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Msc, Computer Science, Ryerson University, 2009 

ABSTRACT 

In this thesis, we proposed a spiking bidirectional associative metnory (BAM) using temporal 

coding. The information processing in biological neurons is beyond of that applied in the current 

Artificial Neural Networks (ANNs). The coding scheme used in ANNs known as "'mean firing 

rate" cannot answer the fast and complex computations occurring in the cortex. In biological 

neural networks the information is coded and processed based on the timing of action potentials. 

To improve the biological plausibility of the standard BAM, we employed spiking neurons for its 

processing units, and information is presented to the BAM in the form of temporal coding. The 

neurons employed in the model are heterogeneous, and being able to generate various spike-

timing patterns. Genetic Algorithm and Co-evolution are used for training, and the experimental 

results of the proposed BAM are compared to those of the standard BAM, The results show 

in1provements in recall, storage capacity and convergence which are of interest to design a BAM. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

The pioneering work of exploring the neural system was marked by Ramon Cajal who 

discovered the primary structure of the neural systems. Afterward neurophysiologists and many 

scientists in related disciplines have explored the structure and operation of the neural system in 

detail. The neural system is the most advanced and complex stlucture responsible for the central 

processing and controlling hub in the human and other species. 

One area of neuroscience research that has attracted significant attention is the computational 

neuroscience that explores the information contents of neural activities by modeling the neural 

systems mainly through two approaches. The first approach is to model biological neurons and 

its biophysical compmtments. The second approach is to model a network of interconnected 

neurons that represent the part of a complex neural system, and then finding the answers to the 

fundamental questions related to the neural coding and information processing in the brain. 

Investigating different models of biological neurons, neural networks and simulating the models 

by fast computational resources are the examples of neuroscience research that substitute the 

conventional methods of understanding the information processing in neural systems. 

In addition, computer scientists are trying to solve number of scientific and engineering problems 

by inspiration from biology. Artificial Neural Networks [1] and Evolutionary Computation [2] 

have become the two dominant tields of study in computational intelligence. These methods are 

applied in many scientific and engineering problems such as pattern recognition~ control, 

optimization and data mining. 



1.2 The information processing and action potentials 

How the brain processes the information and what kind of coding scheme used in this complex 

stlucture are the questions that have inspired many scientists in multi-disciplined fields to find 

the answers. The classic experiments of Adrian known as "The basis of sensation" have revealed 

three fundamental and universal features of neural coding and become the key steps to 

understand how the outside world is represented to the brain by firing time of neurons [3]. These 

neural principles are: 

1. Each sensory neuron, such as muscle and motor neurons, produces an stereotyped action 

potential or spike. This is known as "ali-or-none" law. After receiving stimuli these cells 

either produce or do not produce action potentials which are propagated along the cell's 

axon to the other neurons. In other words, there is no other form of intennediate signals, 

and consequently the set of arrival times of spikes called "spike train", generated by 

sensory neurons, provide information to the brain. These elementary units of neural 

coding are called "action potentials". 

2. The second neural coding principle is that by increasing a stilnulus, such as a continuous 

load on a stretch receptor, rates of action potentials are increased as well. This 

phenomenon, known as "rate coding", can measure the intensity of a stimulus by 

counting the nmnber of spikes in a defined time interval. This means the spike rate is a 

function of stimulus intensity with specific parameters that are chosen by neurons known 

as "feature selectivity". For instance, in visual neurons these parameters can be an object 

luminance, size, shape and color. 
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3. Adaptation is the third important exploration of Adrian that shows if a static stimulus is 

presented during a lengthy period of time, the rates of action potentials decrease 

comparing to the time that the stimulus is presented to a cell [ 4]. 

Another important issue about the action potentials in a neural system is the randomness of the 

neural responses. If the "ali-or-none" law experiment is repeated by the same stimulus, we end 

up with several spike trains that are not identical. One primary solution is to calculate the 

average of spikes over time. However if the trail is not possible to be repeated, the characteristics 

of a neural response can't be quantified. 

The relation between the spike train and real world signals (stimuli) represented to the sensory 

neurons is an essential concept to understand the neural coding in neural systems. More 

precisely, by creating a set of rules we will be able to understand the meaning of the neural 

responses which are in the fonn of spike trains cotresponding to the applied stimuli. 

In the real world there may be several stimuli that simultaneously are received by sensory 

neurons and as explained previously there is not one to one relation. To formulize the variability, 

conditional probability theory is applied such that the probability of observing a spike train {ti} 

given the stimulus s(t) is calculated. Then, the reverse relation which is the likelihood of 

observing the stimulus s(t) given the spike train {ti} is calculate by Bayes' theorem [5]. Entropy 

has also been used to quantify the relation between spike trains and stimulus. The entropy of a 

neuron's spike train on the presence of a stimulus over a period of time is computed. If the same 

trail is repeated, however there would be a different spike train and as well as a different 

computed entropy. The difference between the two entropies gives the information that a spike 

train provide about the stimulus [6]. 
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In addition to revealing the neural codes by understanding the relation between a stimulus and a 

spike train, there are several neural coding schemes regarding the amount of information canied 

by the timing of spikes. In general the coding schemes are categorized to the Rate coding and 

Spike coding which are discussed in Chapter 2. 

1.3 Spiking neurons 

In addition of exploring the information processing in biological neural system, this is important 

to investigate what kind of artificial neuron model is best suited to represent its counterpart 

biological neuron's properties. There are several spiking neuron models for simulating the 

dynamics of cortical neurons. In a general, these models fall in three categories. 

The first group are the artificial spiking neuron n1odels whose dynamics are described by a 

number of differential equations. These models consist of the parameters explicitly representing 

their counterpart biological neurophysiologic components such as ionic cunents. Hodgkin­

Huxley model [7] is an example of spiking neuron model in this group. This model describes the 

dynamics of a biological neuron with its lmown components. However, it is difficult to set the 

accurate values for its parameters experimentally. The model consists of sixteen differential 

equations and ten variables. Therefore, simulating a large neural network that employs the 

spiking neuron is computationally expensive. A simplified model of Hodgkin-Huxley was 

proposed by [8]. However, the simplified model does not have the capabilities of the Hodgkin­

Huxley model in terms of generating all known neuro-computational spiking patterns which are 

believed to have significant roles in spike-timing information processing. 

The second group of spiking neuron models are also represented with several differential 

equations. However, they do not include the parameters corresponding to physical properties of a 
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biological neuron explicitly. The membrane potential of a neuron is the element that describes 

the dynamics of the neurons. For instance, Resonate-and-Fire spiking neuron [9] and 

Izhikevich' s spiking neuron model [10] belong to the second category of cortical spiking neuron 

models. 

The third group of spiking neuron models are the threshold-fire neurons that describe the 

neuron's computation by integrating inputs and firing at a defined threshold. Integrate-and-fire 

(I&F) and Spike Response Model (SRM) are two examples of this group. I&F parameters are 

depended on the voltages of neurons whereas in SRM the parameters depend on the time of the 

last spikes. One issue in I&F model is that the neurons act as integrators which is not always the 

case in reality because real neurons exhibit spiking patterns such as resonance, inhibition, and etc 

[ 11]. The descriptions related to the most common spiking neuron models are provided in 

Chapter 2. 

The computational cost and biological likelihood of a spiking neuron model are very important 

to evaluate the neuron model. The range of neuro-computational patterns that a spiking neuron 

model supports measures its biological likelihood. Neuro-computational patterns, or spiking 

patterns, are the dynmnical features that biological neuron are able to generate at the presence of 

stimuli. There are over twenty known spiking patterns such as tonic spiking and phase spiking. 

Hodgkin-Huxley spiking neuron model is the most complete model among the twelve common 

spiking neuron models. It demonstrates better ability to support all dynamical features of a 

biological neuron and its biophysical correlates. However, its computational cost is the highest 

among all models. On the other hand, Integrate-and-fire model support least neural features but 

its computational cost is the least. 
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Therefore, by considering the two criteria among the spiking neuron models, Izhikevich's 

spiking neuron model proposed recently is the best model. The model is as biologically plausible 

as Hodgkin-Huxley model and computationally efficient as Integrate-and-fire model. The 

dominance of the model based on the two criteria has been investigated in [12] through 

comprehensive comparisons among the other common spiking neuron models. 

1.4 Spildng Neural Networks 

Artificial neural networks (ANNs) have been successfully applied to many cognitive and 

engineering problems. ANNs have been improved gradually since its first introduction. The 

primary models were able to compute digital information [13].0ne such that improvement was 

the use of activation function for their processing units. It enables them to compute continuous 

values and generating outputs of specitic ranges (or nmmalized firing rate). Although this 

improvement was significant, and it increased the computational power of artificial neural 

networks, however there are number of shmtcomings as the following: 

o The fast and complex computations in the biological neurons in the cortex area cannot be 

explained by the neurons used in ANNs. The dynamics of biological are very complex. 

Biological neurons exhibit over 20 neuro-computational patterns such as phase spiking, 

tonic bursting, phase bursting, spike latency, and etc. The ability of generating these 

patterns is highly important in neural computation context. 

o The features and properties of biological neuron cannot be integrated and tested in the 

current artificial neuron models. 

Nonetheless, artificial neural networks that use activation functions their normalized outputs (or 

nom1alized firing rates) can be interpreted as "mean-firing rate" coding. This coding is similar to 
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the operational mode of biological neurons in high cortical areas known to fire in various 

frequencies between their minimum and maximum frequencies [14]. However, with regards to 

the fast analog cmnputation of biological neurons in the cortex, "mean-firing rate" scheme is a 

debate in research community. For instance, humans are able to analyze and classify visual 

patterns within 100 ms. The process involves 10 synaptic stages from retina to the temporal lobe. 

It has been shown that a single cortical area involved in visual processing can complete its 

process in 20-30 ms. On the other hand the firing rates of neurons involved in this computation 

are usually below 100 Hz and at least 20-30 ms is needed only to sample the firing rate of a 

neuron [15]. 

Many experimental results from neurobiology have led to the theory that biological neural 

systems use the timing of action potentials or spikes to encode information [4]. The results from 

the biological experiments in years have inspired the investigation of a different type of neural 

networks known as spiking neural networks (SNN s) which apply spiking neurons for their 

computational units. 

Unlike the current artificial neural net\vorks, SNNs are able to expressmg spatial-temporal 

properties of biological neurons [16]. These properties are not considered by comn1on neural 

networks. An important characteristic of spiking neural networks is that they are naturally 

embedded in time. Spike latencies, axonal delays, refractory periods, neuron resonance and 

network oscillations provide the ability to process time-varying data in a more natural and 

computationally powerful way than is available by the second generation models [17]. 

To build a spiking neuron network, there are issues such as processing time, training and 

biological likelihood of the spiking neurons that are embedded to the network. Very realistic 
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spiking neuron models are computational expensive and small number of them used in a 

simulation takes huge amount of time, and it is even impossible to simulate a large network. In 

addition, many well-known learning methods such as Hebbian and Back-propagation learning 

methods [ 18] have to be adapted for spiking neural networks due to their complex spatial­

temporal structure and processing unit models. The learning methods of SNNs are bounded by 

their spiking neuron models and structures. In other words, they cannot be generalized for all 

spiking neural networks. For instance, SpikProp [19] was proposed only for the simplified spike­

response neuron model by adding several restrictions and assumptions. ReSuMe learning method 

also is applied with a specific stlucture that employs a different spiking neuron model [20]. 

It has been shown that the neural networks which employ continuous real-valued activation 

functions can be constructed by spiking neural networks using a delay coding named temporal or 

firing order coding [21]. The spiking neuron model employed in the model is the simplified 

version of spike-response model. The study has shown theoretically that a feed-forward spiking 

neural network with temporal coding can emulate any arbitrary feed-forward neural networks 

and the model is several times faster than the current ANNs, implemented via frequency-coding 

or firing rates, and the spiking neural network requires less number of neurons. 

Hopfield has also simulated radial base function by spiking neurons with temporal coding [22]. 

The model does not provide a learning rule for adjusting weights, and a multi-layer neural 

network cannot be simulated. 

The spiking neural network model proposed by [21] also has been applied for modeling a spiking 

bidirectional associative memory proposed in [23]. The complexity of the spiking BAM's 

structure is higher than the standard BAM~ s since it uses a multilayer neural network. In addition 
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the spiking neuron model employed in the model is the simplest one, thus it does not take 

advantage of the advanced spiking neuron models. 

Moreover, a model of SNN architecture has been also proposed to constn1ct a non-linear 

function approximator, and the model is able to simulate any real valued function [24]. This 

network employs leaky integrate-and-fire spiking neuron model. In addition, the learning method 

used in the network is based on gradient descent method, unlike the model used in [21] which 

applies Hebb's rules. 

It has been shown that spiking neural networks can also be used to model auto-associative 

memory (Hopfield network) with temporal coding. The structure of the model is similar to the 

Hopfield network and its processing units are based on spike-response model [25]. 

1.5 Objective 

Knowing the weaknesses of the cutTent artificial networks and the advantages of spiking neural 

networks, in this thesis we aim to construct a different type of bidirectional associative memory 

(BAM) that employs an advanced cortical spiking neuron model. Three distinguishing 

characteristics of the proposed spiking BAM compared to the standard BAM are: 

1, The likelihood of its functional units (neurons) to the biological neurons. 

2. Processing of information in the fonn of action potentials. 

3. Representing infonnation by the temporal coding scheme. 

In other words, by designing the spiking bidirectional associative men1ory, we aim to construct a 

more realistic BAM whose processing units operate the way as biological neurons. In addition, 

the information presented to the spiking BAM is in the form of action potentials in various firing 
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times. Presenting information in this fonn is similar to the information provided to the biological 

neural system by sensory neurons. After implementing the spiking BAM, we will conduct a 

number of experiments to investigate the model performance versus similar experiments 

performed on the standard BAM. 

1.6 Methodology 

To achieve the implementation of the proposed spiking bidirectional associative memory 

described in 1.5, we outline the four main parts of the methodology that will be described in 

detail in Chapter 3. These main parts are: 

1. The structure of the proposed model is similar to the standard BAM which is a two­

layer recurrent neural network. 

2. The processing units of the proposed neural network are based on the Izhikevich's 

spiking neuron model. 

3. The coding scheme used for the model is the temporal coding schetne which is a 

variation of the spike coding scheme. 

4. The proposed model is trained by Genetic Algorithm and Co-evolution methods. 

1.7 Results 

In this research we conducted several experiments to investigate training, recall, storage 

capacity, convergence and the number of iterations needed to recall patterns. These are the 

important factors to design a successful model of bidirectional associative memory. The results 

show number of improvements in recall, storage capacity and convergence. Moreover, the 
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biological plausibility of BAM's processing units has been increased, and the model is able to 

process information that is presented in the form of firing times. 

1.8 Thesis outline 

In order to accomplish the study, Chapter 2 focuses on background related to current approach 

on associative memory, spiking neuron models, neural coding schemes, spiking neural networks, 

and spike-timing encoding methods. In Chapter 3, the proposed spiking BAM is described. 

Chapter 4 provides the experimental setup, the results, and discussion about the model 

perfonnances in the several aspects. Chapter 5 presents the summary and conclusion, and future 

research and the application of the model are pointed out. 
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CHAPTER2:BACKGROUND 

2.1 Associative memory 

Associative memory is the intrinsic and primary function of the human brain. When we see an 

acquaintance our brain maps the pattern of the face to the person's name, or it associates a name 

to a phone number. Associative memory may also be used as part of a system. For instance, in 

banking system the password that a client enters is mapped to the image of an original password. 

The computer memory also associates an address to data. The other type of associative memory 

is called Content-Addressable Memory (CAM) which associates data to the address of other 

data. This type of memory is also known as Hopfield memory. Hopfield is the pioneer of 

modeling associative memory by artificial neural networks [26]. 

Essentially, to model an associative memory we need to represent the patterns in the form of 

n-dimensional vectors. Therefore, there might be k pairs ofpattetns (vectors) such as 

{(XI,Yt), . . . , (Xi,Yi)} i=1, ... ,k (2.1) 

and a function 'JI(,\) that maps each x; to Yi . The dimension of vectors (patterns) Xi, Yj may be 

different, and the mapping function can be a linear or non-linear. The vectors are in the 

Hamming space which means their components are either + 1 or -1. In Hamming space, the 

number of mismatches between the corresponding components of two vectors represents the 

Hamming distance of the two vectors. The following sections describe the mathematical 

representation of associative memory which is in three categories [27]. 

2.1.1 Hetero-associative memory 

In this type of association, the mapping function 'I'(X) is modeled as 
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'V(Xi)=Yi i= 1, ... ,k ( number of patterns) (2.2) 

and if a pattern X with the closest Hamming distance to Xi is represented to 'Jf , then '!'(X) must 

be equal to Yi such that 'Jf(X)= Yi . 

2.1.2 Interpolative associative memory 

This is similar to the hetero-associative memory, however, if a given noisy pattern "'y differs from 

X by the vector a then the mapping function is presented as 

'!'(Xi +a)= Yi + {3= Y i=l, .. . ,k (2.3) 

Pattern Y differs from Yi by the vector fJ. If we try to minimize the distance of Yi and fJ by an 

optimization methods then 'I' becomes a hetero-associative memory. 

2.1.3 Auto-associative memory 

In this type of associative memmy each pattern is mapped to itself thus the mapping function 'I' 

is constructed such that 

'I'(Xi)= X i=l, ... ,k (2.4) 

and if a given pattern X has the closest distance to X; then '!'(X)= X . 

If the patterns are unit vectors and orthogonal, the mapping function 'I' can be implemented such 

as 

i=l, ... ,k. 

For instance, fork orthogonal patterns based on hetero-associative function \jf we have 

'V(X3)=(Y1X1T + YzX/ + .. . + Yi,.X/ )X3= Y1.X/ X3+ YzXzT X3+ Y3X3T X3 + Yi,X/ X3=Y3 

13 
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where Xi .A)= I for V i,j that i=j, and X~· =0 for V i,j that if.}. 

In case a set of patte1ns are not orthogonal the mapping function ~1(_xf +a)=Yi + j3 is not linear 

and the eiTor can be calculated such as 

i=l, .. . ,k. (2.6) 

2.2 Bidirectional associative memory 

Bidirectional associative memory (BAM) is a dynamical system that belongs to the family of 

hetero-associative memory [28] as shown in Figure 2.1. BAM is a fully connected recurrent 

neural network that has two layers. These layers can act as both inputs and outputs. The 

information from the first layer (~l') is propagated to the second layer (Y) and the output of the 

second layer is propagated to the first layer, and one such cycle is referred to as a reverberation 

(or iteration). BAM is an extended version of Hopfield network that associates two different 

patterns with different dimensions. 

n neurons m neurons 
in y layer ..... -, 

( l 

Figure 2.1 The schematic view of a standard BAM 

The values of the connection weights are calculated as 

i= 1, ... , p (number of patterns) 
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The equation (2. 7) is based on the Hebbian learning. The mapping function to calculate the 

outputs in both X and Y layers are 

Y=WX & (2.8) 

2.2.1 Processing information in BAM 

Recalling stored patterns and noise corrections are an iterative process in BAM network. Let's 

assume that A1, Bt are the noisy version of A, B which are the two stored associated patterns to 

each other. At the beginning, A 1, B 1 are represented to the second and first layer respectively and 

the outputs are generated as follows 

n m 

+1 Iwkj.a.i >0 +1 Iw~.b.i >0 
j=J j=J 
n m 

[( b~ Iwkj.a.i =0 a~~= a~ l:w~.b.i = 0 k=1, .. . ,m & q=l, .. . ,n (2.9) bi+J = I I 

j=J .i=l 
n 111 

-1 Iwkj.a.i <0 - 1 l:w~.b.i <0 
j=J j=J 

b\+1 is the updated output of component k from the second layer Yand aq i+I is the updated value 

of the component q from the first layer X . n and m are the numbers of neurons used in X, Y 

layers respectively. After updating the outputs of all nodes in both layers, the new vectors A2,B2 

are sent back to the Y and X layers. The cycle of updating the outputs and feeding back to the 

opposite layers is repeated until there is not further changes between the vectors Ai, Ai+I and B i, 

Bi+I at the iterations i and i+ 1, and At+t, Bi+I are the fixed points. 

2.2.2 BAM energy function 
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In the BAM, the weight matrix is calculated by (2. 7), and afterward the weights are the fix part 

of the system. However, the recalling process is an iterative and dynamical process. When the 

noisy patterns A1, B1 are presented to the network, they are changed based on equation (2.9) until 

the networks reaches a stable point. Thus, there would not be further changes to the outputs. 

These vectors are changed as a function of time and it makes BAM to be a dynamical system. 

In a dynamical system, to show that there is a stable state, its energy function must be a 

Lyapunov function. Based on the Lyapunov's theorem, a dynamical system has a stable state if it 

meets the following conditions [27]: 

• Any change in the system must result in decreasing the energy level. 

• There must be a boundary to the minimum level of energy. 

• The time to reach a stable point or minimum energy level must not be infinite. In other 

words, the changes of energy level must not be extremely small leading to reach 

minimum energy in infinity. BAM energy function is defined as 

m n 

E(X,Y)=-Yr.w.x or E(X,Y)=-_L_Lyi.wijxJ (2.10) 
i=l )=1 

The energy function E meets the criteria set by Lyapunov's theorem. Therefore, BAM is a 

dynamical system that has a stable state according to the following: 

• Changing the vectors presented in the X, Y layers by updating the outputs in each step, 

decrease the energy level. 

• There is a minimum boundary for energy value which is equal to 
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(2.11) 

• A stable state is reached in finite time. 

Based on the above criteria, the energy level has a minimum boundaty. As a result, it cannot 

move to the negative infinity and the stable state is reached in finite iterations. The following is 

the mathematical explanation that shows the decrease of energy during recall process [27]. Let 

assume that by propagating the vector X to the second layer Y the component q of this layer is 

changed. Therefore yq is changed to y'q. According to (2.1 0) 

m n m m n 

E(X,Y) =-LLYi.wiixJ =-LYq.w!ixJ- LLY;·w!ixi 
i=1 }=1 i=1 

m m n 

E'(X,Y) =-LY·q.W!ixi- LLY;·wiixi 
i=l i=1 }=1 

i=q 

i=l J=l 
i=q 

By subtracting the two energy value (2.12) and (2.13), the difference is equal to 

m 

M'(x,y) = E'(x,y)- E(x,y) = (yq- y~)L wqixi 
i=1 

(2.12) 

(2.13) 

(2.14) 

If J'q is changed fron1 + 1 to -1 then based on (2.9) the second part of (2.14) is negative and the 

first part of the equation (2.14) is positive, thus M is negative. In case yq is changed from -1 to 

+ 1 according to the equation (2.9) the second part of the equation (2.14) must be positive and the 

first part becomes negative. Consequently, the multiplication is negative. As a result, in both 

cases the energy values are decreased. The procedure can be generalized when more than one 

component of Y layer is changed. 
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2.2.3 BAM storage capacity 

The number of patterns that can be stored and recalled correctly is limited in BAM. If the 

network is over loaded by patterns, a phenomenon known as crosstalk occurs. It means by 

representing a noisy version of one of the stored pattern, the network instead of converging 

toward a stored pattern, converges to a pattern that is not similar to any stored pattern. It has been 

shown by Kosko [28] that the maximum number of patterns, p, is equal to 

p=Min (m, n) n= .LY's dimensions, m = Y's dimensions (2.15) 

There is another conservative evaluation that heuristically shows the real maximum capacity is 

equal to 

p = ~Min(n,m) (2.16) 

2.3 Genetic Algorithm 

Genetic Algorithm {GA) [2] is a heuristic optimization method which effectively used in 

Machine Learning. It has successfully been applied to various problems related to theoretical 

sciences and engineering. GA was inspired by Darwin's theory of "the survival of the fittest'' . 

The strength of the method is in its exploitation and exploration properties. In other words, this 

method not only attempts to find out the best solution in its local search but also searches for 

other alternative and possibly better solutions in the entire area of the search space. The 

complexity and magnitude of search or solution space varies from one problem to another one. In 

GA, primary or candidate solutions for a given problem are represented in a fixed length of 

strings or more precisely chromosomes. These coded strings are called genotype. Before 

converting an initial solution to the fonn of chromosome representation, the solution is called 
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phenotype. A chromosome consists of genes which are the components of a solution such as 

parameters. Alleles or bits also are the components of a gene and their values, for example in 

binary representation, are 0 and 1. In GA, there must be a mechanism to evaluate each 

individual's fitness or the quality of solutions. The methods of fitness evaluation are varied, and 

it depends to the type of problem being solved. 

GA uses genetic operators inspired from natural random selection and recombination. These 

operators are applied to the individuals of a population and the offspring with the higher fitness 

are passed to the next generation. This evolving process is continued until the desired solution is 

reached. 

The start point in GA is to create an initial population. A population consists of individuals that 

are the primary solutions. These primary solutions are the initial states in the solution space. A 

solution space can be considered as a graph that we can move fron1 one node (solution or state) 

to the others. In GA there are number of evolutionary-inspired operators and they basically act as 

shifting the individuals of a population to different states. These operators are mutation, 

crossover, reproduction and selection. 

2.3.1 Mutation 

Mutation transforms the values of selected alleles within a gene. In binary representations shown 

in Figure 2.2 one is flipped to zero and vice versa. Although each genetic operator has its own 

advantages, mutation is an important operator that maintaining diversity in population. 

1100110101100111 

f + y 
1101110 0 01100011 

Figure 2.2 Mutation in alleles 
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2.3.2 Crossover 

Crossover operator is applied on two individuals. One or two points are selected within the range 

of a chromosome length. The selected parts of the chromosomes are exchanged between the two 

individuals as shown in Figures 2.3, 2.4. 

11 0 0 1 1 0 1 0 1 1 0 0 1 1 I I 0 -: G 0 ·'~ G 0 G i () 0 0 1 1 
---fli.-

I'.) : L c j G {} 0 ! () 1 0 1 ol 11 0 0 1 'l 0 ·j 0 1 '1 1 0 1 ol 

Figure 2.3 One-point Crossover 

11 0 0 1 1 0 1 0 1 1 0 0 1 1 I I o ; o 1 1 0 1 0 1 1 ., c 1 c 1 
---fli.-

1 n ,, (} 0 1 0 0 0 1 0 ., o 1 n I 11 0 0 0 1 0 0 0 1 0 0 0 1 1 I 

Figure 2.4 Two-point Crossover 

2.3.3 Reproduction 

Reproduction operator is the simplest one. The selected individual is duplicated and directly 

passed to the next generation. Usually a few best individuals of a generation are selected since 

they can contribute their good traits to the next population. 

2.3.4 Selection 

The selection operator is applied to the entire population. The best individuals are selected and 

collected in a selection (candidate) pool. The genetic operators are applied to the selected 

individuals in the pool. There are several methods of selection. However two common selection 

methods are Fitness-proportional selection and tournament selection. The following are a brief 

explanation of the methods [29]: 
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• In tournament selection a group of individuals with the size of k, tournament size is 

randomly selected. In this group individuals compete with each other and the individuals 

with best traits, winners, are mutated and passed to the selection pool. The rest of the 

individual, losers, are returned to the population. This routine continues until an specific 

number of individuals are passed to the selection pool. 

• In Fitness-proportional selection method a probability is assigned to each individual in 

the population. These probabilities determine the chance that an individual can pass their 

offspring to the next generation. Obviously, the individuals with higher probability are 

selected more. The probability of ith individual in a population of size n is calculated as 

- /; P; - -N-- fi= The fitness value of i1
h individual (2.17) 

L fj 
j=l 

2.3.5 The genetic algorithm steps 

To apply the Genetic Algorithm the following steps are taken: 

1. Representing the primary solutions in a fix length of strings (chromosomes) by a proper 

coding scheme. 

2. Finding a suitable fitness ftmction for evaluating each individual (solution). 

3. Defining the rates that each type of the genetic operator is chosen during evolution. 

4. Defining the maximum number of generations that the evolution cycle should continue. 

5. Creating n random solutions in the initial population. 

6. Creating a candidate pool from the recent population. 

7. Applying the genetic operators on all individuals of the candidate pool. 
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8. Evaluating the offspring by fitness function and passing the winners to the next 

generation. 

9. If the termination criteria are not met repeating the steps from 6 to 9 on the recently 

created population. The termination criteria are met when either the desired solution is 

obtained or the maximum number of generations is reached. 

2.4 Co-evolution 

Co-evolution is an important phenomenon for the evolutionary process in nature where two or 

more different species compete with each other and affect each other evolutionary processes. For 

example, plants over time evolving to make stronger exterior to prevent insect eating them. On 

the other hand, insects also at the same time evolving stronger jaws enabling them to eat those 

plants and this competitive process may continue over time for any changes on the both species. 

Regarding to the above explanation the principles of co-evolution have been adopted and 

modeled in evolutionary computations to increase its performances for complex problems. By 

this model, an original problem including several components is decomposed to several sub­

problems and for each one a separate population and consequently evolutionary process takes 

place. To obtain and evaluate a desired solution for the whole system, the selected sub-solutions 

from each population are integrated and evaluated as one complete solution for the system [30]. 

2.5 Biological neurons 

A biological neuron consists of three main functional parts that are called dendrites, soma and 

axon. The dendrites are a neuron's input devices. The soma is the central processing part of the 

neuron, which performs non-linear processing. The axon carries the neuron output signal. The 

junction between two neurons is called synapse. In the nervous system shown in Figure 2.5 the 
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neuron sending its output signal to the other neurons is named pre-synaptic neuron and the 

neuron that receives the signal is called postsynaptic neuron. 

synaptic junction 

soma of neuron A · . ~ L "m"f "'"'o" B 

~/~\~.: ~/ ... ~ ' :''(f\ 
Figure 2.5 A schematic view of two connected biological neurons [11] 

The neural signals are short electrical pulses called action potentials or "spikes" with the 

amplitudes of approximately 1 OOmv and the duration of 1-2ms. Spikes are the wave of 

electrochemical activity. The form of the pulses or spikes depicted in Figure 2.6 does not change 

while propagated along the axon. 

time 

Figure 2.6 The form of an action potential (spike) in a biological neuron [ 11] 

In a sequence of pulses or "spike train" since the form of pulses are similar, they do not carry any 

information. However, the timing of spikes in a spike train has meaning and carrying 

information. In a spike train, the timing of spikes may or may not be at regular intervals. After a 

neuron sends a spike, it is impossible for the neuron to generate the second spike immediately 

even the neuron receiving exceeding input signals from the pre-synaptic neurons. The period of 

time that is impossible for a neuron to fire a spike is called "absolute refractmy time". The 
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reason is that the threshold value is increases to infinitive and over time decreases until it reaches 

the minimum level as shown in Figure 2. 7. After this period of time, within a certain time it is 

hard to exit neuron to generate spike ,however It is not impossible and this period of time is 

called relative refractory time. 

absolute 

~~Lrefractory period 

I Minimum 
: threshold level at 
: /equlibrium state 

r--,--
1 

~ time 

The time neuron 
fires 

Figure 2. 7 The form of threshold at the time of spike and after that in a biological neuron [ 16] 

In case a neuron does not receive input signals, the neuron's membrane potential won't be 

changed and the neuron is at rest or equilibrium state. The membrane potential u(t) is the 

potential differences between the interior of the cell and its surroundings. Resting potential is 

about -65mv with negative polarization. Depolarization of u (t) happens when an input reduces 

the negative polarization of membrane potential through an excitatmy synapse and hyper-

polarization happens when an inhibitory synapse increases the membrane negative potential [31 ]. 

In a simple mathematical expression a spike denoted t(j) is generated at timet when the neuron's 

potential u(t) passes the threshold(} from below or 

du(t) > 0 & t=lf) 
dt 

(2.18) 

The effect of a spike fired by a pre-synaptic neuron on the potential of post-synaptic neuron is 

called post-synaptic potential (PSP) shown in Figure 2.8. PSP on excitatory neuron denoted as 

EPSP and for inhibitmy neuron IPSP. 
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pre-synaptic 
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tf' Synaptic delay 

time 

Figure 2.8 The form of PSP at the time of spike and after that in a biological neuron [ 16] 

2.6 Spiking neuron models 

To describe the dynamics of biological neurons several spiking neuron models have been 

proposed, and in a broad category the models can be grouped in two as the following: 

2.6.1 Hodgkin-Huxley 

Hodgkin-Huxley~s spiking neuron model is the most complete spiking neuron model that not 

only is rich on generating all known spiking patterns but also includes all known biological 

correlations [7]. This model describes that the semi-permeable cell membrane which separates 

the interior of cell from the extracellular liquid reveals dynamical properties similar to those of a 

capacitor and mathematically can be shown as 

/total (t) = Jc (t) + L/k (t) (2.19) 
k 

(2.20) 

The sum of ionic currents is _LJk(t), and Ic(t) is the external current applied to cell. The 
k 

membrane voltage is denoted u(t) . This model has three channels that are opened and closed at 

different times and lets the ions flow in or out of cell and change the equilibrium state of the 
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neuron 0 The two ionic channels are K ,N a+ and the third is a leakage channel for unknown 

current. There are several simplified versions of Hodgkin-Huxley model which the most 

common one is Leaky Integrated-and-Fire model. It models the dynamic of a neuron by an RC 

circuit. 

2.6.2 Spike Response Model (SRM) 

Spike Response Model (SRM) [32] is the simplest spiking neuron model that represents the 

dynamic of a neuron at time t by the firing times of all pre-synaptic neurons sending spikes to a 

post-synaptic neuron i up to time t, unlike Hodgkin-Huxley spiking neuron model that the 

dynamic of a neuron at time t described by a set of differential equations as a RC circuit. The 

mathematical form of the SRM model is described as 

n 

ui(t) = TJ(t- ~) + L w!i I>~·!i(t- tf) + u;(O) 
}=1 f 

The equation (2.21) describes the potential of a neuron i at timet. The} neurons (j=l, . .. , n) are 

the pre-synaptic neurons connected to neuron i through the synaptic junctionso Wij is the synaptic 

efficacy or weight for the link from the neuron j to the neuron io The last firing time of the 

neuron i denoted as ~and the function 17 describes the potential changes of neuron i at the time i; 

of spike and afterward. The function e which is called response function describes the post 

synaptic potential (PSP). PSP is the effect of pre-synaptic potential on the potential of neuron at 

destination. In other word, let assume neuron i is in equilibrium state at time to and only neuron j 

sends one spike to neuron i at time t. Thus, the PSP at the destination is equal to 

e(t-to)=ui(t)-ui(to) (2.22) 
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In formal SRM model the function £ is replaced by Dirac delta function, therefore the 

summation L &ij (t- tf) is, in fact, over the firing times or spike train (2.23) of neuronj. 
f 

(2.23) 

The dynamic of threshold function and PSPs in two simplified models [ 16] of the SRM are 

shown in Figures 2.9 and 2.1 0. 

n; 
:p 
c: 
QJ 

"&_ pre-synaptic 
neuron j fires 

1 
tf i t{ +dij 

J I 

Synaptic delay 

time 

pre-synaptic 
neuron j fires 

t f 1' t-
1 

+d .. j } lj 

Synaptic delay 

time 

Figure 2.9 The dynamics of PSP function in two simplified SRM spiking neurons [16] 

absolute 
refractory period 

,/, 
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: : /threshold 

--------, ,--
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. 1 f" The t1me neuron 1res 

time 

Figure 2.10 The dynamics ofthreshold function in the simplified SRM [16] 

2.7 Neural coding 

In general to investigate the problem of neural coding, we should find answers for the following 

questions: 

• The patterns of spikes contain what type information. 
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• The neurons employ what form of coding and decoding schemes to transmit and receive 

the infom1ation. 

More importantly, we want to read the neural patterns and understand their meanings. However, 

there are number of speculations and there are not complete answers for these questions. It's 

been studied that in the mammalian brain more than 1010 neurons exist. In such a complex 

structure thousands spikes are fired only in a fraction of a second. 

Basically, there are two theories to tackle the neural coding problem. The first and conventional 

scheme is the Rate code and the second is the Spike code. In the following we discuss these two 

points ofview. 

2.7.1 Rate code 

By this coding scheme the number of pulses (spikes) is counted within a defined time interval, 

usually 500ms, and a temporal average is calculated [ 4]. This method is known as "mean firing 

rate" and the idea is that the information is coded in temporal averages. There are three different 

approaches for the rate coding method. 

1. Using spike count method, the number of spikes generated by a single neuron is counted 

within a time interval on a single trail. In a trail, a stimulus is represented to a neuron, and 

its response which is a spike train is examined. The temporal average v is obtained by 

dividing the number of spike by the time interval 

ns 
v=-

T 
T= time interval 
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2. Spike density method is similar to the spike count, however temporal average is calculate 

over several trail by a single neuron as 

1 ns 
v=-.-

T K 
ns =the nmnber of spikes inK trails (2.25) 

3. Based on the population activity method the temporal average is calculated over a group 

of n neurons functioning similarly and a single trail is perfonned during a time interval T 

and the temporal average calculated as 

n 

LLO(t -tj') 
1 1·=1 r v:::::- ..;:____:::· ___ _ 
r· n 

(2.26) 

where L o(t- tf') is the spike train of neuron j and the neuron response function & 1s 
f 

replaced with o function. 

2.7.2 Spike code 

This coding is not based on the strategies that calculating the temporal average as the Rate code 

methods. Instead spike coding [33] considering the timing of each single spike within a relatively 

very shorter time interval, about 10 ms, compared to the time interval of the Rate code. The 

following lists different schemes of spike code and con1paring the amount of information each 

can carry according to the information theory. 

1. Count coding: Count coding is the weakest type of spike code and it is similar to spike 

count. However, it does not calculate the average of spikes over time T and instead 
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simply counting the number of spikes. The amount of information is carried by n neurons 

is equal to log~n+t) bits of information. 

2. Binary coding: In binary code the firing of a neuron in tilne interval is considered one 

,otherwise it is considered 0. Then, these values are put together as a string of 0 and 1 and 

interpreted as a binary number. This coding cany log;" bits of information by n neurons. 

3. Temporal coding: Temporal coding is the most powerful scheme that the exact timing 

of spikes for neurons is considered. For instance, tt is the firing time of the first neuron, 

t2 for the second neuron and tn for the neuron n ( 0 :::; t1, t2, ... , tn:::; T).The amount of 

information over time T with n neurons is equal to n.log; . 

4. Rank order coding: In rank order code, a rank number is assigned to each neuron 

according to its firing time. For instance, in a !Oms time interval a neuron fires at 4ms 

obtaining rank 4 and rank 9 is assigned to the other neuron firing at 9tns and so on. The 

amount of information for n neurons in T ms is equal to log~! . 

5. Synchronization coding: By synchronization coding the neurons that firing 

approximately in the same time are grouped together. For example with 4 neurons, if the 

first neuron fired at early 4ms and the second neuron 2 fired at late 2ms, these two 

neurons are considered in group A. On the other hand, if third neuron fired at late 7ms 

and fourth neuron fired at early lOms, these two neurons are put in group B. Having a 

population of n neurons and g groups within time T, the amount of infmmation is equal to 

log~g+tf bits. 
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The amount of information (number of bits) that each spike code scheme can carry when n=15, 

T=15 and g=4 is shown in Table 2.1. 

Table 2.1 The amounts of information that each coding schemes carries 

Spike count Binaty code Temporal code Rank order code Synchronization code 

4 bits 15 bits 58.6 bits 40.2 bits 34.8 bits 

2.8 The properties of spiking neuron model 

To choose a cortical spiking neuron model for constructing a spiking neural network, the 

following factors are important to be considered: 

o The model richness in terms of generating neuro-computational features of the biological 

neuron. 

o Its computational costs and complexity. 

It has been studied that neuro-computational features contribute significant roles in spike-timing 

information processing and especially in temporal coding. Neuro-computational features in other 

words are the firing patterns generated in form of spikes by biological neurons [12]. 

There are about twenty types of firing patterns such as tonic spiking, phase spiking, and spike 

latency and so on. These firing patterns are recorded by attaching an electrode to the neuron and 

measuring its membrane potential changes while a DC cunent as a input is applied to the neuron 

that is in equilibrium state. For example to describe the dynamics of spike-timing patterns, we 

explain Tonic spiking. This patte1n is produced by a class of neuron called regular spiking 
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neuron (RC).It is one type of excitatory cortical neuron that firing spikes continuously as long as 

the input de-current injected to the neuron is on. 

The second aspect to choose a spiking neuron model is the computational cost. The 

computational cost of simulating a few connected neurons does not have any impact on the 

system. However if a network consists of thousands neurons, it has huge computational effect, 

and it may not be even possible to simulate such a network. Moreover, using a powerful 

computational resource is not the realistic solution because the neural processing speed in human 

brain is less than 100 Hz. But, it can computes very complex tasks such as pattern recognition in 

a fraction of second. 

2.9 Izhikevich's spiking neuron model 

Izhikevich's spiking neuron model [10] is the only model that produces all known neuro-

computational patterns same as Hodgkin-Huxley model which is the most complete biological 

spiking neuron model. It has also the least computational cost sin1ilar to integrate-and-fire model 

which produces the least neuro-computational patterns among the other models [ 12]. The 

comparison of Izhikevich' s model with the other common spiking neuron models for its 

computational cost and biological plausibility are shown in Figure 2. 11. 

~ 
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Figure 2.11 The computational cost and biological likelihood of common spiking neuron models [12] 
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Izhikevich's spiking neuron model is based on mathematical model and consists of tvvo 

differential equations and four parameters a, b, c, d as follows 

dv(t) --= 0.04v2 (t) + 5v(t) + 140- u(t) +I (t) 
dt 

du(t) 
-- = a(bv(t)- u(t)) 

dt 

(2.27) 

(2.28) 

The variable v represents the neuron's membrane potential. The variable u describes the 

dynamics of the membrane potential v for recovery after the neuron fired a spike. The parameter 

a describes the time scale of the recovery variable u. By choosing smaller values, the recovery 

becomes slower. The sensitivity of the recovery variable u to the threshold changes of the 

membrane potential v is defined by the parameter b. The level of the dynamic threshold 

decreases by setting greater values for the b parameter. The c, d parameters are for resetting the 

membrane potential v and recovery value u respectively after an action potential occurred. 

After a neuron fires a spike, v 2: +30 mV, first vis reset to +30, and in the next step the value of 

the parameter c is assigned to v. Meanwhile, the value of u is changed by adding the parameter d 

to u as follows 

if v 2 + 30 then {
v=c 

u=u+d 
(2.29) 

By resetting the membrane potential to + 30, the apexes of all spikes are equalized to a unique 

value. The threshold value in this model is ranging from -70 to -50 and it depends to the state of 
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the neuron at time t . This means when the membrane potential reaches the mentioned rage, it 

fires. In the equations (2.27), (2.28) u represents the membrane recovery variable which 

corresponds to the activation ofk+ ionic currents and inactivation ofNa+ ionic currents. 

Let consider A is the time step in ms scale for the changes of the variables u, v. To update the 

values of the membrane potential v and membrane recovery u from time t to the time t + A , a 

fix-step first-order Euler method is used such that if a dynamical system is represented as 

y' = f(x) (2.30) 

then 

y(t + 1) = y(t) + A..f(y(t)) (2.31) 

Therefore, according to (2.31) the value of v, u at time t +A are computed as 

v(t + /L) = v(t) + A..(0.04v2 (t) + 5v(t) + 140- u(t) +I (t)) (2.32) 

u(t +A) = u(t) + 1( a(bv(t)- u(t))) (2.33) 

The dynamics of v and u over time before and after an action potential and the effects of the 

parameters a, b, c, don the variables v and u are illustrated in Figure 2.12. 

bounding 
~action potential 

peak to +30 mV 

resetting v by 
L---the value of c 

adding the d 

the sensivity of u to 
the b parameter 

Figure 2.12 The effects of the parameters a, b, c and don the dynamics of the variables v, u [10] 
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2.10 Artificial neural network generations 

In general, artificial neural networks (ANNs) are categorized in three generation based on their 

computational units or the model of neurons that is employed in the neural networks. These 

generations are as the following: 

2.10.1 The first generation of artificial neural networks 

This generation of ANNs employs the model of neuron known as threshold logic unit which is 

the first artificial neuron model proposed by McCulloch and Pitts [ 18]. It contributed an 

important role in the developments of ANNs. For instances, multilayer perceptrons, Hopfield 

network and Boltzmann machines are the ANN architectures employing McCulloch-Pitts's 

neurons. This class of ANNs is capable of computing Boolean functions. In other words, the 

inputs and outputs are digital values either 0 or 1 and their processing units produce 1 if the sum 

of the inputs passes a threshold otherwise O.The computation is modeled by an step function such 

as 

f(x)={~ x~O 

x<O 

2.10.2 The second generation of artificial neural networks 

(2.34) 

In this class of artificial neural networks, the processing units utilize activation functions that 

map their inputs, the weighted sum, to a defined rage of continuous values as their outputs. 

Linear saturated n: (2.35) and Sigmoid a (2.36) functions are the comn1on activation functions. 

Typical networks of this generation are feed-forward neural network, recuiTent neural network 

and radial basis functions. Moreover, the second generations of ANNs are able to compute any 

35 



continuous function. It has been shown [34] that second generation neural networks can compute 

certain Boolean functions by using less neurons than those of the first generation and more 

importantly learning methods based on gradient descent can be used in this class of ANNs. 

neti > 1 

0 ::::;; neti < 1 & neti= weighted sum of the inputs to neuron i 

neti < 0 

1 
u(net.) = ---

1 (1 + e-neti) 

(2.35) 

(2.36) 

The second generation ANN s advanced the computational capability of artificial neural networks 

compared to the first generation. However, in terms of the biological observation the output the 

second generation neurons, for instance sigmoid neuron, are somehow close to the mean firing 

rate of a biological neurons and the mean firing rate is the least operational mode in biological 

neurons. 

2.10.3 The third generation of artificial neural networks 

This generation of artificial neural networks known as spiking neural network employs spiking 

neuron as their computational processing units. In the previous section we covered the two main 

models of this family of neurons and there are more than eleven spiking neuron models which 

are the variations of the two main models [16]. 

The inputs and outputs of this class of neural networks are in the form of spikes fired in certain 

time and the network process information based on the timing of each individual spike. 

Representing information in temporal coding and processing information based on the timing 

that neurons firing spikes are the most likely operation modes in real biological neural networks. 
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One of the simplest spiking neuron employed commonly by the third generation ANNs is the 

Spike Response Model with order zero (SRMo). The state of a neuron described by its membrane 

potential u(t) and the threshold level () at the time t are 

n 

ui(t) = L w!i.&(t - t{ - d1i) 
J=l 

!
t !-(~) 
- .e ' 

c:(t) = r 

0 

t>O 

t ::s; O 

if u(t~B(t-t{) then t;~1 =t 

(2.37) 

(2.38) 

(2.39) 

In the equation (2.37) pre-synaptic neurons (j=l, ... ,n) send spikes to neuron i. Function E 

describes the post synaptic potential (PSP) response and the constant r defines decay time of 

PSP. The synaptic delay between neuron j and neuron i denoted d ij· Moreover, according to 

(2.37) a linear weighted sum is computed over all PSPs caused by the firing of the pre-synaptic 

neurons up to time t to determine the membrane potential of neuron i at time t. In addition, the 

last firing time t{ of neuron i is updated to the most recent time whenever neuron i fires. This is 

the time that membrane potential passes the threshold level from below which is equal to 

B(t-t() as shown in (2.39).The dynamics of the threshold and PSP response function has been 

illustrated in the section 2.6.2. 

2.11 Spike timing encoding methods 

By spike timing encoding tnethods, the sensory data mostly analog are transformed to the timing 

of spikes, or spike train. Converting the data to the temporal form enables spiking neural 

networks to process nun1eric information represented to the networks. The two spike timing 

encoding methods are as the following [35]: 
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2.11.1 Sparse coding 

In the context of biology, there is a sensory space known as receptive field where a stimulus is 

represented to the area depending which part is affected by the stimulus certain sensory neurons 

are excited. Therefore, to generate firing time the Gaussian RF is employed in sparse coding to 

simulate the procedure of converting continuous data to firing time. 

In sparse coding the minimum and maximum of the input data is determined and a population of 

Gaussian RF neurons m chosen each for a certain range of the continuous input data. The center 

C of each Gaussian RF neuron and the width cr are calculated such as 

. 2i - 3 
c; =mm+ 

(m- 2)(max- min) 
i=l, . . . ,m (number of Gaussian RF neurons) (2.40) 

0"=--------
/)(m- 2)(max- min) 

~= a constant value (2.41) 

The method creates nxm real values between 0, 1 and each value triggers the corresponding 

neuron at tin1e t .For example in a time interval of 10 ms a neuron is trigger at early time t=O by 

the value from 0. 9 to + 1 and the other neuron at late time t= 10 by the value from 0 to O.l.If a 

spiking neural network has n nodes for n input, by sparse coding the input nodes are extended to 

nxm. The firing times of two Gaussian RF neurons for the input value of 50, 100 in the time 

interval of 10 ms is shown in Figure 2.13 . 

/ \ /\ 
O.E ••••••••••••••••••••••• t:2~~ \y \ 

I ! f\ \ 
0 .6 / I/ \ \\ 
o.~ I ! I \ t=6\ '{, 

·~\"'-~ 
0 20 40 60 80 100 120 140 

Figure 2.13 Converting the numeric values from 0 to 140 to firing time by two RF neurons in 10 ms interval (35] 
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2.11.2 1-D coding 

In this type of spike firing encoding scheme, each input real value is mapped to a time interval 

[a, b] called "encoding interval" through a linear function (2.42).The advantage of the method is 

that the number of input neurons and consequently weights in a spiking neural network are not 

increased, unlike sparse coding method. 

!( ) 
( b - a) (a x max- b x min) 

X = · . X X+ -'-·-----~ 

(max- min) (max- min) 
(2.42) 

The minimum and maximum are the boundaries of the input data which are converted to the 

firing times. 
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CHAPTER3:METHODOLOGY 

In this chapter, we describe the proposed spiking bidirectional associative memory (SPBAM). 

The structure of the proposed SPBAM is similar to that of the standard BAM which is a two­

layer recurrent artificial neural network where each neuron in the first layer (.X) is fully 

connected to the all neurons in the second layer( Y) and vice versa. In addition, each layer can act 

as an input or output layer to redirect the output of one layer to the other one. 

The spiking neurons employed for the SPBAM are based on Izhikevich's cortical spiking neuron 

model [ 1 0]. According to this spiking neuron model two types of neurons namely excitatory and 

inhibitory are defined, and different classes of neurons can be also selected within each type. 

This variation is possible by setting certain values for the neuron's parameters which were 

discussed in Chapter 2. 

There are twenty classes of spiking neurons [12] including Tonic Spiking, Phase Spiking, Tonic 

bursting and etc. The discussion of the classes in detail needs more solid background in biology 

and is beyond this study. However in brief, each class is known by the spiking pattern that the 

cortical spiking neurons are able to generate based on the presence of stimulus and the current 

state of neuron. 

These twenty known spiking patterns or neuro-computational patterns are believed to contribute 

significant roles in temporal coding and spike-timing information processing. Therefore, based 

on these important neural features, the proposed SPBAM has a set of heterogeneous neurons that 

consists of different types and classes, and this set of neurons is selected by means of Genetic 

Algorithm optimization method. 

3.1 Firing-time patterns 
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An important part of the SPBAM is the way that information is presented to the neural network. 

In standard BAM, the information of the patterns is presented in the fmm of n-dimensional 

vectors in the Hmnming space. However, the form of representing patterns to the SPBAM is 

based on the timing that action potentials are scheduled for the input neurons. An action potential 

is a pulse that a spiking neuron emits when its membrane potential reaches a certain voltage 

threshold. Therefore a patten1 in the form of an n-dimensional vector is converted to a set of 

spikes that are sent to input neurons in the pre-defined timings. 

To clarify the process of converting each patterns to spike-timing fmm, we assume A is a k­

dimensional vector in the Hamming space such as 

ai=+1 or ai=-1 for i=l, ... ,k (3.1) 

At the beginning, a T-step time window is defined. That is for each component of the pattern a 

pulse or an action potential is scheduled in a certain time within the time window. Thus if at time 

t a spike has been scheduled for the ith component, ai, a pulse is sent to the neuron i 

corresponding to the lh component. 

For instance, in Figure 3.1 is shown that for a1, a2 and ak corresponding to the neurons 1 ,2,k three 

spikes are generated at time 2,5 and 10, and at the time first neuron receives a spike, the second 

neuron and k1
h neuron do not receive any spike. 

One issue to convert the input data to spike-timing form is that how to schedule the timing of 

spikes. This depends on the type of information that is used as input for a spiking neural 

network. In general, there are two methods which were discussed in Chapter 2. 
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..------.........., spiking 
neurons\, 

a 1 0-step time window 

Figure 3.1 An example of representing a k-dimensional pattern A to spike-timing form in a 10-step time window 

As mentioned in standard BAM, the information of the patten1s is coded in n-dimensional 

vectors which their components are either + 1 or -1 where n is equal to the number of neurons in 

each layer. Thus, we can schedule each + 1 as an early firing and -1 a late firing. In other word, 

we divide a T-step time window to two parts, and for each + 1 value an action potential is 

assigned at random time within the first half of the time window. Accordingly, for each -1 value 

an action potential is scheduled within the second half of the time window at random time. This 

process is repeated for all n components of each pattern. For instance, having a pair of patterns 

such as A=(-1,1,1,-1) ,B=(l,-1,-1,1), we can generate the spike-timing association as shown in 

Figure 3.2. 

pattern A(-1, 1, 1,-1) 

LJ...J_lJ...J_L.l.J_I 

LJ...J_L J_..J _L J.._j _I 

L.l....l-LJ..J-LLJ-1 

l J. ...l-L .L ..J -L J...J -1 

pattern 8(1,-1,-1, 1) 

LJ...J_L.L...l-L.L.JJ 

L~...l-L.L...l-L.L.J-1. 
LJ...J_Ll..J_LL--1-1. 

L.L.I - L J_ ..J _L!. .J -'· 

Figure 3.2 The association of two patterns A,B in spike-timing form 

3.2 The spiking BAM training 
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To train the proposed SPBAM, we have applied the Genetic Algorithm optimization method, 

taking advantage of its outstanding exploration and exploitation properties, and the co-evolution 

method. The common training methods such as back-propagation and Hebbian learning are not 

adaptable for the training of the spiking BAM that employs Izhikevich,s spiking neuron model 

since the training methods do not have any instruction and tule to choose the proper values for 

the neuron's parameters except the weights adjustment rules. Therefore by only weights 

adjustments the neural network is not trainable. 

The learning starts with two populations that evolving separately at the same time, and then the 

individuals of the two populations are integrated to form a complete spiking BAM for evaluation 

processes. The two populations are the weight and the neuron population. Each individual's size 

in the weight population is equal to m xn where m denotes the dimension of the patte1ns in X 

layer and n is the dimension of patterns in Y layer. The values of weights are selected randomly 

from [ -1 , + 1]. 

The neuron population is the second population that every individual in the population have 

totally m+n neurons for both X and Y layers. Moreover, each neuron has six parameters. These 

parameters are a,b,c,d ,described in Chapter 2, and two added parameters as the following: 

• The paratneter of time step, 'f/, in millisecond defining the changes of the variables u, v. 

• The type T defining the neuron's type which is either excitatory or inhibitory. 

The structures of each individual in the two populations are shown in Figure 3.3. 
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Figure 3.3 The structures of each individual in weight population (a) and neuron population (b) 

The randomly selected values for the parameters a,b,c,d are within the ranges that have been 

defined in [10]. The value of the parameter 17 is chosen from [0, +3] with the interval of 0.05. 

The parameter Tis defined based on the values of a. b, c and d. That means choosing the values 

in certain ranges defines that a neuron is inhibitory or excitatory. 

3.3 The SPBAM fitness evaluation 

During the evolutionary training two individuals from the weight and neuron populations are 

selected and integrated to fmm a possible solution that can be the desired spiking BAM if its 

fitness evaluation n1eets the minimum error. The network's fitness is based on the timing errors 

that occur between the actual output and the desired timing pattern. For example, let assume that 

we aim to associate the timing pattetn Ta to the timing pattern Tb. After constructing the SPBAM 

from the selected individuals, Ta is presented to the network's Y layer and the output Tb. is 

obtained. Thus, one part of the network total error would be the timing differences between Tb 

and Tb . denoted by Ey. Then the timing pattern Tb is presented to the network's X layer and the 

output Ta. is obtained. Similarly, the rest of the network total etTor is calculated by the timing 

differences between Ta and Ta ' denoted by Ex . The network total error for the two patte1ns Ta and 

Tb is equal to 

(3 .2) 
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The total timing errors for the spiking BAM is equal to 

P n m 

L(LExik + LEYJk) k=l, ... ,P, i=l, ... ,n , j=l , ... ,m (3.3) 
k=l i=l j=! 

where P is the number of timing patterns and n , m are the number of neurons in X and Y layers 

respectively. 

As shown in Figure 3 .4, the aim is to train the spiking BAM having one action potential in the 

output of one neuron within the time window after the input timing pattern completely presented 

to the network. In case that only one spike occurs at the output neuron the error is equal to the 

difference between the desired and actual firing times. However, during the training we can 

expect no spike or more than one spike at the output neuron. In order to prevent such 

occurrences, during fitness evaluation such an individual is penalized by assigning a maximum 

error equal to the length of the time window. 

T " 

L l. .J_l J. ...l-L L .J - 1. L.lJ_LL...l-LL...IJ 
1 Ey1 , 

L .1 -L l. ...1 -L l. .J -1. 

L .lJ_L J. ...1 _L .L ... LL ~ L l.J_LJ. .J_L .L .J_I. 

L.lJ_ LJ. .J_L L J -L L..I. .. .LL l.J_L .L.J -'· 

Ey2 

l..l. ....1-Ll..J_L .1. .J_J. L ..1. ..J_L l. .J_L l. .J -'· 

(a) (b) (c) 

Figure 3.4 (a) Association of two timing patterns T0 , Tb.(b)Timing errors between Ta(desired output), Ta '(actual 

output), (c) Timing errors between Tb(desired output), rb'(actual output) 

3.4 The states of the spiking neurons 
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An important issue during the training is that how the state of the spiking neuron should be 

updated. In this spiking neuron model there are two parameters that describe the state of a neuron 

at each timing step. The neuron membrane potential is denoted by v and the membrane recovery 

variable denoted by u. At the learning stage when a timing pattern Ta is presented within aT-step 

time window to the network , the states of all m input neurons in Y layer are updated according 

to the equations (2.32) ,(2.33) in each step of the time window regardless of the input neurons 

receiving spikes or not. In addition the cunent values of the state parameters are kept to calculate 

the new values of v, u at the next step of the time window. The same process is followed when 

the timing pattern Tb is presented to the neurons of the layer X. During presenting a timing 

pattern to the network if a spike is scheduled to be sent at a specific step to a neuron, the 

amplitude of the spike +70 mV, which is a pre-synaptic pulse, is multiplied by synaptic weight. 

The result would be the amount of post-synaptic voltage that a neuron receiving from that pre 

synaptic neuron. 

The training process explained here is used to associate only one pair of patterns. Thus, it is 

important to reset the state parameters to equilibrium states every time the next pair is presented 

to the network as follows 

v=c 

u =b.v 

(3.4) 

(3.5) 

Otherwise, the order of pattetns that are presented to the network would be depended to each 

other and this dependency is inappropriate and should be avoided. 

3.5 Recalling the stored patterns 
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Ability to recall is another important property of BAM. Recalling the stored patterns basically is 

the process whereby we can retrieve one of the stored patten1s together with its associated 

pattern even at the performance of noise. For instance, we assume that Ta, Tb are the two timing 

pattetns stored and associated in the spiking BAM and Tna, Tnb are the noisy timing patterns of Ta 

and Tb respectively with certain noise. Thus, the aim is to obtain Ta, Tb from Tna, Tnb using the 

recalling mechanism. In standard BAM a pattern with certain noise means the Hamming distance 

between a pattern and its original one. However in spiking BAM a noisy version of a timing 

pattern means the firing-time differences between the pattern and its original timing pattern. 

As in the standard BAM to recall a pattern , we need an error correction method. Let's assume 

that Txt and Tyt are the noisy versions of the stored patterns shown in Figure 3.5(a) which are 

presented to the layers X, Y of the network. At the beginning, Txt is given to the Y layer as · an 

input and the output timing pattern 1'y2 is obtained from the output of layer Y. 

After applying the error correction procedure on Ty2, the result which is the modified timing 

pattern Ty2 is given to the layer X as an input and Tx2 is acquired from the output of the layer X. 

Similarly the error correction procedure is applied on Tx2 for possible modification. One such a 

cycle that the information is sent back and forth between the two layers is called a reverberation 

or iteration. This cycle is continued each time with the new outputs of the two layers until there 

is not any change between the cunently obtained outputs and those of the previous iteration for 

the layers X and Y. 

In other word the spiking BAM reaches an stable point at the iteration i when there is not any 

firing-time difference between the two outputs Txi and Txi-l and sitnilarly for those of Tyi and 

Tyi-1 as shown in Figure 3.5(b). 
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Txi TYi-1(modified) 

(b) 

Figure 3.5 Representing noisy patterns to SPBAM (a), and recalling steps (b) 

3.6 Error correction method 

By presenting a noisy timing pattern, Txi , in a T-step time window at the iteration i to the spiking 

BAM, three situations may happen for the output pattern Tyi , and accordingly the following 

error correction procedures are conducted to modify pattern Tyi. 

1- Output neuron k does not fire any spike: In this case, the firing time of k1
h output ( 

k= 1, ... ,m where m= number of neurons in layer Y) from pattern TYi-I is scheduled for the 

k1
h output of pattern Tyi. 

2- Output neuron k fires more than one spike: We expect a neuron fires only on spike within 

the time window. Thus, in this case we must choose only one firing time and eliminate 

the extra firings. To choose only one firing time for the kth output of pattern Tyi the 

distances of these fiting times are measured from the kth firing time of pattern TYi-

1.Among all firing times the one is chosen that has the minimum distance from patte111 

~Vi- I , and the rest of the firing times are removed. 

3- Output neuron k fires exactly one spike: The firing time is assigned directly to the k1
h 

firing time of pattern Tyi, and there would not be any timing change to this firing time. 
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CHAPTER 4: EXPERIMENTAL SETUP AND RESULTS 

In this chapter, we conduct four types of experitnents and analyze the performance and capability 

of the proposed spiking bidirectional associative memmy (SPBAM) in several aspects. In 

addition to providing a sound justification, we have compared our results to those of the standard 

BAM with the similar experimental settings. 

The outlines of the experiments are listed as the following: 

• SPBAM trainings. 

• The SPBAM capability to recall. 

• The SPBAM convergences. 

• The speed of SPBAM convergence. 

In all experiments, the patterns used for the standard BAM are n-dimensional vectors in the 

Hamming space, and the pattetns used for the SPBAM are firing-time patterns that are generated 

from the patterns that their specifications presented in the Table 4.1. 

Table 4.1 The specifications of the training pattern sets 

Training pattern set Number of patterns Pattern X's dimension Pattetn Y' s dimension 

A 4 pairs 12x12 5xll 

B 6 pairs 7x5 7x5 

c 12 pairs 7x5 7x5 
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The graphical forms of the training pattern sets A,B and Care provided in Appendix A. The 

above training pattern sets have been converted to the firing time patterns which are in six-step 

and twelve-step time window. Therefore, the experiments related to the spiking BAM are 

repeated twice since the timing patterns generated in two different lengths of time window. The 

reason is to explore the perfotmance of the SPBAM when the firing-time pattern represented in 

different lengths. An example of firing-time pattern in twelve-step timing length which belongs 

to the first pattern pair of the training pattern set C, is given in Appendix B. 

4.1 The spiking BAM trainings 

The spiking BAM is trained with six different firing-time patterns generated from the training set 

A, B and C in six and twelve timing steps. The trainings results are shown in Table 4.2. 

Table 4.2 Training results of the spiking BAM with the firing-time pattern sets 

Training 
Maximum expected timing Minimum timing error in 6 

Training 
error in 6,12-step time ,12-step time window after 

pattern set 
window training 

accuracy 

A 4776' 9552 141 '328 
%97.04 ' 
%96.56 

B 2520' 5040 67' 156 
%97.34' 
%96.90 

c 5040' 10080 398 '907 
%92.10' 
%91.00 

The maximum timing error for the training pattern set P is equal to 

Number of pattern pairs x Length of time window x (X dimension + Y dimension) ( 4.1) 
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In all trainings, the results have been recorded when the trainings were performed from 3 .1 04 to 

5.104 generations in 10 runs. Figure 4.1 and 4.2 show the trainings of spiking BAM with the 

firing-time pattern sets Band C in six-step and twelve-step time window respectively. The other 

four training graphs are provided in the Appendix C. 

0 ~' __ J____L_ __ .J____J _ __L_--'---'---'----'--------'----"---

0 0.25 0.5 0.75 1.25 1.5 1.75 2 2.25 2.5 2.75 3 
Generation 

Figure 4.1 Training of pattern set B with six-step time window 
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Figure 4.2 Training of pattern set C with twelve-step time window 
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4.2 The spiking BAM capability to recall 

In this section we conduct six experiments. In each experiment the trained SPBAM is tested 

against the corresponding firing-time pattern. The results are compared to those of the standard 

BAM. There are three firing time patterns that each one represented in two different lengths of 

time window. The level of noise applied to the timing patterns ranges from 0-25%. 

Noises are applied on both patten1s which are associated to each other in layers X, Y. To apply 

noise on a pattern, a row in the firing time pattern is selected. If the original firing-time 

scheduled at the first half of time-window we change this firing time to a random time within the 

second half of the time-window and vice versa. The procedure of adding noise is repeated for the 

other rows based on the noise percentage. 

In the next step, all patterns of the training pattern set are presented to the network and the error 

conection process is applied on each pattern as discussed in the Chapter 3 until the network 

reaches a stable point. The final firing time patterns, for each pair, are converted to n­

dimensional vectors consisting of + 1 and -1 to count the number of mismatches with their 

original patterns. 

To evaluate the recall procedure for both the SPBAM and standard BAM, the results are 

compared for the both networks as shown in Figures 4.3-4.8. The experimental results belong to 

the firing time patterns in six-step and twelve-step time window. 
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Noise percentage Noise percentage 

Figure 4.3 Recalling pattern set A in 6-step timing Figure 4.4 Recalling pattern set A in 12-step time timing 
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Figure 4.5 Recalling pattern set B in 6-step timing Figure 4.6 Recalling pattern set B in 12-step timing 
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Figure 4. 7 Recalling pattern set C in 6-step timing 

4.3 The SPBAM convergences 
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Figure 4.8 Recalling pattern set C in 12-step timing 

In this section we have provided the results that show the convergence of SPBAM on all three 

firing time patten1 sets in two different time windows. To describe the experiments, a pattern pair 

is selected randomly from each pattern set. A random noise from 5% to 30% is added to the both 

patten1s in layers X, Y. These noisy timing patte1ns are presented to the SPBAM. The error 

correction process is applied until the network reaches a stable point. 

During the recall for each reverberation, the timing differences between the current and previous 

outputs are measured in both layers. After the network reaches a stable point when there are no 

further changes in the outputs, we continued the recall for extra ten iterations to justify the 

network convergence for any randomly selected patterns. The network convergences on 

randomly selected timing patterns are shown in Figures 4.9, 4.10. 
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Figure 4.9 The spiking BAM convergences on pattern sets A, B, C with six-step time window 
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Figure 4.10 The spiking BAM convergences on pattern sets A, B, C with twelve-step time window 
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4.4 The speed of SPBAM convergence 

In this section the two networks, spiking BAM and standard BAM, are explored for the number 

of iterations during recalls. Similar to the previous experiments, we examine the issue on all 

three pattern sets which are presented in two different time windows. For each experiment, an 

patterns belonging to one pattern set are presented to both networks and the total iterations to 

recall each pattern set are counted until the networks being stabled. Evaluating the number of 

iterations is repeated for different range of noises" Figures 4.11-4.13 demonstrate the results of 

these experiments. 
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Figure 4.11 Total iterations on the pattern setA represented with six (a) and twelve (b) steps timing 
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Figure 4.12 Total iterations on the pattern setB represented with six (a) and twelve (b) steps timing 
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(a) (b) 

Noise percentage Noise percentage 

Figure 4.13 Total iterations on the pattern set C represented with six (a) and twelve (b) steps timing 

4.5 Recalling patterns with noise in one layer 

In this section, we study the capability of recalling patten1s by the SPBAM when the noises are 

applied only in one layer either X or Y .The same experiments are also conducted with standard 

BAM and the results are comparedo The description of the experiments is similar to those 

explained in the section 4.2 except the noise is added randomly to one layer. Figures 4.14-4.16 

show the outcome of the experiments. 
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Figure 4.14 Recalling pattern setA in 6-step (a) and 12-step (b) time window with noise added on one layer 

57 



g 
Q) 

'0 
Q; 
.0 
E 
:::; 
z 

(a) 

95 1;:- co ~ "" - - >}~ '- - - -- . . .• -- - ...•... .. - i 
·:· '\:. l 

80 ~ - - - - - - - - - - - -~ - - - - ·- (/' - - - - - 0 
I t:: 

65~ -------- - ---- ------- ; 

i Q; 
50 ~ - - -- - - - - - f~-::: - - - - - - - - - - - ..0 

i § 
z 35 ~ -- .... 

. 1 ,, ,;ijog RIM ] j 
, __ ______ ._____ ~: == _- - -~~~~:.~'-~A-~ J 

5 10 15 20 25 30 35 40 
Noise percentage 

(b) 

110 , I 

95t ,. ~ - ·"' -.. .. -.. -... .. --- -. 7 -~--+. 
80 I ____ ~ __ __ _________ ____ 9:-~ , 

' i 
65 ~ ------ -- ------ - ---- -

! 

50 ~ - - - - - - - - - - - -()(_:_ - - - - -- - - - - ~ 
j .(Y~- ·- · ·-· ,. 

35 [- ... -- .. ·- -- .. - .. - - - -

20 ~ _ .. _ ... _ _ _ -- [~~;;·--~~iki~~-BiM ___ l __ 
j //. __ ___ ---- ------~-~~~~~d BA~_ j 

s :.,t:'_ _______ L__.J._____ -- -L- -------L------ ---..1.·- ------J---- - ___ l , ...•.••..• 

0 5 10 15 20 25 30 35 40 
Noise percentage 

Figure 4.15 Recalling pattern setB in 6-step (a) and 12-step (b) time window with noise added on one layer 
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Figure 4.16 Recalling pattern set C in 6-step (a) and 12-step (b) time window with noise added on one layer 

4.6 Discussion 

Using to the experimental setups, we aimed to investigate several main features of bidirectional 

associative memory for the proposed spiking BAM. To evaluate the perfonnance and capability 

of the spiking BAM, the experimental results were compared to those of the standard BAM. The 

features of interest are training, storage capacity, recall and convergence. 
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The spiking BAM's training is based on GA and Co-evolution methods. This type of 

evolutionary optimization is computationally expensive. However, the spiking neuron model 

employed in the spiking BAM leads to select such a n1ethod for the trainings since training 

methods such as Hebbian learning does not have rules for adjusting the neuron's parameters. 

Therefore, by adjusting only weights the network can't be trained. On the other hand in standard 

BAM the weights are calculated based on the prescription method discussed in the Chapter 3. The 

training results obtained for SPBAM show that although increasing the pattern dimensionalities 

would increase the computational cost, however this does not hamper the training accuracy. As 

shown in Tabel 4.1, the training process affected mainly by the number of patterns in each 

training pattern set and to a lesser extent by the length of the time-window defined for the 

training firing-time patterns. 

The storage capacity of the spiking BAM is much higher than the standard BAM. By comparing 

the two networks results depicted in Figures 4.3-4.8, it can be observed when the patterns are 

represented without noise, the stored patterns are recalled more accurately by spiking BAM than 

the standard BAM. It is also noted that this difference increases significantly when the number of 

patterns increase such as in pattern set C. 

To investigate the quality of the spiking BAM's recalls, we provide results that confirm spiking 

BAM surpasses the standard BAM especially when the number of patterns increases. In addition 

to out-performing the standard BAM when higher number of patterns exists, the spiking BAM 

also continues to recall the patterns more accurately in the presence of higher percentage of 

noise. This can be confirmed using the results shown in Figures 4.3-4.8. Moreover, when the 

noise is only applied to the patterns of one layer, the recall performance increases significantly 

(up to forty percent of noise) as shown in Figure 4.14-4.16. Meanwhile, the experiments show 
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either with one or two layers noise, the network recalls more accurately when the timing patterns 

presented in time window of double length. 

Another issue in the bidirectional associative memory is the network's convergence. In the 

experiments of section 4.3, we provided results that show the proposed spiking BAM is able to 

converge to a stable point when the recall process takes place. In the experiments shown in 

Figure 4.9-4.1 0, after the networks reaches a fix point, we continued ten more iterations for each 

test to verify that there is not any further changes for the state of the spiking BAM. 

The last feature that we studied in section 4.4 is the number of iterations that either spiking BAM 

or standard BAM needed during recall when all patterns for pattern set A, B and Care tested. 

Figures 4.11 shows that when the dimension of the patterns are significantly higher than the 

number of patterns such as pattern set A , the standard BAM converges with less number of 

iterations and this trend continues even the firing time patten1 presented with 12-step time 

window. However, when the difference between the pattetn dimensionality and the number of 

patterns decreases, the number of iterations that spiking BAM needs to converge decreases, and 

even with patten1 set C we observe that the SPBAM outperforms the standard BAM. In addition 

the results improve more by choosing 12-step time window. 
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CHAPTER 5: SUMMARY AND CONCLUSION 

5.1 Summary 

Bidirectional associative memory (BAM) proposed by Kosko is an extended version of Hopfield 

associative memory that models the hetero-associative memory. The main application of the 

BAM is in patten1 recognition. The BAM structure is a fully connected recurrent neural network 

that is able to associate, store and recall patterns. The current generations of Artificial Neural 

Networks although have been successfully applied for numerous engineering and scientific 

problems. However, the mode that cunent ANNs are processing information known as '"mean­

firing rate', or Rate coding is insufficient compare to the tremendously fast information 

processing of the cortex in the brain and it is contrary to the fact that the operational speed in the 

cortex is about 1 00 Hz. 

Therefore, to improve the current artificial neural networks it is necessary to build the ANNs 

that their processing units (neurons) function as the biological neuron do. In the biological neural 

systems, neurons communicate with each other and the outside world by the means of action 

potentials or spikes and the timing of these spikes play the key roles in carrying and processing 

information. 

The coding of information by action potentials is categorized in two main areas: 

• Rate code, which aims to average the timing information over a time window of 

about 500 milliseconds. 

o Spike code, which focuses on a timing of each single spike over relatively a short 

period of time about 10 milliseconds comparing to the Rate code. 
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The two coding schemes have several variations and the best coding scheme is the Temporal 

coding that carries the most infmmation based on information theory as it was explained in 

Chapter 2. It is important to mention the Rate code is the extremely rare coding scheme that the 

biological neurons operate in the higher areas of the cortex. As a result, the third generation of 

ANN s known as spiking neural networks (SNN s) is a way to improve the performance of ANN s 

in general. To construct a spiking neural network, we need to employ spiking neurons. In this 

regards, several spiking neuron models have been proposed. Among the models, Hudgekin­

Huxley and SRM are considered as the main categories. To construct a realistic model of SNN, 

two elements of a spiking neuron model atTect the system 

1. The computational cost of the spiking neuron modeL 

2. The ability of generating rich neuro-computational patterns (spiking patterns). 

Spiking neural networks have been used for modeling Hopfield networks and feed-forward 

ANN s, and it has been found the later converging faster and requiring less neurons comparing to 

the second generation feed-fotward neural networks. However the computational units employed 

in the networks are the simplified SRM neurons which have the lack of generating spiking 

patterns. To model a spiking neural network that fulfills the two mentioned criteria we have 

modeled a spiking BAM which employs Izeickevich' s spiking neuron model. The information 

(patterns) is presented to the spiking BAM based on the temporal coding. The performances of 

the model for its training, recall, storage capacity, and convergence are investigated and the 

results of the experiments are compared to the standard BAM's. 

5.2 Conclusion 
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The development of the third generation of artificial neural networks is in the initial stages. 

Although there are many issues and trades off in spiking neural networks(SNNs) regarding to 

their neuron models, coding schemes, structures, and training methods, but the evidences 

confirm that still SNN s are powerful than the ANN s of the second generation. More importantly 

their computational mode, based on our understanding up to now, is similar to biological neural 

networks. Therefore regarding the advantages of SNN, we proposed the spiking BAM and our 

experimental results confirm the better performances and capabilities in the number of areas that 

are interested for designing a bidirectional associative memory. 

Nonetheless, the proposed model need more work on the subjects such as its training and its 

structures. Although the GA is a good solution for trainings, it suffers from the computational 

costs. It can be considered to adopt a training method for the spiking BAM. In addition, since we 

aimed to have a reasonable comparison between the spiking BAM and the standard BAM, we 

selected the same structure of the standard BAM, and it may be possible to investigate the 

spiking BAM with a different structure. A successful model of a spiking BAM would be a great 

candidate for engineering application such as neural prosthesis, and an interface between small 

population of neurons and electronic devices. 

5.3 Future work 

In order to achieve a reliable and optimum design for the proposed spiking BAM, we are 

interested to investigate and improve the model in the number of areas such as: 

• Exploring a training method which is less computationally expensive than the 

evolutionary training method applied for the spiking BAM. 
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• Investigating a different architecture for the spiking BAM to reduce the number of links 

and neurons. This would improve the training time when the pattern dimensionalities 

increase. 

• Modifying and evaluating the spiking BAM for colored patte1ns. 
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APPENDIX A: TRAININGS PATTERN SETS 

AlTHREEPATTERNSETS 

:::: ~:: ::::::::!::::! !:: : ;:1:;,;:~:~!: 1:;1:~:;; : 1:; 
i:i:t!:i:ii:i:ti:i:ti:!: ::.::t::::~i : i:t::::.t;:::i 

Figure Al Pattern set A (4 pairs) 

Figure A2 Pattem set B ( 6 pairs) 
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Figure A3 Pattern set C (12 pairs) 
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APPENDIX B: THE SAMPLES OF DATA 

Bl FIRING-TIME PATTERN 
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neuron 2 

~ 
~ 

neuron 35 __, 

X layer Ylayer 
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000000001000 010000000000 
000000000100 001000000000 
000000000010 000100000000 
000010000000 000000000001 
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000000100000 000000001000 
000000010000 000000000100 
100000000000 000010000000 
010000000000 000001000000 
001000000000 100000000000 
000100000000 010000000000 
000010000000 001000000000 
000001000000 000100000000 
100000000000 000010000000 
000000001000 000000000010 
000000000100 000000000001 
000000000010 000000100000 
010000000000 000001000000 
001000000000 100000000000 
000000000001 010000000000 
000000100000 001000000000 
000000010000 000100000000 
000100000000 000010000000 
000010000000 000000010000 
000000001000 000000001000 
000000000100 000000000100 
000000000010 000000000010 
000001000000 000001000000 

T1' T -TT T 
t1 t2 ------------·······-··--------· t12 t1 t2 --------------------------·--·· t12 

Figure Bl Firing-time patterns with 12-step time window for the first pattern pair of the training pattern C 
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B2 Spiking neurons' parameters 

Table B2 Spiking BAM neurons' parameters after training for the pattem set C (T stands for time step in 
millisecond, N stands for neuron's type, 0= Excitatory, 1 =Inhibitory) 

The values of neurons' parameters in X The values of neurons' parameters in Y 
layer layer 

A B c D T N A B c D T N 

0.02 0.2 -63.47 7.39 0.9 0 0.02 0.2 -52.44 2.98 0.2 0 

0.05 0.23 -65 2 0.45 1 0.04 0.24 -65 2 0.45 1 

0.08 0.21 -65 2 0.35 1 0.02 0.2 -61.87 6.75 0.7 0 

0.02 0.2 -64.32 7.73 0.35 0 0.02 0.25 -65 2 0.4 1 

0.02 0.2 -56.69 4.68 0.45 0 0.05 023 -65 2 1.3 1 

0.02 0.2 -62.22 6.89 0.3 0 0.02 0.2 -64.65 7.86 0.4 0 

0.03 0.24 -65 2 0.15 1 0.02 0.2 -52.52 3.01 0.3 0 

0.02 0.2 -64.82 7.93 0.45 0 0.07 0.22 -65 2 0.35 1 

0.02 0.2 -53.47 3.39 0.4 0 0.02 0.2 -58.74 5.5 0.8 0 

0.1 0.2 -65 2 1.05 l 0.02 0.2 -60.34 6.14 0.4 0 

0.08 0.21 -65 2 0.35 1 0.05 0.23 -65 2 0.4 l 

0.02 0.2 -64.85 7.94 0.3 0 0.02 0.2 -50.23 2.09 0.4 0 

0.02 0.2 -65 8 0.55 0 0.02 0.25 -65 2 0.45 l 

0.02 0.2 -61.24 6.5 0.85 0 0.1 0.2 -65 2 0.45 1 

0.02 0.2 -61.79 6.71 0.65 0 0.07 0.22 -65 2 1.85 1 

0.02 0.2 -64.9 7.96 1 0 0.05 0.23 -65 2 0.4 1 

0.08 0.21 -65 2 0.85 1 0.02 0.25 -65 2 0.4 1 

0.04 0.24 -65 2 0.25 1 0.05 0.23 -65 2 0.4 1 

0.02 0.2 -65 8 0.55 0 0.04 0.24 -65 2 1.7 1 
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0.02 0.2 -63.9 756 0.8 0 0.02 0.2 -63.65 7.46 0.45 0 

0.03 0.25 -65 2 0.3 1 0.02 0.2 -62.41 6.96 0.7 0 

0.09 0.21 -65 2 0.25 1 0.06 0.22 -65 2 0.4 1 

0.02 0.2 -62.29 6.92 0.3 0 0.03 0.25 -65 2 0.4 1 

0.05 0.23 -65 2 0.65 1 0.06 0.23 -65 2 0.5 1 

0.02 0.2 -59.1 5.64 0.75 0 0.02 0.2 -62.99 7.2 0.3 0 

0.02 0.2 -64.22 7.69 0.45 0 0.03 0.24 -65 2 0.65 1 

0.05 0.23 -65 2 0.45 1 0.06 0.23 -65 2 0.2 1 

0.07 0.22 -65 2 0.4 1 0.03 0.25 -65 2 0.2 1 

0.02 0.2 -63.87 7.55 0.65 0 0.09 0.2 -65 2 0.65 1 

0.04 0.24 -65 2 0.35 1 0.06 0.22 -65 2 0.3 1 

0.04 0.24 -65 2 0.35 1 0.02 0.2 -63 .77 7.51 0.8 0 

0.06 0.22 -65 2 0.9 1 0.02 0.2 -59.24 5.7 0.55 0 

0.02 0.2 -55.51 4.21 1.25 0 0.02 0.2 -64.99 8 0.45 0 

0.02 0.2 -63.43 7.37 0.55 0 0.02 0.2 -54.29 3.72 0.55 0 

0.05 0.23 -65 2 0.3 1 0.03 0.24 -65 2 0.6 1 
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APPENDIX C: TRAINING DIAGRAMS 

Cl FOUR TRANING DIAGRAMS 
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Figure Cl Training of pattern A with six-step time window 
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Figure C2 Training of pattern A with twelve-step time window 
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Figure C3 Training of pattern B with twelve-step time window 
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Figure C4 Training of pattern C with six-step time window 
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GLOSSARY 

Action potential (spike) an electrochemical pulse generated by the biological neuron when its 

membrane voltage passes from certain threshold. 

Associative memory a type of memory that is able to store patterns and retrieve them when the 

noisy forms of the stored patterns are presented to the memory. 

Computational neuroscience the study of the brain functions which is related to the information 

processing in the neural system. 

Firing-time pattern a pattern that is represented by the timing of action potentials in a time 

window. 

Mean-firing rate a neural coding scheme that deals with a sequence of spikes generated in a 

period of about 500 milliseconds. 

Neural coding a subject in neuroscience that investigates how sensory data or outside-world 

information is presented to the brain by neurons. 

Neuro-computational patterns the type of firing-time patterns that the biological neurons 

generate when a stimulus is presented to the neuron. 

Temporal coding a type of neural coding that is based on the exact timing of action potentials. 

Time window a period of time that a set of infonnation is presented to a neural network. 
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