DEVELOPMENT OF RYERSON'S HYPERLOOP POD SYSTEMS USING A MODULAR AND SYSTEMATIC APPROACH

By

Mohammed Mohiuddin Khan (Mohi Khan) Bachelor of Engineering, Ryerson University (2016)

> A thesis presented to Ryerson University in partial fulfillment of the requirements for the degree of Master of Applied Science in the program of Aerospace Engineering

Toronto, Ontario, Canada, 2019 © Mohammed Mohiuddin Khan, 2019

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

ABSTRACT

Development Of Ryerson's Hyperloop Pod Systems Using A Modular And Systematic Approach

Mohammed Mohiuddin Khan (Mohi Khan)

Master of Applied Science, Aerospace Engineering, Ryerson University, Toronto (2019)

R verson International Hyperloop is a special projects team with the intent of developing a fully functioning Hyperloop Pod. The team believes in driving revolutionary change within the transportation industry, with the greater cause of saving time, and to help make Canadian cities more accessible. The Pod was designed using a systematic approach with modularity and reliability as major foci. Its design featured an innovative, student researched and developed linear induction based MagDrive, and MagLev systems for propulsion and levitation. The braking system featured a fail-safe pneumatic deployment system to facilitate braking at high speeds as well as a wireless "Keep Alive" command. The onboard hyperionics is entirely composed of student researched and developed components which provides an expansive communication range and the ability to transmit real time data back to the mission control through all states and stages of the Pod's run.

ACKNOWLEDGEMENTS

The author would like to express his sincerest appreciation to his supervisor, *Dr.* Seyed *M. Hashemi*, who is an exceptional mentor to his students. Besides being remarkably knowledgeable, Dr. Hashemi also has great skill in explaining complex topics with great clarity and simplicity. His genuine attitude towards all his students has made him an extremely approachable person. Without his guidance and support, the Development of Ryerson's Hyperloop Pod would not have been possible.

The author would like to acknowledge members of Ryerson International Hyperloop for their endless contributions towards the development of the fifth mode of transportation. It was an honor working amongst such brilliant minds.

The author would like to recognize Ryerson International Hyperloop's cherished and generous supporters: *Ryerson University, Office of the President, The Department of Aerospace Engineering, ANSYS Inc., MSC Software,* and *MiSUMi.* Their unwavering support, whether monetary, material, or through words of advice, afforded the team the opportunity to see this design to its full potential.

The author feels extremely fortunate and grateful to the faculty advisors (*Dr. Seyed M. Hashemi*, *Dr. Paul Walsh*, *Dr. Hamid Ghaemi*, *Dr. Kazem Fayazbakhsh*, *Cliff Chan*, *Peter Bradley*, *Jerry Karpynczyk*, *Francine Belnavis*, *Kim Gallo*, *Leah Rogan*, *Gerald Bootes*, *Zohair Khan*, and *Rose Ghamari*) and industry advisors (*Ron Bakowski*, *Rob Paterson*, *Gordon Cook*, and *Moeid Elahi*) for their hard work throughout the year, and their dedication in making this design the best it could be.

The author would also like to thank *SpaceX*, *The Boring Company*, and *Tesla* for hosting the Hyperloop Pod Competitions, and providing teams the opportunity to showcase their skills.

Lastly, the author feels indebted to his parents and sister for their endless love, words of encouragement, and support over the years.

Without the support of all these people and organizations, the Development of Ryerson's First Hyperloop Pod would have remained an idea yet to be realized.

TABLE OF CONTENTS

А	STRACT	iii
А	KNOWLEDGEMENTS	iv
L	T OF TABLES	viii
L	T OF FIGURES	x
L	T OF APPENDICES	xii
L	T OF SYMBOLS, CONSTANTS, AND ABBREVIATIONS	xiii
	ymbols	xiii
	onstants	xiv
	bbreviations	XV
1	INTRODUCTION	1
	.1 Academic Program	1
	2 Team Structure	2
	.3 Key Objectives and Contributions	3
2	HYPERLOOP	5
	1 The Hyperloop Concept 2.1.1 The Toronto-Montreal Corridor	
	.2 The Hyperloop Pod 2.2.1 Hyperloop Pod Sub-Systems	
	.3 The Hyperloop Tube 2.3.1 The SpaceX Hyperloop Tube	
	.4The SpaceX Hyperloop Operating Environment2.4.1Low Pressure Environment2.4.2Tube Thermal Management	13
3	SpaceX HYPERLOOP POD COMPETITION	15
	.12019 Hyperloop Pod Competition3.1.1Technical Documentation3.1.2Technical Presentation	16
	.2 2020 Hyperloop Pod Competition	16
4	RYERSON'S HYPERLOOP POD ARCHITECTURE	17

4.1	Pod Ove	rview	17
4.1.1		esign	
4.1.2		ires Overview	
4.1.3		nce, Navigation & Control Overview	
4.1.4		ion Overview	
4.2		ictures	
4.2.1 4.2.2		ongitudinal Chassis Members (LCM) ulkhead	
4.2.3		hassis	
4.2.4		nell	
4.2.5	Pod B	raking	45
4.3	Pod Pro	pulsion	54
4.3.1		Induction Motor	
4.3.2	Magne	tic Levitation System	60
4.4		dance, Navigation and Control	
4.4.1		ates	
4.4.2		n Concept of Operations	
4.5	Testing	Challenge	
4.6		Test Rig	
4.6.1		ar Test Rig Analysis	
4.6.2 4.6.3		nce, Navigation and Control Tests res Tests	
4.6.4		sion Tests	
5 CON	ICLUSI	ON	82
6 FU7	TURE W	ORK	83
APPENI	DICES		
Append	dix A.1	Final Pod Prototype	
Append	dix A.2	Modular Test Rig Prototype	
Append	dix A.3	Pod Engineering Drawings	114
Append	dix A.4	Modular Test Rig Engineering Drawings	133
Append	lix A.5	LCM Load Case I (Pod Staging) Analysis Report	145
Append	dix A.6	LCM Load Case II (Launch Phase) Analysis Report	
Append	dix A.7	LCM Load Case III (Levitation Phase) Analysis Report	193
Append	dix A.8	LCM Load Case IV (Braking Phase) Analysis Report	215
Append	dix A.9	Bulkhead Load Case (Braking Phase) Analysis Report	240
Append	dix A.10	Chassis Load Case (Braking Phase) Analysis Report	261
Append	dix A.11	MTR Track Load Case (Overspeed) Analysis Report	

 MTR Shaft Load Case (Lock Up) Analysis Report	Appendix A.12
 Ryerson International Hyperloop Team Breakdow	Appendix A.13
 	REFERENCES

LIST OF TABLES

Table 1. SpaceX Hyperloop tube material specifications	. 11
Table 2. SpaceX Hyperloop tube major dimensional specifications	. 12
Table 3. SpaceX Hyperloop operating pressures.	
Table 4. Temperature range for SpaceX during the testing period	. 14
Table 5. Ryerson's Hyperloop Pod specifications.	. 18
Table 6. Pod's braking system overview.	. 20
Table 7. A few of the Pod states controlled by GNC	. 21
Table 8. Potential cross-sectional areas for the LCM	
Table 9. Important criteria for the design of the LCM.	. 24
Table 10. LCM loading scenarios based on Pod state	
Table 11. Aluminum 6061-T6 material specification for the LCM	
Table 12. Property calculation of the various LCM designs	. 29
Table 13. LCM loading case for Pod staging	. 30
Table 14. LCM loading case for launching phase	. 31
Table 15. LCM loading case for the Pod's levitation phase	. 33
Table 16. LCM loading case for braking phase.	
Table 17. Aluminum 6061-T6 material specification for the bulkhead	. 36
Table 18. Dimensional specifications for the Pod Bulkhead	. 37
Table 19. Total cycle count for the Pod's chassis	. 39
Table 20. Pod chassis loading during single operating braking system	. 40
Table 21. HexTow AS4C 3K material specification for the Pod shell	. 44
Table 22. Aeropoxy PR2032 and PH3665 material specification for the shell	. 45
Table 23. Pod braking system component list	. 47
Table 24. Braking cycle count for pre and post Hyperloop run	. 48
Table 25. Pneumatic braking piston specifications	. 49
Table 26. Power requirements for a few braking components	. 51
Table 27. Performance specification for nominal and off-nominal braking	. 53
Table 28. Basic power breakdown for the Pod	. 60
Table 29. Mechanical load computations on MagLev actuators	. 61
Table 30. Magnet grade specifications for N42 Magnets	. 62
Table 31. Magnet and backing plate specifications for Pod MagSkis	. 63
Table 32. Pod states controlled by the GNC system	. 66
Table 33. Replica testing and development track specifications	
Table 34. Breakdown of the Modular Test Rig	. 71
Table 35. Material selection breakdown for the Modular Test Rig	. 71
Table 36. MTR Piston input and output braking force test	. 77

Table 37. Parametric	performance	effects on	MagLev	81
----------------------	-------------	------------	--------	----

LIST OF FIGURES

Figure 1. Toronto-Montreal population estimates [5]	3
Figure 2. Commute times for the Toronto-Montreal corridor [6]	3
Figure 3. Energy consumption per passenger for various modes of transportation [1]7	7
Figure 4. Concept architecture of a Hyperloop Pod as illustrated in the White Paper	3
Figure 5. The Hyperloop's propulsion system showcasing the rotor and stator [1])
Figure 6. Ryerson International Hyperloop's pod architecture	7
Figure 7. Ryerson's Hyperloop Pod design with an aerodynamic shell 18	3
Figure 8. Ryerson's Hyperloop Pod design showcasing its internal systems 19	9
Figure 9. Ryerson's Hyperloop Pod with its internal systems labelled)
Figure 10. Pod structures breakdown	3
Figure 11. Pod staging load case for the LCM25	
Figure 12. Pod launching load case for the LCM25	5
Figure 13. Pod levitation loading scenario for the LCM	3
Figure 14. Pod braking loading scenario for the LIM	
Figure 15. Pod's LCM manufactured using anodized black Aluminum 6061-T6 28	3
Figure 16. ANSYS workflow setup for the Pod's LCM)
Figure 17. LCM deformation during Pod staging scenario	1
Figure 18. LCM stress during Pod staging	1
Figure 19. LCM deformation during Pod's launching phase	2
Figure 20. LCM stress during Pod's launching phase	
Figure 21. LCM deformation during Pod levitation	3
Figure 22. LCM stress during Pod levitation	3
Figure 23. LCM Deformation During The Pod's Braking Phase	1
Figure 24. LCM Stress For The Pod's Braking Phase	5
Figure 25. Pod's bulkhead manufactured using anodized blue Aluminum 6061-T6 36	3
Figure 26. Pod bulkhead's deformation during Pod braking	7
Figure 27. Pod bulkhead's stresses during Pod braking	3
Figure 28. Assembled Hyperloop Pod chassis with the LCMs and bulkheads 39)
Figure 29. Pod chassis deformation with one inoperable braking system)
Figure 30. Pod chassis stress with one inoperable braking system	1
Figure 31. Area ratio vs bypass Mach number plot for varying Mach numbers	2
Figure 32. An isometric view of the Pod shell	
Figure 33. A top down view of the Pod shell	5
Figure 34. Acceptable Pod braking scenarios on the test track	3
Figure 35. Unacceptable Pod braking scenarios on the test track	
Figure 36. Double acting pneumatic braking piston for the braking system [25]	3

Figure 37. Carbon composite HPA pressure vessel for the braking system [26]49
Figure 38. Retracted pneumatic braking schematic for one piston set
Figure 39. Extended pneumatic braking schematic for one piston set
Figure 40. Directional control valve with two solenoid valve coils [27]
Figure 41. Pod propulsion breakdown
Figure 42. The formation of a LIM from a RIM by I. Boldea [28]
Figure 43. LIM forces adopted from S. P. Bhamidi [32]
Figure 44. Single layer winding configuration adopted from S. P. Bhamidi [32]
Figure 45. Double layer winding configuration adopted from S. P. Bhamidi [32]
Figure 46. Electrical power schematic for the propulsion system
Figure 47. Assembled Hyperloop Pod MagLev system
Figure 48. Magnet Dimensional Parameters
Figure 49. Demagnetization B-H curve for N42 Neodymium magnet [33]
Figure 50. Pod trajectory profile
Figure 51. Ryerson International Hyperloop's mission concept of operations
Figure 52. The Hyperloop modular test rig
Figure 53. Motor performance plot for the MTR adapted from Oriental Motors $[36] \dots 72$
Figure 54. Shaft deformation during MTR lock up73
Figure 55. Shaft stresses during MTR lock up73
Figure 56. Track deformation during MTR lock up73
Figure 57. Track stress during MTR lock up
Figure 58. Track deformation during MTR overspeed74
Figure 59. Track stress during MTR overspeed75
Figure 60. The Integrated Pneumatic Braking System on the MTR
Figure 61. Brake output force data for MTR pistons
Figure 62. Assembled Dual Axis Force Transducer for MagLev testing
Figure 63. MTR showcasing the mounted DAFT
Figure 64. MagLev test results for singular North-South period configuration
Figure 65. Simulated behavior of lift and drag with an extended velocity profile $[40]\ldots 81$

LIST OF APPENDICES

Appendix A.1	Final Pod Prototype	84
Appendix A.2	Modular Test Rig Prototype	109
Appendix A.3	Pod Engineering Drawings	114
Appendix A.4	Modular Test Rig Engineering Drawings	133
Appendix A.5	LCM Load Case I (Pod Staging) Analysis Report	145
Appendix A.6	LCM Load Case II (Launch Phase) Analysis Report	169
Appendix A.7	LCM Load Case III (Levitation Phase) Analysis Report	193
Appendix A.8	LCM Load Case IV (Braking Phase) Analysis Report	215
Appendix A.9	Bulkhead Load Case (Braking Phase) Analysis Report	240
Appendix A.10	Chassis Load Case (Braking Phase) Analysis Report	261
Appendix A.11	MTR Track Load Case (Overspeed) Analysis Report	292
Appendix A.12	MTR Shaft Load Case (Lock Up) Analysis Report	313
Appendix A.13	Ryerson International Hyperloop Team Breakdown	333

LIST OF SYMBOLS, CONSTANTS, AND ABBREVIATIONS

Symbols

γ	Isentropic Expansion Coefficient
λ	Wavelength
μ_0	Permeability of Free Space
$\mu_{k, Track}$	Coefficient of Kinetic Friction
ρ	Density
ρ_r	Volume Resistivity
σ	Bending Stress
τ	Pole Distance
f	Frequency
a	Edge Length
a	Pod Acceleration/Deceleration Under Time Step
A	Ampere
A_{Bypass}	Cross-Sectional Area of the Pod Bypass
A_{Piston}	Piston Head Cross-Section Area
A_{Pod}	Cross-Sectional Area of the Pod
A_{Tube}	Cross-Sectional Area of the Tube
CG	Center of Gravity
d	Diameter of Winding
dA	Infinitesimally Small Area
F_B	Newton's Second Law
F_{Brake}	Piston Braking Force
$F_{Brake,Req}$	Required Piston Braking Force
F_{LIM}	Generated LIM Thrust
F_s	Stator Thrust Force
G	Goodness Factor
g_e	Airgap Effectiveness
g_{Earth}	Force of Gravity (Earth)
Ι	Area Moment of Inertia
I_1	Stator Phase Current
$L_{\scriptscriptstyle S}$	Stator Core Length
M	Moment
M	Mach Number
M_{Bypass}	Pod Bypass Mach Number

M_{Pod}	Pod Mach Number
m_{Pod}	Pod Mass
N_{Pod}	Pod Normal Force
P	Number of Poles
P_o	LIM Output Power
P_{Piston}	Internal Piston Pressure
q	Shear Flow
R	Stator Radius
R_2	Rotor Resistance
T_i	Inner Radius
Γ_O	Outer Radius
S	Pod Distance Under Particular Time Step
S	Slip
S	Soric
t	Time
u	Initial Pod Velocity
V	Final Pod Velocity
V	Voltage
V_{∞}	Shear Force
V_c	Rotor Linear Speed
V_{DC}	Voltage DC
V_{DC}	Voltage AC
V_f	Pod Final Velocity
V_i	Pod Initial Velocity
V_{Ref}	Landing Reference Speed
V_s	Synchronous LIM Velocity
W	Watt
У	Vertical Distance (From The Neutral Axis)

Constants

γ	1.4
μ_0	$4\pi \ge 10^{-7}$
π	3.14159
$ ho_{\scriptscriptstyle W}$	$19.27 \ge 10^{-9}$
g	9.81 m/s² or 32.17 ft/s² $$

Abbreviations

BRK	Braking System
CDR	Critical Design Review
CFD	Computational Fluid Dynamics
CG	Center of Gravity
COTS	Commercial-Off-The-Shelf
DAFT	Dual Axis Force Transducer
DCV	Directional Control Valve
DOT	Department of Transportation
ECU	Electronic Control Unit
EPG	Electronic Pressure Gauge
\mathbf{EPR}	Electronic Pressure Regulator
FEAS	Faculty of Engineering and Architectural Science
FEM	Finite Element Method
FoS	Factor of Safety
GNC	Guidance, Navigation & Control
GS	Ground Station
HPA	High Pressure Air
HQ	Headquarters
ICASSE	International Conference on Aerospace System Science and Engineering
LCM	Longitudinal Chassis Member
LIM	Linear Induction Motor
MTR	Modular Test Rig
NASA	National Aeronautics and Space Administration
OPS	Operations
PDR	Preliminary Design Review
PRP	Propulsion
\mathbf{PWM}	Pulse Width Modulation
RH	Ryerson International Hyperloop
RIM	Rotary Induction Motor
ROI	Return On Investment
\mathbf{SF}	Safety Factor
SLF	Steady Level Flight
SRAD	Student Researched and Developed
STEM	Science, Technology, Engineering, and Mathematics
STR	Structures
TC	Transport Canada
VRR	Vehicle Readiness Review
VSM	Vehicle Stability Module

1 INTRODUCTION

This document outlines the design, manufacturing, and testing plans of Ryerson International Hyperloop and Ryerson's first Hyperloop Pod for SpaceX's Hyperloop Pod Competition in Hawthorne, California.

1.1 Academic Program

Ryerson International Hyperloop (RH) is a special projects team for the Office of the President at Ryerson University, led by the author. The Department of Aerospace Engineering made numerous key resources accessible to RH which would otherwise have been impossible to obtain. These supportive services included: University recognition, University backing, funding, financial management, and countless University and departmental facilities. Although the University provides a portion of the funding through a yearly budget request, the team was responsible for securing its own funds and thus, the rest of the financial support came in the form of sponsorships, awards, and grants.

As the research team is primarily composed of engineering students, RH benefits from many of the departments within the Faculty of Engineering and Architectural Science (FEAS) to design, manufacture, and test the systems. The team has access to various facilities including, a subsonic wind tunnel, supersonic wind tunnel, stress and fatigue laboratories, additive manufacturing zones, as well as machine shops.

The team is primarily composed of Aerospace (85%), Mechanical (5%), and Electrical (5%) Engineering students. However, the team encourages the contribution from varied academic disciplines with the expectation that a diverse organization will inspire the development of more sophisticated systems while offering a more realistic (and accurate) depiction of an industry environment.

During 2019, the team successfully recruited high school students to foster growth within Science, Technology, Engineering, and Mathematics (STEM) fields. In doing this, the team offers younger students the opportunity to develop their technical and communication skills early in their academic career. The team's long-term goal is to build an avenue where members apply their academic knowledge to real world situations and gain valuable experience preparing for their future careers in the industry.

1.2 Team Structure

In order to delegate tasks efficiently, Ryerson Hyperloop was split into four major sub-teams — Operations (OPS), Structures (STR), Guidance, Navigation & Control (GNC), and Propulsion (PRP) with each sub-team researching to produce an innovative, modular, and reliable design.

The sub-teams undertook a number of design projects while the administration, management, and operations were handled by the OPS sub-team. During the initial phase of the design, several workshops were conducted to identify areas of interest and to stimulate innovative system designs.

To ensure effective communication, RH utilized varied modes of communication, such as digital, oral, and written. The primary method of communication was through Slack, a virtual space that facilitated project discussions and decisions, collaborations, and conversations centered around the day-to-day operation of the team. In addition to the general team wide channels, each sub-team was assigned an exclusive channel that was dedicated to troubleshooting sub-team related issues and for promoting specific discussions.

The large amount of documentation generated by the team was sorted, stored, and shared on a working Team Drive through the university based Google Drive account. Google Drive is a cloud based file storage and synchronization service provided by Google. It allows users to upload, synchronize, and share their files to a working directory. Being the chief document storage directory, Google Drive served as one of the most vital resources in our effort to ensure smooth team operations.

In order to ensure progress and the transfer of information to new members, each sub-team met on a weekly basis. At these meetings, members presented their accomplishments as well as setbacks. Additionally, tasks that needed to be tackled in the upcoming weeks along with any pertinent information that required attention was discussed. To hold all members accountable, several systems of checks were established. In addition to weekly meetings, the team held three formal reviews: Preliminary Design Review (PDR), Critical Design Review (CDR), and Vehicle Readiness Review (VRR); all members were required to be in attendance at these reviews. The stakeholders such as the faculty advisors, industry advisors, and sponsors, who were invited to these reviews ensured sound technical decisions were made through all stages of development. At these meetings, the designs, analyses, manufacturing methods, and certification plans were presented. This ensured that the systems authorized to proceed to fabrication and testing met a predefined performance standard. Furthermore, it allowed for a clear understanding of the work completed and the establishment of interfacing requirements between the various available systems. The panel also included industry professionals who were able to provide feedback and constructive criticism exposing oversights, errors, and incorrect assumptions.

This document was intended to be a detailed guide that contained all information pertinent to the design, build, and testing of Ryerson's first Hyperloop Pod. It also contained reasoning behind design decisions, analyses performed on designs, results from testing of individual components, and findings from full system testing. This document was also intended to serve as a reference for the subsequent team when making design or managerial decisions. The goal was to produce a document so robust such that the new team can operate independently with minimal input from the former team captain.

This system of organization was established in an attempt to ensure the deficiencies faced by other teams do not potentially affect RH and its operations. It was also done to curb any bad habits from cultivating during the design year. It also offers a foundation upon which to further improve the management of the team.

1.3 Key Objectives and Contributions

The objective of this thesis was to design, develop, and validate various Hyperloop Pod systems systematically and with modularity at the forefront. This was done by establishing the requirements defined within Elon Musk's Hyperloop Alpha document as the baseline set of requirements [1]. Aerospace methodologies and standards were heavily relied upon in the design and testing of the Hyperloop Pod systems. In addition, key engineering disciplines such as finite elements, stress analysis, outgassing of materials, space grade soldering techniques, optimization for weight and cost, were applied during the entire design process of the Hyperloop Pod systems. A of the key objectives that were considered during the design of the Hyperloop Pod systems were:

- Investigation of the requirements set by the Hyperloop concept.
- Establishment of the constraints, objectives, and requirements necessary for the development of the Hyperloop Pod systems.
- Development of the Pod architecture for the Hyperloop concept.
- Address technical and system testing challenges imposed when operating within the Hyperloop environment.
- Provide the design details of the Hyperloop Pod architecture to SpaceX for the SpaceX Hyperloop Pod Competitions.
- Present key tests performed on the developed Hyperloop systems and highlight future opportunities for research.

The author's contribution throughout the development of the Hyperloop Pod systems allowed the author to present their research at Hexagon's Technologies In Action Conference, HxGN | LIVE in Las Vegas, Nevada, USA and at the International Conference on Aerospace System Science and Engineering (ICASSE) 2019 in Toronto, Ontario, Canada were the papers were also accepted for publication [2] and [3].

2 HYPERLOOP

2.1 The Hyperloop Concept

Currently, the four modes of transportation can be classified into the following categories: Road, Rail, Water, and Air. These modes of transportation tend to be slow, expensive, or a combination thereof. The Hyperloop is the next mode of transportation that aims to shift this notion by being fast and inexpensive after being commercialized.

Ever since the release of the Hyperloop Alpha document, great strides have been undertaken within the Hyperloop sphere [1]. This has been made possible by the research and developmental efforts being carried out by universities, and the industry. The newest mode of transportation is being developed to be safer, faster, economical, convenient, resilient to weather changes, and sustainable.

Current modes of transportation include — Air, Water, Rail, and Road where each of them are greatly impeded by air or water resistance at sea level. This prevents them from achieving high travel speeds. For example, an aircraft's Steady Level Flight (SLF) is at altitudes greater than 9,144 m (30,000 ft), resulting in a considerably lower aerodynamic drag. With aerodynamic or hydrodynamic drag increasing with the square of speed, a significantly large power input is required to go faster. This can be seen as power requirements need to be met with the cube of speed. The Hyperloop concept aims to circumvent this issue by placing a vehicle, in this case a Pod within a low pressure environment. This coupled with the implementation of contactless propulsion systems will aid in high speed travel that would otherwise have been extremely difficult to achieve at the ground level.

Furthermore, Elon Musk proposed that Hyperloop Pods could utilize air bearings or magnetic levitation for support, and could either be propelled via traditional motor and wheeled systems or via magnetic linear motors. Initial studies by SpaceX on the Hyperloop system extensively studied the route between its headquarters in Hawthorne (Los Angeles), California to San Francisco, California. From their research, a one-way trip should approximately take 35 minutes with a Pod departing each station every two minutes on average [1].

2.1.1 The Toronto-Montreal Corridor

After a global proposal to narrow down possible cities where the Hyperloop could be implemented, the Toronto-Montreal corridor was chosen to be one of the top contenders for the implementation of the fifth mode of transportation [4]. According to research, connecting these two Canadian cities together would create a supercluster of cities providing businesses with easy access to approximately 4.437 million Canadian for trade purposes as shown below [5].

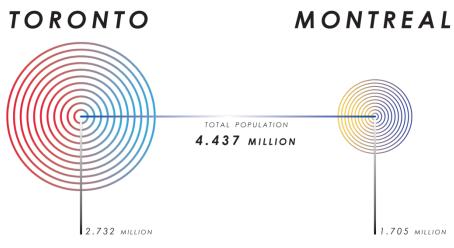


Figure 1. Toronto-Montreal population estimates [5].

Once the system is implemented, passengers on the Hyperloop can expect to travel between Toronto-Montreal in 35 minutes, leading to a dramatic reduction in commute times compared to the other modes of transportation as illustrated in Figure 2 [6].

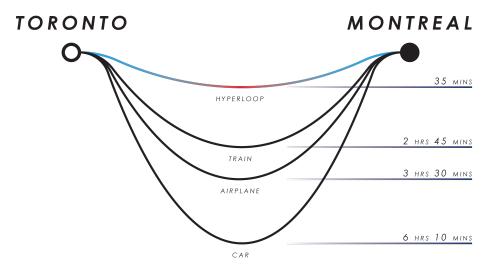


Figure 2. Commute times for the Toronto-Montreal corridor [6].

Figure 3 shows the energy consumption for a journey of about 600 km (373 miles) for the different modes of transportation such as Toronto-Montreal or Los Angeles-San Francisco. Furthermore, the energy costs of implementing either a passenger + cargo Hyperloop Pod or a passenger only Hyperloop Pod were significantly lower than the other modes of transportation in existence as shown in Figure 3 [1] and [7].

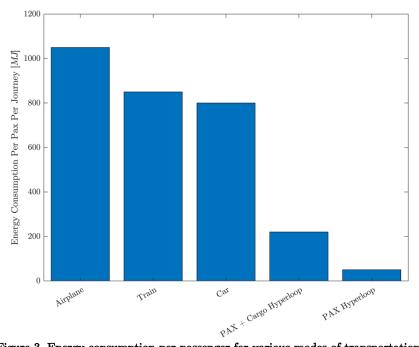


Figure 3. Energy consumption per passenger for various modes of transportation [1].

2.2 The Hyperloop Pod

Pods are currently being designed by the industry to accommodate between 28 to 40 people or a similar load in cargo [8]. With a Pod departing from its station every two minutes, commercial Pods are being designed to withstand cyclic and fatigue loads due to the continuous depressurization and pressurization of the environment within.

2.2.1 Hyperloop Pod Sub-Systems

Development of the passenger Hyperloop Pods has been attempted by various companies, and each has their own take on its design. A general Pod architecture as envisioned by Elon Musk within the White Paper has been illustrated in Figure 4.

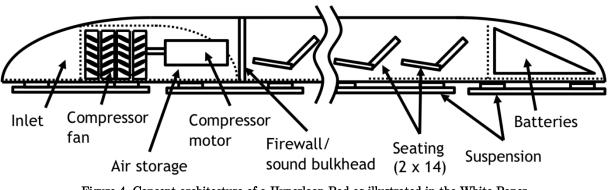


Figure 4. Concept architecture of a Hyperloop Pod as illustrated in the White Paper.

As illustrated above, the initial concept of the Hyperloop Pod included the following systems (from left-to-right):

1. Propulsion System: In order to be driven at the proposed speeds, the Pod requires the implementation of advanced linear motors. The moving element, also known as the rotor, will be located on the Pod itself. On the other hand, the stator or the stationary portion of the linear motor will be located on the tube. The implementation of such a system would allow for the Pod to accelerate up to 1,220 kmph or 760 mph [1]. In order to ensure the comfort of the passengers at all times, acceleration and braking is expected to be kept below 1 g during nominal operations.

Figure 5. The Hyperloop's propulsion system showcasing the rotor and stator [1].

- 2. Compressor System: Initial designs included an onboard compressor for two reasons. It allowed for the Pod to travel with minimal gap between the tube and itself without the choking the flow around it. Current designs utilize a perforated leading edge of the Pod to channel the surrounding air around it. Additionally, if air bearings were being implemented to levitate the Pod, it served as inlet.
- 3. Passenger Support System: As the Hyperloop operates within a low pressure environment, a passenger support system is required onboard the Pod to circulate pressurized air. This support system needs to circulate, collect, filter, and recirculate clean air back into the cabin. This needs to be done all the while regulating and maintaining the Pod at a comfortable temperature.
- 4. Suspension System: In order to levitate or suspend a Pod at a predetermined height, various methods had been proposed. The three key methods include: traditional wheel and axle system, air bearings, and magnetic levitation system. For high speed travel, conventional wheel and axle systems tend to become impractical due to stability problems and frictional issues. On the other hand, air bearings or magnetic levitation tend to be more viable in this circumstance due to its extremely low drag stability advantages.
- 5. Power System: With the Hyperloop Pod not being powered by a ground power during its run, onboard batteries are required to keep its systems operational. This includes powering the passenger support systems, propulsion, telemetry, braking, and any other auxiliary systems.

6. Braking System: The implementation of permanent magnets as the primary braking system is being thoroughly researched. Such a system would tremendously reduce wear-and-tear as no contacting parts are being used. For the purpose of redundancy, traditional contact braking methods need to also be implemented in the event additional braking force is required.

2.3 The Hyperloop Tube

The Hyperloop concept utilizes a low pressure environment where the system is proposed to be a closed loop connecting two cities together. The drawing of a hard vacuum has been avoided due to the difficulties that would potentially arise in maintaining them. In addition, operating in a low pressure environment would allow for the implementation of Commercial-Off-The-Shelf (COTS) pumping systems. With the development of a few large scale Hyperloop tubes across the globe, research indicated that the dimensions of the tube are predominantly based on the route they will be covering. As a result, a prespecified final size for the Hyperloop tube has not been put out [9].

2.3.1 The SpaceX Hyperloop Tube

To accelerate the development of the Hyperloop concept, SpaceX independently developed the design and built a kilometer long Hyperloop test track located outside their HQ in Hawthorne, California.

The Hyperloop tube has been manufactured from steel due to its availability, low cost, strength, and weldability. The tube contains an Aluminum (Al) test track, and a sub-track that is mounted to a concrete base.

Hyperloop Tube Parameters	Value
Hyperloop Tube	ASTM A1018 Grade 36
Test Track	Aluminum 6061-T6
Sub-Track	Aluminum 6101-T61
Mounting Base	Concrete

Table 1. SpaceX Hyperloop tube material specifications.

As per SpaceX's design, their Hyperloop Tube is said to be approximately a halfscale version of the full-scale production concept [10]. As a result, Ryerson's first Hyperloop Pod had been designed to meet the dimensional requirements of SpaceX's Hyperloop tube. Some of the key dimensions that were adhered during the entire design process have been outlined in Table 2.

Hyperloop Tube Parameters	Value
Tube Length	$4150 \; ft \; (1.25 \; km)$
Outer Diameter	72 in
Inner Diameter	70.6 in
Radius of Curvature	> 15 miles (24 m)

Table 2. SpaceX Hyperloop tube major dimensional specifications.

2.4 The SpaceX Hyperloop Operating Environment

2.4.1 Low Pressure Environment

When operating within the Hyperloop environment, the Pods are subjected to a cyclic pressure loading due to the continuous depressurization and pressurization. This results in the structure experiencing fatigue stresses. The SpaceX Hyperloop operates at a minimum ambient pressure of 0.125 psi [10]. This is done to support the various propulsion systems that were developed.

Hyperloop Tube Parameters	Value
Number of Vacuum Pumps	4
Minimum Operating Pressure	0.125 psi (862 Pa)
Maximum Operating Pressure	14.7 psi (0.102 MPa)
Pump Down Period	45 minutes
Pump Up Period	25 minutes

Table 3. SpaceX Hyperloop operating pressures.

With the test track being located in Hawthorne, California, the operating pressure within the tube is highly dependent on the season, weather conditions, and time of day. With four vacuum pumps, the pump down time was approximately 45 minutes to reach an operating pressure 862 Pa, while the pump up period took around 25 minutes.

2.4.2 Tube Thermal Management

The SpaceX Hyperloop Tube does not contain any thermal management control system. As a result, the tube's internal temperature is solely dictated by the season, weather conditions, and the time of day the test was scheduled for. Majority of the testing occurred during the weeks of July and the corresponding METAR data for the SpaceX facility has been tabulated in Table 4 [11].

Parameter	Value
General Testing Period	$10^{th} - 21^{st}$ July
Maximum Temperature (High)	$23^{\circ}C$
Maximum Temperature (Average)	21°C
Maximum Temperature (Low)	18°C
Minimum Temperature (High)	$22^{\circ}C$
Minimum Temperature (Average)	$20^{\circ}C$
Minimum Temperature (Low)	17°C

Table 4. Temperature range for SpaceX during the testing period.

Since the tube temperature ranged from 35°C to 45°C, Pod designs needed to account for degradation in the cooling by convection resulting from the low pressure environment. The loss in heat dissipation coupled with the frequency of Pod deployment in the full-scale version could result in thermal hotspots that needed to be accounted for in the Pod's thermal management system.

3 SpaceX HYPERLOOP POD COMPETITION

In order to accelerate the development of the Hyperloop concept, SpaceX announced a Hyperloop Pod Competition utilizing their newly built mile long test track outside their HQ in Hawthorne, California. This was done to encourage innovation, research and development, and testing of the concept by student teams from across the United States and the globe.

Following the release of the White Paper in 2013, SpaceX announced the very first Hyperloop Competition in 2015 to accelerate the development of the Hyperloop concept. Universities from all across the world were tasked to design high speed Pods and to present it in January 2016. Top teams from all entries were selected to advance and build their prototypes.

Teams who were successful in manufacturing a prototype Pod were allowed to compete at the first ever Hyperloop Pod Competition 2017 where they raced their Pods on SpaceX's Hyperloop test track. After receiving a number of high quality submissions, the organizers subsequently held four more Hyperloop Pod Competitions.

3.1 2019 Hyperloop Pod Competition

As with the previous iterations of the competition, the 2019 Hyperloop Pod Competition was judged solely on the Pod's top speed [1]. In addition to speed as a criterion, the designed Pod was required to propel or crawl itself to within 30 m of the exit airlock doors of the Hyperloop tube. During the entire 2019 Competition, Ryerson achieved the following.

- Being from the top 10% out of the 1,500 entries after being selected to proceed to the second round of the Hyperloop Pod Competition.
- Successfully passed the second round and got approved to proceed to the third round.
- Being from the top 8% after being selected for various technical interviews by the competition organizers.
- Received special invitations from SpaceX to attend both the 2018 and the 2019 Hyperloop Pod Competition in Hawthorne, California.

3.1.1 Technical Documentation

After completion of all necessary legal and governance documentation, the team submitted a comprehensive design proposal to the competition officials. This document provided the judges with an overview of design and a means to perform a sanity check. This ensured the team was proceeding in the correct direction. In order to manage the number of teams, the organizers had the ability to down select teams at this stage.

After all the necessary approvals were received, a technical document was completed for the judges highlighting the design, analysis, and manufacturing plans for the Hyperloop Pod. Teams that fulfilled all the integral prerequisites set by the organizers were approved to proceed to the technical presentations portion of the competition.

3.1.2 Technical Presentation

Based on all the deliverables received by the competition judges, select teams were asked to present their designs via video conferencing technology to a judging panel consisting of engineers, technicians, safety officers, business personnel from SpaceX, The Boring Company, Tesla, and so forth. This format allowed the organizers and judges to better understand the Pod and provided the panel an opportunity to gain clarity (on technical issues). Furthermore, the team received valuable feedback on the designed Pod.

3.2 2020 Hyperloop Pod Competition

The 2020 Hyperloop Pod Competition is planned to run within a 10 km Hyperloop tube rather than the kilometer long test track currently being used in Hawthorne, California. To help advance this emerging technology even further, the new track is no longer expected to be linear. It is proposed to have a curve of an unknown radius. Furthermore, this new track is proposed to have the same level of vacuum combability as the shorter Hyperloop tube [12].

4 RYERSON'S HYPERLOOP POD ARCHITECTURE

4.1 Pod Overview

Ryerson's Hyperloop Pod consisted of three major systems – Structures (STR), Guidance, Navigation & Control (GNC), and Propulsion (PRP). Figure 6 illustrated the breakdown of the aforementioned systems into their characteristic sub-systems.

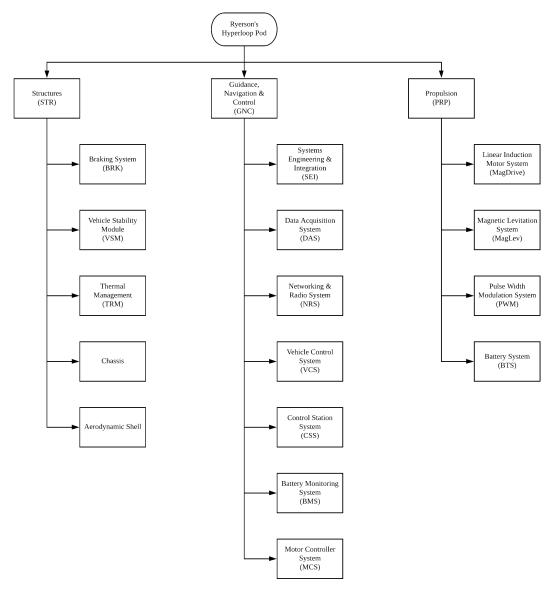


Figure 6. Ryerson International Hyperloop's pod architecture.

4.1.1 Pod Design

Figure 7 and Figure 8 showcase the isometric view of Ryerson's Hyperloop Pod consisting of all its systems. The Pod designed for the Hyperloop Pod Competition measures in at 2.3 m in length, 0.5 m in width, 0.3 m in height, and a loaded weight of 140 kg. The Pod's aforementioned systems have been shown and labelled in Figure 9, while its major specifications have been tabulated in Table 5.

Overall Pod Parameters	Value
Pod Length	2.3 m
Width	0.5~m
Height	0.3 m
Structures Weight	29 kg
Propulsion Weight	73 kg
Guidance, Navigation and Control Weight	15 kg
Pod Weight (With Safety Margin)	140 kg

Table 5. Ryerson's Hyperloop Pod specifications.

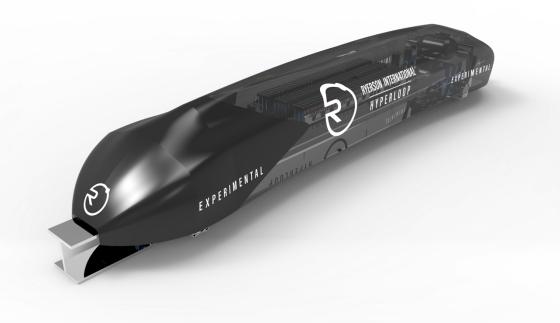


Figure 7. Ryerson's Hyperloop Pod design with an aerodynamic shell.

Figure 8. Ryerson's Hyperloop Pod design showcasing its internal systems.

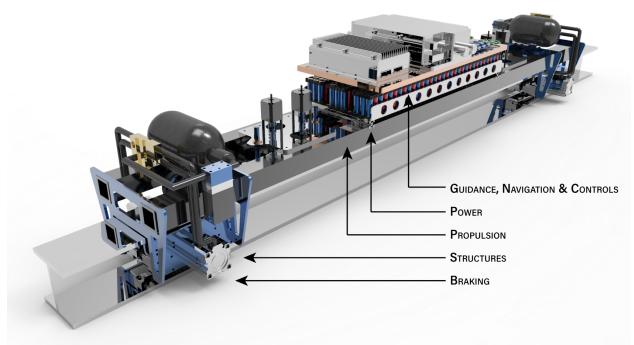


Figure 9. Ryerson's Hyperloop Pod with its internal systems labelled.

4.1.2 Structures Overview

The Hyperloop Pod included two independent pneumatic braking systems that consist of two independent pairs of braking pistons as shown in Table 6. The systems have been arranged in a forward, and aft configuration of the Hyperloop Pod. Both systems have their own pneumatic tank, control systems, control valves, and pneumatic tubing. This was done to prevent a cascading failure in the event a system failure was to occur.

Braking System Parameters	Value
Number of Independent Systems	2
Number of Pistons	4
System Weight	14 kg
Nominal Braking Force	$900 \ N$
Maximum Braking Force	1800 N

When designing the chassis of the Pod, critical cases needed to be examined. These were the acceleration, levitation, and braking phases. System weights along with the phase particular loads were accounted for. In such load cases as the Center of Gravity (CG) position changed, it was also needed to be accounted for in the design.

The Pod's chassis consists of a forward and an aft bulkhead connected together by two longitudinal Aluminum extrusions referred to as Longitudinal Chassis Members (LCM). Aluminum extrusions were chosen for modularity and to aid the placement of all the Pod systems on it.

Although an aerodynamic shell was unnecessary due to the Pod operating in a low pressure environment, as per the competition requirements, completing a run with a shell simply added to the Pod's overall aesthetic and mass resulting in a lower top speed. Even though runs can be completed without a shell, one was still designed in order to place all the sponsor logos on the Pod.

4.1.3 Guidance, Navigation & Control Overview

As the Pod powers up, it automatically defaults to a "Safe To Approach" state. This is done only when the Pod is stationary, in good working condition without any major faults, and is safe for humans to approach it. Upon the completion of the necessary checks within the tube, the Pod will then have the potential of entering into the remaining states as shown in Table 7.

Pod State	Description
Safe To Approach	Indicates that the Pod is stationary, in good working condition without any major faults, and is safe for humans to approach it.
Ready To Launch Fault	Performs final checks, and readies key systems for launch. A non-nominal, unknow or unsafe event or a parameter falls outside is envelope is detected, and Pod automatically comes to a stop.

Table 7. A few of the Pod states controlled by GNC.

In addition to performing all of the state transitions, GNC receives data from the Pod including its location within the tube, velocity data, acceleration data, temperatures and pressure, Pod health, and so on. This vital telemetry data is transmitted in real time to the mission control (ground station) for Pod status and analysis.

Although control decisions are taken autonomously onboard the Pod, the Pod has been designed in such a way that all the commands to initiate movement (from standstill) were required to be sent from the mission control. This built-in safety feature ensured that the Pod would consistently obey the incoming commands from the ground station. If for some reason the signal was lost, the Pod automatically defaults to the fault state and comes to a safe halt.

4.1.4 Prolusion Overview

For propulsion, the Pod is propelled and levitated by a true contactless system as envisioned by Musk [1]. Propulsion is achieved by the MagDrive along the track through the means of electromagnetic induction via a Linear Induction Motor (LIM). The motor utilized an alternating current that is passed through its coils wound around a stator. By doing so, it created a changing magnetic field which in turn produced a force that propels the Pod forward.

In order to achieve the highest possible thrust, i.e. velocity, a three LIM propulsion system was initially designed. However, after further analysis, it was found that this sort of configuration would have diminishing returns. By performing a Return On Investment (ROI) analysis, the overall weight increase incurred as a result of the Pod being heavier would reduce the overall effectiveness of the levitation system. As a result, a single LIM configuration was opted for.

Magnetic levitation system was used to support the Pod at a predetermined height. The system consists of permanent N42 Neodymium magnets configured in a Halbach array to create a repulsive magnetic field to suspend the Pod. This resulted in a drag reduction when compared to wheeled systems at high speeds.

4.2 Pod Structures

The breakdown of the Hyperloop Structures system has been illustrated in Figure 10, where the design of the Pod's chassis, and braking system were considered the topmost priority. This design approach allowed for the development of the overall Pod chassis required to mount all the other Pod systems to it.

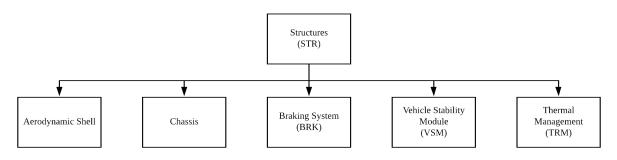


Figure 10. Pod structures breakdown.

Two major components for the Pod structure included the design, and development of the bulkheads, and the Longitudinal Chassis Members (LCM). The two aforementioned components form the Pod's chassis where a forward, and aft bulkheads are connected together via two LCMs. When designing these components, the principal design loads that were considered were the weight of the PRP system, GNC, and BRK systems.

4.2.1 Pod Longitudinal Chassis Members (LCM)

One of the design objectives was to ensure all the aforementioned systems had a mounting location on the LCM, while maintaining structural rigidity. Analysis conducted on the propulsion system required the optimal gap height between the LIM, and the track to be at 2 mm. With the LCM holding the LIM in place, a design constraint allowed for a maximum deflection of the LCM to be lower than 1 mm.

LCM	Cross-Section	
Design 1	Circular	
Design 2	Tubular	
Design 3	Square Tubing	
Design 4	Hexagonal	
Design 5	Extrusion	
Design 6	C Channels	
Design 7	L slots	

Table 8. Potential cross-sectional areas for the LCM.

Table 9 highlights the various criteria that were selected when designing the LCM after their individualistic priorities were established. Meanwhile, Table 8 showcases the different cross-sectional areas that were considered during its design [13].

Table 9. Important criteria for the design of the LCM.

	Ease of Use	Surface Area	Manufacturability	Cost
Ease of Use	N/A	0	1	1
Surface Area	1	N/A	1	1
Manufacturability	0	0	N/A	0
Cost	0	0	1	N/A

One of the scenarios that was analyzed is if the MagLev system does not perform as intended. If such a failure were to occur, it would result in the total Pod mass to be rested on the LCMs, and the bulkheads. The worst case scenario would occur if the rear braking system were to become inoperative. During such an event, the Pod's braking force would cause the front end to lock up while the aft portion to continue to move forward leading to the buckling of the LCMs. As a result, the Pod needed to fulfill any and all safety requirements during all its phases. And to do so, the various load cases that were analyzed have been tabulated below.

Table 10. LCM loading scenarios based on Pod state.

Case	Pod State
Loading Case I	Pod Staging
Loading Case II	Launch Phase
Loading Case III	Levitation Phase
Loading Case IV	Braking Phase

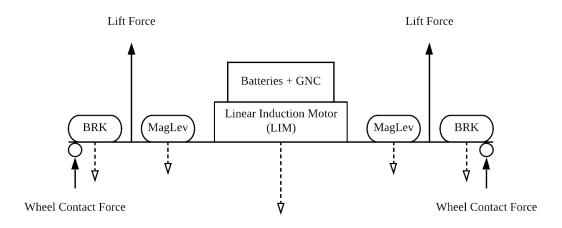


Figure 11. Pod staging load case for the LCM.

Figure 11 illustrates the schematic of the loading of the LCM as the Pod is lifted to be placed on the Hyperloop staging area. The dotted lines represent the weight of the respective systems on the LCM, while the solid lines represent a force being applied to the system. In this case, a contact force is applied by the stability modules, and the lift force that occurs when the Pod is lifted.

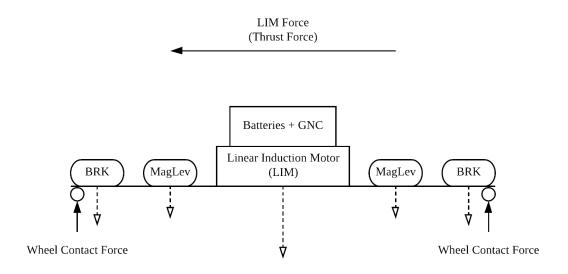


Figure 12. Pod launching load case for the LCM.

As the Pod enters the launch phase and begins its run, it generates thrust via the LIM. In addition to the system weights acting on the structure, the stability module (wheel contact force) would still be in contact with the test track as the Pod would not have gained sufficient speed for the MagLev system to levitate the Pod at this point.

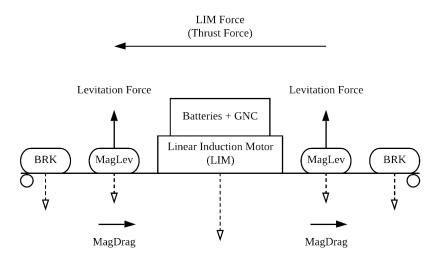


Figure 13. Pod levitation loading scenario for the LCM.

The above schematic represented the forces acting on the LCM as the Pod began its run, and levitates. As illustrated, the Pod experiences a thrust force generated by the LIM. In addition, once the MagLev system is deployed, a drag force is generated known as MagDrag.

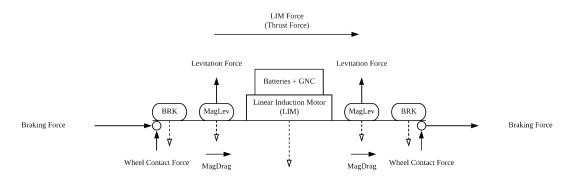


Figure 14. Pod braking loading scenario for the LIM.

As the Pod's braking sequence initiated, the braking force applied slows it down. To improve the Pod's braking profile, reversing the polarity (current) flowing to the LIM will subsequently cause it to generate thrust in the opposite direction to motion as shown in Figure 14. The final bit of braking power can be extracted from the Pod by deploying and bottoming out the MagLev system. In doing so, it will cause the generation of MagDrag, resulting in a much better braking profile.

Under the aforementioned load cases, the objective was to find a suitable crosssection where the stresses, and deformation were minimized while maintaining a sufficient working area to mount the Pod systems. To do so, the area moment of inertia was maximized for the cross-sections outlined in Table 8, and the following equations were used.

Circular Cross-Section:

$$I = \frac{\pi}{4} r_o^4 \tag{1}$$

Tubular Cross-Section:

$$I = \frac{\pi}{4} (r_o^4 - r_i^4) \tag{2}$$

Square Cross-Section:

$$I = \frac{a^4}{12} \tag{3}$$

Hexagonal Cross-Section:

$$I = \frac{5\sqrt{3}}{16}a^4$$
 (4)

where for all the cross-sections, the area moment of inertia is denoted by I. For the circular, and tubular designs, the r_o is its outer radius and r_i is the inner radius. Whereas for the square, and hexagonal cross-sections, a represented the length of its side.

The materials for the LCM were proposed to be either manufactured out of carbon fiber composite, steel or aluminum. Steel LCMs were ruled out due to the large weight penalty that would be incurred when used for the structure. On the other hand, the carbon fiber LCMs would provide the necessary strength while being lightweight. However, it was ruled out due the difficulties associated in manufacturing the long LCM pieces while maintaining a high tolerance. In the end, Aluminum 6061-T6 was selected for its optimal balance between its strength, and weight while being a material that is easy to be worked upon. The material specifications for the Aluminum have been tabulated in Table 11 [14], [15], and [16].

Parameter	Value	
Material	Aluminum	
Specification	6061	
Hardening	T6	
Density	$2700~kg/m^3$	
Modulus of Elasticity	68.9 GPa	
Poissons Ratio	0.33	
Ultimate Tensile Strength	310 MPa	
Yield Tensile Strength	276 MPa	

Table 11. Aluminum 6061-T6 material specification for the LCM.

With the material specifications on hand, the properties for the LCM was calculated. Observing Table 12, a tubular LCM would be of an ideal weight while having a high enough area moment of inertia. However, with a circular and tubular cross-section, mounting other systems on the LCM would be difficult as it does not allow for the presence of a flat mounting surface. On the other hand, a hexagonal LCM would provide sufficient surface area for system mounting at the expense of the added weight.

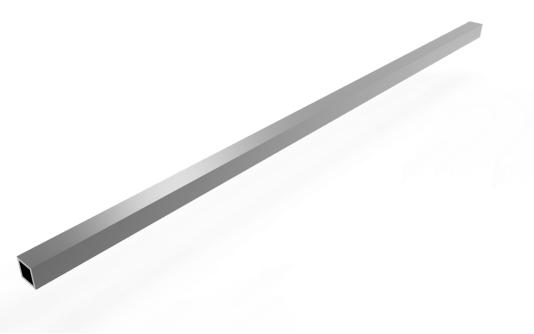


Figure 15. Pod's LCM manufactured using anodized black Aluminum 6061-T6.

Aluminum extrusions were initially considered to be the best solution due to its high strength, area moment of inertia all the while having a low enough mass as shown in Table 12. In addition, the presence of T-slots would allow for the incorporation of a modular mounting method. During tests, it was found that placing systems on the exact mounting coordinates to be extremely difficult as a result of the slots. And replicating their location after a component swap was almost impossible. As a result, the extrusion was swapped out for traditional square tubing manufactured out of Aluminum 6061-T6 [17].

LCM Design	Volume	Mass	Area Moment of Inertia
Circular	$0.004 \ m^3$	10.945 kg	$3.65 \ kgm^2$
Tubular	$0.002 \ m^{3}$	4.788 kg	$1.597~kgm^2$
Square Tubing	$0.002 \ m^3$	6.097 kg	$2.034~kgm^2$
Hexagonal	$0.004 \ m^3$	11.314 kg	$3.786~kgm^2$
Extrusion	$0.002 \ m^{3}$	4.498 kg	$1.501 \ kgm^2$

Table 12. Property calculation of the various LCM designs.

4.2.1.1 LCM Analysis

To ensure the LCM met the structural requirements, the aforementioned crosssection (square tubing) was analyzed within ANSYS. Furthermore, to successfully design and validate the LCM, the braking phase was considered to be the most load bearing case on the Pod. As a result, its corresponding boundary conditions where the one ends of the LCM become locked up (clamped). This was in addition to the principal system loads occurring on the structure within ANSYS. Figure 16 highlighted the workflow setup for the various Pod loading scenarios within ANSYS Workbench.

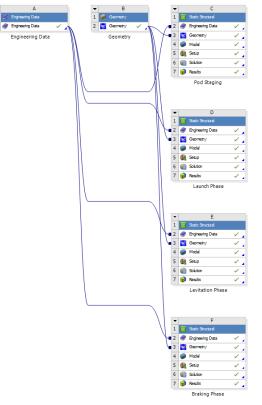


Figure 16. ANSYS workflow setup for the Pod's LCM.

4.2.1.1.1 Loading Case I (Pod Staging)

During the staging phase, the Pod is lifted via a forklift from the chassis. This resulted in the Pod to experience a lift force, and a reactionary force from the stability wheels on the LCM. In addition, the analysis accounted for the weights of all the Pod systems as illustrated in Figure 11.

Table	13.	LCM	loading	case	for	Pod	staging.
-------	-----	-----	---------	------	-----	-----	----------

LCM Loading Parameters	Value
Braking System (Per System)	74 N
MagLev System (Per System)	84 N
LIM, Batteries & GNC Systems	403 N
Pod Staging Lift Load (Per System)	687 N

Within the Pod staging load scenario as highlighted in Table 13, a maximum deformation of 0.55 mm was to be expected at the centroid of the LCM with a maximum stress value of 165.71 MPa as illustrated in Figure 17 and Figure 18 respectively.

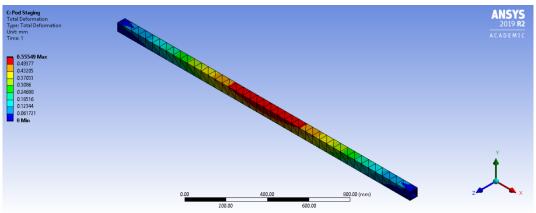
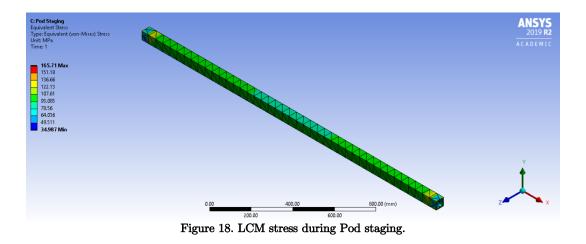



Figure 17. LCM deformation during Pod staging scenario.

4.2.1.1.2 Loading Case II (Launch Phase)

Once the Pod is placed on the test track, and launch clearance is obtained from SpaceX, only then will the Pod have the ability to go into the launch phase. As the Pod is launched, it experiences the thrust generated by the LIM. In addition to all the system weights acting on the chassis, the stability wheels would still apply a reactionary force on the Pod as a result of the low speed the Pod would be traveling at during this segment of its run.

Table 14. LCM	l loading ca	se for laund	hing phase.
---------------	--------------	--------------	-------------

LCM Loading Parameters	Value
Braking System (Per System)	74 N
MagLev System (Per System)	84 N
LIM, Batteries & GNC Systems	403 N
Vehicle Stability Module (Per System)	687N

With the loading scenario highlighted in Table 14, a maximum deformation of 0.55 mm was observed at its center due to the weight of the LIM, batteries and the GNC system. Whereas, a maximum stress value of 165.71 MPa was observed within the LCM. The deformations and stresses have been illustrated in Figure 19 and Figure 20 respectively.

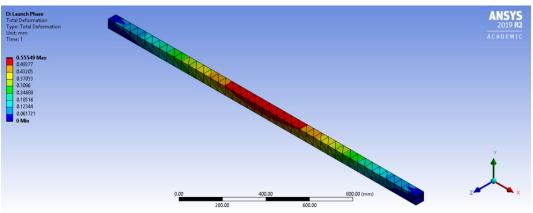


Figure 19. LCM deformation during Pod's launching phase.

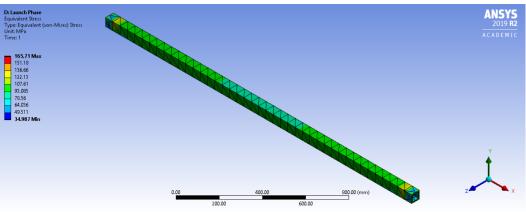


Figure 20. LCM stress during Pod's launching phase.

4.2.1.1.3 Loading Case III (Levitation Phase)

Further into the run, the Pod would have gathered enough speed allowing for the MagLev system to take over, and to support the Pod. During this phase, the aforementioned forces such as the thrust, system weights would continue to act on the structure. However, with the MagLev being initiated, the drag force generated by it will begin to have an effect on the Pod. With the Pod fully levitating, the contact force from the vehicle stability modules no longer act on it.

LCM Loading Parameters	Value
Braking System (Per System)	74 N
MagLev System (Per System)	687N
LIM, Batteries & GNC Systems	403 N

Table 15. LCM loading case for the Pod's levitation phase.

Table 15 showcased the major system loads acting on the LCM during the levitation phase. As majority of the load is exerted upwards by the MagLev on the LCM, a maximum deflection of 0.68 mm and a stress value 165.09 MPa was obtained. Figure 21 and Figure 22 showcase the contour plots for the new loading scenario.

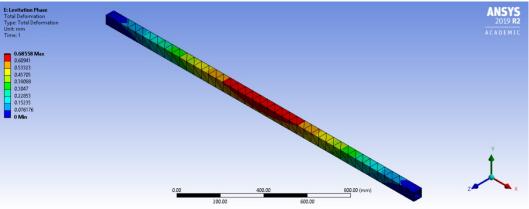


Figure 21. LCM deformation during Pod levitation.

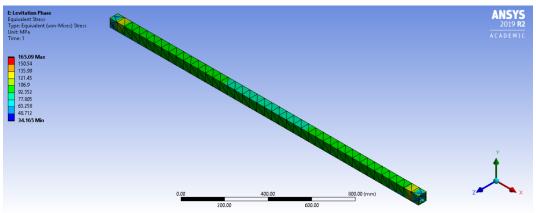


Figure 22. LCM stress during Pod levitation.

4.2.1.1.4 Loading Case IV (Braking Phase)

When the Pod's braking sequence is initiated, the first major event that would occur is the deployment of the braking system. To take advantage of the onboard systems, additional braking power could be generated by reversing the polarity of the LIM. By doing so, the LIM would generate thrust in the opposite direction to motion, slowing the Pod down drastically. The final method of obtaining more braking power is through the deployment of the MagLev system. This would result in generation of MagDrag where even more braking power can be extracted from the system.

LCM Loading Parameters	Value
Braking System (Per System)	74 N
MagLev System (Per System)	687 N
LIM, Batteries & GNC Systems	403 N
Vehicle Stability Module (Per System)	687 N
Braking Lock-Up Force (Per System)	1374 N

Table 16. LCM loading case for braking phase.

For the load case highlighted in Table 16, a maximum deformation of 0.55 mm was obtained as show in Figure 23. While its stress was found to be approximately 165.71 MPa as illustrated in Figure 24.

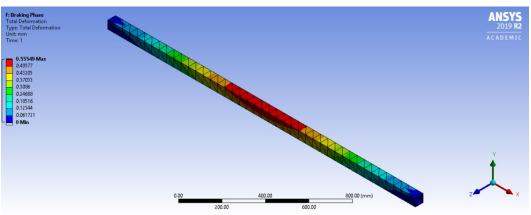


Figure 23. LCM Deformation During The Pod's Braking Phase.

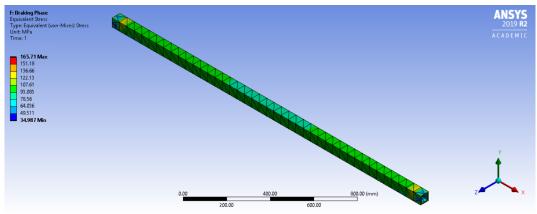


Figure 24. LCM Stress For The Pod's Braking Phase.

4.2.2 Pod Bulkhead

The bulkheads are a critical feature of the Pod's design. Being highly integrated within the Pod, they are used to transfer concentrated loads to the remainder of the Pod's structure [18]. In addition to the transfer of loads, they also provide support to the LCMs. The design of the bulkheads revolved around ensuring the Pod's structural rigidity was increased, and to ensure critical dimensions would be maintained during the Pod's braking phase.

The first step in the design of the bulkhead was to obtain the loads that acted on it. With the Pod being symmetrical about the vertical centerline, it resulted in a symmetrical load application as well. The Pod's bending stresses, and shear flow were obtained by the flexure formula.

$$\sigma = \frac{My}{l} \tag{5}$$

where the σ is the bending stresses undergone by the Pod due to a moment M located at a y distance from the neutral axis. Where the area moment of inertia for the component being analyzed was represented by I.

$$q = \frac{V_{\infty}}{I} \int y dA \tag{6}$$

where the shear flow for the bulkhead is denoted by q, V_{∞} is the shear force, I is the area moment of inertia located at a y distance from the neutral axis, and dA is an infinitesimally small area under examination. With the LCMs being manufactured out of Aluminum, the bulkhead material was also chosen to be Aluminum 6061-T6 with its material specification being tabulated in Table 17 [17]. This was done as the forward, and rear bulkheads needed connected to the LCMs to form one superstructure.

Parameter	Value
Material	Aluminum
Specification	6061
Hardening	T6
Density	$2700~kg/m^3$
Modulus of Elasticity	68.9 GPa
Poissons Ratio	0.33
Ultimate Tensile Strength	310 MPa
Yield Tensile Strength	276 MPa

Table 17. Aluminum 6061-T6 material specification for the bulkhead.

Following the design principles used in the aerospace industry for aircraft wings, the bulkhead design utilized a rib-frame method. This was done to reduce the torsion that was generated as the braking system was engaged. In order to optimize the design while dealing with the stress, initially the bulkheads were made without any cutouts. Using an iterative design approach, the design was optimized to include cutouts where excess material was not required in order to cut down on weight as shown in Figure 25 and Table 18.

Figure 25. Pod's bulkhead manufactured using anodized blue Aluminum 6061-T6.

Table 18. Dimensional specifications	for the Pod Bulkhead.
--------------------------------------	-----------------------

Bulkhead Parameter	Value	
Length	17.27 ст	
Width	25.11 cm	
Height	18.16 cm	

4.2.2.1 Bulkhead Analysis

Analysis on the bulkhead was performed for its worst case scenario which would occur during the Pod's braking phase where the two pneumatic pistons were expected to apply a braking force of 1,957 N. Therefore, the bulkhead design was validated to withstand this load application.

Under the aforementioned load condition, a maximum deformation of 1.01 mm was to be expected as illustrated in Figure 26. In addition, this deformation occurred in the region where the two pneumatic pistons would be affixed to it. This occurs as a reactionary force is transmitted to the bulkhead during the braking sequence application. Additionally, maximum stress of 193.69 MPa was observed in the Aluminum 6061-T6 bulkhead as shown in Figure 27. This was well below the yield and shear strengths.

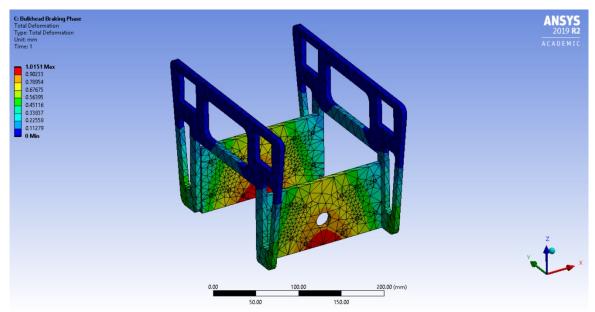


Figure 26. Pod bulkhead's deformation during Pod braking.

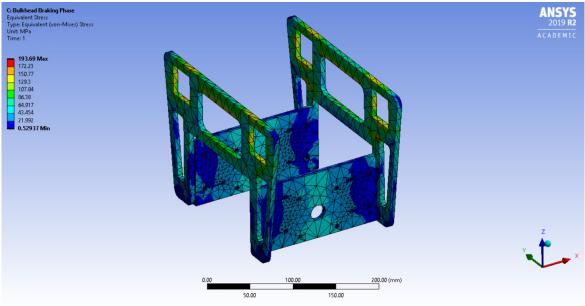


Figure 27. Pod bulkhead's stresses during Pod braking.

4.2.3 Pod Chassis

The forward and rear bulkhead connected the two LCMs together to create the Pod's chassis as illustrated in Figure 28. The LCM ran from one bulkhead to the other. As mentioned before, based on the application of the bulkheads and the LCMs within the Pod, both were selected to be manufactured out of Aluminum 6061-T6. It was done primarily due to its density, ultimate and yield strength, stiffness, temperature limits, producibility, repairability, cost, and availability.

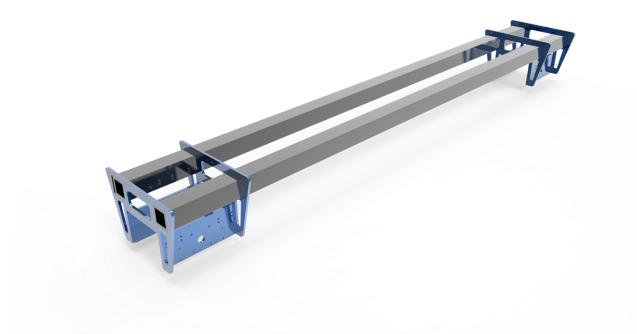


Figure 28. Assembled Hyperloop Pod chassis with the LCMs and bulkheads.

The Pod's chassis is subjected to a repeated cyclic loading, and the structure is expected to experience fatigue stress. Although this may be the case, the formation and propagation of cracks has been unaccounted for due to the low cycle count of this particular structure. For the Pod, one cyclic load is when the environment goes from ambient pressure to near vacuum, and back to ambient pressure [19]. The final Pod chassis conducting the run will have approximately ten cycles on it as outlined in the table below.

Cycle	Number of Cycles
Post Manufacturing Check	2
Test Vacuum Certification	2
Final Vacuum Certification	2
Hyperloop Tube Test	3
Hyperloop Tube Run	1

Table 19. Total cycle count for the Pod's chassis.

4.2.3.1 Chassis Analysis

Analysis was performed for this superstructure using the loadings that would be seen during the Pod's worst case scenario, being the braking phase. As buckling of the Pod chassis was a concern, it was analyzed through the assumption that this would occur in the event a braking system was inoperable while the other system applied maximum braking force cause one end of the Pod to lock up. This was done in addition to all the system loads being applied to it as tabulated within Table 20.

Chassis Loading Parameters	Value
Braking System (Per System)	74 N
MagLev System (Per System)	687 N
LIM, Batteries & GNC Systems	403 N
Vehicle Stability Module (Per System)	687N
Braking Lock-Up Force (Per System)	1374 N

Table 20. Pod chassis loading during single operating braking system.

Under the aforementioned worst case loading scenario where only one braking system functioned, a total of 14.162 mm of deformation was to be expected from the free end as shown in Figure 29. Although the chassis does not fail, this linear deformation could result in the other Pod systems to fail prematurely. With one braking system still operational, it would apply maximum force on the face of bulkhead that resulted in a stress value of 354.03 MPa as illustrated in Figure 30.

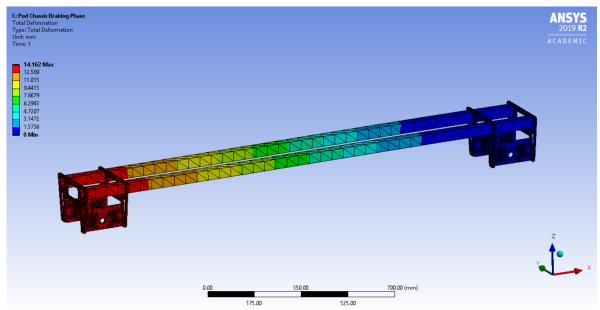


Figure 29. Pod chassis deformation with one inoperable braking system.

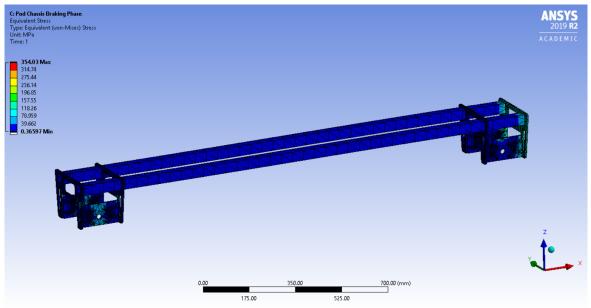


Figure 30. Pod chassis stress with one inoperable braking system.

4.2.4 Pod Shell

Operating in a low pressure or a near vacuum environment, a Pod shell is not a must have component. Although this may be the case, a shell was still designed for the Pod. In order to optimize speed and performance, the Pod's frontal area was minimized, and a streamlined shell was designed to reduce drag. In addition, the shell was designed to ensure whatever air that remained within the tube continuously flowed around the Pod. This was done to ensure the Kantrowitz limit was not reached during the high speed run [20].

As the Pod's speed is further increased, not all of the air can flow around the Pod resulting in it being stagnated at the front. This stems when the tube walls are too close to the Pod's shell resulting in a syringe effect forcing the Pod to push this entire column of air built up in front of it [21]. The drag force originating from the pressure differential in front of and behind the Pod increases exponentially, and independently of the Hyperloop tube pressure. This following equation has been modified for the Hyperloop concept [22].

$$\frac{A_{Bypass}}{A_{Tube}} = \left[\frac{\gamma - 1}{\gamma + 1}\right]^{\frac{1}{2}} \left[\frac{2\gamma}{\gamma + 1}\right]^{\frac{1}{\gamma - 1}} \left[1 + \frac{2}{\gamma - 1}\frac{1}{M^2}\right]^{\frac{1}{2}} \left[1 - \frac{\gamma - 1}{2\gamma}\frac{1}{M^2}\right]^{\frac{1}{\gamma - 1}}$$
(7)

Where A_{Bypass} is the cross-sectional area free of the Pod, and A_{Tube} is the total inner cross-sectional area of the Hyperloop tube. The isentropic expansion coefficient is given by γ , and M denotes the Mach number of the Pod.

To better understand this coupling, we can assume that if the air around the Pod is moving at a relative Mach number, M_{Pod} . As the air moves, it needed to squeeze from the larger cross-sectional area of the tube to the smaller available area around the Pod, A_{Bypass} . Based on the isentropic flow equations, the relationship between the M_{Pod} and M_{Bypass} can be further simplified using the aforementioned area equation.

$$\frac{A_{Bypass}}{A_{Tube}} = \frac{M_{Pod}}{M_{Bypass}} \left(\frac{1 + \frac{\gamma - 1}{2} M_{Bypass}^2}{1 + \frac{\gamma - 1}{2} M_{Pod}^2} \right)^{\frac{\gamma + 1}{2(1 - \gamma)}}$$
(8)

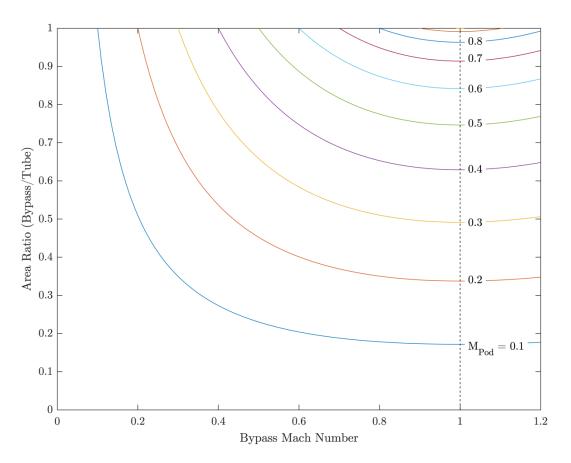


Figure 31. Area ratio vs bypass Mach number plot for varying Mach numbers.

Figure 31 shows the family of curves for a ranging M_{Pod} and M_{Bypass} . For all the values of M_{Pod} , the minimum required area ratio occurs at a M_{Bypass} of one. In other words, as this value equates to one it would result in the smallest possible value for the A_{Bypass} or A_{Tube} when the M_{Pod} and A_{Pod} are known. If the area of the tube is smaller than its minimum value, it would result in the mass flow rate to not flow freely around the Pod.

As the Pod reaches transonic speeds, the small volume of air present within the tube will begin to choke. There are certain sections around the Pod where the flow will be sonic. This so called sonic condition is known as the Kantrowitz limit where the mass flow rate around the Pod has reached it maximum value. In addition to the Pod's velocity, there is a minimum tube to Pod area ratio below which the flow will also be choked. As illustrated in Figure 31, if the Pod were required to travel faster, a larger A_{Bypass} was needed and must be relative to the tube's area. For an M_{Pod} of one, the area ratio almost equals one forcing the A_{Pod} to be almost zero [9].

Figure 32. An isometric view of the Pod shell.

In order to optimize speed and performance without the incorporation of a front end compressor, the Pod's frontal area was minimized, and a streamlined shell was designed to reduce aerodynamic drag. In addition, the shell was designed to ensure whatever air is remaining within the tube continuously flows around the Pod without reaching the Kantrowitz limit. The completion of Finite Element Method (FEM) and Computational Fluid Dynamic (CFD) resulted the design shell as shown in Figure 32. To maintain a minimal cross-sectional area, the design incorporated a dog bone shape as illustrated in Figure 33. This was also done to ensure sufficient mass flow during the high speed run. A carbon composite laminate shell using a resin and hardener combination was selected to produce a lightweight component while enclosing all the Pod's systems.

4.2.4.1 Shell Analysis

The shell is a carbon fiber laminate with a Soric core. The laminate was designed to be quasi-isotropic with the following laminate, where S describes the Soric core: [[90 45 90]_s S [90 45 90]]. For the laminate, HexTow AS4C 3K carbon fiber was used as it was a continuous, high strength, and high strain material. This laminate was surface treated by the supplier to improve the its handling characteristics, structural and mechanical properties as tabulated in Table 21 [23].

Parameter	Value
Manufacturer	Hexcel Corporation
Specification	HexTow AS4C 3K
Filament Count Tows	3,000
Tow Cross-Sectional Area	$0.11 \ mm^2$
Filament Diameter	6.9 microns
Carbon Percentage	94.0%
Density	$1780~kg/m^3$
Modulus of Elasticity	231 GPa
Tensile Strength	4.723 GPa
Yield Strength	$5.00 \ \mathrm{m/g}$
Strain	1.8%

Table 21. HexTow AS4C 3K material specification for the Pod shell.

To account for the thermal heating of the shell, the composite shell utilized Aeropoxy's PR2032 and PH3665. This particular resin-hardener combination provided a curing time of approximately two hours while being rated to a temperature of 93°C. This provided ample amount of working time while ensuring the shell can withstand the California heat, and the heat generated by the systems during a full power run. The Aeropoxy's material specifications have been tabulated in Table 22 [24]. In addition, the shell will be locked onto the chassis using internal friction fit dowel locking system eliminating the need for drag inducing screws.

Parameter	Value
Manufacturer	Aeropoxy
Resin	PR2032
Hardener	<i>PH3665</i>
Density	$1134.94~kg/m^3$
Tensile Strength	316.26 MPa
Modulus of Elasticity	21.02 GPa
Pot Life	2 hours
Mix Ratio	100:27
Rated Temperature	<i>93</i> °C

Table 22. Aeropoxy PR2032 and PH3665 material specification for the shell.



Figure 33. A top down view of the Pod shell.

4.2.5 Pod Braking

The Pod is required to have its own onboard braking system to slow it down as it approaches the end of the Hyperloop tube. Braking can be done in a variety of ways, with frictional braking being performed on the Hyperloop tube, concrete base, the Aluminum sub-track, or the test track itself. When the BRK system was designed, major consideration was put on ensuring that any surfaces used for braking does not get damaged as a result of it. This was done by selecting a braking material with a lower hardness value than the track. In addition, BRK was designed to wear rather than to exhibit sticking characteristics. Furthermore, analysis and reliability tests were conducted for the Pod's worst case scenarios. For example, having the one of the braking systems to become locked up resulted in the Pod to come an immediate stop. This was done in conjunction with the largest steps and variations in the Hyperloop tube. These considerations ensured the Pod's braking system behaved nominally and would not result in a system failure.

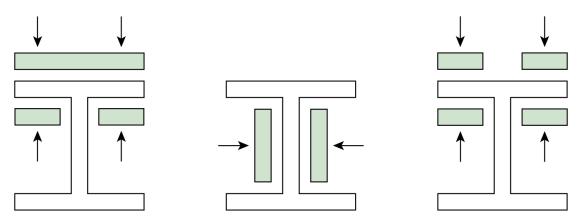


Figure 34. Acceptable Pod braking scenarios on the test track.

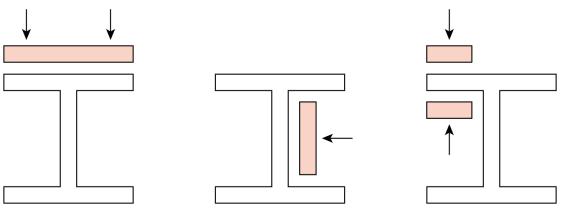


Figure 35. Unacceptable Pod braking scenarios on the test track.

As the Pod utilized the test track to perform its braking operations, it was made to be self-reacting and symmetric about the vertical axis of the track. In other words, the braking operation was made to clamp down on the test track as illustrated in Figure 34, rather than to push on it as shown in Figure 35.

4.2.5.1 Braking Configuration

For effective and high braking performance, the system has been arranged in a forward, and aft configuration within the Hyperloop Pod. To ensure braking capabilities during all phases, BRK has two independent systems. Both the braking systems have its own pneumatic pressure vessels, control systems, control valves, and pneumatic tubing as highlighted in Table 23. This is done to prevent cascading failure in the event a system failure was to occur.

Braking System Parameters	Quantity
Number of Independent Systems	2
Pneumatic Braking Pistons	4
Pressure Vessels	2
Pressure Regulators	2
Shut-Off Valves	3
Directional Control Valves (DCV)	2
Electronic Control Unit (ECU)	GNC
Power Source	Pod Batteries

Table 23. Pod braking system component list.

The four pneumatic braking pistons placed on either side of the Pod have been designed to utilize the web of the test track during braking operations. To ensure the CG was located at its optimal point, all of the BRK components are placed on the top of the test track except for the pneumatic pistons.

For high performance braking, the pneumatic braking pistons supply a total of 1,957 N of braking power when a 10 bar internal supply pressure was maintained as shown in Table 25. Furthermore, as the Pod was expected to perform a number of braking cycles as highlighted in Table 24, a closed loop double acting piston was used. Such a piston allows for the extension and retraction without venting internal pressure during the various phases of the Pod as shown in Figure 36 [25].

Figure 36. Double acting pneumatic braking piston for the braking system [25].

Braking Cycle	Cycle Count	
Pre-Tube Brake Check		2
Test Track Brake Check		1
Airlock Closure Brake Check		1
Low Pressure Brake Check		2
Pre-Launch Brake Check		2
Pod Braking Phase		1
Pre-Crawl Braking Check		1
Crawl Braking Phase		1

Table 24. Braking cycle count for pre and post Hyperloop run.

This piston was chosen for its performance when compared with to mass. To ensure acceptable results, the worst case scenario was once again analyzed, where one braking system was considered to be inoperable. With the expected output force over the span of the braking time, enough braking force was generated to bring the Pod to a safe halt with a Factor of Safety (FoS) of two.

Braking Piston	Value
Bore Size	50 mm
Stroke Size	40 mm
Mass	0.73 kg
Maximum Braking Force	1957 N
Minimum Supply Pressure	10 Bar
Tank Supply Pressure	17.2 Bar

Table 25. Pneumatic braking piston specifications.

To ensure safe operation of the braking system during any phase of the run, a minimum of 10 bar was required to be maintained within the system. Furthermore, to account for any leaks that that may occur as a of the system being manufactured in house, a pressure vessel capable of safely being pressurized up to 17.2 bar was selected. This was done through the usage of a High Pressure Air (HPA) carbon composite pressure vessel. In addition to being lightweight, and compact, the carbon fiber tanks have been certified by the Department of Transportation (DOT), and Transport Canada (TC) as illustrated in Figure 37 [26].

Figure 37. Carbon composite HPA pressure vessel for the braking system [26].

The selected pressure vessel has a volume of 0.0438 cm^2 which is capable of supplying enough to the BRK system with a sizable Safety Factor (SF). For the Pod, it was pressurized to 17.2 bar. The inclusion of a four way, two position Directional Control Valve (DCV) within the system allowed for one supply pressure vessel to control two pistons simultaneously. With an electric switch, the DCV was supplied with 24 V that switched the position of the solenoid valve that directed the airflow allow for the piston to extend or retract the brakes [27].

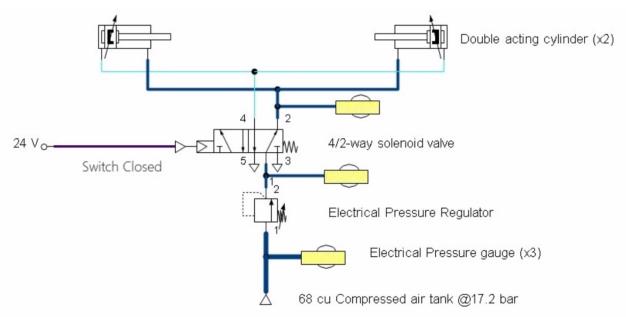


Figure 38. Retracted pneumatic braking schematic for one piston set.

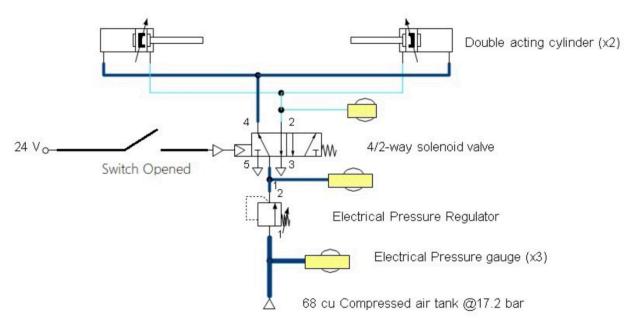


Figure 39. Extended pneumatic braking schematic for one piston set.

As the forward and aft braking systems were identical, Figure 38 was the schematic for a single pneumatic braking system. For the safety of the Pod, the Hyperloop tube, and all the involved personnel, the BRK system was designed with its default position being open.

Figure 40. Directional control valve with two solenoid valve coils [27].

In the event of a power loss to any critical system, the braking system has been designed to automatically deploy as its design feature as illustrated in Figure 39. This ensured the Pod always comes to a safe halt. This was made possible as this particular DVC has a fast response time which dramatically reduced the amount of coasting time between when the polarity is reversed of MagDrive, and to when the brakes kick-in. However, during nominal system operations the power requirements for some of the BRK components such as the Electronic Pressure Regulator (EPR) and Electronic Pressure Gauge (EPG) have been outlined in Table 26.

Power Requirements	Value
DCV Voltage	24 V
DCV Current	0.3 A
DCV Power	6.9 W
EPR Voltage	24 V
EPR Current	0.18 A
EPR Power	4.32 W
EPG Voltage	24 V
EPG Current	$0.0002 \ mA$
EPG Power	0.48 W

Table 26. Power requirements for a few braking components.

4.2.5.2 Braking Analysis

The Hyperloop Pod's braking system was designed to decelerate it from its maximum speed at the furthest possible braking engagement distance. This in combination with the assumption that only one BRK system was operating ensured that the shortest allowable braking distance was used. In order to compute the basic braking parameters, the following equation was used.

$$v^2 = u^2 + 2as \tag{9}$$

where v, and u is the initial and final velocities of the Pod, a is the Pod's acceleration or deceleration over the time period under consideration, and s denotes the distance being covered by the Pod under this particular time period. The aforementioned equation can be further simplified as the Pod was required to come to a safe halt, i.e. the final velocity needed to be zero.

$$a = \frac{-v^2}{2s} \tag{10}$$

During the worst case scenario, the assumption made that only one braking system works nominally. Under this assumption, the braking force that needed to be applied by the piston to bring the Pod to a safe halt was calculated through the following equation.

$$F_B = m_{Pod}a \tag{11}$$

where F_B in the aforementioned equation is derived from the Newton's Second Law, m_{Pod} and a_{Pod} are the mass and acceleration of the Pod.

$$F_{Brake,Req} = \frac{F_B}{\mu_{k,Track}N_{Pod}} \tag{12}$$

where $F_{Brake,Req}$ is the braking force required to be delivered from the pneumatic piston to safely stop the Pod, F_B is the Newton's Second Law that was calculated from the Pod's mass, and deceleration rate. The coefficient of kinetic friction is denoted by $\mu_{k,Track}$, and N is the normal force generated from the Pod as it decelerated.

$$F_{Brake} = P_{Piston} A_{Piston} \tag{13}$$

where F_{Brake} is the output force supplied by the pneumatic piston, P_{Piston} is the internal pressure acting within the double acting piston and A_{Piston} is its cross-sectional area.

$$F_{Brake} > F_{Brake,Req} \tag{14}$$

To ensure the Pod always has the ability to safely stop, the braking force produced by the pneumatic pistons need to always be greater than the braking force required to stop the Pod. Using this criterion, the Pod was designed to have a SF of two when the brakes are engaged from its maximum possible speed. The nominal and off-nominal Pod braking distances required for it to come to a complete stop have been tabulated in Table 27.

Braking Parameter	Value
Nominal Braking and Optimal Brake Performance	58.62 m
Nominal Braking and Lower Brake Performance	63.77 m
Off-Nominal Braking and Optimal Brake Performance	117.24 m
Off-Nominal Braking and Lower Brake Performance	127.55 m

Table 27. Performance specification for nominal and off-nominal braking.

4.3 Pod Propulsion

To effectively develop the Hyperloop Pod's Propulsion (PRP) system, it was broken down into its sub-systems as shown in Figure 41. The Linear Induction Motor (LIM), and the Magnetic Levitation System (MagLev) constituted a large part of the PRP system.

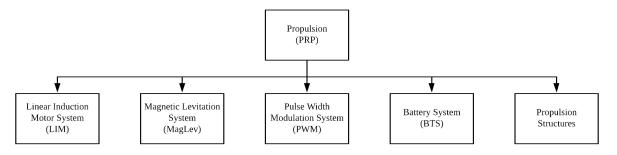


Figure 41. Pod propulsion breakdown.

In addition, as the Linear Induction Motor (LIM) and the Magnetic Levitation (MagLev) systems were the only onboard propulsion systems, it was considered to be the main focus of the PRP. The Pulse Width Modulation (PWM) system, and the batteries were considered to be auxiliary to the LIM and MagLev as they were COTS systems.

4.3.1 Linear Induction Motor

The basis of operation of a LIM is very similar to that of a Rotary Induction Motor (RIM). In a way, when a rotary motor is opened up, and flattened out, a LIM is obtained. This cutting process to form a LIM from a RIM has been illustrated in Figure 42 [28]. This in allows for the production of a linear force instead of a rotary torque that would otherwise be generated from a RIM. Based on the winding pattern, input current and voltage, and the supply input, the generated linear force from the LIM could be varied.

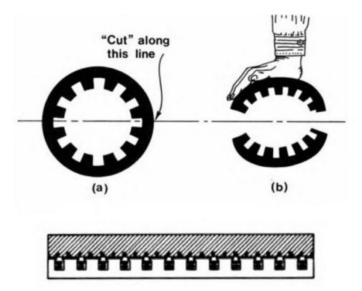


Figure 42. The formation of a LIM from a RIM by I. Boldea [28].

With the absence of mechanical gears, and transmission systems, a LIM results in higher efficiency, higher dynamic performance, and improved overall stability. These advantages in combination with its simple structure and low cost made it an ideal candidate for the Hyperloop [29].

A conventional RIM consists of a stator, and a rotor that form the main basis to produce the rotary torque. The stator consists of windings that are uniformly and sequentially placed within its slots. This configuration generated a sinusoidally distributed magnetic field. However, in the case of a LIM, instead of producing a rotating flux, the windings now created a flux in a linear direction [30].

In order for a voltage to be induced within, there needed to be relative motion between the conductor and the magnetic fields. As a result, this can be computed through the following equation.

$$V_s = 2f\tau \tag{15}$$

where V_s is the LIM's synchronous velocity, f is the input frequency, and τ is the distance between two poles on the circumference of the stator. This parameter is also known as the pole's pitch which can be further defined as follows.

$$\tau = \frac{2\pi R}{P} \tag{16}$$

where $2\pi R$ represents the circumference of a non-flattened out stator, and P is the number of poles present in the motor. However, with the analysis being conducted for a LIM, the aforementioned equation can be modified as follows.

$$\tau = \frac{L_s}{P} \tag{17}$$

where the $2\pi R$ can be equated to be the length of the LIM's stator core [31].

4.3.1.1 LIM Forces

As the LIM was supplied with power, three main forces that are generated are thrust, lateral and normal forces as illustrated in Figure 43. In the case of the Hyperloop Pod, the thrust acts along the longitudinal axis which is along the direction of the proposed motion. The lateral forces are the undesirable forces that tend to throw the stability of the Pod off axis as these were highly dependent on the stator orientation. While the normal force was perpendicular to the stator itself [28].

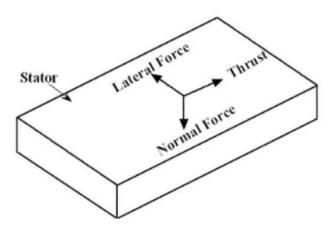


Figure 43. LIM forces adopted from S. P. Bhamidi [32].

4.3.1.1.1 Thrust Force

Under nominal Pod operations, the LIM should develop its thrust force proportional to the square of the supplied voltage. This application tends to reduce slip similar to that of an induction motor with high resistance. This thrust force could be computed through the following equation.

$$F_s = \frac{P_o}{V_c} \tag{18}$$

where F_s is the amount of thrust produced by the LIM, P_o is the output power of the LIM, and V_c is the linear speed of the rotor.

4.3.1.1.2 Lateral Force

The lateral forces generated from the LIM tend to throw off the stability of the Pod. These occur as a result of the asymmetric position of the stator within the LIM. These forces tend to be small in magnitude resulting in a negligible displacement away from the nominal CG configuration. Furthermore, simply through the incorporation of the Vehicle Stability Module (VSM), which were a small set of mechanical wheels meant to help guide the Pod corrected any instability issues that stemmed from this force.

4.3.1.1.3 Normal Forces

The implementation of a single sided LIM within the Pod generated a large normal force due to its asymmetry in topology resulting from a single stator. At the LIM's synchronous speed, the force generated was attractive and got reduced as Pod speed was decreased. In certain cases, especially during high frequency operations, and at certain speeds, this force tends to be repulsive.

However, if the LIM was configured to be double sided, a reaction plate would have been placed between the two stators instead of a single stator. This would result in a normal force to be generated between one stator, and the reaction plate which would ideally be equal and opposite to that of the second stator. This would result in a net force of zero. This would only result when this plate is located asymmetrically between the two stators.

4.3.1.2 LIM Winding Configuration

In order to produce an effective and efficient LIM, its windings were done in a variety of different of configurations. The prominent ones included a single, double, and the triple layer configurations. For the single layer configuration, the number of coils was one half the number of slots available as shown in Figure 44. This resulted in each slot contains only one coil side with such a configuration. With the convenience it provided during the coil assembly, and the need to not have coil-coil insulation that resulted from a single winding layer made it ideal. This configuration is generally used within a single phase motor.

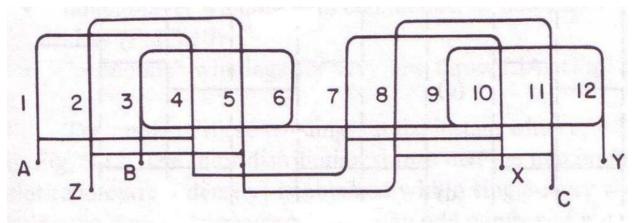


Figure 44. Single layer winding configuration adopted from S. P. Bhamidi [32].

However, most induction motors above a few kilowatts utilize double layer windings. Within this configuration, there were two set of windings of different phases placed within the same slot, except at the end slots as shown in Figure 45. Each coil had two sides to ensure that the windings were placed identically resulting in a balanced arrangement with all the three phases.

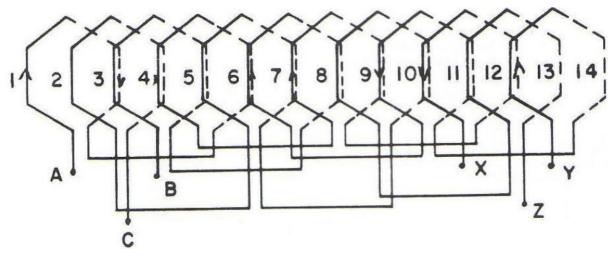


Figure 45. Double layer winding configuration adopted from S. P. Bhamidi [32].

To ensure the same amount of current flowed in each layer, the number of windings and the parallel arrangement depended on the size of each slot. Assuming the permeability of free space (μ_0) was $4\pi \times 10^{-7}$, and the copper's volume resistivity (ρ_r) was 19.27×10^{-9} , the following equation was used.

$$g_e = \frac{2\mu_0 f \tau^2}{\pi \left(\frac{\rho_r}{d}\right) G} \tag{19}$$

where g_e is the effectiveness of the airgap, f is the electrical frequency, ρ_r is the conductor's volume resistivity, d is its diameter, and G is the Goodness factor. The resulting thrust required to be generated by the LIM could be calculated as follows.

$$F_{LIM} = \frac{m{I_1}^2 R_2}{\left[\frac{1}{(SG)^2} + 1\right] V_s S}$$
(20)

With overall trajectory of the Pod being dictated by the thrust output from the MagDrive system, i.e. the LIM. In order for the Pod to move at approximately 45 m/s, the power specifications have been outlined in Table 28 while the schematic for the propulsion system is shown in Figure 46.

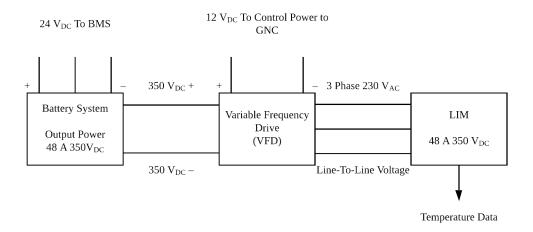


Figure 46. Electrical power schematic for the propulsion system.

Parameter	Value	
Battery System Current Output To VFD	48 A	
Battery System Voltage Output To VFD	$350 V_{DC}$	
Battery System Voltage Output To BMS	$24 V_{DC}$	
VFD Current Output To LIM	48 A	
VFD Voltage Output To LIM	$350 V_{DC}$	
VFD Voltage Output To GNC	$12 V_{DC}$	

Table 28. Basic power breakdown for the Pod.

4.3.2 Magnetic Levitation System

To improve the Pod's efficiency and to reduce the contact friction generated from a wheeled system, the Pod utilized a passive Magnetic Levitation (MagLev) system at high speeds as shown in Figure 47. The MagLev system consisted of the MagLev Actuator, and MagSkis. The inclusion of the MagLev Actuator allowed for the MagSkis to move along the normal direction. By doing so, the magnetic levitation force could be precisely controlled to ensure the Pod was maintained at constant height above the test track. Furthermore, through testing and optimization, it was found that the LIM should be maintained at a height of approximately 3 mm above the track to generate the largest amount of thrust while minimizing MagDrag.

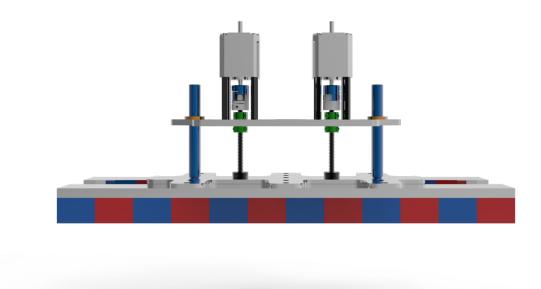


Figure 47. Assembled Hyperloop Pod MagLev system.

To levitate the Pod while maintaining the LIM at the predetermined height, a total of 24 permanent magnets were attached to the steel backing plate. The magnetic force generated from the magnets will induce both a levitating force, and a magnetic drag force (MagDrag). As a result, the magnets and the steel backing plate made up the highest percentage of the total system mass. This was done to ensure the system produced the necessary levitating force. Furthermore, this was done as they were the only components that created, and channeled the magnetic fields within the MagLev system.

Using a coefficient of dynamic friction of 0.15, the torque needed to move the MagLev system up and down was found to be 0.305762 N and 0.091579 N respectively as shown in Table 29. As a result, the total torque required to actuate the mechanical system was low. Therefore, the motor was selected based upon its rated force to effectively actuate the system upwards and downwards. In addition, this was done with a FoS of 1.3 to ensure system reliability at all times.

Parameter	Value
Coefficient of Dynamic Friction	0.15
System Raise Required Torque	0.305762 Nm
System Lower Required Torque	$0.091579 \; Nm$
Lead Screw Calculation	$1.5875 \ mm$
Thread Count	16 Threads/in
Pitch Diameter	6.35 mm
Factor of Safety	2

Table 29. Mechanical load computations on MagLev actuators.

Due to the MagLev generating a levitation force and MagDrag acting on the system, axial, bending, and shear loadings would be induced on the linear guides. As a result, the guides were designed to withstand the forces along these directions.

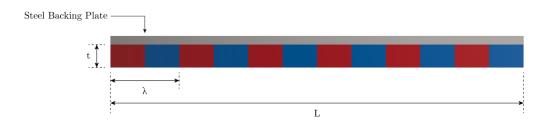


Figure 48. Magnet Dimensional Parameters.

With the goal being to create an optimized MagLev, an appropriate grade of magnet needed to be selected. With a variety of magnetic field strengths being available, analysis showed that grades above N52 experienced a noticeable increase in its demagnetization effects as shown in Figure 49. This graph provided information on its strength and demagnetization properties based on operating temperatures. As a result, a magnet grade of N42 was selected, and its properties have been tabulated in Table 30 [33].

Parameter	Value	
Magnet Grade	N42	
Weight	0.2766 kg	
Length	38.1 mm	
Width	38.1 mm	
Thickness	25.4 mm	
Rated Pull Force	$688 \ N$	
Maximum Operating Temperature	80°C	
Br Max	13,200 Gauss	
B-H Max	42 MGOe	

Table 30. Magnet grade specifications for N42 Magnets.

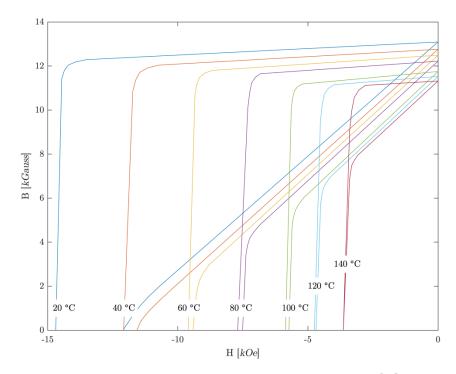
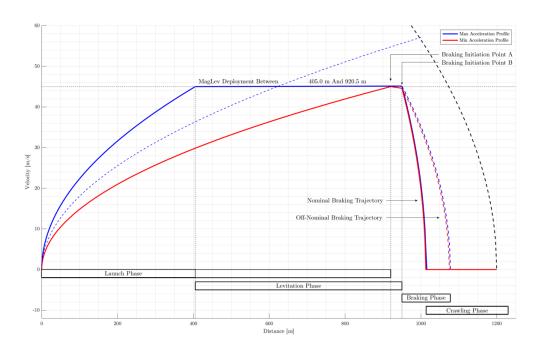


Figure 49. Demagnetization B-H curve for N42 Neodymium magnet [33].

Parameter	Value	
Wavelength (λ)	76.2 mm	
Length (L)	457.2 mm	
Width (w)	38.1 mm	
Magnet Thickness (t_{Mag})	25.4 mm	
Backing Plate Thickness (t_{plate})	$9.525 \ mm$	
Total Number of Periods	24	


Table 31. Magnet and backing plate specifications for Pod MagSkis.

4.4 Pod Guidance, Navigation and Control

Figure 50 illustrates the Pod's trajectory for the entire duration of the Hyperloop run. As seen from the graph, the run had been classified into four distinct categories – Launch, Levitation, Braking, and Crawling phases. Each of which engaged certain systems. This graph provided an operating envelope for the Pod during nominal and an off-nominal Hyperloop runs.

The plot included two distinct acceleration curves representing the Pod's maximum (2.55 m/s^2) , and minimum (1.25 m/s^2) acceleration profiles based on the LIM's expected performance data. Once levitation velocity of 45 m/s is attained, the MagLev system is activated. Whereby, acceleration is expected to decrease by a slight amount due to MagDrag being generated by the MagLev. At the conclusion of the levitation phase, the braking sequence is initiated.

All the profiles including the two acceleration, levitation, and braking phases were computed by equating their slopes to be solved for the distance they intersected at. Knowing that the MagLev system took approximately 0.5 s to extend or retract, the point at which the system began to have an effect on the run was calculated through basic dynamic equation as follows.

$$V_f = V_i + at \tag{21}$$

Figure 50. Pod trajectory profile.

In addition to the acceleration and levitation profiles, the Pod's nominal and offnominal braking scenarios were accounted for. This was done to highlight the effects of braking when one braking system became inoperable. With a delay of about 0.5 s needed for the pneumatic braking lines to be fully pressurized, the braking sequence was made to be activated at the 927 m mark. By doing so, it allowed for Pod to be at full power and to begin braking at full force as it reached the 950 m marker within the Hyperloop tube.

With braking being the most critical phase within the entire run, the activation of its sequence was made to be dynamically computed. This was particularly crucial as testing within the Hyperloop tube had not been conducted before. By doing so, if the Pod experienced higher acceleration and the Pod velocity exceeded its target velocity, the braking sequence would be initiated earlier. This was done to ensure enough braking was available to bring the Pod to a safe halt. However, if the Pod performs with a lower acceleration, the braking sequence would be activated at a much later point.

Once the Pod comes to a safe halt and if it underwent nominal operations, the crawling phase could be activated. This would allow it to move forward at a low speed of 1 m/s until the forward range sensor detects the end of the Hyperloop tube approximately 20 m away. With the controllers running at a frequency of 20 Hz, 50 ms per loop, a lag in position of approximately 3 m was to be expected and was accounted for in the telemetry data.

4.4.1 Pod States

As Hyperloop Pods are expected to travel at high speeds, the designed Pod was made to be fully autonomous with a constant stream of data transmitted to the Ground Station (GS). The Pod has a total of seven states that assist it in completing its mission. Once powered up, it automatically defaults to a "Safe To Approach" state. This is done only when the Pod is stationary, in good working condition without any major faults, and is safe for humans to approach it. Upon the completion of the necessary checks within the tube, the Pod then has the capability to go into the remaining states as shown in Table 32.

After receiving necessary approvals from the launch authorities, the Pod is entered into the Ready To Launch state, where final braking checks are performed. The Pod also verifies all temperature readings to be within their operational limits. During this phase, the laser sensor required to measure its location within the tube is verified to be receiving nominal data. Upon the successful completion of all requirements, the Pod is accelerated to its predefined target velocity of 45 m/s. As levitation speed is attained, the MagLev system is deployed whereby, the Pod is lifted off its wheels greatly reducing drag, and improving its linear acceleration. To ensure safety of Hyperloop tube, the Pod, and all the personnel involved, regardless of the MagLev functionality, the Pod is entered into the braking state 0.5 s before reaching the 950 m mark. This ensured both the forward, and aft braking system's pressure lines are fully charged and ready to be engaged at the 950 m milestone. For added safety in the event the Pod fails to identity the 950 m navigational marker, a second redundant braking trigger point was built into the system once the final 76 m are remaining. The ensured the Pod automatically deployed its brakes as it arrived at the redundant trigger point.

At any point during the run, if the Pod encounters an anomaly, a critical system failure, system error, or a loss in communication with the GS, the Pod automatically transitioned into the fault state. This transition activates the braking system whereby it is brought to a safe halt no matter the earlier state of the Pod.

Pod State	Description
Safe To Approach	Indicated that the Pod is stationary, in good working
	condition without any major faults, and is safe for humans
	to approach it.
Ready To Launch	Performed final checks, and readies key systems for
	launch.
Launch	The Pod is accelerated to the predefined target velocity.
Levitation	During a nominal Pod launch, and upon reaching a
	predefined velocity, the MagLev system is deployed to
	achieve levitation.
Braking	Brings the Pod to a safe halt.
Crawl	Moves the Pod at a very low speed using manual control
	from the GS.
Fault	A non-nominal, unknow or unsafe event or a parameter
	fell outside its operating envelope was detected, and Pod
	automatically comes to a stop.

Table 32. Pod states controlled by the GNC system.

4.4.2 Mission Concept of Operations

Figure 51 provides a detailed overview of the nominal mission concept of operations of the Pod. Within this breakdown, the mission was categorized into three distinct phases — Pre-Launch, Launch, and Post-Launch. Each of these categories consist of various system interactions with real time Pod telemetry being transmitted back to the GS for viewing and analysis.

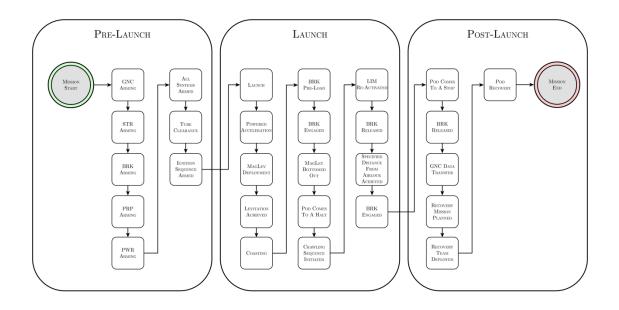


Figure 51. Ryerson International Hyperloop's mission concept of operations.

4.5 Testing Challenge

With the Hyperloop tube being located in Hawthorne, California, the Hyperloop Pod needed to be tested to ensure all its systems met certain standards. This was very critical as the Pod needed to operate within a low pressure environment, using the predefined track specifications at a varying temperature rage.

As a university team, the possibility of travelling to Hawthorne, California more than once a year was out of question mainly due to logistical and economic difficulties. To overcome this, a possible solution that was looked into was to design and build an exact replica of the test track used within the Hyperloop tube. In doing so, testing could be conducted without the need to make multiple trips to Hawthorne. In addition, such a development would open the doors to an iterative design process where even minor modifications in the design could be tested, and validated at a very rapid pace.

In order to replicate the test track, approximately 45 m was needed to have substantial linear length in order to gather meaningful results. As the Pod utilized a LIM and MagLev systems, the test track was required to be manufactured out of a similar material in order to ensure results obtained from the replica track would still be comparable with the test track in Hawthorne, California. The breakdown for such a test track has been tabulated in Table 33.

Parameter	Value	
Test Track	Replica Testing & Development Track	
Material	Aluminum	
Designation	$5051 ext{-}T6 \ / \ 6061 ext{-}T6$	
Stock Profile	Flat Plate	
Finished Profile	I-Beam	
Linear Length	45 m	
Total Length	135 т	
Width	127 mm	
Height	127 mm	
Thickness	10.46 mm	
Cost	CAD\$ 84.65 per m	

Table 33. Replica testing and development track specifications.

Being a downtown university, square footage is a sought after, and an expensive commodity. As a result, the possibility of acquiring the necessary square footage to lay down a track along with its accompanying safety measures was next to impossible. Therefore, alternative methods of testing, and validating the systems were looked into.

4.6 Modular Test Rig

With aircraft structures subjected to high level of forces and shocks, ensuring such components passed all the necessary aviation standards is critical step within its design process. [34] The aerospace industry performs a series of quality control tests during the components lifecycle including during its design, manufacturing, and service life.

For example, the landing of an aircraft exposes the landing gear to significantly high forces when compared to all other phases. As a result, aircraft brake dynamometer testing is used to simulate real life operating conditions including take-off, taxi, and landing. During testing, its wheels are accelerated to its landing reference speed (V_{Ref}) [35]. Upon reaching V_{Ref} , the gear is dropped to simulate similar loads experienced by aircraft during a real landing. Such a process allowed for the determination of all the loads accurately while observing its behavior and response. By having rigorous testing and validation standards, today's aircraft structures are designed with sufficient margins to account for any loads it may see throughout its lifespan.

With the aerospace and the landing gear industry using such tools for its tests, an innovative approach was taken to design an in-house Hyperloop systems test rig. The modular test rig that was developed was made to accommodate tests from STR, GNC, and PRP. Furthermore, it allowed for the validation of said systems individually, or while being integrated in combination and in conjunction with each other. Figure 52 showcases the Modular Test Rig (MTR) designed to test and validate the various Hyperloop systems. Internally, this test rig is also referred to as "The Doughnut".

Figure 52. The Hyperloop modular test rig.

Furthermore, the need to lay down the guide rail as outlined in Table 33 was completely eliminated after the MTR was made to rotate about the axis. By doing so, instead of having a 45 m test track, an infinite track was achieved. Through this approach the MTR occupied minimal square footage of approximately 1.4 m². Rather than the 93 m² that would have otherwise been needed to lay down the 45 m of the required test track.

Observing Figure 52 and going from bottom to top of the MTR, it could be broken down into its support frame, system mounting frame, track, and the motor itself. This breakdown has been illustrated below.

Component	Purpose		
Support Frame	Supported the MTR and allowed for it to be bolted to the ground.		
System Mounting Frame	5		
Track	systems. Allowed for the characterization of system behaviors such as STR, GNC, and PRP.		
Motor	Provided a means to rotate the track at a specified RPM.		

Table 34. Breakdown of the Modular Test Rig.

The development and manufacturing of the MTR utilized a similar material to that of the actual Hyperloop test track. This allowed for the characterization of the Hyperloop systems, and ensured similar behavior would be observed had the same tests been conducted in Hawthorne, California. This was critical to generate the necessary test data required to validate the various Hyperloop systems. Furthermore, the performance of MagLev, MagDrive, Eddie Current Braking, and GNC tests were critical as they were highly dependent on the material properties of the track being used.

The material breakdown for the major MTR components have been defined in Table 35. Whereas, Figure 53 highlights the motor's performance. Observing its speed and torque characteristics, continuous operation of the MTR was possible when its operated within the continuous duty region. Whereas, the limited duty region was primarily reserved to aid in the acceleration of the MTR [36].

Component	Material Selection	
Support Frame	High Strength Steel	
System Mounting Frame	Aluminum Al 6105-T6	
Track	Guide Rail Replication	
Motor	120 W (1/6 HP) Brushless DC Motor	

Table 35. Material selection breakdown for the Modular Test Rig.

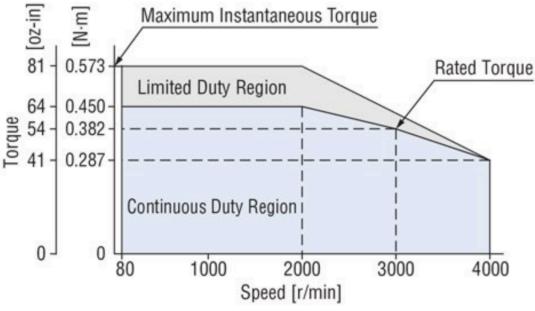


Figure 53. Motor performance plot for the MTR adapted from Oriental Motors [36].

4.6.1 Modular Test Rig Analysis

Before the MTR could be used for the Hyperloop systems tests, the test track and its supporting shaft were analyzed to ensure it met the necessary safety standards. During the analysis, it was subjected two worst case scenarios.

4.6.1.1 Load Case I (MTR Lock-Up)

The first being, the shaft would inadvertently locked-up which in turn would cause the track to experience a lock-up as well causing it to come to an abrupt stop. Under this load condition, the shaft is expected to have a deformation of 0.0925 mm, while it experienced a stress value of 26.615 MPa as shown in Figure 54 and Figure 55 respectively.

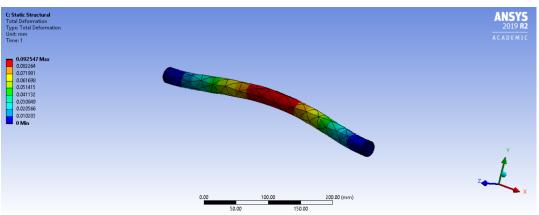


Figure 54. Shaft deformation during MTR lock up.

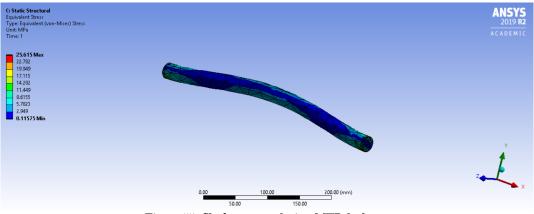


Figure 55. Shaft stresses during MTR lock up.

Meanwhile, under this same loading condition, the track experienced a deformation of 0.00208 mm outwards as illustrated in Figure 56. Whereas Figure 57 displays the track stress that was computed to be 1.978 MPa.

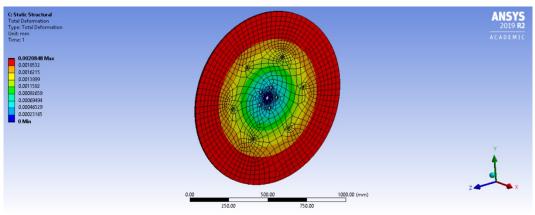


Figure 56. Track deformation during MTR lock up.

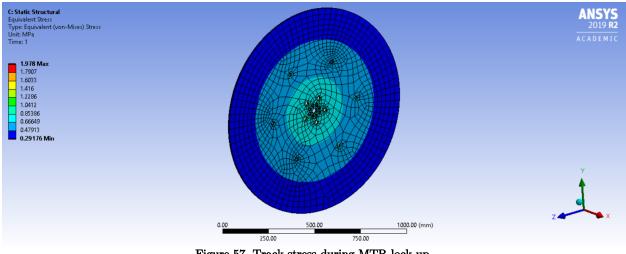


Figure 57. Track stress during MTR lock up.

4.6.1.2 Load Case II (MTR Overspeed)

Under this loading scenario, it was assumed that the overspeed limit built into the MTR malfunctioned. This caused the track to increase its angular acceleration up to a high rated velocity of 50 rad/s. Under this load case, a deformation of 0.00208 mm was to be expected as illustrated in Figure 58. Whereas, an internal stress of 1.978 MPa was generated within it as shown in Figure 59.

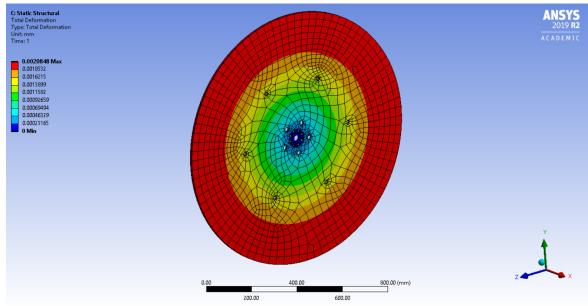


Figure 58. Track deformation during MTR overspeed.

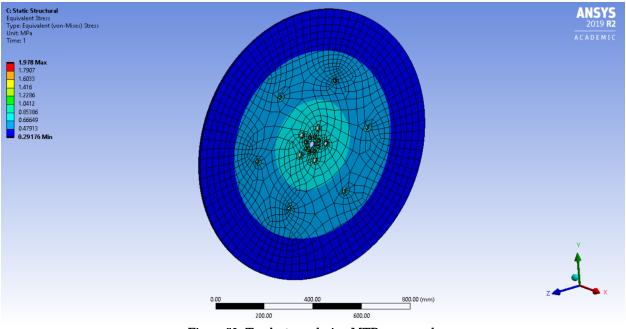


Figure 59. Track stress during MTR overspeed.

4.6.2 Guidance, Navigation and Control Tests

Although the Pod operates autonomously, a constant stream of data flows between the Pod and the Ground Station (GS). With data continuously transmitted some of the parameters monitored by the Pod and sent to the GS were its position, velocity and acceleration, Pod health, temperatures and pressures, and so on.

With the Hyperloop Pod operating in a low pressure environment, initial GNC tests were performed in a pressurized environment. Although this was the case, final Pod electronics needed to be vacuum certified, and thermally rated. This included the use of space grade solder while being in a controlled environment, and x-ray imaging of all the joints to guarantee performance when operated in a low pressure environment. All soldering and electrical work was conducted by following National Aeronautics and Space Administration (NASA) technical standards to ensure the highest levels of performance [37].

The Hyperloop tube has a reflective circumferential tape placed at regular intervals for navigation purposes [10]. In order to make use of this tube feature, GNC's navigation mechanism consisted of a stripe counting sensor that provided the absolute position of the Pod within the Hyperloop tube. Testing of the stripe counter was conducted on the MTR to ensure the Pod's navigation mechanism performed as intended. It also allowed for the necessary fine tuning in order to compensate for the reflectivity of the test track's material, which was Aluminum. This was important as a laser beam needed to be reflected off it. Furthermore, the fluorescent lighting setup within the tube could be replicated, and accounted for in order to generate accurate results. With the accuracy of the stripe counter being critical to the Pod, the drift occurring as the position and velocity errors over time needed to be quantified in order to demonstrate its accuracies.

4.6.3 Structures Tests

During the design of the braking system, key considerations included the distance required to stop, braking effectiveness, system reliability, resulting temperature change, and so on. As the Pod underwent various state changes, multiple tests were conducted using the MTR to characterize them.

As the Pod contained two independent pneumatic braking systems, each system had the ability to deploy two brake pistons simultaneously. As outlined previously, to ensure stability of the Pod during all braking phases, the systems were placed at the forward, and aft locations of the Pod. To validate this setup, a simplification was made where only one of the two systems was mounted on the MTR. By doing so, the braking tests in a way were performed for the worst case scenario, i.e. one system was considered to be inoperative. This particular setup can be observed in Figure 60 where the two pneumatic pistons were mounted to the mounting frame on either side of the MTR.

Figure 60. The Integrated Pneumatic Braking System on the MTR.

With the MTR being manufactured out of nearly the same material as the Hyperloop test track, the MTR could also be used to obtain the braking systems thermal

characteristics under the worst case scenario. With one system inoperative, results showed that a temperature change of 11.895°C would occur. As a result of heat being dissipated between the braking system and the track itself. Without having the ability to install the entire MTR in a pressure chamber, such tests could only be performed in a pressurized environment. As such, the only source of heat dissipation would be conduction. With convection not cooling the braking system, a higher temperature change was expected, and was accounted for within the design.

Furthermore, to ensure all the pistons outputted an equal amount of braking force, they were also tested and validated on the MTR. During these tests, internal piston pressure was capped at 0.42 MPa to ensure the safety of all the personnel involved. The results obtained from the MTR piston tests have been tabulated in Table 36.

Piston Test Parameter	Input Pressure / Output Braking Force
Piston Test 1	$0.10~MPa \neq 800~N$
Piston Test 2	$\it 0.14~MPa \ / \ \ 956~N$
Piston Test 3	$\it 0.18~MPa \ / \ 1,272~N$
Piston Test 4	$\it 0.21~MPa \ / \ 1,504~N$
Piston Test 5	0.28 MPa / 2,077 N
Piston Test 6	$\it 0.35~MPa$ / 2,602 N
Piston Test 7	$\it 0.42~MPa \ / \ \it 3,158~N$

Table 36. MTR Piston input and output braking force test.

Figure 61 showcases the data points obtained from the MTR testing of the pneumatic braking pistons. Observing the theoretical and experimental plots, a deviation of 11.70% occurred between the pneumatic pistons [38]. This slight deviation was to be expected as testing was conducted using an analogue pressure gauge to dial in the piston's internal pressure. However, having the gauge replaced with a digital one should resolve this issue.

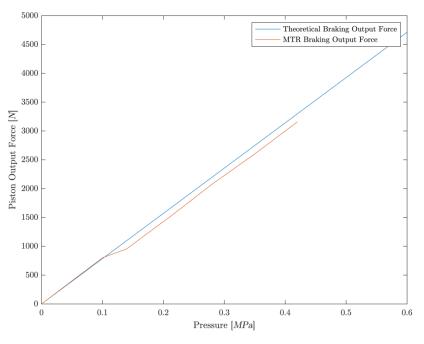


Figure 61. Brake output force data for MTR pistons.

4.6.4 Propulsion Tests

With the propulsion system capable of propelling and levitating the Pod through a true contactless system, the systems were developed from the ground up to cater to the specific requirements of the Hyperloop Pod. As a result, the Student Researched And Developed (SRAD) systems such as MagLev and MagDrive needed to be validated using the MTR.

MagLev is derived from the magnetic levitation system that is used to support the Pod along the normal axis at high speeds [39]. It uses a Halbach array to induce a repulsive magnetic field to suspend the Pod at a predefined altitude or height. With the system being SRAD, it needed to be validated thoroughly on the MTR to show that a sufficient force or lift was developed in order to levitate the Pod. To do so on the MTR, a Dual Axis Force Transducer (DAFT) was developed for the MTR as shown in Figure 62.

Figure 62. Assembled Dual Axis Force Transducer for MagLev testing.

The DAFT was capable of measuring the lift and drag forces, or the levitation force and MagDrag generated by MagLev when deployed. In addition, it was made to sense these forces as a function of the MTR's rotational velocity.

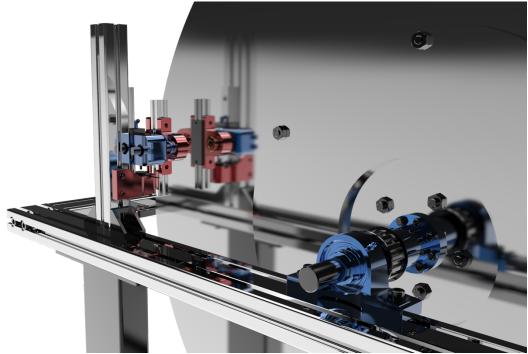


Figure 63. MTR showcasing the mounted DAFT.

Tests were performed utilizing the DAFT on the MTR with a singular North-South (N-S) period configuration of N42 magnets measuring 25.4 mm by 25.4 mm by 12.7 mm in dimension.

The results obtained from MTR tests were used to generate a theoretical profile of the MagLev's behavior. The creation of this profile allowed for the characterization of the MagLev system's performance. The MTR was able to run up to a peak velocity of 15 m/s while holding the rotations at a constant speed reliably. In Figure 64, the reading taken between zero and 5×10^4 clearly demonstrate the ramp up in the MTR's speed as it was powered up. As peak velocity was achieved around the 5.5×10^4 reading mark, the lift to drag, or levitation force to MagDrag was observed to be almost one, and can be seen in Figure 64 as well.

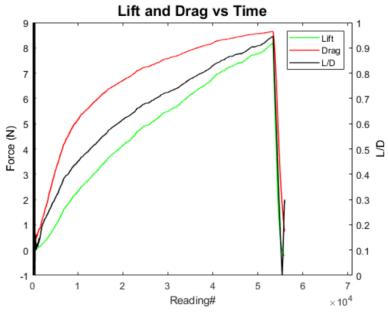


Figure 64. MagLev test results for singular North-South period configuration.

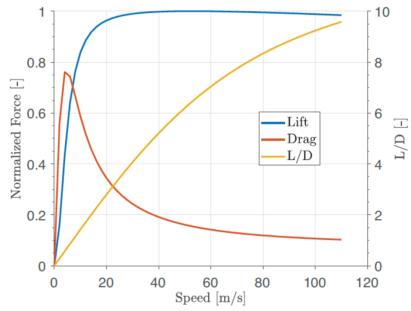


Figure 65. Simulated behavior of lift and drag with an extended velocity profile [40].

With the results obtained, the theoretical profile was generated to show MagLev's behavior had the speed been increased further to the speeds seen by the Hyperloop Pod [40]. Some significant observations that could be made from Figure 65 included the discernibility of the crossover point. This is where MagDrag began to depreciate considerably as the lift or levitation force continued to increase. This occurred up to a certain speed, in this case 70 m/s after which both the parameters began to plateau.

The development of the theoretical profile aided in better understanding of the system if it is modified through a change its array, number of periods, magnet strength, and so on as tabulated below [40].

Design Parameter	Effect on Lift	Effect of L/D	Effect on Weight
Array Wavelength	Slight Decrease	Square Root Increase	Increase
Number of Periods	Linear Increase	No Effect	Increase
Array Width	Linear Increase	No Effect	Increase
Array Thickness	Squared Increase	Negligible	Increase
Magnet Grade	Increase	No Effect	No Effect
Back Plate Thickness	Slight Increase	Negligible	Increase
Nominal Gap Height	Inverse Square Decrease	No Effect	No Effect

Table 37. Parametric performance effects on MagLev.

5 CONCLUSION

The objective of the research work was to design Ryerson's first Hyperloop Pod for the fifth mode of transportation, the Hyperloop. With this new mode of transportation still in its infancy, the challenge was to design and develop its systems and to have them tested in a university environment. In doing so, new requirements, constraints, guidelines, objectives, and standards were developed and explored for the Hyperloop. Any issues and unknowns were solved by applying aerospace engineering knowledge and its principles.

Furthermore, key ideas from the aerospace industry led to the development of the modular test rig that proved to be a very reliable and unique testing rig for the developed Hyperloop systems. The employment of a multidisciplinary approach coupled with various engineering management resources enabled the team to define the problem at its most basic level. This simplified approach permitted various designs, components, and systems to be tested utilizing the MTR to its full potential. This was extremely important in the development of the Hyperloop systems.

The design of Ryerson's Pod for the Hyperloop Pod Competition contributed towards the advancement of Ryerson University and the Department of Aerospace Engineering within the Hyperloop industry. Furthermore, the developed design achieved success at various stages of the Hyperloop Pod Competition.

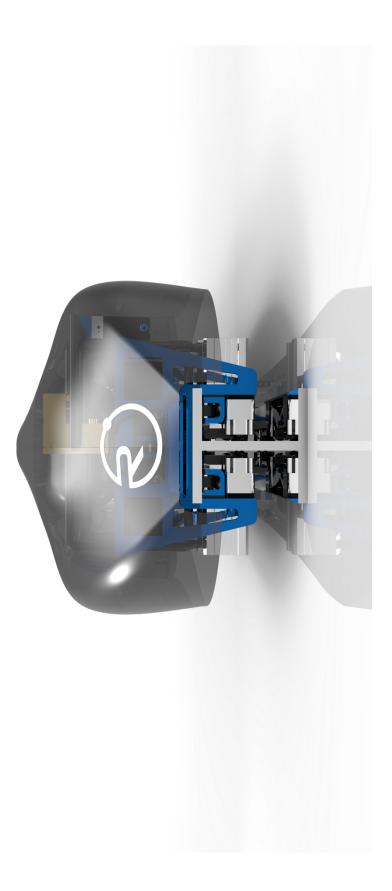
Based on Ryerson International Hyperloop's performance, the team received a special invitation from SpaceX to attend the 2019 Hyperloop Pod Competition in Hawthorne, California after having previously also attended the 2018 Hyperloop Pod Competition.

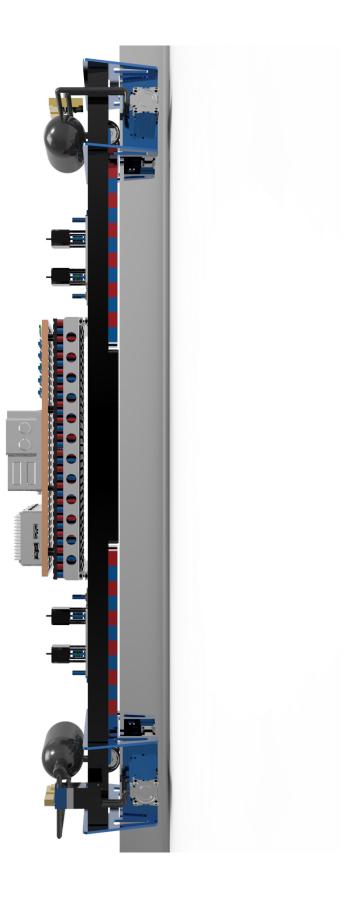
6 FUTURE WORK

Although tremendous strides were made within the development of the Hyperloop, various areas of deficiencies have been identified in team organization, documentation, analysis, and testing procedures. New methods are continuously being introduced to address issues both in coordination and communication between the various systems. With the integration of these new methods, time spent on the assembly and systems engineering is greatly reduced as components would interface seamlessly.

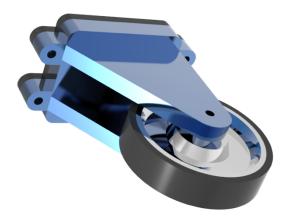
Since development of the Hyperloop is ongoing, the following are some potential points of research:

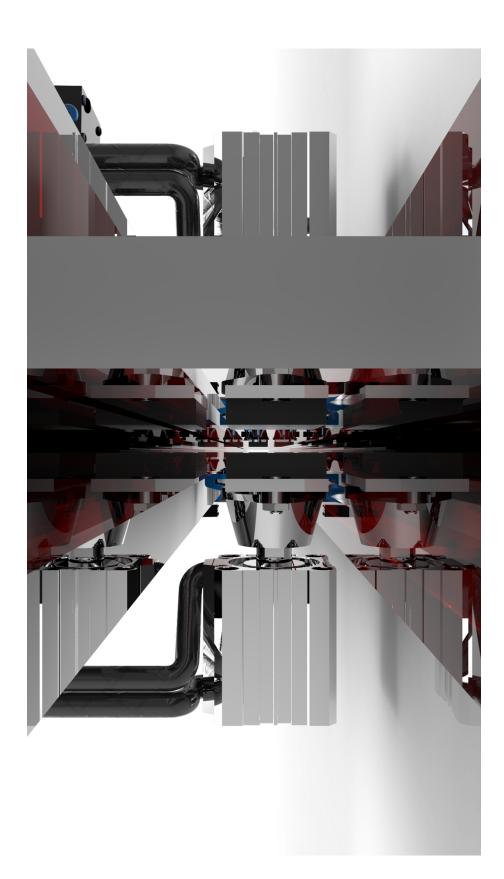
- Optimization of the thermal management solutions required to dissipate heat generated from the LIM, BRK, and GNC systems.
- Braking system characterization when operating within low pressure or near vacuum environments.
- Characterization of permanent magnet's behavior within low pressure or near vacuum environments.
- Development of a fatigue model for Pod structures to better understand Hyperloop's cyclical loading that occurs every 35 minutes.
- Composite testing to observe the laminates' behavior as it undergoes constant depressurization and pressurization.
- Optimization of the MagLev system to better support a higher Pod mass during the levitation phase.
- Characterization of the MagDrag to aid in extracting additional braking power from the MagLev system.
- Optimization of the MagDrive system to reduce its overall mass while improving its thrust capabilities within a low pressure environment.
- Manufacturing of a larger modular test rig capable of conducting high speed tests for full scale Hyperloop systems.
- Development of standardized and certified Hyperloop components and systems that could easily be implemented within Hyperloop Pods. (Similar to standardized aerospace components).
- Development of a legal framework for the Hyperloop, including constraints, guidelines, certification standards, and testing procedures.

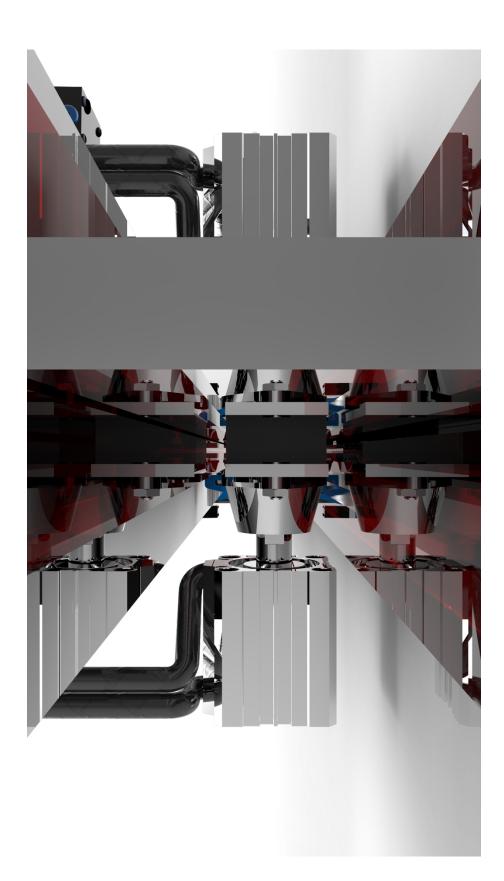

APPENDICES

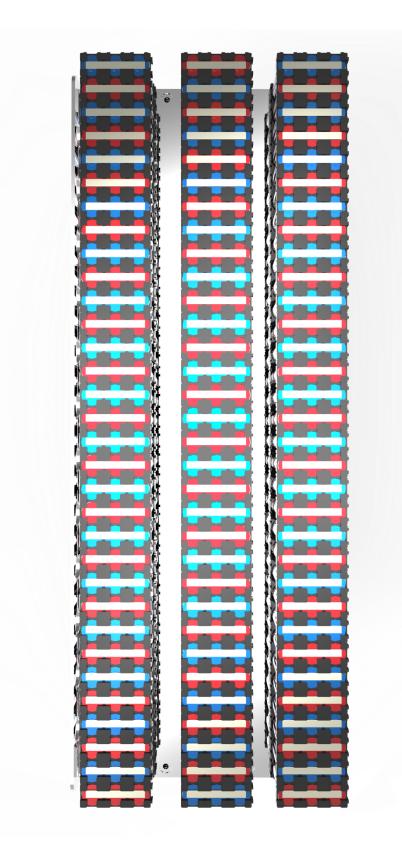

Appendix A.1 Final Pod Prototype



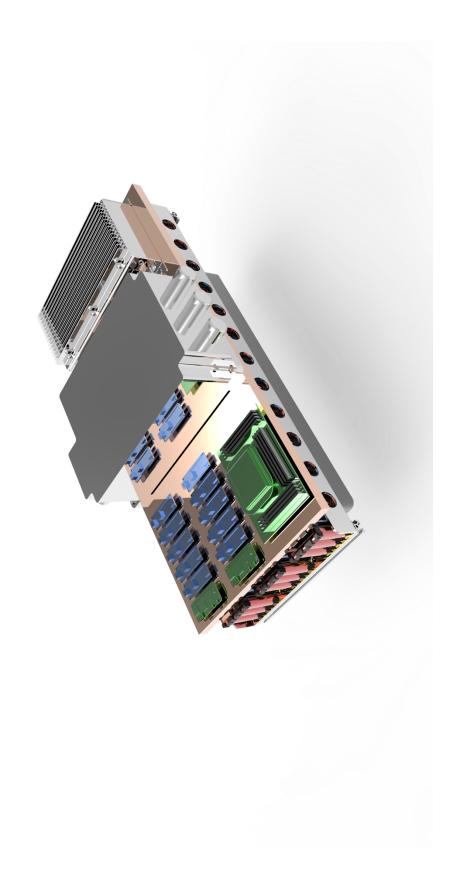


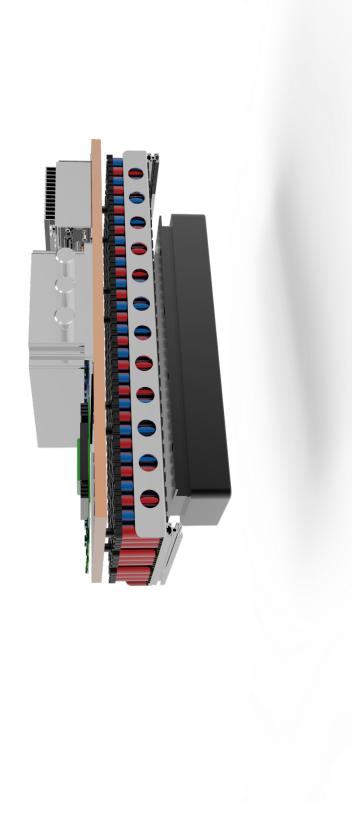


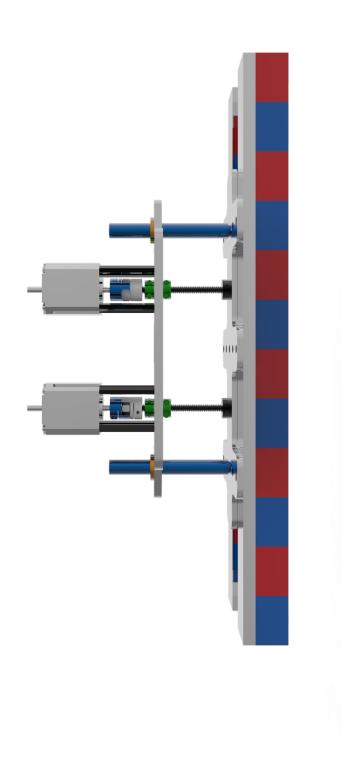


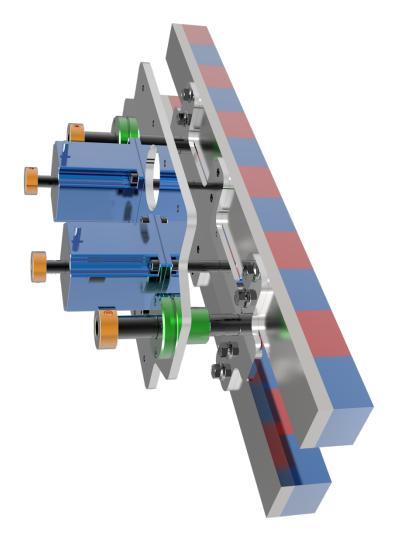


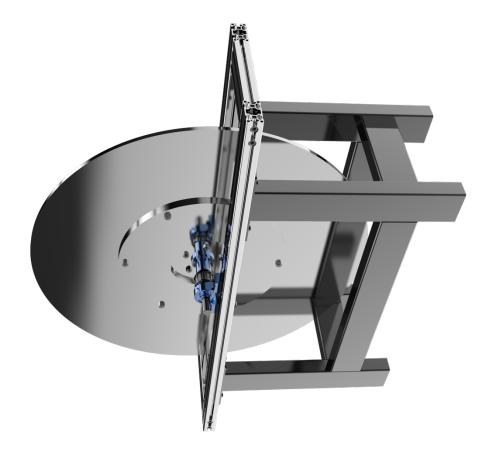


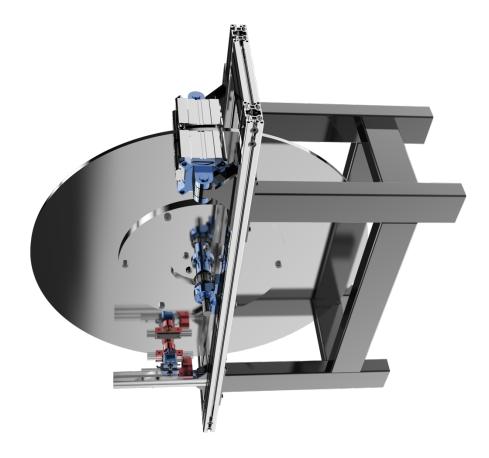


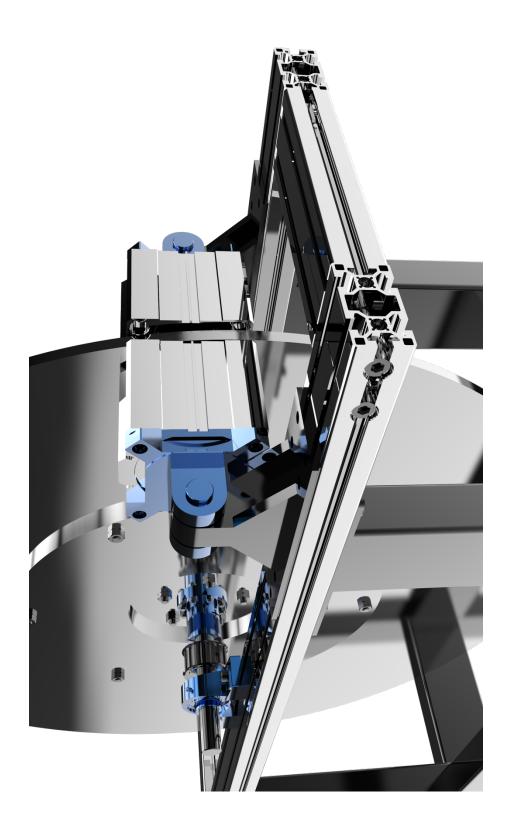




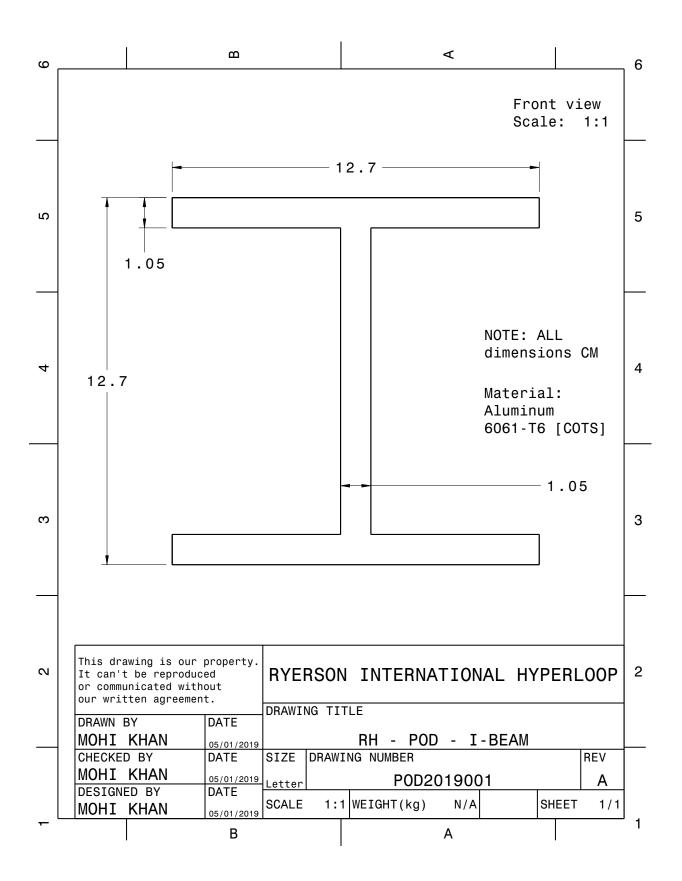


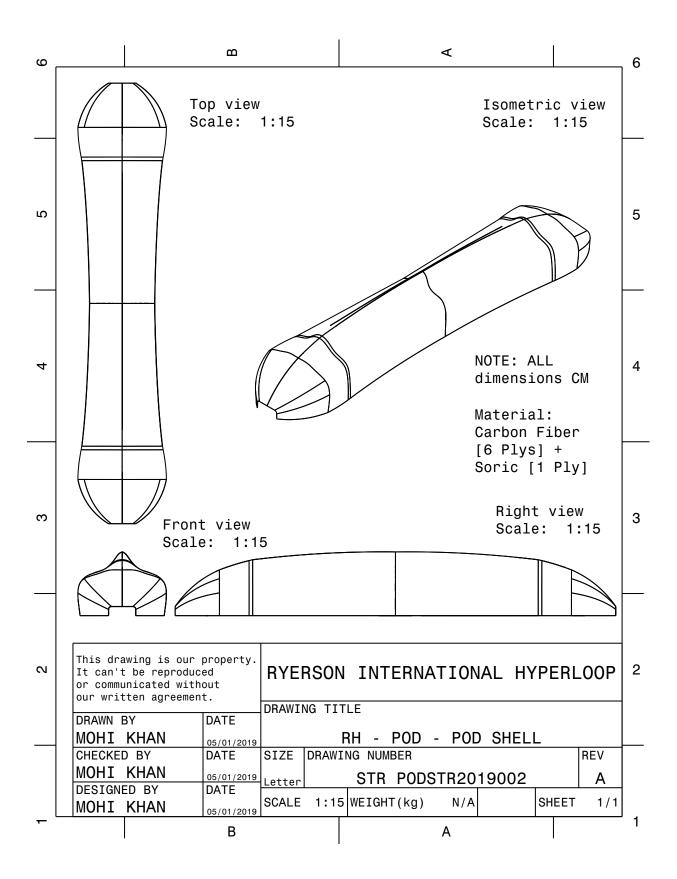


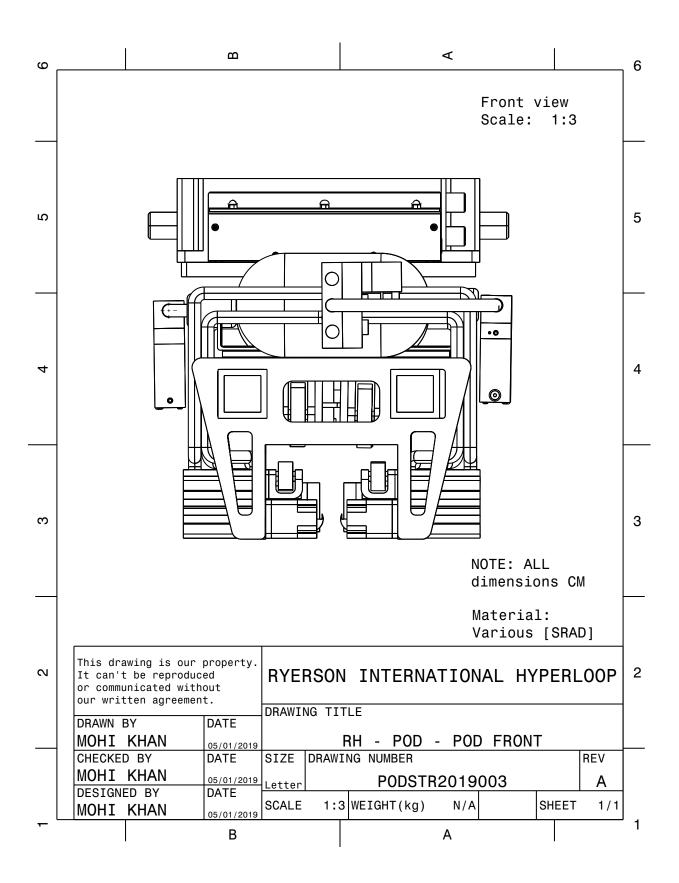


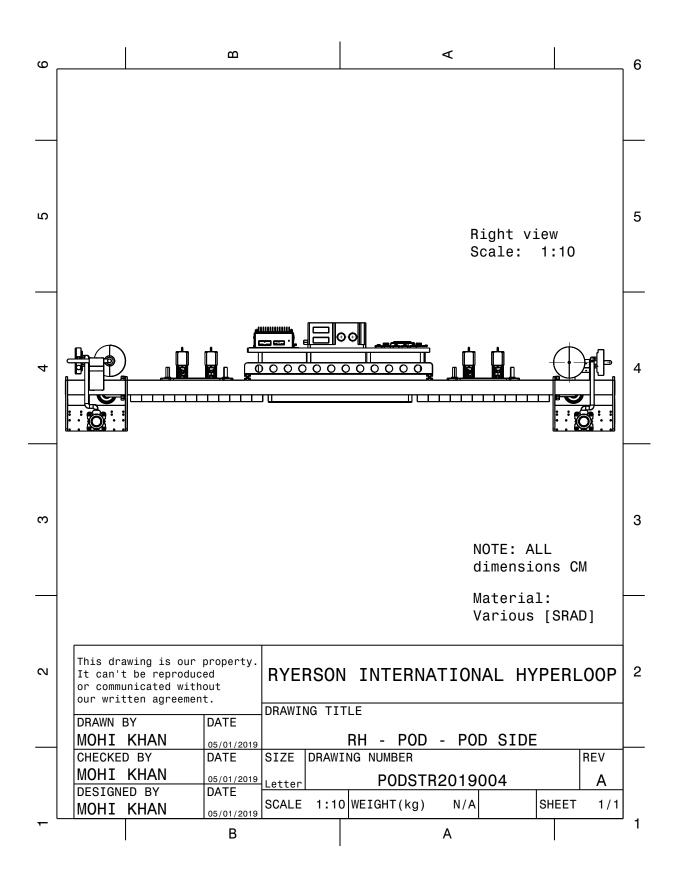


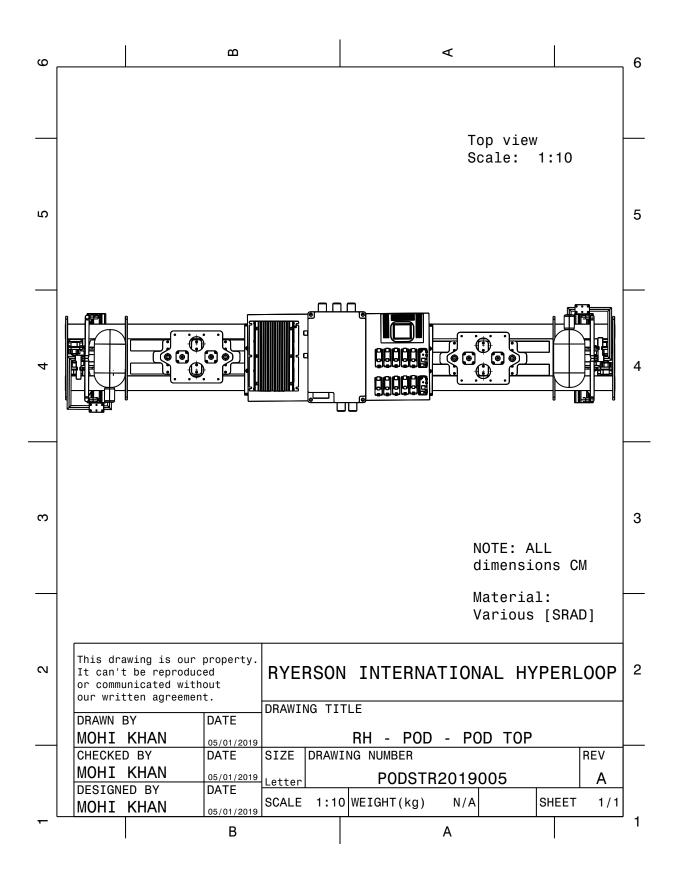
Appendix A.2 Modular Test Rig Prototype

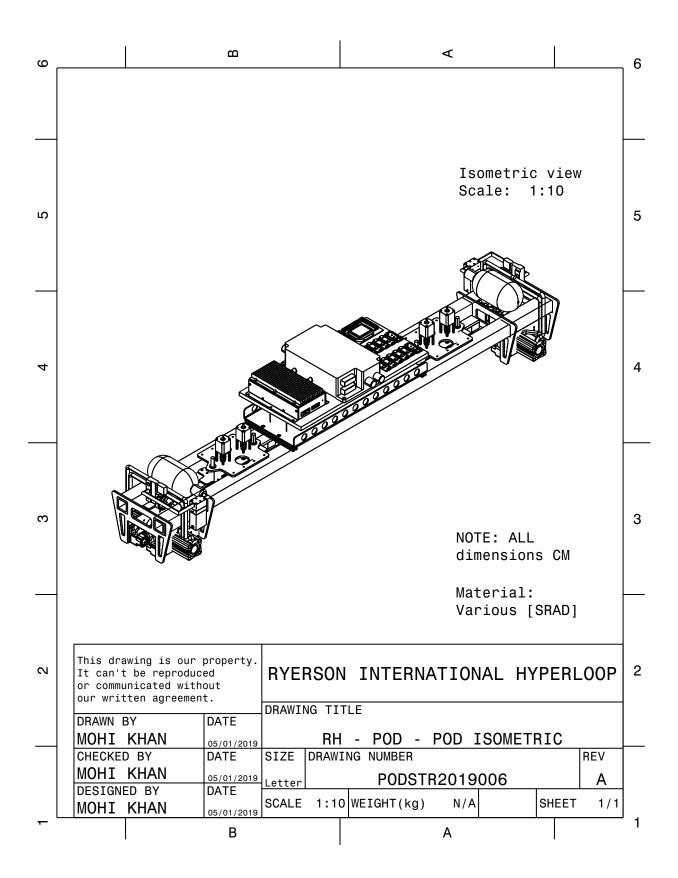


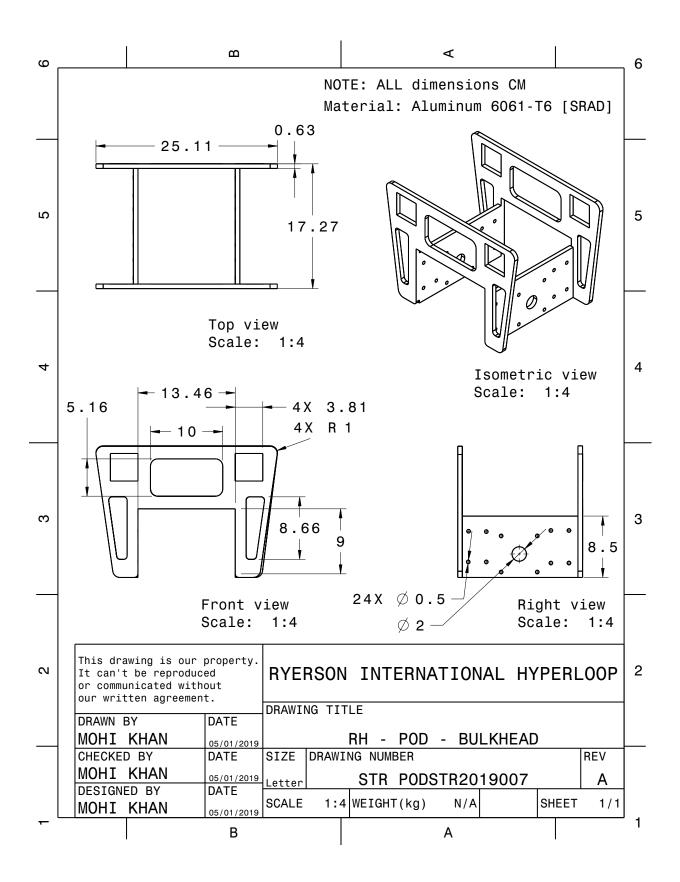


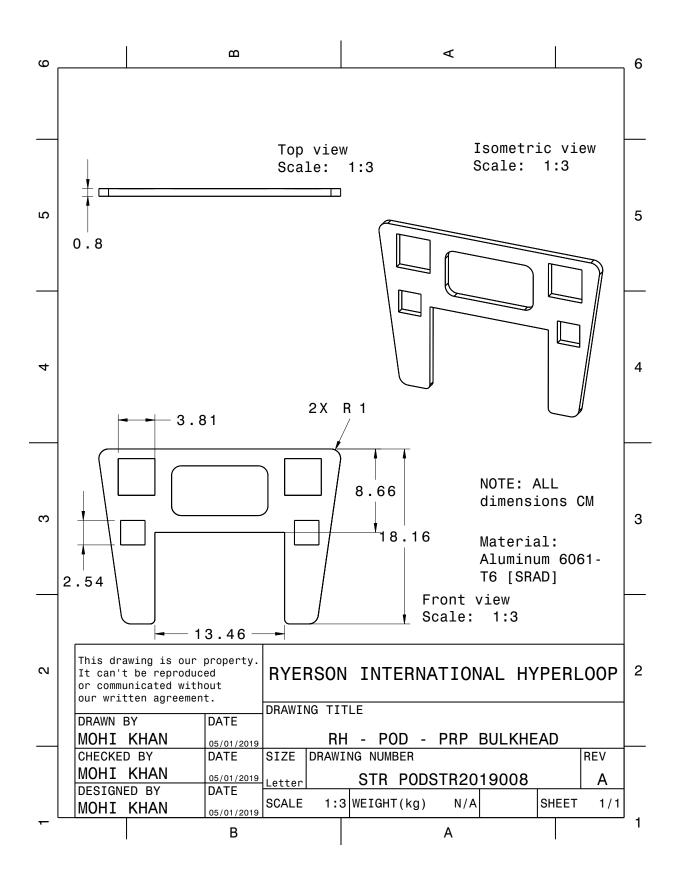


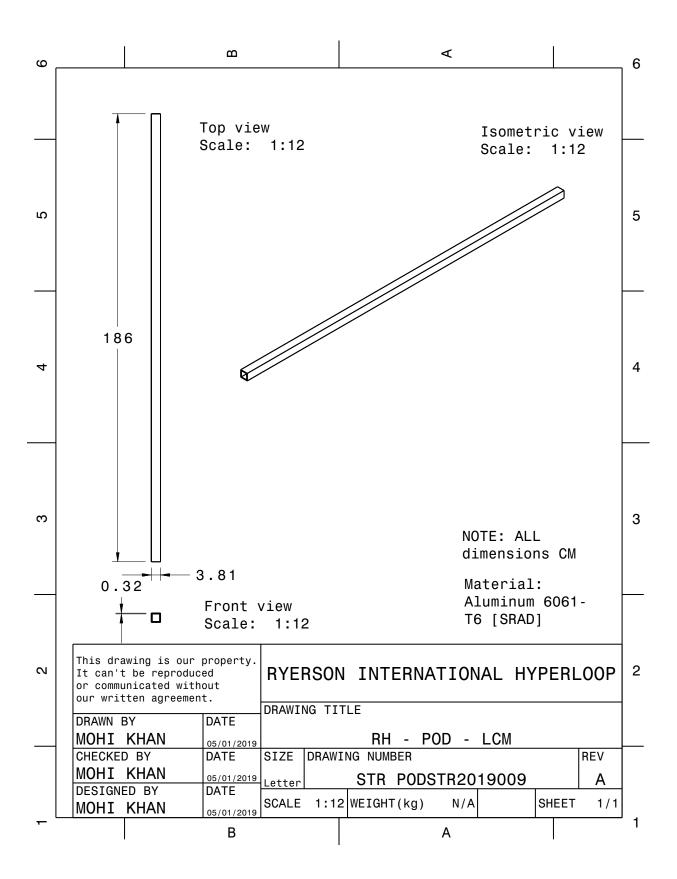


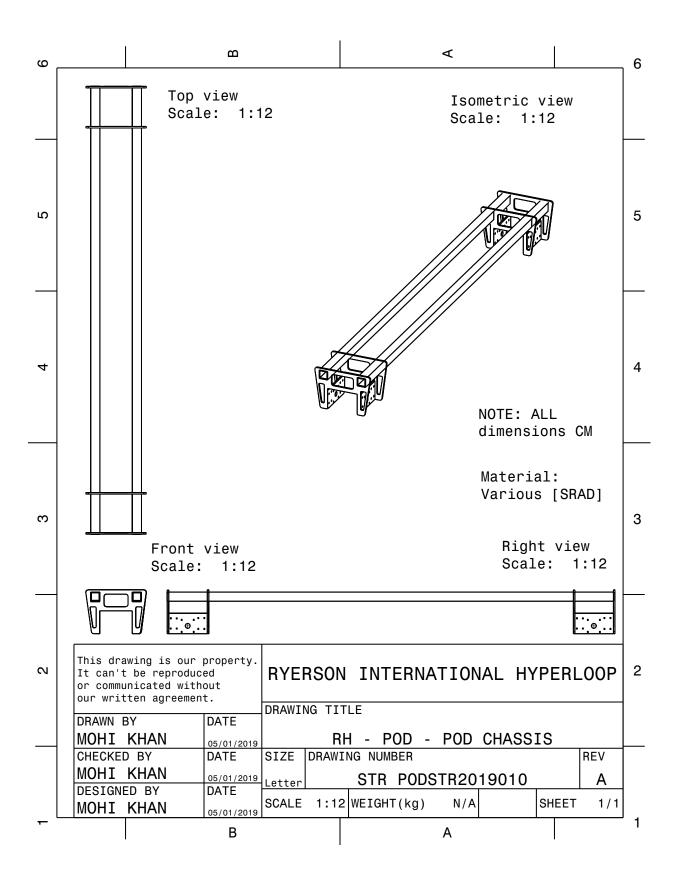

Appendix A.3 Pod Engineering Drawings

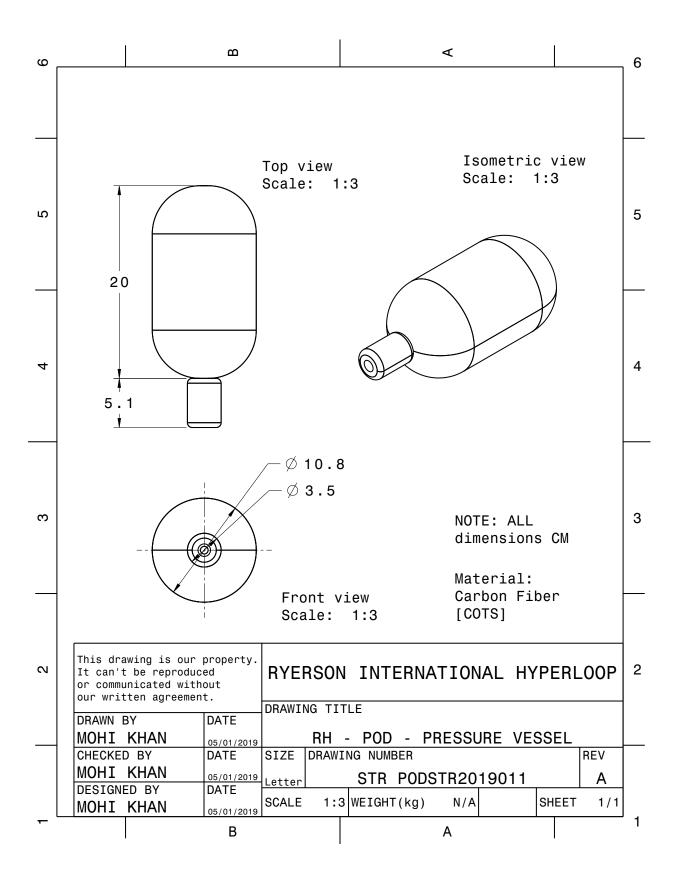


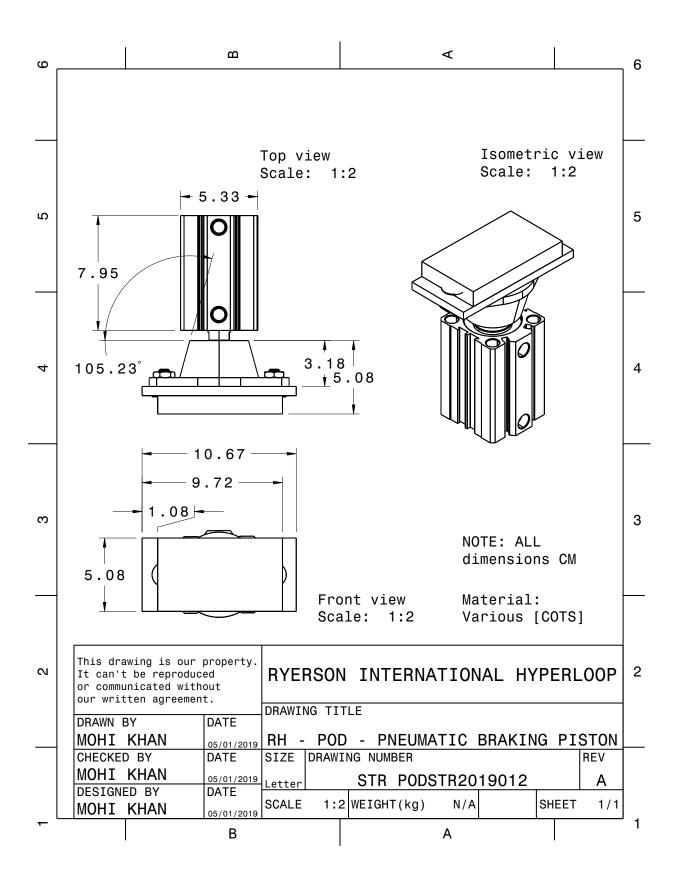


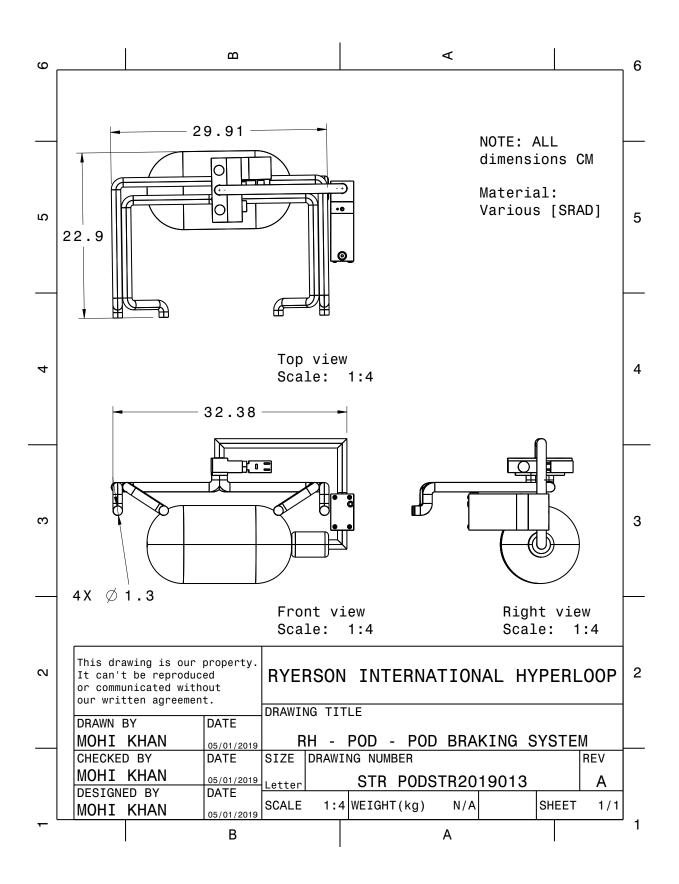


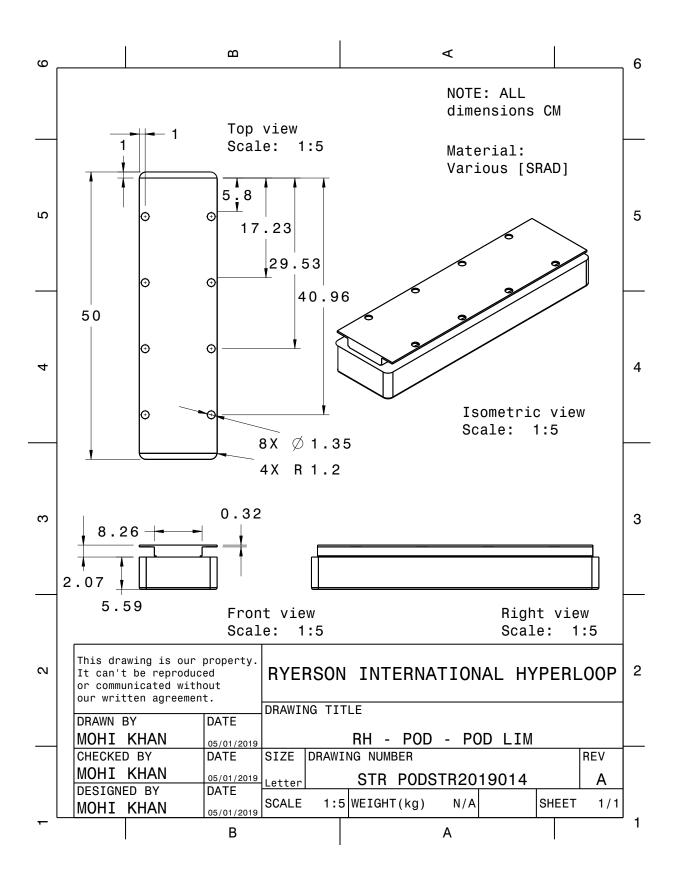


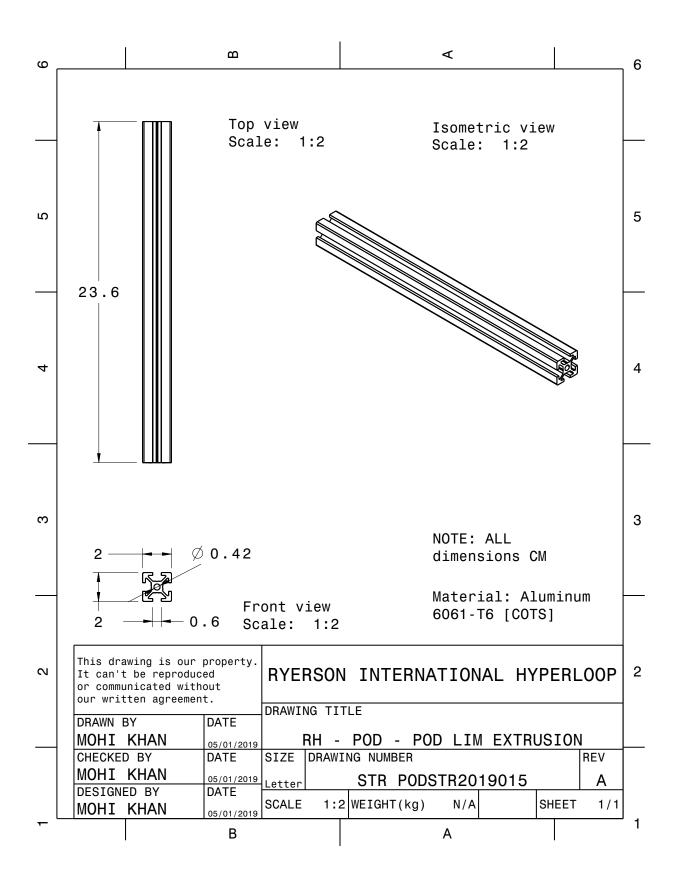


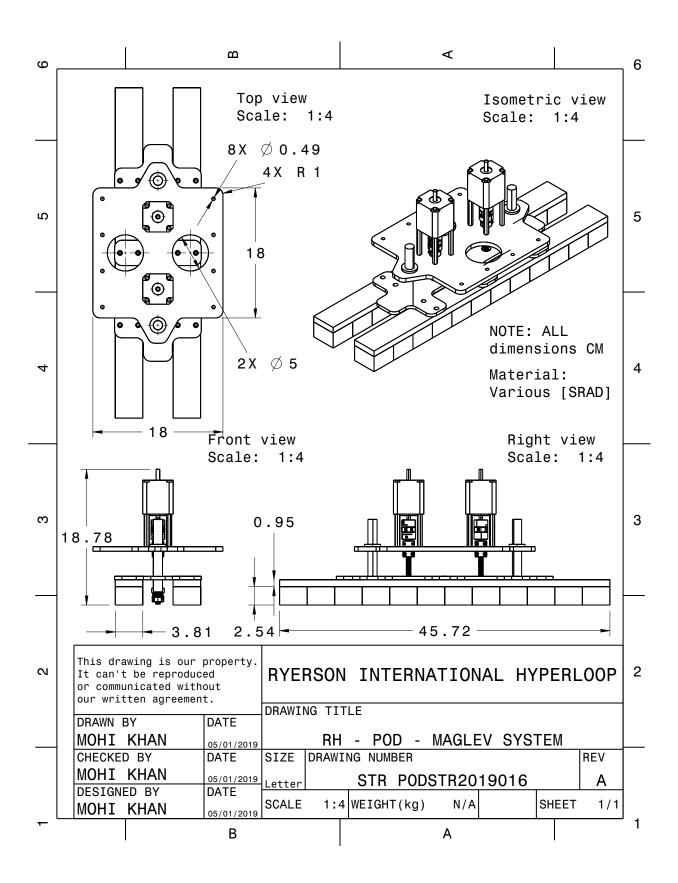


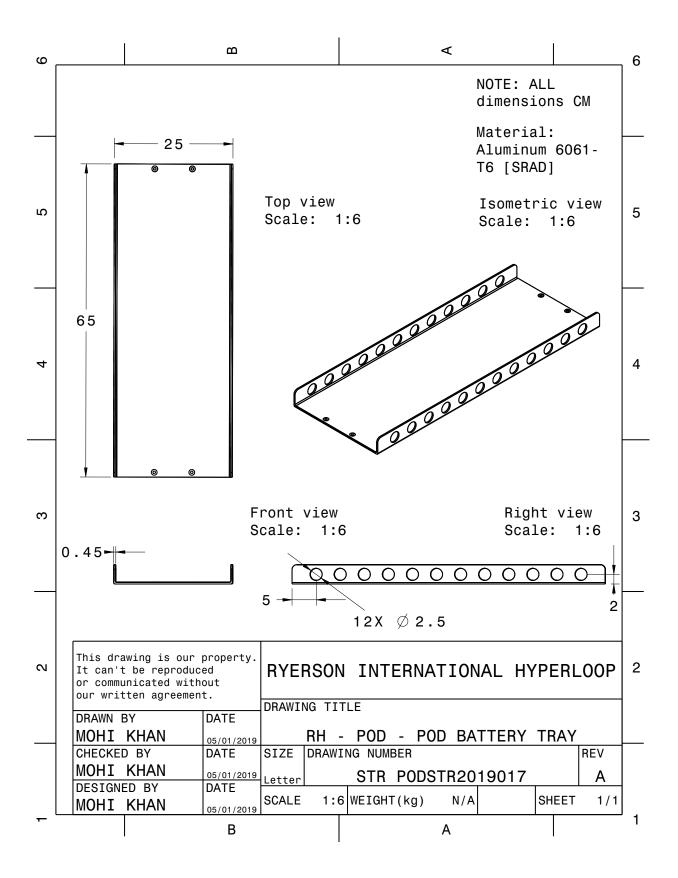


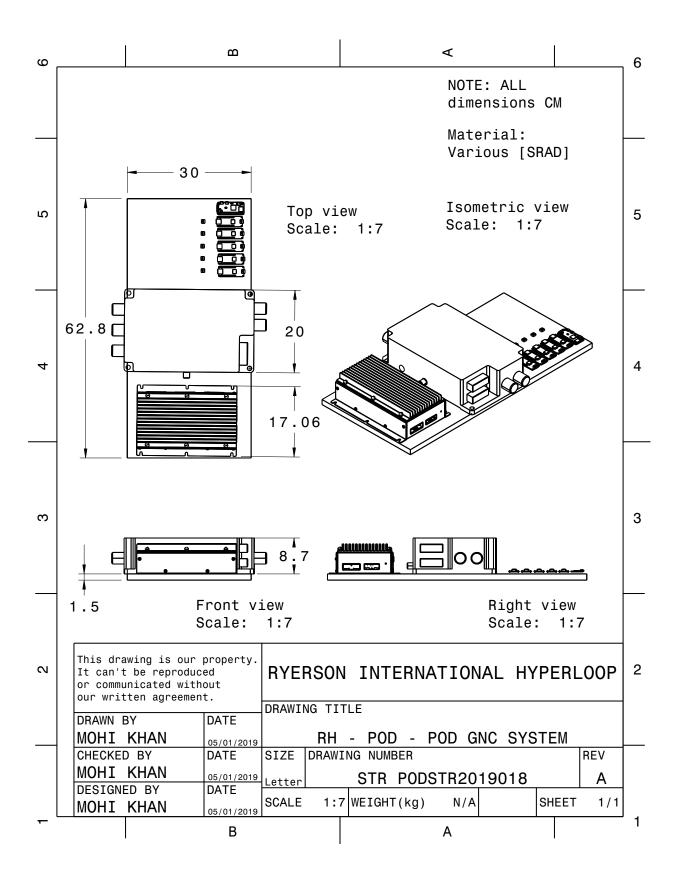


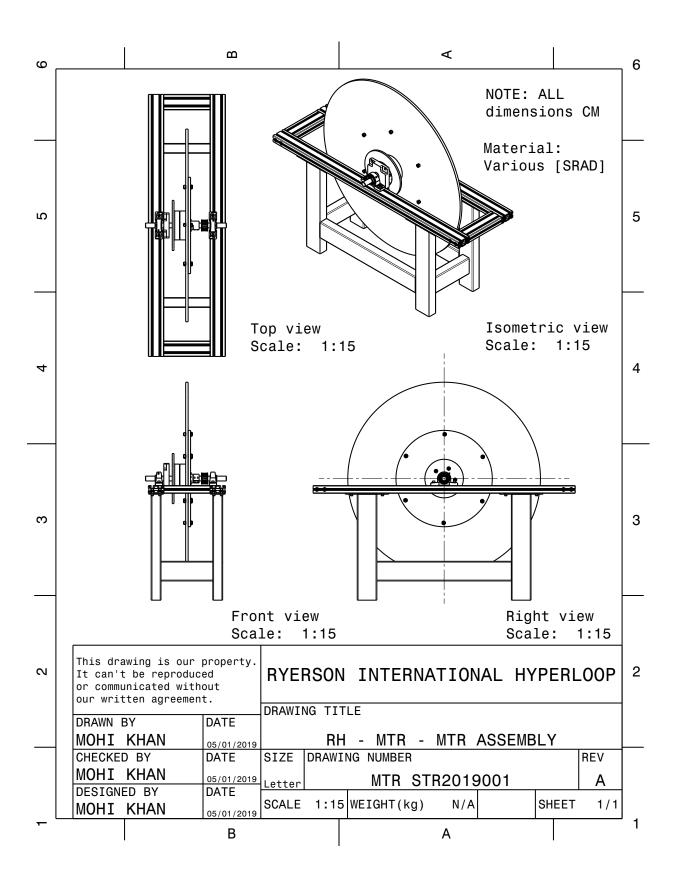


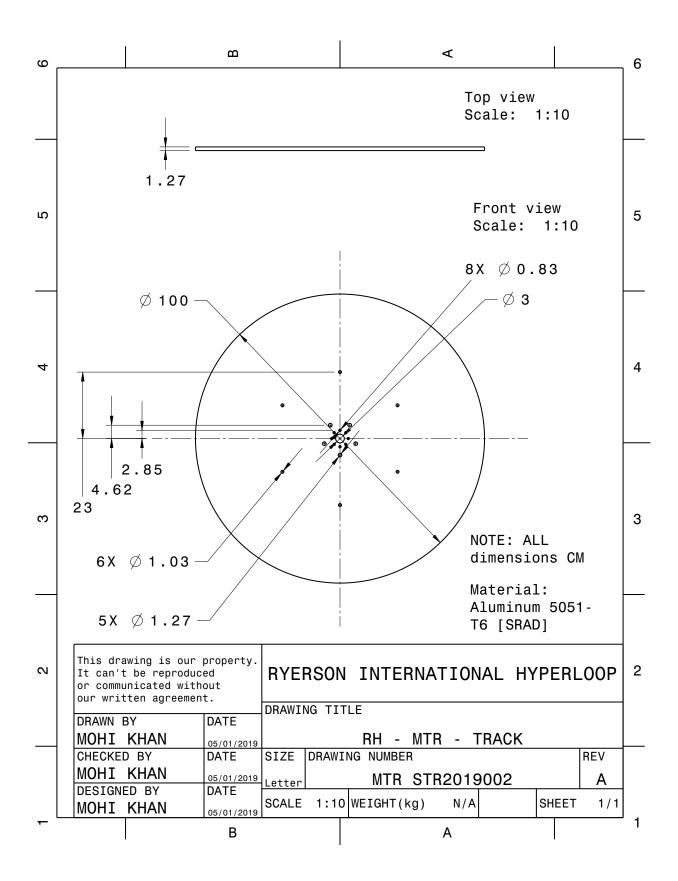


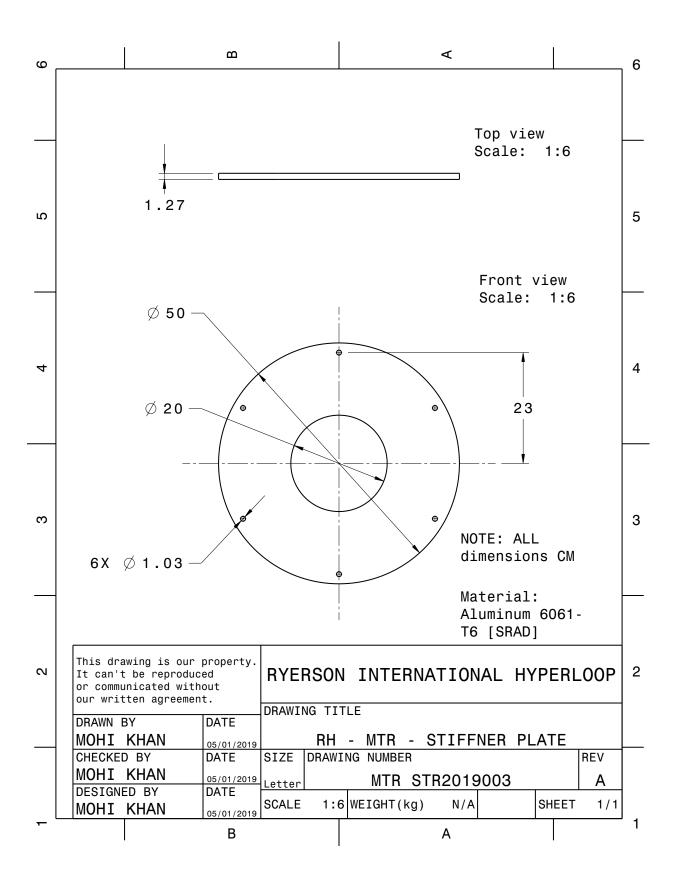


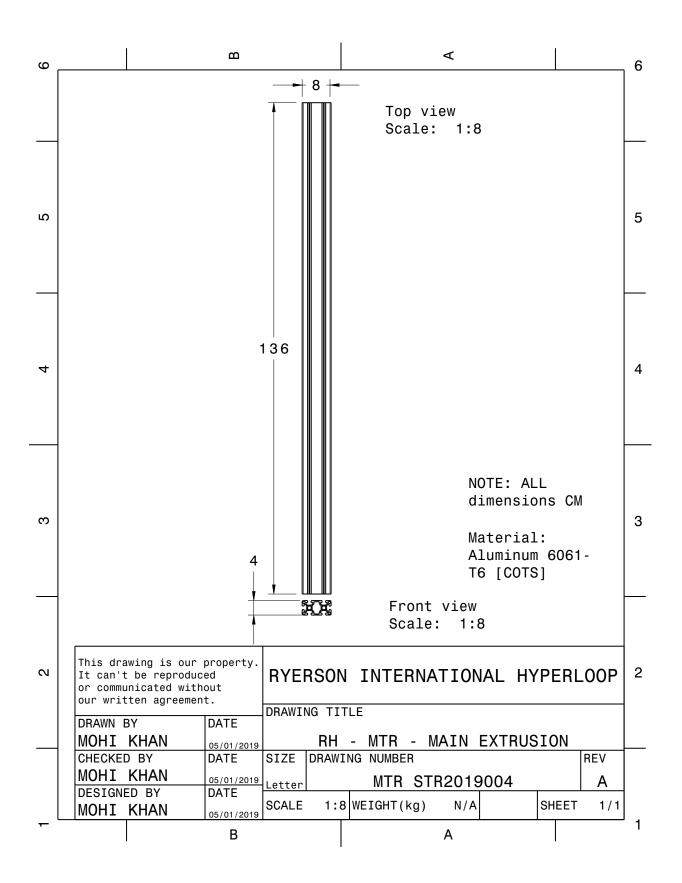


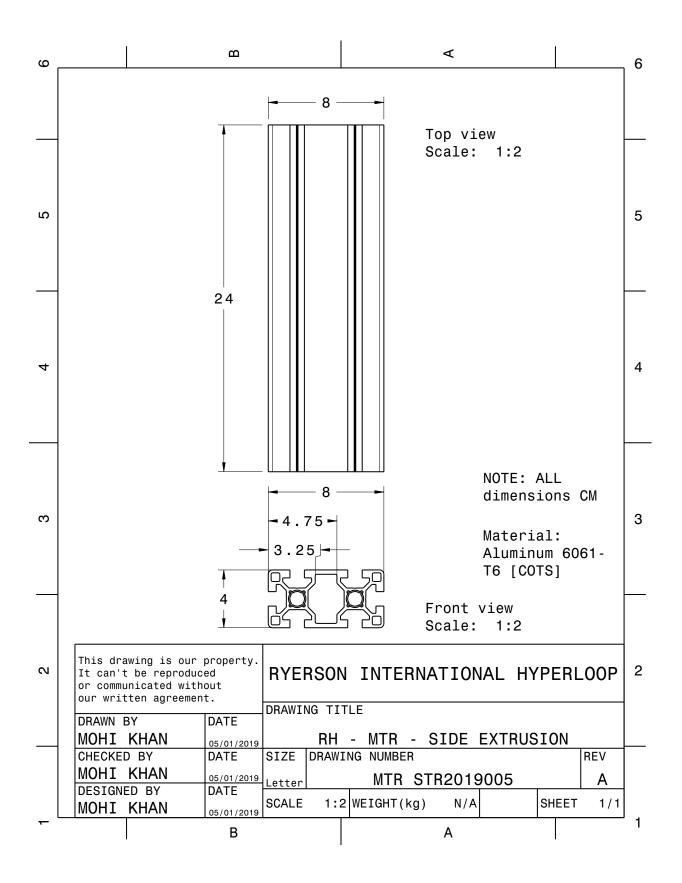


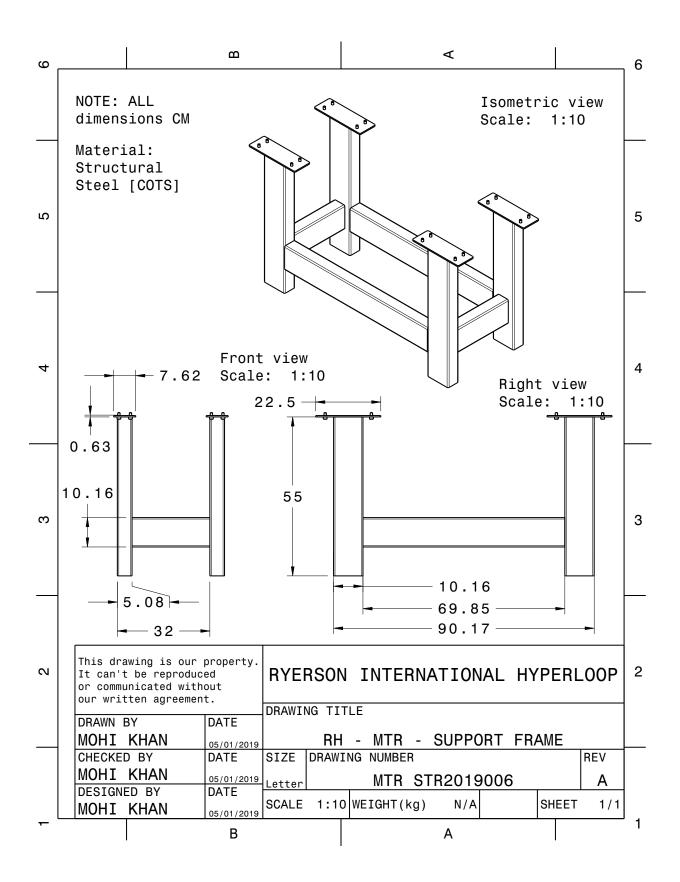


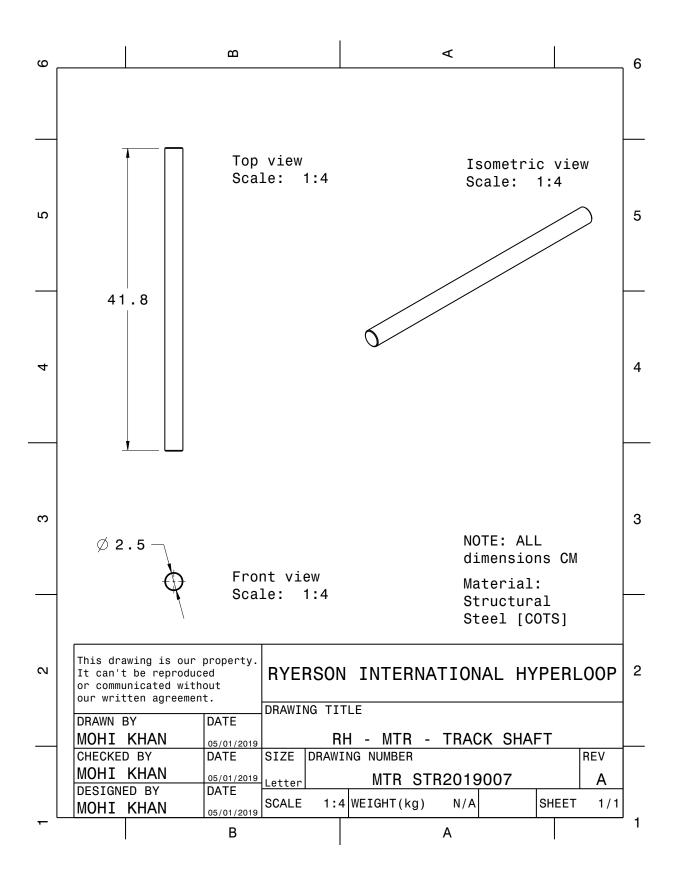


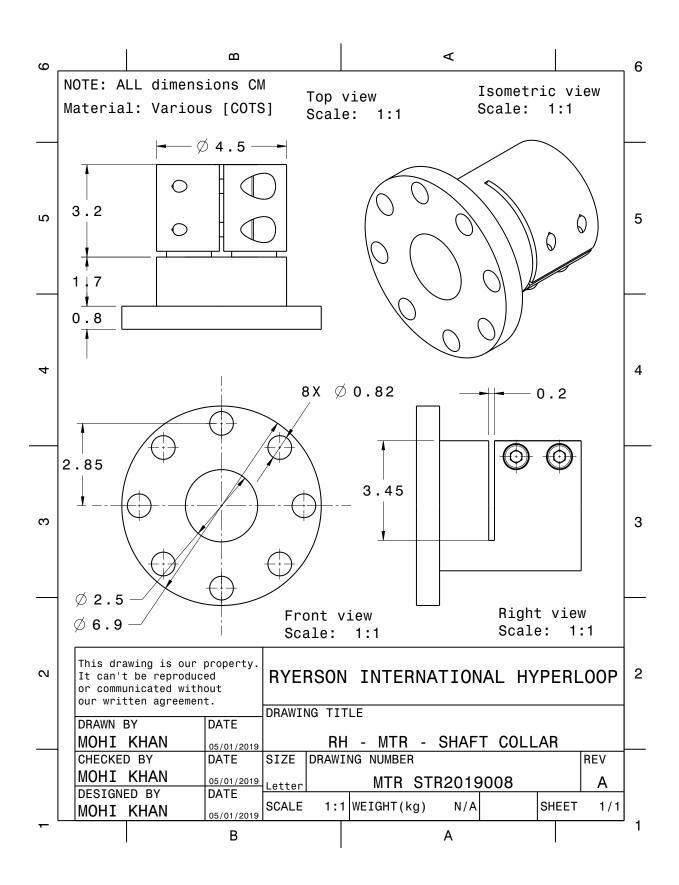


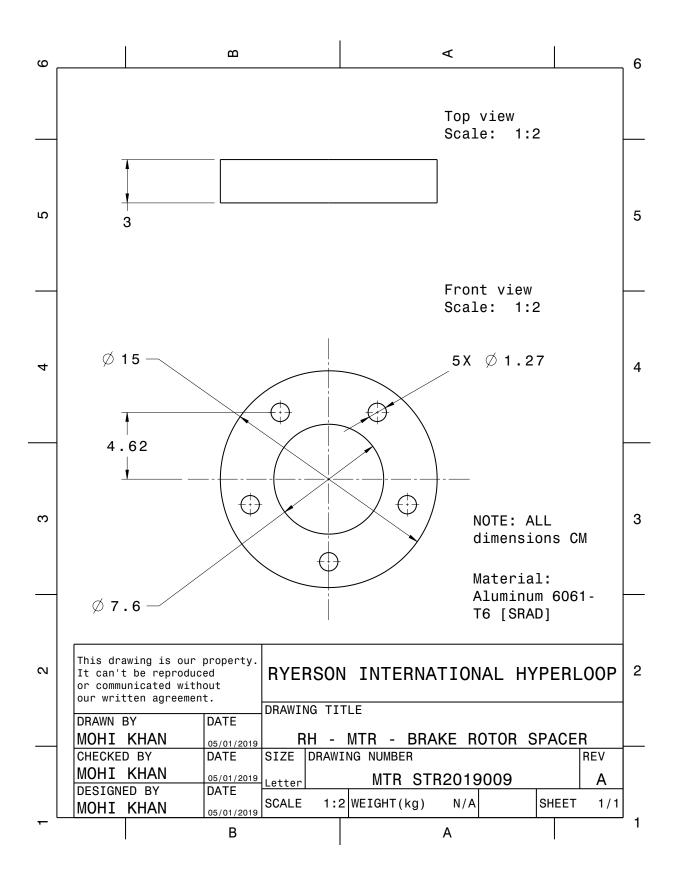


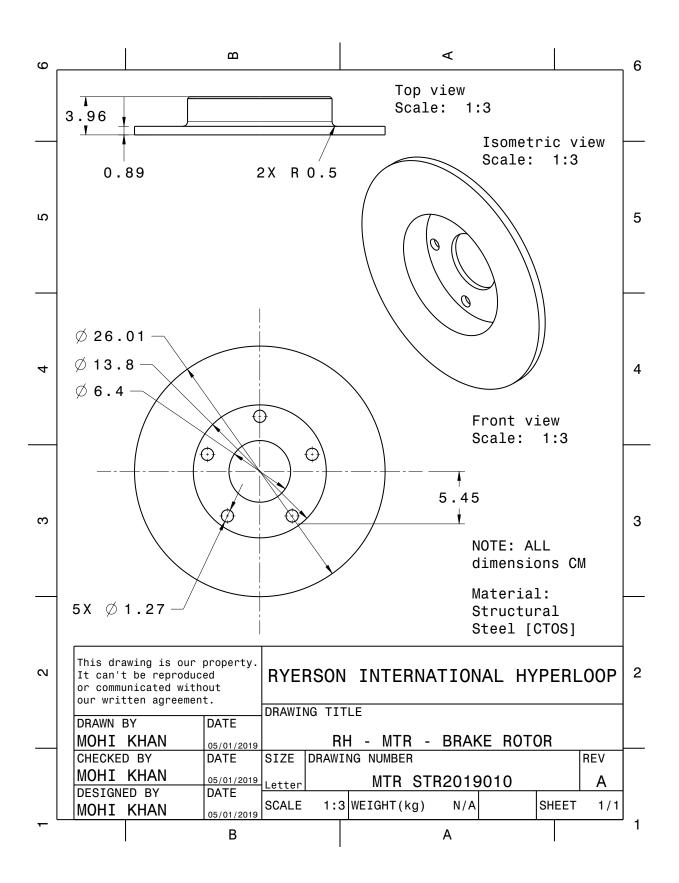

Appendix A.4 Modular Test Rig Engineering Drawings

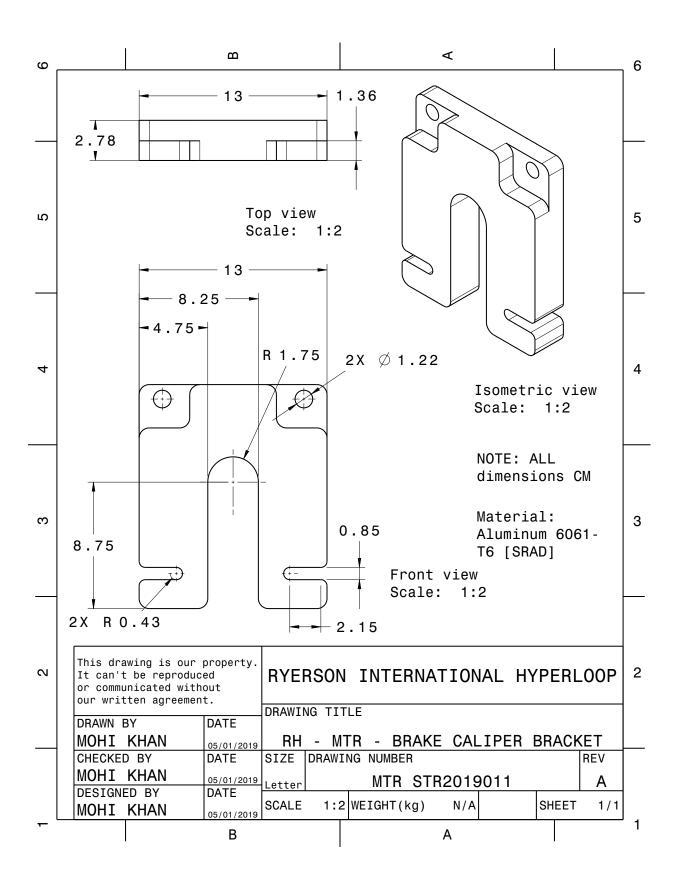


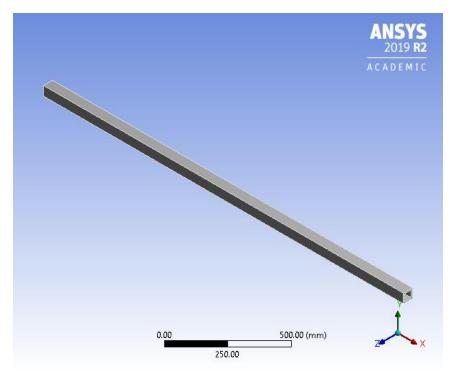












Appendix A.5 LCM Load Case I (Pod Staging) Analysis Report

Project*

Contents

• Units

- Model (C4)
 - <u>Geometry</u> <u>Geom\PartBody</u>
 - o Materials
 - <u>Coordinate Systems</u>
 - o <u>Mesh</u>
 - Patch Conforming Method
 Static Structural (C5)
 Analysis Settings
 - 0

 - <u>Anarysic</u>
 <u>Loads</u>
 <u>Solution (C6)</u>
 <u>Solution Information</u>
 <u>Results</u>
- Material Data
 o Aluminum Alloy

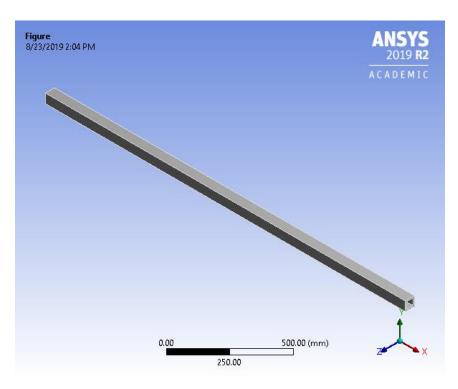
Units

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius	
Angle	Degrees	
Rotational Velocity	rad/s	
Temperature	Celsius	

Model (C4)

Geometry

TABLE 2 Model (C4) > Geometry


Model (C4) > Geometry		
Object Name	Geometry	
State	Fully Defined	
Definition		
Source	C:\Users\DIAPM599\OneDrive - Dentsply Sirona\Desktop\ANSYS Analysis\LCM_files\dp0\Geom\DM\Geom.scdoc	
Туре	SpaceClaim	
Length Unit	Meters	
Element Control	Program Controlled	
Display Style	Body Color	
Bounding Box		
Length X	2000. mm	
Length Y	50.8 mm	
Length Z	50.8 mm	

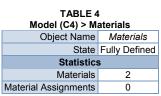

Properties		
Volume	2.2581e+006 mm ³	
Mass	6.2548 kg	
Scale Factor Value	1.	
	Statistics	
Bodies	1	
Active Bodies	1	
Nodes	2261	
Elements	1143	
Mesh Metric	None	
	Update Options	
Assign Default Material	No	
	Basic Geometry Options	
Solid Bodies	Yes	
Surface Bodies	Yes	
Line Bodies	Yes	
Parameters	Independent	
Parameter Key		
Attributes	Yes	
Attribute Key		
Named Selections	Yes	
Named Selection Key		
Material Properties	Yes	
	Advanced Geometry Options	
Use Associativity	Yes	
Coordinate Systems	Yes	
Coordinate System Key		
Reader Mode Saves	No	
Updated File		
Use Instances	Yes	
Smart CAD Update	Yes	
Compare Parts On	No	
Update		
Analysis Type	3-D	
Mixed Import Resolution	None	
Clean Bodies On Import	No	
Stitch Surfaces On	INU	
Suich Surfaces On Import	None	
Decompose Disjoint		
Geometry	Yes	
Enclosure and	Ver	
Symmetry Processing	Yes	

TABLE 3 Model (C4) > Geometry > Parts			
Object Name	Geom\PartBody		
State	Meshed		
Graphics Properties			

Visible	Yes	
Transparency	1	
Def	inition	
Suppressed	No	
Stiffness Behavior	Flexible	
Coordinate System	Default Coordinate System	
Reference Temperature	By Environment	
Treatment	None	
Ma	aterial	
Assignment	Aluminum Alloy	
Nonlinear Effects	Yes	
Thermal Strain Effects	Yes	
Boun	ding Box	
Length X	2000. mm	
Length Y	50.8 mm	
Length Z	50.8 mm	
Pro	perties	
Volume	2.2581e+006 mm ³	
Mass	6.2548 kg	
Centroid X	-1000. mm	
Centroid Y	25.4 mm	
Centroid Z	25.4 mm	
Moment of Inertia Ip1	4203.5 kg mm²	
Moment of Inertia Ip2	2.087e+006 kg·mm ²	
Moment of Inertia Ip3	2.087e+006 kg·mm ²	
Statistics		
Nodes	2261	
Elements	1143	
Mesh Metric	None	
CAD Attributes		
PartTolerance:	0.0000001	
Color:175.143.175		

FIGURE 1 Model (C4) > Geometry > Figure

Coordinate Systems

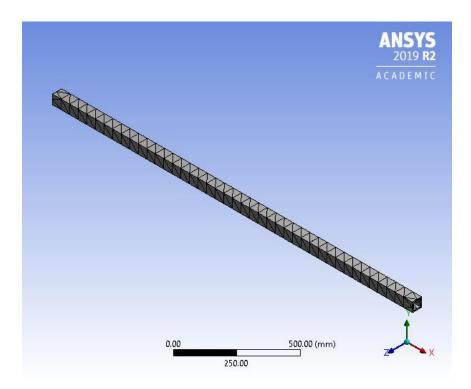
	TABLE 5
Mod	el (C4) > Coordinate Systems > Coordinate System

Object Name	Global Coordinate System	
State	Fully Defined	
Definition		
Туре	Cartesian	
Coordinate System ID	0.	
Origin		
Origin X	0. mm	

Origin Y	0. mm	
Origin Z	0. mm	
Directional Vectors		
X Axis Data	[1. 0. 0.]	
Y Axis Data	[0. 1. 0.]	
Z Axis Data	[0.0.1.]	

Mesh

TABLE 6 Model (C4) > Mesh


Model (C4) > Mesr	1
Object Name	Mesh
State	Solved
Display	
Display Style	Use Geometry Setting
Defaults	
Physics Preference	Mechanical
Element Order	Program Controlled
Element Size	Default
Sizing	
Use Adaptive Sizing	Yes
Resolution	Default (2)
Mesh Defeaturing	Yes
Defeature Size	Default
Transition	Fast
Span Angle Center	Fine
Initial Size Seed	Assembly
Bounding Box Diagonal	2001.3 mm
Average Surface Area	71346 mm ²
Minimum Edge Length	38.1 mm
Quality	
Check Mesh Quality	Yes, Errors
Error Limits	Standard Mechanical
Target Quality	Default (0.050000)
Smoothing	Medium
Mesh Metric	None
Inflation	
Use Automatic Inflation	None
Inflation Option	Smooth Transition
Transition Ratio	0.272
Maximum Layers	5
Growth Rate	1.2
Inflation Algorithm	Pre
View Advanced Options	No
Advanced	
Number of CPUs for Parallel Part Meshing	Program Controlled
Straight Sided Elements	No Dimensionally Reduced

Triangle Surface Mesher	Program Controlled	
Topology Checking	Yes	
Pinch Tolerance Please Defi		
Generate Pinch on Refresh	No	
Statistics		
Nodes	2261	
Elements	1143	

TABLE 7 Model (C4) > Mesh > Mesh Controls Object Name Patch Conforming Method

Object Name	Patch Conforming Method	
State	Fully Defined	
Scope		
Scoping Method	Geometry Selection	
Geometry	1 Body	
Definition		
Suppressed	No	
Method	Tetrahedrons	
Algorithm	Patch Conforming	
Element Order	Use Global Setting	

FIGURE 2 Model (C4) > Mesh > Figure

Static Structural (C5)

TABLE 8 Model (C4) > Analysis					
Object Name	Static Structural (C5)				
State	Solved				
Definiti	on				
Physics Type	Structural				
Analysis Type	Static Structural				
Solver Target	Mechanical APDL				
Options					
Environment Temperature	22. °C				
Generate Input Only	No				

TABLE 9 Model (C4) > Static Structural (C5) > Analysis Settings				
Object Name	Analysis Settings			
State	State Fully Defined			
Step Controls				

Number Of Steps	1.						
Current Step Number	1.						
Step End Time	1. s						
Auto Time Stepping	Program Controlled						
Solver Controls							
Solver Type	Program Controlled						
Weak Springs	Off						
Solver Pivot Checking	Program Controlled						
Large Deflection	Off						
Inertia Relief	Off						
	Rotordynamics Controls						
Coriolis Effect	Off						
	Restart Controls						
Generate Restart							
Points	Program Controlled						
Retain Files After Full Solve	No						
Combine Restart Files	Program Controlled						
	Nonlinear Controls						
Newton-Raphson	Drogrom Cantallad						
Óption	Program Controlled						
Force Convergence	Program Controlled						
Moment Convergence	Program Controlled						
Displacement	· · · · · · · · · · · · · · · · · · ·						
Convergence	Program Controlled						
Rotation Convergence	Program Controlled						
Line Search	Program Controlled						
Stabilization	Program Controlled						
	Output Controls						
Stress	Yes						
Surface Stress	No						
Back Stress	No						
Strain	Yes						
Contact Data	Yes						
Nonlinear Data	No						
Nodal Forces	No						
Contact Miscellaneous	No						
General Miscellaneous	No						
Store Results At	All Time Points						
Result File							
Compression	Program Controlled						
	Analysis Data Management						
Solver Files Directory	C:\Users\DIAPM599\OneDrive - Dentsply Sirona\Desktop\ANSYS Analysis\LCM_files\dp0\SYS\MECH\						
Future Analysis	None						
Scratch Solver Files							
Directory							
Save MAPDL db	No						
Contact Summary	Program Controlled						

Delete Unneeded Files	Yes
Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	nmm

FIGURE 3 Model (C4) > Static Structural (C5) > Figure

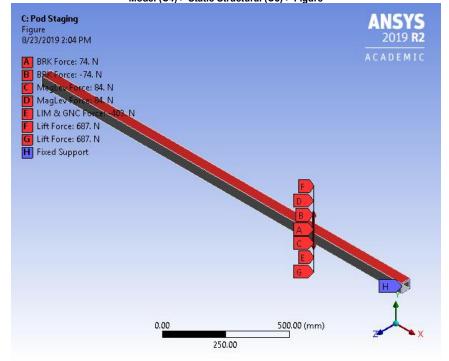


TABLE 10 Model (C4) > Static Structural (C5) > Loads

		Mode	el (C4) > :	Static Str	uctural (C	5) > Loads			
Object Name	BRK Force	BRK Force	MagLev Force	MagLev Force	LIM & GNC Force	Lift Force	Lift Force	Thermal Condition	Fixed Support
State	e Fully Defined								
Scope									
Scoping Method Geometry Selection									
Geometry	netry 1 Face 1 Body 2 Faces				2 Faces				
Definition									

Туре	Force					Thermal Condition	Fixed Support	
Define By	Components	Vector	Components	Vector	Components	Vector		
Coordinate System	Global Coordinate System		Global Coordinate System		Global Coordinate System			
X Component	0. N (ramped)		0. N (ramped)		0. N (ramped)			
Y Component	-74. N (ramped)		-84. N (ramped)		687. N (ramped)			
Z Component	0. N (ramped)		0. N (ramped)		0. N (ramped)			
Suppressed				No				
Magnitude		-74. N (ramped)		-403. N (ramped)		687. N (ramped)	80. °C (ramped)	
Direction		Defined		Defined		Defined		

FIGURE 4 Model (C4) > Static Structural (C5) > BRK Force

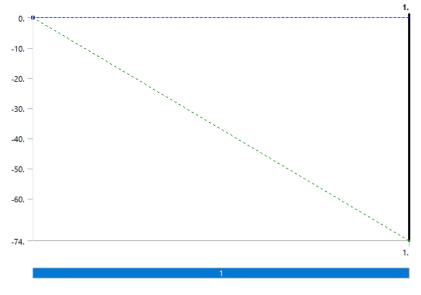
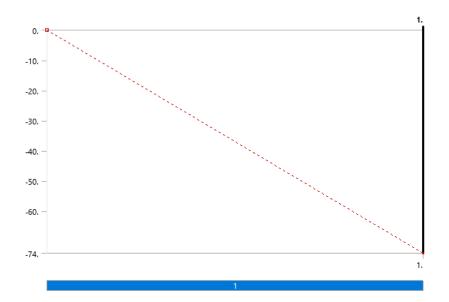
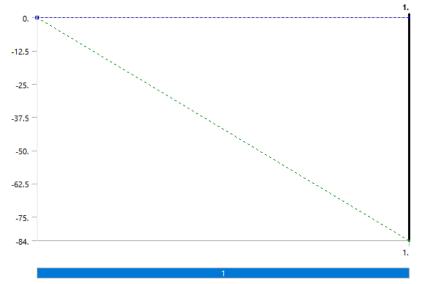




FIGURE 5 Model (C4) > Static Structural (C5) > BRK Force

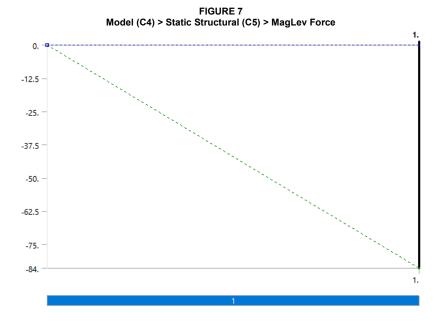
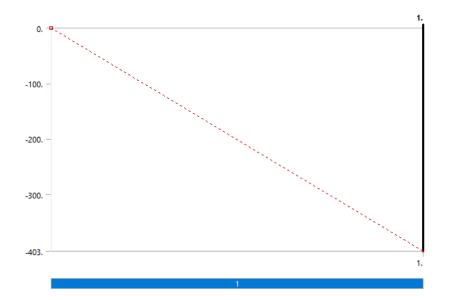
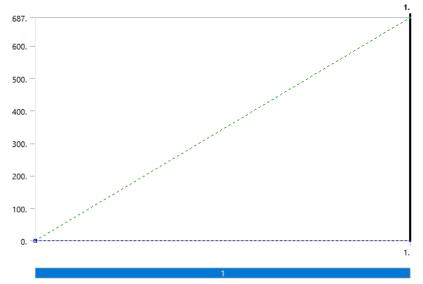




FIGURE 8 Model (C4) > Static Structural (C5) > LIM & GNC Force

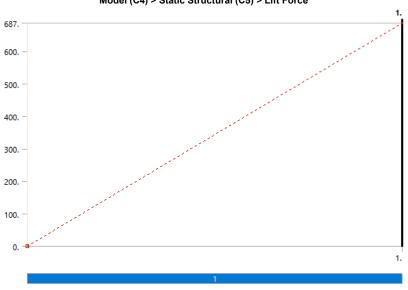
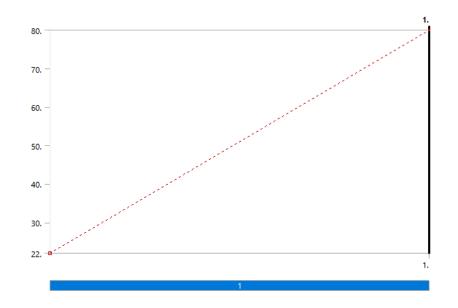



FIGURE 10 Model (C4) > Static Structural (C5) > Lift Force

FIGURE 11 Model (C4) > Static Structural (C5) > Thermal Condition

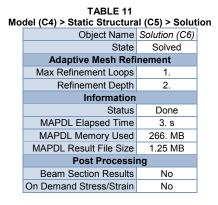


 TABLE 12

 Model (C4) > Static Structural (C5) > Solution (C6) > Solution Information

Object Name	Solution Information				
State	Solved				
Solution Information					
Solution Output Solver Output					
Newton-Raphson Residuals	0				

0
2.5 s
All
sibility
Yes
All FE Connectors
All Nodes
Connection Type
No
Single
Lines

TABLE 13

Model (C4) > Static Structural (C5) > Solution (C6) > Results						
Object Name	Total Deformation Equivalent Stress					
State	Solved					
	Scope					
Scoping Method	Geo	metry Selection				
Geometry		All Bodies				
	Definition					
Туре	Total Deformation	Equivalent (von-Mises) Stress				
By		Time				
Display Time		Last				
Calculate Time History		Yes				
Identifier						
Suppressed	No					
	Results					
Minimum	0. mm	34.987 MPa				
Maximum	0.55549 mm	165.71 MPa				
Average	0.26761 mm	95.926 MPa				
Minimum Occurs On	Ge	eom\PartBody				
Maximum Occurs On	Ge	eom\PartBody				
	Information					
Time	1. s					
Load Step	1					
Substep	1					
Iteration Number	1					
	Integration Point Results					
Display Option	Averaged					
Average Across Bodies		No				

FIGURE 12 Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation

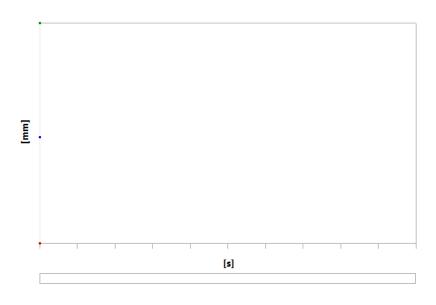


 TABLE 14

 Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation

 Time [s] Minimum [mm] Maximum [mm] Average [mm]

 1.
 0.
 0.55549
 0.26761

FIGURE 13 Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation > Figure

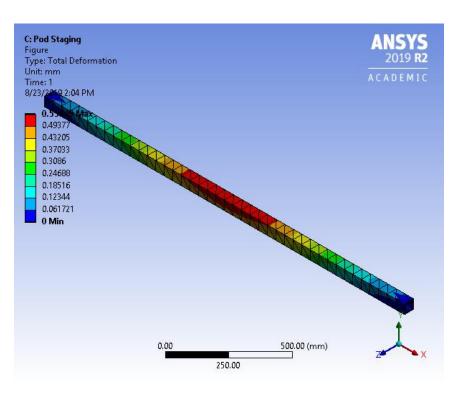
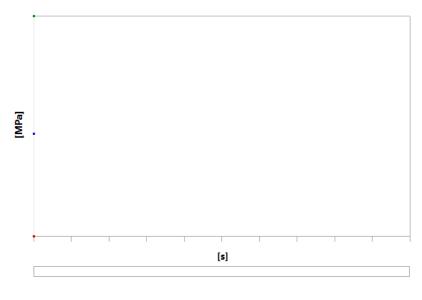



FIGURE 14 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress

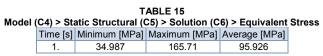
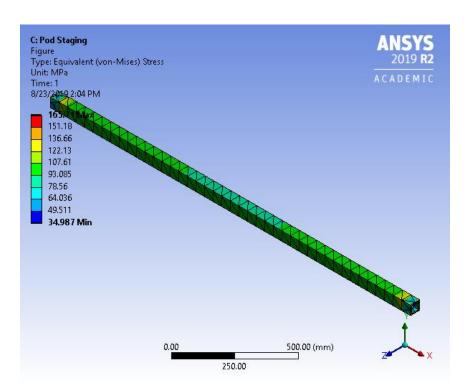



FIGURE 15 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress > Figure

Material Data

Aluminum Alloy

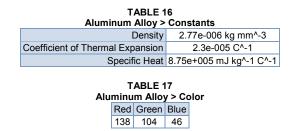


TABLE 18 Aluminum Alloy > Compressive Ultimate Strength Compressive Ultimate Strength MPa 0

TABLE 19 Aluminum Alloy > Compressive Yield Strength Compressive Yield Strength MPa

280

TABLE 20 Aluminum Alloy > Tensile Yield Strength Tensile Yield Strength MPa

280

TABLE 21 Aluminum Alloy > Tensile Ultimate Strength Tensile Ultimate Strength MPa

310

TABLE 22 Aluminum Alloy > Isotropic Secant Coefficient of Thermal Expansion Zero-Thermal-Strain Reference Temperature C

22	

TABLE 23

Aluminum Alloy > Isotropic Theri	mal Conductivity
The second of the line of the last second se	4 T

Thermal Conductivity w mm ² -1 C ² -1	Temperature C
0.114	-100
0.144	0
0.165	100
0.175	200

TABLE 24

Aluminum Alloy > S-N Curve

Alternating Stress MPa	Cycles	R-Ratio
275.8	1700	-1
241.3	5000	-1
206.8	34000	-1
172.4	1.4e+005	-1
137.9	8.e+005	-1
117.2	2.4e+006	-1
89.63	5.5e+007	-1
82.74	1.e+008	-1
170.6	50000	-0.5
139.6	3.5e+005	-0.5
108.6	3.7e+006	-0.5
87.91	1.4e+007	-0.5
77.57	5.e+007	-0.5
72.39	1.e+008	-0.5
144.8	50000	0
120.7	1.9e+005	0
103.4	1.3e+006	0
93.08	4.4e+006	0

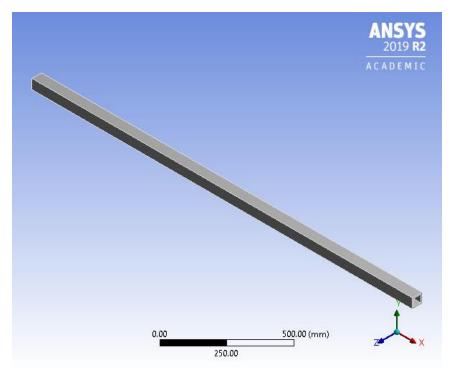
86.18	1.2e+007	0
72.39	1.e+008	0
74.12	3.e+005	0.5
70.67	1.5e+006	0.5
66.36	1.2e+007	0.5
62.05	1.e+008	0.5

TABLE 25 Aluminum Alloy > Isotropic Resistivity

Resistivity ohm mm	Temperature C
2.43e-005	0
2.67e-005	20
3.63e-005	100

TABLE 26

TABLE 26				
Aluminum Alloy > Isotropic Elasticity				
Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
71000	0.33	69608	26692	


TABLE 27 Aluminum Alloy > Isotropic Relative Permeability Relative Permeability

1

Appendix A.6 LCM Load Case II (Launch Phase) Analysis Report

Project

Contents

• Units

- Model (D4)
 - <u>Geometry</u> <u>Geom\PartBody</u>
 - o Materials
 - <u>Coordinate Systems</u>
 - o <u>Mesh</u>
 - Patch Conforming Method
 Static Structural (D5)
 Analysis Settings
 - 0
 - Loads
 Solution (D6)
 Solution
 - - Solution Information
 Results
- Material Data
 o Aluminum Alloy

Units

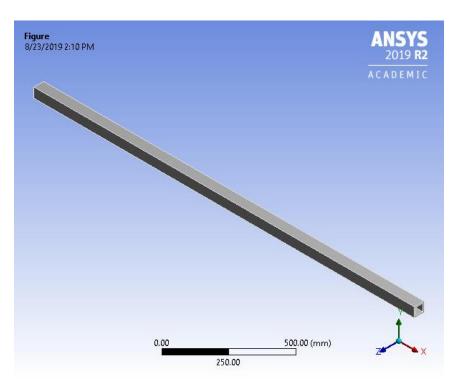
ТΑ	BL	.Е	1

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (D4)

Geometry

TABLE 2 Model (D4) > Geometry


Model (D4) > Geometry		
Object Name	Geometry	
State	Fully Defined	
	Definition	
Source	C:\Users\DIAPM599\OneDrive - Dentsply Sirona\Desktop\ANSYS Analysis\LCM_files\dp0\Geom\DM\Geom.scdoc	
Туре	SpaceClaim	
Length Unit	Meters	
Element Control	Program Controlled	
Display Style	Body Color	
Bounding Box		
Length X	2000. mm	
Length Y	50.8 mm	
Length Z	50.8 mm	

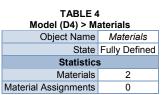

Properties		
Volume	2.2581e+006 mm ³	
Mass	6.2548 kg	
Scale Factor Value	1.	
	Statistics	
Bodies	1	
Active Bodies	1	
Nodes	2261	
Elements	1143	
Mesh Metric	None	
	Update Options	
Assign Default Material	No	
	Basic Geometry Options	
Solid Bodies	Yes	
Surface Bodies	Yes	
Line Bodies	Yes	
Parameters	Independent	
Parameter Key		
Attributes	Yes	
Attribute Key		
Named Selections	Yes	
Named Selection Key		
Material Properties	Yes	
	Advanced Geometry Options	
Use Associativity	Yes	
Coordinate Systems	Yes	
Coordinate System Key		
Reader Mode Saves	No	
Updated File		
Use Instances	Yes	
Smart CAD Update	Yes	
Compare Parts On Update	No	
Analysis Type	3-D	
Mixed Import Resolution	None	
Clean Bodies On Import	No	
Stitch Surfaces On	None	
Import	None	
Decompose Disjoint Geometry	Yes	
Enclosure and Symmetry Processing	Yes	

TABLE 3 Model (D4) > Geometry > Parts		
Object Name	Geom\PartBody	
State Meshed		
Graphics Properties		

Visible	Yes				
Transparency	1				
	inition				
Suppressed	No				
Stiffness Behavior	Flexible				
Coordinate System	Default Coordinate System				
Reference Temperature	By Environment				
Treatment	None				
Ma	aterial				
Assignment	Aluminum Alloy				
Nonlinear Effects	Yes				
Thermal Strain Effects	Yes				
Boun	ding Box				
Length X	2000. mm				
Length Y	50.8 mm				
Length Z	50.8 mm				
Properties					
Volume	2.2581e+006 mm ³				
Mass	6.2548 kg				
Centroid X	-1000. mm				
Centroid Y	25.4 mm				
Centroid Z	25.4 mm				
Moment of Inertia Ip1	4203.5 kg mm²				
Moment of Inertia Ip2	2.087e+006 kg·mm ²				
Moment of Inertia Ip3	2.087e+006 kg·mm ²				
	tistics				
Nodes	2261				
Elements	1143				
Mesh Metric	None				
CAD Attributes					
PartTolerance:	0.0000001				
Color:175.143.175					

FIGURE 1 Model (D4) > Geometry > Figure

Coordinate Systems

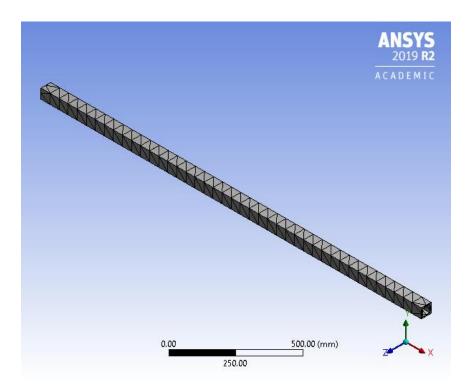
TABLE 5					
Model (D4) > Coordinate Systems > Coordinate System					

Object Name	Global Coordinate System					
State Fully Defined						
Definition						
Туре	Cartesian					
Coordinate System ID	0.					
Origin						
Origin X	0. mm					

Origin Y	0. mm					
Origin Z	0. mm					
Directional Vectors						
X Axis Data	[1. 0. 0.]					
Y Axis Data	[0. 1. 0.]					
Z Axis Data	[0. 0. 1.]					

Mesh

TABLE 6 Model (D4) > Mesh


Model (D4) > Mesr	1					
Object Name	Mesh					
State	Solved					
Display						
Display Style	Use Geometry Setting					
Defaults						
Physics Preference	Mechanical					
Element Order	Program Controlled					
Element Size	Default					
Sizing						
Use Adaptive Sizing	Yes					
Resolution	Default (2)					
Mesh Defeaturing	Yes					
Defeature Size	Default					
Transition	Fast					
Span Angle Center	Fine					
Initial Size Seed	Assembly					
Bounding Box Diagonal	2001.3 mm					
Average Surface Area	71346 mm²					
Minimum Edge Length	38.1 mm					
Quality						
Check Mesh Quality	Yes, Errors					
Error Limits	Standard Mechanical					
Target Quality	Default (0.050000)					
Smoothing	Medium					
Mesh Metric	None					
Inflation						
Use Automatic Inflation	None					
Inflation Option	Smooth Transition					
Transition Ratio	0.272					
Maximum Layers	5					
Growth Rate	1.2					
Inflation Algorithm	Pre					
View Advanced Options	No					
Advanced						
Number of CPUs for Parallel Part Meshing	Program Controlled					
Straight Sided Elements	No					
Rigid Body Behavior	Dimensionally Reduced					

Triangle Surface Mesher	Program Controlled		
Topology Checking	Yes		
Pinch Tolerance	Please Define		
Generate Pinch on Refresh	No		
Statistics			
Nodes	2261		
Elements	1143		

TABLE 7 Model (D4) > Mesh > Mesh Controls Object Name Patch Conforming Method

Object Name	Patch Conforming Method			
State	Fully Defined			
Scope				
Scoping Method	Geometry Selection			
Geometry	1 Body			
Definition				
Suppressed	No			
Method	Tetrahedrons			
Algorithm	Patch Conforming			
Element Order	Use Global Setting			

FIGURE 2 Model (D4) > Mesh > Figure

Static Structural (D5)

TABLE 8 Model (D4) > Analysis							
Object Name Static Structural (D5							
State	Solved						
Definition							
Physics Type Structural							
Analysis Type	Static Structural						
Solver Target	Mechanical APDL						
Options							
Environment Temperature	22. °C						
Generate Input Only	No						

TABLE 9 Model (D4) > Static Structural (D5) > Analysis Settings				
Object Name	Analysis Settings			
State Fully Defined				
Step Controls				

Number Of Steps	1.				
Current Step Number	1.				
Step End Time	1. s				
Auto Time Stepping	Program Controlled				
	Solver Controls				
Solver Type	Program Controlled				
Weak Springs	Off				
Solver Pivot Checking	rot Checking Program Controlled				
Large Deflection	Off				
Inertia Relief	Off				
	Rotordynamics Controls				
Coriolis Effect	Off				
	Restart Controls				
Generate Restart Points	Program Controlled				
Retain Files After Full	No				
Solve	NO				
Combine Restart Files	Program Controlled				
	Nonlinear Controls				
Newton-Raphson	Brogrom Controlled				
Öption	Program Controlled				
Force Convergence	Program Controlled				
Moment Convergence	Program Controlled				
Displacement					
Convergence Program Controlled					
Rotation Convergence Program Controlled					
Line Search					
Stabilization Program Controlled					
Output Controls					
Stress	Yes				
Surface Stress	No				
Back Stress	No				
Strain	Yes				
Contact Data	Yes				
Nonlinear Data	No				
Nodal Forces	No				
Contact Miscellaneous	No				
General Miscellaneous	No				
Store Results At	All Time Points				
Result File					
Compression	Program Controlled				
	Analysis Data Management				
Solver Files Directory	C:\Users\DIAPM599\OneDrive - Dentsply Sirona\Desktop\ANSYS Analysis\LCM_files\dp0\SYS-1\MECH\				
Future Analysis	None				
Scratch Solver Files					
Directory					
Save MAPDL db	No				
Contact Summary Program Controlled					
Delete Unneeded Files	Yes				

Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	nmm

FIGURE 3 Model (D4) > Static Structural (D5) > Figure

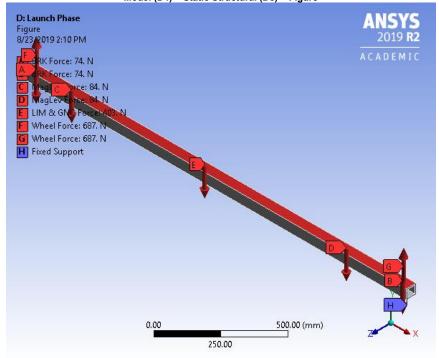


TABLE 10 Model (D4) > Static Structural (D5) > Loads

Object Name	Thermal Condition	BRK Force	BRK Force	MagLev Force	MagLev Force	LIM & GNC Force	Wheel Force	Wheel Force	Fixed Support
State		Fully Defined							
Scope									
Scoping Method									
Geometry	1 Body 1 Face 2 F					2 Faces			
Definition									
Туре	Thermal Force					Fixed Support			

Magnitude	80. °C (ramped)					
Suppressed		No				
Define By			Components			
Coordinate System		Global Coordinate System				
X Component		0. N (ramped)				
Y Component		-74. N (ramped)	-84. N (ramped)	-403. N (ramped)	687. N (ramped)	
Z Component		0. N (ramped)				

FIGURE 4 Model (D4) > Static Structural (D5) > Thermal Condition

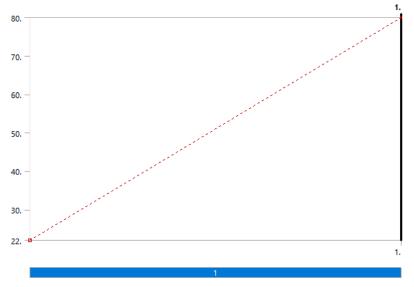
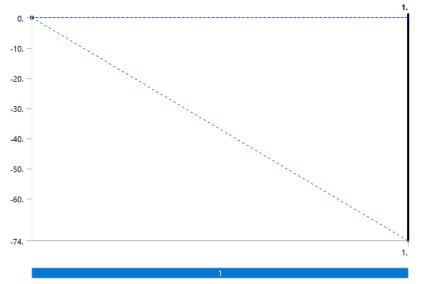



FIGURE 5 Model (D4) > Static Structural (D5) > BRK Force

FIGURE 6 Model (D4) > Static Structural (D5) > BRK Force

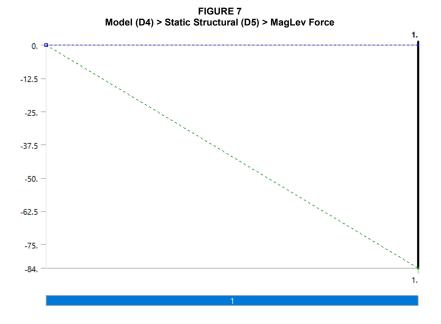
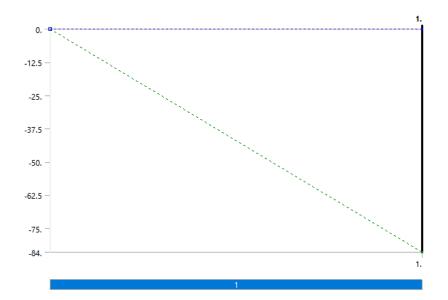
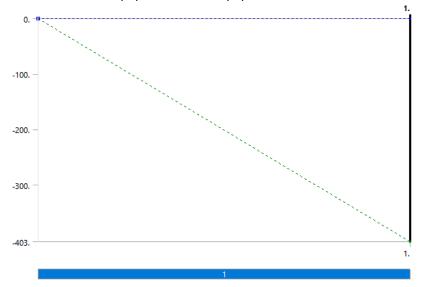




FIGURE 8 Model (D4) > Static Structural (D5) > MagLev Force

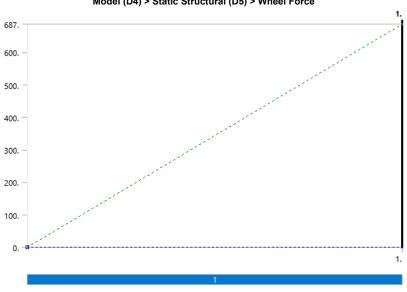
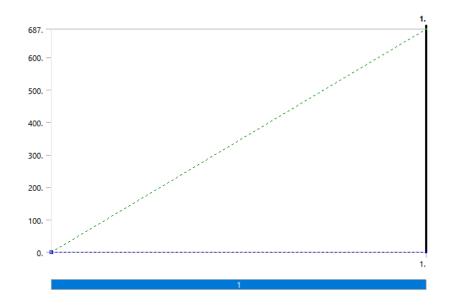



FIGURE 10 Model (D4) > Static Structural (D5) > Wheel Force

FIGURE 11 Model (D4) > Static Structural (D5) > Wheel Force

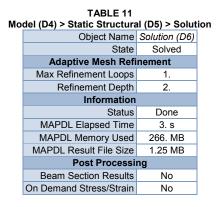


 TABLE 12

 Model (D4) > Static Structural (D5) > Solution (D6) > Solution Information

 Object Name
 Solution Information

State	Solved
Solution Inform	ation
Solution Output	Solver Output
Newton-Raphson Residuals	0

0
2.5 s
All
sibility
Yes
All FE Connectors
All Nodes
Connection Type
No
Single
Lines

TABLE 13

Model (D4) > Static Structural (D5) > Solution (D6) > Results			
Object Name	Total Deformation	Equivalent Stress	
State	Solved		
	Scope		
Scoping Method	Geo	metry Selection	
Geometry	All Bodies		
	Definition		
Туре	Total Deformation	Equivalent (von-Mises) Stress	
Ву		Time	
Display Time	Last		
Calculate Time History	Yes		
Identifier			
Suppressed	No		
	Results		
Minimum	0. mm	34.987 MPa	
Maximum	0.55549 mm 165.71 MPa		
Average	0.26761 mm 95.926 MPa		
Minimum Occurs On	Geom\PartBody		
Maximum Occurs On	Geom\PartBody		
Information			
Time	1. s		
Load Step 1			
Substep	Substep 1		
Iteration Number	Iteration Number 1		
	ntegration Point R	lesults	
Display Option	Averaged		
Average Across Bodies		No	

FIGURE 12 Model (D4) > Static Structural (D5) > Solution (D6) > Total Deformation

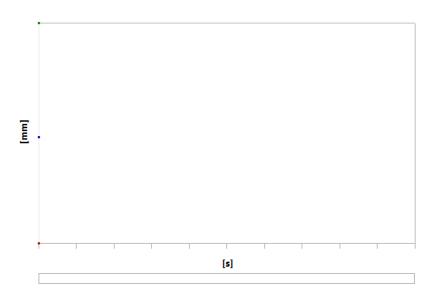


 TABLE 14

 Model (D4) > Static Structural (D5) > Solution (D6) > Total Deformation

 Time [s] Minimum [mm] Maximum [mm] Average [mm]

 1.
 0.
 0.55549
 0.26761

FIGURE 13 Model (D4) > Static Structural (D5) > Solution (D6) > Total Deformation > Figure

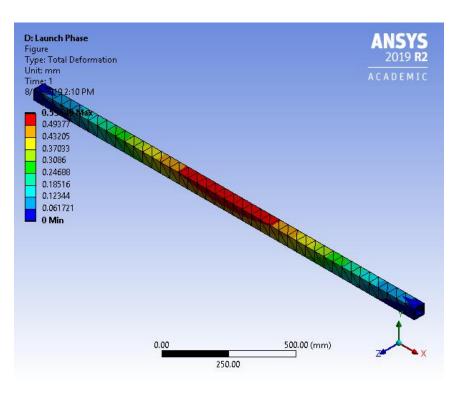
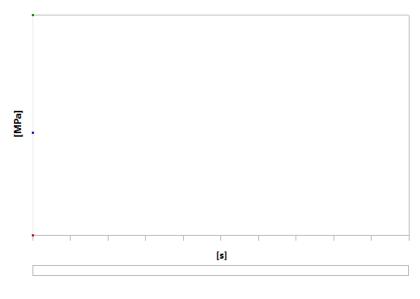



FIGURE 14 Model (D4) > Static Structural (D5) > Solution (D6) > Equivalent Stress

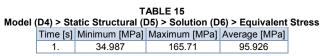


FIGURE 15 Model (D4) > Static Structural (D5) > Solution (D6) > Equivalent Stress > Figure

Material Data

Aluminum Alloy

TABLE 18 Aluminum Alloy > Compressive Ultimate Strength Compressive Ultimate Strength MPa 0

TABLE 19 Aluminum Alloy > Compressive Yield Strength Compressive Yield Strength MPa

280

TABLE 20 Aluminum Alloy > Tensile Yield Strength Tensile Yield Strength MPa

280

TABLE 21 Aluminum Alloy > Tensile Ultimate Strength Tensile Ultimate Strength MPa

310

TABLE 22

Aluminum Alloy > Isotropic Secant Coefficient of Thermal Expansion Zero-Thermal-Strain Reference Temperature C

22	

TABLE 23 Aluminum Alloy > Isotropic Thermal Conductivity Thermal Conductivity W mm^-1 C^-1 Temperature C

mermai conductivity w mm ⁻ -i C ⁻ -i	remperature C
0.114	-100
0.144	0
0.165	100
0.175	200

TABLE 24

Aluminum Alloy > S-N Curve

Alternating Stress MPa	Cycles	R-Ratio
275.8	1700	-1
241.3	5000	-1
206.8	34000	-1
172.4	1.4e+005	-1
137.9	8.e+005	-1
117.2	2.4e+006	-1
89.63	5.5e+007	-1
82.74	1.e+008	-1
170.6	50000	-0.5
139.6	3.5e+005	-0.5
108.6	3.7e+006	-0.5
87.91	1.4e+007	-0.5
77.57	5.e+007	-0.5
72.39	1.e+008	-0.5
144.8	50000	0
120.7	1.9e+005	0
103.4	1.3e+006	0
93.08	4.4e+006	0

86.18	1.2e+007	0
72.39	1.e+008	0
74.12	3.e+005	0.5
70.67	1.5e+006	0.5
66.36	1.2e+007	0.5
62.05	1.e+008	0.5

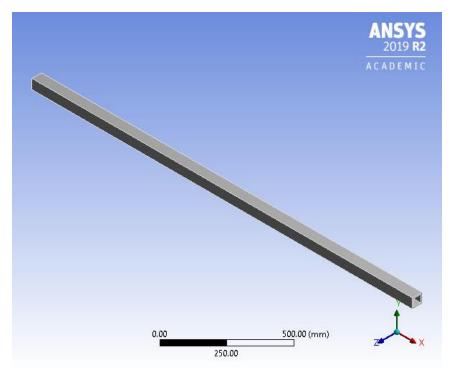
TABLE 25 Aluminum Alloy > Isotropic Resistivity

Resistivity onm mm	Temperature C
2.43e-005	0
2.67e-005	20
3.63e-005	100

TABLE 26

Aluminum Alloy > Isotropic Elasticity				
Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
71000	0.33	69608	26692	

. .


TABLE 27 Aluminum Alloy > Isotropic Relative Permeability Relative Permeability

1

Appendix A.7 LCM Load Case III (Levitation Phase) Analysis Report

Project

Contents

• Units

- Model (E4)
 - <u>Geometry</u> <u>Geom\PartBody</u>
 - o Materials
 - <u>Coordinate Systems</u>

 - Coordinate Systeme
 Mesh
 Patch Conforming Method
 Static Structural (E5)
 Analysis Settings
 Loads
 Solution (E6)
 Solution Informatic
 - - - Solution Information
 Results
- Material Data
 Aluminum Alloy

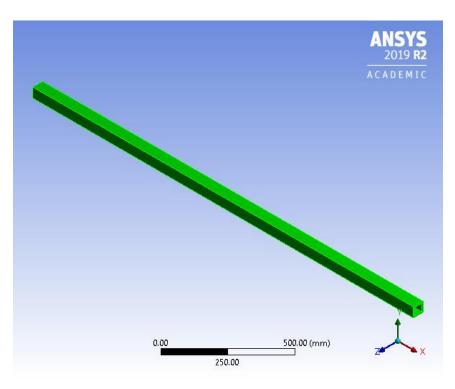
Units

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (E4)

Geometry

TABLE 2 Model (F4) > Geometry


Model (E4) > Geometry		
Object Name Geometry		
State Fully Defined		
Definition		
Source	C:\Users\DIAPM599\OneDrive - Dentsply Sirona\Desktop\ANSYS Analysis\LCM_files\dp0\Geom\DM\Geom.scdoc	
Туре	SpaceClaim	
Length Unit	Meters	
Element Control Program Controlled		
Display Style Body Color		
Bounding Box		
Length X	2000. mm	
Length Y	50.8 mm	
Length Z	50.8 mm	

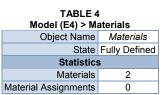

Properties		
Volume	2.2581e+006 mm ³	
Mass	6.2548 kg	
Scale Factor Value	1.	
	Statistics	
Bodies	1	
Active Bodies	1	
Nodes	2261	
Elements	1143	
Mesh Metric	None	
	Update Options	
Assign Default Material	No	
	Basic Geometry Options	
Solid Bodies	Yes	
Surface Bodies	Yes	
Line Bodies	Yes	
Parameters	Independent	
Parameter Key		
Attributes	Yes	
Attribute Key		
Named Selections	Yes	
Named Selection Key		
Material Properties	Yes	
	Advanced Geometry Options	
Use Associativity	Yes	
Coordinate Systems	Yes	
Coordinate System Key		
Reader Mode Saves	No	
Updated File		
Use Instances	Yes	
Smart CAD Update	Yes	
Compare Parts On	No	
Update		
Analysis Type	3-D	
Mixed Import Resolution	None	
Clean Bodies On Import	No	
Stitch Surfaces On	INU	
Suich Surfaces On Import	None	
Decompose Disjoint		
Geometry	Yes	
Enclosure and	Ver	
Symmetry Processing	Yes	

TABLE 3 Model (E4) > Geometry > Parts		
Object Name	Geom\PartBody	
State	Meshed	
Graphics Properties		

Visible	Yes	
Transparency	1	
Definition		
Suppressed	No	
Stiffness Behavior	Flexible	
Coordinate System	Default Coordinate System	
Reference Temperature	By Environment	
Treatment	None	
	aterial	
Assignment	Aluminum Alloy	
Nonlinear Effects	Yes	
Thermal Strain Effects	Yes	
Bounding Box		
Length X	2000. mm	
Length Y	50.8 mm	
Length Z	50.8 mm	
	perties	
Volume	2.2581e+006 mm ³	
Mass	6.2548 kg	
Centroid X	-1000. mm	
Centroid Y	25.4 mm	
Centroid Z	25.4 mm	
Moment of Inertia Ip1	4203.5 kg·mm²	
Moment of Inertia Ip2	2.087e+006 kg·mm ²	
Moment of Inertia Ip3	2.087e+006 kg mm²	
Moment of Inertia Ip3	2.087e+006 kg·mm ² tistics	
Moment of Inertia Ip3 Sta Nodes	2.087e+006 kg·mm ² tistics 2261	
Moment of Inertia Ip3 Sta Nodes Elements	2.087e+006 kg·mm ² tistics 2261 1143	
Moment of Inertia Ip3 Sta Nodes Elements Mesh Metric	2.087e+006 kg·mm ² tistics 2261 1143 None	
Moment of Inertia Ip3 Sta Nodes Elements Mesh Metric CAD A	2.087e+006 kg·mm ² tistics 2261 1143 None	
Moment of Inertia Ip3 Sta Nodes Elements Mesh Metric	2.087e+006 kg·mm ² tistics 2261 1143 None	

FIGURE 1 Model (E4) > Geometry > Geom > PartBody > Figure

Coordinate Systems

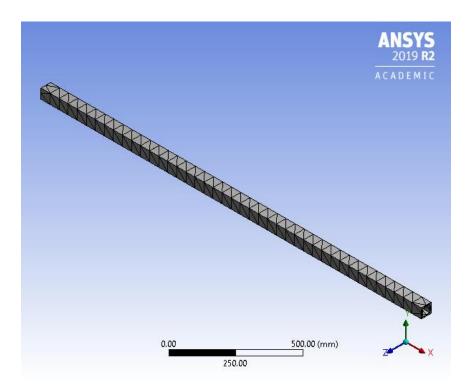
TABLE 5		
Mod	del (E4) > Coordinate S	Systems > Coordinate System

Object Name	Global Coordinate System	
State	Fully Defined	
Definition		
Type Cartesian		
Coordinate System ID	0.	
Origin		
Origin X	0. mm	

Origin Y	0. mm	
Origin Z	0. mm	
Directional Vectors		
X Axis Data	[1. 0. 0.]	
Y Axis Data	[0. 1. 0.]	
Z Axis Data	[0. 0. 1.]	

Mesh

TABLE 6 Model (E4) > Mesh


Model (E4) > Mesh	<u>)</u>	
Object Name	Mesh	
State	Solved	
Display		
Display Style	Use Geometry Setting	
Defaults		
Physics Preference	Mechanical	
Element Order	Program Controlled	
Element Size	Default	
Sizing		
Use Adaptive Sizing	Yes	
Resolution	Default (2)	
Mesh Defeaturing	Yes	
Defeature Size	Default	
Transition	Fast	
Span Angle Center	Fine	
Initial Size Seed	Assembly	
Bounding Box Diagonal	2001.3 mm	
Average Surface Area	71346 mm²	
Minimum Edge Length	38.1 mm	
Quality		
Check Mesh Quality	Yes, Errors	
Error Limits	Standard Mechanical	
Target Quality	Default (0.050000)	
Smoothing	Medium	
Mesh Metric	None	
Inflation		
Use Automatic Inflation	None	
Inflation Option	Smooth Transition	
Transition Ratio	0.272	
Maximum Layers	5	
Growth Rate	1.2	
Inflation Algorithm	Pre	
View Advanced Options	No	
Advanced		
Number of CPUs for Parallel Part Meshing	Program Controlled	
Straight Sided Elements	No	
Rigid Body Behavior	Dimensionally Reduced	

Triangle Surface Mesher	Program Controlled	
Topology Checking	Yes	
Pinch Tolerance	Please Define	
Generate Pinch on Refresh	No	
Statistics		
Nodes	2261	
Elements	1143	

TABLE 7 Model (E4) > Mesh > Mesh Controls Object Name Patch Conforming Method

Object Name	Patch Comonning Method	
State	Fully Defined	
Scope		
Scoping Method	Geometry Selection	
Geometry	1 Body	
Definition		
Suppressed No		
Method	Tetrahedrons	
Algorithm Patch Conforming		
Element Order	Use Global Setting	

FIGURE 2 Model (E4) > Mesh > Figure

Static Structural (E5)

TABLE 8 Model (E4) > Analysis		
Object Name Static Structural (E5)		
State	Solved	
Definition		
Physics Type	Structural	
Analysis Type	Static Structural	
Solver Target	Mechanical APDL	
Options		
Environment Temperature 22. °C		
Generate Input Only	No	

TABLE 9 Model (E4) > Static Structural (E5) > Analysis Settings		
Object Name	Analysis Settings	
State	Fully Defined	
Step Controls		

Number Of Steps	1.			
Current Step Number	1.			
Step End Time	1. s			
Auto Time Stepping	Program Controlled			
	Solver Controls			
Solver Type	Program Controlled			
Weak Springs	Off			
Solver Pivot Checking	Program Controlled			
Large Deflection	Off			
Inertia Relief	Off			
	Rotordynamics Controls			
Coriolis Effect	Off			
	Restart Controls			
Generate Restart Points	Program Controlled			
Retain Files After Full	No			
Solve				
Combine Restart Files	Program Controlled			
	Nonlinear Controls			
Newton-Raphson	Program Controlled			
Option	r rogram controlled			
Force Convergence	Program Controlled			
Moment Convergence	Program Controlled			
Displacement	Program Controlled			
Convergence				
Rotation Convergence	Program Controlled			
Line Search	Program Controlled			
Stabilization	Program Controlled			
Output Controls				
Stress				
Surface Stress	No			
Back Stress	No			
Strain	Yes			
Contact Data	Yes			
Nonlinear Data	No			
Nodal Forces	No			
Contact Miscellaneous	No			
General Miscellaneous	No			
Store Results At	All Time Points			
Result File	Program Controlled			
Compression	ÿ			
	Analysis Data Management			
Solver Files Directory	C:\Users\DIAPM599\OneDrive - Dentsply Sirona\Desktop\ANSYS Analysis\LCM_files\dp0\SYS-2\MECH\			
Future Analysis	None			
Scratch Solver Files				
Directory				
Save MAPDL db	No			
Contact Summary	Program Controlled			
Delete Unneeded Files	Yes			

Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	nmm

FIGURE 3 Model (E4) > Static Structural (E5) > Figure

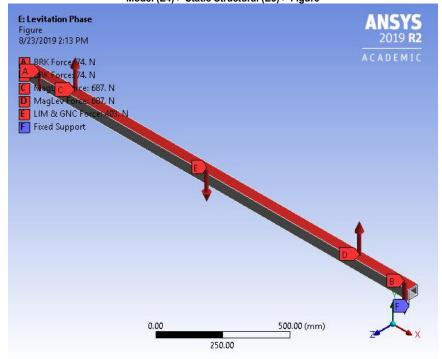


TABLE 10 Model (E4) > Static Structural (E5) > Loads

	Model (E4) > Static Structural (E5) > Loads						
Object Name	Thermal	BRK	BRK	MagLev	MagLev	LIM & GNC	Fixed
Object Name	Condition	Force	Force	Force	Force	Force	Support
State				Fully Defin	ed		
			Sc	оре			
Scoping Method	Geometry Selection						
Geometry	1 Body 1 Face			2 Faces			
Definition							
Туре	Thermal Condition	Force			Fixed Support		
Magnitude	80. °C (ramped)						

Suppressed	No				
Define By		Components			
Coordinate System		Global Coordinate System			
X Component		0. N (ramped)			
Y Component		-74. N (ramped)	687. N (ramped)	-403. N (ramped)	
Z Component		0. N (ramped)			

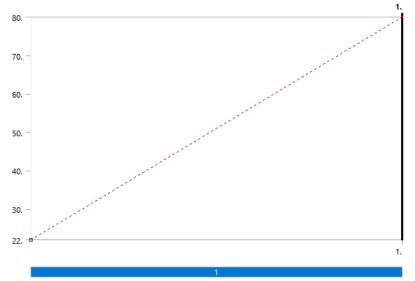
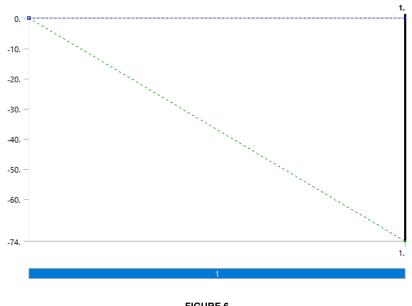



FIGURE 5 Model (E4) > Static Structural (E5) > BRK Force

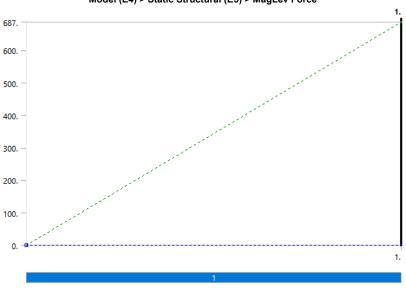


FIGURE 7 Model (E4) > Static Structural (E5) > MagLev Force

FIGURE 8 Model (E4) > Static Structural (E5) > MagLev Force

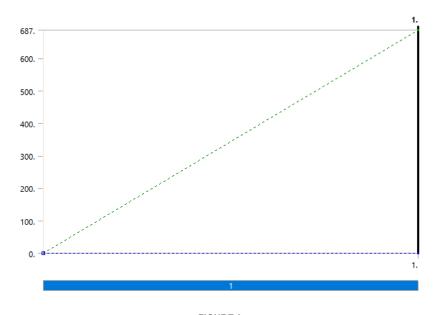
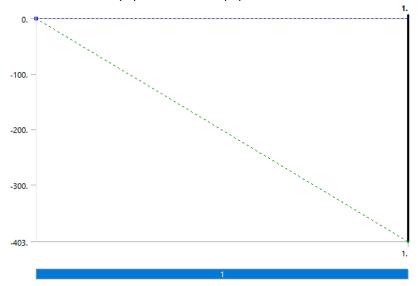



FIGURE 9 Model (E4) > Static Structural (E5) > LIM & GNC Force

Solution (E6)

Мо	TABLE 11 Model (E4) > Static Structural (E5) > Solution					
	Object Name	Solution (E6)				
	State	Solved				
	Adaptive Mesh Refi	nement				
	Max Refinement Loops	1.				
	Refinement Depth	2.				
	Information					
	Status	Done				
	MAPDL Elapsed Time	2. s				
	MAPDL Memory Used	266. MB				
	MAPDL Result File Size	1.1875 MB				
	Post Processing					
	Beam Section Results	No				
	On Demand Stress/Strain	No				

TABLE 12 Model (E4) > Static Structural (E5) > Solution (E6) > Solution Information Object Name Solution Information

Solution Information
Solved
ation
Solver Output
0
0
2.5 s
All
sibility
Yes
All FE Connectors
All Nodes
Connection Type
No
Single
Lines

 TABLE 13

 Model (E4) > Static Structural (E5) > Solution (E6) > Results

Object Name	e Total Deformation	Equivalent Stress		
State	Solved			
	Scope			
Scoping Method	Geometry Selection			
Geometry	1	All Bodies		
Definition				
Туре	Total Deformation Equivalent (von-Mises) Stress			
B	Time			
Display Time	Last			
Calculate Time History	Yes			

Identifier					
Suppressed	No				
	Results				
Minimum	0. mm	34.165 MPa			
Maximum	0.68558 mm	165.09 MPa			
Average	0.33298 mm	95.935 MPa			
Minimum Occurs On	G	eom\PartBody			
Maximum Occurs On	G	eom\PartBody			
	Information				
Time	1. s				
Load Step	1				
Substep	1				
Iteration Number	1				
Integration Point Results					
Display Option	Averaged				
Average Across Bodies	No				

FIGURE 10 Model (E4) > Static Structural (E5) > Solution (E6) > Total Deformation

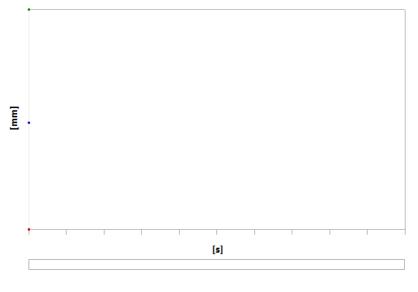


 TABLE 14

 Model (E4) > Static Structural (E5) > Solution (E6) > Total Deformation

 Time [s] Minimum [mm] Maximum [mm] Average [mm]

 1.
 0.
 0.68558
 0.33298

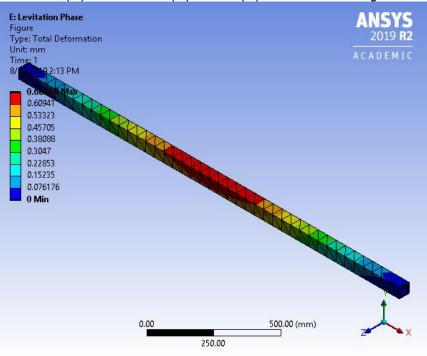
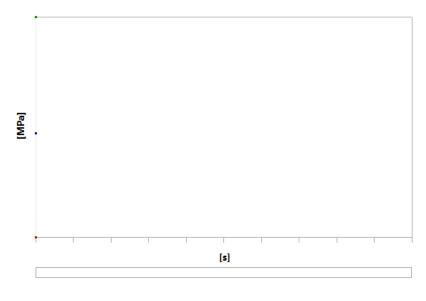



FIGURE 11 Model (E4) > Static Structural (E5) > Solution (E6) > Total Deformation > Figure

FIGURE 12 Model (E4) > Static Structural (E5) > Solution (E6) > Equivalent Stress

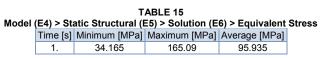
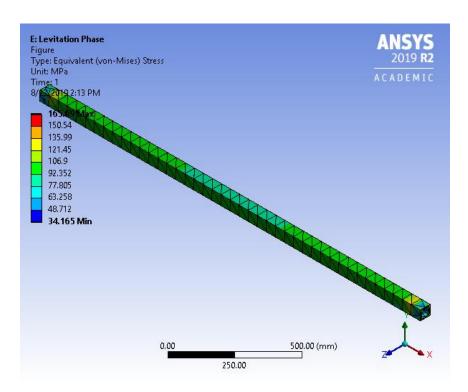



FIGURE 13 Model (E4) > Static Structural (E5) > Solution (E6) > Equivalent Stress > Figure

Material Data

Aluminum Alloy

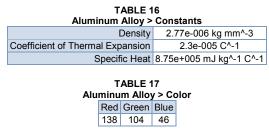


 TABLE 18

 Aluminum Alloy > Compressive Ultimate Strength

 Compressive Ultimate Strength MPa
 0

TABLE 19 Aluminum Alloy > Compressive Yield Strength Compressive Yield Strength MPa

280

TABLE 20 Aluminum Alloy > Tensile Yield Strength Tensile Yield Strength MPa

280

TABLE 21 Aluminum Alloy > Tensile Ultimate Strength Tensile Ultimate Strength MPa

310

TABLE 22

Aluminum Alloy > Isotropic Secant Coefficient of Thermal Expansion Zero-Thermal-Strain Reference Temperature C

22	

TABLE 23 Aluminum Alloy > Isotropic Thermal Conductivity

Thermal Conductivity w mm ² -1 C ² -1	Temperature C
0.114	-100
0.144	0
0.165	100
0.175	200

TABLE 24

Aluminum Alloy > S-N Curve

Alternating Stress MPa	Cycles	R-Ratio
275.8	1700	-1
241.3	5000	-1
206.8	34000	-1
172.4	1.4e+005	-1
137.9	8.e+005	-1
117.2	2.4e+006	-1
89.63	5.5e+007	-1
82.74	1.e+008	-1
170.6	50000	-0.5
139.6	3.5e+005	-0.5
108.6	3.7e+006	-0.5
87.91	1.4e+007	-0.5
77.57	5.e+007	-0.5
72.39	1.e+008	-0.5
144.8	50000	0
120.7	1.9e+005	0
103.4	1.3e+006	0
93.08	4.4e+006	0

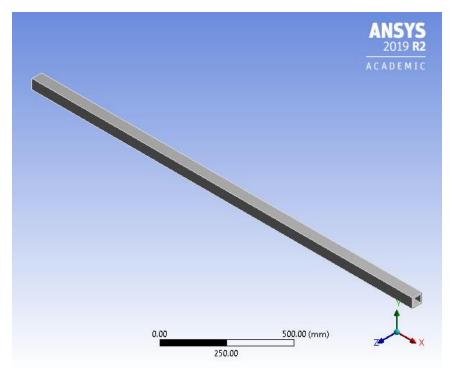
86.18	1.2e+007	0
72.39	1.e+008	0
74.12	3.e+005	0.5
70.67	1.5e+006	0.5
66.36	1.2e+007	0.5
62.05	1.e+008	0.5

TABLE 25 Aluminum Alloy > Isotropic Resistivity

Resistivity ohm mm	Temperature C
2.43e-005	0
2.67e-005	20
3.63e-005	100

TABLE 26

	Aluminum Alloy > Isotropic Elasticity						
Young's Modulus MPa Poisson's Ratio Bulk Modulus MPa Shear Modulus MPa Temperatur							
	71000	0.33	69608	26692			


TABLE 27 Aluminum Alloy > Isotropic Relative Permeability Relative Permeability

1

Appendix A.8 LCM Load Case IV (Braking Phase) Analysis Report

Project

Contents

• Units

- Model (F4)
 - <u>Geometry</u> <u>Geom\PartBody</u>
 - o Materials
 - <u>Coordinate Systems</u>
 - o <u>Mesh</u>
 - Mesn
 Patch Conforming Method
 Static Structural (F5)
 Analysis Settings
 Loads
 Solution (F6)
 Solution Information
 - - - Solution Information
 Results
- Material Data
 o Aluminum Alloy

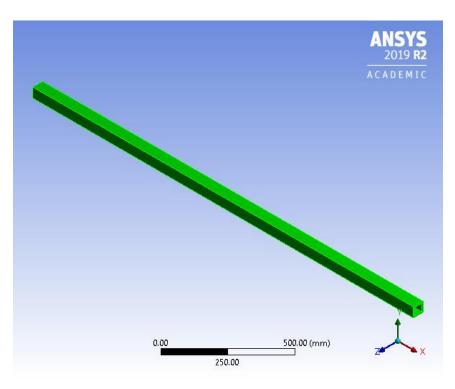
Units

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (F4)

Geometry

TABLE 2 Model (F4) > Geometry


Model (F4) > Geometry					
Geometry					
Fully Defined					
Definition					
M599\OneDrive - Dentsply Sirona\Desktop\ANSYS sis\LCM_files\dp0\Geom\DM\Geom.scdoc					
SpaceClaim					
Length Unit Meters					
Element Control Program Controlled					
Display Style Body Color					
Bounding Box					
2000. mm					
50.8 mm					
Length Z 50.8 mm					

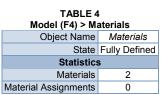

Properties							
Volume 2.2581e+006 mm ³							
Mass 6.2548 kg							
Scale Factor Value 1.							
	Statistics						
Bodies	1						
Active Bodies	1						
Nodes	2261						
Elements	1143						
Mesh Metric	None						
	Update Options						
Assign Default Material	No						
	Basic Geometry Options						
Solid Bodies	Yes						
Surface Bodies	Yes						
Line Bodies	Yes						
Parameters	Independent						
Parameter Key							
Attributes	Yes						
Attribute Key							
Named Selections	Yes						
Named Selection Key							
Material Properties	Yes						
	Advanced Geometry Options						
Use Associativity	Yes						
Coordinate Systems	Yes						
Coordinate System Key							
Reader Mode Saves	No						
Updated File							
Use Instances	Yes						
Smart CAD Update	Yes						
Compare Parts On Update	No						
Analysis Type	3-D						
Mixed Import Resolution	None						
Clean Bodies On Import	No						
Stitch Surfaces On	None						
Import	None						
Decompose Disjoint Geometry	Yes						
Enclosure and Symmetry Processing	Yes						

TABLE 3 Model (F4) > Geometry > Parts				
Object Name	Geom\PartBody			
State	Meshed			
Graphics Properties				

Visible	Yes					
Transparency 1						
Definition						
Suppressed	No					
Stiffness Behavior	Flexible					
Coordinate System	Default Coordinate System					
Reference Temperature	By Environment					
Treatment	None					
Ma	aterial					
Assignment	Aluminum Alloy					
Nonlinear Effects	Yes					
Thermal Strain Effects	Yes					
Boun	ding Box					
Length X	2000. mm					
Length Y	50.8 mm					
Length Z	50.8 mm					
Properties						
Volume	2.2581e+006 mm ³					
Mass	6.2548 kg					
Centroid X	-1000. mm					
Centroid Y	25.4 mm					
Centroid Z	25.4 mm					
Moment of Inertia Ip1	4203.5 kg⋅mm²					
Moment of Inertia Ip2	2.087e+006 kg·mm ²					
Moment of Inertia Ip3	2.087e+006 kg·mm ²					
	tistics					
Nodes	2261					
Elements	1143					
Mesh Metric	None					
	Attributes					
PartTolerance:	0.0000001					
Color:175.143.175						

FIGURE 1 Model (F4) > Geometry > Geom > PartBody > Figure

Coordinate Systems

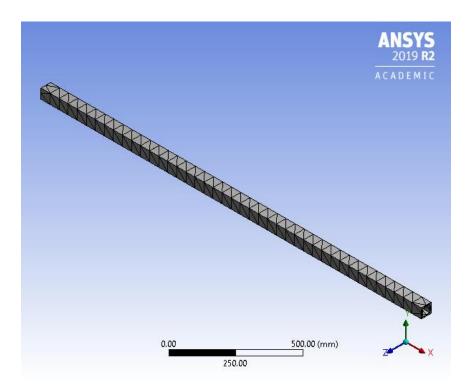
			Т	AE	3LI	E 5							
Mod	el (F4)	> Coo	rdinate	Sy	/st	em	IS 3	> Co	or	dir	ate	Sys	tem
1											-		

Object Name	Global Coordinate System					
State	Fully Defined					
Definition						
Туре	Cartesian					
Coordinate System ID	0.					
Origin						
Origin X	0. mm					

Origin Y	0. mm
Origin Z	0. mm
Directio	onal Vectors
X Axis Data	[1. 0. 0.]
Y Axis Data	[0. 1. 0.]
Z Axis Data	[0.0.1.]

Mesh

TABLE 6 Model (F4) > Mesh


Model (F4) > Mesh	1		
Object Name	Mesh		
State	Solved		
Display			
Display Style	Use Geometry Setting		
Defaults			
Physics Preference	Mechanical		
Element Order	Program Controlled		
Element Size	Default		
Sizing			
Use Adaptive Sizing	Yes		
Resolution	Default (2)		
Mesh Defeaturing	Yes		
Defeature Size	Default		
Transition	Fast		
Span Angle Center	Fine		
Initial Size Seed	Assembly		
Bounding Box Diagonal	2001.3 mm		
Average Surface Area	71346 mm²		
Minimum Edge Length	38.1 mm		
Quality			
Check Mesh Quality	Yes, Errors		
Error Limits	Standard Mechanical		
Target Quality	Default (0.050000)		
Smoothing	Medium		
Mesh Metric	None		
Inflation			
Use Automatic Inflation	None		
Inflation Option	Smooth Transition		
Transition Ratio	0.272		
Maximum Layers	5		
Growth Rate	1.2		
Inflation Algorithm	Pre		
View Advanced Options	No		
Advanced			
Number of CPUs for Parallel Part Meshing	Program Controlled		
Straight Sided Elements	No		
Rigid Body Behavior	Dimensionally Reduced		

Triangle Surface Mesher	Program Controlled
Topology Checking	Yes
Pinch Tolerance	Please Define
Generate Pinch on Refresh	No
Statistics	
Nodes	2261
Elements	1143

TABLE 7 Model (F4) > Mesh > Mesh Controls Object Name Patch Conforming Method

Woder (F4) > Wesh > Wesh Controls						
Object Name	Patch Conforming Method					
State	Fully Defined					
Scope						
Scoping Method	Geometry Selection					
Geometry	1 Body					
Definition						
Suppressed	No					
Method	Tetrahedrons					
Algorithm	Patch Conforming					
Element Order	Use Global Setting					
	•					

FIGURE 2 Model (F4) > Mesh > Figure

Static Structural (F5)

TABLE 8 Model (F4) > Analysis							
Object Name	Static Structural (F5)						
State	Solved						
Definition							
Physics Type	Structural						
Analysis Type	Static Structural						
Solver Target	Mechanical APDL						
Option	Options						
Environment Temperature	22. °C						
Generate Input Only	No						

TABLE 9 Model (F4) > Static Structural (F5) > Analysis Settings Object Name Analysis Settings State Fully Defined Step Controls

Number Of Steps	1.						
Current Step Number	1.						
Step End Time	1. s						
Auto Time Stepping	Program Controlled						
Solver Controls							
Solver Type	Program Controlled						
Weak Springs	Off						
Solver Pivot Checking	Program Controlled						
Large Deflection	Off						
Inertia Relief	Off						
	Rotordynamics Controls						
Coriolis Effect	Off						
	Restart Controls						
Generate Restart Points	Program Controlled						
Retain Files After Full	Νο						
Solve							
Combine Restart Files	Program Controlled						
	Nonlinear Controls						
Newton-Raphson	Program Controlled						
Option	• 						
Force Convergence	Program Controlled						
Moment Convergence	Program Controlled						
Displacement	Program Controlled						
Convergence							
Rotation Convergence	Program Controlled						
Line Search	Program Controlled						
Stabilization	Program Controlled						
Output Controls Stress Yes							
Surface Stress	No						
Back Stress	No						
Strain	Yes						
Contact Data	Yes						
Nonlinear Data	No						
Nodal Forces	No						
Contact Miscellaneous	No						
General Miscellaneous	No						
Store Results At	All Time Points						
Result File	Program Controlled						
Compression	5						
	Analysis Data Management						
Solver Files Directory C:\Users\DIAPM599\OneDrive - Dentsply Sirona\Desktop\ANS Analysis\LCM_files\dp0\SYS-3\MECH\							
Future Analysis	None						
Scratch Solver Files							
Directory							
Save MAPDL db	No						
Contact Summary	Program Controlled						
Delete Unneeded Files	Yes						

Nonlinear Solution	No			
Solver Units	Active System			
Solver Unit System	nmm			

FIGURE 3 Model (F4) > Static Structural (F5) > Figure

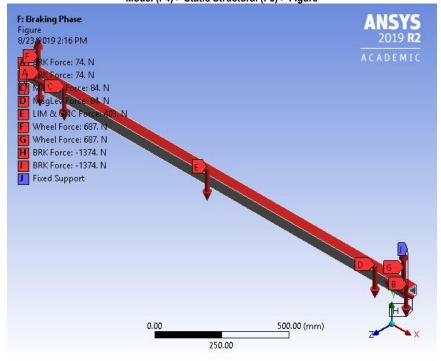


TABLE 10 Model (F4) > Static Structural (F5) > Loads

Model (F4) > Static Structural (F5) > Loads											
Object Name	Thermal Condition				MagLev Force	LIM & GNC Force		Wheel Force			Fixed Support
State		Fully Defined									
Scope											
Scoping Method	Geometry Selection										
Geometry	1 Body 1 Face 2 Faces										
Definition											
Туре	Thermal Force Fixed Support										

Magnitude	80. °C (ramped)					-1374. N (ramped)	
Suppressed							
Define By			Compone	ents		Vector	
Coordinate System			Global Coordinate System				
X Component		0. N (ramped)					
Y Component		-74. N (ramped)	-84. N (ramped)	-403. N (ramped)	687. N (ramped)		
Z Component			0. N (ramped)				
Direction						Defined	

FIGURE 4 Model (F4) > Static Structural (F5) > Thermal Condition

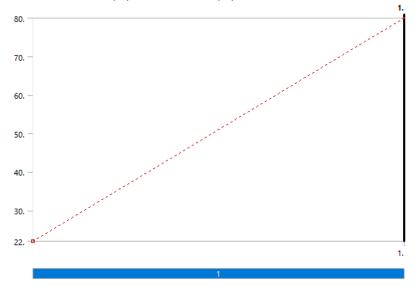
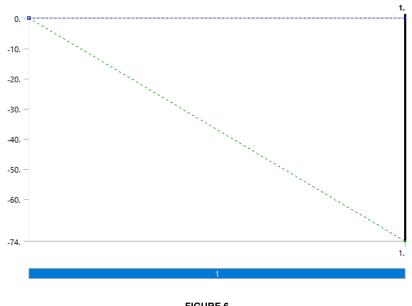
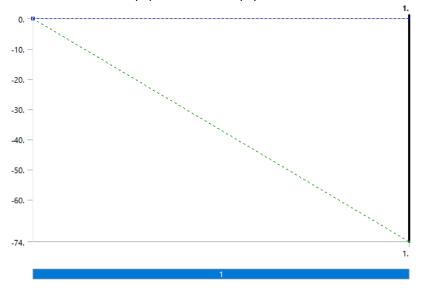




FIGURE 5 Model (F4) > Static Structural (F5) > BRK Force

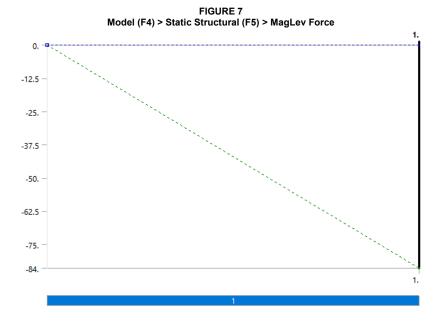
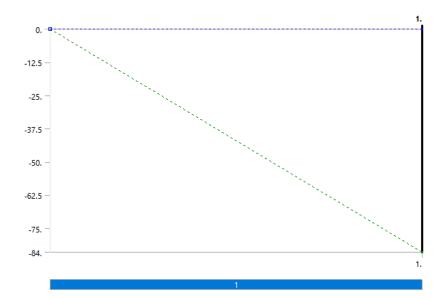
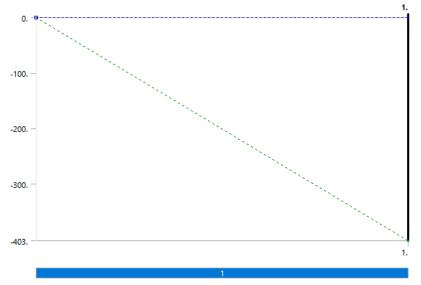




FIGURE 8 Model (F4) > Static Structural (F5) > MagLev Force

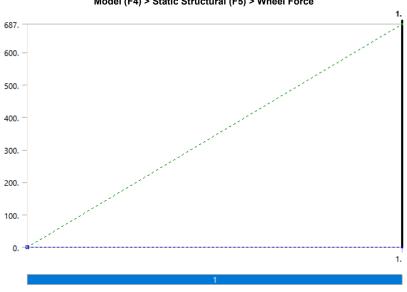
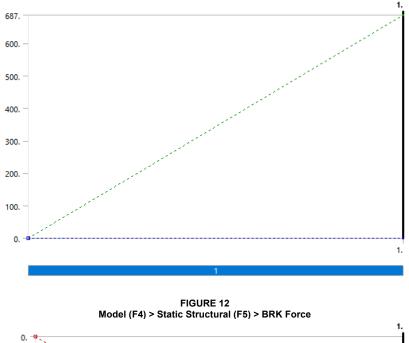
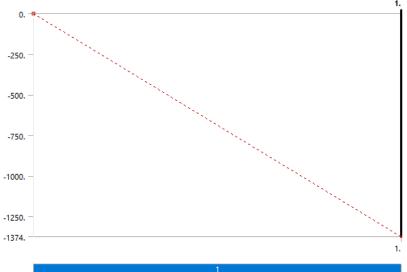
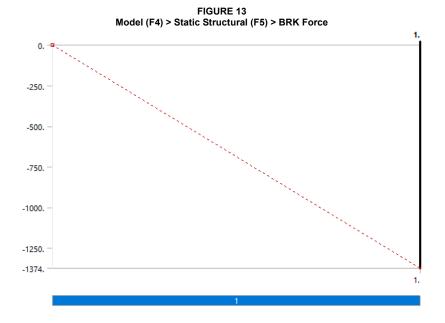
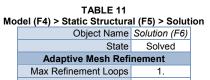
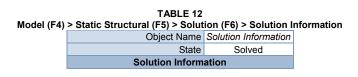





FIGURE 10 Model (F4) > Static Structural (F5) > Wheel Force

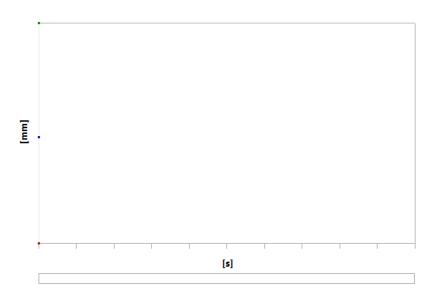
FIGURE 11 Model (F4) > Static Structural (F5) > Wheel Force





Solution (F6)

o	odel (F4) > Static Structural (F5) > Solution							
	Object Name	Solution (F6)						
	State	Solved						
	Adaptive Mesh Refi	nement						
	Max Refinement Loops	1.						
	Refinement Depth	2.						
	Information							
	Status	Done						
	MAPDL Elapsed Time	2. s						
	MAPDL Memory Used	266. MB						
	MAPDL Result File Size	1.25 MB						
	Post Processing							
	Beam Section Results	No						
	On Demand Stress/Strain	No						



Solver Output
0
0
2.5 s
All
isibility
Yes
All FE Connectors
All Nodes
Connection Type
No
Single
Lines

TABLE 13

Model (F4) > Static Structural (F5) > Solution (F6) > Results							
Object Name	Total Deformation	Equivalent Stress					
State	Solved						
	Scope						
Scoping Method	Geo	metry Selection					
Geometry		All Bodies					
	Definition						
Туре	Total Deformation	Equivalent (von-Mises) Stress					
Ву		Time					
Display Time		Last					
Calculate Time History		Yes					
Identifier							
Suppressed	No						
	Results						
Minimum	0. mm	34.987 MPa					
Maximum	0.55549 mm	165.71 MPa					
Average	0.26761 mm	95.926 MPa					
Minimum Occurs On	G	eom\PartBody					
Maximum Occurs On	G	eom\PartBody					
	Information						
Time		1. s					
Load Step	1						
Substep	1						
Iteration Number	1						
	Integration Point Results						
Display Option	Averaged						
Average Across Bodies		No					

FIGURE 14 Model (F4) > Static Structural (F5) > Solution (F6) > Total Deformation

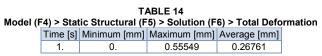


FIGURE 15 Model (F4) > Static Structural (F5) > Solution (F6) > Total Deformation > Figure

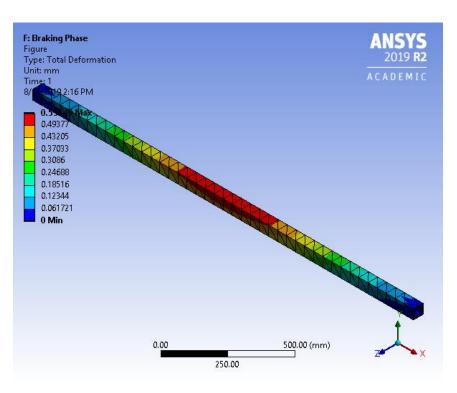
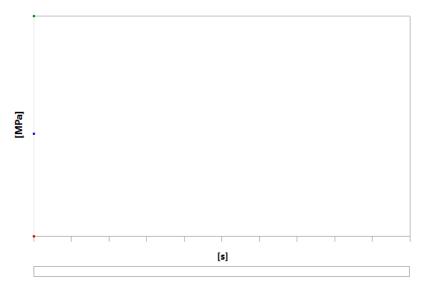



FIGURE 16 Model (F4) > Static Structural (F5) > Solution (F6) > Equivalent Stress

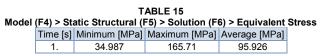
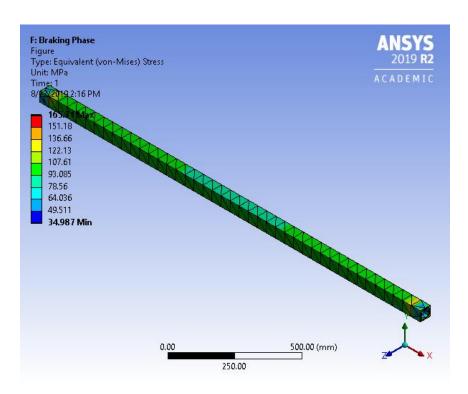



FIGURE 17 Model (F4) > Static Structural (F5) > Solution (F6) > Equivalent Stress > Figure

Material Data

Aluminum Alloy

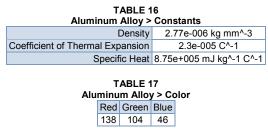


 TABLE 18

 Aluminum Alloy > Compressive Ultimate Strength

 Compressive Ultimate Strength MPa
 0

TABLE 19 Aluminum Alloy > Compressive Yield Strength Compressive Yield Strength MPa

280

TABLE 20 Aluminum Alloy > Tensile Yield Strength Tensile Yield Strength MPa

280

TABLE 21 Aluminum Alloy > Tensile Ultimate Strength Tensile Ultimate Strength MPa

310

TABLE 22

Aluminum Alloy > Isotropic Secant Coefficient of Thermal Expansion Zero-Thermal-Strain Reference Temperature C

22	

TABLE 23 Aluminum Alloy > Isotropic Thermal Conductivity

Thermal Conductivity w mm ² -1 C ² -1	Temperature C
0.114	-100
0.144	0
0.165	100
0.175	200

TABLE 24

Aluminum Alloy > S-N Curve

Alternating Stress MPa	Cycles	R-Ratio
275.8	1700	-1
241.3	5000	-1
206.8	34000	-1
172.4	1.4e+005	-1
137.9	8.e+005	-1
117.2	2.4e+006	-1
89.63	5.5e+007	-1
82.74	1.e+008	-1
170.6	50000	-0.5
139.6	3.5e+005	-0.5
108.6	3.7e+006	-0.5
87.91	1.4e+007	-0.5
77.57	5.e+007	-0.5
72.39	1.e+008	-0.5
144.8	50000	0
120.7	1.9e+005	0
103.4	1.3e+006	0
93.08	4.4e+006	0

86.18	1.2e+007	0
72.39	1.e+008	0
74.12	3.e+005	0.5
70.67	1.5e+006	0.5
66.36	1.2e+007	0.5
62.05	1.e+008	0.5

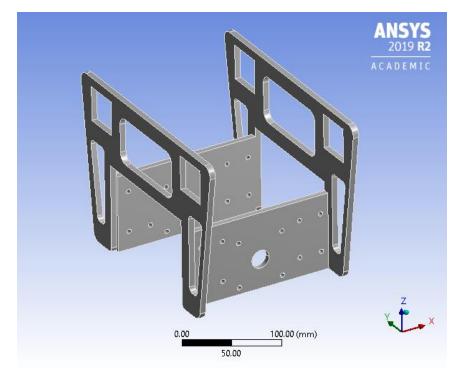
TABLE 25 Aluminum Alloy > Isotropic Resistivity

Resistivity ohm mm	Temperature C
2.43e-005	0
2.67e-005	20
3.63e-005	100

TABLE 26

Aluminum Alloy > Isotropic Elasticity				
Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
71000	0.33	69608	26692	

. .


TABLE 27 Aluminum Alloy > Isotropic Relative Permeability Relative Permeability

1

Appendix A.9 Bulkhead Load Case (Braking Phase) Analysis Report

Project

Contents

•

Units

- Model (C4)
 - o Geometry <u>RH_PRP_Chassis_BulkHead-FreeParts|PartBody</u>
 - o Materials
 - Coordinate Systems 0
 - o <u>Mesh</u>
 - Patch Conforming Method
 Static Structural (C5)
 Analysis Settings
 - 0
 - . Loads
 - Solution (C6) .
 - Solution Information
 Results
- Material Data
 Aluminum Alloy

Units

TABLE 1

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (C4)

Geometry

TABLE 2 Model (C4) > Geometry Object Name Geometry State Fully Defined Definition Source D:\RH_PRP_Chassis_BulkHead.igs Туре Iges Length Unit Millimeters Element Control Program Controlled **Display Style** Body Color Bounding Box Length X 172.7 mm Length Y 251.12 mm

Length Z

Properties

182.12 mm

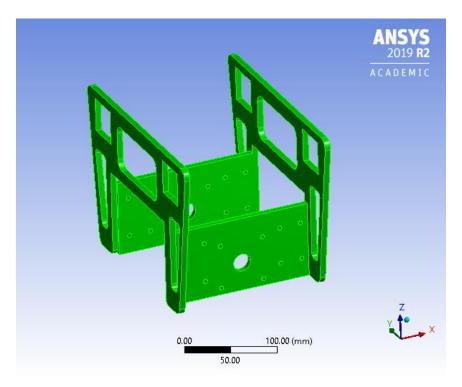

Volume	3.8104e+005 mm ³
Mass	1.0555 kg
Scale Factor Value	1.
Statis	stics
Bodies	1
Active Bodies	1
Nodes	11908
Elements	5576
Mesh Metric	None
Update (Options
Assign Default Material	No
Basic Geome	etry Options
Solid Bodies	Yes
Surface Bodies	Yes
Line Bodies	No
Parameters	Independent
Parameter Key	ANS;DS
Attributes	No
Named Selections	No
Material Properties	No
Advanced Geo	metry Options
Use Associativity	Yes
Coordinate Systems	No
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On Update	No
Analysis Type	3-D
Mixed Import Resolution	None
Clean Bodies On Import	No
Stitch Surfaces On Import	Program Tolerance
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

TABLE 3 Model (C4) > Geometry > Parts

Model (04) > Geoffield y > 1 arts				
RH_PRP_Chassis_BulkHead-FreeParts PartBody				
Meshed				
Graphics Properties				
Yes				
1				
Definition				
No				
Flexible				
Default Coordinate System				
By Environment				
None				
Material				
Aluminum Alloy				

Nonlinear Effects	Yes		
Thermal Strain Effects	Yes		
	Bounding Box		
Length X	172.7 mm		
Length Y	251.12 mm		
Length Z	182.12 mm		
Properties			
Volume	3.8104e+005 mm ³		
Mass	1.0555 kg		
Centroid X	86.745 mm		
Centroid Y	0.17852 mm		
Centroid Z	16.361 mm		
Moment of Inertia Ip1	9126.2 kg⋅mm²		
Moment of Inertia Ip2	8230.3 kg⋅mm²		
Moment of Inertia Ip3	11149 kg·mm²		
Statistics			
Nodes	11908		
Elements	5576		
Mesh Metric	None		

FIGURE 1 Model (C4) > Geometry > RH_PRP_Chassis_BulkHead-FreeParts|PartBody > Figure

TABLE 4 Model (C4) > Materials			
Materials			
Fully Defined			
Statistics			
2			
0			

Coordinate Systems

TABLE 5			
Model (C4) > Coordinate Systems > Coordinate System			
	Object Name	Global Coordinate System	

Object Name	Global Coordinate System		
State	Fully Defined		
Definition			
Туре	Cartesian		
Coordinate System ID	0.		
Origin			
Origin X	0. mm		

Origin Y	0. mm		
Origin Z	0. mm		
Directional Vectors			
X Axis Data	[1. 0. 0.]		
Y Axis Data	[0. 1. 0.]		
Z Axis Data	[0.0.1.]		

Mesh

TABLE 6 Model (C4) > Mesh

Object NameMeshStateSolvedDisplayUse Geometry SettingDefaultsUse Geometry SettingPhysics PreferenceMechanicalElement OrderProgram ControlledElement SizeDefaultSizingYesUse Adaptive SizingYesMesh DefeaturingYesDefault Giametan SizeDefault (2)Mesh DefeaturingYesDefeature SizeDefaultSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmOtheck Mesh QualityYes, ErrorsStandard MechanicalNoneInflationNoneInflationSmoothingMesh MetricNoneInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedProgram ControlledStraight Sided ElementsNo
DisplayDisplay StyleUse Geometry SettingDefaultsPhysics PreferenceMechanicalElement OrderProgram ControlledElement SizeDefaultSizingYesUse Adaptive SizingYesObefaultDefault (2)Mesh DefeaturingYesDefaultDefault (2)Mesh Defeature SizeDefault (2)Mesh Defeature SizeDefault (2)Mesh Defeature SizeDefault (2)Mesh Defeature SizeDefaultTransitionFastSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMesh MetricNoneInflationMediumMesh MetricNoneInflation OptionSmooth TransitionInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoNumber of CPUs for Parallel Part MeshingProgram Controlled
Display StyleUse Geometry SettingDefaultsPhysics PreferenceMechanicalElement OrderProgram ControlledElement SizeDefaultSizingYesUse Adaptive SizingYesUse Adaptive SizingYesDefaultDefaultMesh DefeaturingYesDefaultSizingYesDefault (2)Mesh Defeature SizeDefaultTransitionFastSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsCheck Mesh QualityYes, ErrorsStandard MechanicalTarget QualityDefault (0.05000)SmoothingMediumMesh MetricNoneInflationUse Automatic InflationNoneInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoNoNoNumber of CPUs for Parallel Part MeshingProgram Controlled
DefaultsPhysics PreferenceMechanicalElement OrderProgram ControlledElement SizeDefaultSizingYesUse Adaptive SizingYesMesh DefeaturingYesDefaultYesDefaultYesDefaultYesDefaultYesDefaultYesDefaultYesDefaultYesDefaultYesSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsCheck Mesh QualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.05000)SmoothingMediumMesh MetricNoneInflationMediumMesh MetricNoneInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedNoNumber of CPUs for Parallel Part MeshingProgram Controlled
Physics PreferenceMechanicalElement OrderProgram ControlledElement SizeDefaultSizingYesUse Adaptive SizingYesMesh DefeaturingYesDefaultDefaultTransitionFastSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedNoNumber of CPUs for Parallel Part MeshingProgram Controlled
Element OrderProgram ControlledElement SizeDefaultSizingYesUse Adaptive SizingYesResolutionDefault (2)Mesh DefeaturingYesDefeature SizeDefaultTransitionFastSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationSmooth TransitionInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedNoNumber of CPUs for Parallel Part MeshingProgram Controlled
Element SizeDefaultSizingUse Adaptive SizingYesUse Adaptive SizingYesResolutionDefault (2)Mesh DefeaturingYesDefeature SizeDefaultTransitionFastSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsCheck Mesh QualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.05000)SmoothingMediumMesh MetricNoneInflationInflationUse Automatic InflationSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedNoNumber of CPUs for Parallel Part MeshingProgram Controlled
SizingUse Adaptive SizingYesResolutionDefault (2)Mesh DefeaturingYesDefeature SizeDefaultTransitionFastSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedNoNumber of CPUs for Parallel Part MeshingProgram Controlled
Use Adaptive SizingYesResolutionDefault (2)Mesh DefeaturingYesDefeature SizeDefaultTransitionFastSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationSmooth TransitionInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedNoAdvancedProgram Controlled
ResolutionDefault (2)Mesh DefeaturingYesDefeature SizeDefaultTransitionFastSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmOualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationMoneInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedNoAdvancedProgram Controlled
Mesh DefeaturingYesDefeature SizeDefaultTransitionFastSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmOualityYes, ErrorsCheck Mesh QualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationNoneInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoNoNoMaximum Layers5Store AdvancedNoNoNoStore Advanced OptionsNoNoNoStore Advanced OptionsNoStore Advanced OptionsNo<
Defeature SizeDefaultTransitionFastSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsCheck Mesh QualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationNoneInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedProgram Controlled
TransitionFastSpan Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsCheck Mesh QualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationInflationUse Automatic InflationSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedNoNumber of CPUs for Parallel Part MeshingProgram Controlled
Span Angle CenterCoarseInitial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsCheck Mesh QualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationInflationUse Automatic InflationSmooth TransitionInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedNoNumber of CPUs for Parallel Part MeshingProgram Controlled
Initial Size SeedAssemblyBounding Box Diagonal355.04 mmAverage Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityYes, ErrorsCheck Mesh QualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationInflationUse Automatic InflationSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNooAdvancedNoneNumber of CPUs for Parallel Part MeshingProgram Controlled
Bounding Box Diagonal 355.04 mm Average Surface Area 980.37 mm² Minimum Edge Length 0.21228 mm Quality Yes, Errors Check Mesh Quality Yes, Errors Error Limits Standard Mechanical Target Quality Default (0.050000) Smoothing Medium Mesh Metric None Inflation Mone Use Automatic Inflation Smooth Transition Transition Ratio 0.272 Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced Program Controlled
Average Surface Area980.37 mm²Minimum Edge Length0.21228 mmQualityVes, ErrorsCheck Mesh QualityYes, ErrorsError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationMediumUse Automatic InflationNoneInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNooAdvancedNoneNumber of CPUs for Parallel Part MeshingProgram Controlled
Minimum Edge Length 0.21228 mm Quality Yes, Errors Check Mesh Quality Yes, Errors Error Limits Standard Mechanical Target Quality Default (0.050000) Smoothing Medium Mesh Metric None Inflation Inflation Use Automatic Inflation Smooth Transition Inflation Option Smooth Transition Transition Ratio 0.272 Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced No Number of CPUs for Parallel Part Meshing Program Controlled
QualityCheck Mesh QualityYes, ErrorsError LimitsStandard MechanicalError LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationInflationUse Automatic InflationSmooth TransitionInflation OptionSmooth TransitionInflation Charaction Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedNoNumber of CPUs for Parallel Part MeshingProgram Controlled
Check Mesh Quality Yes, Errors Error Limits Standard Mechanical Target Quality Default (0.050000) Smoothing Medium Mesh Metric None Inflation Use Automatic Inflation None Inflation Option Smooth Transition Transition Ratio 0.272 Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced No
Error LimitsStandard MechanicalTarget QualityDefault (0.050000)SmoothingMediumMesh MetricNoneInflationInflationUse Automatic InflationSmooth TransitionInflation OptionSmooth TransitionTransition Ratio0.272Maximum Layers5Growth Rate1.2Inflation AlgorithmPreView Advanced OptionsNoAdvancedProgram Controlled
Target Quality Default (0.050000) Smoothing Medium Mesh Metric None Inflation Inflation Use Automatic Inflation None Inflation Option Smooth Transition Transition Ratio 0.272 Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced Program Controlled
Smoothing Medium Mesh Metric None Inflation None Use Automatic Inflation None Inflation Option Smooth Transition Transition Ratio 0.272 Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced No Number of CPUs for Parallel Part Meshing Program Controlled
Mesh Metric None Inflation None Use Automatic Inflation None Inflation Option Smooth Transition Transition Ratio 0.272 Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced No Number of CPUs for Parallel Part Meshing Program Controlled
Inflation Use Automatic Inflation None Inflation Option Smooth Transition Transition Ratio 0.272 Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced No Number of CPUs for Parallel Part Meshing Program Controlled
Use Automatic Inflation None Inflation Option Smooth Transition Transition Ratio 0.272 Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced No Number of CPUs for Parallel Part Meshing Program Controlled
Inflation Option Smooth Transition Transition Ratio 0.272 Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced No Number of CPUs for Parallel Part Meshing Program Controlled
Transition Ratio 0.272 Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced Number of CPUs for Parallel Part Meshing Program Controlled
Maximum Layers 5 Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced Number of CPUs for Parallel Part Meshing Program Controlled
Growth Rate 1.2 Inflation Algorithm Pre View Advanced Options No Advanced No Number of CPUs for Parallel Part Meshing Program Controlled
Inflation Algorithm Pre View Advanced Options No Advanced No Number of CPUs for Parallel Part Meshing Program Controlled
View Advanced Options No Advanced Number of CPUs for Parallel Part Meshing Program Controlled
Advanced Number of CPUs for Parallel Part Meshing Program Controlled
Number of CPUs for Parallel Part Meshing Program Controlled
<u> </u>
Straight Sided Elemente No
Rigid Body Behavior Dimensionally Reduced

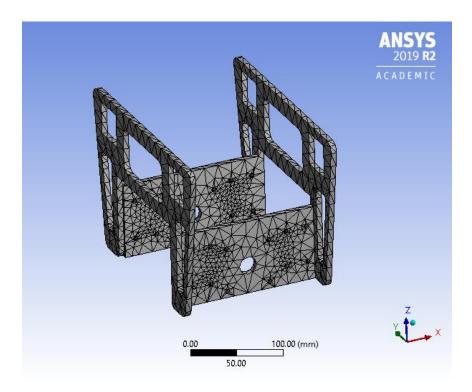

Triangle Surface Mesher	Program Controlled
Topology Checking	Yes
Pinch Tolerance	Please Define
Generate Pinch on Refresh	No
Statistics	
Nodes	11908
Elements	5576

TABLE 7 Model (C4) > Mesh > Mesh Controls Object Name Patch Conforming Method

Object Name	Patch Conforming Method		
State Fully Defined			
Scope			
Scoping Method	Geometry Selection		
Geometry	1 Body		
Definition			
Suppressed No			
Method	Tetrahedrons		
Algorithm	Patch Conforming		
Element Order	Use Global Setting		

FIGURE 2 Model (C4) > Mesh > Figure

Static Structural (C5)

TABLE 8 Model (C4) > Analysis			
Object Name	Static Structural (C5)		
State	Solved		
Definition			
Physics Type	Structural		
Analysis Type	Static Structural		
Solver Target	Mechanical APDL		
Options			
Environment Temperature	22. °C		
Generate Input Only	No		

 TABLE 9

 Model (C4) > Static Structural (C5) > Analysis Settings

 Object Name
 Analysis Settings

 State
 Fully Defined

 State
 Step Controls

Number Of Steps	1.			
Current Step Number	1.			
Step End Time	1. s			
Auto Time Stepping	Program Controlled			
	Solver Controls			
Solver Type	Program Controlled			
Weak Springs	Off			
Solver Pivot Checking	Program Controlled			
Large Deflection	Off			
Inertia Relief	Off			
	Rotordynamics Controls			
Coriolis Effect	Off			
Contonio Encor	Restart Controls			
Generate Restart				
Points	Program Controlled			
Retain Files After Full				
Solve	No			
Combine Restart Files	Program Controlled			
	Nonlinear Controls			
Newton-Raphson				
Option	Program Controlled			
Force Convergence	Program Controlled			
Moment Convergence	Program Controlled			
Displacement				
Convergence	Program Controlled			
Rotation Convergence	Program Controlled			
Line Search	Program Controlled			
Stabilization	Program Controlled			
Output Controls				
Stress	Yes			
Surface Stress	No			
Back Stress	No			
Strain	Yes			
Contact Data	Yes			
Nonlinear Data	No			
Nodal Forces	No			
Contact Miscellaneous	No			
General Miscellaneous	No			
Store Results At	All Time Points			
Result File				
Compression	Program Controlled			
Analysis Data Management				
	C:\Users\DIAPM599\OneDrive - Dentsply Sirona\Desktop\ANSYS			
Solver Files Directory	Analysis\Bulkhead files\dp0\SYS\MECH\			
Future Analysis	None			
Scratch Solver Files				
Directory				
Save MAPDL db	No			
Contact Summary	Program Controlled			
- Fogram Contained				

Delete Unneeded Files	Yes
Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	nmm

TABLE 10

Model (C4) > Static Structural (C5) > Loads						
Object Name	Thermal Condition	BRK Force	BRK Force	BRK Force	BRK Force	Fixed Support
State		Fully Defined				
	Scope					
Scoping Method Geometry Selection						
Geometry	1 Body 1 Face 16 Fa			16 Faces		
		Def	inition			
Туре	Thermal Condition Force Fixed Sup		Fixed Support			
Magnitude	80. °C (ramped)	1957. N	(ramped)	-1374. N	(ramped)	
Suppressed	No					
Define By	Vector					
Direction	Defined					

FIGURE 3 Model (C4) > Static Structural (C5) > Thermal Condition

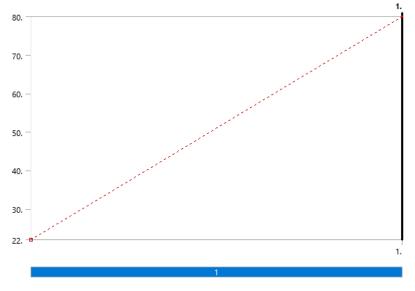
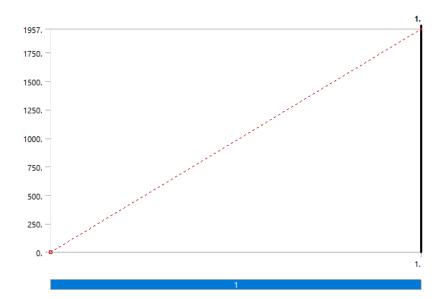
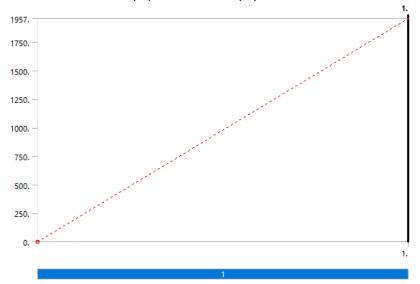




FIGURE 4 Model (C4) > Static Structural (C5) > BRK Force

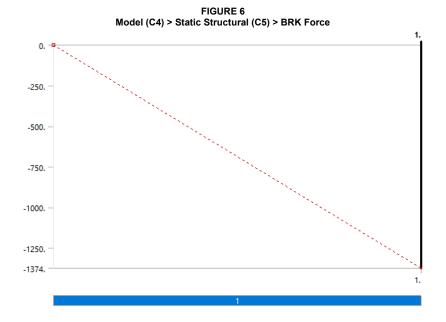
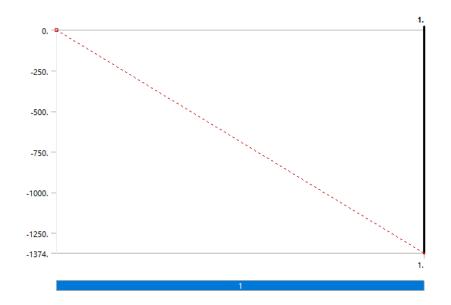



FIGURE 7 Model (C4) > Static Structural (C5) > BRK Force

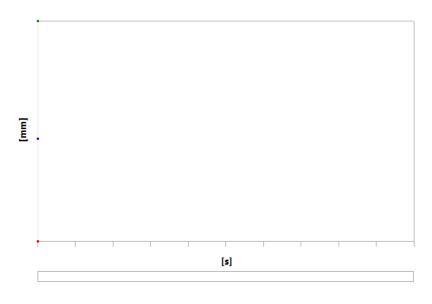
Solution (C6)

	TABLE 11					
Мо	Model (C4) > Static Structural (C5) > Solution					
	Object Name	Solution (C6)				
	State	Solved				
	Adaptive Mesh Refi	nement				
	Max Refinement Loops	1.				
	Refinement Depth 2.					
	Information					
	Status	Done				
	MAPDL Elapsed Time	4. s				
	MAPDL Memory Used	325. MB				
	MAPDL Result File Size 4.5625 MB					
	Post Processing					
	Beam Section Results	No				
	On Demand Stress/Strain	No				

 TABLE 12

 Model (C4) > Static Structural (C5) > Solution (C6) > Solution Information

 Object Name
 Solution Information


State	Solved		
Solution Information			
Solution Output	Solver Output		
Newton-Raphson Residuals	0		

0
2.5 s
All
sibility
Yes
All FE Connectors
All Nodes
Connection Type
No
Single
Lines

TABLE 13

Model (C4) > Static Structural (C5) > Solution (C6) > Results			
Object Name	Total Deformation	Equivalent Stress	
State		Solved	
	Scope		
Scoping Method	Geo	ometry Selection	
Geometry		All Bodies	
	Definition		
Туре	Total Deformation	Equivalent (von-Mises) Stress	
Ву		Time	
Display Time		Last	
Calculate Time History		Yes	
Identifier			
Suppressed		No	
	Results		
Minimum	0. mm	0.52937 MPa	
Maximum	1.0151 mm	193.69 MPa	
Average	0.47214 mm	31.029 MPa	
Minimum Occurs On	RH_PRP_Chassis	_BulkHead-FreeParts PartBody	
Maximum Occurs On	RH_PRP_Chassis	_BulkHead-FreeParts PartBody	
	Information		
Time		1. s	
Load Step		1	
Substep	1		
Iteration Number	1		
	Integration Point Results		
Display Option		Averaged	
Average Across Bodies		No	

FIGURE 8 Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation

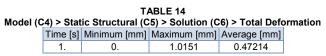


FIGURE 9 Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation > Figure

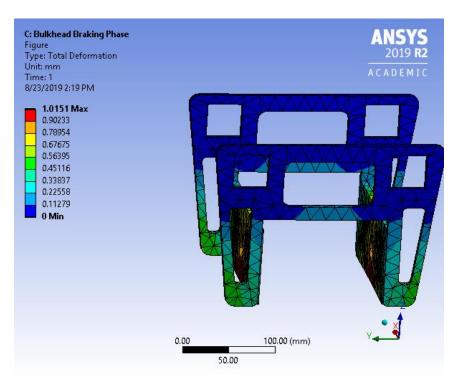
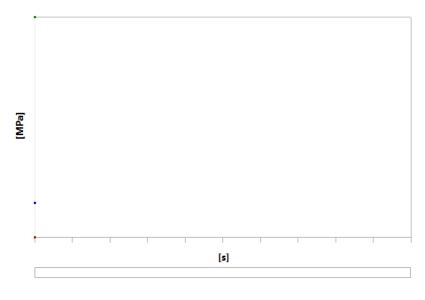



FIGURE 10 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress

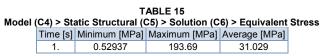
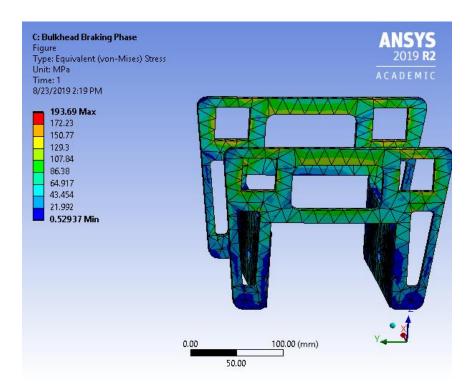



FIGURE 11 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress > Figure

Material Data

Aluminum Alloy

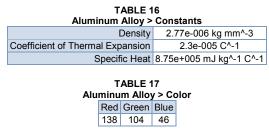


 TABLE 18

 Aluminum Alloy > Compressive Ultimate Strength

 Compressive Ultimate Strength MPa
 0

TABLE 19 Aluminum Alloy > Compressive Yield Strength Compressive Yield Strength MPa

280

TABLE 20 Aluminum Alloy > Tensile Yield Strength Tensile Yield Strength MPa

280

TABLE 21 Aluminum Alloy > Tensile Ultimate Strength Tensile Ultimate Strength MPa

310

TABLE 22

Aluminum Alloy > Isotropic Secant Coefficient of Thermal Expansion Zero-Thermal-Strain Reference Temperature C

22		

 TABLE 23

 Aluminum Alloy > Isotropic Thermal Conductivity

Thermal Conductivity W mm ² -1 C ² -1	Temperature C
0.114	-100
0.144	0
0.165	100
0.175	200

TABLE 24

Aluminum Alloy > S-N Curve

Alternating Stress MPa	Cycles	R-Ratio
275.8	1700	-1
241.3	5000	-1
206.8	34000	-1
172.4	1.4e+005	-1
137.9	8.e+005	-1
117.2	2.4e+006	-1
89.63	5.5e+007	-1
82.74	1.e+008	-1
170.6	50000	-0.5
139.6	3.5e+005	-0.5
108.6	3.7e+006	-0.5
87.91	1.4e+007	-0.5
77.57	5.e+007	-0.5
72.39	1.e+008	-0.5
144.8	50000	0
120.7	1.9e+005	0
103.4	1.3e+006	0
93.08	4.4e+006	0

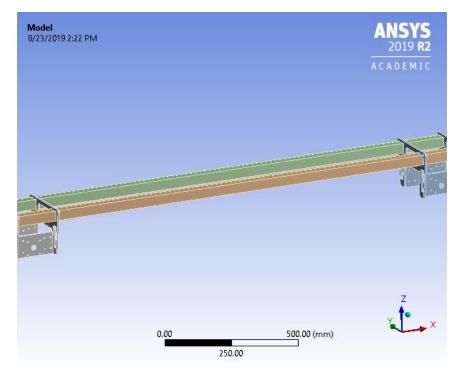
86.18	1.2e+007	0
72.39	1.e+008	0
74.12	3.e+005	0.5
70.67	1.5e+006	0.5
66.36	1.2e+007	0.5
62.05	1.e+008	0.5

TABLE 25 Aluminum Alloy > Isotropic Resistivity

Resistivity onm mm	Temperature C
2.43e-005	0
2.67e-005	20
3.63e-005	100

TABLE 26

TABLE 26				
Aluminum Alloy > Isotropic Elasticity				
Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
71000	0.33	69608	26692	


TABLE 27 Aluminum Alloy > Isotropic Relative Permeability Relative Permeability

1

Appendix A.10 Chassis Load Case (Braking Phase) Analysis Report

Project

Contents

• Units

Model	(C4)
0	Geometry
	 Parts
0	Materials
0	Coordinate Systems
0	Connections
	 <u>Contacts</u>
	 Contact Regions
0	Mesh
	 Patch Conforming Method
0	Static Structural (C5)
	 Analysis Settings
	 Loads
	 Solution (C6)
	 Solution Information
	 Deputte

- Results
- Material Data
 Aluminum Alloy

Units

TABLE 1		
Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius	
Angle	Degrees	
Rotational Velocity	rad/s	
Temperature	Celsius	

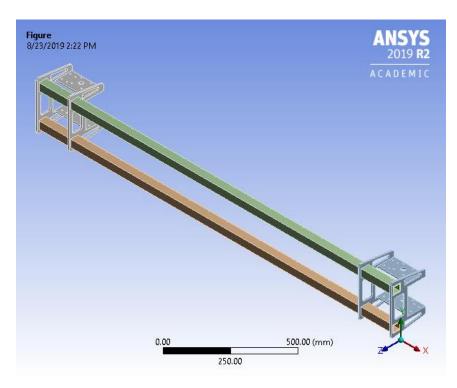
Model (C4)

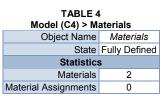
Geometry

TABLE 2 Model (C4) > Geometry

Object Name Geometry		
State Fully Defined		
Definition		
Source D:\RH_PRP_Chassis_PODAssembly_V1.2_YO_04012019	igs	
Type Iges		
Length Unit Millimeters		
Element Control Program Controlled		
Display Style Body Color		
Bounding Box		
Length X 1860. mm		
Length Y 251.5 mm		

Length Z	182.12 mm
Longui Z	Properties
Volume	2.4121e+006 mm ³
Mass	6.6814 kg
Scale Factor Value	1.
	Statistics
Bodies	4
Active Bodies	4
Nodes	25790
Elements	12206
Mesh Metric	None
	Update Options
Assign Default Material	No
E	Basic Geometry Options
Solid Bodies	Yes
Surface Bodies	Yes
Line Bodies	No
Parameters	Independent
Parameter Key	ANS;DS
Attributes	No
Named Selections	No
Material Properties	No
Ad	vanced Geometry Options
Use Associativity	Yes
Coordinate Systems	No
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On Update	No
Analysis Type	3-D
Mixed Import Resolution	None
Clean Bodies On Import	No
Stitch Surfaces On Import	Program Tolerance
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes


TABLE 3 Model (C4) > Geometry > Parts


		.,		
Object Name	Part2 PartBody	Part2 PartBody[2]	Part3 PartBody	Part3 PartBody[2]
State		Mes	hed	

Sidle	Meshed			
Graphics Properties				
Visible	Visible Yes			
Transparency	ency 1			
Definition				
Suppressed	No			
Stiffness Behavior	Flexible			
Coordinate System	Default Coordinate System			
Reference Temperature	By Environment			
Treatment	None			

Material				
Assignment	Aluminum Alloy			
Nonlinear Effects		Ye	es	
Thermal Strain Effects		Ye	es	
	B	ounding Box		
Length X	172	.7 mm	186	0. mm
Length Y	251.	12 mm	38.	1 mm
Length Z	182.	12 mm	38.	1 mm
		Properties		
Volume	3.8104e+005 mm ³		8.25e+005 mm ³	
Mass	1.0555 kg		2.2852 kg	
Centroid X	117.42 mm 1803.7 mm		960.67 mm	
Centroid Y	-4.2843 mm	-4.6664 mm	81.897 mm	-90.823 mm
Centroid Z	30.577 mm		103.1 mm	103.31 mm
Moment of Inertia Ip1	9126.2 kg·mm²		936.83 kg∙mm²	
Moment of Inertia Ip2	8230.3 kg·mm²		6.593e+005 kg·mm²	
Moment of Inertia Ip3	11149 kg∙mm²		6.593e+0)05 kg∙mm²
Statistics				
Nodes	10838		2057	
Elements	5090		1013	
Mesh Metric	None			

FIGURE 1 Model (C4) > Geometry > Figure

Coordinate Systems

TABLE 5				
Model (C4) > Coordinate Systems > Coordinate System				

Object Name	me Global Coordinate System		
State	Fully Defined		
Definition			
Туре	Cartesian		
Coordinate System ID	0.		
Origin			
Origin X	0. mm		

Origin Y	0. mm	
Origin Z	0. mm	
Directional Vectors		
X Axis Data	[1. 0. 0.]	
Y Axis Data	[0.1.0.]	
Z Axis Data	[0.0.1.]	

Connections

TABLE 6

Model (C4) > Connections				
Object Name	Connections			
State	Fully Defined			
Auto Detection				
Generate Automatic Connection On Refresh	Yes			
Transparency				
Enabled	Yes			

TABL	.E 7	

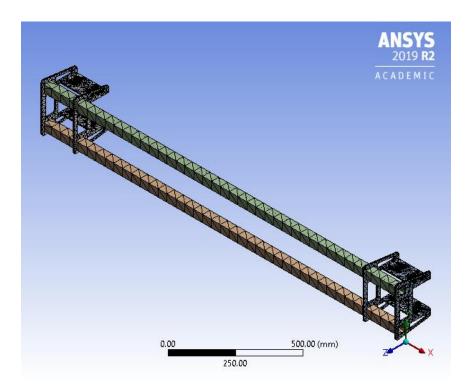
TABLE 7			
ons > Contacts			
Contacts			
Fully Defined			
n			
Contact			
Geometry Selection			
All Bodies			
tion			
Slider			
0.			
4.7144 mm			
No			
Yes			
75. °			
Off			
Include			
No			
No			
Include All			
Bodies			
Bodies			
Statistics			
4			
4			

TABLE 8 Model (C4) > Connections > Contacts > Contact Regions

Object Name	Contact Region	Contact Region 2	Contact Region 3	Contact Region 4
State		Fully	Defined	

Scope				
Scoping Method	Geometry Selection			
Contact	8 F	aces		
Target	4 F	aces		
Contact Bodies	Part2 PartBody	Part2 Pa	artBody[2]	
Target Bodies	Part3 PartBody Part3 PartBody[2]	Part3 PartBody	Part3 PartBody[2]	
Protected	۱ ۱	10		
	Definition			
Туре	Bor	nded		
Scope Mode	Auto	matic		
Behavior	Program	Controlled		
Trim Contact	¥	Controlled		
Trim Tolerance	4.714	l4 mm		
Suppressed				
Advanced				
Formulation	Program Controlled			
Small Sliding				
Detection Method	Program Controlled			
Penetration Tolerance	Program Controlled			
Elastic Slip Tolerance	, ,			
Normal Stiffness				
Update Stiffness	· · · ·			
Pinball Region				
Geometric Modification				
Contact Geometry Correction				
Target Geometry Correction	None			

Mesh


TABLE 9 Model (C4) > Mesh Object Name Mesh State Solved Display Display Style Use Geometry Setting Defaults Physics Preference Mechanical Element Order Program Controlled Element Size Default Sizing Use Adaptive Sizing Yes Resolution Default (2) Mesh Defeaturing Yes Defeature Size Default Transition Fast Span Angle Center Initial Size Seed Coarse Assembly Bounding Box Diagonal 1885.7 mm

Average Surface Area	4094.8 mm ²		
Minimum Edge Length	0.21228 mm		
Quality			
Check Mesh Quality	Yes, Errors		
Error Limits	Standard Mechanical		
Target Quality	Default (0.050000)		
Smoothing	Medium		
Mesh Metric	None		
Inflation			
Use Automatic Inflation	None		
Inflation Option	Smooth Transition		
Transition Ratio	0.272		
Maximum Layers	5		
Growth Rate	1.2		
Inflation Algorithm	prithm Pre		
View Advanced Options	No		
Advanced			
Number of CPUs for Parallel Part Meshing	Program Controlled		
Straight Sided Elements	No		
Rigid Body Behavior	Dimensionally Reduced		
Triangle Surface Mesher	Program Controlled		
Topology Checking	Yes		
Pinch Tolerance Please Define			
Generate Pinch on Refresh No			
Statistics			
Nodes	25790		
Elements	12206		

TABLE 10

Model (C4) > Mesh > Mesh Controls					
Object Name Patch Conforming Method					
State	Fully Defined				
Scope					
Scoping Method	Geometry Selection				
Geometry	4 Bodies				
Definition					
Suppressed	No				
Method	Tetrahedrons				
Algorithm	Patch Conforming				
Element Order	Use Global Setting				

FIGURE 2 Model (C4) > Mesh > Figure

Static Structural (C5)

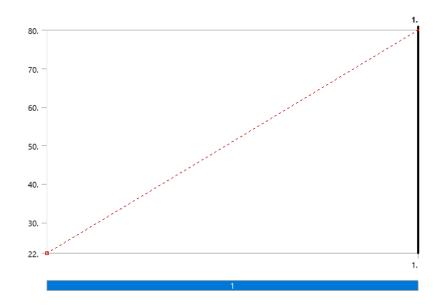
TABLE 11 Model (C4) > Analysis							
Object Name	Static Structural (C5)						
State	Solved						
Definition							
Physics Type	Structural						
Analysis Type	Static Structural						
Solver Target	Mechanical APDL						
Options							
Environment Temperature	22. °C						
Generate Input Only	No						

 TABLE 12

 Model (C4) > Static Structural (C5) > Analysis Settings

 Object Name
 Analysis Settings

 State
 Fully Defined


 State
 Step Controls

Number Of Steps	1.						
Current Step Number	1.						
Step End Time	1. s						
Auto Time Stepping	Program Controlled						
Solver Controls							
Solver Type	Program Controlled						
Weak Springs	Off						
Solver Pivot Checking	Program Controlled						
Large Deflection	Off						
Inertia Relief	Off						
Rotordynamics Controls							
Coriolis Effect	Off						
	Restart Controls						
Generate Restart	December Oceates list						
Points	Program Controlled						
Retain Files After Full	No						
Solve	· · · · · · · · · · · · · · · · · · ·						
Combine Restart Files	Program Controlled						
Nonlinear Controls							
Newton-Raphson	Program Controlled						
Option							
Force Convergence	Program Controlled						
Moment Convergence	Program Controlled						
Displacement	Program Controlled						
Convergence							
Rotation Convergence	Program Controlled						
Line Search	Program Controlled						
Stabilization Program Controlled							
	Output Controls						
Stress	Yes						
Surface Stress	No						
Back Stress	No						
Strain	Yes						
Contact Data	Yes						
Nonlinear Data	No						
Nodal Forces	No						
Contact Miscellaneous	No						
General Miscellaneous	No						
Store Results At	All Time Points						
Result File	Program Controlled						
Compression							
	Analysis Data Management						
Solver Files Directory	C:\Users\DIAPM599\OneDrive - Dentsply Sirona\Desktop\ANSYS Analysis\Chassis_files\dp0\SYS\MECH\						
Future Analysis	None						
Scratch Solver Files Directory							
Save MAPDL db	No						
Contact Summary	Program Controlled						
,							

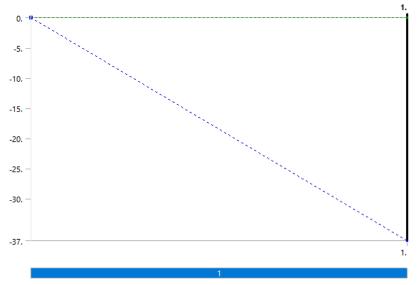

Delete Unneeded Files	Yes
Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	nmm

TABLE 13											
Model (C4) > Static Structural (C5) > Loads											
Object Name		BRK Force	BRK Force	BRK Force		MagLev Force	MagLev Force	MagLev Force	MagLev Force	LIM & GNC Force	LIM & GNC Force
State	Fully Defined										
Scope											
Scoping Method	Geometry Selection										
Geometry	4 Bodies	4 Bodies 1 Face									
Definition											
Туре	Thermal Condition	Force									
Magnitude	80. °C (ramped)										
Suppressed											
Define By	Components										
Coordinate System	Global Coordinate System										
X Component		0. N (ramped)									
Y Component		0. N (ramped)									
Z Component		-37. N (ramped) -42. N (ramped) -202. N (ramped)									

FIGURE 3 Model (C4) > Static Structural (C5) > Thermal Condition

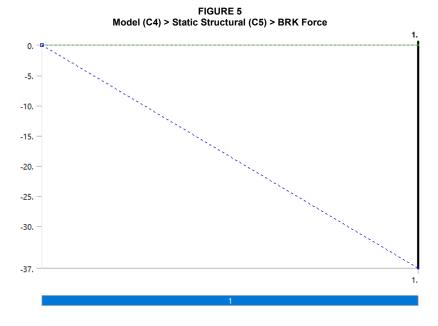
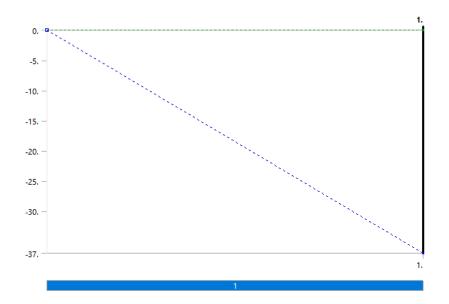
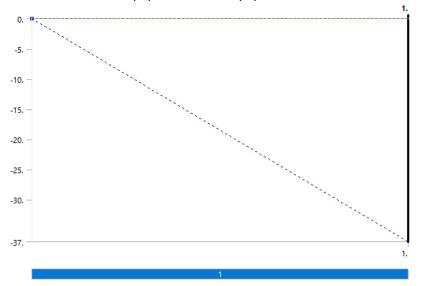




FIGURE 6 Model (C4) > Static Structural (C5) > BRK Force

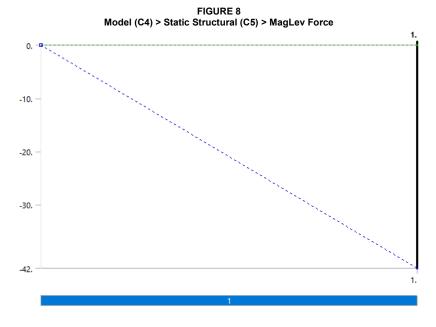
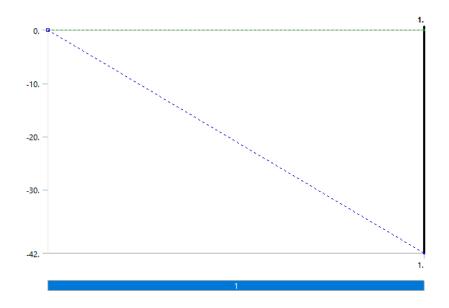
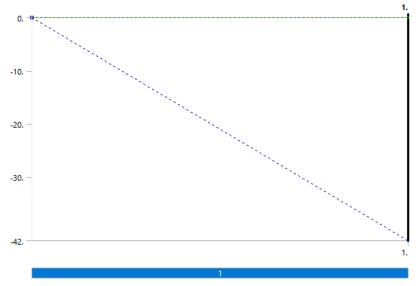




FIGURE 9 Model (C4) > Static Structural (C5) > MagLev Force

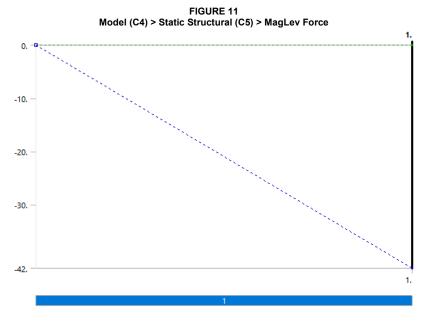
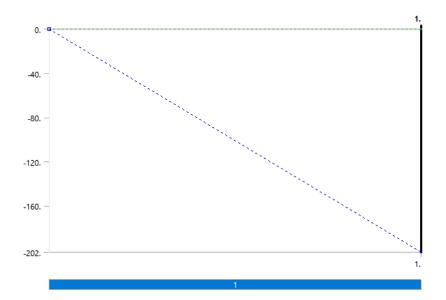
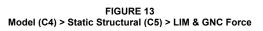
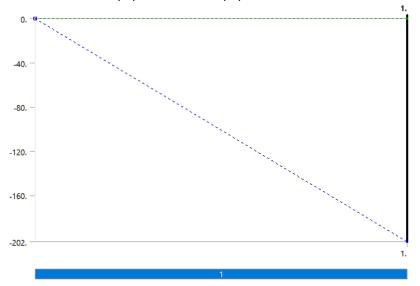





FIGURE 12 Model (C4) > Static Structural (C5) > LIM & GNC Force

	Model (C4) > Static Structural (C5) > Loads					
Object Name	BRK Force	BRK Force	BRK Force	BRK Force	Lockup Force	Fixed Support
State		Fully Defined				
	Scope					
Scoping Method			Geor	metry Select	ion	
Geometry		1 Face				
Definition						
Туре			Force	;		Fixed Support
Define By		Vector				
Magnitude		1957. N (ramped) -1374. N (ramped)				
Direction			Define	d		
Suppressed				No		

 TABLE 14

 Model (C4) > Static Structural (C5) > Loads

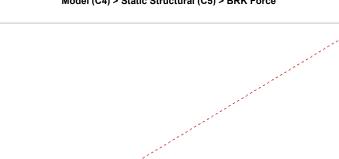


FIGURE 14 Model (C4) > Static Structural (C5) > BRK Force

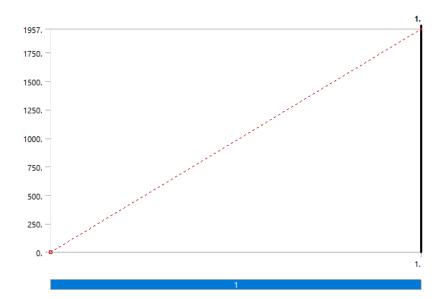
1957. 1750.

1500.

1250.

1000.

750.


500.

250.

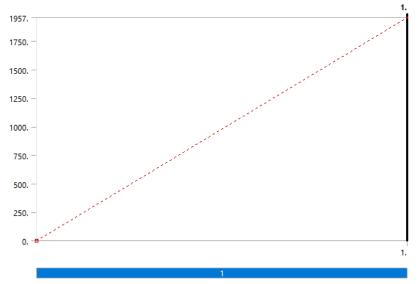

0.

FIGURE 15 Model (C4) > Static Structural (C5) > BRK Force

1.

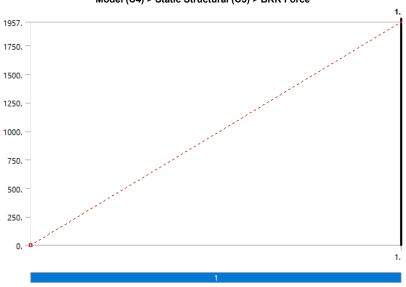


FIGURE 17 Model (C4) > Static Structural (C5) > BRK Force

FIGURE 18 Model (C4) > Static Structural (C5) > Lockup Force

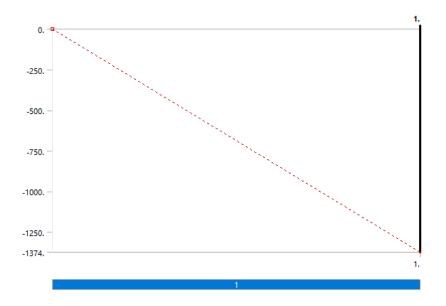
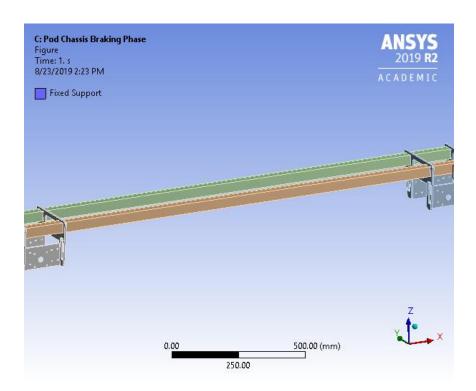



FIGURE 19 Model (C4) > Static Structural (C5) > Fixed Support > Figure

Solution (C6)

10	Juer (04) - Static Structural (05) - Soluti				
	Object Name	Solution (C6)			
	State	Solved			
	Adaptive Mesh Refi	nement			
	Max Refinement Loops	1.			
	Refinement Depth	2.			
	Information				
	Status	Done			
	MAPDL Elapsed Time	4. s			
	MAPDL Memory Used	405. MB			
	MAPDL Result File Size	9.625 MB			
	Post Processing				
	Beam Section Results	No			
	On Demand Stress/Strain	No			

TABLE 15 Model (C4) > Static Structural (C5) > Solution Object Name Solution (C6) State Solved

Object Name	Solution Information	
State	State Solved	
Solution Inform	ation	
Solution Output	Solver Output	
Newton-Raphson Residuals	0	
Identify Element Violations	0	
Update Interval	2.5 s	
Display Points	All	
FE Connection V	sibility	
Activate Visibility	Yes	
Display	All FE Connectors	
Draw Connections Attached To	All Nodes	
Line Color	Connection Type	
Visible on Results	No	
Line Thickness	Single	
Display Type	Lines	

 TABLE 16

 Model (C4) > Static Structural (C5) > Solution (C6) > Solution Information

 TABLE 17

 Model (C4) > Static Structural (C5) > Solution (C6) > Results

Object Name	Total Deformation Equivalent Stress			
State	Solved			
Scope				
Scoping Method	Geo	Geometry Selection		
Geometry		All Bodies		
	Definition			
Туре	Total Deformation	Equivalent (von-Mises) Stress		
By		Time		
Display Time		Last		
Calculate Time History		Yes		
Identifier				
Suppressed	No			
	Results			
Minimum	0. mm 0.36597 MPa			
Maximum	14.162 mm 354.03 MPa			
Average	6.8722 mm 26.305 MPa			
Minimum Occurs On	Part2 PartBody[2]	Part3 PartBody		
Maximum Occurs On	Part2 PartBody	Part2 PartBody[2]		
	Information			
Time		1. s		
Load Step		1		
Substep	1			
Iteration Number	1			
l l	ntegration Point R	Results		
Display Option		Averaged		
Average Across Bodies	No			

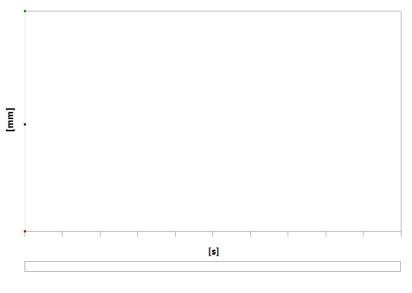


FIGURE 20 Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation

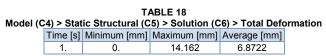


FIGURE 21 Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation > Figure

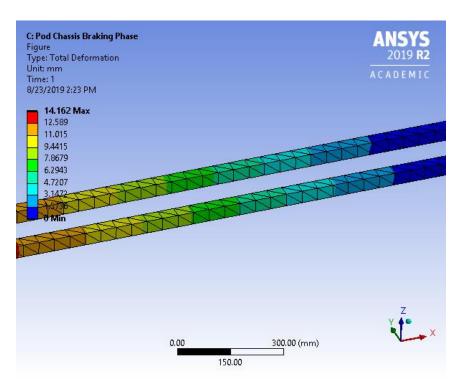


FIGURE 22 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress

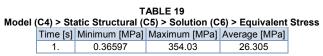
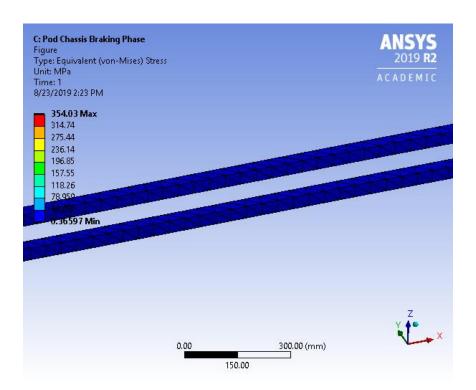



FIGURE 23 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress > Figure

Material Data

Aluminum Alloy

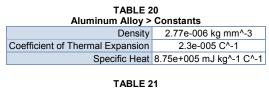


TABLE 21Aluminum Alloy > ColorRedGreenBlue13810446

 TABLE 22

 Aluminum Alloy > Compressive Ultimate Strength

 Compressive Ultimate Strength MPa

 0
 0

TABLE 23 Aluminum Alloy > Compressive Yield Strength Compressive Yield Strength MPa

280

TABLE 24 Aluminum Alloy > Tensile Yield Strength Tensile Yield Strength MPa

280

TABLE 25 Aluminum Alloy > Tensile Ultimate Strength Tensile Ultimate Strength MPa

310

TABLE 26

Aluminum Alloy > Isotropic Secant Coefficient of Thermal Expansion Zero-Thermal-Strain Reference Temperature C

22	

TABLE 27 Aluminum Alloy > Isotropic Thermal Conductivity Thermal Conductivity W mm^-1 C^-1 Temperature C

mermai conductivity w mm ⁻ -i C ⁻ -i	remperature C
0.114	-100
0.144	0
0.165	100
0.175	200

TABLE 28

Aluminum Alloy > S-N Curve

Alternating Stress MPa	Cycles	R-Ratio
275.8	1700	-1
241.3	5000	-1
206.8	34000	-1
172.4	1.4e+005	-1
137.9	8.e+005	-1
117.2	2.4e+006	-1
89.63	5.5e+007	-1
82.74	1.e+008	-1
170.6	50000	-0.5
139.6	3.5e+005	-0.5
108.6	3.7e+006	-0.5
87.91	1.4e+007	-0.5
77.57	5.e+007	-0.5
72.39	1.e+008	-0.5
144.8	50000	0
120.7	1.9e+005	0
103.4	1.3e+006	0
93.08	4.4e+006	0

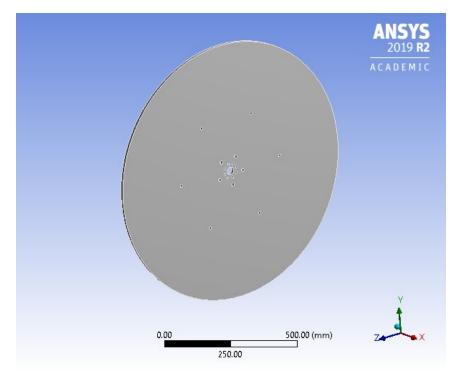
86.18	1.2e+007	0
72.39	1.e+008	0
74.12	3.e+005	0.5
70.67	1.5e+006	0.5
66.36	1.2e+007	0.5
62.05	1.e+008	0.5

TABLE 29 Aluminum Alloy > Isotropic Resistivity

Resistivity ohm mm	Temperature C
2.43e-005	0
2.67e-005	20
3.63e-005	100

TABLE 30

TABLE 30					
Aluminum Alloy > Isotropic Elasticity					
Young's Modulus MPa Poisson's Ratio Bulk Modulus MPa Shear Modulus MPa Temperature					
71000	0.33	69608	26692		


TABLE 31 Aluminum Alloy > Isotropic Relative Permeability Relative Permeability

1

Appendix A.11 MTR Track Load Case (Overspeed) Analysis Report

Project*

Contents

• Units

- Model (C4)
 - o <u>Geometry</u> Track Wheel rev0\Solid1
 - o <u>Materials</u>
 - o Coordinate Systems
 - o <u>Mesh</u> Automatic Method
 - Static Structural (C5)

 Analysis Settings

 Rotational Velocity 0

 - •
 - Loads Solution (C6) •

 - Solution Information
 Results
- Material Data o <u>Aluminum Alloy</u>

Units

TABLE 1				
Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius			
Angle	Degrees			
Rotational Velocity	rad/s			
Temperature	Celsius			

Model (C4)

Geometry

TABLE 2 Model (C4) > Geometry				
Object Name	Geometry			
State	Fully Defined			
	Definition			
Source	C:\Users\DIAPM599\AppData\Local\Temp\WB_C0010- DIAPM599A_diapm599_18756_2\unsaved_project_files\dp0\Geom\DM\Geom.scdoc			
Туре	SpaceClaim			
Length Unit	Meters			
Element Control	Program Controlled			
Display Style	Body Color			
Bounding Box				
Length X	12.7 mm			
Length Y	1361.8 mm			

Longth 7	1361.8 mm
Length Z	Properties
Volume	9.9457e+006 mm ³
Mass	27.55 kg
Scale Factor	
Value	1.
Value	Statistics
Bodies	1
Active Bodies	1
Nodes	9539
Elements	1288
Mesh Metric	None
	Update Options
Assign	· · ·
Default	No
Material	
	Basic Geometry Options
Solid Bodies	Yes
Surface	Yes
Bodies	
Line Bodies	Yes
Parameters	Independent
Parameter Key	
Attributes	Yes
Attribute Key	105
Named	
Selections	Yes
Named	
Selection Key	
Material	Yes
Properties	
	Advanced Geometry Options
Use	Yes
Associativity Coordinate	
Systems	Yes
Coordinate	
System Key	
Reader Mode	
Saves	No
Updated File	
Use	Yes
Instances	
Smart CAD Update	Yes
Compare	
Parts On	No
Update	
Analysis Type	3-D

Mixed Import Resolution	
Clean Bodies On Import	No
Stitch Surfaces On Import	None
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

TABLE 3 Model (C4) > Geometry > Parts

	boomony + 1 arto		
Object Name	Track Wheel_rev0\Solid1		
State	Meshed		
Graphics	s Properties		
Visible	Yes		
Transparency	1		
Def	inition		
Suppressed	No		
Stiffness Behavior	Flexible		
Coordinate System	Default Coordinate System		
Reference Temperature	By Environment		
Treatment	None		
Ma	Material		
Assignment	Aluminum Alloy		
Nonlinear Effects	Yes		
Thermal Strain Effects	Yes		
Boun	ding Box		
Length X 12.7 mm			
Length Y	1361.8 mm		
Length Z	1361.8 mm		
	perties		
Volume 9.9457e+006 mm ³			
Mass	27.55 kg		
Centroid X	-180. mm		
Centroid Y	401.34 mm		
Centroid Z	-203.5 mm		
Moment of Inertia Ip1	1.7235e+006 kg·mm ²		
Moment of Inertia Ip2	1.7235e+006 kg·mm ²		
Moment of Inertia Ip3	3.4462e+006 kg·mm ²		
	tistics		
Nodes	9539		
Elements	1288		
Mesh Metric	None		
CAD Attributes			

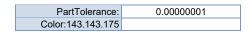
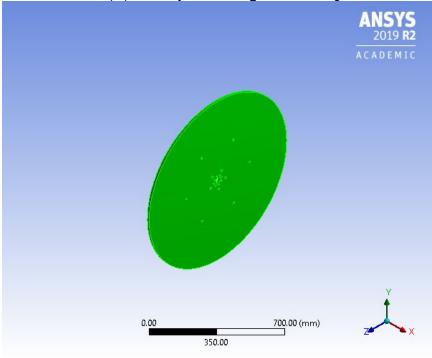



FIGURE 1 Model (C4) > Geometry > Track Wheel_rev0 > Solid1 > Figure

TABLE 4 Model (C4) > Materials			
Object Name	Materials		
State	Fully Defined		
Statistics			
Materials 2			
Material Assignments	0		

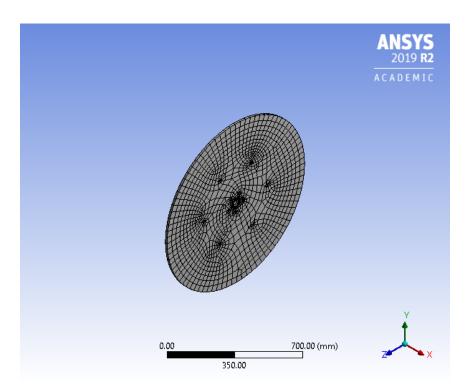
Coordinate Systems

TABLE 5			
Model (C4) > Coordinate Systems > Coordinate System			
	Object Name	Global Coordinate System	
	State	Fully Defined	

Definition			
Type Cartesian			
Coordinate System ID	0.		
C	Origin		
Origin X	0. mm		
Origin Y	0. mm		
Origin Z	0. mm		
Directional Vectors			
X Axis Data [1.0.0.]			
Y Axis Data	[0.1.0.]		
Z Axis Data	[0.0.1.]		

Mesh

TABLE 6 Model (C4) > Mesh		
Object Name	Mesh	
State	Solved	
Display		
Display Style	Use Geometry Setting	
Defaults		
Physics Preference	Mechanical	
Element Order	Program Controlled	
Element Size	Default	
Sizing		
Use Adaptive Sizing	Yes	
Resolution	Default (2)	
Mesh Defeaturing	Yes	
Defeature Size	Default	
Transition	Fast	
Span Angle Center	Coarse	
Initial Size Seed	Assembly	
Bounding Box Diagonal	1925.9 mm	
Average Surface Area	70154 mm ²	
Minimum Edge Length	26.075 mm	
Quality		
Check Mesh Quality	Yes, Errors	
Error Limits	Standard Mechanical	
Target Quality	Default (0.050000)	
Smoothing	Medium	
Mesh Metric	None	
Inflation		
Use Automatic Inflation	None	
Inflation Option	Smooth Transition	
Transition Ratio	0.272	
Maximum Layers	5	
Growth Rate	1.2	
Inflation Algorithm	Pre	


TABLE 6

View Advanced Options	No	
Advanced		
Number of CPUs for Parallel Part Meshing	Program Controlled	
Straight Sided Elements	No	
Rigid Body Behavior	Dimensionally Reduced	
Triangle Surface Mesher	Program Controlled	
Topology Checking	Yes	
Pinch Tolerance	Please Define	
Generate Pinch on Refresh	No	
Statistics		
Nodes	9539	
Elements	1288	

TABLE 7

Model (C4) > Mesh > Mesh Controls		
Object Name Automatic Method		
State	Fully Defined	
Scope		
Scoping Method Geometry Selection		
Geometry	1 Body	
Definition		
Suppressed No		
Method Automatic		
Element Order	Use Global Setting	

FIGURE 2 Model (C4) > Mesh > Figure

Static Structural (C5)

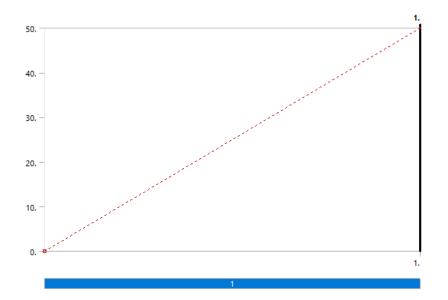
TABLE 8 Model (C4) > Analysis		
Object Name Static Structural (C5)		
State	Solved	
Definition		
Physics Type	Structural	
Analysis Type	Static Structural	
Solver Target	Mechanical APDL	
Options		
Environment Temperature	22. °C	
Generate Input Only	No	

 TABLE 9

 Model (C4) > Static Structural (C5) > Analysis Settings

 Object Name
 Analysis Settings

 State
 Fully Defined


 Step Controls

Number Of Steps	1.
Current Step	1.
Number	1. s
Step End Time	1.5
Auto Time	Program Controlled
Stepping	Solver Controls
Solver Type	Program Controlled
	Off
Weak Springs Solver Pivot	UI
Checking	Program Controlled
Large Deflection	Off
Inertia Relief	Off
	Rotordynamics Controls
Carialia Effect	Off
Coriolis Effect	
Concrete Destart	Restart Controls
Generate Restart Points	Program Controlled
Retain Files After Full Solve	No
Combine Restart Files	Program Controlled
	Nonlinear Controls
Newton-Raphson	
Öption	Program Controlled
Force	Program Controlled
Convergence	Flogran Controlled
Moment	Program Controlled
Convergence	
Displacement	Program Controlled
Convergence	···· g ····· · ······
Rotation	Program Controlled
Convergence	
Line Search	Program Controlled
Stabilization	Program Controlled
	Output Controls
Stress	Yes
Surface Stress	No
Back Stress	No
Strain	Yes
Contact Data	Yes
Nonlinear Data	No
Nodal Forces	No
Contact	No
Miscellaneous	
General	No
Miscellaneous	All These Devices
Store Results At	All Time Points
Result File Compression	Program Controlled

	Analysis Data Management
Solver Files	C:\Users\DIAPM599\AppData\Local\Temp\WB_C0010-
Directory	DIAPM599A_diapm599_18756_2\unsaved_project_files\dp0\SYS\MECH\
Future Analysis	None
Scratch Solver	
Files Directory	
Save MAPDL db	No
Contact	Program Controlled
Summary	Flogram Controlled
Delete Unneeded	Yes
Files	165
Nonlinear	No
Solution	No
Solver Units	Active System
Solver Unit	nmm
System	101011

TABLE 10Model (C4) > Static Structural (C5) > RotationsObject NameRotational VelocityStateFully DefinedScopeScoping MethodGeometryAll BodiesDefinitionDefinitionDefine ByVectorMagnitude50. rad/s (ramped)AxisDefinedSuppressedNo

FIGURE 3 Model (C4) > Static Structural (C5) > Rotational Velocity

TABLE 11 Model (C4) > Static Structural (C5) > Loads

Model (C4) > Static Structural (C5) > Loads					
Object Name	Thermal Condition	Fixed Support	Cylindrical Support		
State	Fully Defined		Suppressed		
Scope					
Scoping Method	Geometry Selection				
Geometry	1 Body	1	Face		
Definition					
Туре	Thermal Condition	Fixed Support	Cylindrical Support		
Magnitude	22. °C (ramped)				
Suppressed	No		Yes		
Radial			Fixed		
Axial			Fixed		
Tangential			Fixed		

FIGURE 4 Model (C4) > Static Structural (C5) > Thermal Condition

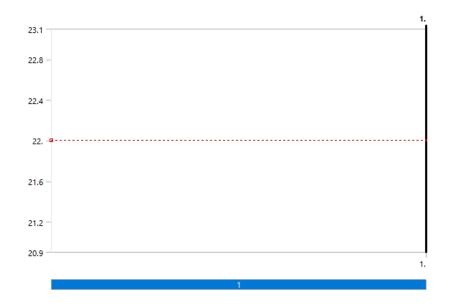


FIGURE 5 Model (C4) > Static Structural (C5) > Figure

Solution (C6)

Object Name	Solution (C6)			
State	Solved			
Adaptive Mesh Refinement				
Max Refinement Loops	1.			
Refinement Depth	2.			
Information				
Status	Done			
MAPDL Elapsed Time	3. s			
MAPDL Memory Used	317. MB			
MAPDL Result File Size	2. MB			
Post Processing				
Beam Section Results	No			
On Demand Stress/Strain	No			

 TABLE 12

 Model (C4) > Static Structural (C5) > Solution

 Object Name
 Solution (C6)

 State
 Solution (C6)

Object Name	Solution Information			
State	Solved			
Solution Information				
Solution Output	Solver Output			
Newton-Raphson Residuals	0			
Identify Element Violations	0			
Update Interval	2.5 s			
Display Points	All			
FE Connection Visibility				
Activate Visibility	Yes			
Display	All FE Connectors			
Draw Connections Attached To	All Nodes			
Line Color	Connection Type			
Visible on Results	No			
Line Thickness	Single			
Display Type	Lines			

 TABLE 13

 Model (C4) > Static Structural (C5) > Solution (C6) > Solution Information

 TABLE 14

 Model (C4) > Static Structural (C5) > Solution (C6) > Results

Object Name	Total Deformation	Equivalent Stress				
State	Solved					
Scope						
Scoping Method	Geometry Selection					
Geometry		All Bodies				
	Definition					
Туре	Total Deformation Equivalent (von-Mises) Stress					
By	Time					
Display Time	Last					
Calculate Time History	Yes					
Identifier						
Suppressed	No					
	Results					
Minimum	0. mm	0.29176 MPa				
Maximum	2.0848e-003 mm	1.978 MPa				
Average	1.4607e-003 mm	0.59689 MPa				
Minimum Occurs On	Track Wheel_rev0\Solid1					
Maximum Occurs On						
Information						
Time	1. s					
Load Step	1					
Substep	1					
Iteration Number	1					
Integration Point Results						
Display Option		Averaged				
Average Across Bodies		No				

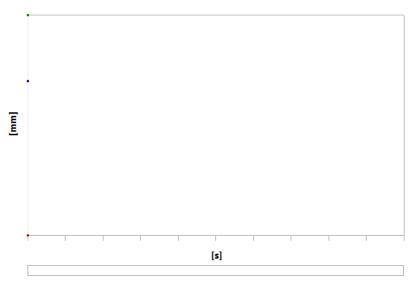


FIGURE 6 Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation

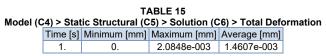


FIGURE 7 Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation > Figure

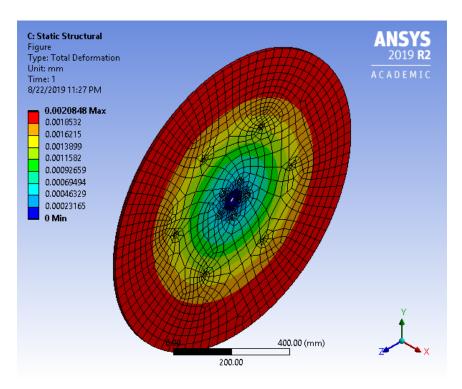
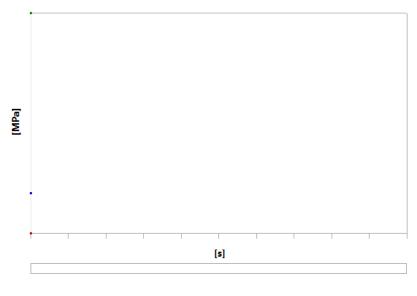
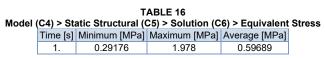
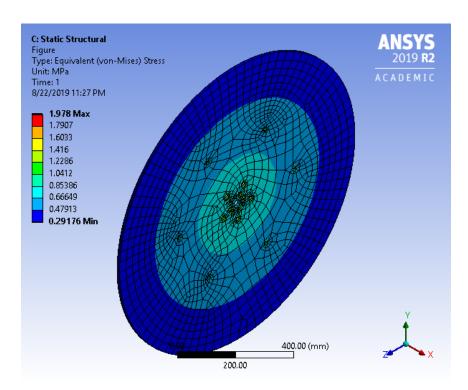
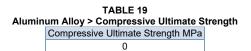



FIGURE 8 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress


FIGURE 9 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress > Figure

Material Data

Aluminum Alloy

TABLE 20 Aluminum Alloy > Compressive Yield Strength Compressive Yield Strength MPa

280

TABLE 21 Aluminum Alloy > Tensile Yield Strength Tensile Yield Strength MPa

280

TABLE 22 Aluminum Alloy > Tensile Ultimate Strength Tensile Ultimate Strength MPa

310

TABLE 23

Aluminum Alloy > Isotropic Secant Coefficient of Thermal Expansion Zero-Thermal-Strain Reference Temperature C

22	<u> </u>	

TABLE 24 Aluminum Alloy > Isotropic Thermal Conductivity Thermal Conductivity W mm^-1 C^-1 Temperature C

mermal Conductivity w mm-1 C-1	Temperature C
0.114	-100
0.144	0
0.165	100
0.175	200

TABLE 25

Aluminum Alloy > S-N Curve Alternating Stress MPa Cycles R-Ratio

275.8	1700	-1
241.3	5000	-1
206.8	34000	-1
172.4	1.4e+005	-1
137.9	8.e+005	-1
117.2	2.4e+006	-1
89.63	5.5e+007	-1
82.74	1.e+008	-1
170.6	50000	-0.5
139.6	3.5e+005	-0.5
108.6	3.7e+006	-0.5
87.91	1.4e+007	-0.5
77.57	5.e+007	-0.5
72.39	1.e+008	-0.5
144.8	50000	0
120.7	1.9e+005	0
103.4	1.3e+006	0
93.08	4.4e+006	0

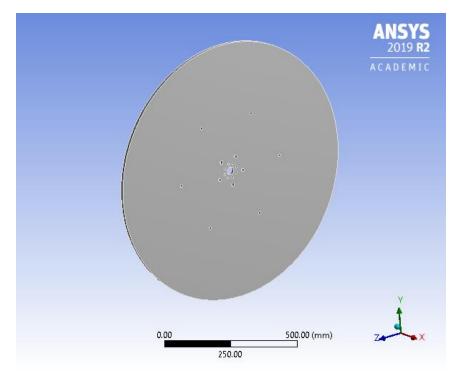
86.18	1.2e+007	0
72.39	1.e+008	0
74.12	3.e+005	0.5
70.67	1.5e+006	0.5
66.36	1.2e+007	0.5
62.05	1.e+008	0.5

TABLE 26 Aluminum Alloy > Isotropic Resistivity

Resistivity ohm mm	Temperature C
2.43e-005	0
2.67e-005	20
3.63e-005	100

TABLE 27

TABLE 27				
Aluminum Alloy > Isotropic Elasticity				
Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
71000	0.33	69608	26692	


TABLE 28 Aluminum Alloy > Isotropic Relative Permeability Relative Permeability

1

Appendix A.12 MTR Shaft Load Case (Lock Up) Analysis Report

Project*

Contents

- Units
- Model (C4) •
 - o <u>Geometry</u> Shaft\Solid1
 - o <u>Materials</u>
 - o Coordinate Systems
 - o <u>Mesh</u>
 - Patch Conforming Method
 - Static Structural (C5)
 Analysis Settings
 Fixed Support 0

 - Rotational Velocity
 - . Solution (C6)

 - Solution Information
 Results

•

 Material Data • Aluminum Alloy

Units

TABLE 1			
Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius		
Angle	Degrees		
Rotational Velocity	rad/s		
Temperature	Celsius		

Model (C4)

Geometry

TABLE 2 Model (C4) > Geometry			
Object Name			
State	Fully Defined		
Definition			
Source	C:\Users\DIAPM599\AppData\Local\Temp\WB_C0010- DIAPM599A_diapm599_18756_2\unsaved_project_files\dp0\Geom\DM\Geom.scdoc		
Туре	SpaceClaim		
Length Unit	Meters		
Element Control	Program Controlled		
Display Style	Body Color		
Bounding Box			
Length X	420. mm		
Length Y	34.044 mm		

Length Z	34.044 mm
	Properties
Volume	2.0609e+005 mm ³
Mass	0.57088 kg
Scale Factor	1.
Value	
Dedias	Statistics
Bodies	1
Active Bodies Nodes	2162
Elements	1064
Mesh Metric	None
Mean Meane	Update Options
Assign	
Default	No
Material	
	Basic Geometry Options
Solid Bodies	Yes
Surface Bodies	Yes
Line Bodies	Yes
Parameters	Independent
Parameter	independent
Key	
Attributes	Yes
Attribute Key	
Named	Yes
Selections	100
Named	
Selection Key Material	
Properties	Yes
	Advanced Geometry Options
Use	Yes
Associativity	165
Coordinate	Yes
Systems	
Coordinate System Key	
Reader Mode	
Saves	No
Updated File	
Use	Yes
Instances	
Smart CAD	Yes
Update Compare	
Parts On	No
Update	
Analysis Type	3-D

Mixed Import Resolution	
Clean Bodies On Import	No
Stitch Surfaces On Import	None
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

TABLE 3 Model (C4) > Geometry > Parts

Model (C4) > Geometry > Parts			
Object Name	Shaft\Solid1		
State	Meshed		
Graphics	Properties		
Visible	Yes		
Transparency	1		
Def	inition		
Suppressed	No		
Stiffness Behavior	Flexible		
Coordinate System	Default Coordinate System		
Reference Temperature	By Environment		
Treatment	None		
Ma	iterial		
Assignment	Aluminum Alloy		
Nonlinear Effects	Yes		
Thermal Strain Effects	Yes		
Bound	ding Box		
Length X	420. mm		
Length Y	34.044 mm		
Length Z	34.044 mm		
Pro	perties		
Volume	2.0609e+005 mm ³		
Mass	0.57088 kg		
Centroid X	-175.03 mm		
Centroid Y	401.34 mm		
Centroid Z	-203.5 mm		
Moment of Inertia Ip1	8365.2 kg mm²		
Moment of Inertia Ip2	8365.2 kg mm²		
Moment of Inertia Ip3	44.134 kg mm²		
Statistics			
Nodes	2162		
Elements	1064		
Mesh Metric	None		
CAD Attributes			

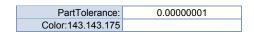
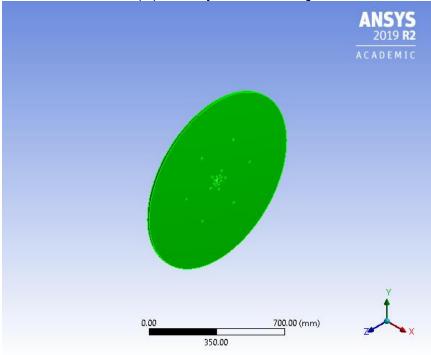



FIGURE 1 Model (C4) > Geometry > Shaft > Solid1 > Figure

TABLE 4			
Model (C4) > Materials			
Object Name	Materials		
State	Fully Defined		
Statistics			
Materials	2		
Material Assignments	0		

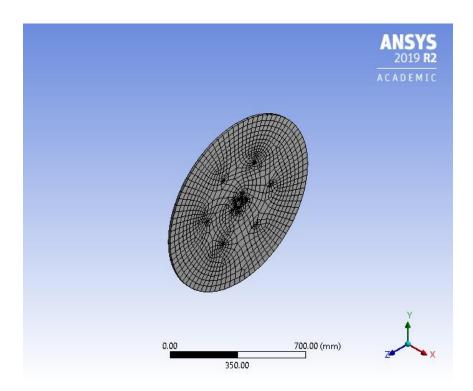
Coordinate Systems

TABLE 5			
Model (C4) > Coordinate Systems > Coordinate System			tem
	Object Name	Global Coordinate System	
	State	Fully Defined	

Definition		
Туре	Cartesian	
Coordinate System ID	0.	
Origin		
Origin X	0. mm	
Origin Y	0. mm	
Origin Z	0. mm	
Directional Vectors		
X Axis Data	[1. 0. 0.]	
Y Axis Data	[0. 1. 0.]	
Z Axis Data	[0. 0. 1.]	

Mesh

TABLE 6 Model (C4) > Mesh	I		
Object Name	Mesh		
State	Solved		
Display			
Display Style	Use Geometry Setting		
Defaults			
Physics Preference	Mechanical		
Element Order	Program Controlled		
Element Size	Default		
Sizing			
Use Adaptive Sizing	Yes		
Resolution	Default (2)		
Mesh Defeaturing	Yes		
Defeature Size	Default		
Transition	Fast		
Span Angle Center	Fine		
Initial Size Seed	Assembly		
Bounding Box Diagonal 422.75 mm			
Average Surface Area 6765.5 mm ²			
Minimum Edge Length	72.257 mm		
Quality			
Check Mesh Quality	Yes, Errors		
Error Limits	Standard Mechanical		
Target Quality	Default (0.050000)		
Smoothing	Medium		
Mesh Metric	None		
Inflation			
Use Automatic Inflation	None		
Inflation Option	Smooth Transition		
Transition Ratio	0.272		
Maximum Layers 5			
Growth Rate 1.2			
Inflation Algorithm	Pre		


TABLE 6

View Advanced Options	No	
Advanced		
Number of CPUs for Parallel Part Meshing	Program Controlled	
Straight Sided Elements	No	
Rigid Body Behavior	Dimensionally Reduced	
Triangle Surface Mesher	Program Controlled	
Topology Checking	Yes	
Pinch Tolerance	Please Define	
Generate Pinch on Refresh	No	
Statistics		
Nodes	2162	
Elements	1064	

TA	BL	.Е	7

Model (C4) > Mesh > Mesh Controls			
Object Name Patch Conforming Metho			
State	Fully Defined		
Scope			
Scoping Method	Geometry Selection		
Geometry	1 Body		
Definition			
Suppressed	No		
Method	Tetrahedrons		
Algorithm	Patch Conforming		
Element Order	Use Global Setting		

FIGURE 2 Model (C4) > Mesh > Figure

Static Structural (C5)

TABLE 8 Model (C4) > Analysis			
Object Name	Static Structural (C5)		
State	Solved		
Definition			
Physics Type	Structural		
Analysis Type	Static Structural		
Solver Target	Mechanical APDL		
Options			
Environment Temperature 22. °C			
Generate Input Only	No		

TABLE 9

Model (C4) > Static Structural (C5) > Analysis Settings		
Object Name	Analysis Settings	
State Fully Defined		
Step Controls		

Number Of Steps	1.		
Current Step Number	1.		
Step End Time	1. s		
Auto Time	1. 5		
Stepping	Program Controlled		
Otepping	Solver Controls		
Solver Type	Program Controlled		
Weak Springs	Off		
Solver Pivot	011		
Checking	Program Controlled		
Large Deflection	Off		
Inertia Relief	Off		
	Rotordynamics Controls		
Coriolis Effect	Off		
Conolis Elicor	Restart Controls		
Generate Restart			
Points	Program Controlled		
Retain Files After			
Full Solve	No		
Combine Restart			
Files	Program Controlled		
	Nonlinear Controls		
Newton-Raphson	Brogrom Controlled		
Öption	Program Controlled		
Force	Program Controlled		
Convergence	Flogram Controlled		
Moment	Program Controlled		
Convergence			
Displacement	Program Controlled		
Convergence	•		
Rotation	Program Controlled		
Convergence	Descrete Controlled		
Line Search	Program Controlled		
Stabilization	Program Controlled		
Oferer	Output Controls		
Stress	Yes		
Surface Stress	No		
Back Stress	No		
Strain	Yes		
Contact Data	Yes		
Nonlinear Data	No		
Nodal Forces	No		
Contact	No		
Miscellaneous			
General Miscellaneous	No		
Store Results At	All Time Points		
Result File			
Compression	Program Controlled		
Compression			

	Analysis Data Management
Solver Files Directory	C:\Users\DIAPM599\AppData\Local\Temp\WB_C0010- DIAPM599A_diapm599_18756_2\unsaved_project_files\dp0\SYS\MECH\
Future Analysis	None
Scratch Solver Files Directory	
Save MAPDL db	No
Contact Summary	Program Controlled
Delete Unneeded Files	Yes
Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	nmm

TABLE 10 Model (C4) > Static Structural (C5) > Loads

Object Name	Fixed Support	
State	Fully Defined	
Scope		
Scoping Method	Geometry Selection	
Geometry	2 Faces	
Definition		
Туре	Fixed Support	
Suppressed	No	

TABLE 11 Model (C4) > Static Structural (C5) > Rotations Object Name

Object Name	Rotational Velocity	
State	Fully Defined	
	Scope	
Scoping Method	Geometry Selection	
Geometry	All Bodies	
Definition		
Define By	Components	
Coordinate System	Global Coordinate System	
X Component	50. rad/s (ramped)	
Y Component	0. rad/s (ramped)	
Z Component	0. rad/s (ramped)	
X Coordinate	0. mm	
Y Coordinate	0. mm	
Z Coordinate	0. mm	
Suppressed	No	

FIGURE 3 Model (C4) > Static Structural (C5) > Rotational Velocity

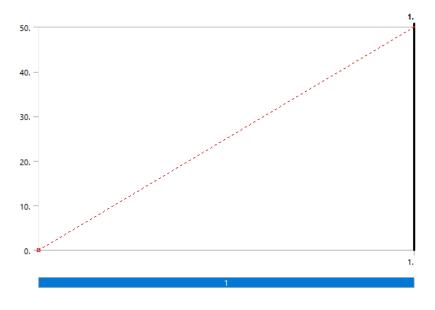
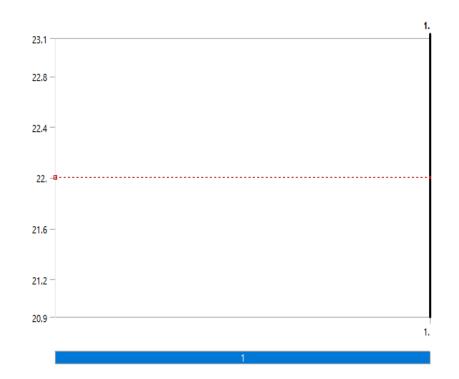



FIGURE 4 Model (C4) > Static Structural (C5) > Figure

Solution (C6)

dei (04) - Static Structural (05) - Soluti		
Object Name	Solution (C6)	
State	Solved	
Adaptive Mesh Refinement		
Max Refinement Loops	1.	
Refinement Depth	2.	
Information		
Status	Done	
MAPDL Elapsed Time	3. s	
MAPDL Memory Used	265. MB	
MAPDL Result File Size	1. MB	
Post Processing		
Beam Section Results	No	
On Demand Stress/Strain	No	

TABLE 12 Model (C4) > Static Structural (C5) > Solution

Object Name	Solution Information		
State	Solved		
Solution Inform	Solution Information		
Solution Output	Solver Output		
Newton-Raphson Residuals	0		
Identify Element Violations	0		
Update Interval	2.5 s		
Display Points	All		
FE Connection Visibility			
Activate Visibility	Yes		
Display	All FE Connectors		
Draw Connections Attached To	All Nodes		
Line Color	Connection Type		
Visible on Results	No		
Line Thickness	Single		
Display Type	Lines		

 TABLE 13

 Model (C4) > Static Structural (C5) > Solution (C6) > Solution Information

 TABLE 14

 Model (C4) > Static Structural (C5) > Solution (C6) > Results

Object Name	Total Deformation	Equivalent Stress	
State		Solved	
Scope			
Scoping Method	Geometry Selection		
Geometry	All Bodies		
Definition			
Туре	Total Deformation	Equivalent (von-Mises) Stress	
By	Time		
Display Time	Last		
Calculate Time History	Yes		
Identifier			
Suppressed	No		
Results			
Minimum	0. mm	0.11575 MPa	
Maximum	9.2547e-002 mm	25.615 MPa	
Average	1.2127e-002 mm	6.0968 MPa	
Minimum Occurs On	Shaft\Solid1		
Maximum Occurs On	Shaft\Solid1		
·	Information		
Time	1. s		
Load Step	1		
Substep	1		
Iteration Number	1		
Integration Point Results			
Display Option		Averaged	
Average Across Bodies		No	

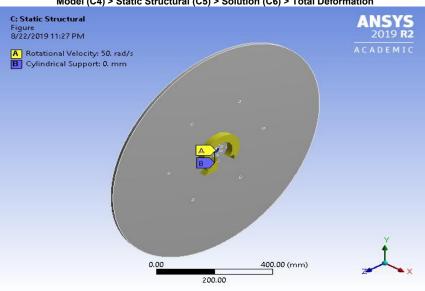


FIGURE 5 Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation

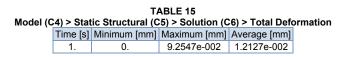


FIGURE 6 Model (C4) > Static Structural (C5) > Solution (C6) > Total Deformation > Figure

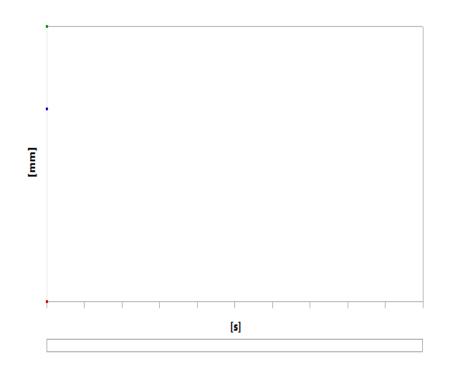
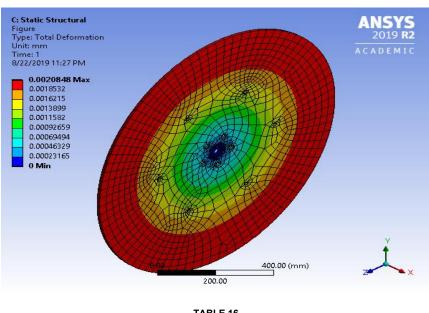



FIGURE 7 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress

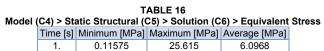
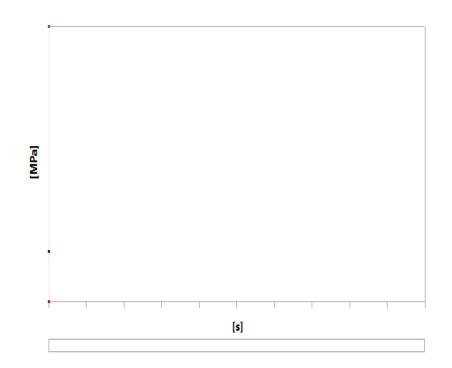
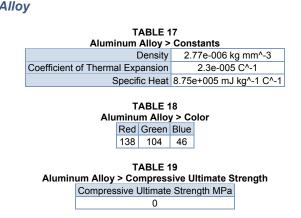




FIGURE 8 Model (C4) > Static Structural (C5) > Solution (C6) > Equivalent Stress > Figure

Material Data

Aluminum Alloy

TABLE 20 Aluminum Alloy > Compressive Yield Strength Compressive Yield Strength MPa

280

TABLE 21 Aluminum Alloy > Tensile Yield Strength Tensile Yield Strength MPa

280

TABLE 22 Aluminum Alloy > Tensile Ultimate Strength Tensile Ultimate Strength MPa

310

TABLE 23 Aluminum Alloy > Isotropic Secant Coefficient of Thermal Expansion Zero-Thermal-Strain Reference Temperature C

22

TABLE 24 Aluminum Alloy > Isotropic Thermal Conductivity Thermal Conductivity W mm^1 C^1 Temperature C

Thermal Conductivity w mm^-1 C^-1	Temperature C
0.114	-100
0.144	0
0.165	100
0.175	200

TABLE 25 Aluminum Alloy > S-N Curve

Alternating Stress MPa	Cycles	R-Ratio
275.8	1700	-1
241.3	5000	-1
206.8	34000	-1
172.4	1.4e+005	-1
137.9	8.e+005	-1
117.2	2.4e+006	-1
89.63	5.5e+007	-1
82.74	1.e+008	-1
170.6	50000	-0.5
139.6	3.5e+005	-0.5
108.6	3.7e+006	-0.5
87.91	1.4e+007	-0.5
77.57	5.e+007	-0.5
72.39	1.e+008	-0.5
144.8	50000	0
120.7	1.9e+005	0
103.4	1.3e+006	0
93.08	4.4e+006	0

86.18	1.2e+007	0
72.39	1.e+008	0
74.12	3.e+005	0.5
70.67	1.5e+006	0.5
66.36	1.2e+007	0.5
62.05	1.e+008	0.5

TABLE 26 Aluminum Alloy > Isotropic Resistivity

Resistivity ohm mm	Temperature C
2.43e-005	0
2.67e-005	20
3.63e-005	100

 TABLE 27

 Aluminum Alloy > Isotropic Elasticity

 Young's Modulus MPa
 Poisson's Ratio
 Bulk Modulus MPa
 Shear Modulus MPa
 Temperature C

 71000
 0.33
 69608
 26692

TABLE 28 Aluminum Alloy > Isotropic Relative Permeability Relative Permeability

1

Appendix A.13 Ryerson International Hyperloop Team Breakdown

Team Leadership

Mohammed M. **KHAN** Team Captain, *Grad Student*

Amadeus **COMMISSO** Operation Lead

Abrar **AHSAN** Guidance, Navigation & Control Co-Lead

Adam **GLEESON** Propulsion Lead

Aakash **GOHIL** Structures Co-Lead Francis **PICOTTE** Guidance, Navigation & Control Co-Lead

Nathan **PAES** Propulsion Assistant Lead

Andrei **MUNTEANU** Structures Co-Lead

Team Members

Operations (OPS)

Aditya **SALUJA** Team Account Management

Propulsion (PRP)

Abhijeet **ARYAL** Battery Development

Artin **SARKENZIANS** LIM Development

Yukei **OYAMA** LIM Development

Nicholas **PRAYOGO** MagLev Development

Guidance, Navigation & Control (GNC)

KRIS **SHARMA** GNC Member

Levi **GREGORASH** SEI Member

Structures (STR)

Amsal **JINDANI** Braking Member

Lior **SAPRIKIN** Braking Member

Amin **ISMAIL** Vehicle Dynamics

Niyant **NARAYAN** Thermal Management Hitarth **CHUDGAR** Website Development

Ashely **ASHOK** Battery Development

Balin **MOHER** LIM Development

Yusef **KHEDR** LIM Development

Kevin KASA

GNC Member

Benjamin DRYDEN

Data Acquisition

Musab **ELDALI**

Sai POORSARLA

Ijaz QURESHI

Braking Member

Vehicle Dynamics

Thermal Management

Jordan VANRIEL

Braking Member, Grad Student

Renee **VETTIVELU** MagLev Development Sydney **SCHLUTER** Social Media Coordinator

Satchel **FRENCH** Battery Development

Chirag **TRIVEDI** LIM Development

Joey **LYON** PWM Development

Syed **ASAAD** Propulsion Structures

Jordan **EPP** SEI Member

Thomas **DORS** VCS Member

Florencia Rios **NICOLAS** Braking Member

Muaz **SALEH** Vehicle Dynamics

Hazzam **NAEEM** Thermal Management

Osamah **SOLOMAH** Pod Chassis

REFERENCES

- [1] E. Musk, "Hyperloop Alpha," SpaceX, Hawthorne, 2013.
- Hexagon, "HxGN LIVE," 20 June 2019. [Online]. Available: https://hxgnlive.com.
 [Accessed 20 June 2019].
- [3] University of Toronto Institute for Aerospace Studies, "ICASSE 2019," University of Toronto Institute for Aerospace Studies, 1 August 2019. [Online]. Available: http://www.utias.utoronto.ca/icasse-home-copy-conferenceprogram/. [Accessed 5 August 2019].
- [4] CBC News, "Toronto to Montreal in 39 minutes? Futuristic people mover zips to next stage," 15 September 2017. [Online]. Available: https://www.cbc.ca/news/canada/ottawa/hyperloop-toronto-ottawa-montrealroute-winner-1.4291893. [Accessed 25 February 2019].
- [5] Statistics Canada, "Census Profile, 2016 Census," 1 January 2016. [Online]. Available: http://www12.statcan.gc.ca/census-recensement/2016/dppd/prof/details/page.cfm?Lang=E&Geo1=CD&Code1=2466&Geo2=PR&Code2 =24&Data=Count&SearchType=Begins&SearchPR=01&B1=All. [Accessed 10 March 2019].
- [6] Virgin Hyperloop One, "Route Estimator," 21 September 2018. [Online]. Available: https://hyperloop-one.com/route-estimator/toronto-ca/montralca/travel-times. [Accessed 21 September 2018].
- S. C. Davis and R. G. Boundy, Transportation Energy Data Book, Oak Ridge: U.S. Department of Energy, 2019.
- [8] Hyperloop Transportation Technologies, "Hyperloop Capsule," Hyperloop TT, Los Angeles, 2019.
- [9] J. C. Chin, J. S. Gray, S. M. Jones and J. J. Berton, "Open-Source Conceptual Sizing Models for the Hyperloop Passenger Pod," American Institue of Aeronautics and Astronautics, Cleveland, 2015.
- [10] SpaceX, "SpaceX Hyperloop Test Track and Pod Specifications," SpaceX, Hawthorne, 2018.
- [11] Wunderground, "Hawthorne Municipal Airport," Wunderground, 20 November 2018. [Online]. Available: https://www.wunderground.com/weather/KHHR. [Accessed 20 November 2018].
- [12] J. Porter, "Elon Musk Promises New Hyperloop Tunnel After Speed Record Broken," 22 July 2019. [Online]. Available:

https://www.theverge.com/2019/7/22/20703423/tum-hyperloop-record-463-kmph-spacex-elon-musk-competition. [Accessed 30 July 2019].

- [13] "HFS6 Series Aluminum Extrusions," MiSUMi, 10 June 2019. [Online]. Available: https://us.misumi-ec.com/vona2/detail/110302689160/?HissuCode=HFSP6-5050-2000&PNSearch=HFSP6-5050-2000&searchFlow=results2type&KWSearch=HFSP6-5050-2000. [Accessed 10 June 2019].
- [14] "Properties and Selection: Nonferrous Alloys and Special Purpose Materials," in *Metals Handbook*, ASM International, 1998.
- [15] H. E. Boyer and T. L. Gall, Metals Handbook, Ohio: American Society for Metals, 1985.
- [16] J. M. Holt, C. Y. H. Ed and C. Gibson, Structural Alloys Handbook, West Lafayette: Purdue University, 1996.
- [17] "Aluminum Square Tubing," Metal Supermarket, 18 January 2019. [Online].
 Available: https://ecommerce.metalsupermarkets.com/MSC-Home.aspx.
 [Accessed 18 January 2019].
- [18] D. J. Peery, "Loads on Fuselage Bulkheads," in *Aircraft Structures*, Mineola, Dover Publications, Inc., 2011, pp. 186-212.
- [19] "Mechanical Material Fatigue," Comsol, 21 February 2017. [Online]. Available: https://www.comsol.com/multiphysics/material-fatigue. [Accessed 18 January 2019].
- [20] A. Kantrowitz and C. Donaldson, "Preliminary Investigation of Supersonic Diffusers," Langley Memorial Aeronautical Laboratory, Langley Field, 1945.
- [21] M. M. J. Opgenoord and P. C. Caplan, "On the Aerodynamic Design of the Hyperloop Concept," AIAA Aviation Forum, Cambridge, 2017.
- [22] J. D. Anderson, "Nozzle Flows," in *Fundamentals Of Aerodynamics*, New York, McGraw-Hill, 2001, p. 567.
- [23] Hexcel Corporation, "HexTow Carbon Fiber," Hexcel Corporation, 02 March 2018.
 [Online]. Available: https://www.hexcel.com/user_area/content_media/raw/HexTowSelectorGuide.
 pdf. [Accessed 22 January 2019].
- [24] Aeropoxy, "PR2032 Laminating Resin For Composite Parts," PTM&W Industries Inc., 10 January 2019. [Online]. Available: https://www.aircraftspruce.ca/catalog/pdf/AEROPOXYPR2032TDS.pdf.
 [Accessed 10 January 2019].
- [25] Automation Direct, "Pneumatic Air Cylinders," Automation Direct, 27 December 2018. [Online]. Available: https://www.automationdirect.com/adc/shopping/catalog/pneumatic compone

nts/pneumatic_air_cylinders/metric_compact_air_cylinders_(h-series)/h50m040md-m. [Accessed 27 December 2018].

- [26] First Strike, "HPA Compressed Air Tanks," First Strike, 27 December 2018.
 [Online]. Available: https://first-strike.ca/first-strike-merc-68-4500-carbon-fibre-hpa-tank/. [Accessed 27 December 2018].
- [27] Grainger, "Solenoid Air Control Valves," Grainger, 04 February 2018. [Online]. Available: https://www.grainger.com/product/ARO-1-4-24VDC-4KB40.
 [Accessed 04 February 2018].
- [28] I. Boldea and S. A. Nasar, The Induction Machines Design Handbook, CRC Press, 2009.
- [29] J. F. Eastham, "Novel Synchronous Machines: Linear And Disc," *IEE Proceedings B Electric Power Applications*, vol. 137, no. 1, pp. 49-58, 1990.
- [30] M. Poloujadoff, "Linear Induction Machines," *IEEE Spectrum*, vol. 8, no. 2, pp. 72 80, 1971.
- [31] V. Del Toro, Electric Machines and Power Systems, Englewood Cliffs: Prentice-Hall Inc., 1985.
- [32] S. P. Bhamidi, "Design Of A Single Sided Linear Induction Motor (SLIM) Using A User Interactive Computer Program," University of Missouri, Columbia, 2005.
- [33] K&J Magnetics Inc., "BX8X8X0 Specification Sheet," K&J Magnetics Inc., 29 July 2010. [Online]. Available: https://www.kjmagnetics.com/specprep.asp?pName=BX8X8X0. [Accessed 4 February 2019].
- [34] The Kistler Group, "Aircraft Landing Gear and Brake Testing," The Kistler Group, 18 January 2018. [Online]. Available: https://www.kistler.com/en/applications/sensor-technology/testmeasurement/aviation-testing/aircraft-landing-gear-and-brake-testing/. [Accessed 20 June 2019].
- [35] Transport Canada, Aeronautical Information Manual, Ottawa: Transport Canada, 2012.
- [36] Oriental Motors, "Brushless DC Motor Speed Control System," 20 February 2019.
 [Online]. Available: https://catalog.orientalmotor.com/item/all-categories/120wbmu-series-brushless-dc-motors/blm5120hp-30s-bmud120-c2. [Accessed 10 June 2019].
- [37] NASA, "Soldered Electrical Connections," 18 January 2001. [Online]. Available: https://nepp.nasa.gov/docuploads/06AA01BA-FC7E-4094-AE829CE371A7B05D/NASA-STD-8739.3.pdf. [Accessed 9 December 2018].
- [38] Automation Direct, "Metric Compact Air Cylinders (H-Series)," 15 March 2019. [Online]. Available:

https://cdn.automationdirect.com/static/specs/nitrahseriescyl100mm.pdf. [Accessed 10 June 2019].

- [39] I. Boldea, Linear Electric Machines, Drives, and MAGLEVs Handbook, Boca Raton: CRC Press, 2017.
- [40] MIT Hyperloop Team, "MIT Hyperloop Final Report," Massachusetts Institute of Technology, Cambridge, 2017.