA=[A1,A2;A3,A4];

force=[fcos;fsin];
x=inv(AA)*force;

%Seperates Cos and Sin entries from the global displacement vector
J=0;
for i=1:1:(nn-3)
=t
uc(,1)=x(1,1);
end
J=0;
for i=(nn-1):1:(nn-2)*2-1
Fith
us(j, 1)=x(,1);
end
epsilonc=x(nn-2);
epsilons=x((nn-2)*2);

ucosl=[Uo_cos;uc;0;epsilonc];
usinl=[-Uo_sin;us;0;epsilons];

%Seperate ucosl and usinl into two media components
ucos_air=ucos!(1:nn_air,1);
ucos_solid=ucos!(nn_air-1:nn,1);
usin_air=usinl(1:nn_air,1);
usin_solid=usinl(nn_air-1:nn,1);

Alpha_cos=ucos_solid(2,1)*alpha;
Alpha_sin=usin_solid(2,1)*alpha;
ucos_solid(2,1)=Alpha_cos;
usin_solid(2,1)=Alpha_sin;
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% Calculate Pressure
delta_air=le_air/(np-1);
delta_solid=le_solid/(np-1);

i=1;
for element=1:n_air
i=i-1;
in1=2*element-1; in2=2*element; in3=2*element+1;
ndof{1)= 2*in1-1; ndof(2)= 2*inl; .
ndof(3)= 2*in2-1; ndof(4)= 2*in2;
ndof(5)= 2*in3-1; ndof{6)= 2*in3;

Ucos=[ucos_air(ndof{1),1);ucos_air(ndof{(2),1);ucos_air(ndof(3),1);ucos_air(ndof(4),1);ucos_air(ndof(5),1);ucos_air(n
dof(6),1];

Usin=[usin_air(ndof(1),1);usin_air(ndof(2),1);usin_air(ndof(3),1);usin_air(ndof(4),1);usin_air(ndof(5),1);usin_air(ndof
(6),1];

%Calcluates pressure for the air component

for inp=1:np
i=itl;
zl=delta_air*(inp-1);
xx_air(i,1)=le_air*(element-1)+delta_air*(inp-1); %records global position
Nprime=[0,1,2*z1,3*2172,4*%z2113,5%z14];
PrcosFE_air(i,1)=-row_air*c_air*2*Nprime*De_air*Ucos;
PrsinFE_air(i,1)=-row_air*c_air*2*Nprime*De_air*Usin;

end

end

i=1;
for element=1:n_solid
i=i-1;
in1=2*element-1; in2=2*element; in3=2*element+1;
ndof(1)= 2*in1-1; ndof(2)= 2*inl;
ndof(3)= 2*in2-1; ndof(4)= 2*in2;
ndof(5)= 2*in3-1; ndof(6)= 2*in3;

Ucos=[ucos_solid(ndof(1),1);ucos_solid(ndof(2),1);ucos_solid(ndof(3),1);ucos_solid(ndof(4),1);ucos_solid(ndof(5),1);
ucos_solid(ndof{6),1)];

Usin=[usin_solid(ndof(1),1);usin_solid(ndof(2),1);usin_solid(ndof(3),1);usin_solid(ndof(4),1);usin_solid(ndof(5),1);usi
n_solid(ndof(6),1)];

%Calcluates pressure for the air component
for inp=1:np
i=itl;
z1=delta_solid*(inp-1);
if element==1 & inp==1
xx_solid(i,1)=xx_air(19*n_air+1,1);
else
xx_solid(i,1)=xx_solid(i-1,1)+delta_solid;
end
Nprime=[0,1,2*z1,3*z1/2,4*z173,5*z1"4];
PrcosFE_solid(i,1)=-row_solid*c_solid*2*Nprime*De_solid*Ucos;
PrsinFE_solid(i,1)=-row_solid*c_solid*2*Nprime*De_solid*Usin;
end
end

xx=[xx_air;xx_solid];

PrcosFE=[PrcosFE_air;PrcosFE_solid];
PrsinFE=[PrsinFE_air;PrsinFE_solid];

121



D-3 Transmission Coefficient and Transmission Loss

. ‘o INPUT
C TRANSMISSION ) I / Excitation, Component

properhies, Geometry

v

Calculate element
requirements

h 4

C AIR COLUMN )47

FINITE
ELEMENT
SOLUTION

»C SOLID COLUMN )

v

Generate element matrices

v

Apply boundary conditions

v

Generate element matrices

.

Generate global matrices

< h 4

v

Apply boundary conditions

L J

Solve equation of motion

v

Refine solution using
interpolation function

L

OUTPUT
Pressure field

Y

Calculate mnput impedance,

transmission coefficient,
and transmission loss

122

()




Matlab Code

TRANSMISSION (TR1.m)
%Sound Propogation in Air and Porous Material
%Coupled FE Analysis

clear;

clc;

format short g;
% hold;

%System Definition
%GENERAL
count=0;
for £=100:100:10000
count=1;
Vo_cos=1; Vo_sin=0; w=2*pi*f; A=0.01; Uo_cos=-Vo_sin/w; Uo_sin=Vo_cos/w;
%AIR
R_air=0; row_air=1.2; c¢_air=341; L_air=0.01; pc_air=row_air*c_air;
% %SOLID
R_solid=0; row_solid=700; L_solid=0.5; c_solid=1100; dampcoeff_solid=R_solid; pc_solid=row_solid*c_solid;
% R_solid=0; Omega=2; Ks=3; row_solid=1.2*Ks; L_solid=0.025;
c_solid=341*sqrt(Ks/Omega);dampcoeff_solid=R_solid;
%AIR 2
row_2=1.2;
c_2=341;
Zrstar=0; Zistar=1; k=Zistar*row_2*c_2*w; d=Zrstar*row_2*c_2;

%FINITE ELEMENT
n_air=(2*L_air*f)/c_air;
n_solid=(2*L_solid*f)/c_solid;

if n_air <=2
n_air=2;
else
n_air=round(n_air);
end
if n_solid <=2
n_solid=2
else
n_solid=round(n_solid)
end
% n_air=15;
% n_solid=30;
n=n_air+n_solid; np=20;
le_air=L_air/n_air; le_solid=L_solid/n_solid;
L=L_airtL_solid;

nn_air=4*n_air+2;
nn_solid=4*n_solid+2;
nn=4*n+2;

%Develop Air Element Matrices

TR2

%Develop Porous Solid Element Matrices

TR3

%Assemble Global Mass, Stiffness, Damping Matrices
TR5

%L eft face
PrLc=PrcosFE_solid(1,1);
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PrLs=PrsinFE_solid(1,1);
%PrLc=PrcosFE_air(1,1);
%PrLs=PrsinFE_air(1,1);

% PrLc=PrcosFE_air((n_air*np-(n_air-1)),1);

% PrLs=PrsinFE_air((n_air*np-(n_air-1)),1);
PrL=complex(PrLc,PrLs);
vL=complex(-usin1(nn_air-1,1)*w,ucos1(nn_air-1,1)*w);
%vL=complex(-usin1(1,1)*w,ucos1(1,1)*w);
%Right face

% PrRc=PrcosFE_solid(n_solid*np-(n_solid-1),1);
% PrRs=PrsinFE_solid(n_solid*np-(n_solid-1),1);
% PrR=complex(PrRc,PrRs);

%Transmission loss

Z=(PrL)/VL;

% X=abs(Z/(2*row_air*c_air));
alphat=4*real(Z)*(row_air*c_air)/((real(Z)+row_air*c_air)*2+imag(Z)"2);
TL=10*log10(1/alphat);

TLMs=sqrt(real(TL)"2+imag(TL)"2);

end

% plot(TL)

%Plots pressure values for a single frequency
% figure;

% plot(xx,PrcosFE)

% title('Cos Harmonic Pressure values')

% figure;

% plot(xx,PrsinFE)

% title('Sin Harmonic Pressure values')

FINITE ELEMENT AIR (TR2,m)

%Sound Propogation in Air and Porous Material

%Air FE formulation

% global mg_air kg_air

%Air Geometric Matrix

D1_air=[1,0,0;0,1,0;-23/le_air*2,-6/le_air,16/le_air*2];

D2_air=[0,0,0;0,0,0;-8/le_air,7/le_air"2,-1/le_air];
D3_air=[66/le_air*3,13/le_air*2,-32/le_air*3;-68/le_air*4,-12/le_air*3,16/le_air*4;24/le_air*5,4/le_air*4,0];
D4_air=[32/le_air"2,-34/le_air*3,5/le_air*2;-40/le_air*3,52/le_air*4,-8/le_air*3;16/le_air*4,-24/le_air"5,4/le_air*4];

De_air=[DI1_air,D2_air;D3_air,D4_air];

%Element Matrices

%int(transpose(N)*N,z,0,le_air)=

intN_air
=[le_air,1/2*le_air*2,1/3¥le_air*3,1/4*le_air*4,1/5*e_air*5,1/6*le_air*6;1/2*le_air"2,1/3*le_air*3,1/4*le_air*4,1/5%
e_air’5,1/6*le_air"6,1/7*le_air*7;1/3*le_air*3,1/4*le_air*4,1/5*le_air*5,1/6*le_air"6,1/7*le_air*7,1/8*le_air*8;1/4*le
_air’4,1/5%1e_air*5,1/6%le_air"6,1/7*le_air*7,1/8*le_air"8,1/9*le_air*9;1/5*le_air"5,1/6%le_air6,1/7*le_air7,1/8*le_
air"8,1/9*le_air*9,1/10*le_air*10;1/6*le_air"6,1/7*le_air*7,1/8*le_air"8,1/9*le_air*9,1/10*le_air*10,1/11*le_air*11];
%int(transpose(Nprime)*Nprime,z,0,le_air)=
intNprime_air=[0,0,0,0,0,0;0,le_air,le_air*2,le_air*3,le_air*4,le_air"5;0,le_air2,4/3*le_air*3,3/2*le_air*4,8/5*le_air*
5,5/3*le_air"6;0,le_air*3,3/2*le_air*4,9/5*le_air"5,2*le_air*6,15/7*le_air*7;0,le_air"4,8/5*le_air*5,2*le_air*6,16/7*]
€_air*7,5/2*le_air*8;0,le_air*5,5/3*le_air"6,15/7*le_air*7,5/2*le_air*8,25/9*le_air*9];

me_air=row_air*A*transpose(De_air)*intN_air*De_air; %element mass matrix
ke_air=row_air*c_air*2*A*transpose(De_air)*intNprime_air*De_air; %element stiffness matrix

%Global Solid Matrices
mg_air((6*n_air)-2*(n_air-1),(6*n_air)-2*(n_air-1))=0; %zero mass matrix
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kg_air((6*n_air)-2*(n_air-1),(6*n_air)-2*(n_air-1))=0; %zero stiffness matrix

%Global Stiffness assembly and Global Mass assembly
for m=1:n_air
a=0;
b=0;
for i=(4*(m)-3):(4*(m)-3+5)  %Counts for rows
a=atl;
b=0;
for j=(4*(m)-3):(4*(m)-3+5) %Counts for columns
b=Db+l;
mg_air(i,j)=mg_air(i,j)*me_air(a,b);
kg_air(i,j)=kg_air(ij)+ke_air(a,b);
end
end
end

FINITE ELEMENT SOLID (TR3.m)

%Sound Propogation in Air and Porous Material
%Porus Solid FE formulation

%Solid Geometric Matrix

D1_solid=[1,0,0;0,1,0;-23/le_solid"2,-6/le_solid,16/le_solid"2];
D2_solid=[0,0,0;0,0,0;-8/le_solid,7/le_solid*2,-1/le_solid];
D3_solid=[66/le_solid"3,13/le_solid"*2,-32/le_solid"3;-68/le_solid"4,-
12/le_solid"3,16/le_solid*4;24/le_solid"5,4/le_solid"4,0];

D4_solid=[32/le_. solid~2 ,-34/le_solid"3,5/le sohd"2 -40/le_solid"3,52/le_solid"4,-8/le_solid"3;16/le_solid"4,-
24/le_solid"5,4/le_solid4];

De_solid=[D1_solid,D2_solid;D3_solid,D4_solid];

%Element Matrices

Y%int(transpose(N)*N,z,0,le_solid)=

intN_solid=[le_solid,1/2*le_solid*2,1/3*le_solid"3,1/4*le :_solid"4,1/5*1e_solid"5,1/6*le_solid"6;1/2*le >_solid"2,1/3%]

e_solid"3,1/4*le_solid*4,1/5*le_solid"5,1/6*le_solid"6,1/7*le_solid"7;1/3*le >_solid”3,1/4*le_solid*4, ]/5*lc solid"5,1

/6*le :_solid"6, 1/7¥e :_solid"7,1/8*le_solid"8;1/4*1e_solid"4,1/5*le_solid"5, 1/6*le > solid"6, 1/7%le > solid"7, 1/8*le > solid

~8,1/9*le_solid"9;1/5*le_solid"5, 1/6¥1e >_solid"6,1/7*le_solid"7,1/8*1e_solid"8,1/9*le_solid"9, I/lO*]e sohd"lO 1/6*le
_solid"6,1/7*le_solid"7,1/8*le_solid"8,1/9*le_solid"9, l/lO*le__sohd"]O 1/11*le_solid*11];

%int(transpose(Nprime) *Nprime,z,0,le_solid)=

intNprime_solid=[0,0,0,0,0,0;0,le_solid,le_solid*2,le_solid"3,le_solid"4,le_solid"5;0,le_solid*2,4/3*le_solid"3,3/2*le
_solid"4,8/5*1e_solid"5,5/3*1e_ solld”‘6 0,le_solid"3,3/2*le_. sohd"4 9/5*1e sol1d"5 2*le solid"6, ]5/7*le solid*7;0,le_s

olid*4,8/5*1e_solid"5,2*1e_solid"6,16/7*le sohd"7 5/2*le_solid"8;0,le_solid"5,5/3*le_solid"6,15/7*1e_. sohd"7 5/2*le
_solid"8,25/9*le_solid"9];

me_solid=row_solid*A*transpose(De_solid)*intN_solid*De_solid; %element mass matrix
ke_solid=row_solid*c_solid"2*A*transpose(De_solid)*intNprime_solid*De_solid; %element stiffness matrix
de_solid=dampcoeff_solid*A*transpose(De_solid)*intN_solid*De_solid; %element damping matrix

%Global Solid Matrices
mg_solid((6*n_solid)-2*(n_solid-1),(6*n_solid)-2*(n_solid-1))=0; %zero mass matrix
kg_solid((6*n_solid)-2*(n_solid-1),(6*n_solid)-2*(n_solid-1))=0; %zero stiffness matrix
dg_solid((6*n_solid)-2*(n_solid-1),(6*n_solid)-2*(n_solid-1))=0; %zero damping matrix

%Global Stiffness assembly and Global Mass assembly
for m=1:n_solid
a=0;
b=0;
for i=(4*(m)-3):(4*(m)-3+5) %Counts for rows
a=atl;
b=0;
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for j=(4*(m)-3):(4*(m)-3+5) %Counts for columns
b=b+l;
mg_solid(ij)=mg_solid(i,j)*me_solid(a,b);
kg_solid(i,j)=kg_solid(i,j)+ke_solid(a,b);
dg_solid(i,j)=dg_solid(i,j)*+de_solid(a,b);

end

end
end

%Application of the R matrix
alpha=(row_air*c_air*2*A)/(row_solid*c_solid"2*A);
R=[1,0;0,alpha];

temp_mgl=transpose(R)*mg_solid(1:2,1:2)*R;
temp_mg2=transpose(R)*mg_solid(1:2,3:6);
temp_mg3=mg_solid(3:6,1:2)*R;
mg_solid(1:2,1:2)=temp_mg]l;
mg_solid(1:2,3:6)=temp_mg2;
mg_solid(3:6,1:2)=temp_mg3;

temp_kgl=transpose(R)*kg_solid(1:2,1:2)*R;
temp_kg2=transpose(R)*kg_solid(1:2,3:6);
temp_kg3=kg_solid(3:6,1:2)*R;
kg_solid(1:2,1:2)=temp_kgl;
kg_solid(1:2,3:6)=temp_kg2;
kg_solid(3:6,1:2)=temp_kg3;

temp_dgl=transpose(R)*dg_solid(1:2,1:2)*R;
temp_dg2=transpose(R)*dg_solid(1:2,3:6);
temp_dg3=dg_solid(3:6,1:2)*R;
dg_solid(1:2,1:2)=temp_dgl;
dg_solid(1:2,3:6)=temp_dg2;
dg_solid(3:6,1:2)=temp_dg3;

ASSEMBLY AND SOLUTION (TR5.m)

%Assemble total global Mass, Stiffness, and Damping Matrices and Solve acoustic displacement vector

%Assemble Total Global Matrices

%Zero matrices
totalm(nn_air+nn_solid-2,nn_airtnn_solid-2)=0;
totalk(nn_airtnn_solid-2,nn_air+nn_solid-2)=0;
totald(nn_airtnn_solid-2,nn_air+nn_solid-2)=0;

for i=1:nn_air
for j=1:nn_air
totalm(i,j)=totalm(i,j)+mg_air(ij);
totalk(i,j)=totalk(ij)+kg_air(i,j);
end
end
a=0;
b=0; .
for i=(nn_air-1):(nn_air+nn_solid-2)
a=atl;
b=0;
for j=(nn_air-1):(nn_air+nn_solid-2)
b=b+1;
totalm(i,j)=totalm(i,j)+mg_solid(a,b);
totalk(ij)=totalk(i,j)+kg_solid(a,b);
totald(i,j)=totald(i,j)+dg_solid(a,b);
end
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end

%Effects of Impedance

o/
/0

ndof=nn-1;
totalk(ndof,ndof)=totalk(ndof,ndof)+k;
totald(ndof,ndof)=totald(ndof,ndof)+d;

%Equation of motion
o/,
Qcos=(totalk(1:nn,1)-totalm(1:nn,1)*w"2)*Uo_cos;
Qsin=(totalk(1:nn,1)-totalm(1:nn,1)*w”2)*Uo_sin;

fcos=Qcos;

fsin=Qsin;

%remove first row and first column from matrices
totalk=totalk(2:nn,2:nn);

totald=totald(2:nn,2:nn);
totalm=totalm(2:nn,2:nn);

fcos=Qcos(2:nn,1);

fsin=Qsin(2:nn,1);

%Solution
Al=totalk-totalm*w"2;
A2=-totald*w;
A3=-A2;

Ad=Al;
AA=[A1,A2;A3,A4];

force=[fcos;fsin];
x=inv(AA)*force;

%Seperates Cos and Sin entries from the global displacement vector
J=0;
for i=1:1:(nn-1)
=t
uc(j, 1)=x(,1);
end
J=0;
for i=(nn):1:(nn)*2-2
=t
us(j, 1)=x(i,1);

end

ucos!=[Uo_cos;uc];
usin1=[-Uo_sin;us];

%Seperate ucosl and usinl into two media components
ucos_air=ucosl(1:nn_air,1);
ucos_solid=ucos!(nn_air-1:nn,1);
usin_air=usinl(l:nn_air,1);
usin_solid=usinl(nn_air-1:nn,1);

Alpha_cos=ucos_solid(2,1)*alpha;
Alpha_sin=usin_solid(2,1)*alpha;
ucos_solid(2,1)=Alpha_cos;
usin_solid(2,1)=Alpha_sin;

% Calculate Pressure
delta_air=le_air/(np-1);
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delta_solid=le_solid/(np-1);

i=1;
for element=1:n_air
i=i-1;
in1=2*element-1; in2=2*element; in3=2*element+1;
ndof(1)= 2*in1-1; ndof(2)= 2*inl;
ndof(3)= 2*in2-1; ndof(4)= 2*in2;
ndof(5)= 2*in3-1; ndof(6)= 2*in3;

Ucos=[ucos_air(ndof{1),1);ucos_air(ndof(2),1);ucos_air(ndof(3),1);ucos_air(ndof(4),1);ucos_air(ndof(5),1);ucos_air(n
dof(6),1)];

Usin=[usin_air(ndof{1),1);usin_air(ndof(2),1);usin_air(ndof(3),1);usin_air(ndof(4),1);usin_air(ndof(5),1);usin_air(ndof
(6).};

%Calcluates pressure for the air component

for inp=1:np
i=itl;
zl=delta_air*(inp-1);
xx_air(i,])=le_air*(element-1)+delta_air*(inp-1); %records global position
Nprime=[0,1,2*z1,3*2172,4*z173,5%z1"4];
PrcosFE_air(i,1)=-row_air*c_air*2*Nprime*De_air*Ucos;
PrsinFE_air(i,1)=-row_air*c_air*2*Nprime*De_air*Usin;

end

end

i=1;
for element=1:n_solid
i=i-1;
inl1=2*element-1; in2=2*element; in3=2*clement+1;
ndof{1)= 2*in1-1; ndof(2)= 2*inl;
ndof{3)= 2*in2-1; ndof(4)= 2*in2;
ndof{5)= 2*in3-1; ndof{6)= 2*in3; '

Ucos=[ucos_solid(ndof{1),1);ucos_solid(ndof(2),1);ucos_solid(ndof(3),1);ucos_solid(ndof{4),1);ucos_solid(ndof(5),1);
ucos_solid(ndof{(6),1)];

Usin=[usin_solid(ndof{1),1);usin_solid(ndof(2),1);usin_solid(ndof(3),1);usin_solid(ndof(4),1);usin_solid(ndof(5),1);usi
n_solid(ndof(6),1)];

%Calcluates pressure for the air component
for inp=1:np
i=itl;
zl=delta_solid*(inp-1);
if element==1 & inp==1
xx_solid(i,1)=xx_air(19*n_airt+1,1);
else
xx_solid(i,1)=xx_solid(i-1,1)+delta_solid;
end
Nprime=[0,1,2*z1,3*z1°2,4*21"3,5*z1/4];
PrcosFE_solid(i,1)=-row_solid*c_solid*2*Nprime*De_solid*Ucos;
PrsinFE_solid(i,1)=-row_solid*c_solid*2*Nprime*De_solid*Usin;
end
end

xx=[xx_air;xx_solid];

PrcosFE=[PrcosFE_air;PrcosFE_solid];
PrsinFE=[PrsinFE_air;PrsinFE_solid];
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