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Figure 3.4: SA imaging system geometry

If the reflectivity of point targets located in the ROI is given byo,, the received

backscattered pressure wave is:

2+ =) G.1)

&

s(r,u)=20'ﬂp t—

2% +(yn—u)’ . : "
where t— is the round-trip delay from the transducer to the n™ target. The

C

attenuation of the spherical wave due to its divergence or absorption is ignored as discussed

in3.4.7.
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For the n" target when the transducer is located at (0,u) the aspect angle is defined as:

6. (u)=tan"' (u] (3.2)

n

Figure 3.5 illustrates the aspect angle at different transducer locations (0,u).
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Figure 3.5: Aspect angle of 7 target with respect to transducer

3.4.3 Image reconstruction: Point transducer

In a typical imaging system, the “object function” is what makes up the image. In an SA

system, the object function is called the reflectivity function or f;(x,y).This function is

related to target reflectivity o, via:
27



fix,y) =) 06,8(x-x,,y-y,) (3.3)

where J(x, y) is the Dirac delta function. The reconstruction approach studied in this thesis is

based on a frequency domain formulation. The implementation of this algorithm, takes
advantage of efficient Fast Fourier Transforms (FFT) algorithms.

The Fourier transform of SA signal s(,u) with respect to ¢ is:

s(o,u)=P(@)) o, exp[— J2ka X2 +(y, —u)zJ (3.4)

v
Spherical PM signal

where k =@/ c represents the wavenumber. It is assumed that the target reflectivity o, is

independent of @. The phase function exp[— j2k,/xf +(y, —u)?] is a nonlinear function of
(x,,y,),itis called a phase-modulated (PM) spherical signal [25].

The Fourier transform of spherical PM signal with respect to u is found via the following

Fourier integral:

oo

S, (@,k,)= Isn (w,u)exp(— jk,u)du
- (3.5)

- ]0’,,P(a1)exp[~j2k\/xﬁ +(y, —u)’ ]exp(—jkuu)du

where k, represents the spatial frequencies in the cross-range domain u. The above integral

can be evaluated using the method of “stationary phase™ [25, 26], to produce:

S (wk,)= M P(@)Y 0, exp(—jy/4k* k2 x, = jk,y,) (3.6)

Ak -k
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for k, € [-2k,2k] and zero otherwise. The term 1//4k” —k > will be cancelled out by a term

appearing in the numerator of the Jacobian of the Stolt transformation and will not be

considered in the reconstruction.

The SA signals in the (@,k,) domain can be written in the following form:

S(w.k,)= P(a))z o, expl-jk (@.k,)x, — jk (@.k,)y,] 3.7

where the two new functions, k (.k,)and k (w,k,) are defined as:

- 2 _p2
k (o,k,)=+4k" —k, (3.8)

k_l' ((U,. ku) = kn

Figure 3.6: Spatial frequency mapping
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The spatial frequency mapping by these two functions is often called “Stolt transformation™
[27] . Figure 3.6 illustrates Stolt transformation for the discrete data in the spatial frequency.
The dots indicate the raw data samples along radii 2k. The underlying rectangular grid

shows the format of samples after the Stolt transformation to a Cartesian grid on (k,.k,).

After comparing, the 2D spatial Fourier transform of the object function (equation (3.3)):

'FE} (k‘r > k\) = Z O-M exp(—.]kxx;i - j‘k}'yn ) (3 '9)

[N J

e
Linear phase phunction

v

p
Linear combination

to (3.7) , the SA signal can be written as:
S(w,k,) = P(o)Flk (o,k,).k (,k,)] (3.10)

Since the goal is to reconstruct the image of the object function, the equation above should be

solved for £ (k.. k,):

[k, (@,k,) k,(@,k,)] = S(,k,) % (3.11)

Observing the above equation we note that the shown theoretical reconstruction is a
deconvolution operation performed in frequency domain. The main drawback of

implementing it via a simple inverse filtering method is that p(f)is a bandlimited signal and
therefore the division by P(w) will amplify any noise inS(w,k,) that is outside the band.

This makes equation (3.11) numerically unstable for small P(®) values and greatly amplifies

the high-frequency noise component. The most common and practical reconstruction is via

matched filtering:
Flk,(o.k,).k (o.k,)]= P (0)S(@.k,) (3.12)
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where * denotes the complex conjugate operation. Note that F(k .k )is defined over a

different set of coordinates than S(@,k,) . This can be handled using Stolt mapping followed

by an interpolation.

3.4.4 Finite aperture effect

The SA reconstruction algorithm developed so far assumes a point transducer. Since point
transducers radiate in all directions, an infinite scan is needed to acquire a complete signal.
Practical transducers have a directional and limited radiation pattern, therefore only a finite
scanning aperture is sufficient to collect a complete signal. An intermediate formulation
which is useful for array transducers is to assume that a point transducer is used to perform

measurements within a finite aperture v €[—L,L]. If u €[-L, L] the measured spherical PM

th

target can be represented as:

S (0.u) =0 a, (,x,.y, —u)P(w)exp [—jZk,/xﬁ + (O, —u) ] (3.13)

signal for the »

where

a(o.x,,y,—u)=1 for|u|< L

(3.14)
0 Otherwise

is a rectangular function in the synthetic aperture u domain. The Fourier transform of this

signal with respect to u can be presented via the following Fourier integral:
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S,(@.k,)= [S,(0.u)exp(~jk,u)du

B (3.15)
- Ia,,a,,(m, x,,y,—u)P(w)exp [— J2kJxX +(y, —u) - jkﬂujldu
Using the method of stationary phase, equation (3.15) can be solved to give:
S (@0.k,) =, 4 (.k,)P(0)exp (— JJak —k2x - jk, v, ) (3.16)

where the amplitude pattern in the k,domain and the amplitude pattern in the udomain are

related to each other via the following transformation

An(m‘-ku)zan(m‘-‘x —H)

n*rn

where k, = Zk% )
VX' +y°
Based on this discussion for the case presented above, the following can be deduced:
A (o.k,)=1 Fork, € Q, =[2ksin6, (L),2ksin6, (-L)] (3.18)

=0 Otherwise

Note that 4, (w.k,) is a shifted rectangular window function in the k domain, not the

Fourier transform of thea, (@.x, .y, —u).

3.4.5 Transducer beam pattern

The assumption thus far is that the transducer is a point while this may be appropriate for
arrays, it is not valid in a single-element imaging system. The transducers used in high-
frequency ultrasound imaging are much larger than the ultrasound wavelength. Therefore it is
appropriate to replace the point transducer with a realistic one of some physical extent for
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high-frequency, single-element systems. To do so, the transmit beam pattern and sensitivity
pattern of the transducer need to be considered.

We first assume that the transducer is located at the origin (« =0). The transmitted
pressure signal is an impulse (delta) function of the form p(f) = (). The transducer is made
of virtual differential elements on its surface that are located at the coordinates
[x,(1),y,()],l€ S in the spatial (x,y) domain where S represents the contour of the
transducer surface. The transducer pressure transmitted at an arbitrary point (x,y) in the

spatial domain from the differential elements is given by

_\/[x—xt.(f)]‘+[y—yf(’)]”}d, (3.19)

|
h(t,x,y)=——= |i(l)p|t
: J X+ fe'.[; C

where i(/) represents the relative strength of the differential elements at [x,(/), y,(])].

The beam pattern of the transducer in the transmit mode in the temporal frequency

domain is then:

e | i(I)cxp[— jke =2, (OF +[y—y,(OF ]dz (3.20)

|
h(w,x,y)= —
\f X +y leS - -

v
Spherical PM Signal

The exponential term in the above equation can be replaced by its Fourier decomposition[26,

27 :

]
expli—jk\/[x—xe(l)]z +[y-y. 0 } = Iexp[—ij2 —kZ[x=x, (D] - jk,[y- ye(l)]] dk,(3.21)
—k

After changing the order of integration, the following is obtained:
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k

h(@,x,y)= ﬁ_{exp

A (@,k,) = Ii(!)expl:j\/kz —ij?(1)+jkuye(f)]dz

leS

(il =kix = jk,y x4y @ik, )k, (3.22)

Where A, (w,k,) is called the transmit mode amplitude function and it depends on the shape

and size of the transducer.
3.4.5.1 Piston transducer
In this section, equation (3.22) is utilized to derive transmit-mode A,(@,k,) for a piston

transducer. See Figure 3.7 for the corresponding geometry.

y/u 2D Assumption 2 3D Geometry
y " H (In’y”)

S 5 _r/I U: *

p x
| . :

1 B, )

@Dy g, (%,.5,)

Figure 3.7: Geometry used for the derivation of the beam pattern of a piston transducer
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We assume that the transducer is made of differential elements which transmit the same

pressure pulse at the same time. Therefore i(/)=1. For a transducer of diameter D, and

le[-D,/2,D,/2], the transducer surface in a 2D spatial domain is presented as:

[x.(D). y.(D]=[0,1] (3.23)

Substituting these parameters in (3.22) yields to:

.72

. D\'kﬂ
A(0.k)= [ exp( jk"!)dfzsmc('—} (3.24)
27

-D, 12

Therefore the support band of 4, (@, k,)1s the main lobe of the sinc function,

§ {12_} -

Combining (3.22) and (3.17) we get:

a,(w,x,y)= % A, {k sin {arctan(z):| ; (U}
e

x4+ X
(3.26)
D " kD, y
= ————=sinc -
\/x‘ +y° 2\/x“ +y?
The beamwidth , B, of a, in the cross-range domain can be approximated by:

V€& [_Ba B]
| rd rd (3.27)

D, D,
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where 7 =4/x* + 3’ and A denotes the wavelength of the transmitted ultrasonic pressure. An

alternative way to define the beamwidth via divergence angle ¢, is as follows:

¢, = arcsin (i]
D, (3.28)

B=rsing,

It will be shown how this information can help to determine the spatial resolution of such a

system.

3.4.5.2 Concave transducer

The surface of a concave transducer can be represented as a parabola in 2D spatial domain.
The same steps in 3.4.5.1 are taken here. Equation (3.22) is used to calculate 4, (w.k,)for a
concave transducer of focal length X/, and diameter D and with a uniform excitation along

the transducer (i(/) =1), the following can be written:

[x(,(i),y‘,(f)]=[;7'.!] _fbr[e[%,g}
i

» 1 (3.29)
A .k)= [ exp(iyk® =k, 2"— + jk )dl
-Di2 x_f'
The divergence angle is then:
¢, = arctan (QJ (3.30)
2x,

Then the support band of the amplitude pattern A4, is [26]:
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k,e[-ksing, ksing,| (3.31)
Using (3.17) and (3.18), the beamwidth of a, in the cross-range domain becomes:

y€[-B,B]

p ; (3.32)
=[-rsing,,rsing,]

3.4.6 Scanning to create a synthetic aperture

In the previous section, the beam pattern of a transducer located at the origin was studied.

The beam pattern of a transducer located at an arbitrary pointu can be derived as follows:

hf.((u,x,y—u)z(— IA (o, k, )exp[~j«}k2 —ij—jku(y—u)]dku
VX +(y—u)
=— 1 ’ ‘Fk:] [A,.(a),ku)eXP[—j‘ /kl _ij—jk”yﬂ (3.33)
X+ (y—u)’

where F, ' denotes the inverse Fourier transform with respect to,. As one can see this is a

shifted version of (3.22) in the cross-range domain. Based on what was shown earlier, the
transmit-mode beam pattern can also be expressed in terms of an amplitude pattern and a
spherical phase modulated signal:

h(o.x,y-u)=a,(0,x,y— u)exp[ Jhx? +(y—u) ] (3.34)

Amplitude Pattern ™

Sphe r.-ca! PM signal
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3.4.7 Transmit-Receive mode beam pattern

Using similar arguments to those used before, one can account for the sensitivity pattern of
the transducer in the receive mode to produce the overall radiation pattern. The receive-mode

beam pattern of a transducer located at (0,u)based on the analysis above is:

1

hR(m,x,y~u):m IAR(a),k")

VN S F;(_{AR((O k

exp[—j\jk2 —klx— jk,(y- u):ldku
)exp[-_;g/kl —Kx— jk, yﬂ (3.35)

The transmit and receive beam patterns are assumed to be the same; that is,
Ay (0.k,)=A4,(0.k,) (3.36)

The overall beam pattern is the product of transmit and receive beam patterns; that is

ho.x,y—u)=h(0,x,y—-u)h,(0,x,y—u) (3.37)

Since it is common to use time gain compensation to offset the decline in the power due to
the now two-way spreading losses, the denominator (x” +(y —u)’)is dropped from here on.
The multiplication of 4, and 4, in the cross-range domain translates into the following
convolution integral in the k,domain (for &, €[-2k,2k]):

2%
F[ho.x,y—u)]= IAT(a). ,,o)exp[—j\/k2 = p"'x—j,oy]x
2k

Aok, - p)exp[— JNK =(k, = p)'x—j(k, —p)y] dp (3.38)

= exp(—jk, ) j A, (@, p) A, (0. k, — p)xexp [—f [\/ K —-p+ \/ K —(k, - p) ]x]dp

-2k
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To calculate the above convolution integral the method of stationary phase is used one more

time. The outcome can be shown to be:

F, [!?(a), x,y—u)] = A(w, k")e:u;[:)(—_,r',Hk2 - kfx— jk"y) (3.39)
where
Alw.k,) = 4, [(0,%] A, [w,%) (3.40)

3.4.8 Image reconstruction considering beam pattern effects

In this section, the pulse-echo SA signal model is presented to incorporate the effects of a

finite sized transducer more precisely

S(I,M)Z ZO"” a,.(t,x,y—u)ﬂ ;a!e("sxay_u)ﬂ P

n

C

[t_zuxnz_i_(yuu)z] (3 41)

where [] , denotes the temporal convolution. The 2D Fourier transform of this signal is

S(a)v ku ) = P({U)ZO'"A(CD, u)exp[ j\,‘ 4k2 - ku xn J{kﬂyﬂ}

(3.42)
= P(0)Y. 0, A(o.k,)exp| - jk (o.k,)x, - jk (@.k,)y, |

where

k. (o.k,) =4k —k (3.43)

ky(ﬂ), k") - kar

2D spectrum of the SA data in (3.42) can be simply expressed as:
S(a.k,) = P(@)A(0.k)F| k(0.k,).k,(o.k,)] (3.44)

A basic reconstruction using a matched filter inversion and a coordinate transform gives the

following image spectral estimate:
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Flk(@.k,).k (@.k) ]| =S {P ()4 (0.k,)S(0.k,)} (3.45)

where the coordinate transform via Stolt mapping is denoted viaS {} This algorithm which

is referred to as Wavenumber, Q — K or seismic migration depending on who invented it and
the field of application. The seismic migration algorithm comes from geophysics [28],where
as the Q- K comes from SAR [29]. In this thesis, this reconstruction will be referred to as
the Wavenumber algorithm with reference to its applications in sonar [30] and non-
destructive testing [22] . The implementation of Wavenumber algorithm by the means of FFT

will be further investigated in next Chapter.

3.4.9 Resolution

The image of a point target is called the point spread function (PSF) of the imaging system. It
depends on the 2D spectral support of the SA signal of the target that is the response of the
SA system to a point. The resolution of an image characterizes the degree of smearing, or

blurring in the PSF. Therefore a system’s PSF is often used to characterize its resolution.

The SA signal of the n" target in the (@, k,) domain is:

Sn (CU. ki-‘ ) = P(Q)O-HA(G), ku ) exp [_:“ V 4k2 2 klf xu = J’Ikh‘yﬂ } (3'46)

Thus the spectral support of S, (@.k,)in the k,  domain is dictated by the support band of

A(w,k,)in the k, domain, which is:

k, €[-2ksing,,2ksing,]
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Recall from the previous discussion on the beam pattern of piston and concave transducers
that this divergence angle @, depends on the geometry of the transducer.

The other limiting factor for the spectral support in a SA signal is the limited bandwidth of
the ultrasonic pulse p(r) in the temporal frequency domain, which is:

a)e [a)min"wm]
elo-w,0 +a)

The transmit-receive amplitude pattern of a piston transducer of diameter D is a sinc-

squared pattern; that is:

A(w.k,)=sinc’(D,k, / 47) (3.47)

The support of this amplitude pattern in the spatial frequency domain can be approximated

by the main lobe of the sinc pattern, which is:

ke {ﬁ 4—”} (3.48)

Figure 3.8 illustrates the support of the ultrasound amplitude pattern in the spatial domain

that is beamwidth as a function of the wavelength and the cross-range y .
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Figure 3.8: Piston transducer: Amplitude pattern @(@, X, ¥) versus wavelength and cross-range

Figure 3.9 represents the 2D spectral support of a SA signal for an arbitrary target location in

the ROI for a piston transducer. This spectral support is also the 2D bandwidth of the SA

signal s(¢,u) . Note that the bandwidth of the system in the spatial frequency k,domain is

invariant in the temporal frequency @domain.
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Figure 3.9: Piston transducer: Amplitude pattern A(@,k,) versus @and k,

From (3.30) and (3.31), the support band of the amplitude pattern A(@,k,) for a concave

transducer in the k, domain can be estimated as follows:

D, D,
k |- 4 , 2k z

e JD: ;4x; NDX m;
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— 1 Sin ¢,

Figure 3.10: Concave transducer: Amplitude pattern a(@, x, y) versus wavelength and cross-range

The support of the ultrasound amplitude pattern in the spatial domain as a function of

the ultrasound wavelength and cross-range y is shown in Figure 3.10. It is invariant in the ®
domain.

Figure 3.11 presents the 2D spectral support of an SA signal for an arbitrarily located
point target for a concave transducer in the (@,k,)domain. This spectral support is also the

2D bandwidth of the SA signal s(r,u) when a concave transducer is used.
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Figure 3.11: Concave transducer: Amplitude pattern A(@,k,) versus o and K,

The SA reconstruction results (3.43) showed how the data within these spectral regions are
mapped into the target function spatial frequency via Stolt transform. Figure 3.12 and Figure

3.13 respectively show this spectral support mapping for a piston and a concave transducer.
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Figure 3.12: Piston transducer: Target spectral support in spatial frequency (k.. k _v) domain
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Figure 3.13: Concave transducer: Target spectral support in spatial frequency (k.. k_v ) domain
The inverse 2D Fourier transform of the shaded area in Figure 3.12 and Figure 3.13

dictates the shape of the point spread function of the SA imaging system. To develop an
47



analytical model for the PSF, one could approximate the target support region in Figure 3.12

and Figure 3.13 via a rectangle in the (k,,k,)domain with widths:

B =2(k,,, —k.,.) inthek_ domain

81

— for a piston transducer (3.49)
By=<D, inthek  domain

4k, sin@,  foraconcave transducer

where k_is the wavelength at the central frequency of p(¢) . For a unit function G(k,k ) =1

in the spectral region bounded by the dashed lines (rectangle), its inverse Fourier transform is

. B . [ B,
glx,y)= smc[ zz:Jsmc(z'—;} (3.50)

This 2D sinc pattern for the n" target is shown as a cross-shaped structure in Figure 3.14.

-

Figure 3.14: Target point spread function in spatial domain
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The main lobes of the two sinc functions in the (x, y)domain are,

and H1y where
Ox= i

X

2
Oy=22
Y B

v

Which after substituting for (B,,B,) become:

B S
Koo =k 200
— for a piston transducer
Oy= .
Ay for a concave transducer
4sing,

where 2, is the baseband bandwidth of the ultrasonic pulse p(7) .

respectively, within+1x

(3.51)

(3.52)

The analysis provided thus far did not include the electrical part of the ultrasonic

imaging model, in other words, the equations were relating the transmitted pressure to the

received pressure. In a real imaging system, the user does not have direct access to these data

and the output data is in the form of an electrical voltage.

In the next section, an electromechanical model of the imaging system is studied and

the complete SA algorithm based on this model is presented.

49
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3.5 Frequency domain representation of an ultrasonic imaging
system

In a simple ultrasound pulse-echo system, such as that used in high-frequency imaging
systems, ultrasonic pulses are transmitted from a fixed location and result in the generation of
scattered and reflected signals along the transmission path. These scattered signals are

detected by the same transducer as used for transmission.

The developed SA algorithm in this thesis is based on a linear, time-invariant
electromechanical model of the ultrasonic imaging system. Typically such models have an
electrical voltage pulse as an input to the transducer which in response generates an
ultrasonic pressure pulse. The output of this model would be the output voltage from the

transducer caused by the backscattered pressure wave.

This model was first introduced by Stephanishen [31, 32]. It employs the concept of
spatial impulse response and linear systems theory to find the ultrasound field. The spatial
impulse response gives the emitted ultrasound field at a specific point in space as function of
time, when the transducer is excited by a Dirac delta function. The field for any kind of
excitation can then be found by just convolving the spatial impulse response with the
excitation function. The impulse response will vary as a function of position relative to the

transducer, hence the name spatial impulse response.

The received response from a small sphere (point scatterer) can be found by acoustic
reciprocity. The spatial impulse response equals the received response for a spherical wave

emitted by a point. Thus the total received response in pulse-echo can be found by
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convolving the transducer excitation function with the spatial impulse response of the
emitting aperture, with the spatial impulse response of the receiving aperture, and then taking
into account the electromechanical transfer function of the transducer to yield the received

voltage trace.

Based on the above discussion, the SA signal derived in the previous section will be
changed now to include the two-way electromechanical impulse response and electrical

excitation of the transducer. The measured electrical signal E

m

(®,k,) can be obtained via:

P(@) = p,E,(@)H, (@)
S(@.k,) = P@)F 0, A(@.k,)exp| - 4K ~kx, = jk,, (3.53)
E (o.k,)=S(w.k,)H, (o)

m

where p, is the medium density, H,(®) and H,(w)are pressure impulse response of the
transducer in the frequency domain in transmit and receive mode respectively. E (@)is the

Fourier transform of the excitation voltage e (f), and E

L,(0.k,) denotes the 2D Fourier
transform of the measured electrical voltage at time fand transducer position #. The

following block diagram illustrates a summary of all the steps taken above.

E %

4

T

F (Target)

_ S
o H

R

Figure 3.15: Block diagram of the pulse-echo response of the ultrasound imaging system in the

frequency domain
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The overall pressure impulse response of the transducer can be defined as:

H(w) = H,(0)H (o) (3.54)

If pyand other constant coefficients are absorbed in theo,. the SA signal in the

(@, k,)domain finally can be expressed as follows:

Em (CD, kn ) = E: ((())H((O)Z O-N A((U’ kn )exp I:_.)J \l' 4k e k:.rz x.-: - .fknyu :|
E ((1), ku ) = Ei ((O)H(Q)A(a)ﬁ kﬂ )F(kr (a)’ ku )’ ky (a}" kh‘ ))

m

(3.55)

Consequently, the Wavenumber reconstruction algorithm takes the following spatiotemporal

matched filter form:

F(k,(.k,).k (@.k,) = E (o) H(w) A@.k,)'E,

m

(w.k,) (3.56)

Since the desired information is the object function of the ROI in the spatial domain,
that is f(x,y), the acquired data in the (@,k,)should be mapped into (k,.k,) via the Stolt
mapping. In practice, the measured data S(w.k,) is provided to the user in the form a 2D
matrix of evenly spaced samples on a rectangular grid in the (®.k,). However, due to
nonlinear nature of Stolt mapping, the resultant matrix for F(k,,k )is unevenly spaced.
Furthermore, the knowledge of F(k,,k,)on a uniform rectangular grid is needed to retrieve a

sampled version of f(x,y)via 2D FFTs. The solution to this problem is an interpolation

from the data on the nonlinear grid to a rectangular grid. There are several interpolation
methods in SA imaging but the sinc interpolation is used in this thesis.
Prior to the interpolation, one more step should be performed. Suppose that the ROI is

identified via the regionx e [X, — X, X + X ], where X _is the mean range and 2.Xis the

size of the ROI in the range domain. Therefore the signal F(k

X

.k,) is a bandpass signal in the

k. domain, because its inverse Fourier transform is centered at x=X_. Recall that the
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inverse Fourier transform of a lowpass signal in the k _domain has its spectrum centered at
x=0.

For the interpolation step, this signal has to be transformed to the lowpass. This is called
baseband conversion of ROI and it is illustrated in the following diagram.

JL);

X

f(x_Xc’y) > E(kx7ky)exp(_jkx){c)

& < exp(jk,X.)

fxy) & Fylk k)

o Y

Figure 3.16: Baseband conversion of the ROI

The baseband conversion of a ROI is done via:

F (k. k)= F(k .k, )exp(jk.X,) (3.57)

Now, the origin in the spatial domain (x, y)domain is at the centre of the baseband object
function f,(k,.k,). The reconstruction equation for the lowpass object function can be

rewritten as:
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F,(k.(@.k,).k (0.k,)) = E,(0) H(®) A.k,) E, (0.k,)exp( jk,(0.k,)X,)

i . e — (3.58)
= E‘,((U) H((!)) A(a)" kn) exp(j 4;(‘_ "_kquc' ) Em ((03 ku)

This reconstruction algorithm is called amplitude function method in this thesis, since the

amplitude function A(w, k,) should be known for the transducer prior to the reconstruction.

3.6 Synthetic aperture reconstruction via deconvolution

As it can be noticed from the inversion equation of the amplitude function method, before
doing any reconstruction, the user should have an accurate knowledge of the transducer
electromechanical impulse responses, excitation voltage pulse, and more importantly the
amplitude function of the transducer. Measuring or simulating these parameters is not an easy
task especially for a focused transducer. An alternative reconstruction algorithm is proposed
in this thesis to solve this problem which does not introduce any approximation to the SA
algorithm. This algorithm makes use of the response of the system to a reference point target
located in the centre of the ROI (X_,0) and performs a 2D cross-correlation of this response
and the measured response of the system from a predefined ROI. The measured signal from
the reference point is called the reference signal and has all the effects of excitation, impulse
responses, and amplitude pattern implicit in it. Thus by measuring this signal one has all the
information needed for the reconstruction.

Consider a ROI that consists of just one point target located at the centre of it. The

reference measured signal E,, in the (@,k,)domain due to this target can be calculated by

m

substituting (x,,y,) =(X_,0) in(3.55). The outcome is shown to be:

E (o.k,)=E (0)H(0)A(0.k,)o,exp [—j,f4k3 —k; X{,] (3.59)

Without loss of generality, one can assume that o, =1 therefore, comparing (3.59)

and (3.58) the following reconstruction equation can be obtained:
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F,(k,(@.k,).k, (@,k,)) = E, o (@.k,) E, (@,k,) (3.60)

m

The discussed algorithm is called the deconvolution method here. Notice that the mapping

from (@,k,)to(k,.k,)domains is still done via the Stolt transformation.

3.7 Synthetic aperture reconstruction via the virtual point method

One approach to deal with SA inversion equation when using a focused transducer is to do a
reconstruction via a method called the virtual point. Using geometrical relations one can
assume that the wavefront of a transducer is a point at the focus as shown in Figure 3.17 for a
single-element concave transducer. The wavefront before the focal point is a converging
spherical wave, and beyond the focal point is a diverging spherical wave. Because of the
shape of its wavefront the focal point can be considered as a virtual point source of

ultrasound energy.

Focal point

Figure 3.17: Idealized wavefront of a concave transducer reprinted from [33]
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The ideal transducer for the virtual source reconstruction is the one with a highly focused
beam pattern. A typical F-number for such a transducer is about 1. When this condition is
satisfied the reconstruction can be applied using the simple point transducer assumption
discussed in 3.4.3 where the amplitude function was shown to be equal to one. Since all the
wavefronts reach the focal point at the same time (with the same delay), applying a simple
phase shift in the frequency domain will result in the virtual point reconstruction equation.

Therefore the ROI still can be anywhere before or after the focus.

3.8 Synthetic aperture reconstruction via the virtual line method

Moderately focused transducers are the most commonly used in high-frequency imaging
systems as they generate a beam pattern that stays focused within a longer area, i.e. larger
depth of focus. This effect results in a more uniform lateral resolution in the vicinity of the
focal point when the B-mode image is obtained via the conventional reconstruction
algorithm. Consequently. such transducers are not ideal for the virtual point source

reconstruction.

In this section another method is proposed when this is the case. One can assume that
the focus of the transducer can be treated as a virtual piston source which acts as a small
unfocused transducer of the diameter equal to the beamwidth. Figure 3.18 compares two
focused transducers ideal for the two discussed methods. The radiation pattern of this small
transducer is similar to that of piston transducer of the same size. This suggests that the
amplitude function of a piston transducer can be employed for the reconstruction where the

ROI is located after the focus. Since the wavefronts do not reach the virtual line source at the
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same time, a simple phase shift in the frequency domain cannot be used in the reconstruction

equation. Therefore this method is cannot be used for the ROI before the focus.

Virtual point Virtual line

Figure 3.18: Sketch of a highly focused transducer ideal for a virtual point reconstruction (left) versus

a moderately focused transducer ideal for a virtual line reconstruction (right).

3.9 Summary

Thus far the complete model of the ultrasound imaging system has been presented. Based on
this model, SA inversion equations have been derived for both focused (concave) and

unfocused (piston) transducers. In the case of an unfocused transducer two SA methods are
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proposed: amplitude function and deconvolution where as in the case of a focused transducer

four methods are proposed: amplitude function, deconvolution, virtual point and virtual line.

Next Chapter will discuss the methods used in this thesis to validate the hypothesis through a

series of simulations and experiments.
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Chapter 4

Methods

To test our hypothesis, simulations and experiments are performed to obtain the data needed
for processing. Although the focus in this project is on the high-frequency imaging and as a
result on the concave transducers, the simulations are done for both piston and concave
transducers. However, the experiments are carried out using only the concave transducer

available in our laboratory.

<>
//.\

G Em @
¥ L I,"I‘; \‘I \ 3

Figure 4.1: The procedure followed in this research to test the hypothesis

Conventional and several SA imaging algorithms (depending on the transducer type) are
implemented on the simulated and measured data and their corresponding lateral resolutions

have been calculated to investigate and compare the performance of each method. The
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diagram presented in Figure 4.1 shows the general approach taken to validate the hypothesis

in this research work.

In this Chapter, the simulation and measurement parameters are introduced along

with the requirements for the sampling in the range (time) and the cross-range domains.

4.1 Simulations

The simulations in this research work were done using Field II for both piston and concave
transducers. The imaging medium was assumed to be loss-free. Also the frequency

dependant attenuation was not included in any of the simulations.

4.1.1 Field Il

Field II is a powerful program for simulating ultrasound transducer fields and ultrasound
imaging using linear acoustics. The program is based on the Tupholme and Stepanishen
method which is discussed in the previous Chapter. Field II is capable of simulating the
emitted and pulse-echo mode fields for both the pulsed and continuous wave case for
different transducer geometries. This software scanner is developed by Jorgen Arendt Jensen
[34] and at the time being is a free toolbox which runs under MATLAB. The user should
define the geometry of the transducer, input voltage excitation to the transducer,
electromechanical impulse response of the transducer for both transmit and receive and the
object to image or the “phantom™. With these set of data provided to the software, user will

be able to calculate emitted field, pulse-echo field, ultrasound RF data, etc...
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Field II applies the excitation voltage on the terminals of the transducer. The
electromechanical impulse response for the transmitting aperture is the impulse response
from this voltage on the terminals to the acceleration of the front face of the transducer
multiplied by the density of the medium. Accordingly, the impulse response for the receiving
aperture is the impulse response from front face acceleration to voltage on the transducer

terminals.

In a Field II simulation, the transducer surface is divided into elements of rectangular
or triangular shape and then the response of these elements are summed to yield the response.
One of the parameters that should be defined before the simulation is the size of these
elements. As a standard, the program uses rectangles. For a high precision, one should have
small rectangles compared to the distance to the field point. The size of the rectangles must

be chosen so that the field point lies in the far-field region. This is given by:

2
g X
42

where /is the distance to the field point and w is the largest dimension of the rectangle.

Since Field II currently does not have any commands for moving the transducer,
linear scanning was realized by moving the target instead which will give the same effect.
The electrical excitation used was a delta impulse and the electromechanical impulse
responses of the transducer in both transmit and receive modes were modeled as a 2-cycle

Hanning weighted sinusoidal pulse.
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4.1.2 Simulated image of points phantom

The use of the point scatterers as phantom for the imaging system is really advantageous
since they nicely conform to the discrete model developed before and also provide the user
with the PSF of the system at different spatial location in the ROIL. As shown in the
previously, investigating the PSF’s is the proper method to study the lateral resolution at

different depths.

To quantify the lateral resolution, the full width at half maximum (FWHM) value of

the pressure profile at the location of point will be used.

The first step in a SA data simulation is to define a ROI in front of transducer.

Suppose that the user is interested in imaging a ROI within the cross-range gate:

ye[-%,.1,] (3.61)

where Y| is a constant defined by the user. Given that a point target at (x, y) is observable to
the transducer if it is located within the beamwidth B of the transducer at(0,«), the following

interval can be identified as SA measurement domain:
uel[y-B,y+ B] (3.62)

Then the SA interval over which the SA data contains contributions from the cross-range
gate is:
uel[-L,L]

3.63
L=B+Y, 3.63)

The effective ROI in the cross-range domain is denoted by ¥, and is defined as:
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Y =
y=aBtl, (3.64)

4.1.3 Data Acquisition and signal processing

Based on the ultrasound system parameters, the constraints on SA data collection are
analysed here. The 2D spectral properties of the SA signal will be employed extensively to
set the proper time and space sampling criterion to prevent aliasing. Suppose that the ROI in

is limited to the region ye[-Y,,};] in the cross-range domain, and to the
regionx € [X, - X, X +X,] in the range domain. The central point in the ROI, that

is(X,.0), is called the reference point.

4.1.3.1 Range (time) domain sampling

The time domain samples should be collected over the time domain interval that covers the

returns from all of the scatterers within the ROI. Suppose that the closest and the farthest

radial range distances of the ROI to the transducer surface are r, andr . respectively.

min max

Then the first backscattered signal arrives at the time:

2r .
T =—un 3.65
= (3.65)

Furthermore, the backscattered signal from the farthest point target in the range domain

terminates at:

2r
T, = % +2T, (3.66)
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where 7', denotes the duration of the transmitted pressure pulse p(7) . Recall from (3.53) that

p(1) results from convolving excitation voltage and electromechanical impulse response of

the transducer, this implies that 7', is equal to summation of duration of these signals.

The above time interval for sampling the SA signal is called the range gate of the SA
system. This range gate can be determined from the knowledge of ultrasound system
parameters in particular the beamwidth of the transducer in the range and cross-range
domains. As it was shown, if a piston transducer is used, these beamwidths change with the
frequency. Suppose that the largest half-beamwidth in the cross-range domain is denoted

as B then the closest radial distance of the transducer to the ROI is:

max

r.=X —X, (3.67)

And the farthest radial distance can be obtained from:

r;nax

= (X, + X, + B2, (3.68)

The ultrasound signal is a bandpass signal with the central frequency of f and half
bandwidth of f.There are two ways for sampling such signals. One is direct application of

the Nyquist sampling frequency to the signal that results in sampling frequencies
f.22(f. + f,).This sampling frequency would lead to an unnecessary high sampling
frequency. An alternative method is by the frequency shift property of the Fourier transform

and baseband conversion of the signal. It is obvious that there exist a lowpass complex signal

corresponding to the original signal and this signal can be sampled by sampling frequencies
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as low as 2f .This demodulation should practically performed by hardware and needs

additional anti-aliasing filters. Since the ultrasound device used for the experimental part of
this project does not use this technique, all the developed processing algorithms use the first

method for either simulated or real data sampling.

4.1.3.2 Cross-range domain sampling

In section 3.4.9 was shown that the spectral support of SA signal at a temporal frequency

@in the k,domain is:
k, €[-2ksing,,2ksing, ]

Thus, the Nyquist sampling constraint in the »# domain of the SA signal s(@,u)1s:

27

<— (3.69)
4ksing,

Hu

where ¢,denotes the divergence angle of the transducer. To select a cross-range sample

spacing which is suitable at all available temporal frequencies, the above constraint must be

satisfied for the worst case. This is discussed next for the piston and concave transducers.

4.1.4 Piston transducer

For a piston transducer, the divergence angle can be approximated via

|4
¢, = arcsin (HJ
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The udomain Nyquist sampling criterion becomes

A
421D,

D,
4

[u <

(3.70)

where D is the transducer diameter. It is evident from the 2D spectral support of the SA

signal for the piston transducer in Figure 3.9 that this constraint is independent from the

temporal frequency variations.

4.1.5 Concave transducer

In the case of a concave transducer of diameter D the divergence angle, the divergence angle

was shown to be:

¢, = arctan £
2x,

As it can be noticed from Figure 3.11, this angle is invariant in the temporal frequency
domain therefore the worst case for the wdomain sample spacing occurs at the highest
temporal frequency. In this case the Nyquist constraint in the cross-range domain of the SA

signal of a concave transducer is:

4kmax Si‘ﬂ ¢d

= j’min
4sin g,

(3.71)
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4.2 Simulation parameters for a piston transducer

The transducer used in the simulations has a diameter of 4 mm and the central frequency of
the broad-band transmitted pulse is 1.5 MHz. The spatial sampling space used in the

simulations ( Au ) is 0.5 mm. Table 4.1 shows other parameters employed.

Parameter name Notation Value Unit
Speed of sound G 1540 m/s

Sampling frequency for data simulation f. 66 MHz
Excitation centre frequency Is 1.5 MHz
Sampling frequency for data processing % 20 MHz
Wavelength at centre frequency A ~1 mm

Bandwidth Jo 0.7 MHz

Table 4.1: Simulation parameters for an unfocused transducer

It is worth noting that sampling frequency for the data simulation f, is different than
/., which is the sampling frequency for the data processing. The criterion for the latter is
based on the Nyquist sampling theorem where as f, is assigned a much higher value to

handle the discontinuities in the spatial frequency response of the transducer. Generally, a

higher £, results in a more accurate response however it may result in a very long simulation

run-time.
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It turns out in order to the size of the elements not be a factor in the shape of the
PSF’s, the element size for the unfocused transducer has to be smaller than A/38 which

makes the run-time very long.

4.2.1 Amplitude function method
The amplitude function A(w.k,) for the piston transducer has been calculated based on

(3.47).

4.2.2 Deconvolution method

The deconvolution method has been introduced as an alternative method to the amplitude
function method. The reconstruction equation shown in (3.60) requires two sets of RF data,
one is from a reference point at the centre of the imaging area and the other is the RF data
from the desired target. The reference data will be used as a 2D matched filter for the target

data and perform a cross correlation between these signals in the Fourier domain.

When using a piston transducer, the reference point can be located anywhere in front

of the transducer. However, the reference point should be in the middle of the ROI.

The simulated B-mode images reconstructed via the conventional, amplitude function and

deconvolution methods using a piston transducer are presented in the next Chapter.
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4.3 Simulation parameters for a concave transducer

The simulations are performed to generate RF data collected with a focused transducer. The
transducer has a central frequency of 40 MHz and F-number of 2 which means the focus is 6
mm away from the transducer surface. Table 4.2 shows the parameters used in the

simulations.

Parameter name Notation Value Unit
Speed of sound C 1540 m/s

Sampling frequency for data simulation i 600 MHz
Excitation centre frequency Ta 40 MHz
Sampling frequency for data processing v 200 MHz
Wavelength at centre frequency A ~38 Hm

Divergence angle P, ~14 Deg
Bandwidth Ts 20 MHz

Table 4.2: Simulation parameters for a focused transducer

The spatial sample spacing has been calculated using (3.71). For the shown parameters the

space between RF lines ( Au ) is about 20 um .
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Surprisingly, the size of the transducer surface elements used for the RF line simulations for
a focused transducer was not a crucial factor as it was for the unfocused transducer. The

elements size used in the focused transducer simulations was about A/10.

4.3.1 Amplitude function method

The reconstruction via the amplitude function method was discussed in the previous Chapter
and the final inversion equation was shown in (3.58). Since there is not an analytical

expression for the amplitude function in the (@,k,)domain for a concave transducer, the

corresponding integration over a cross section of the transducer in the imaging plane has

been calculated using the numerical methods.

4.3.2 Deconvolution method

The general implementation steps are similar to the method explained in 4.2.2. Since the
resolution of a focused transducer is the best possible at the focus, it seems sensible to try the
algorithm with a reference point located at the focus of the transducer to improve the
resolution beyond the focus. The same algorithm has been implemented for a reference point
located out of the focus of the transducer to investigate the performance of the method. Note
that theoretically the reference point can be located anywhere in front of the transducer. The

only constraint is that the reference point should be in the middle of the ROI.
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4.4 Experimental parameters

The purpose of the experiments is to compare the lateral resolution of the images

reconstructed from the simulated and the measured data.

The measurements were carried out using a high-frequency scanner system (Vevo 770 from

VisualSonics Inc., Toronto). Two types of experimental data were obtained:

1) From a phantom composed of fine steel wires immersed in water and positioned
parallel to each other at different depths that would act as point scatterers for the 2D
imaging system.

2) From a freshly excised bovine liver tissue.

Parameter name Notation Value Unit
Speed of sound C 1540 m/s

Sampling frequency for data measurement . 420 MHz
Excitation centre frequency T 55 MHz
Sampling frequency for data processing J 2 . 420 MHz
Wavelength at centre frequency A ~28 pm

Divergence angle @, ~12 Deg
Bandwidth i 27.5 MHz

Table 4.3: Measurement parameters for the focused transducer
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The transducer is a concave transducer type RMV 708. The relevant parameters of the
transducer and the system are listed in Table 4.3. Since all the simulations were based on a
linear scanning system, although Vevo 770 performs sector scanning, all the reconstructions
were done assuming a linear scanning. Note that this assumption is valid only if the shape of

chosen RF box is very close to a rectangle not a trapezoid.

4.5 Summary

The hypothesis (page 10) is tested using simulations and experiments. The methods and
parameters used in these steps were discussed in this Chapter along with the sampling
requirements in the range (time) and cross-range domains () for concave and piston

transducers.

These sampling criterions have been met in different sets of simulations and
experiments which are performed to investigate the merit of the conventional and SA

algorithms. The resulted B-mode images are presented in next Chapter.
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Chapter 5

Results

5.1 Simulation results for a piston transducer

Figure 5.1 shows the simulated conventional B-mode image of three points (relevant
simulation parameters in Table 4.1, page 67). Amplitude function and deconvolution
methods were used to reconstruct the SA B-mode images of the same points. The
corresponding SA images are presented in Figure 5.2 and Figure 5.3. As it can be noticed
from these images, both SA methods improve the lateral resolution although the

deconvolution method works better than the other two.

Conventional method
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Figure 5.1: Conventional B-mode image from points phantom.



5.1.1 Amplitude function method
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Figure 5.2: B-mode image from points phantom reconstructed via the amplitude function method.

5.1.2 Deconvolution method

Deconvolution method
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Figure 5.3: B-mode image from points phantom reconstructed via the deconvolution method.

5.2 Simulation results for a concave transducer

In the following sections, B-mode images from several points phantoms have been
reconstructed via different synthetic aperture algorithms and their performances have been
compared using the lateral profile of the PSF at multiple depths. The lateral profiles are
plotted from the logarithmic compressed data which have been normalized to their maximum

value.
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5.2.1 Amplitude function method
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Figure 5.4: Conventional B-mode image of point phantom. The focus is at 6 mm.
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Figure 5.5: B-mode image from point phantom reconstructed via the amplitude function method.
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Figure 5.4 shows the conventional image while the SA image reconstructed using the
amplitude function method is shown in Figure 5.5. As it can be observed from this image, the
amplitude function method leads to unacceptably high sidelobes. The simulated SA images,

reconstructed via the alternative methods are presented in Figure 5.6 to Figure 5.10.

5.2.2 Deconvolution method

The following sections 5.2.2.1 and 5.2.2.2 include the simulation results for the two proposed
deconvolution methods. Note that in all the presented B-mode images reconstructed via the

deconvolution method, the reference point is located at the focus unless otherwise stated.

5.2.2.1 Deconvolution with a point at the focus

Here the reference point is positioned at the focus of the transducer. The ROI is centered on

the focus. (X, =6mm, X,= 2mm and Y =2mm). All the target points are located at the

lateral position 0 and equally spaced in the axial direction from 4.5 mm to 7.5 mm. Figure
5.6 shows the B-mode image reconstructed using the deconvolution method. Note that the

lateral resolution is more uniform comparing to that of the conventional image in Figure 5.4.

5.2.2.2 Deconvolution with a point out of the focus

The reference point used for the deconvolution is positioned at 8 mm. The ROI is located
from 4mm to 12mm in the axial direction and from -2 to 2 in the lateral direction. Point
targets are positioned from 5 mm to 10 mm at every 0.5 mm in the axial direction where the

lateral position is O for all of them.
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Conventional method
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Figure 5.6: B-mode image from point phantom reconstructed with the deconvolution method where
the reference point considered at the focus (at 6mm)
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Figure 5.7 shows both conventional and SA image reconstructed using the deconvolution
method. Since the algorithm performs a matched filtering on the target signal, at points close
to the reference point (X, =8mm) where the PSF of the targets is similar to that of the
reference point, the performance of the algorithm in terms of lateral resolution improves

significantly comparing to the conventional image.

Conventional image Deconvolution method
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Axial distance [mm)
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Figure 5.7: B-mode images from point targets. Conventional (left) and SA image reconstructed using

the deconvolution with a reference point at § mm (right)
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5.2.3 Virtual source method
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Figure 5.8: Conventional versus virtual point method reconstructed images from points phantom
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5.2.4 Virtual line method
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Figure 5.9: Conventional versus virtual line method reconstructed images from points phantom
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Figure 5.10: Conventional versus deconvolution method reconstructed images from points phantom
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In order to compare all four methods, the reconstruction via the deconvolution with a point at

the focus has been presented for the same phantom in Figure 5.10.

5.3 Lateral profile
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Figure 5.11: Lateral profiles of the points located at 7.3, 9, and 10 mm from the transducer surface.

In order to measure the lateral resolution in the simulated images shown in Figure 5.8
to Figure 5.10, the lateral profile of three of the points at depths 7.3, 9 and 10 were plotted.

See Figure 5.11 for a comparison between the proposed methods.
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The lines were drawn where the maximum amplitude of each PSF was located. Note
that all the lines must include all the area that has amplitudes greater than 6 dB below the
maximum otherwise the line would not show the accurate lateral resolution. Table 5.1
presents the lateral resolution of the B-mode images reconstructed via the discussed

algorithms.

Although the ultimate goal of this project was to improve the lateral resolution, the
side lobe level has a significant role in the image quality and cannot be ignored. Here the side

lobe width at -32 dB is introduced to quantify the performance of each method. Table 5.2

shows the side lobe width of the PSF’s at different depths.

Lateral resolution | Conventional | Deconvolution | Virtual point Virtual line
(-6 dB)

@ 7.3 mm 350 um 68 um 65 um 125 um
@ 9 mm 760 um 66 um 50 gm 110 gm
@ 10 mm 880 pum 60 um 44 pm 100 gm

Table 5.1: Lateral resolution values calculated based on -6 dB drop of the maximum amplitude

Side lobe width Conventional Deconvolution Virtual point Virtual line
(-32dB)

@7.3 mm 0.54 mm 0.36mm 0.24 mm 0.27 mm
@9 mm 0.9 mm 0.15mm 0.08 mm 0.22 mm
@10 mm 1.08 mm 0.12mm 0.08 mm 0.22 mm

Table 5.2: Side lobe width values calculated based on -32 dB drop of the maximum amplitude
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5.4 Experimental results and verification of the simulations

To examine the quality of SA algorithms at a point far from the focus experiments were
conducted. A steel wire immersed in a water container was used as a point target. The
diameter of the wire was 10 um. Note that the scanning path is perpendicular to the wire so
that in a 2D B-mode image it would appear as a point. The reason for choosing a steel wire

was the strong reflectivity of the steel.

The B-mode images are reconstructed from the captured RF data using the derived
SA algorithms. The conventional B-mode is shown in Figure 5.12. See Figure 5.14 for the B-
mode image from the same phantom reconstructed via the deconvolution method (with a
reference point out of the focus at 7.8 mm), Figure 5.16 for the virtual point reconstruction
and Figure 5.18 for virtual line method. Based on the simulation results, a considerable
improvement in the lateral resolution of the SA images over the conventional image was

expected where the wire is located beyond the focal region.

Since the same result was not observed from the simulated B-mode images from the
point targets located close to the focal area, another set of experiments with some wires
located close to the focus were carried out to investigate the agreement between the
simulated and experimental results. The outcomes of these experiments are presented in

54.2.

The figures below the mentioned images present their corresponding contour plots where -6

dB and -32 dB are shown in red and green respectively.

84



5.4.1 Single wire phantom

5.4.1.1 Conventional method

conventional image
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Figure 5.12: Conventional B-mode image of a wire phantom in a water container
-6 db and -32 db contours: Conventional method
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Figure 5.13: Contour plot of the conventional B-mode image shown above
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5.4.1.2 Deconvolution method
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Figure 5.14: B-mode image of a wire phantom reconstructed via deconvolution method

-6 db and -32 db contours: deconvolution method
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Figure 5.15: Contour plot of the B-mode image reconstructed via the deconvolution method
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5.4.1.3 Virtual point method

Virtual point method
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Figure 5.16: B-mode image of a wire phantom reconstructed via virtual point method

-6 db and -32 db contours: virtual point method
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Figure 5.17: Contour plot of the B-mode image reconstructed via the virtual point method
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5.4.1.4 Virtual line method

Virtual line method
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Figure 5.18: B-mode image of a wire phantom reconstructed via virtual line method
-6 db and -32 db contours: virtual line method
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Figure 5.19: Contour plot of the B-mode image reconstructed via the virtual line method

The lateral resolutions of the presented B-mode images were obtained using the -6 dB
criterion as with the simulated data. By examining the lateral profile of each method plotted
in Figure 5.20, the lateral resolution and side lobe width values were determined. These are

presented in Table 5.3.
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Figure 5.20 Lateral profile of the single wire target

Conventional | Deconvolution | Virtual point Virtual line
Lateral resolution | 780 #m 40 ym 68 um 110 #m
(-6dB)
Side lobe width 1.3 mm 1.4 mm 2.9 mm 1.1 mm
(-32dB)

Table 5.3: Lateral resolution and side lobe width values for the single wire target

Another set of experiments were carried out to obtain the RF data from the point targets close

to the focus. These RF data were used to perform image reconstruction via the conventional

and SA methods. The resulted B-mode images are presented in the following section.
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5.4.2 Four wire phantom

conventional image
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Figure 5.21: Conventional image of 4 wires in a water container

5.4.2.1 Deconvolution method

Deconvolution method
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Figure 5.22: B-mode image of 4 wires reconstructed via deconvolution method
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5.4.2.2 Virtual point method

Virtual point method
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Figure 5.23: B-mode image of 4 wires reconstructed via virtual point method

5.4.2.3 Virtual line method

Virtual line method
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Figure 5.24: B-mode image of 4 wires reconstructed via virtual line method
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The purpose of the experiments with the four wire phantom was to explore the quality of the

SA reconstructions near the focal point.

Figure 5.21to 5.24 present the discussed B-mode images. The next sets of experiments were
performed using an excised bovine liver tissue as target for the imaging system. The
objective of these experiments was to observe the speckle pattern associated with the
homogeneous liver tissue using the conventional and SA reconstruction algorithms. Note that
the defined ROI for different algorithm are chosen based on their necessary requirements; for
example for the virtual line reconstruction the ROI has to be located after the focus which is

at 4.5 mm for the used transducer. As a result the area before the focus cannot be imaged.

5.4.3 Excised bovine liver target

cenventional image
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Figure 5.25: Conventional image of excised bovine liver
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5.4.3.1 Deconvolution method

Deconvolution method
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Figure 5.26: B-mode image of excised bovine liver reconstructed via deconvolution method
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Figure 5.27: B-mode image of excised bovine liver reconstructed via virtual point method
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5.4.3.3 Virtual line method

Virtual line method

Axial distance [mm]

lateral distance[mm)

Figure 5.28: B-mode image of excised bovine liver reconstructed via virtual line method

5.5 Discussion of results
The conventional and SA B-mode images obtained from the simulated RF data of an
unfocused transducer (Figure 5.1- Figure 5.3) suggests the following:
1) Both deconvolution and amplitude function SA work better than the conventional
algorithm in all regions.
2) The deconvolution method consistently generates a higher resolution than the

amplitude function method.

Since the focus in this project was on the high-frequency medical imaging applications, we

have not conducted any experiments with a piston transducer.

In our simulation and experimental results for a focused transducer, B-mode images

reconstructed via conventional, deconvolution, amplitude function, virtual point and virtual

line methods were acquired.
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Among these methods, the amplitude function produced unacceptably high side lobes

which severely degraded the B-mode image.

As previously discussed, the frequency domain model developed in this study is
defined over a 2D spatial domain that represents the imaging area. This is just a simplified
version of a more realistic imaging geometry in 3D spatial domain. What was considered in
our equations was just a cross section of the transducer in the imaging plane however it turns
out that the 3D shape of the transducer has a key role in forming the beam pattern of the
transducer. While this effect in a flat (piston) transducer is not as dramatic as the effect in the
curved transducer, this is thought to be the main reason for the unsuccessful amplitude

function reconstruction for a curved transducer.

Our simulations suggest that SA approaches cannot improve the lateral resolution in

the focal region. This matches our experimental results shown in Figure 5.21 to Figure 5.24.

A possible reason might be that the beamwidth in this region becomes very narrow and by
going farther in the synthetic aperture domain we do not acquire further more information

from the overlapped ultrasound beam.
Based on the simulation results presented in Table 5.1 the followings can be deduced:

1) Both the deconvolution and the virtual point methods result in a higher lateral
resolution and a narrower side lobe width than the conventional one before and after

the focus.

2) The virtual line method improves the lateral resolution and side lobe width comparing

to the conventional method only in the region after the focus.
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The experimental results from the single wire phantom confirm our findings for the lateral
resolution improvement in the simulations. However the SA reconstructions from
experimental data generally produced a higher side lobe width compared to the conventional

method except the virtual line method.

The virtual point reconstruction shown in Figure 5.16 looks very fuzzy that might be caused

by any or all of the following reasons:

1) Moderate focus of the transducer (F-number =2.25) that is not quite proper for the

virtual source assumption.

2) Attenuation causes the geometric focal point not to correspond to the real focal point
so the real location of the virtual source is not exactly what is assumed to be and this

accordingly results in a phase aberration effect.

3) Speed of sound in our implementation assumed to be 1540 m/s based on the VEVO
770 settings. This device is specifically designed for small animal imaging and the
mentioned speed value probably has been set for that application. However the real
speed of sound in the water is known to be less (~1500 m/s). This may have caused
an error in the virtual point reconstruction which is very sensitive to the phase

change.

It is known that matched filter is the optimal filter for maximizing the SNR in the
presence of uncorrelated, additive random noise similar to what exists in the ultrasound
signal. Therefore, it is expected that the proposed SA algorithms which involve a matched

filtering with a reference signal would improve the SNR.
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Our experiment with the liver target suggests a higher SNR in the deeper part of the SA

images compared to the conventional method where the signal in these depths is very week.

The smeared and elliptical speckle pattern observed in the virtual line method is thought to

be due to bandpass filtering effect of the amplitude function applied in the reconstruction.

Further investigation is needed in order to give a final opinion regarding the effects of

the SA reconstruction on the SNR.
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Chapter 6

Conclusion and future work

6.1 Summary

The synthetic aperture algorithms for high-frequency ultrasound imaging proposed in this
thesis are based on the frequency domain model of the imaging system. The fundamental
inversion equation common in all the discussed methods is adopted from the radar literature
where it is generally called wavenumber or @ —x algorithm. The algorithm obtains the 2D
FFT of the measured ultrasonic signal followed by the 2D matched filter and Stolt mapping.
Then a 2D inverse FFT transforms the outcome to time-space domain.

In this project, several SA algorithms were implemented for focused and unfocused
single- element transducers. The performance of each method was evaluated based on the
lateral resolution and side lobe width achieved in the simulated and experimental B-mode

images.
6.2 Conclusion

Frequency domain implementations of SA algorithm improve the lateral resolution in single-
element HFUI if the ROI is located outside of the focal region. However the improvements in
the experimental results were not as large as suggested by the simulation results. For the
targets located in the vicinity of the transducer focus, SA algorithms do not introduce an
improvement to the lateral resolution comparing to the conventional image. To obtain more
satisfactory result, there are more issues that need to be addressed such as high sidelobes and

3D nature of the imaging problem.
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6.3 Future work

The following are the anticipated steps should be taken to improve the SA algorithms

developed in this thesis:

1) Apply an arbitrary 2D window function of a varied length such as Hanning, Hamming,
or Blackman to improve the current results. It is important to note that although any
window function of such types suppresses the side lobes, they also result in loss of

resolution. Figure 6.1 shows the target spectral support in (k,.k,)domain for a curved

aperture and its corresponding 2D Hamming window function.

kA

0

Figure 6.1: Depiction of target spectral support for a curved aperture (Left) .A varied length 2D

Hamming window applicable to SAR reconstruction (Right) reprinted from[35]

2) Modify the 2D window function to a spatially variant apodization (SVA) function which
is introduced by Stankwitz for SAR imaging[36]. The advantage of SVA is that it
preserves the resolution and low side lobe of the other window functions. A more
simplistic case of SVA called “multiapodization™ has also been proposed in [35] which
may be adopted in the next step for the current 2D framework.

3) Develop a new 3D frequency domain model of the system which considers a 3D beam

pattern.
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