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Perceptual Data Embedding in Audio and Speech Signals

Libo Zhang 
M aster of Applied Science,
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A bstract

Perceptual embedding is a technique to embed extra information into multimedia signals 

without fidelity degradation, which is the core of many applications including watermarking 

and data hiding. Perceptual embedding can be viewed as a telecommunication to transmit 

the embedded information over the medium consisting of the host signal. This observation 

divides the current embedding techniques into two categories, i.e. the host-suppressing 

ones like the quantization-based Quantization Index Modulation (QIM) and Scalar Costa 

Scheme (SCS), and the non host-suppressing ones like the conventional Spread Spectrum 

(SS) technique. The former class has significant advantages over the latter in robustness and 

data rate due to significantly reduced noise levels.

In this research, the conventional SS embedding technique is modified such that it can 

suppress the host impact mostly. Both the theoretical analysis and simulations show that the 

modification significantly improve the performance of the conventional scheme and further, 

outperform the QIM and SCS under the case of watermarking where the attacks can be 

expected to be very strong. To further increase the robustness and embedding rate, measures 

like frequency masking effects of the Human Masking Auditory system and Forward Error 

Correction schemes are employed, such as Turbo code. The second part of this research 

explores the possibility of high-capacity embedding in telephony speech signals. Another 

modification to improve the embedding rate is proposed for the conventional SS scheme 

under weak attacks, which are expected for the case of data embedding.
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Chapter 1 

Introduction

The rapid development of personal electronics (e.g. MP3 players, CD/DVD recorders, PDAs) 

has made it possible to create and edit multimedia data much easier than before. Further, 

an almost errorless transmission of the broadband Internet makes it possible to distribute 

the large media files without any quality degradation. This has promoted the protection 

of intellectual copyright and the prevention of the unauthorized tampering to become an 

important industrial and academic issue.

According to [22], globally annual losses due to piracy (not including Internet piracy) of 

copyrighted materials are estimated to be as high as US $22 billion. The ”2003 Special 301 

Report on Global Copyright Protection and Enforcement” from the International Intellectual 

Property Alliance (IIPA) states that in 2002, deficiencies in the copyright regimes of 56 

countries caused US music industries to lose more than US$2.1 billion in trade due to piracy.

To cope with this, a mechanism to embed the copyright information into the media sig

nals seems promising. A watermark, or a digital copyright signature, is hidden in the media 

transparently and exists permanently no matter what types of processing the media experi

ences. However, simple mechanisms of embedding the information into header segments of 

digital files are useless because the headers can be easily removed or changed without fidelity 

degradation. Instead, to be robust permanently, the copyright information should be fused 

with the content data seamlessly.

It is worth mentioning that encryption could protect neither the copyright nor the tam-
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Figure 1.1: Communication model of data embedding system

paring of digital media. Encryption prevents the access to the multimedia content with a 

decryption key. The client must pay the royalties to get the key. But once the media has 

been decrypted, it can be repeatedly copied and distributed.

1.1 Research Statem ents

The general viewpoint thorough the research is to model the data embedding as a telecom

munication system. The model is shown in Figure 1.1. With this model some general 

assumptions can be clarified.

Perceptual embedding means the composite signal should not be perceptually different 

from the host signal. This requirement constrains the power of the embedded data lower 

than the hearing threshold, and thus characterizes such embedding as a power-limited com

munication.

The decoder has no access to the host signal for extraction and this is called blind ex

traction. In most cases an extra channel for the host signal is not possible.

Robustness represents the ability of the decoder to extract the embedded data correctly 

after attacks of signal processing manipulations. It is desired that the robustness is as high 

as possible for all kinds of attacks.

The data rate in this communication is an important factor that limits the feasibility of 

different techniques. The difference on the data rates are mainly due to the different noise 

levels in different scenarios. For example, due to low noise levels in data hiding, it is possible 

to achieve a data rate higher than that in the watermarking case.

These requirements listed above normally conflict with each other. For example, a very



robust watermark can be obtained by considerably modifying the host signal to increase the 

embedding strength. However, this large modification will be perceptible. Therefore, an 

optimal trade-off, which depends on the specific application, is always needed for practical 

use.

In this research, both robust watermarking for audio signals and high-capacity embed

ding for telephony speech signals are studied. The first objective is to develop a novel audio 

watermarking scheme which can provide the state-of-art performance. The second objective 

is to incorporate the available techniques including the masking effects of Human Audi

tory System (HAS) and various Forward Error Correction (FEC) schemes to improve the 

performance (The superior Turbo code is paid special attention to).

This research involves the multidisciplinary areas such as digital signal processing. Human 

Auditory System (HAS) modeling, telecommunication, information theory.

1.2 Application Areas

The embedded information will be distributed transparently and robustly along with the 

host signal. This goal enables the technique to be applicable to many potential cases. Some 

typical scenarios are as follows.

Ownership Protection: This is the most popular application scenario and the main drive 

behind the research area. The watermark, or the copyright information in its digital form, 

is embedded in the media data imperceptibly. The watermark, only known to the copyright 

holder, is expected to be very robust, enabling the owner to demonstrate the presence of this 

watermark in case of dispute [15] [44]

Additional Services: A high-capacity embedding technique virtually creates a subliminal 

channel that can be of different usages. For example, due to the transparency of the new 

channel, a hierarchical service system can be setup on top of the traditional sets with extra 

encode/decode devices. Many potentially commercial applications can be envisaged with 

this technique [18].

Authentication: In some applications it is highly desired that the media content should



not be changed any. This can be accomplished by a so-called fragile watermark. A fragile 

watermark is one that has only very limited robustness and usually become invalid after the 

slightest modification. If a very fragile mark is detected intact, we can infer that the signal 

has probably not been altered since the watermark was embedded. In this research, the 

fragile watermarking is not considered.

1.3 M ain Contributions and Thesis Outline

The organizations of this thesis are shown in Figure 1.2 and the main contributions include

• Proposed a novel SS embedding scheme that is more robust than the current acclaimed 

quantization schemes of QIM/SCS;

• Incorporated different FEC schemes, especially Turbo code, to improve the robustness;

• Proposed a watermarking system consisting of multiple watermarks.

• Improved the conventional SS scheme to increase the embedding rate.

• Explored the data hiding in digital telephony signals.

Chapter 2 introduces some background knowledge including time-frequency transforma

tion, HAS models, as well as relevant telecommunication techniques. Chapter 3 presents 

the proposed scheme in details. The scheme is analyzed theoretically and compared with 

the quantization-based schemes like SCS/QIM. In Chapter 4 the scheme is applied to audio 

watermarking case. Different measures to increase the SNR are presented and an extensive 

simulation is conducted. In Chapter 5 an approach to embed data into the ITU-G.711 /^-law 

coded speech signals is proposed. The final chapter discusses the future research expected 

in this area.
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Chapter 2 

Preliminaries

This chapter reviews the background knowledge for the research of data embedding. As the 

transmission medium of the embedded data, the host signal and its different representation 

domains are discussed first. As an effective technique to increase the embedding power, the 

frequency masking effects of HAS are discussed in the second part. The relevant commu

nication modulation technique, i.e. Spread Spectrum, and the FEC schemes are reviewed 

in the third part. At the last section, a separate part is devoted to Turbo code, where its 

powerful error-correction capabilities are investigated for data hiding applications.

2.1 D igital Sound Signals Representations

Information can be embedded into the different representation coefficients of the host sig

nal. These different representations correspond to the different channels of the equivalent 

communication of data embedding.

2.1.1 T im e D om ain

According to the sampling theory, a continuous, band-limited signal, x{t), can be adequately 

represented as a discrete-time signal provided that the discrete signal is uniformly sampled 

at a rate at least twice of its bandwidth. A discrete-time signal is written in the form, 

x{nT) = æ„, where T  is the sampling period and n is the integer index into the sequence. 

A digital signal is a discretely sampled signal where each sample assumes a value from a

6



discrete range. Quantization is the process where a discrete amplitude value is given to each 

discrete sample in a digital signal.

Some common sampling rates for audio signals are 16, 20, 32, 44.1, 48, and 96 kHz [36]. 

The so called ’CD quality’ format refers to the linear Pulse Code Modulation (PCM) format 

with a resolution of 16 bits and a sampling frequency of 44.1 kHz. This is used as the 

reference format for watermarking in this research.

2.1.2 Fourier Transform D om ain

The Fourier transform is an integral transform of a continuous signal, x{t), with the complex

exponentials of radian frequencies, as the kernel sequences and defined as

/
+00

x{t)e-^‘̂ ^dt (2.1)
■oo

It can be seen from the definition that the Fourier transform measures the amount of 

energy at each radian frequency by integral, so it is commonly called the spectrum of the 

signal.

For a discrete signal, æ„, the Fourier transform becomes an infinite sum as
+00

F{juj) = (2.2)
n——oo

Thus for a finite duration time sequence, the Discrete Fourier Transform (DFT) is ob

tained from,
2 N-l

fk = F ( ;— A;) =  ^  X ne~^> \ k e  {0,1,2,..., N  -  1} (2.3)
n= 0

Each index of the discrete frequency spectrum is referred to as a frequency bin. The

magnitude of each bin is the amount of energy at the equivalent discrete frequency range.

The inverse DFT is written

= ^ G {0,1,2,..., iV -  1} (2.4)
k=0

t2\The Fast Fourier transform (FFT) can reduce computation of DFT from 0 {N  ) complex 

multiplications to 0 {N  log N) complex multiplications [32].
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F igure 2.1: MDCT as a transform with 50% overlap between adjacent frames

2.1.3 M odified D iscrete Cosine Transform (M D C T) D om ain

Signal representation in the MDCT domain has emerged as a dominant tool in high qual

ity audio coding because of its properties including energy compaction, critical sampling, 

reduction of block effect and flexible window switching [36].

The MDCT of a signal block æ„ of length is a block f j  of length M  =  N /2  and is 

defined by

7T
"  V M  -----2— i  — 0 , 1  (2.5)

k=Q

where Wk is some analysis window to smooth the boundary effects between successive blocks. 

The inverse MDCT is defined as,

- M - l

M
M + 1 ,

2/fc — ^ c o s [ — (j + -)(fc-|------— )]fj, k — 0 ,1 ,...,N  - 1  (2.6)
j= Q

Different than a block transform like the above DFT, MDCT is a lapped transform. As 

a lapped transform, the MDCT works with a 50% overlap between successive blocks of the 

input signal, this procedure can be described in Figure 2.1. The analysis and synthesis 

correspond to the MDCT and the inverse MDCT in implementation, respectively.
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The following Princen-Bradley [38] [39] conditions guarantee that the original signal can 

be perfectly reconstructed (PR) by adding the inverse MDCT of subsequent overlapping 

blocks, causing the errors to cancel and the original data to be reconstructed.

Wk =  Wi\f—i—k (2.7a)

Wk T Wk+M ~  f (2.7b)

The following sine window is widely used in audio coding, because it provides a good 

attenuation of the block boundary effect and allows PR [36].

W fc - s in ^ ( f c  +  i )  (2.8)

The direct computation of the MDCT formula would require O(N^) multiplications, as 

for FFT, it is possible to compute the MDCT with only 0 {N  log N) complexity by recursively 

factorizing the computation. Actually the MDCT and the inverse MDCT can be calculated 

using only one n/4 point FFT and some pre- and post-rotation of the sample points [10].

In [1], a relationship between the MDCT and the FFT was shown as follows,

/ r - "  =  cos + %  +  " ) '  _  z / j - l  (2.9)

It can be seen that MDCT coefficients are approximately the corresponding DFT ones 

with a rapid modulation. This similarity indicates that the MDCT-based psychoacoustic 

model can be borrowed directly from the corresponding one based on Fourier coefficients. 

For this reason, as well as for reduced complexity (MDCT is a real transform, while DFT 

is a complex one), the MDCT is used as the frequency embedding domain in this research. 

Some other possible representations include the DCT, Wavelet, Wavelet Packet.

2.2 Human Auditory System  (HAS)

HAS has a dynamic frequency range of 20H z ~  20kHz and an intensity range from 20fxPa 

to 20Pa [48]. Sounds are commonly characterized by their logarithmic level, i.e. Sound 

Pressure Level (SPL),

L =  201ogjo— (dB) (2.10)
Po



where the reference pressure, po, has a value of 20/xPa.

It is generally convenient to evaluate the level of a sound from its frequency domain 

representation. For discrete spectra of periodic signals, the overall level is calculated by 

summing the levels of individual spectral components. Individual component levels are 

directly related to the squared magnitude of the Fourier series coefficients of the signal.

Perceptual embedding is challenging due to the wide dynamic range and high sensitivity 

of HAS to Additive White Gaussian Noises (AWGN); such noises as low as 70 dB below the 

ambient can be perceived.

2.2.1 Critical Band

Sounds are not perceived equally well at all frequencies, the concept of critical band is 

proposed to explain this phenomenon [48]. A critical band is a bandwidth around a center 

frequency within which sounds of different frequencies are blurred as perceived by us. The 

critical band itself is a function of frequency and two adjacent bands have the difference of 

1 in Bark unit.

Thus the HAS is usually modeled as a bandpass filterbank consisting of strongly over

lapped bandpass filters. Within the spectrum high up to 22.05 kHz, 26 critical bands have 

to be taken into account [37], and this subdivision is used in this research.

2.2.2 A uditory M asking

Auditory masking is the process by which the perception of one sound, i.e. the maskee, is 

suppressed by another one, i.e. the masker. Masking is characterized by an increase in the 

audibility threshold of the maskee in the presence of the masker. The amount of masking 

corresponds to the quantity by which the threshold is augmented above the Threshold in 

Quiet (TiQ) curve [36].

Frequency masking, or simultaneous masking, occurs when the masker and maskee are 

presented to the ear concurrently. Actually, this accounts for the most masking effects of 

HAS. Another kind, i.e. temporal masking, occurs when the masker and the maskee have

10



a temporal offset with each other. In this research only the frequency masking effects are 

considered for implementation reasons.

2.2.3 M asking M odel

Auditory masking effects enable the noises up to some extent while still inaudible. Different 

masking models are proposed to compute this masking ability. As an example, the popular 

Model 1 used in MPEG-1 Layer 3 [36] [37] is described below and used in this research.

Step 1. The power spectrum is obtained from the FFT of the input signal and normalized 

to an anticipated playback level of 9GdB SPL. The whole spectrum is then subdivided into 

26 non-uniform subbands.

Step 2. Each subband may have several tonal maskers and one equivalent noise masker. 

Tonal components are identified through the detection of local maxima within the predefined 

neighbors. The SPLs of a tonal masker is computed from the sum of its neighbors. The 

energy left in one critical band are summed together to yield an equivalent noise masker.

Step S. The number of maskers considered for threshold computation needs to be reduced. 

At first, only maskers having an SPL above the TiQ are retained. A decimation process 

then occurs between multiple tonal maskers that lie within half of a critical band. The tonal 

masker having the highest level is maintained while the other elements are removed from the 

maskers.

Step 4- The masking abilities of a masker is represented by a spreading function. The 

shapes and parameters of the spreading function are determined by the masker’s type.

Step 5. A global masking threshold is computed by summing the individual masking con

tributions from each masker along with the TiQ. A Signal-to-Mask-Ratio (SMR) is calculated 

by subtracting the global masking threshold from the signal power in each sub-band.

The initial intention of computing the SMR is to remove those perceptually irrelevant 

components or quantize in such a way that the quantization noise level remains below the 

masking threshold [27]. This can be shown clearly in the Figure 2.2. For the case of per

ceptual embedding, the embedded information is virtually the noises injected into the host

11
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Figure 2.2: Masking threshold

signal. Similarly, to be inaudible, its Signal-Noise-Ratio (SNR) should be bigger than SMR, 

i.e. S N R  > SM R, In other words, the noise level should be below the global masking 

threshold.

2.3 Telecom m unication M odel

A general telecommunication, including the case of data embedding, highly depends on the 

aspects like channel models, modulation techniques and channel coding schemes.

2.3.1 C hannel M odel

A memoryless channel means that the noise affecting one received bit is independent from 

the noises affecting other received bits. The theoretical definition of channel capacity of a 

memoryless channel is maximally mutual information between the input and output over all 

possible input distributions; the operational definition of channel capacity is the highest rate 

in bits per channel use at which information can be sent with arbitrarily low probability of 

errors. Shannon’s channel coding theorem establishes that these two capacities are equal to 

each other, so the operational channel capacity serves as a good measure of the potential for 

transmission [12].

In an Additive White Gaussian Noising (AWGN) channel with the pulse energy of E  > 0, 

the received bit is r  — y/Ëb +  n, where n  is Gaussian random variable with zero-mean.
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E[nj] = 0, and variance E[n ]̂ = cr̂ , i.e.

p{n) =  —^ e ~ ^  ( 2 . 1 1 )

In this case, the optimal demodulation is a simple level detector; b = sign{r). The 

operational capacity of an AWGN channel with power constraint E  is given by [1 2],

C =  2  (2 -1 2 )

The Bit Error Rate (BER) of the system is determined by the SNR ratio E/a^  as follows,

p = Q ^ ^  =  Q (2.13)

where the function Q{-) is the complementary error function defined as follows,

1 /•+00 2 1 r

where the function erfc(-) is the corresponding one defined in MATLAB.

The simplest way to prevent errors is to repeat the transmitted bits, this corresponds to 

virtually increasing the SNR. For example, for one information bit, a sequence of N  pulses

is transmitted, that is, if 6 =  i, then {i,i, is transmitted, where i € ± 1 , and the pulse

energy is still \/Ë . The received sequence is, r  = y/Ëb +  n. The optimal receiver employs a 

correlation as,

3/ =  (2-15)
j = o  i = o

Thus the decision variable y has mean \ fÈ  and variance o^/N. Now the performance 

is determined by the increased SNR of N ^/Ë /a , which is N  times of that in non-repetition 

case.

For some noisy channels repetition can not be avoided since the SNR is too low. It is the

last resort to increase the SNR up to some threshold so that some FEC scheme could take

effective.
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2.3.2 Spread Spectrum

The spread-spectrum is a repetition of the same information bit according to some deter

ministic pattern, rather than a simply identical repetition [23]. The pattern is known as the 

spreading sequence c, which satisfies the following three conditions,
N - l

Periodity : CnCn+N — N  (2.16)
n= 0  
j  N - l

Zero —mean: — = 0 (2.17)
n=0

Orthogonality : ^  g  c, w  =  |  J ’ ™ | ^  ^  (2.18)

The receiver for the spread-spectrum signal performs the following correlation:
.  N - l  N - l

y = — '^ r iC i = VË b+  — '^ n iC i  (2.19)
2= 0  2= 0

Hence, the decision variable is again Gaussian with mean y/Ë  and variance jN . This 

shows that the spreading yields no improvement in the ideal AWGN channel. But if the 

channel contains an interférer: an unknown constant I  is added to the received signal. It

is easy to show that the decision variable for the non-spread system would have a mean of

N{Eb 4- 1), which will render the system unusable for |/ | sufficiently large. On the other 

hand, for the spread system, the received sequence is

Tj =  y/Ëb -f- 7 4- nj, j  =  0,..., N  — 1 (2.20)

Then the correlation receiver produces the decision variable
j  J V - l  j  N - l  j  N - l  j  N - l

y =  -^ rjCj =  y/Ëb + ^  E + 04- — UjCj (2.21)
j=o j=o i =0 j=0

So the interference is suppressed by the de-spreading (correlation) operation. It can be 

seen that Spread Spectrum is superior to the simple repetition technique since, in addition to 

increasing the SNR, the former also suppresses the constant interference. So in this research, 

when repetition is needed, spread spectrum techniques is always used instead.

14



2.4 FEC Schemes

FEC, or channel coding schemes, are used in digital communication systems to protect the 

channel from noise and interference. They are mostly accomplished by selectively introducing 

redundant bits into the transmitted information stream. These additional bits will allow 

detection and correction of bit errors in the received data stream. The cost of using channel 

coding is a reduction in data rate or an expansion in bandwidth.

There are three basic types of channel codes, namely block codes, convolutional codes 

and concatenated codes.

Block code accepts a block of k information bits and produce a block of n coded bits. By 

predetermined rules, n — k redundant bits are added to the k information bits to form the 

n coded bits. Some commonly used block codes include Hamming codes, Bose-Chaudhuri- 

Hochquenghem (BCH) codes.

Convolutional code converts the entire data stream into one single codeword. The encoded 

bits depend not only on the current k input bits but also on past input bits. The main 

decoding strategy for convolutional codes is Viterbi algorithm.

Concatenated code consists of two separate codes that are combined to form a larger code. 

The concatenation could be used to develop a powerful code using relatively weaker codes 

since the minimum distance of the concatenated code is typically larger than the minimum 

distances of the inner and outer codes. Turbo code is a concatenation of two convolutional 

codes and it has been shown that it can achieve the performance within 1 dB of Shannon’s 

capacity [5] [6 ].

2.4.1 Error Correction A bilities

The usefulness of channel coding schemes can be represented by the concept of eoding gain. 

For a given BER, the coding gain is defined as the reduction in SNR that can be realized 

through the use of a channel code as shown in Figure 2.3. The coding gain, 0  can be 

expressed as,

G =  SNR^ncoded ~  SNRcoded dB  ( 2 .2 2 )
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F igure 2.3: Coding gain of channel codes

Every channel code has a specified error correcting threshold. When the channel SNR 

exceeds some threshold, the code can correct virtually all or most errors. On the other hand, 

when the channel SNR is below this threshold, the decoder fails catastrophically and the 

decoded bitstream appears random. This is shown in Figure 2.3 by the crossover between 

the coded and uncoded curves (point A). Turbo code can provide performance improvements 

at low SNR.

When the received channel values are used directly or multi-bits quantized, by the channel 

decoder, this is called soft-decision decoding. Alternatively, hard-decision decoding uses 1- 

bit quantization on the received channel values. Soft value could be expressed succinctly by 

one number, i.e. Log-Likelihood Ratio (LLR) defined as follows.

(2.23)
P{ui  = -1 ) ' P{ui = - l \y )

The sign of the number corresponds to the hard decision of the bit, i.e. x = sign(LLR), 

while the magnitude gives a reliability estimate.
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Figure 2.4: Convolutional code and its trellis, generator=[7,5], k= l, n=2, K=3

2.4.2 B C H  Code

BCH codes are the most important class of linear block codes including both binary and non

binary alphabets. Binary BCH codes can be constructed with parameters (n ,k ,t), where 

n =  2 "* — 1 is the length of the code word, k is the length of the embedded data and t is the 

number of bit errors the BCH code can correct. The constraints are m > 3, n — k < mt and 

t are arbitrary integers, e.g. BCH(7,4,1), BCH(127, 64, 10).

BCH can be decoded very efficiently by the so called syndromes decoding algorithms [31]. 

According to [43], the coding gain of BCH(127, 64, 10) can reach a gain of about 3.3 dB at 

the BER of p =  10“  ̂over the Gaussian channel.

2.4.3 C onvolutional Code

A convolutional code introduces redundant bits into the data stream through the use of 

Linear Shift Registers (LSR). The input parallel information bits are input into LSR and 

the parallel output encoded bits are obtained by modulo-2  addition of the input information 

bits and the contents of the shift registers. The shift registers store the state information of 

the encoder. An example convolutional encoder and its trellis is shown in Figure 2.4.

Optimum decoding of a convolutional code involves a search through the trellis for the 

most probable sequence. For a general convolutional code, the input information sequence 

contains kL  bits, where k is the number of parallel information bits at one time interval
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and L is the number of time intervals. There are exactly 2^^ distinct paths in the trellis 

diagram, and as a result, an exhaustive search for the most probable sequence would have a 

computational complexity on the order of 0 (2 '̂̂ ) [4 3 ].

Viterbi algorithm reduces this complexity based on the observation that, if any two partial 

paths in the trellis merge to a single state, one of them could always be eliminated. A partial 

path metric is determined from the starting state s — 0  at time t =  0  to some particular 

state s = k at time t > 0. At each state, the minimal partial path metric is chosen from 

the paths terminated at that state. The selected metric represents the survivor path and 

are stored, while the remaining metrics represent the non-survivor paths and are discarded. 

Trace-back of the survivor path would provide the decoded sequence.

The Viterbi algorithm reduces the complexity by performing the most probable search 

one stage at a time in the trellis. Its complexity is on the order of 0(2'^*T). This significantly 

reduces the number of calculations because the number of time intervals L is now a linear 

factor in the complexity.

The performance of convolutional codes, in terms of coding gain, ranges from 3  ~  7.5 

dB, which depends on the specific structures [43].

2.5 Turbo Code

Turbo encoder is built using two identical Recursive Systematic Convolutional (RSC) coders 

with parallel concatenation, as shown in Figure 2.5. An RSC encoder is obtained from a 

non-recursive one by feeding one encoded outputs back to the input. An RSC encoder tends 

to produce codewords with increased weight relative to a non-recursive one. This results in 

fewer codewords with lower weights and leads to better error performance [25].

The input sequence x  produces a low-weight recursive convolutional code sequence Ci 

from encoder #1. To avoid having encoder #2  produce another low-weight recursive output 

sequence, an interleaver permutes the input sequence x  to obtain a different sequence that 

hopefully produces a high-weight recursive convolutional coded sequence C3 . Thus, the Turbo 

code’s weight is moderate, combined from encoder # l ’s low-weight code and encoder # 2 ’s
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Figure 2.5: Structure of Turbo Encoder

high-weight code.

Optionally, a puncturer could be used to raise the data rate of Turbo code by periodically 

deleting selected bits. Without the puncturer, 3 iV bits would be transmitted for every N  

bits which results in a data rate of only 1/3, however, for the case of puncturers included, 

the date rate is raised to 1 / 2  with a minor loss of performance.

The decoder is a concatenation of two cooperating component convolutional decoders, 

but in a serial way. The basis for this cooperation is the soft output from each component 

decoder. The soft value represents the certainty of one decoder decodes one bit, and such 

information could be used by the other decoder as a priori and thus improve the decoding 

reliability. There are mainly two types of component decoders, i.e. Maximum A Priori 

(MAP) algorithm and Soft Output Viterbi Algorithm (SOVA).

2.5.1 M A P algorithm

MAP is a symbol-by-symbol decoding algorithm [2 ]. It examines every possible path through 

the trellis to minimize the BER and outputs a posteriori LLR for each decoded bit The 

main idea of MAP algorithm is that, as shown in Figure 2.6, the trellis state transition, as 

a Markov process, can be factored into three independent parts as follows.

P{si Si+i,y) = a{si)j{si Sj+i)^(sj+i) (2.24)

In the above, a{si) represents the probability that the current state is s, and is called 

forward state metric. 7 (5 j —> s,+i) represents the probability of the state transition s, —» Sj+i 

given the current state is s, and is called branch metric. /?(si+i) represents the probability
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Si Si

Figure 2.6: MAP decoder trellis

that the next state is Sj+i and is called backward state metric. According to the definitions, 

the metrics a, /? can be computed recursively. The branch metric 7  is given by the product 

of a priori probability of the current input bit and the probability of receiving yi given the 

codeword Xi was transmitted. Generally, it is a function of the modulation and channel 

characteristics.

The above MAP algorithm can be simplified greatly if transformed into log domain, 

which is called log-MAP, based on the following relation.

log (e* + e^) =  max {x, y) +  fc{\x -  y\) (2.25)

The so called Max-Log-MAP algorithm just ignores the correction item fc and yields a 

slight degradation of about 0.35dB in performance compared to the log-MAP algorithm [40].

2.5.2 SOVA algorithm

SOVA [24] minimizes the probability of an incorrect path through the trellis. In this case, the 

soft output is the Euclidean distance associated with the sequence of the received symbols, as 

opposed to the individual symbols in the above MAP algorithm. In [24], the authors derived 

the reliability metric for each decoded symbol from the sequence metrics of the classical 

Viterbi algorithm.

SOVA is based on the observation that the probability that a hard decision on a given
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Figure 2.7: Iterative decoding of Turbo code

symbol in the Viterbi algorithm is correct is proportional to the difference in path metrics 

between the survivor sequence and the associated non-survivor sequences. This observation 

forms an estimate of the error probability, or the probability of a correct decision for each 

symbol by comparing the path metrics of the surviving path with the path metrics of non

surviving paths.

It has been shown that SOVA algorithm is about half as complex as the Max-Log-MAP 

algorithm. However, the SOVA algorithm is also the least accurate one. When used in an 

iterative Turbo decoder, it performs about 0 .6 dB worse than MAP [40].

2.5.3 Iterations

It is shown in [25] that the soft output can be expressed as three additive terms as

L{uk\y) = LcVks +  L{uk) +  Le{uk) (2.26)

where Le{uk) is derived from the a-posteriori information L{uk\y) sequence and the received 

channel information sequence y, excluding the received systematic bits yks and the a-priori 

information L(uk) for the bit %. Hence it is called the extrinsic LLR for the bit %. This 

extrinsic information is actually supplied by the constraints imposed on the transmitted 

sequence by the code. So this extrinsic information can be used as the a-priori information 

for another component decoder after interleaved.
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For each bit Uj, decoder # 1  receives soft information from decoder # 2  and uses it as 

a-priori information. Similarly, decoder # 2  receives soft information from decoder # 1  and 

the decoding iteration proceeds as # 1  —♦ # 2  # 1  —+ # 2  —̂ ... with the previous decoder

passing soft information along to the next decoder at each half iteration. The idea behind 

extrinsic information is that decoder # 2  provides soft information to decoder # 1  for each 

Mfc, using only information not available to decoder # 1 , i.e., encoder # 2  parity; decoder 

does likewise for decoder # 2 .

As the number of iterations increases, the decoders become more certain about the val

ues of the bits and hence the magnitudes of the LLRs gradually becomes larger, thus the 

improvement in performance for each additional iteration carried out falls as the number of 

iterations increases. Normally around six to eight iterations are carried out, as no significant 

improvement in performance is obtained with higher number of iterations. '

2.5 .4  C om plexity

The MAP algorithm is extremely complex due to the multiplications needed for the recursive 

calculation and the multiplication and natural logarithm operations required to calculate 

LLR. However, the Log-MAP algorithm gives the same performance as the MAP algorithm 

at a significantly reduced complexity and without the numerical problems described above. 

Viterbi states [46] that the complexity of the Log-MAP-Max algorithm is no greater than 

three times that of a Viterbi decoder. According to [40], the SOVA algorithm is about half 

as complex as the Max-Log-MAP algorithm.

2 2



Chapter 3 

Spread Spectrum Embedding

3.1 Conventional Spread Spectrum

Perceptual embedding can be viewed as a spread spectrum communication problem due to 

its low-energy property and robustness against interference [13]. This embedding scheme in 

its basic form can be described as follows.

A bipolar information bit, b € {±1}, is spread by a spreading sequence, w, of the length 

N, which is called the spreading factor, to generate the spread information, bw; the host 

signal, X ,  of the same length is embedded with this spread information in an additive way 

resulting in the composite signal, y  = x  + abw, where the perceptual factor, a, controls the 

perceptibility of the embedded information. After distorted by the transmission noises, n, 

the received signal can be expressed as,

r  = x  + abw + n  (3.1)

To extract the embedded information, the normalized correlation between the received 

signal, r , and the spreading sequence, w, is computed as follows,

c = r  -w  = (x + abw + n) • w  — ab + {x + n) ■ w  (3.2)

where the normalized correlation of two length-N vectors u, v  is defined as follows,

j  i = N

u - v  = — Y^UiVi (3.3)
t = l
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n-w

Figure 3.1: Data embedding with conventional Spread Spectrum

Assuming the Gaussian distributions of æ ~  N(0, cr̂ ) and n  ~  iV(0 , a^), the distribution 

of the correlation is also Gaussian as c ~  N{ab, the deduction can be referred to

will decrease toAppendix B. When the spreading factor, N, is big enough, the variance

zero, thus ab dominates the correlation c and the embedded information bit can be extracted 

by b' = sign{c) . This strategy is shown in Figure 3.1 geometrically. It can be seen that 

the idea of this scheme is to make the embedded information dominate the projection of 

the composite signal on the specific direction. This requires some considerable embedding 

energy or, equivalently, a considerably large spreading factor.

The BER of this Gaussian channel can be easily derived as follows.

p =  Q
rrir

=  Q
Na^ (3.4)

For simplicity, the following ratios are defined

SignalS N R ^

W N R  =

S W R  =

Noise

Data
Noise

Signal
Data

10 logio “I

=> 1 0  logio

lOlogio

(dB)

(dB)

(dB)

(3.5a)

(3.5b)

(3.5c)
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Thus Equ. (3.4) can be re-written as follows,

p = Q y ( N - W N R ) - ^ ^ j  (3.6)

From Equ. (3.4), it can be seen that both the host signal x  and the attacks n  contribute 

to the noises of the embedding channel. Comparing Equ. (3.6) with the bound performance 

in Equ. (2.13), it can be seen that the gap is that depends on the value of SNR.

Since the perceptual factor a  is constrained by the perceptual transparency requirement, 

a large N  is always needed to decrease the variance of the correlation in Equ. (3 .2 ). But 

this reduces the embedding bit rate correspondingly as well. For this reason, some efforts 

are made to suppress the host impact by different ’’whitening” procedures.

One of them utilizes the Linear Predictive Coding (LPC) [42] on the audio signals. In 

speech coding, LPC models a sound as an autoregressive random process, thus decomposes it 

as the sum of a parametric model and a white noise process. The watermark can be thought 

of as a white noise due to the randomness of the spreading sequence and should only exist 

in the white noise part after LPC decomposition. So the received signal can be written as 

r  = LPC{r) + n  + w, only the residual r  — LPC{r) may contain the watermark and the 

channel attacks. Using this residual in the above correlation will result in a smaller noise 

term and could increase the extraction. Another estimation is based on polynomial curve 

fitting [16]. The received is thought as the sum of a spline curve and the noises. Similar to 

the above, only the residual r  — fitting{r) is used in the correlation.

However, these schemes are theoretically ambiguous, because the estimation of the host 

signal is based on the corrupted and watermarked signal. Such estimations will definitely 

introduce new noises in addition to the existing attacks. In other words, there is no guarantee 

that LPC{x) = LPC{r) with LPC estimation, so the residual r  — LPC{r) is actually 

n  + w  + LPC{r) — LPC{x), i.e. a new noise LPC(r) — LPC{x) is introduced into the 

correlation.
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3.2 Spread Spectrum  of Improved Robustness

It is desirable to develop an embedding method so that the host impact can be suppressed 

more accurately at the extraction. The first thought is to introduce another auxiliary se

quence V that is orthogonal to the spreading sequence w, i.e. w  • v — 0 , Embedding this 

auxiliary sequence with some amplitude into the host signal as,

r  = x  + aj^ibw -\- /3v + n (3.7)

In order to suppress the host effect, the factor 0  can be determined by computing the 

following two correlations.

r  • w  = (x + aj^bw 0 v  + n) ■ w  — aub + (x + n) ■ w  

r  • v =  (x +  aAibw + 0v + n) ■ v = 0 + {x+  n) ■ v

If we choose 0 = x  ■ {w — v), the correlation difference becomes

c = r -  w  — r - v  = OiMb + n -  (w — v)

(3.8)

(3.9)

(3.10)

Comparing with the conventional scheme in Equ. (3.1), the equation U =  sign{c) still 

determines the embedded information bit, but now the host impact is suppressed with the 

help of the auxiliary sequence v. That is, the distribution of the correlation c ~  N{ab, ^ ) .  

The BER of this Gaussian channel is as.

p =  Q
nir.

=  Q
'N a if

2 ^^

Clearly, the embedded information power is For a fair comparison between

this scheme and the conventional one, the embedding power must be same. That is,

2

(3.11)

2
~N'

(3.12)

Thus the BER in Equ. (3.11) can be re-written as follows,

p =  Q
\Na^ 2 (t2 \  ^

2^2
1 -

2 S W R
N (3.13)
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Figure 3.2: Initial Improvement on the conventional SS scheme

Though this scheme is far away from optimum, this idea of suppressing the host impact 

does improve the performance in terms of BER. For example, when SNR=5 dB and SWR=25 

dB, with the spreading factor N=2000, the BER of the conventional technique is p =  0.0142; 

the BER of the proposed scheme is p — 0.00446 and p =  3.872 x 1 0 ~® in the ideal bound 

case.

This algorithm can be explained geometrically in Figure 3 .2 . It can be seen that the 

proposed scheme actually maps the original point {x ■ w ,x  • v) to the point (x ■ w ,x  • w) 

on the line w = v in the w  — v  plane. This mapping results in a distortion of the 

information bit is then embedded into one direction as ab ■ w. So the difference of the 

projections denotes the embedded information bit ab and the possible difference of the 

attacks in these two directions.

The perceptual degradation from the embedding algorithm occurs when it replaces the 

projection o f x - v  with its orthogonal projection x - w.  When the spreading factor N  is large 

enough, in other words, in a very high dimensional space, the projection of a signal on any 

direction must be small enough such that the replace should not be audible.

However, if the original point {x ■ w , x  ■ v) is mapped to the point 

the projection on the line w  = v,  the worst distortion is only Figure 3.3 shows this
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Figure 3.3: Further Improvement on the conventional SS scheme

procedure geometrically. Accordingly, the embedding is changed as follows,

, x - v  — x - w  x - w  — x - v  r  = x  + aMow H   w  H---------   v  +  n

The BER of this Gaussian channel is as.

(3.14)

m
P = ^ Q ( - ^ ) = Q ' M l (3.15)

The embedding power is now To see the improvement of this scheme over the

conventional scheme, the embedding powers must be same. That is.

N
(3.16)

Thus the corresponding BER is as follows,

p =  Q
I Na^ — cr|

(3.17)

In order to eliminate the factor | ,  we consider the case where the two directions are not 

limited to be orthogonal. In the following deduction, it is shown that two opposite vectors 

can actually cancel the factor and thus further increase the performance by 2  ~  3dB.
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Figure 3.4: Suppressing the host impact with two random vectors

As shown in the Figure 3.4, the angle between the two vectors w  and v  is 6. The received 

signal and its projections are as follows,

r  =  X + A B  + BC + n  — OB + aMbw + n  (3.18)

r - w  = O B - w  + aMb + n - w  (3.19)

r  • V = OB • V + aMb{w • v) + n -  v  (3.20)

The projections’ difference is also Gaussian,

c = r -w  —r - v  = aMb{l — w- v )  + n - w  —n - v  N  ^ M b  ■ 2sirî^ ^  - 4 sin^ (3.21)

Clearly, when 6 = w, the SNR is optimized. The distortion still follows Equ. (3.16). So 

the performance is as follows.

j = « ( /^ )  = c (/<̂  • ■ (’ - T ) )
Using the same numerical example as above, the BER is p =  2.036 x 10“  ̂by this scheme, 

which corresponds to an improvement by an order of about 2  over the conventional one. 

Figure 3.5 compares the performance of the proposed scheme and the theoretical bound. It 

can be seen the proposed scheme suppresses the host impact significantly.

In [33], the authors proposed an Improved Spread Spectrum (ISS) as follows. The em

bedding considered as a slight perturbation as follows,

r  — x  + (ab — X(x ■ w) )w  +  n  (3.23)
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Figure 3.5: Theoretical comparison of embedding schemes for Gaussian signal and Gaussian attack 
(SWR=25dB, SNR=5dB)

The new item \{ x  • w) controls the suppression of the host signal at extraction. The 

traditional SS is a special case of ISS when A =  0.

The decoding also uses the normalized correlation,

r  • w  — ab+ (1 — \){ x  •w) + n - w (3.24)

As A tends to 1 , the host impact is removed from the correlation. An analysis shows that 

the scheme is equivalent to the proposed scheme in Equ. (3.18).

Though equivalent in performance, our deduction shows more clearly that the improve

ment of the modified SS over the conventional one roots from the explicit use of the host- 

suppressing strategy. Without this deduction, the following further improvement to improve 

the embedding capacity would be impossible.
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Figure 3.6: Dividing the signal plane with more vectors

3.3 Spread Spectrum  of Improved Capacity

According to Equ. (3 .2 2 ), the minimal spreading factor must satisfy N  > SW R. This is 

because the embedding power, as shown in Figure 3.4, is at least \AB^  =  This means 

that, even under weak attacks, the spreading factor N  has to be large enough to make the 

embedding inaudible.

The embedding power of ^  is necessary when only one pair of vectors is used. Suppose 

now there are n (an odd number) pairs of vectors distributed uniformly, as shown in Figure 

3.6 for n=3. By comparing the projections of the received signal onto these n directions, 

the extraction can be conducted by the sign of the projection with maximum magnitude. 

Thus the whole signal plane are divided into 6  interleaved embedding regions for a bipolar 

information bit when n—Z.

The maximal embedding power, which occurs when the signal point locates on the center 

of the region reverse to the embedded information bit, is as follows.

W  = \ABY +  \BCY = Oi\t + sin" :e al
2  N

(3.25)

The deduction of the accurate performance is very complex and the result can not be
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Figure 3.7: Theoretical comparison of embedding schemes for Gaussian signal and Gaussian attack 
(SWR=30dB, SNR=20dB)

expressed in a closed form. We simply consider the following worst case.

p =  Q
, \

|BCP • sin^ l I _  ^

N A
alf ■ sin̂  I (3.26)

N

Similarly, to embed with the same power as before,

2 • 2 ^ 2 2 2 ' 2 ^ aM +  sm2 - - ^  =  a 2 =^al^ =  a  -  sm -  • —

The above performance can be re-written as,

P  — Q ^

Specifically, when n — 3,

N  ■ W N R  -  S N R  ■ sin^ ^ j  • sin^ ^

(3.27)

(3.28)

P  =  Q N  ■ W N R  -
S N R V i (3.29)

4 / 4

According to Equ. (3.29), the minimal spreading factor now is S W R /4. When the 

noise is weak, this proposed scheme outperforms the conventional and modified SS schemes
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in capacity. Specifically, by equating Equ. (3.29) and Equ. (3.22), the capacity of the 

proposed scheme will be higher than that of the previous if jV < 1.25 • SW R. The BER 

at the crossing point is p — Q i^\J\ • SN R ^. For example, if the noise is weak so that 

S N R  =  20dB, this crossing BER is 2.866 x 10“ .̂ A simple deduction can also show that 

the proposed scheme outperforms the conventional SS scheme under some similar condition. 

This means that, under weak attacks, the proposed scheme can improve the capacity and 

achieve an acceptable BER. Figure 3.7 compares the proposed scheme with other embedding 

algorithms.

It should be noted that the actual performance is better that the worst case shown by 

Equ. (3.28) because it is the average of the cases of 6= + l and 6—-1 . For example, at the 

point A in Figure 3.6, the performance of b=-l will be much better than that of 6= 4-1  

because the embedding power is reduced to and the host signal itself, |OAp =  along 

with the embedding power of contributes to the performance concurrently.

The interleaved embedding regions can only be constructed when n is an odd number. 

However, the cases of n > 3 are not worthwhile due to the fast reducing factor, sin^ | ,  as 

shown in Equ. (3.28).
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Chapter 4 

Digital Audio Watermarking

This chapter is organized as follows. First, the specific requirements of audio watermarking 

are checked closely and defined clearly. The early techniques are quickly reviewed in the 

second part. The quantization-based schemes including QIM and SCS are reviewed next. 

At last, the proposed SS scheme, incorporated with HAS masking and FEC schemes, is 

implemented for audio watermarking. A comparison between the proposed scheme and 

QIM/SCS schemes is also conducted.

4.1 General Requirem ents

An equivalent communication model of audio watermarking is shown in Figure 4.1. The 

embedding process consists of two steps. First, the watermark message is mapped into a 

pattern (the watermark) w  of the same type and dimension as the host signal, x. This 

mapping may be done with a key, k, for security reasons, as well as the host signal x. Next, 

the watermark, w, is embedded into the host to produce the watermarked signal, y.

4 . 1 . 1  P e r c e p t u a l  T r a n s p a r e n c y

A watermarking algorithm must embed the data without affecting the perceptual quality 

of the host signal. The objective measures such as the Signal-to-Watermark-Ratio (SWR) 

has not been shown to be reliably related to the perceived audio quality, because it can not 

distinguish inaudible artifacts from audible noise. SWR is measured in decibels and defined
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Watermark Detector

Encoder Decoder
Watermark
Embedder

Figure 4.1: Watermarking as Communication

R ating Im pairm ent Q uality
5 Imperceptible Excellent
4 Perceptible, not annoying Good
3 Slightly annoying Fair
2 Annoying Poor
1 Very annoying Bad

Table 4.1: ITU-R Rec. 500 Quality Rating

by the formula,

SW R  = -

i = N

i—1
i = N

E  iVi -
i = l

(4.1)

where æ, corresponds to the sample of the original audio signal, and yi to the sample 

of the watermarked signal. Normally, one could expect the noise distortion of SWR less than 

30 dB to be imperceptible.

Formal listening tests like the rating scale in the Table 4.1 have been considered to be 

the only relevant method for judging audio quality.

4 . 1 . 2  B l i n d  E x t r a c t i o n

From Figure 4.1 it can be seen that this communication is actually one with side information 

(i.e. the host signal, x)  as the channel state at the the encoder. This idea is called informed- 

embedding [3]. Though the decoder has no access to the original host signal, the encoder 

knows the host signal in advance and hence it can take some measures to reduce the impact 

of the decoder’s blindness.
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According to Costa [1 1 ], the capacity of this channel is totally determined by the water

mark signal and channel interference.

C = — logg(l H— y) (bits/ SQ.mple') (4.2)

The performance depends solely on the Watermark-to-Noise-Ratio (WNR), which is 

lO logio^ (ill decibels). The noise effect of the host signal does not affect the capacity 

theoretically.

A natural performance bound for the informed embedding is the result that could be 

achieved if the decoder has the knowledge of the original host signal. With this knowledge, 

the decoder could remove all host impact from the decision variable. The BER bound is, as 

shown in Chapter 2, repeated as follows

p =  Q iV W N R ) (4.3)

4 . 1 . 3  R o b u s t n e s s  a n d  A t t a c k s

Manipulations that modify the host signal also modify the embedded watermark. Fur

thermore, third parties may attempt to modify the host signal to thwart detection of the 

embedded watermark. An algorithm should guarantee a robust extraction of the embedded 

watermark even if the watermarked signal is distorted by these unintentional and intentional 

attacks.

Early literature considered the extraction process successful only if the whole watermark 

message was extracted. This was in fact a binary robustness metric. The Bit Error Rate 

(BER) has become common recently, as it allows for a more detailed scale to evaluate the 

extraction. The BER is defined as the ratio of incorrectly extracted bits to the total number 

of embedded bits.

To claim about a watermarking scheme being robust is difficult to prove due to the lack of 

testing standards. It becomes necessary to create a detailed and thorough test for measuring 

the ability that a watermark has to withstand a set of clearly defined signal operations. 

Given this, a set of the most common signal operations must be specified, and watermark
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resistance to these must be evaluated. The common signal processing operations can be 

classified into six different groups as follows. [45]

Dynamics change the loudness of the audio signals. The most basic way of performing 

this consists of increasing or decreasing the loudness directly. More complicated operations 

include limiting, expansion and compression, which constitute non-linear operations th a t are 

dependant on the host signal.

Filters cut off or increase a selected part of the audio spectrum. Specialized filters include 

low-pass, high-pass, all-pass, equalizers.

Conversions convert from digital to analog representation and back, and might induce 

significant quantization noise.

Lossy compressions reduce the amount of data needed to represent an audio signal, 

which save bandwidth and storage. These compression algorithms are normally based on 

psychoacoustic models and delete regions where information is not perceived by the listener. 

If a watermarking algorithm embeds in these regions, the lossy compression could remove 

the watermark totally.

Modulation like vibrato, chorus, amplitude modulation and Hanging are not common 

post-production operations. However, they are included in most audio editing software 

packages and thus can be used against watermarking.

Time stretch and pitch shift either change the duration of an audio signal without chang

ing its pitch or change the pitch without changing the duration. They are used for fine 

tuning or fitting audio parts into time windows.

It is not always clear how much processing a watermark should be able to withstand. 

That is, the specific parameters of the diverse filtering operations that can be performed on 

the host signal are not easy to determine. Guidelines and minimum requirements for audio 

watermarking schemes have been proposed by different organizations such as the Secure 

Digital Music Initiative (SDMI).

One popular benchmark is Stirmark for audio [45] , and is adopted in this research. Table 

4.2 summarizes common attacks defined in Stirmark benchmark.

37



N am e Definition & P aram eters Im plem entation
AddDynNoise Adds dynamic noise. 

Dynnoise: strength.
Stirmark

AddFFTNoise Adds white noise in FFT domain. 
FFTNoise: strength.

Stirmark

AddNoise Adds white noise. 
Noisep: strength.

Stirmark

AddSinus Adds a sinus signal. 
AddSinusFreq: frequency; 
AddSinusAmp: strength.

Stirmark

Compressor Increase/ decrease the loudness. 
Threshold: threshold for compressor; 
CompressValue: ratio.

Stirmark

FFT-HighPass High-pass filter in FFT domain. 
HighPassFreq: high pass frequency.

Stirmark

FFT-Invert Inverts all FFT coefficients. Stirmark
FFT-RealReverse Reverses the real part of FFT coefficients. Stirmark

Invert Inverts all samples. Stirmark
LSBZero Sets all LSB to zero. Stirmark

RC-HighPass RC high-pass filter.
HighPassFreq: high pass frequency.

Stirmark

RC-LowPass RC low-pass filter.
LowPassFreq: low pass frequency.

Stirmark

Smooth Smoothes the samples. Stirmark
ZeroCross Set samples less than the threshold to zero. Stirmark

Echo Adds a constant echo.
Delay: delay time;
Decay: Percentage of the original.

Sound Forge.

Chorus Adds an echo with vary delay time, 
strength modulated to the original.

Sound Forge.

A/D Conversion Consequently change the resolution to 8 - 
bit and back to 16-bit.

Sound Forge.

Re-sample Consequently change the sampling rate to 
half and back to the original.

Sound Forge.

MPEG Compress raw audio with MPEG algo
rithm at different rates.

Sound Forge.
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4.2 Early Works

Many early audio watermarking efforts were based on some special features of HAS [4], and 

often characterized by small embedding capacity. Most of them were proved weak when 

attacked with some specified manipulations. Some typical ones are exemplified as follows.

Echo watermarking is a blind technique to embed information in the original audio signal 

x{t) by introducing a repeated version of a component of the audio signal with a small delay 

(usually around 1ms) and decay rate of ax{t — At) to make it imperceptible. In the most 

basic scheme, the information is encoded in the signal by modifying the delay such that two 

different values A ti and Atg are used in order to encode either a 0 or a 1. For watermark 

recovery, a technique known as cepstrum autocorrelation is used. This technique produces 

a signal with two pronounced amplitude spikes. By measuring the distance between these 

two spikes, one can determine if a 1 or a 0  was initially encoded in the signal.

Phase Coding works by substituting the phase of the original audio signal with one of 

two reference phases representing the information bit 1 and 0, respectively. That is, the 

watermark bit is represented by a phase shift in the phase of the audio signal. The phase 

shifts between consecutive signal segments must be preserved in the watermarked signal. 

This is necessary because HAS is very sensitive to relative phase differences, but not to 

absolute phase changes. In other words, the phase coding method works by substituting the 

phase of the initial audio segment with a reference phase that represents the data. After 

this, the phase of subsequent segments is adjusted in order to preserve the relative phases 

between them.

Least Significant Bit (LSB) Modulation takes advantages of the quantization errors. The 

lower order bits of the digital sample can be fully substituted with a pseudo-random (PN) 

sequence that contains the watermark message. This scheme is desired by its remarkable 

embedding capacity, the major disadvantage is its poor immunity to attacks. This technique 

can be implemented in a transform space rather than in the time domain.
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F igure  4.2: Quantization Index Modulation

4.3 Quantization Em bedding Schemes

In [8 ] and [9] the authors proposed a new class of data embedding system, Quantization 

Index Modulation (QIM). In its implementable form, the scheme is a subtractive dithered 

quantization, in which the host signal is dithered by a watermark-modulated sequence and 

then quantized by a uniform quantization.

In QIM, an embedding function y  = s{x, m )  maps the host signal, x, and the watermark, 

m , to a watermarked signal, y, subject to the perceptual distortion constraint. QIM views 

the embedding function, s{x ,m ), as a collection or ensemble of functions of x, indexed by 

m .  The rate R  determines the number of possible values for m , and hence, the number 

of functions in the ensemble. The distortion constraint suggests that each function in the 

ensemble is close to an identity function so that s{x, m )  % x  for all m . That the system 

needs to be robust to noise suggests that the points in the range of one function in the 

ensemble should be “far away” from the points in the range of any other function. At the 

very least, the ranges should be non-intersecting. These properties suggest that the functions 

s(-) be discontinuous. Quantizers are just such a class of discontinuous, approximate-identity 

functions. QIM refers to modulating an index or sequence of indices with the embedded 

information and quantizing the host signal with the associated quantizer or sequence of 

quantizers.

Figure 4.2 illustrates QIM information embedding for the N  = 2 and R =  \/2  case. In 

this example, one bit m G {0,1 } is embedded. The reconstruction points of the two required 

quantizers are represented with -l-’s and o’s. If m =  0, for example, x  is quantized with the
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4—quantizer, i.e., y  is chosen to be the + closest to x. If m =  1, y is quantized with the 

o-quantizer.

The number of quantizers in the ensemble determines the data embedding rate. The size 

and shape of the quantization cells determine the embedding-induced distortion. Finally, 

the minimum distance between the sets of reconstruction points of different quantizers in 

the ensemble determines the robustness of the embedding.

Intuitively, the minimum distance measures the noise vectors that can be tolerated by 

the system. In case of AWGN channel of the noise variance if SNR is high enough, the 

minimal distance characterizes the BER of the minimal distance decoder as follows.

"-«(A )
For implementation reasons, the quantizers take the form of dithered quantizers, which 

are quantizer ensembles where the quantization cells and reconstruction points of every 

quantizer are shifted versions of some base quantizer q{-). For data embedding, the dither 

vector d(-) is modulated by the embedded data m . Thus the embedding function is

s(x, m) =  + d{m)) — d{m) (4.5)

Consider the binary case, 9a ( ‘) is a uniform, scalar quantizer with step size A, i.e. 

q{-) = round{-^)A, and the dither vector is constructed by d(0) =  A/4 and d(l) =  —A/4 

such that the two quantizers are maximally far away from each other. The embedded data 

can be extracted blindly by the following function.

rui = mod (4.6)

When the quantization cells are small enough such that the host signal can be modeled 

as uniformly distributed within each cell, the expected squared-error distortion, i.e. the 

watermark signal power is as follows.

1 /■+‘̂  A 2
= (4.7)
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Figure 4.3: Distortion-compensated Quantization Index Modulation

Since,

^min — M(0 ) -  rf(l)P — (4.8)

The BER can be written as,

p = Q ^ ^ W N R  0 = Q ( y W N R  -  1.25dRj (4.9)

Compared with (4.3), it can be seen that QIM is within the gap of 1.25 dB to the bound 

performance asymptotically. A  theoretical comparison can be made between the QIM and 

the proposed scheme using the above equation, as shown in Figure 3.5. It can be seen that 

for this specific case, the proposed scheme outperforms the QIM as early as from p=0.001. 

Thus it can be concluded that the modified SS scheme is superior to the quantization-based 

schemes for the case of watermarking were accurate extraction is desired.

Since in dithered modulation the minimal distance is just the quantization step A, in

creasing this step by A /a , 0 < a < 1 can increase the robustness, as well as the QIM 

embedding-induced distortion. One way to compensate for this distortion is to add back 

some of the quantization error to the reconstruction point to form the composite signal. 

Specifically, the embedding function is,

s(æ, m) = qA.{x + d{m ),A /a) -f (1  — a) (æ — q^ix  +  d{m), A /a)) (4.10)

The deflection is a source of interference, along with the channel distortion during decod

ing. The above algorithm is called Distortion-Compensation QIM (DC-QIM). This is shown 

in the Figure 4.3.
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F igure  4.4: Increase SNR by masking effects

In [20] and [2 1 ] the authors proposed the so called Scalar Costa Scheme (SCS), which 

is a sample-wise embedding algorithm based on the method proposed by Costa [1 1]. Costa 

presents a theoretic scheme that involves a random codebook, which is very huge and not 

practical. The codebook is needed to be available at both the encoder and the decoder 

for decoding. Instead, SCS uses a structured codebook that can be expressed as subtractive 

dither quantization. In fact, SCS is equivalent to DC-QIM in performance but with a simpler 

implementation.

4.4 Proposed Audio W atermarking Scheme

The proposed scheme is already described in the last chapter. This scheme can be further 

improved by the following measures.

4.4.1 U se m asking effects to  increase the robustness

When an embedding occurs in frequency domain, a uniform perceptual factor a  is actually 

confined by the weakest region of the whole spectrum in terms of masking ability. It is 

possible to maximize the watermark magnitude with the local masking abilities, thus increase 

the power of the transmitted signal, as well as conforming to the perceptual constraints. This 

idea is shown in Figure 4.4.
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The global masking threshold curve m , which is the output from some HAS masking 

model, represents the maximal changes a frequency component can tolerate without causing 

perceptual distortion. It actually denotes the local masking abilities of each frequency range 

and can be used to implement this maximization. The signal power when no making explored 

is constrained by the minimal value rrimin and that when masking explored is, roughly saying, 

the mean value As a non negative function, there is always, rrii > rrimin, which means 

the signal power is increased by exploring the masking effects.

4.4.2 U se attacks characterization to  increase the robustness

Generally saying, the attacks falls into two categories, i.e. the wideband noises that corrupt 

the whole spectrum, and the narrowband noises that corrupt some regions only and leave 

other regions (almost) unchanged.

For wideband attacks, choosing different domains does not effect much differently. For 

example, the watermarked signal is corrupted by an additive white Gaussian noise, the noise 

effect is almost identical in terms of SNR, either in time domain or frequency domain. Figure 

4.5 and 4.6 show such an attack in time domain and MDCT domain, respectively.

On the other hand, for those narrowband attacks, a watermark residing on the unchanged 

region should be more robust because of less noise in extraction. A good example is the 

attacks of low-pass filtering, where the noise effect in high frequency region is much higher 

than that in low frequency region. If a watermark occupies the low frequency region only, 

the performance can be expected to be much better than that of a watermark that occupies 

the whole spectrum. Figure 4.7 and 4.8 show such an attack in time domain and MDCT 

domain, respectively.

Of the two watermark schemes, no one can take on each other. The wideband water

mark is of longer length and will perform better for the strong wideband noise where the 

narrowband watermark performs poorer due to its shorter length. On the other hand, for 

the narrowband noise, a longer wideband watermark will introduce more noise and thus is 

not desired.
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F igure 4.5: Attack of additive white Gaussian noise in time domain
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Figure 4.6: Attack of additive white Gaussian noise in MDCT domain
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Attack of Low-pss filtering at 4KHz in time domain
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Figure 4.7: Attack of low-pass filtering at 4 kHz in time domain 
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Figure 4.8: Attack of low-pass filtering at 4 kHz in MDCT domain
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F ig u r e  4 .9 : Proposed watermark embedding system

Based on the above duality analysis, a watermarking system with two different water

marks is proposed and the embedding block is shown in Figure 4.9.

The first watermark is implemented in time domain and occupies the whole frequency 

spectrum, this is a wideband watermark and expected to be against wideband attacks effec

tively. Another watermark is implemented in frequency domain and occupies only the low 

frequency region, this is a narrowband watermark and expected to be against narrowband 

noise effectively. On the receiving side, the extraction performs in both time and frequency 

domains independently, any extraction with high confidence (low BER) can prove the own

ership. The serial order of embedding is not important in the scheme. This is because one 

watermark is taken as a part of the host signal, to the extraction of another watermark, and 

thus can be suppressed.

The trade-off for this scheme is that the total available energy has to be distributed 

between the two watermarks. Thus, the SNR of each watermark transmission has to be 

decreased accordingly. This signal power loss is compensated for by the greater reduction of 

noise power in the scheme.

4.4.3 U se FEC to increase the robustness

An FEC scheme can only take effect when the BER of the uncoded channel is below some 

threshold, this threshold is determined by the correction ability of the specific scheme and 

relates to the minimal distance of the code directly.

For a watermarking channel, the noise due to attacks normally makes the SNR very low.
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Considering this, only Turbo code is expected to be superior to others.

4.5 Simulation Results

To evaluate the proposed watermarking system, which is called Modified Spread Spectrum 

(MSS) in the following, a comparison between SS, QIM and MSS is conducted to illustrate 

the above analysis.

The simulation steps are designed to illustrate the host-suppression property, the im

provements due to attacks characterization and the improvements due to FEC schemes. At 

last, a final complete scheme is tested thoroughly on different real audio signals against the 

attacks defined previously.

In the following, all watermark sequences are of 128-bit length and all results are the

average from 5 or 10 repeated tests for smoothness. Some common structures are listed as

follows.

• BCH code is with the structure of BCH(127, 64, 10).

• Convolutional code is of generator [6 , 7] and the constraint of 3.

• Turbo code is unpunctured, with generator of [7, 5] and the random interleaver; de

coded with log-MAP by 4 iterations.

4.5.1 H ost Suppression

In this simulation, a time-domain watermark sequences with the same embedding powers are 

embedded into host signals using different schemes respectively. The watermarked signals 

are then attacked by the same typical distortion, specifically AWGN attacks. Comparing 

their BERs, we are able to illustrate the performance improvements due to host-suppression.

The cases of the Gaussian host signal under AWGN of SNR=OdB and SNR—5dB are 

shown in Figure 4.10 and Figure 4.11 respectively. The cases of real non-Gaussian audio 

signals are shown in Figure 4.12 and Figure 4.13, respectively.
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Figure 4.10: Performances of different embedding schemes for Gaussian signal and Gaussian 
noise attack (SWR=25dB, SNR=OdB). N ote: Because the embedded sequence must be long 
enough to guarantee the precision of the measured BER, and the tested audio clips normally 
do not last long enough to hold such a long embedded sequence, that is why there is some 
discrepancy between the measured and theoretical performances.
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Figure 4.11: Performances of different embedding schemes for Gaussian signal and Gaussian 
noise attack (S\\rR=25dB, SNR=5dB). N ote: At high N*WNR values (> 11 dB), the measured 
BERs of MSS and QIM are both zeros and could not be drawn gracefully by MATLAB, but it 
can be seen clearly that MSS begins to outperform QIM from about N*WNR=10.5 dB.
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F igure 4.12: Performances of different embedding schemes for non-Gaussian signal and 
Gaussian noise attack (SWR=25dB, SNR=OdB). N ote: Because the embedded sequence must 
be long enough to guarantee the precision of the measured BER, and the tested audio clips 
normally do not last long enough to hold such a long embedded sequence, that is why there is 
some discrepancy between the measured and theoretical performances.
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F igure  4.13: Performances of different embedding schemes for non-Gaussian signal and 
Gaussian noise attack (SWR=25dB, SNR=5dB). N ote: At high N*WNR values (> 11 dB), the 
measured BERs of MSS and QIM are both zeros and could not be drawn gracefully by MAT
LAB, but it can be seen clearly that MSS begins to outperform QIM from about N*WNR=10.5
dB. 50



In Figure 4.10 the close coincidence of the measured MSS BER curve and the theoretical 

one suffices to show that the deduction is correct.

In all these figures the proposed scheme outperforms the host-suppressing schemes of 

QIM when the spreading factor N  is big enough, especially when under strong attacks (e.g. 

SNR=OdB). Its significant improvements over the conventional SS is clearly seen in these 

figures as well.

It is also worth noting that, when the spreading factor is not large enough, the induced 

distortion is comparatively large and results in poor performance in these regions. These 

regions are characterized by high BERs also for other schemes in the cases of strong at

tacks. Thus these would not be reasonable operational regions for all schemes too. When 

the spreading factor is increased, after some threshold determined by Equ. (3.17), the per

formance of MSS begins to be improved significantly, which is characterized by the steep 

slopes in the figures, and outperforms all three other schemes.

4.5.2 FEC Schem es

To illustrate the effects of different FEC schemes, the same time-domain watermark sequences 

are coded with BCH, convolutional code and Turbo code respectively, and then embedded 

into signals with same embedding power. The results are shown in the Figures 4.14, 4.15.

It can be seen that each FEC scheme can take effect only when the effective SNR is 

above some threshold. Comparing Figure 4.14 and Figure 4.15, it can be seen that in terms 

of WNR, Turbo code does take effect earlier with MSS scheme than with SS scheme. This 

is because that MSS suppresses the host impact and thus equivalently increases the SNR of 

the channel.

Figure 4.15 shows that Turbo code generates a coding gain more than 2dB starting from 

BER of 1%, and that is about IdB with BCH code. The effect of convolutional code is not 

apparent since its SNR threshold to take effect is larger than that of the others.
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Figure 4.14: Performance of SS scheme with different FEC schemes for non-Gaussian signal 
and Gaussian attack (SWR=25dB, SNR=OdB)
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F igure  4.15: Performance of MSS scheme with different FEC schemes for non-Gaussian signal 
and Gaussian attack (SWR=25dB, SNR=OdB). N ote: Because the measured BER values of 
Turbo code case are zeros at high N*SNR values, MATLAB could not express them gracefully 
in logarithmal scale.

52



4.5.3 M ultip le W aterm arks

To illustrate the effects of characterization, the same watermark sequences are embedded with 

the same embedding rate into time-domain and MDCT-domain, respectively. The MDCT 

embedding domain spans 1 ~  4 kHz only. Their performances under different attacks are 

shown in Figure 4.16 and Figure 4.17.

Under the Gaussian attacks, the time-domain watermark can give a much lower BER 

than the MDCT-domain watermark. On the other hand, for the Low-Pass filtering attack, 

the MDCT one is superior to the time domain one. The huge difference between their 

performance shows that multiple watermarks can be complementary under different attacks.

4.5 .4  Final Schem e and Param eters

To show the potentials of the proposed watermarking system, it is tested against audio clips 

of different genres and strengths. All testing audio clips are sampled at 44.1 kHz and of 

16-bit resolution. All of them are of durations between 25s ~  30s so that a watermark 

sequence with 128 bits can be embedded in both time and MDCT frequency domain.

To evaluate the subjective fidelity, 10 listeners were asked to report dissimilarities between 

the original and the watermarked using the 5-point impairment scale of MGS, as defined in 

Table 4.1.

After many testing on all audio clips, the following structures and parameters are re

garded as optimized. The MDCT domain watermark sequence is first Turbo encoded, then 

embedded into 1 ~  4kHz MDCT frequency range. The amplitude of the watermark se

quence is computed by the masking threshold. The embedding rate is about 34.8 bps. The 

time domain watermark sequence is also Turbo encoded first, and then embedded into the 

result signal with a spreading factor of 500. The amplitude of the watermark sequence is 

controlled by SWR=32dB. This correspond to an embedding rate of about 29.4 bps.

At the receiving end, the decoding is conducted in both time-domain and MDCT-domain. 

The one with the lowest BER represents the performance of the whole system. The averaged 

results are shown in the Table 4.3.
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Watermarking in tim e and MDCT dom ains under G aussian  attack  
(SN R =10dB )
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  MDCT domain
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F igure  4.16: Performance of MSS scheme with Turbo code schemes attacked by Gaussian noise 
(SWR=25dB, SNR=OdB)

Watermarking in tim e and MDCT dom ains under L o w -p a ss  attack at 4  kHz
60
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F ig u re  4.17: Performance of MSS scheme with Turbo code schemes attacked by Low-Pass 
filtering at 4 kHz attack (SWR—25dB)
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Under this configuration, the averaged MOS out of five different clips from 1 0  listeners 

is 4.8 with variance of 0.146.

It is worth noting that, under LP, re-sampling and MP3 attacks the MDCT watermarks 

outperform the time watermarks significantly. Comparing the BERs of the two watermarks, 

it can be concluded that this is a robust watermarking system with high embedding rate.

Compared the results shown in [17], under almost the same MOS evaluation and BER 

limit, our proposed scheme increases the embedding data rate by at least 50%.

4.6 Chapter Summary

Both the theoretical analysis and the simulations show that, in the cases of watermarking, the 

proposed SS scheme is superior to the quantization-based techniques in terms of robustness, 

especially when facing strong attacks. The quantization-based techniques are superior to 

the SS techniques when facing weaker noises. Actually the SCS/QIM can be used as high- 

capacity embedding techniques for these cases, while the SS techniques can not due to the 

strong distortions introduced under these cases.

Both SS and SCS/QIM need a large spreading factor to virtually increase the SNR as 

desired. This means that a perfect synchronization is needed for them. Thus those de- 

synchronization attacking methods, e.g. swapping or dropping samples, are the most serious 

ones. In [29], some measures were proposed to protect SS against de-synchronization attacks.

Another disadvantage of quantization-based techniques is that a simple scaling attack 

could easily destroy the watermark embedded by SCS/QIM. Some efforts has been made to 

alleviate this attacks [2 1 ].

FEC schemes, especially the Turbo code, introduce heavy complexities to trade with 

robustness. The simulation shows that Turbo code is the best one among them, in terms of 

coding gain, which makes it desirable when very high robustness is required, like the case of 

DVD watermarking.

Attacks characterization is a very effective measure to increase the robustness, as shown 

in this chapter. In fact, instead of ’’one fits all”, there is a trend to design specific watermarks

55



N am e tim eB E R ; freqBER
AddDynNoise (Dynnoise=)2%. 0 .0 0 0 % 0 .0 0 0 %
AddFFTNoise (FFTNoise=). 0 .0 0 0 % 0 .0 0 0 %
AddNoise (Noisep—2%). 0 .0 0 0 % 0 .0 0 0 %
AddSinus {AddSinusFreq=900 Hz; AddSinusAmp=)4%. 0 .0 0 0 % 0 .0 0 0 %
Compressor. 0 .0 0 0 % 0 .0 0 0 %
FFT-HighPass {HighPassFreq=2000 Hz). 0 .0 0 0 % 0 .0 0 0 %
FFT-LowPass {LowPassFreq—8000 Hz). 0 .0 0 0 % 0 .0 0 0 %
FFT-Invert. 0 .0 0 0 % 0 .0 0 0 %
FFT-RealReverse. 0 .0 0 0 % 0 .0 0 0 %
Invert. 0 .0 0 0 % 0 .0 0 0 %
LSBZero . 0 .0 0 0 % 0 .0 0 0 %
RC-HighPass {HighPassFreq—2000 Hz). 0 .0 0 0 % 0 .0 0 0 %
RC-LowPass {LowPassFreq=8000 Hz) . 0 .0 0 0 % 0 .0 0 0 %
Smooth. 1 .1 2 0 % 0.050%
ZeroCross. 0 .0 0 0 % 0 .1 0 0 %
Normalize. 0 .0 0 0 % 0 .0 0 0 %
Echo {Delay=AOO ms; Decay=10%). 0 .0 0 0 % 0 .0 0 0 %
Chorus. 0 .0 0 0 % 0 .0 0 0 %
A/D Conversion. 0 .0 0 0 % 0 .0 0 0 %
Re-sample. 3.750% 0 .0 0 0 %
MPEG (96 kb). 0 .0 0 0 % 0 .0 0 0 %
MPEG (80 kb). 0 .0 0 0 % 0 .0 0 0 %
MPEG (64 kb). 0.950% 0.050%
MPEG (56 kb). 2.500% 0.050%
MPEG (48 kb). 5.450% 0.090%
MPEG (40 kb). 7.750% 0 .1 2 0 %
AddNoise (SNR=10 dB). 0.00%; 5.350%
LowPass filtering (4 kHz). 12.350%; 0.000%
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for specific attacks, as discussed in [30]. This can be expected as an active branch of research 

in the future.

Taking advantage of the masking effects of HAS leads to a really effective way to increase 

SNR of the watermark transmission. The disadvantage is that it introduces heavy complexi

ties when summing up the energies of critical bands. Also when incorporated with SCS/QIM 

schemes, extra errors are introduced due to the blind estimation of the quantization step at 

the receiving end. It is worth noting that MPEG encoding transmits the quantization steps 

directly.
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Chapter 5 

Data Hiding in Digital Speech Signals

Data hiding also denotes the techniques to embed extra data imperceptibly in the multimedia 

of any kind such as speech, audio, image, and video. Data hiding is intended to hide larger 

amounts of data into the host signal to provide additional functionalities, rather than just 

to check for authenticity and copyright information. While most of current research of 

data embedding concentrates on watermarking, the high-capacity data hiding is at present 

receiving considerable attention.

The relevant research in this thesis focuses on embedding data as much as possible into 

the ITU G.711 //-law encoded digital telephony signal. An application of this research is to 

embed some wide-band information into the narrow-band signals transmitted on the Public 

Switched Telephone Network (PSTN), thus to improve the voice quality and intelligibility. 

Other potential applications includes providing additional services and features using the 

embedded information [18].

In the following sections, after a quick review of the different speech coders, the /i-law 

encoded telephony signal coding is described in details. Then the proposed spread spectrum 

technique in the pervious chapter is applied to this scenario.

5.1 Speech Coders R eview

Speech coders are usually divided into two main classes: waveform coders and voice coders 

{vocoders). In addition, there are hybrid coders that combine the characteristics of the two

58



main types [35].

Waveform coding means that the amplitudes of the analog signal are described by a 

number of quantized values. These values are then pulse-coded and sent to the receiving 

end. The signal’s analog appearance is reproduced in the receiving end by means of the 

received values. The method makes it possible to obtain a very high level of voice quality, 

since the received voice curve is a true copy of the one transmitted. There are techniques 

that operate on the waveform in the time domain such as Pulse Code Modulation (PCM), 

Adaptive Pulse Code Modulation (ADPCM), and delta modulation. Other techniques, such 

as Sub-Band Coding (SBC), operate on the signal in the frequency domain.

The voice coder is a parametric coder. Instead of transmitting a direct description of the 

voice curve, a number of transmitted parameters describe how the curve has been generated. 

Parametric coding requires a defined model of how the voice curve is created. The quality 

will be average but, on the other hand, signals can be transmitted with a very low bit rate. 

The most popular scheme is Linear Predictive Coding (LPC). The process is called linear 

prediction since the next output value of the system is determined from a weighted sum of 

past output values and plus an input value. This is characteristic of a finite impulse response 

filter. The excitation signal is also characterized and sent along with the other parameters 

for synthesis at the receiver. The many different forms of LPC vary in the way the excitation 

signal and the other parameters are represented and transmitted.

A hybrid coder sends a number of parameters as well as a certain amount of waveform- 

coded information. This type of voice coder, which provides a reasonable compromise be

tween voice quality and coding efficiency, is used in digital mobile telephone systems.

Table 5.1 summarizes some common speech standards and their MOS ratings [35].

5.2 Telephony Speech Signals

Speech sound can be broken into three distinct classes of phonemes i.e. voiced, unvoiced, 

and plosive. In general, the amplitude of voiced phonemes is approximately ten times that 

of unvoiced and plosive phonemes. Thus the telephone system must provide a large range
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Coder
64 kbps PCM (ITU G.711)
32 kbps ADPCM (ITU G.721)
16 kbps LD-CELP (ITU G.728)
8  kbps CS-ACELP (ITU G.729)
4.8 kbps CELP (FS 1016)
2.4 kbps LPC-lOe (FS 1015)

MOS
4.3
4.1
4.0
4.0
3.2
2.3

Table 5.1: Speech coders performance

of signal dynamics. Although lower in amplitude, unvoiced and plosive phonemes contain 

more information and the telephone system must also provide higher resolution for lower 

amplitude signals.

In addition, the telephone network is also subject to bandwidth restrictions with respect 

to the human speech and auditory ranges. The telephone network restricts transmission to 

a 3.1 kHz portion, from 0.3 ~  3.4 kHz. This frequency range coincides with the region of 

greatest intelligible speech, retaining only the first three frequency formant of the sampled 

speech signal. Surrounded by two guard bands of 0 ~  0.3 KHz and 3.4 ~  4 KHz to provide 

a buffer against conversation interference, the telephone network has a total bandwidth of 4 

kHz. For accurate reproduction, according to Nyquist, a speech signal must be sampled at 

a rate of at least 8  kHz.

5.2.1 C om panding

For digital transmission, the analog speech signal is converted to a digital signal with a 

fixed precision. A uniform quantization transforms the discrete signal into digital signals. 

Coding of the signal is performed by converting the midpoint of each quantization level to a 

codeword.

In general, speech signals are composed of relatively fewer voiced phonemes than unvoiced 

phonemes. Unfortunately, the uniform quantizer provides unneeded quality for large signals 

which are least likely to occur, and pronounced truncation effects for the more frequent small 

amplitude signals. As a result, uniform quantization does not perform as well as a quantizer

6 0



with wider zones at high amplitudes and narrower zones at lower amplitudes.

Conversion to a logarithmic scale coincides with the processing of Human Auditory Sys

tem and allows quantization intervals to increase with amplitude, and it ensures that low- 

amplitude signals are digitized with a minimal loss of fidelity. This specific quantization 

may be achieved by first passing the signal through a compressor, a nonlinear device which 

compresses the peak amplitudes. This is followed by a uniform quantizer, such that uniform 

zones at the output correspond to non-uniform zones at the input. At the receiving end, the 

compressed signal is passed through an expander, another nonlinear device used to cancel 

the nonlinear effect of the compressor. The combined process is known as companding.

In addition to reducing quantization error, companding decreases the required bandwidth 

of the system. Systems solely employing uniform quantization require 13-bit codewords 

for equivalent performance requirements of the telephone system. However, systems using 

nonlinear companding may reduce the required codeword length to 8-bits or less. Fewer 

bits per sample are necessary to provide a specified SNR for small signals and an adequate 

dynamic range for large signals.

Two international companding standards that retain up to 5 bits of precision by encoding 

signal data into 8  bits are //-law and A-law, as defined in ITU G.711. //-law is the accepted 

standard of North America and Japan, while A-law is accepted in Europe.

5.2.2 //—law Com panding

[7]
The //-law compression is defined mathematically by the continuous equation:

(5.1)

where // is the compression parameter (//=255 for the U.S. and Japan), and x  is the nor

malized signal sample to be compressed. The actual compression algorithm is a piece-wise 

linear approximation of this mathematical definition. An 8 -bit //-255 codeword is composed 

of 1 sign bit concatenated with a 3-bit chord and a 4-bit step.
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Table 5 .2 ; /2-law Encoding
Linear Input Data /i-law Encoded Output

0 0 
0 0 
0 0 
0 0 
0 0

0
0
0
0
0

0 0 0 0
0 0 0
0 0 1
0 1 A

1 A B C D X 
1 A B C D X X
A B C D X X X
B C D X X X X

A B C D X X X X X
0 0  l A B C D X X X X X X  
0  1 A B C D X X X X X X X
l A B C D X X X X X X X X

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1

A
A
A
A
A
A
A
A

C 
C 
C 
C 
C 
C

B C D
B C D

During compression the sample magnitudes are limited to 13 bits. The least significant 

bits of large amplitudes are discarded. The number of insignificant bits deleted is encoded 

into a field called the chord. Before chord determination, the sign of the original integer is 

removed and a bias of 33 is added to the absolute value of the integer. Due to the bias, 

the magnitude of the largest valid sample is reduced to 8159 and the minimum step size is 

reduced to 2/8159.

Each chord of the piece-wise linear approximation is divided into equally sized quanti

zation intervals called steps. The step size between adjacent codewords is doubled in each 

succeeding chord. Chord determination may be reduced to finding the most significant 1 bit 

of the binary representation of the biased integer value, while the step equals the four bits 

following the most significant 1 . Also encoded is the sign of the original integer. The polarity 

bit is set to 1 for positive integer values. The Table 5.2 better illustrates the translation from 

linear to //-law compressed data. Of the compressed codeword, bits 4 — 6  represent the chord 

and bits 0 — 3 represent the step.

Finally, before transmission, the entire //-law code is inverted. The codeword is inverted 

since low amplitude signals tend to be more numerous than large amplitude signals. Conse

quently, inverting the bits increases the density of positive pulses on the transmission line, 

which improves the hardware performance.

//-law expansion is defined by the continuous inverse equation:

(5.2)
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Table 5.3: ^-law Decoding
/^-law Encoded Input Linear O utput D ata

S O O O A B C D  
S 0 0 1 A B C D
S 0 1 0 A B C D
S 0 1 1 A B C D
S 1 0 0 A B C D
S 1 0 1 A B C D
S 1 1 0 A B C D
S 1 1 1 A B C D

0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 A
0 0 0 0 1 A B
0 0 0 1
0  0  1 A
0 1 A B
1 A B C

1 A B C D 1

A B C D 1 0

B C D 1 0 0
C D 1 0 0 0

A B C D I O O O O  
B C D I O O O O O  
C D I O O O O O O  
D I O  0 0 0 0 0 0

The implementation of the //-law expansion is as follows. Before expansion, the p-law 

code is inverted again to restore the original code. During expansion, the discarded least 

significant bits are approximated by the median of the interval, to reduce the loss in accuracy. 

That is, if six of the least significant bits of the original binary integer were discarded 

during compression, these six least significant bits will be approximated by 1 0 0 0 0 0 % during 

expansion. After decoding the //-law code, the bias is removed and the sign of the binary 

integer is restored according to the polarity bit. This procedure is shown in the Table 5.3.

From the paradigm of communication, the quantization noise from //-law companding 

can be thought of as an attack that corrupts the extraction of the embedded information. 

It can be seen that this noise is highly correlated with the original signal, because the com

panding is a sample-wise non-linear procedure in which the quantization step is dependent 

on the corresponding sample amplitude. Clearly this noise is not white and according to the 

implementation, the maximal error is about 3 % which occurs at the highest amplitude.

5.3 Problem  Statem ent

The procedure of data hiding in //-law speech signals is illustrated in the Figure 5.1. As 

shown in the figure, the companding part is determined by the telephony network. This 

research work assumes that the bitstream is not changed.

Just like the case of watermarking, the speech data hiding problem also has four funda

mental constraints: imperceptibility, capacity, robustness, and security.
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Telephony Noise

Linear Speech Speech

DataData

Telephone Network

Embedding Compression Expansion Extraction

Figure 5 .1 : Data Embedding in /i-law Speech Signal

Imperceptibility is referred to the perceptual difference between the composite and orig

inal signal and can be tested subjectively. Especially in this application, imperceptibility 

must not be viewed as a binary condition. Different levels of perceptibility means different 

allowable energy of the embedded data, which determines the robustness directly.

Capacity is the most important consideration in this hiding system. The main objective 

is to embed a large amount of data into the host media. However, increasing the amount 

of embedded data causes the hidden information perceptible and degrades the perceptual 

quality of the composite signal.

Robustness is desired when the composite signal passes through some distortions. If the 

hidden data is still detectable after these distortions, then the system is regarded as robust. 

Due to the limitation of telephony channel, the embedded information should occupy the 

frequency range of 0.3 ~  SAkHz only. The attacks in this scenario mainly consist of the 

quantization noise from /r-law companding, as well as AWGN. A complete simulation of the 

telephony channel is described in [26].

Security is referred to as the resistance to the hostile attacks. The security criteria is 

application-dependent and is not considered in this research.

5.4 Possible Techniques

To be robust for high capacity embedding, a possible technique must be of host-suppressing 

at least. This requirement excludes most of currently available embedding techniques. The 

proposed algorithm is already analyzed in Chapter 3  and the steps for speech embedding are
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summarized as follows.

5 . 4 . 1  P r o p o s e d  S c h e m e  a n d  S i m u l a t i o n

The main steps of embedding consist of the following,

Turbo encoding: The binary information sequence is encoded with a Turbo encoder. 

Time frequency analysis: Each frame of the speech signals is analyzed to output the 

frequency coefficients x  and the masking threshold m .

Embedding: Aided by three PN vectors Wi, and 1 0 3 , each encoded information bit 

h is embedded into x, a group of N  MDCT coefficients.

The three vectors are all of length N  and divide a plane uniformly with the angle of 

^  from each other. Assuming that Wi = {xi,y i,X 2 ,y 2 , ■■■}■, the two other vectors can be 

constructed as follows,

{xi cos 6  — yi sin 6 , Xi sin 6  + yi cos 9, X2 cos 9 — y2 sin 9, X2 sin 9 + y2 cos 9,...} (5.3)

where ^ ^  for W2 and 9 — ^  î o t  W3 .

The embedding strategy is as follows,

1 . sort{]\x • Will, ||æ • W2 W, ||æ • maH), suppose the maximum result is from Wi,

2. If sign{b) = sign{x • Wi), embed the bit in Wi by

y  = X  — X  • +  abwi (5.4)

where is orthogonal to tui and can be constructed by Equ. (5.3) oi 9 =

3. Else choose the direction that yields max(x • W2 , x  • W3 ), suppose the direction is W2 -

4. Embed the bit in the direction W2 as follows,

y  = X  —  X -  VÜ2 +  abw2 (5.5)

where is orthogonal to and can be constructed similarly as above.
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The perceptual factor a  in the above is determined by the following constraints to guar

antee imperceptibility.

0 ;=  (5.6)

R econstruction: use inverse MDCT transform to reconstruct the embedded signal in 

time domain. This signal may then be corrupted by companding and Gaussian noise during 

the transmission.

The main steps of extraction consist of the following,

Tim e frequency analysis: Each frame of the received speech signals is analyzed to 

output the frequency coefficients y. Only the frequency coefficients of the range 0.3 ~  3.4 

kHz are used for the following extraction.

Extraction: Compute and sort the projection of y  onto the three vectors, sort(||y • 

i0 i | | , | |y  • Wgll, II2/ • tusll)- Choose the one (say, i 0 i)with maximal absolute value. This 

direction is regarded as the one carrying the embedded information. The embedded bit is 

then decoded by U =  sign(y ■ Wi)

Turbo decoding: The extraction information is decoded with the corresponding Turbo 

decoder and the results is the information embedded.

In the simulation, the AWGN noise level is assumed, in terms of SNR, to be 30dB and 

40dB to simulate different channels. A sequence of 128-bits are Turbo-encoded first. The 

embedding frequency range is chosen as 1 ~  3.4 kHz. According to author’s testing, any 

embedding under IkH z  will introduce audible noises and therefore, that frequency range is 

left untouched. The embedded signals are rated with MGS of 4.3 on the average from the 

same subjects in the watermarking case.

The results are summarized in Figure 5 .2 . It can be seen that, under the attack of 

S N R  =  40dB in addition to the companding noise, the embedding rate could reach about 

40 bps with a HER less than 1%.
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Figure  5.2: Embedding with the proposed scheme under different attacks (Turbo coded, HAS 
masking)

5.4.2 s e s  schem e

In [41], the authors use SCS, incorporated with perceptual masking, to implement a percep

tual embedding algorithm at the rate of 300 bps with BER as low as 10"^, though the noises 

of channel is not stated clearly. To the author’s knowledge, this result is the best one in the 

literature.

5.5 Chapter Summary

High-capacity embedding is a relatively new research area and little has been reported in 

the literature. The theoretical capacity bound can be computed by Equ. (4.2), though that 

of the implementable schemes is far below.

Different than the case of watermarking, the attacks in data embedding are supposed 

much less so that higher capacity can be expected. On the other hand, the sampling rate 

of speech signals is much less than that of audio signals, thus there is much less embedding
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space available.

To be an effective embedding technique, host-suppression is highly desired. Among the 

current techniques only quantization-based ones possess this property. The disadvantage is 

the quantization steps should be known also at the receiving end, or have to be estimated 

blindly at the receiving end. The latter case will introduces errors in addition to that caused 

by channel interference.
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Chapter 6 

Conclusions and Future Research

In this thesis, we studied the blind, perceptual audio/speech embedding techniques. These 

techniques are the basis of many applications including digital watermarking and data hiding. 

The theoretical research on the capacity of such embedding shows that, many proprietary 

schemes are trivial either in robustness or embedding rate. Current research focuses on the 

two competing public techniques, i.e. SS and quantization-based schemes.

6.1 Audio W atermarking

6.1.1 M ain R esu lts

• Our proposals show that the modified SS embedding scheme can actually approach 

capacity when the spreading factor is large enough. It can outperform the current 

state-of-the-art quantization-based schemes including QIM and SCS. In fact, which of 

the SS or quantization-based schemes is superior is always an open question in the 

literature. Our research is aimed at answering this. The biggest disadvantage of the 

conventional SS scheme is the significant host impact at extraction. Our research 

uses an explicit strategy such that it can suppress the host impact better than the 

quantization-based schemes. Especially under strong attacks as in the watermarking 

cases, the modified SS scheme is superior to the quantization-based scheme.

• The proposals are general. All advantages of the conventional SS schemes including
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low-energy and interference-suppressing are kept. And further, all efforts to increase 

the SNR of conventional SS schemes can still be used, which include, at least, the 

exploration of HAS, incorporation of FEC schemes, choice of the specific domains.

• In this research, we compare different typical FEC schemes when incorporated with 

various embedding techniques. Just as expected, the Turbo code is superior because it 

can actually decrease the BER to a very low level, whereas, other schemes like BCH or 

convolutional can only decrease the BER moderately. This property enables the Turbo 

code to be a promising scheme for the case of high accurate embedding, such as DVD 

watermarking.

• Exploring the masking effects of HAS is shown to be an effective measure to increase 

the SNR of the perceptual embedding. Actually, this is just the exact reason why 

MPEG coding can compress the audio signals effectively. In the cases with no such 

exploration, the permitted embedding power is actually the lowest masking threshold 

value in the whole spectrum. Depending on the specific audio clips, this power can be 

very small if the music happens to be very smooth in the duration.

• The quantization-based schemes are susceptible to dynamic scaling attacks. This is 

an important advantage of SS over quantization-based schemes. Though some efforts 

to cope with uniform scaling attacks for QIM/SCS had been made, quantizing the 

watermarked samples with different quantization steps can destruct the QIM/SCS 

watermarks easily. SS and its variants are immune to such attacks.

6.1.2 D iscussions

• Both SS and quantization-based schemes need to be synchronized, i.e. the embedded 

samples must be synchronized with the spreading sequence at extraction. Simple 

attacks like dropping only one sample can be catastrophic.

• Ownership deadlock is not considered in the current research. Several parties can 

embed their own watermarks into the media by different spreading sequences or dif
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ferent information respectively. Then they can claim the ownership with the same 

algorithm. This deadlock could happen with the SS and its modifications, as well as 

quantization-based scheme.

• The frequency masking effects of HAS are much stronger in high frequency regions 

than that in low frequency regions. To cope with the attacks like low-pass filtering, 

the regions above the cutoff frequency have to be left unused by embedding. A cutoff 

frequency as low as 4 kHz can greatly reduce the embedding rate. Moreover, this also 

greatly reduces the ability to increase the SNR by exploring the masking effects of 

HAS.

• Also, a frame-by-frame real-time estimation of the masking threshold can be a big 

burden when embedding. An option is to use the TiQ as the masking threshold for 

every frame uniformly. This can be implemented by storing the TiQ curve initially 

and thus save significant computations. The trade-off is that dynamic masking effects 

are not utilized. Turbo code is also very heavy in complexity due to its iterations in 

decoding.

6.1.3 Future Research

• Attacks characterization can be expected as an active research area in watermarking. 

Its effectiveness has already been shown naively by our proposed scheme of the system 

consisting of multiple watermarks. An universally robust watermark against all kinds 

of attacks seems impractical, if not impossible. Designing specific watermarks against 

specific attacks seems very effective. Carefully choosing embedding domain seems to 

be a good implementation of this strategy.

• Exploring the masking effects of HAS can continue to be an effective measure for 

such embedding. Actually, the current MPEG masking models are too conservative. 

As shown in some literatures, the juxtaposition of the masking effects from different 

components are actually not linear. A non-linear approach can be expected to increase
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the robustness and embedding rate significantly.

• An important problem needs to be cared is the synchronization of the current high- 

capacity embedding techniques including the modified SS and quantization based 

schemes. Some efforts have been made as shown in the literature. Generally say

ing, these ideas use some special spreading sequences to find the beginning point by 

projections, but they do not solve the attacks like dropping some samples in the mid

dle. This could happen during transmission by intentional attacks or unintentional 

manipulations.

6.2 Speech D ata Hiding

Data hiding in telephony speech signals can be of many potential applications in the industry. 

The research on this area is still in its early stage and few results are published.

Comparing with the embedding in audio signals, the usable bandwidth is greatly reduced, 

from 22.05 kHz to 4 kHz. According to Costa’s result, the corresponding capacity will be 

reduced to l/5 th  accordingly. Further, due to the characteristics of telephony network and 

inherent noise from the non-linear companding to compress speech signals, this expected 

capacity has to be further reduced. Another important factor limiting this embedding is 

that, because the sampling frequency is bounded by 4 kHz, exploring the HAS will not be 

so effective as in audio embedding since much of the masking effects occur in high frequency 

regions.

The embedding rate reached in our current research is low, and it seems to be far from 

the expected, and even from the publish results (though the channel noises is unknown in 

the publications). The future research can focus on two aspects as follows,

• A theoretical research on the capacity will be of great value. With the additional 

constraints of data hiding in speech signals, the embedding capacity should be different 

from Costa’s result. This research can reveal the potentials of this technique and 

evaluate future schemes.
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• Exploring the masking effects will definitely help to increase the embedding rate in 

speech signals. The effects of the narrow band speech signals should be different from 

that of wide-band audio signals. Careful simulations are needed to setup the effective 

masking models of the speech signals. This research can also benefit other research 

branches in speech processing.

73



Bibliography

[1] H. N. Azghandi and P. Kabal, Improving Perceptual Coding of Narrowband Audio Sig

nals at Low Rates, IEEE International Conference of Acoustics, Speech, Signal Process

ing, Vol. 2, pp. 913-916, March 1999.

[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal Decoding of Linear Codes for 

Minimizing Symbol Error Rate, IEEE Transactions on Information Theory, Vol. 20, No. 

2, pp. 284-287, March 1974.

[3] M. Barni, C. I. Podilchuk, F. Bartolini, E. J. Delp, Watermark Embedding: Hiding a 

Signal Within a Cover Image, IEEE Communications Magazine, Vol. 39, No. 8 , pp. 

102-108, August 2001.

[4] W. Bender, D. Gruhl, N. Morimoto, and A. Lu. Techniques for Data Hiding, IBM 

Systems Journal, Vol. 35, No. 3-4, pp. 313-336, 1996.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon Limit Error-Correcting 

Coding and Decoding: Turbo Codes, Proceedings of International Communications Con

ference, Vol. 2, pp. 23-26, May 1993.

[6 ] C. Berrou and A. Glavieux, Near Optimum Error Correcting Coding and Decoding, 

IEEE TVansactions on Communications, Vol. 44, No. 10, pp. 1261-1271, October 1996.

[7] C. W. Brokish, M. Lewis, A-law and p-aw companding implementations using the 

TMS320C54x-Application Note: SPRA163A, Digital Signal Processing Solutions, Texas 

Instruments, December 1997.

74



[8 ] B. Chen and G. W. Wornell, Preprocessed and Postprocessed Quantization Index Mod

ulation Methods for Digital Watermarking, Proc. of SPIE: Security and Watermarking 

of Multimedia Contents II, Vol. 3971, pp. 48-59, January 2000.

[9] B. Chen and G. W. Wornell, Quantization Index Modulation: A Class of Provably Good 

Methods for Digital Watermarking and Information Embedding, IEEE Transactions on 

Information Theory, Vol. 47, No. 4, pp. 1423-1433, May 2001.

[10] M. Cheng and Y. Hsu, Fast IMDCT and MDCT Algorithms-A Matrix Approach, IEEE 

Transactions on Signal Processing, Vol. 51, No. 1, pp. 221-229, January 2003.

[11] M. Costa, Writing on Dirty Paper, IEEE Transactions on Information Theory, Vol. 29, 

No. 3, pp. 439-441, May 1983.

[12] T. Cover and J. Thomas, Elements of Information Theory, John Wiley and Sons Inc., 

1991.

[13] I. J. Cox, J. Killian, T. Leighton, and T. Shamoon, Secure Spread Spectrum Water

marking for Multimedia, IEEE Transactions on Image Processing, Vol. 6 , No. 12, pp. 

1673-1687, December 1997.

[14] I. J. Cox, M. L. Miller, and A. L. McKellips, Watermarking as Communications with 

Side Information, Proceedings of the IEEE, Special Issue on Identification and Protec

tion of Multimedia Information, Vol. 87, No. 7, pp. 1127-1141, July 1999.

[15] I. J. Cox, M. L. Miller, Electronic Watermarking: the first 50 years, IEEE 4 th Workshop 

on Multimedia Signal Processing, No. 3-5, pp. 225-230, October 2001.

[16] N. Cvejic and T. Seppnen, Audio Prewhitening based on Polynomial Filtering for Opti

mal Watermark Detection, Proceedings of XI European Signal Processing Conference, 

Vol. 3, pp. 69-72, July 2 0 0 2 .

75



[17] N. Cvejic and T. Seppnen, Increasing Robustness of an Audio Watermark using Turbo 

Codes, IEEE International Conference on Multimedia and Expo, Vol. 1 , No. 6-9, pp. 

17-20, July, 2003.

[18] H. Ding, Sub-channel below the Perceptual Threshold in Audio, Proceedings of IEEE 

International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, pp. 49- 

52, April 2003.

[19] J. J. Eggers, J. K. Su and B. Girod, A Blind Watermarking Seheme Based on Structured 

Codebooks, lEE Seminar on Secure Images and Image Authentication, Vol. 4, pp. 1-2 1 , 

April 2000.

[20] J. J. Eggers, J. K. Su and B. Girod, Performanee of a Praetical Blind Watermarking 

Scheme, Proceedings of SPIE: Electronic Imaging 2001, Security and Watermarking of 

Multimedia Contents III, Vol. 4314, pp. 1-12, January 2001.

[21] J. J. Eggers, R. Buml, R. Tzschoppe and B. Girod, Scalar Costa Scheme for Information 

Embedding, IEEE Transactions on Signal Processing, Vol. 51, No. 4, pp. 1003-1019, April 

2003.

[22] A. M. Eskicioglu, Protecting Intellectual Property in Digital Multimedia Networks, IEEE 

Computer Society, Special Issue on Piracy and Privacy, Vol 36, No. 7, pp. 39-45, July 

2003.

[23] P. G. Flikkema, Spread-Spectrum Techniques for Wireless Communication, IEEE Signal 

Processing Magazine, Vol. 14, No. 3, pp. 26-36, May 1997.

[24] J. Hagenauer and P. Hoeher, A Viterbi algorithm with Soft-Decision outputs and its 

applications. Proceedings of GLOBECOM, Vol.3, pp. 1680-1686, November 1989.

[25] J. Hagenauer, E. Offer and L. Papke, Iterative Decoding of Binary Block and Convolu

tional codes, IEEE Transcations on Information Theories, Vol. 42, pp. 429-445, March 

1996.

76



[26] ITU-T. Network Transmission Model for Evaluating Modem Performance over 2-wire 

Voice Grade Connections. Technical Report V.56 bis, August 1995.

[27] J. Johnston, Transform Coding of Audio Signals using Perceptual Noise Criteria, IEEE 

Journal on Selected Areas of Communication, Vol. 6 , No. 2, pp. 314-323, February 1988.

[28] D. Kirovski and H. S. Malvar, Robust Spread Spectrum Audio Watermarking, IEEE 

International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, No. 7-11, 

pp. 1345-1348, May 2001.

[29] D. Kirovski and H. S. Malvar, Spread Spectrum Watermarking of Audio Signals, IEEE 

Transactions on Signal Processing, Vol. 51, No. 4, pp. 1020-1033, April 2003.

[30] D. Kundur and D. Hatzinakos, Diversity and Attack Characterization for Improved 

Robust Watermarking, IEEE Transactions on Signal Processing, Vol. 49, No. 10, pp. 

2383-2396, October 2001.

[31] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, Pren

tice Hall Inc., Englewood Cliffs, 1983.

[32] V. K. Madisetti and D. B. Williams, The Digital Signal Processing Handbook, CRC 

Press and IEEE Press, 1998.

[33] H. S. Malvar and D. A. Florencio, Improved Spread Spectrum: A New Modulation Tech

nique for Robust Watermarking, IEEE Transactions on Signal Processing, Vol. 51, No.

4, pp. 898-905, April 2003.

[34] P. Noll, MPEG Digital Audio Coding, IEEE Signal Processing Magazine, Vol. 14, No.

5, pp. 59-81, September 1997.

[35] D. G’Shaughnessy, Speech Communications: Human and Machine, IEEE Press, 2000.

[36] T. Painter and A. Spanias, Perceptual Coding of Digital Audio, IEEE Proceedings, Vol. 

8 8 , No. 4, pp. 451-515, April 2000.

77



[37] D. Pan, A Tutorial on MPÈG/Audio Compression, IEEE Multimedia, Vol. 2 , No. 2, 

pp. 60-74, June 1995.

[38] J. P. Princen and A. B. Bradley, Analysis/Synthesis Filter Bank Design Based on Time 

Domain Aliasing Cancellation, IEEE Transactions on Acoustics, Speech, and Signal 

Processing, Vol. 34, No. 5, pp. 1153-1161, October 1986.

[39] J. P. Princen, A. W. Johnson and A. B. Bradley, Subband/Transform Coding using 

Filter Bank Designs Based on Time Domain Aliasing Cancellation, IEEE International 

Conference on Acoustics, Speech, and Signal Processing, Vol. 1 2 , pp. 2161-2164, April 

1987.

[40] P. Robertson, E. Villebrun, and P. Hoeher, A Comparison of Optimal and Sub-Optimal 

MAP Decoding Algorithms Operating in the Log Domain, Proceedings of International 

Communications Conference, Vol. 2 , No. 18-22, pp. 1009-1013, June 1995.

[41] A. Sagi and D. Malah, Data Embedding in Speech Signals using Perceptual Masking, to 

be published in European Signal Processing Conference 2004.

[42] J. Seok and J. Hong, Audio Watermarking for Copyright Protection of Digital Audio 

Data, Electronics Letters, Vol. 37, No. 1 , pp. 60-61, August 2001

[43] B. Sklar, Digital Telecommunications, Fundamentals and Applications, Prentice Hall, 

2001.

[44] M. Swanson, B. Zhu and A. Tewfik, Current state-of-art. Challenges and Future di

rections for Audio Watermarking, Proceedings of IEEE Internaltional Conference on 

Mutimedia Computing and Systems, Vol. 1 , pp. 7-11, June 1999 .

[45] M. Steinebach, F. A. P. Petitcolas, F. Raynal, J. Dittmann, C. Fontaine, C. Seibel, N. 

Fates and L. C. Ferri, StirMark benchmark: Audio Watermarking Attacks, International 

Conference on Information Technology: Coding and Computing, Vol. 2, No. 4, pp. 49- 

54, April 2 0 0 1 .

78



[46] A. J. Viterbi, Approaching the Shannon limit: Theorists’ dream and practitioners’ chal

lenge, Proceedings of International Conference on Millimeter Wave and Far Infrared 

Science and Technology, Vol. 2 , No. 4, pp. 111-114, August 1996

[47] J. P. Woodward and L. Hanzo, Comparative Study of Turbo Decoding Techniques: An 

Overview, IEEE Transactions on Vehicular Technology, Vol. 49, No. 6 , pp. 2208-2233, 

November 2000.

[48] E. Zwicker and H. Fasti, Psychoacoustics: Facts and Models, Springer, 1999.

79



Appendix A 

List of Publications

In this section, we list the publications resulted from our research work for the thesis.

• L. Zhang, S. Krishnan and H. Ding, ’’Modified Spread Spectrum Audio Watermark

ing Algorithm,” 2004 Annual Conference of Canadian Acoustic Association, Ottawa, 

October 2004.

• L. Zhang, S. Krishnan and H. Ding, ’’Improved Spread Spectrum Audio Watermarking 

Algorithm,” submitted to 2005 IEEE International Conference on Acoustics, Speech 

and Signal Proceedings (ICASSP).

80



Appendix B 

Important Mathematical Deductions

Given the sequences of æ =  {x\,X 2 , n  = {ni,n2 , Xi , i = are

statistically independent and identically distributed (i.i.d.) random variables, each having a 

finite mean mx — 0 and a finite variance Ox- Similarly, Uj, z — 1,2,..., N, are i.i.d. random 

variables with a finite mean m„ — 0 and a finite variance cr„. The zero-mean spreading 

sequence, w  = {wi,W2 , ..., w//}, is statistically independent of both x  and n.

B .l  Conventional Spread Spectrum  Em bedding Scheme

As shown in Equ. (3 .2 ), the normalized correlation is,

J  i = N

c = r  • w  = {x + abw + n) ■ w = ab + {x + n) ■ w = ab + — ^^ {x i  +  Ui)wi (B.l)
1=1

By the central limit theorem, the correlation c, being the sum of the i.i.d. random 

variables with finite mean and variance, approaches a Gaussian distribution as A  —> oo, i.e. 

c ~  N{mc,ac).

The mean of c is.

=  E  f — ^ ( x j  +  Ui)wi j =Oib + — ' ^  E[{xi +  ni)wi] (B.2)
V i=l /  i=l

1
= ab+ — ^ 2  +  i^i]E[wi\ =  ab (B.3)
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The variance of c is,

— -^ [(0  -  mc)^] =  E

1=1 1=1

(B.5)

Thus it is proved that c ~  N{ab, which results in the BER performance shown

in Equ. (3.4).

B.2 Improved Spread Spectrum  Em bedding Scheme 
w ith Two Orthogonal Spreading Sequences

Given the spreading sequence w, the auxiliary orthogonal sequence v  can be constructed by 

the following procedure,

w =  {wi, W 2 , W 3 , W 4 , ...} => -ü =  { - W 2 , w i ,  - W 4 , W 3 , ...} (B.6)

As shown in Equ. (3.10), the normalized correlation is,

J  i= N

c = r  • w  — r  • V  = aub + n -  {w — v) = aMb +  — ^ ( w ,  — u,)», (B.7)
1=1

Similar to the above, by the central limit theorem, the correlation c, being the sum of the

i.i.d. random variables with finite mean and variance, approaches a Gaussian distribution 

as N  0 0 , i.e. c ~  N{mc, ctc).

The mean of c is,

/  J i= N  \  J i= N

=  E  I a ^ i b  +  — ^ ^ (w j — V i ) n i  j =  a ^ i b  +  — E [ { w i  — Ui)ni] (B.8)
\  1 = 1  /  1 = 1  

 ̂ i= N

=  a M b  +  — ^  E [ w i  -  V i]E [w i]  =  a M b  (B.9)

mr

1=1
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The variance of c is, 

al = E[{c - TTXc)̂ ] = E
i=N - i 2 \

-  V i ) r i i

2=1 2=1

2=iV

iV2
t = l

#

Thus it is proved that c ~  N{ab, ^ ) .

The embedding power is as follows,

W  =  E[\\y -  æ||] =  E[{y -  x) ■ (y -  x)] = E[{aMbw +  0v) ■ {aMbw +  (3v)\

(B.IO)

(B.ll)

=  a\j +  E{0^) = a\j + E
^ i=N 

2 = 1

= a if +  E

- a h  +

\ / 2 ^

i = l

N

(B.12)

(B.13)

(B.14)

(B.15)

This results in the improved performance shown in Equ. (3.13).

B.3 Improved Spread Spectrum  Embedding Scheme 
w ith Two Non-orthogonal Spreading Sequences

Given one spreading sequence w, the auxiliary non-orthogonal sequence v  can be constructed 

by the following procedure,

W  =  { W1, W2, W3, W4, . . . }

V =  {wi COS 6  — u)2 sin 6 , u>i sin 9 + W2 cos 9,1V3 cos 9 — W4 sin 9 ,1V3 sin 9 + IV4 cos ...}
(B.16)

such that.

w
^ i = N  J  2=iV

V = — ^  WiVi = — • ^  w"l -cos9 = cos 9 
2 = 1  2 = 1

(B .17)
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As shown in Equ. (3 .1 0 ), the normalized correlation is,

e 1
i=N

c = r  w  — r  v  = aMb{l — w - v )  + n - ( w  — v) = a^ib-2sin^ -  +  — ^ ( w i  — Vi)rii (B.18)
i=l

Similar to the above, by the central limit theorem, the correlation c, being the sum of the

i.i.d. random variables with finite mean and variance, approaches a Gaussian distribution 

as N  oo, i.e. c ~  N{mc, crj.

The mean of c is.

mr
f  6 \ \  0 \

= E  I ajitb ■ 2sin^ — + — u,)», j — aMb ■ 2sin^ % + E[(wi — Vi)ni\
t=i i=l

i = NQ 2 ~ \ Q
=  a M b  • 2 sin^ -  +  E [ w i  -  Vi]E[wi] =  a M b  ■ 2 sin  ̂-

(B.19)

(B.20)
i=l

The variance of c is,

— 'mcY] =  E
i = N

i=l

2=1

2 = 1  

l  = 2 n
N  N

e
2

(B.22)

Thus it is proved that c ~  N  {^Mb- 2sin^ | ,  ^  • 4sin^ which results in the maxi

mized performance when ^ =  tt as shown in Equ. (3.22).
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