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Digital Filter Package (DFP) Extension

Abstract
In this study, we present an integrated approach to the design of digital filters using the 

Digital Filter Package (DFP). We added four new features to DFP: multi-band filter design, 

adaptive filter design, two-dimensional filter design and TMS320 code generation. We 

discuss each of these new features from design consideration to realization. We present 

design examples and demonstrate the design results generated by DFP. We also discuss GUI 

design in MATLAB, the DFP GUI design structure and the data transition structure from one 

DFP function to another. We show that DFP can allow efficient design of the following filter 

structures: low pass filter, high pass filter, band pass filter, band stop filter, multi band filter, 

differentiator, Hilbert Transformer, adaptive and 2D filters. DFP allows the use of a variety 

of FIR and HR design methods as well as hardware implementation structures; it provides a 

useful tool to quickly examine a variety of filters and understand the tradeoffs involved in 

varying the characteristics of the filter.

K e y w o r d s !  digital signal processing, DFP, adaptive filter design, two-dimensional 

digital filter design, multi-band digital filter design, TMS320 code generation
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Chapter i

Introduction

In many applications, it is desirable that the frequency spectrum of a signal to be modified, 

reshaped, or manipulated according to a desired specification. The process may include 

attenuating a range of frequency components and rejecting or isolating one specific 

fi-equency component. Any system or network that exhibits such frequency-selective 

characteristics is called a filter. Several types of filters can be identified: low-pass filter 

(LPF) that passes only low fi*equencies, high-pass filter (HPF) that passes high frequencies, 

band-pass filter (BPF) that passes a band of fi-equencies, and band-stop filter (BSF) that 

rejects certain fi-equencies. Filters are used in a variety of applications, such as removing 

noise fi-om a signal, removing signal distortion due to the transmission channel, separating 

two or more distinct signals that were mixed in order to maximize communication channel 

utilization, demodulating signals, and converting discrete-time signal into continuous-time 

signals.

Digital filters are used extensively in applications, such as digital image processing, 

pattern recognition, and spectrum analysis. [1]



In many signal- processing applications, it is advantageous to use digital filters in place 

of analog filters. Digital filters can meet tight specifications on magnitude and phase 

characteristics and eliminate voltage drift, temperature drift, and noise problems associated 

with analog filter components. Another important advantage of digital filters when 

implemented with a programmable processor is the ease of changing filter parameters to 

modify the filter characteristics. This feature allows the design engineer to effectively and 

easily update the characteristics of the designed filter due to changes in the application 

environment.

Quantization is a natural outgrowth of digital filtering and digital signal processing 

development. Also, there is a growing need for fixed-point filters that meet power, cost, and 

size restrictions. In applications where power limitations and size constraints drive the filter 

design, we use fixed-point filters. When we convert filter coefficients fi'om floating-point to 

fixed-point, we use quantization to perform the conversion [2].

The Digital Filter Package (DFP) [27] is a user- friendly GUI front-end filter design 

toolbox implemented in the MATLAB environment. In its original implementation it allows 

the design of LPF, HPF, BPF, BSF, Differentiator and Hilbert Transform filters. Filter design 

methods include FIR (Remez equiripple FIR design, windowed linear phase FIR digital filter 

design and least squares linear phase FIR filter design) and HR (Butterworth, Chebychev-I, 

Chebyshev-II and Elliptic design). DFP also extends the basic digital filter design 

functionality of MATLAB in two important ways: (1) The filter coefficients can be 

quantized. This feature is of particular importance if the filter will eventually be implemented



on a fixed point DSP. (2) DFP can also generate assembler code for the Motorola DSP56k 

family of fixed-point processors.

The desirable features of an adaptive filter, namely, the ability to operate satisfactorily 

in an unknown environment and also track time variations of input statistics, make the 

adaptive filter a powerful device for signal processing and control applications [3], By 

integrating adaptive filter design methods into DFP, the designer can use the DFP graphic 

user interface to design adaptive filter with Least Mean Square (LMS) algorithm and 

Recursive Least Square (RLS) algorithm instead of trying to design these complicated 

algorithms by themselves. Two- dimensional digital filters are also widely used in many 

fields. Therefore, extending DFP to include 2D filter design capability makes DFP stand out 

from other digital filter design packages by providing an easy way to design 2D filters. We 

also enhanced the digital filter design ability of DFP by adding multi-band filter design 

capability and code generation feature for the TMS320 family of digital signal processors.

The design of digital filters involves the following steps: approximation, realization, study of 

arithmetic errors, and hardware implementation steps. Approximation is the process of 

generating a transfer function that satisfies a set of desired specifications, which may involve 

the time-domain response, frequency-domain response, or some combination of both 

responses of the filter. Realization consists of the conversion of the desired transfer function 

into a filter network. Approximation and realization assume an infinite-precision device for 

implementation. However, implementation is concerned with the actual hardware or software 

coding of the filter using a programmable processor. Since many practical devices are of 

finite precision, it is necessary to study the effects of arithmetic errors on the filter response.



The organization of this project report is as follows. Chapter 2 introduces digital filter 

design principles including specification analysis, approximation methods, realization 

structures, and implementation in hardware and software. Chapter 3 illustrates multi-band 

filter design results. In Chapter 4 we present the application of adaptive filters and adaptive 

filter realization algorithm (LMS and RLS) design procedures, then introduce how to design 

an adaptive filter using the DFP. Chapter 5 presents the separable two- dimensional digital 

filter design theory and design examples. We also discuss how to design multi-band two- 

dimensional digital filters. Chapter 6 addresses DFP GUI design and TMS320 code 

generation. Chapter 7 summarizes the contributions of this project and discusses future 

directions of research.



Chapter 2

Digital Filter Design Principles
The design of a digital filter involves the following five steps:

1. Specification of the filter requirements.

2. Selection of the approximation methods.

3. Realization of the filter by a suitable structure.

4. Analysis of finite wordlength effects on the filter performance.

5. Implementation of filter in software and/or hardware.

2.1 Digital Filter Specifications

The frequency responses of the four popular types of ideal digital filters with real impulse 

response coefficients are shown in Figure 2.1. All frequency values in this figure are 

normalized frequency values, i.e., suppose A is defined as sampling frequency, then the 

normalized upper frequency limit f ,  12 becomes 0.5. The frequencies / . ,  , / ^ 2  &re called the

cutoff frequencies of their respective filters. An ideal filter has a magnitude response equal 

to unity in the pass-band and zero in the stop-band everywhere [1]. Table 2.1 shows the pass- 

band and stop-band region for LPF, HPF, BPF and BSF.



Pass-band Region Stop-band Region
LPF 0^1 / N / c /c^l /  1^0.5
HPF fc ^  f  ^0.5 0^ f \ ^ f c
BPF f c A f \ ^ f c 2 o< /  l s / „  and s] /  jso.5
BSF 0 < | / | < / „  and/ , 2 < | /  20.5 fc^^ f \ ^ f c2

Table 2.1: Pass-band and Stop-band Region for LPF, HPF, BPF, and BSF

1
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-0.5 — f c 2 f c \  f c \  f c 2  0.5

(c) Ideal BPF

-0.5 - f c 2  - f c \  f c \  f c l  0.5 

(d) Ideal BSF

Figure 2.1: Four Types of Ideal Filters: LPF, HPF, BPF, and BSF

In practice, it is impossible to realize a finite dimensional Linear Time Invariant (LTI) filter 

with the ideal “brick wall” characteristics of Figure 2.1 as the corresponding impulse 

response is not causal and is of doubly infinite length. Moreover, the impulse response is not



absolutely summable, and hence, the corresponding transfer function is not Bounded-Input, 

Bounded-Output (BIBO) stable.

In order to develop stable and realizable transfer functions, the ideal frequency response 

specifications of Figure 2.1 are relaxed by including a transition band between the pass-band 

and the stop-band to permit the magnitude response to decay more gradually from its 

maximum value in the pass-band to the zero value in the stop-band. Moreover, the magnitude 

response is allowed to vary by a small amount both in the pass-band and the stop-band. 

Typical magnitude specifications used for the design of LPF, HPF, BPF, and BSF are shown 

in Figure 2.2. Note the magnitude response used in this figure is logarithm.

The cutoff fi-equencies are listed in Table 2.2. a  and j3 are pass-band and stop-band 

attenuation in dB. Max and Min are maximum and minimum target region limit in dB.

Pass-band Cutoff Frequency Stop-band Cutoff Frequency
LPF fx f i
HPF h h
BPF Lower cutoff fi-equency is/^ 

Upper cutoff fi-equency is f^
1®‘: Upper cutoff frequency is / j  

2"‘‘: Lower cutoff frequency is /g
BSF U‘: Upper cutoff frequency is /g 

2"**: Lower cutoff fi-equency is / , 2

Lower cutoff frequency is /,o 
Upper cutoff frequency is /,,

Table 2.2: Pass-band and Stop-band Region for LPF, HPF, BPF and BSF

For multi-band digital filter specifications and target regions, we can extend the 

specifications and target regions of BPF and BSF. Most multi-band filter design techniques 

depend on the specification of these parameters: pass-band and stop-band cutoff frequencies, 

pass-band and stop-band attenuation factors.
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Figure 2.2: Target Regions of LPF, HPF, BPF, and BSF



2.2 Digital Filter Approximation Method

Digital filter design requires the use of both frequency domain and time domain techniques. 

This is because filter design specifications are often given in the frequency domain, but 

filters are usually implemented in the time domain. Typically, fi-equency domain analysis is 

done using the Z-transform and the discrete-time Fourier Transform (DTFT).

In general, a linear and time-invariant digital filter with input x(n) and output y(n) may 

be specified by its difference equation [4].

MM  N (0
y(^) = ̂ f ^An- i )  + ̂ aky(n-k)

1=0 A=1

where b/ and a* are coefficients which parameterize the filter. This filter is said to have M

zeros and N poles. Each new value of the output signal, y  (n), is determined by past values of 

the output, and by the present and past values of the input. There are two general classes of 

digital filters: infinite impulse response (HR) and finite impulse response (FIR). The FIR case 

occurs when =0, for all k. Such a filter is said to have no poles, only zeros. In the case

where the difference equation usually represents an HR filter.

There are several FIR and HR filter approximation methods. The most frequently used 

approximation methods for FIR filter design are the Remez exchange approximation method 

(using the Parks McClellan algorithm), the windowing method and the least-mean-square 

approximation method [2]. Approximation methods for HR filter design include the widely 

used transformation of analogue filters design methods such as the Butterworth 

approximation method, the Chebyshev approximation method, and the elliptic approximation



method. Solving the approximation problem using HR filters require smaller order than using 

FER filters. The penalty is non-linear phase response and potential instability.

2.3 Realization Structure o f FIR and HR Filters

The Z-transform is the major tool used for analyzing frequency response of filters. The 

realization of the filter by a suitable structure corresponding to a selected finite length 

representation, is the next step before implementation. For hardware realization, the most 

commonly used structures are the direct, cascade and parallel forms. For FIR filters the most 

widely used structure is the direct form. Figure 2.3 (1) shows the transversal or direct form 

structure realization [18]. The Z-transform of FIR non-recursive filter is shown as equation

(2.3) w h e r e a n d  Y(z) are the Ztransforms ofx(n) snûy(n) [5].

(I)
M

Y{z) = %b{i)z-‘X{z) (2.3)
1=0

x(ri)

b(M-l) b(M)b(2)b(0) b(l)

y(n)

Figure 2.3: Direct Form FIR Filter Structure

Another FIR filter structure is cascade structure. The cascade structure converts the 

transfer function into a product of second-order functions, as shown in equation (2.4) [17]:

(2.4)/ 7 ( z )  — h o J ^ ( l +  ]Z +b/^2^  )  
*=i

This leads to the cascade form shown in Figure 2.4 [18].

(') In the figures of this report we use the convention that two branches merging at a node represents that the node output is the sum of the branch 
signal.

10



x(n) y(n)

0,2

Figure 2.4: FIR Filter Cascade Structure

There are many different methods for implementing recursive HR filters. Equation

(2.5) shows the Z-transform of the impulse response of an HR filter, where H(z), Y(z), and 

X(z) are the Z-transforms of h(n), y(n), snàx(n), respectively.

M

Yiz) (2.5)

*=i

Three different structures often used to implement digital filters are the direct form (I 

and II), the cascade form and the lattice form. Figure 2.5 and Figure 2.6 show the system 

diagrams known as direct form I and direct form II implementation, respectively [18]. 

Direct form II structure is also called Canonical form. Note that the left half of Figure 2.5 

implements the numerator (zeros) of H(z), while the right half implements the denominator 

(poles) of H(z). When the order of the numerator and the order of the denominator are the 

same (N=M), the delay lines can be combined in a single one as shown in Figure 2.6. The 

two forms require the same number of arithmetic operations, but the direct form II can 

require as few as half the number of memory registers for storing the past values of the 

inputs and outputs. Although direct form I and direct form II have the same transfer

11



function H(z), the corresponding difference equations are not the same. The difference 

equation of the direct form I structure is as equation (2.6), while that of direct form II is as 

equation (2.7).

yin) = X  4 4 »  -  0 + X  ̂ yyi’̂  ~ ̂ )1=0 i=I

d{n) = ^ a ^ d ( n -k )  + x(n) ; y(n) = ^ b , d { n - i )

(2.6)

(2.7)

The implementation of a cascade-form HR filter is an extension of the results of the 

implementation of the direct-form HR filter. The Z-transform equation of the impulse 

response of an HR filter (2.5) may be written in the equivalent form (2.8) where the filter is 

realized as a biquads [5].

-2

- 1 (2.8)

'0
y(n)x(n)

Figure 2.5: Direct Form I Structure of HR filter

Therefore, this realization is referred to as the cascade form. Figure 2.7 shows the HR 

filter implemented in cascade structure [18], where each sub-block corresponds to one of 

the terms in the product (2.8). Note that any single cascade section is identical to the 

second-order direct-form II HR filter.

12



d(n) K
x(n) vM

x(n)

Figure 2.6: Direct Form II Structure of HR filter

•'01 fioN
>■ y(n)

Pin

Figure 2.7: Cascade Second Order Structure of HR filter

In the direct form realization shown in Figure 2.6, the variation of one parameter will 

affect the locations of all the poles of H(z). In a cascade realization shown in Figure 2.7, the 

variation of one parameter will affect only poles in that section. Therefore the cascade 

realization is less sensitive to parameter variation (due to coefficient quantization, etc.) than 

the direct form structure. In practical implementations of digital HR filters, the cascade form 

is preferred.

13



Equation (2.9) displays the relations between f(n) and g(n) for the m'* stage of an FIR 

lattice filter, where Km, f(n) and g(n) represent the reflection coefficient, the forward and 

backward prediction residuals respectively.

fm  ( « )  =  / m - l  W  +  ̂ m g m - l  («  “ b .  - 1

Figure 2.8 shows the basic section of an FIR lattice filter.

1/z

Km

Km

/m(")

► gm(«)

Figure 2.8: The basic section of a FIR lattice filter 

The general form of an HR lattice filter is shown in Figure 2.9.

x(n)

(2.9)

Cm

1/z 1/z

-Ki-Km

Km Km-1

y(n)

Figure 2.9: The general form of the HR lattice filter

14



The Km and Cm coefficients can be obtained fi'om a direct form filter by using MATLAB 

function: [K ,C ]  = tf21atc(B,A) where B, A are direct form coefficients . Lattice structure is 

less sensitive to parameter variation and has the advantage of easily expending the filter order 

without fully re-design the lattice filter.

2.4 Im plem entation Considerations

The cascade form is most often employed in practical applications for reasons concerning 

quantization effects and DSP implementation. There are four types of quantization effects in 

digital filters - input quantization, coefficient quantization, roundoff errors, and overflow [4].

Representing instantaneous values of a continuous-time signal in digital form introduces 

errors that are associated with I/O quantization. Input signals are subject to A/D quantization 

noise while output signals are subject to D/A quantization noise. The input A/D quantization 

noise is the more dominant factor due to the fact that input noise circulates within HR filters 

and can be regenerative while output noise normally just propagates off-stage.

Digital filters are designed with the assumption that the filter will be implemented on an 

infinite precision device. However, since all processors are of finite precision, it is necessary 

to approximate the ideal filter coefficients. This approximation introduces coefficient 

quantization error. The effect of coefficient quantization is highly dependent on the structure 

of the filter and the wordlength of the implementation hardware. Since the poles and zeros of 

a filter implemented with finite wordlength arithmetic are not necessarily the same as the 

poles and zeros of a filter implemented on an infinite precision device, the difference may 

affect the performance of the filter.

15



Truncation or rounding off the products formed within the digital filter is referred to as 

correlated roundoff noise. The result of correlated roundoff noise, including overflow 

oscillations, is that filters suffer from “limit-cycle effect”. For system with adequate 

coefficient wordlength and dynamic range, this problem is usually negligible. Overflows are 

generated by additions resulting in undesirable large amplitude oscillations. Both limit cycles 

and overflow oscillations force the digital filter into nonlinear operations. Although limit 

cycles are difficult to eliminate, saturation arithmetic can be used to reduce overflow 

oscillations. The overflow mode of operation on the TMS320 family is accomplished with set 

overflow mode instruction, which sets the accumulator to the largest representable 32-bit 

positive or negative number according to the direction of overflow.

2.5 DFP Digital Filter Design Capability

DFP is developed using Graphic User Interface (GUI) design technique. It integrates all steps 

needed to design a digital filter, i.e., defining filter specifications (different filter type 

corresponding to different specifications), choosing approximation methods (FIR and HR), 

selecting realization structures (Direct form. Cascade Second-Order Section, Lattice), DFP 

quantization consideration (fixed point or floating point) and generating DSP assembly code 

working with the Motorola 56000, TMS32010/TMS32020, TMS320C54x, TMS320C67x 

DSP families. The DFP GUI structure is shown in Figure 2.10.

In Figure 2.8, the IMPLEMENTATION branch is for selecting realization structures 

(Direct form, Cascade Second-Order Section form, Lattice form), while the OUTPUT 

FORMAT branch is to generate assembly code for Motorola56000, TMS32010/TMS32020, 

TMS320C54X, TMS320C67x series of DSP processors.

16
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Figure 2.10: DFP GUI Structure
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Chapter 3

Multi-Band Filter Design

The goal of adding multi-band filter design to DFP is to increase the band design ability to 

more than three. A multi-band filter has the combined functions of LPF, HPF, BPF, BSF and 

exhibits more than three filter bands. In multi-band filter design, we consider the following 

questions:

• How to define multi-band digital filter specifications?

• How to design target region to meet the required specifications?

• How are the data information passed from one window to the other?

3.1 Filter Specifications

Table 3.1 and Table 3.2 list the specifications needed to enter DFP for designing two bands 

digital filters such as LPF and HPF and three bands digital filters such as BPF and BSF.

18



LPF HPF
Sampling Frequency Sampling Frequency

Pass-band Frequency Edge 
Pass-band Attenuation (dB)

Stop-band Frequency Edge 
Stop-band Attenuation (dB)

Stop-band Frequency Edge 
Stop-band Attenuation (dB)

Pass-band Frequency Edge 
Pass-band Attenuation (dB)

Table 3.1: Specifications for LPF and HPF

BPF BSF
Sampling Frequency Sampling Frequency

First Stop-band Frequency Edge 
First Stop-band Attenuation (dB)

First Pass-band Frequency Edge 
First Pass-band Attenuation (dB)

First Pass-band Frequency Edge 
Pass-band Attenuation (dB) 

Second Pass-band Frequency Edge

First Stop-band Frequency Edge 
Stop-band Attenuation (dB) 

Second Stop-band Frequency Edge
Second Stop-band Frequency Edge 
Second Stop-band Attenuation (dB)

Second Pass-band Frequency Edge 
Second Pass-band Attenuation (dB)

Table 3.2: Specifications for BPF and BSF

By analyzing Tables 3.1 and 3.2, we observe the need to increase the number of design 

parameters if we want to extend the design capability of DFP to beyond 2 filter bands. We 

consider a vector-input idea so that design specifications can be entered into the DFP 

workspace in a more efficient way. In the multi-band Type and Specification Window, we 

specify the frequency-edge, the weight and the attenuation vectors as the multi-band filter 

design parameters.

In DFP we support three input modes: the normalized frequency input, the frequency 

input in Hz and strings. If we choose to use strings to specify the firequency parameter, this 

string has to be defined in the MATLAB workspace.
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3.2 Target Region Design

The objective of designing the target region is to make DFP possess self-test ability. Original 

DFP has designed the target regions for LPF, HPF, BPF and BSF, Differentiator, and Hilbert 

Transform filter. Using filter specification parameters, i.e., frequency edge vector 

(fre_vector), weight vector (wgt_vector), and attenuation vector (dev_vector), we can 

determine the target region coordinate matrix and plot the corresponding target region in 

DFP.

There are two possibilities for the design of multi-band target region: the first band is 

pass-band or stop-band. Figure 3.1 shows the program flow chart to design multi-band target 

region. Figure 3.2 shows the coordinate diagram to design target region when the first band is 

pass-band. When the first band is stop-band, the target region coordinate diagram is shown in 

Figure 3.3. In these two figures, we use a,b,c,d to determine each rectangular target region. 

Ymax and Ymin represent maximum and minimum target region limit values. Â  and X; 

represent the pass-band and the stop-band attenuation values in Figure 3.2, and the stop-band 

and the pass-band attenuation values in Figure 3.3. Figure 3.4 shows part of design code in 

MATLAB when the first band is pass-band as shown in Figure 3.2. Table 3.3 summarizes 

the specification vectors corresponding to Figure 3.2 and Figure 3.3.

The First Band is Pass-band The First Band is Stop-band
fre_vector \.f\ / 2 1  fn  fi\ ••••] [yi fi\ fii fi\ fyi ••••]
wgt vector [ 10 101  ....1 [0101 ....1
dev_vector [ A2  A2  Aj ....] [Ai A2  Aj A2  Af ....]

Table 3.3: Specification Vectors for Multi-band Filter
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No. Then first band is stop-band

Wgt_vector(l)=l?

Yes. Then first band is pass-band

Decide target region 
according to Figure 3.3

Determine Ymax and Ymin of target region

Decide target region according to Figure 3.2

Get filter specifications: fire_vector, wgt_vector and dev_vector

Figure 3.1: Flow chart of target region design program

a d a d a d

A b c b c
2 -----

A b c
’ 2 b c b c

A
a d a d

f i  fix ^22 / j i  fy i

Figure 3.2: Target Region if the First Band is a Pass-band.

Ymax

Ymin
f \  fix f n  /31 /s z

Figure 3.3: Target Region if the First Band is a Stop-band

a d a d a d a d

b c b c

b c b c -----

b c A, b c
A2 2
2 a d a d
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elseif ( FILTtypeNumber =  7 ) % Multi-band Case 

%  Determ ine Ymin
Ym inl = -fix(abs(-dev_vector(l) + DFP_Targetmin)/10)*10; 
for i = 1: length(dev_vector) 

dev_vectorl(i) = -fix(abs(-dev_vector(i)+DFP_Targetmin)/iO)*IO;
Ym inl =  min (Ym inl, dey_vectorl(i)); 

end
Ymin = Y m inl;

%  Determ ine Ymax

Ym axl = fix(abs(dev_vector(l) + DFP_T argetmax)/10) * 10 + dev_vector(l)/2; 
for i = 1 : length(dev_vector)

dev_vectorl(i) = fix(abs(dev_vector(i)+DFP_Targetmax)/10)*10 + dev_vector(i)/2; 
Ymaxl = max( Ym axl, dev_vectorl(i)); 

end
Ymax = Ym axl;

if  (wgt_vector(l) = 1 )  %  This is the case o f first band is pass band%

for i = l:length(dev_vector) 
bandn = length(dev_vector); %  How many band it has? %

if  (rem (bandn,2)= l)
ynumber = (3*bandn +l)/2; %  num ber of column in x vector (x coordinate)

%  Initial m atrix  ( x and y coordinate)
x l = zeros(l,ynumber); % a 
x2 =  zeros(l,ynumber); % b 
x3 =  zeros(l,ynumber); % c 
x4 =  zeros(l,ynumber); % d
X = zeros(4,ynumber); %  x coordinate m atrix  of target region

yLOGl = zeros(l,ynumber); 
yL0G 2 = zeros(l,ynumber); 
yL0G 3 = zeros(l,ynumber); 
yL0G 4 = zeros(l,ynumber);
yyLOG = zeros(4,ynumber); %  y coordinate of target region

for i = 3:ynumber 
i f  ( rem (i,3 )= 0  ) 

k  = i/3 *2;
yLOGl (i) = Ymax; 
yL0G4(i) =  Ymax; 
yL0G2(i) =  -dev_vector(k); 
yL0G3(i) = -dev_vectorOc); 

elseif (rem(i,3) = 1 )  
k = (((i+2)/3)*2)-l; 
yLOGl (i) = Ymax; 
i f  ( i= (ynum ber-l) ) 

yL0G4(ynumber-l) = dev_vector(bandn)/2; 
else _________________________________________________ ________
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yL0G4(i) = Ymax; 
end

yL0G2(i) = dev_vector(k)/2; 
yL0G3(i) = dev_vector(k)/2;

elseif (rem(i,3) = 2 )  
k= (((i+ l)/3 )*2 )-l; 
yLOGl (i) = Ymin;

if  ( i =  ynumber ) 
yL0G4(ynumber) = -dev_vector(bandn)/2; 

else
yL0G4(i) = Ymin; 

end
end

x l(i) = fre_vector(2*(k-2)+2); 
x2(i) = fre_vector(2*(k-2)+2); 
if  ( ( i == ynumber )|( i =  (ynumber-1) )) 

x3(i) = fs/2;x4(i) = fs/2; 
else

x3(i) = fre_vector(2*(k-2)+3); 
x4(i) = fre_vector(2*0c-2)+3); 

end

x l ( l )  = 0; 
x l(2 ) = 0;
x2(l) = fre_vector(l); 
x2(2) = fre_vector(l) 
x3(l) = fre_vector(l) 
x3(2) = fre_vector(l) 
x4(l) = fre_vector(l) 
x4(2) = fre_vector(l);

X = [x 1 ;x2;x3 ;x4] ; %  x coordinate of target region

yL O G l(l) = dev_vector(l)/2; 
yLOGl (2) = -dev_vector(l)/2; 
yL 0G 2(l) =  dev_vector(l)/2; 
yLOG2(2) = -dev_vector(l)/2; 
yL 0G 3(l) = Ymax; 
yLOG3(2) = Ymin; 
yL 0G 4(l) = Ymax; 
yLOG4(2) = Ymin;

yyLOG= [yLOGl;yLOG2;yLOG3;yLOG4]; %  y coordinate of target region 
yLOG = yyLOG;

end

Figure 3.4: Part of Target Region Design Code
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3 3 M ulti-band Data Structure and Design  

Example

We have introduced multi-band specifications in DFP and target region determination. In 

DFP, data is entered using the DFP-Type and Specifications Window. After multi-band 

specifications values are entered, they are passed to the DFP-Design Method Window and are 

processed based on the various filter approximation algorithms (FIR Remez, FIR Windows, 

FIR Least Square, HR Butterworth, HR Chebyshev and HR Elliptic). DFP adopts the 

Userdata object property associated with MATLAB GUI elements to transfer data among 

DFP windows. The Userdata of the DFP-Design Method Window combines all filter 

specifications. This data is first parsed, then used to estimate filter order, normalize the input 

and transfer the newly computed Userdata to the DFP-Display Window. The results of 

different approximation algorithms become the Userdata transferred to the DFP-Display 

Window. Finally, the DFP-Display Window receives this Userdata and plots the 

corresponding filter magnitude response, phase/group delay/impulse responses, displays the 

filter coefficients resulting from the current design, the pole/zero diagram and the target 

region.

Table 3.4 shows the data structure in the DFP-Type and Specifications Window, the 

DFP-Design Method Window and the DFP-Display Window. It also shows the data flow 

direction among the DFP windows.
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Input Data Output Data

“Type and 
Specifications Window”

•  Frequency vector: fre_vector
•  Weight vector: wgt_vector
•  Attenuation vector: dev_vector
•  Sampling frequency: fs

Userdatal = [fs, fre_vector, 
wgt_vector, dev_vector]

Userdatal Output

“Design Method 
Window”

Userdata 1 Input

Received Userdatal. Need to do 
following process:
•  Separate Userdatal
•  Order estimation: N
•  Data normalization. Suppose 

normalization results: N, f, w, d
•  Calculate target region coordinate 

matrix

Userdatal = remez (N, f, w, d) or 
= firl(N , f, w, d) or 
=firls (N, f, w, d) or 
=butter(N, f, w, d) or 
=chebyl(N, f, w, d) or 
=cheby2(N, f, w, d) or 
=ellip(N, f, w, d)

Userdatal Output

“Display Window”
Userdata2 Input

Filter coefficients are determined 
according to Userdata2

Display the following results:
•  Magnitude Response
•  Phase Response
•  Coefficients
•  Target Region

Table 3.4: DFP data structure.

Example: Target région if the first band is 
a pass-band
Suppose filter specifications are given as following:

Sampling Frequency: 48000(Hz)
Frequency Edge Vector: [ 8000 10000 13000 15000 18000 20000 ] 
Weight Vector: [ 1 0 1 0 ]
Attenuation Vector: [ 3 50 3 50 ](dB)

Figure 3.5 shows the target region generated by DFP.
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Figure 3.5: Target Region of Logarithm Case

In the DFP-Design Method window, if we choose Remez FIR digital filter design 

algorithm to realize this specification, the filter order estimate is 36. Figure 3.6 displays the 

corresponding filter magnitude response. Analyzing the target region and the filter design, 

we observe that this filter design result meets target requirements. If the filter design result 

does not meet the target requirements, we can interactively change the filter order until we 

obtain a filter design that satisfies target requirements.
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Chapter 4

Adaptive Digital Filter Design

Filtering refers to the linear process designed to alter the spectral content of an input signal in 

a specified manner. Conventional FIR and HR filters are time-invariant. They perform linear 

operations on an input signal to generate an output signal based on constant coefficient 

values. Adaptive filters are time varying, their characteristics such as bandwidth and 

firequency response change with time. The coefficients of the adaptive filter are adjusted 

automatically by an adaptive algorithm based on the incoming signal. This feature enables 

adaptive filters to be used in areas where the requirements of the filtering operation are 

unknown or non-stationary [23].

Adaptive filtering problems do not have unique solutions. There are a variety of 

recursive algorithms, each of which offers desirable features and respective limitations. One 

approach is based on the Wiener filter theory which uses the Least-Mean-Square (LMS) 

algorithm. The LMS algorithm is simple and capable of achieving satisfactory performance 

under right conditions. Its major limitations are a relatively slow rate of convergence and 

sensitivity to variations in the number of the correlation matrix of the tap inputs.
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Another approach based on the Kalman filter theory which uses the Recursive-Least- 

Square (RLS) algorithm. The RLS algorithm can provide a much faster rate of convergence 

than that attainable by the LMS algorithm. The RLS algorithm is robust in the sense that its 

rate of convergence is essentially insensitive to the eigenvalue-spread problem. Moreover, 

we may utilize the Kalman filtering algorithm to deal with non-stationary environments. The 

basic limitation of this RLS algorithm is its computational complexity [3].

4.1 Least Mean Square Algorithm (LMS)

There are 5 steps in the implementation of the LMS algorithm. Let represent the filter 

tap weight vector, x(hj the input signal, the filter output signal, d('nj the desired signal, 

g(h) the error signal, U the step size of LMS algorithm [26].

1. Select an initial tap-weight vector at time n=0 using W(0) = 0;

2. Receive an input sequence x(n) and for each time sample n = 1, 2, 3 ...N compute the 

filter output.

y{n) = W^ (ft)x(n) or y(ri) = x(n)W  ̂(n)

3. Compute the estimation error defined as the difference of the desired value and the 

filter output value.

e(hj = d(n) -y(n)

4. Update the tap-weight vector 

W(n+1) = W(n) + jue(n)x(n)

5. Repeat steps 2 through 4 until n = N (sample length).
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The choice of step size // must make algorithm always convergence. To guarantee this, jj. 

must be selected on the basis of maximum eigenvalue of autocorrelation matrix. Let 

m̂ax represent the maximum eignvalue of the autocorrelation matrix x^(n)x{n) such that

0 < / / ^ 7 ^ 5 — (4.1)
X (n)x{n)

In some instances, the denominator in equation (4.1) can equal zero due to machine precision 

or signal fading. To avoid this a small positive constant C is added to the denominator as 

shown in equation (4.2).

1 (4.2)
 ̂ Ç-¥x {̂n)x{n)

4.2 Recursive-Least-Square Algorithm (RLS)

Let 0(/i) represent the time-averaged autocorrelation matrix of the input signal as defined in 

Equation (4.3).

$ (» )=  l ^ ^ ( î > ( 0  (4 3)
1 =  1

LetP(n) = d>"'(/i). The implementation of the RLS algorithm realization consists of the

following steps [26].

1. Compute Kalman gain vector K(ji) .

K ij,)  -------  (4.4)
1 + x (n)P(« -  l)x(n)

2. Compute P{n)

Pin) = Pin -1) -  Kin)x^ («)P(n -1) (4.5)
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3. Compute the a priori error a(n) = d(n)~ (n -  l)x(n) ( 4  6)

4. Update the tap-weight vector W(n) = W (n- l)  + K{n)a{n) for n = 1,2 ...

The initial conditions for RLS algorithm realization are:

1. Æ(l)=---- -------------

2. P(l) = P(0) -  Æ(l)x^(l)f(0)

3. a(l) = c/(l)-ir^(0)x(l)

4. 1T(1) = 1T(0) +AT(l)a(l) with W(0) = 0 and P(0) = 4>“'(0) = <?“'/  where J  «  1 and I  is

the identity matrix.

4 3 Designing Adaptive Filters Using DFP

In DFP we first wrote the M-fiinctions a d a p t 1ms .m and a d a p t r l s  .m which implement 

the LMS and RLS algorithms, respectively. In the DFP-Type and Specification window we 

have three input variables: input signal vector, desired signal vector and filter order. Input 

signal vector and desired signal vector should be designed in the MATLAB workspace based 

on the application requirements. In this section, we provide several application examples. 

After entering the specifications of the adaptive filter, we proceed to the method selection 

window to choose either one of LMS and RLS algorithms. In the DFP-Display window, we 

can monitor and compare the learning curves from the LMS and RLS algorithms and the 

frequency response of the adaptive filter. We can also monitor the resulting filter impulse 

response and transfer adaptive filter coefficients to the MATLAB workspace.
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Examplel: System Identification

In this class of applications, an adaptive filter is used as a linear model that represents the 

best fit to an unknown system. The unknown system and the adaptive filter are driven by the 

same input x(n). The unknown system supplies the desired response for the adaptive filter. 

Figure 4.1 presents this approach, [l]

x(n)

Adaptive

Unknown
system dCn)

► e(n)

Figure4.1: System Identification

We observe that when e(n) is very small, the adaptive filter response is close to the response 

of the unknown system.

To use the adaptive filter functions in DFP, we need to provide three design parameters. 

First we need to generate the signal input x(n) to both the unknown system and the adaptive 

filter as shown in Figure 4.1. Then we generate the desired signal d(n). Finally we specify 

the tap length N of the adaptive filter.

In this example, we have 500 points of the random input signal x(n). The desired signal 

d(n) is the output fi-om a known LPF. If the tap length N of adaptive filter we want to design 

is the same as known LPF order 13, then after we enter the three design parameters (tap
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length, input signal and desired signal) into the DFP-Adaptive Filter Design window, DFP 

generates as one output the adaptive filter coefficients. According to Figure 4.1 system 

identification analysis, the filter coefficients of this unknown system should be the same as 

designed adaptive filter eoefficients. In this way, we ean identify unknown system 

characteristic in term of known system characteristic. Another output from DFP is the 

squared error. Using this parameter, we can plot the learning curve of the adaptive filter.

The following MATLAB sample code is used to generate the input and the desired 

signal vectors in the base MATLAB workspace.

input_signal = 0.1 * randn(l,500);

b = remez(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2]); % b is LPF coefficients 

desired_signal = filter(b,l,input_signal);

Figure 4.2 shows the LMS algorithm learning curve. Figure 4.3 shows the RLS 

algorithm learning curve. From the learning curve displayed in DFP, we observe that the 

RLS algorithm has a faster convergence speed than the LMS algorithm.
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Figure 4.2: LMS Learning Curve for the System Identification Example
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Figure 4.3: RLS Learning Curve for the System Identification Example
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Example 2: Inverse System Identification

In this class of applications, the function of the adaptive filter is to provide an inverse model 

that represents the best fit to an unknown system. Ideally, the inverse model has a transfer 

function equal to the reciprocal of the unknown system’s transfer function. A delayed version 

of the system input constitutes the desired response for the adaptive filter. Figure 4.4 

represents this approach. Let

x(n) = input applied to the adaptive filter 

y(n) = output of the adaptive filter 

d(n) = desired response 

e(n) = d(n) -  y  (n) = estimation error 

s(n) = system input

s/h)

dM

y(n) _x M
e(n)

Delay

Adaptive
filter

Unknown
system

Figure4.4: Inverse System Identification

Figure 4.4 shows that the process requires a delay element inserted in the desired signal 

path to keep the data at the summation point synchronized. The delay element keeps the 

system causal. Without the delay element, the adaptive filter algorithm tries to match the 

output fi-om the adaptive filter to input data x(n) that has not yet reached the adaptive 

elements because it is passing through the unknown system. Therefore, the filter cannot
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compensate for the unknown system response. Including a delay equal to the delay path 

caused by the unknown system prevents this condition.

Adaptive channel equalization is an application example of the inverse system 

identification problem. Let us consider a digital communication channel. s(n) is an 

uncorrelated random sequence of binary values -1 and +1 with zero mean. In this example, 

the unknown system is the transmission channel. The additive channel noise is uncorrelated 

with mean 0 and variance 0.001. Therefore, x(n) is the sum of s(n) and the noise. In order to 

eliminate Inter-Symbol Interference (ISI), a seven order adaptive filter is used. The 

following MATLAB sample code is used to generate x(n) and d(n) in the base MATLAB 

workspace.

W=2.9; % Channel parameter
nvari = 0.001; % Variance of noise
s = fix(rand(l,700)+0.5)*2-l; % System input
V = fix(randn(l,700)+0.5)*2*sqrt(nvari)-sqrt(nvari); % Random Noise
for k= 1:3

h(k)= l/2*(l+cos(2*piAV*(k-2))); % Channel Impulse Response
end
XX = conv(s,h); % Channel output
inp = xx(l:700)+v; % Adapt filter input
ref = [0 0 0 s(l :697)]; % Desired signal

% as contrast, if we input not delay variable.
inpl =xx(l:700)+v(l:700); % Adapt filter input
refl = s; % Desired signal

% Then it is difficult to converge.

We first enter the input x(n) and d(n) vectors and the adaptive filter order into DFP, we 

then obtain the adaptive filter coefficients and the learning curves from the LMS and RLS 

algorithms. Figures 4.5 and 4.6 show respectively the learning curves corresponding to the 

LMS and the RLS algorithms.
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Figure 4.6: RLS Learning Curve for Inverse System Identification

38



Example 3: Noise Interference Cancellation

In this example, the adaptive filter is used to cancel the interference contained in the primary 

signal. Here we use the same notation as in the previous example. The primary signal 

s(k)+n(k) serves as the target response of the adaptive filter. An auxiliary noise signal n '(k) is 

the input to the adaptive filter. As long as the input noise to the filter remains correlated with 

the unwanted noise accompanying the target signal, the adaptive filter adjusts its coefficients 

to reduce the difference between y(k) and d(k), thus removing the noise and generating the 

clean signal in e(k). Notice that in this application, the error signal actually converges to the 

input data signal, rather than converging to zero.

sHcl+ndc)

x(Tc)

n W
Adaptive

filter

y(k)

dHc)

e(k)

Figure 4.7: Noise Cancellation

To realize this application in DFP, we use the following sample code. We use the 

notation where: the system signal s(k) is a sinusoid, n ’(k) is the noise to be eliminated. In 

adaptive noise cancellation system, n ’(k) is the signal input to the adaptive filter, d(k)= 

s(k)+n(k) is the target signal for the adaptive filter desired. In order to make n(k) correlated 

with n ’(k), we pass n ’(k) through a low-pass FIR filter. Then, we define n(k) as the output of 

this low-pass FIR filter.
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Once we enter the input and the target signal vector to DFP, we obtain the de-noised 

signal and the adaptive filter coefficients. De-noised signal results obtained using the LMS 

and RLS algorithm are shown in Figures 4.8 and 4.9. Adaptive filter coefficients using LMS 

algorithm is shown in Figure 4.10.

s = sin(2*pi*0.055*[0:1000-l]’); % System Input Signal

X = randn(ljlOOO); % Adaptive Filter Input Signal.

nfilt = firl(l 1,0.4); % LPF Coefficients

n = filter(nfilt,l, x); % Correlated Noise Data.

d = s.’+ n; % Adaptive Filter Desired Signal

.1C/)

Î
Q

1000

Sampling Points 

Figure 4.8: De-noised Signal Using LMS Algorithm
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Figure 4.9: De-noised Signal Using RLS Algorithm
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Figure 4.10: Adaptive Filter Coefficients Using LMS Algorithm
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Chapter 5

2-Dimensional Digital Filter Design

As a result of rapid increase in the demand and development of video consumer products, 

high performance 2-D digital filters have become an important component of digital signal 

processing. 2-D digital filters can be found in diverse applications such as image/video 

processing, image restoration and noise reduction. They represent one of the most basic and 

important processing techniques in image and data processing. Typically, a recursive 2DDF 

(2D Digital Filter) has better magnitude response than a nonrecursive 2DDF of the same 

order. However, since a non-recursive, i.e., an FIR, filter is stable, realizable and always can 

be designed to have linear phase response, non-recursive 2DDF has been proved to be much 

easier for hardware implementation.

The main approach used in this project is based on separable 2-D digital filter design 

method. The sq>arable-denominator 2DDF is a very important filter class because its design 

and analysis are easy and any arbitrary fi-equency response can be approximated [6].
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5.1 Separable-Denominator 2DDF

Equation (5.1) gives the transfer function of a separable-denominator 2DDF.

If the numerator polynomial N{z ,̂ ) can be factored as

= (5.2)

then/f(Z],Z 2 ) can be decomposed into a product of two 1-DDF transfer functions /fy(z,) 

and H g (zj ) as shown

ff(z„z,) = /f/(z ,)-W ,(z ,) (5.3)

where

u  ,

Dz(zJ (5.4b)

The flow-chart for designing separable-denominator 2DDF based on the reduced­

dimensional decomposition is shown in Figure 5.1. By means of the reduced-dimensional 

decomposition, the design problem of the separable 2DDF is simply reduced to the problem 

of designing two IDDF.
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SEPARABLE- DENOMINATOR 2DDF

2DDF SPECIFICATION DECOMPOSITION

Figure 5.1: Separable-Denominator 2DDF Design Flow-Chart

5.2 2DDF Design in DFP

The MATLAB Image Processing Toolbox provides several two dimensional digital filter 

design methods such as 1-D window method, 2-D window method, two-dimensional 

fi-equency response method, and firequency transformation method.

F WIND 1 and FWIND2 2DDF design functions in the Image Processing Toolbox can be 

used to design an approximately circularly symmetric 2-D FIR filter by using 1-D window 

method. If we enter just one IDDF specification, then we obtain the resulting 2DDF, which 

assumes that the two-dimensional filter will have the same specifications in both dimensions. 

The only difference between F WIND 1 and FWIND2 is that FWINDl works with one­

dimensional windows, while FWIND2 works with two-dimensional windows. By using this 

method we cannot design 2DDF with two distinct one-dimensional specifications.
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FTRANS2 designs a 2-D FIR filter using firequency transformation. It is based on the 

same assumptions as FWINDl and FWIND2. They all cannot design 2DDF with distinct 

one-dimensional specifications. FSAMP2 designs two-dimensional FIR filters according to a 

desired two-dimensional fi-equency response. For those users who cannot access Image 

Processing Toolbox, they cannot design 2-D digital filters directly by using these 2-D design 

methods.

In Chapter 3, we introduced the design of one-dimensional multi-band digital filters in 

DFP. For the 2DDF case, we use the separable 2DDF design mechanism. Our design 

objective for the 2DDF is to have flexible multi-band two- dimensional digital filter design 

ability. So the idea of designing 2D filters in DFP is that we do not want to depend on built- 

in 2D filter design functions in the Image Processing Toolbox. We integrated separable 2D 

filter design method into DFP package. The advantage over using Image Processing Toolbox 

2D filter design functions lies in that we can design multi-band 2D filter, which can have 

different IDDF specifications. The 2DDF we designed can have one of the four possibilities 

listed in Table 5.1.

Dimension 1 Specification
LPF HPF

Dimension2 Specification LPF 2-D L-L 2-D L-H
HPF 2-D H-L 2-D H-H

Table 5.1: DFP Design Type of 2DDF

The display window provides a 3-dimensional fi-equency and impulse responses of the 

2-D filter. We can interactively change the filter order we design and obtain the desired filter 

design. If we want to identify two IDDFs, which are design elements of 2DDF, we can use
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IDDF design display windows to verify whether the filter order can meet the target 

requirements.

Example 1: Design L-L mode 2DDF

Figure 5.2 presents the resulting design corresponding to the following 2DDF specifications. 

DFP-Type and Specification

X: Frequency Edge Vector: [1200015000] 

Weight Vector: [1 0]

Attenuation Vector: [3 50] 

y: Frequency Edge Vector: [12000 15000] 

Weight Vector: [1 0]

Attenuation Vector: [3 50]

Sampiing Frequency: 48000

Figure 5.2: 2DDF with two low-pass IDDF specifications

46



Example 2: Design L-H mode 2DDF

Figure 5.3 presents the resulting design corresponding to the following 2DDF specifications.

DFP-Type and Specification

x: Frequency Edge Vector: [12000 15000] 

Weight Vector: [1 0]

Attenuation Vector: [3 50] 

y: Frequency Edge Vector: [12000 15000] 

Weight Vector: [01]

Attenuation Vector: [50 3]

Sampling Frequency: 48000

-1  -1

Figure 5.3:2DDF with low-pass and high-pass IDDF specifications
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Example 3: Design H-L mode 2DDF

Figure 5.4 presents the resulting design corresponding to the following 2DDF specifications.

DFP-Type and Specification

x: Frequency Edge Vector: [12000 15000] 

Weight Vector: [01]

Attenuation Vector: [50 3] 

y: Frequency Edge Vector: [12000 15000] 

Weight Vector: [1 0]

Attenuation Vector: [3 50]

Sampiing Frequency: 48000

I

•1  -1

Figure 5.4:2DDF with high-pass and low-pass IDDF specifications
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Example 4: Design H-H mode 2DDF

Figure 5.5 presents the resulting design corresponding to the following 2DDF specifications.

DFP-Type and Specification

x: Frequency Edge Vector: [12000 15000] 

Weight Vector: [01]

Attenuation Vector: [50 3] 

y: Frequency Edge Vector: [12000 15000] 

Weight Vector: [01]

Attenuation Vector: [50 3]

Sampling Frequency: 48000

1.4 -

1.2

0.6

S* 0.6

0.4

0.2

0.5
0.5

- 0.5 - 0.5

•1 1
F F

Figure 5.5 2DDF with two high-pass IDDF specifications
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Example 5: Design multi-band mode 2DDF

Figure 5.6 presents the resulting design corresponding to the following 2DDF specifications. 

DFP-Type and Specification

x: Frequency Edge Vector: [10000 11000 13000 14000 16000 17000] 

Weight Vector: [ 1 0 1 0 ]

Attenuation Vector: [3 50 3 50] 

y: Frequency Edge Vector: [1200013000 15000 16000 18000 19000] 

Weight Vector: [ 10 1 0 ]

Attenuation Vector: [3 50 3 50]

Sampling Frequency: 48000

2-D Finer Frequency Response

Figure 5.6:2DDF with multi-band IDDF specifications
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Chapter 6

DFP GUI Design and TMS320 Code 
Generation

Graphical User Interface (GUI) is a user interface built with graphical objects, such as 

buttons, text fields, sliders, and menus. In general, these objects already have meanings to 

most computer users. For example, when you move a slider, a value changes; when you 

press a CLOSE button, your settings are applied and the dialog box is dismissed [10].

Applications that provide GUIs are generally easier to learn and use. The action that 

results fi-om a particular user action can be made clear by the design of the interface.

6.1 DFP GUI Structure and Design

The original DFP package has 14 windows. Table 6.1 provides an overview of the DFP 

windows. These windows are designed using GUI objects built into MATLAB.
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Original DFP Windows
DFP: Navigator
DFP: Type and Specifications
DFP: Design Method
DFP: Display
DFP: Implementation

New Windows
'DFP: Display Window'

Note: This window is used to plot adaptive filter 
learning curve, adaptive/2-D filter magnitude 
response, impulse response and display filter 
coefficients.

DFP: Output Format
DFP: File I/O
DFP: Properties
DFP: About

'DFP: Magnitude 15 Axes'

Note: This is the snapshot window for 2-D filter 
magnitude response

DFP: Magnitude Axes
DFP: Phase Axes
DFP: Group Delay
DFP: Impulse Response

'DFP: Learning Curve Axes'

Note: This is the snapshot window for adaptive 
filter learning curve and magnitude response

DFP

Table 6.1: DFP Windows

6.1.1 Types and Specifications Window

For this part, the design programs were modified in order to extend the DFP design capability 

to include multi-band, adaptive and 2-D filters. The main modifications lie in the size and the 

position modifications for the fi-ame object, text object and editable text object so that the 

layout is suitable for all filter types. The design procedure for the DFP-Types and 

Specifications window is shown in Figure 6.1. Tables 62-6.5 provide commented code 

samples.

52



1. Create and initialize the window and its children. The sample code to 
determine window frame and TEXT objects is shown in Table 6.2.

2. Prepare the window for different filter types. The sample code to design 
Multi-band filter is shown in Table 6.3.

3. Create callback function for the APPLY pushbutton in the DFP-Type and 
Specifications window. The sample code to determine Userdata is shown in 
Table 6.4.

4. Check the values entered to the editable fields of the DFP-Type and 
Specifications window. If the entered values have problems, the error or 
warning message will give out to indicate the existed problem and provide 
hints helping user to solve this problem. The sample code to check multi­
band input data is shown in Table 6.5

Figure 6.1: Design Procedures for the DFP-Type and Specifications window

Table 6.2: Sample Code to Determine Window Frame and TEXT Objects 

% FRAME objects

% Upper program has defined FRx, FRyl, FRy2, FRy3, FRy31, Fryp. DimI =  l;Dim2 =  l;Dim5=0;
% FRx is X coordinate o f  frame. FRyl is y  coordinate with one frame wide. FRy2 is y  coordinate with 
% two frame wide. FRy3 is y  coordinate with three frame wide. FRy31 is y  coordinate with three frame 
% wide for 2-D filter. FRyp is y  coordinate with push button wide. DimS =  0;

% Then we can determine Frame Position in “Type and Specifications Window”

FRpos=[Diml Dim2+FRyp+Dim8+2*FRy2+3*Dlm5+FRy3 FRx FRyl;
D im l Dim2+FRyp+Dim8+FRy2+2*Dim5+FRy3 FRx FRy2;
Diml Dim2+FRyp+Dim8+FRy2+Dim5+FRy3 FRx FRy31;
Dim l Dim2+FRyp+Dim8+FRy2+Dim5+FRy3-FRy2 FRx FRy2;
Dim l Dim2+FRyp+Dim8+FRy2+Dim5 FRx FRy3;
Dim l Dim2+FRyp+Dim8 FRx FRy2;
Dim l Dim2 FRx FRyp; ];

% The first two dimensions in each row indicate the frame x  and y  coordinate position relative to left 
% lowest window point The next two dimensions indicate the frame length and wide. Here we defined
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% 7frame positions.

% TEXT objects
% This part defines text object size and position. TXx is text object wide, TXy is text object height 
% Dim 3 is button to left/right Frame edge. Dim4 is button to bottom/top Frame edge. Dim? is the 
% separation between buttons within the Frame

TXpos = [

FRpos(l,l)+Dim3 FRpos(l,2)+Dim4 TXx TXy;

FRpos(2,l)+Dim3 FRpos(2,2)+Dim4+ TXy+ Dim? TXx TXy;
FRpos(2,l)+Dim3 FRpos(2,2)+Dim4 TXx TXy;

FRpos(5,l)+Dim3 FRpos(5,2)+Dim4+2*TXyf2*Dim7 TXx TXy;
FRpos(5,l)+Dim3 FRpos(5,2)+Dim4+ TXy+ Dim? TXx TXy;
FRpos(5,l)+Dim3 FRpos(5,2)+Dim4 TXx TXy;

FRpos(6,l)+Dim3 FRpos(6,2)+Dim4+ TX yf Dim? TXx TXy;
FRpos(6,l)+Dim3 FRpos(6,2)+Dim4 TXx TXy;

];
TXstr =  str2mat( ", ...

"); % Text string matrix

% POP-UP MENU objects

Dim l 1 = (FRx-PUx)/2; % PUx is popup menu x  coordinate. PUy is y  coordinate.
PUpos = [D im II FRpos(l,2)+FRpos(l,4)+3*Dim21 PUx PUy];
PUstr = [ 'Low Pass|High Pass|Band Pass|Band Stop|Differentiator|'
________ 'Hilbert Transform|Multiband|Adaptive|2-D' 1; % Popup menu string_________________

Table 6.3: Sample Code to Prepare Window Frame and TEXT Objects

% This part code is used to define which frame and text objects are active according to sample code in 
% Table 6.1
elseif ( FiltTypeNumber —  ? ) % Multiband

FRindex =  [ 1 2 0 4 0 0 ? ] ;  % Refer to FRpos, the 1,2,4,7frames are active
TXindex = [ 1 2 3 4 0 0 0 0 ] ; %  Refer to T7Q)os, the 1,2,3,4 text position are active 
ETindex = [  1 2 3 4 0 0 0 0 ] ;  % The 1,2,3,4 editable text position are active 
TXstr =  str2m at(...

'Sampling Frequency ',
'Frequency Edge Vector',
'Weight V ector',.
'Attenuation Vector(db)'
); % Define the text String name
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Table 6.4; Sample code to create callback function for the APPLY pushbutton

elseif ( FILTtypeNumber =  7 )
% Multiband call hack function sample code
% This code is used to prepare the Userdata to transfer to “Design Method iVindow” 

ss = get(EThan(l),'String'); % get the first editable text object string value 
SpecDatal = str2num( ss ); 
sizel = length(SpecDatai);

ss = get(EThan(2),'String'); % get the second editable text object string value 
i f  ( isempty(str2num(ss)) ) % this indicates array name input 

SpecData2 = evalin( 'base', ss ); 
else

SpecData2 = str2num( ss ); 
end
size2 = length(SpecData2);

ss = get(EThan(3),'String'); % get the third editable text object string value 
if  ( isempty(str2num(ss)) ) %this indicates array name input

SpecDataS = evalin( 'base', ss ); 
else

SpecDataS = str2num( ss ); 
end
size3 = length(SpecData3);

ss = get(EThan(4),'String'); % get the fourth editable text object string value 
i f  ( isempty(str2num(ss)) ) %this indicates array name input 

SpecData4 = evalin( 'base', ss ); 
else

SpecData4 = str2num( ss ); 
end
size4 = length(SpecData4);
SpecData = [SpecDatal SpecData2 SpecData3 SpecData4]; % Defined userdata 
NNN = sizel + size2 + size3 + size4;_________________________________________

Table 6.5: Sample Code to Check Multi-band Input Data

elseif ( FILTtypeNumber =  7 ) %for multi-band

totallength = length(SpecData); % Separate and restore input data according to Userdata 
bands = (totallength + l)/4; 
frelength = 2*bands -2;

fs = SpecData(l);
fre_vector =  [(SpecData(2:(frelength+l)))];
wgt_vector = [(SpecData((frelength+2):(frelength+l+bands)))];
dev_vector = [(SpecData((frelength+2+bands):totallength))];

for i = l:length(dev_vector) 
j  = rem(i,2);

)  ------------------------------------------------
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devl(i) = dev_vector(i); % odd 
wgtl(i) =  wgt_vector(i); 

else
dev2(i) = dev_vector(i); % even 
wgt2(i) = wgt_vector(i); 

end 
end

% Any intermediate frequencies exceeding (fs/2) ? 
i f  ( any( fre_vector >= fs/2 ) ) 

d_error( 'ET-02' )
flag = 0; % Give error information and hint to solve this error

end

% Are intermediate frequencies non-decreasing? 
if  ( any( difï([0 fre_vector]) <= 0 ) ) 

dLerror( 'ET-03' ) 
flag = 0; 

end

% Are Attenuation parameters non-negative ?
if  ( any( dev_vector <= 0 ) ) 

d_error( 'ET-04' ) 
flag = 0; 

end

% Are Stopband/Passband Attenuation parameters comparable ? 
for i = 2:length(wgt_vector) 

j  = rem(i,2);
i f  ( ( j  ~  1 ) & ( wgtl(i) =  1 ) & ( devl(i) >= dev2(i-l)) ) 

d_error( 'ET-05' ) 
flag = 0;

elseif ( ( j  ~  0 ) & ( wgt2(i) =  1 ) & ( dev2(i) >= devl(i-l)) ) 
d_error('ET-05') 
flag = 0; 

end

6.1.2 The DFP-Design Window

In order to design adaptive filter in DFP, I generated adaptive design methods: LMS and RLS 

algorithms and integrated into DFP. For multi-band and 2-D filter design, I modified the 

original design program and solved the following problems:

1. How to translate the Userdata coming from DFP-Types and Specifications window?

2. How to prepare the Userdata to be passed to DFP-Display window.
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Tables 6.6 provides commented code sample used for designing adaptive filters.

elseif (FILTtypeNumber =  8) % Adaptive Filter Design Method
totallength — length(FILTdata); % FILTdata is received Userdata from “Types and Specifications 
ban = (totallength-1)/2; % Window”
N N l = FILTdata(l); % First Userdata (It is Filter Order.)
input_vector =  FILTdata(2:(l+ban)); % Restored input signal;
re fv ec to r = FILTdata((2+ban):totallength); % Restored reference signal;
RBusr = str2mat(...

['adaptlms([' sprintf('%s ',input_vector) sprintf('%s ref_vector) sprintf('%g ',NN1) ']) ' ] ,..  
['adaptrls([' sprintf('%s ',input_vector) sprintf('%s refvector) sprintf('%g ',NN1) ']) ' ]);

for ii=[8 9]
% set(TXhan(ii), 'String', sprintf('%i', NNl));
set( RBhan(ii), 'Userdata', deblank(RBusr(ii,:))); %Prepare the Userdata to “Display Window’ 
set( RBhan(ii), 'Userdata', deblank(RBusr(ii,:)), 'Enable', 'on' );
%set( RBhan(8), 'Userdata', " ,  'Enable', 'on' );
%set( RBhan(9), 'Userdata', " ,  'Enable', 'on' ); 

end 
for ii=[l:7]
set(TXhan(ii), 'String', " ); 
set(EDhan(ii), 'String', ", 'Enable', 'off); 
set(RBhan(ii), 'Userdata', ", 'Enable', 'off);

end
set( RBhan(lO). 'Userdata', " .  'Enable', 'off );_____________________________________________

Table 6.6: Sample Code for Adaptive Filter Design Method

6.1.3 DFP-Display window

The learning curve is the preferred tool for monitoring results from adaptive filter design 

techniques. Similarly, a three-dimensional filter response display window is the preferred 

method of displaying the results from the 2-D digital filter design. Because it is difficult to 

use original display window to plot adaptive and 2-D filter design results, we designed a
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stand-alone display window for adaptive and 2-D digital filters. The new window design is 

based on the original display window. Some work was needed to prevent transition problems 

among the new and original DFP-Display windows. Figures 6.2 and 6.3 show respectively 

the layout of the original and the new display windows.

Magnitude Response for 
LPF/HPF/BPF/BSF/Differentiator/ 

Hilbert Transform/Multiband 
Filters

Phase/Impulse/Group Delay 
Response

Poles/Zeros Coefficients

Magnitude Response for 2-D

Learning Curve/Frequency 
Response for Adaptive Filter

Impulse
Response

Coefficients

Figure6.2: Display Window 
Layout of Original

Figure 6.3: Display Window
Layout of New Display

The DFP-Display window receives its Userdata from the DFP-Design Method window and 

plots the magnitude, phase/impulse/group-delay responses, and the learning curve. Filter 

coefficients are also displayed in the display window.

6.2 TMS320 Code Generation

TMS32010 is the first fixed-point DSP in the TMS320 family. Today, TMS320 DSP family 

consists of three supported DSP platforms: TMS320C2000, TMS320C5000, and
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TMS320C6000. The TMS320C2000 DSP platform is frequently used in the digital control 

industry. This generation of DSPs deliver power and control advantages that allow designers 

to develop modem and cost-efficient control systems. The TMS320C5000 DSP platform is 

optimized for the mobile Internet and its convergence with other consumer electronics. The 

TMS320C6000 DSP platform is optimized for highest performance and ease-of-use in high- 

level language programming.

The TMS320 implementation codes integrated with the DFP are collected from a 

variety of Texas Instrument standard documents [11,12,13, 19,20,21,22, 23, 24,25] and the 

T.I. BBS site. After classifying and analyzing these codes, we integrated them into the DFP 

according to different filter design type and realization structures. The current DFP release 

provides code generation for FIR/IIR direct/lattice structures and HR Second Order Section 

(SOS) cascade structures for the TMS32067x processor; and FIR/IIR direct structures, HR 

SOS cascade stmctures for TMS32010/TMS32020/TMS32054x processors.

As the code for all different T.I. DSP families are not fully compatible, we were not able 

to test all TMS320 codes integrated in DFP. The installed TMS320C67x DSK can only test 

the TMS320C67X code. In order to test the FIR/IIR Direct Form implementation code, we 

programmed test files writing in C program language. For other implementation structures 

(FIR/IIR lattice structure and HR SOS), we only provided the complete subroutine assembly 

codes. Table 6.7 compares the TMS32010/TMS32020, TMS320C54x and TMS320C67x 

DSP implementation codes.
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TMS32010/
TMS32020

TMS320C54X TMS320C67X

Data Format of 
Filter Coefficients

16 bit Hexadecimal 
word without the 
header Ox, such as 
FFC2.

16 bit Hexadecimal word 
without the header Ox, 
such as FFC2.

16 bit Hexadecimal 
word with the header 
Ox, such as 0xFFC2.

Section 
Coefficient 
Representation 
for SOS Structure

The section:
[ * u  *2* b j i -a 2 jc -a^ ^  ]

The k"‘ section:
[ “ û'3* ~^2k  *3* ^2* b\k ]

The k"’ section:
[ • « 3 *  " ^ 2 *  *3* b2k 

b i t ]

Addressing Mode • Direct Mode
• Indirect Mode

Circular Mode Circular Mode

Software Pipeline No Yes Yes

Coding
Constraints

Need large program 
memory for long filter 
coefficients.

. Code for FlR/llR 
Direct Structure with 
32* 16-bit. (Input data 
are 32 bits, filter 
coefficients are 16 
bits.)

• Code for HR SOS 
structure with 16* 16- 
bit.

• Number of filter 
coefficients must 
be a multiple of 4.

• The size of the 
block must be a 
multiple of 2.

Table 6.7 Comparisons of Code Generation Considerations

The Z-transform of the unit-sample response of an HR filter with a SOS has been introduced 

in Chapter 2 as

(6.1)

The difference equation corresponding to equation (6.1) is shown by equation (6.2), where k 

represents the section number.

N/ 2 3 ^
y(n)  =  ^ \\^ b ik X (n  -  0 “  ^  “  01

k=\ /=!

3

[
1=2

(6.2)
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In Table 6.7 the representation of section coefficients for the SOS structure is based on 

Equation (6.2) yet has a separate format for different T.I families.

There are direct addressing mode and indirect addressing mode for 

TMS32010/TMS32020. Direct addressing mode uses LTD/MPY instruction pair to 

implement the multiplications and shifts. If there is a long length of the filter coefficients, 

the coding program becomes very long for direct addressing mode. We need to use indirect 

addressing mode to reduce program memory size. Using either of the auxiliary registers 

along with the auto-increment or auto-decrement feature, the program can be rewritten in 

looped form or repeat instruction RPTK and MACD (multiply and accumulate with data 

move) pair. TMS32010/TMS32020 code generated by DFP uses indirect addressing mode.

TMS320C54x and TMS320C67x use circular buffer addressing mode to conserve 

memory and minimize software overhead. Circular addressing uses pointer manipulation to 

add the new samples to the buffer by overwriting the oldest available samples hence reusing 

the memory buffer.

The pipeline technique has been used in TMS320C54x and TMS320C67x DSP to 

improve processor performance and reduce the overall instruction execution time. The 

pipeline execution breaks a sequence of operations into small segments and executes these 

small pieces in parallel.

In DFP, TMS32010/TMS32020, TMS320C54x and TMS320C67x families have their 

own code generation programs. These code generation programs are also based on the 

implementation of Motorola 56000 DSP code generator. Table 6.8 shows the sample
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program for generating TMS320C67x test file and the subroutine assembly code for the FIR 

direct form.

Table 6.8: Sample Program for TMS320C67x Code Generation

%  Now s ta rt generating the filter code 

if  ( FilterType == 0 ) % =  FIR Direct Form ===

NN = Options(2); %  if NN is not the num ber multiple o f 4, we make it become m ultiple o f 4
if  ( rem(NN,4) =  1 )

NN = NN + 3; strr = str2num(str); 
strrr=  [strr;0;0;0]; str =  num2str(strrr); 

elseif ( rem(NN,4) —2 )
NN = NN +2; strr = str2num(str); 
strrr = [strr;0;0]; str = num2str(strrr); 

elseif ( rem(NN,4) = 3  )
NN = NN +1 ; stiT = str2num(str); 
strrr = [strr;0]; str = num2str(strrr); 

end

NUM_SAMP = NN+4;

if  ( CodeType =  1 ) %  This is for generate main test file

s =  [ DFP_TemplatesDir2 'fir_dOO.asm' ]; %  Determine w hether fir_dOO.asm tem plate exist.
if  ( exist(s) )

d_append( Fid, s ); 
else

d_error('EO-06', s, DFP_TemplatesDir2 ); 
return;

end

TOT_SAMP= 100; %  Inpu t num ber
fi)rintfi[ Fid,'//Define Circular Block Size (BUF_LEN), Number o f Coefficients (NUM_TAPS) and \n' );
fi)rintf( Fid,'//Block FIR Size (NUM_SAMP). BUF_LEN is defined in bytes \n' );
fprintf( Fid,'#define BUF_LEN 128 \n' );
fi)rintf(Fid,’#defineTOT_SAMP 100 \n’ );
fi)rintf(Fid,’#defmeNUM _TAPS%i \n ',N N );
fi)rintf( Fid,’#defme NUM_SAMP %i \n', NUM_SAMP );
fprintf( Fid,’short out_array[TOT_SAMP]; W );
fijrintf( Fid,'short in_array[BUF_LEN/2]; \n' );
fi)rintf( Fid,'short inp_samp[TOT_SAMP+NUM_TAPS-l]; \n' );
fi)rintf( Fid,'static void datalOQ \n' );
fprintf(Fid,'{ \n’);
fprintf( Fid,' /* do data 1/0 */ \n' );
fi)rintf( Fid,' return; \n ');
lprintf(Fid,'} \n ');
N2 = NN/2;
fprintfi Fid.'short coeff_arraylNUM. TARSI = I % s . %s, \n', str(l,Q , str(2,:));_______________________
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for ii = 2:N2-1 
jj = 2 * ii- l;jjl  =2*ii; 

fprintf( Fid; % s , %s, \n', str(ij,:), str(ij 1,:));
end
%rintf( Fid; % s , %s};\n', str(2*N 2-l,:), str(2*N2,:));
^ rin tf( Fidj'extem void fir_circ_asm(short *y, short *x, int n, short *h, int s, int m, int size,int indexex); 

\n' );
Q)rintf( Fid,'void readdata(short *y, short *x, int n, int m); \n' );
^ rin tf( Fid,'mainO \n' );
^ rin tf( Fid;{ \n' );
Q)rintf( Fid,' int scale_factor=15; \n' );
%rintf( Fid,' int index=0; \n\n' );
^rintf( Fid,'dataIO0; \n\n');
callnum = floor(TOT_SANfl*/NUM_SAMP)-I; % determine calling subroutine times 
indexx = NUM_SAMP+NN-1; % the first time input sample length 
Q)rintf( Fid,'readdata(inp_samp, in_array, 0, %i); \n\n', indexx );
$ rin tf( Fid,'//Call Block FIR algorithm \n' );
fj)rintf( Fid,'fir_circ_asm(out_array, in_array, NUM_TAPS, coefLarray,

scale_factor,NUM_SAMP,BUF_LEN,index); \n\n' );
Q)rintf( Fid,'//Compute next INDEX value based on the old INDEX and BLOCK FIR (nor circular \n' ); 
fprintf( Fid,'//buffer block) size BUFLEN/2 is used since the pointer points to 16 bit data \n\n' );

for ii = 1 xallnum

%rintf( Fid,'index = (index+NUM_SAMP)-(BUF_LEN/2)*floor((index+NUM_SAMP)/(BUF_LEN/2)); 
\n \n ');

indexx 1 = indexx + (ii-I)*NUM_SAMP; indexx2 = indexx + (ii)*NUM_SAMP;
Q)rintf( Fid,'readdata(inp_samp, injarray, %i, %i); \n\n',indexxl, indexx2 );
fprintf( Fid,'fir_circ_asm(&out_array[%i*NUM_SAMP], in_array, NUM_TAPS, coeffjarray, 

scale_factor,NUM_SAMP,BUF_LEN,index); \n\n',ii );

end
Q)rintf( Fid,'void readdata(short init_values[], short array[], int n, int m) \n' );
^ r in tf (F id , '{ V ) ;  
fyrintf( Fid,' int i, temp; \n' );
^ rin tf( Fid,' for (i=n;i<m;i++) W );
Q)rintf( Fid,' { \n ',N N );
fprintfC F id; temp=i-(BUF_LEN/2)*floor(i/(BUF_LEN/2)); \n' );
%rintf( Fid,' array[temp]=init_values[i];\n' );
Q)rintf(Fid; } \n '); 
f))rintf( Fid,' } \n' );

elseif ( CodeType —  2) 
s = [ DFP_TemplatesDir2 'fir_d02.asm' ]; 

i f  ( exist(s) ) 
djappendC Fid, s ); 

else
d_errorCEO-06', s, DFP_TemplatesDir2 ); 

return; 
end 

end
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The program flow-chart is shown in Figure 6.4.

Get the number of filter coefficients: N

No Make N be a 
multiple of 4.

Yes

NoContinue decide 
HR structure type "4- FilterType=0?

Yes. Then generate FIR direct form code

Yes
Generate Test File Written 
in C Program Language

CodeType=l?

No

Generate Subroutine Assembly 
^ ^  Code of FIR Direct StructureCodeType=2?

No

END

Figure 6.4: Program Flow-Chart to Generate Test File and Subroutine Assembly Code

In this flow-chart, Filter Type is used to define which structure code to be generated. Code 

Type is used to define output code type (test file or subroutine assembly code). Table 6.9 lists 

the values of these two parameters for different T.I. families.
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TMS32010/TMS32020
TMS320C54X

FIR Direct Form
HR Direct Form

HR SOS

Filter Type Code Type 
1 : Macro Code 
2:FuIl Code

TMS320C67X FIR Direct Form
FIR Lattice Form
HR Direct Form
HR Lattice Form

1: Test File in C 
Language
2: Subroutine
Assembly Code

HR SOS

Table 6.9 Filter Type and Code Type Value

After we generate test file and subroutine assembly code, we can test these codes on

DSP320C6711 DSK and Code Compose Studio software development using the following

test procedure.

1. Turn on the power of the DSK. It goes through a Power On Self-Test (POST) procedure 

first in which the three LEDs count 1-7, and then all LEDs blinks to show that the tests 

completed successfully.

2. Create a new project called fir.pjt.

3. Create a new DSP/BIOS configuration file called fir.cdb using the dsk6711 .cdb template. 

Save this file in the same subdirectory.

4. Add the configuration file to the project. This also automatically adds the file fircfg.s62.

5. Also add the linker command file fircfg.cmd automatically generated when we generate 

DSP/BIOS configuration file.

6. Building the project: In the compiler window, add the new generated FIR subroutine code 

using assembly language and circular addressing mode as well as parallel instruction 

execution technique. We also add the C test code consists of filter coefficient array 

designed from DFP package, circular addressing parameters and a probe point to read
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input data from computer. After finishing compiling the source files, we build the project 

by choosing rebuild all. If there is no error occur, an output file is generated.

7. Load and run the program, we can either use an oscilloscope to the DSK output or we use 

Time/Frequency Graph Display method provided in C6711 DSK to monitor the output 

waveform.
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Chapter 7

Conclusions and Future Research
In this study we added multi-band, adaptive and 2-D filter design and some 

TMS320C54x/TMS320C67x/TMS32010/TMS32020 code generation capability to the DFP. 

These new features make DFP a powerful digital filter design tool. These new features also 

make DFP distinct from other digital filter design tools. Table 7.1 provides an overview of 

the new DFP features developed in this study.

Filter Types Filter Design 
Methods Code Generation Display Option

Multiband Adaptive LMS TMS32010/TMS32020 Additional Display 
Window for Adaptive and 

2-D FilterAdaptive
Adaptive RLS

TMS320C54X

2-D TMS320C67X Learning Curve Display

Table 7.1: New DFP features.

The current DFP depends on significant number of global variables to allow various 

modules to communicate with each other. Since MATLAB has introduced data structures as 

part of its programming language, converting DFP such that all global variables are replaced 

with appropriate structure will be a very desirable enhancement. This will make the entire
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DFP software package easier to maintain and will allow efficiency in the further 

development of its capabilities.

As part of further development we consider adding interactive pole-zero placement 

method to be used as a teaching tool. In addition there are other useful digital filter types 

such as comb filter, notch filter, etc., that can be integrated into DFP.
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