EVALUATING THE USE OF STRAW BALES IN ACHIEVING PASSIVE HOUSE CERTIFICATION (PHIUS+ 2015) IN WESTERN CANADA

by

Ashley Lubyk

BSc. Environmental Science, University of Calgary, 2005

A Major Research Project

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Building Science,

in the program of Building Science

Toronto, Ontario, Canada, 2018

©Ashley Lubyk 2018

Author's Declaration:

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A MRP

I hereby declare that I am the sole author of this MRP. This is a true copy of the MRP, including any required final revisions.

I authorize Ryerson University to lend this MRP to other institutions or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this MRP by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my MRP may be made electronically available to the public.

Abstract

Evaluating the Use of Straw Bales in Achieving Passive House Certification (PHIUS+ 2015) in Western Canada Master of Building Science, 2018 Ashley Lubyk, Ryerson University

Achieving Passive House certification requires superinsulation which can significantly raise the embodied energy and carbon footprint of a project, effectively front-end loading the climate impact, especially where petrochemical foam-based products are used. This research sought to evaluate the use of straw bales - a low embodied energy, carbon sequestering agricultural by-product - to achieve PHIUS+2015 certification. A straw bale wall system was adapted to a single-family detached reference house designed to meet the Passive House standard. The wall system was evaluated for applicability across three Western Canadian cities using WUFI Passive energy simulation software to evaluate compliance; thermal bridging and hygrothermal performance were also evaluated. It was found that the proposed straw bale wall assembly satisfied the PHIUS+ 2015 requirements in all three locations - Saskatoon, Calgary, and Kelowna - with only minor changes required to the reference house design. The annual heating demand and peak heating load, the two targets most sensitive to design changes, were, respectively, 4% and 8.6% below the target in Saskatoon, 63.1% and 21.3% below in Calgary, and 63.1% and 32.6% below in Kelowna. The research also revealed that maintaining a high degree of air tightness is essential for satisfying the requirements. Overall, this research demonstrates that straw bales can be a beneficial component in creating high performance enclosures without exacting a large embodied carbon footprint.

Acknowledgments

I would like to extend my gratitude to Dr. Russell Richman for his guidance and support throughout my studies at Ryerson University, and especially as supervisor for this MRP. I would also like to thank Dr. Mark Gorgolewski for his timely feedback and advice. And to Frank Crawford for supplying the reference house material and for his steadfast support along the way. Thanks to Chris Magwood of the Endeavour Centre whose work and pragmatism has always pushed me to explore new heights, and to Deva Racusin and Brian Fuente for the inspiration and guidance as I sharpened my pencil on this exploration into the world of high performance straw bale building. And thank you to Brian Rippy for his insights on assembly configurations and for the opportunity to build a series of panels with his SCMT class at Okanagan College, providing a proof of concept that left me with big smiles. Lastly, I would like to thank my family and friends for their encouragement, love and support as I embarked on this journey. Much love to you all!

Table of Contents

Abstract	iii
Acknowledgments	iv
List of Figures	vii
List of Tables	viii
List of Appendices	ix
1.0 Introduction	1
1.1 Introduction	1
1.2 Background	2
1.3 Objectives	
1.4 Problem Statement and Research Questions	4
2.0 Literature Review	5
2.1 Passive House in North America	
2.2 Recent Developments in Straw Bale Construction	
2.2.1 Structure	
2.2.2 Hygrothermal Properties of Straw Bale Walls	8
2.3 Case Studies on High Performance Straw Bale Walls	13
2.3.1 S-House	13
2.3.2 Modcell	15
2.3.3 StrawCell	16
2.3.4 Zero House	
2.4 Literature Review Conclusion	19
3.0 Research Approach	20
4.0 Reference Building Design	22
4.1 Building Typology	22
4.2 Reference House Description	23
4.2.1 Building Geometry and Orientation	
4.2.2 Suitability for Straw Bale Integration	
4.2.3 Building Envelope	
4.2.4 Glazing Size and Orientation	
4.2.5 Doors	
4.2.6 Ventilation System	
4.2.7 Heating, Cooling and Domestic Hot Water (DHW)	
4.2.8 Thermal Bridges	
4.2.9 Air Tightness	28
5.0 Reference Building Simulations	
5.1 Chosen Geographic Locations	
5.2 Whole Building Energy Model	
5.2.1 Whole Building Energy Modeling Software	
5.2.2 Weather Data	
5.2.3 WUFI Passive Modeling Procedure & Assumptions	29

5.2.4 WUFI Passive Simulations	
5.2.5 WUFI Passive Results and Discussion	
5.3 Developing the Straw Bale Wall Assembly	
5.3.1 Assessment Criteria	
5.3.2 Buildability	
5.3.3 Adequate Thermal Resistance	
5.3.4 Climate appropriate construction	
5.3.5 Thermal Bridge Free Construction	
5.3.6 Air Tightness	
5.3.7 Proposed Assembly	43
6.0 Results and Discussion	46
6.1 WUFI Passive Results	46
6.1.1 'First-Generation' Assembly	46
6.1.2 Proposed Assembly	48
6.2 Thermal Bridge Analysis	53
6.2.1 THERM Software	53
6.2.2 Thermal Bridge Simulations	53
6.3 Hygrothermal Analysis	60
6.3.1 WUFI Plus	
6.3.2 WUFI Plus Simulations	
6.4 Summary	65
7.0 Conclusions	66
8.0 Future Work	67
Appendix I: PHPP for Reference House	68
Appendix II: Reference House Drawings	89
Appendix III: WUFI Passive Reports	96
Appendix IV: Plots from Hygrothermal Analysis	145
Appendix V: WUFI Passive Output With Adjusted Occupancy	151
Works Cited	

List of Figures

FIGURE 1: TYPICAL 2-STRING BALE DIMENSIONS	3
FIGURE 2: PASSIVE HOUSE PROJECTS ARE ON THE RISE AND PHIUS-CERTIFIED PROJECTS REPRESENT THE BULK OF THE NORTH A	MERICAN
MARKET SHARE	6
FIGURE 3: S-HOUSE	13
FIGURE 4: THE WALL OF THE S-HOUSE SHOWING THE LAYERS OF THE STRAW BALE INSULATED NOVEL CONSTRUCTION IN A MODE	EL AND ON
THE BUILDING SITE	14
FIGURE 5: MODCELL CORE + INTERNAL VIEW	16
FIGURE 6: MODCELL CORE + EXTERNAL VIEW	16
FIGURE 7: THE STRAWCELL WALL ASSEMBLY.	17
FIGURE 8: STRAW SIP USED IN ZERO HOUSE.	19
FIGURE 9: RESEARCH APPROACH	22
FIGURE 10: REFERENCE HOUSE	23
FIGURE 11: BASEMENT (UPPER) AND MAIN FLOOR (LOWER) FLOOR PLANS	24
FIGURE 12: REFERENCE HOUSE SECTION.	26
FIGURE 13: DOUBLE STUD FRAMING USED WITH STRAW BALE.	35
FIGURE 14: A TYPICAL STRAW BALE TO FOUNDATION DETAIL WHERE INSULATION IS NOT CONTINUOUS.	39
FIGURE 15: STRAW BALE ASSEMBLY (WITH TYPICAL THERMALLY BROKEN BASE-PLATE) MOUNTED ON 'AS DESIGNED' REFERENCE I	HOUSE
FOUNDATION	40
FIGURE 16: A SOLID BASE-PLATE ALLOWS THE STRAW BALE WALL TO CANTILEVER OVER THE EPS INSULATION BUT EVEN WITH AD	DITIONAL
INSULATION AND OVERINSULATION AT THE CONNECTION POINT, AN UNDESIRABLE THERMAL BRIDGE IS CREATED	40
FIGURE 17: USING AN ICF FOUNDATION ALLOWS THE USE OF A SIMPLER STRAW BALE WALL ASSEMBLY WITHOUT THERMAL BRID	GING AT
THE INTERFACE	41
FIGURE 18: TAR PAPER/DIAMOND LATH AIR FIN AT WINDOW BUCK	42
FIGURE 19: CONTEGA FC TAPE READY TO ACCEPT STUCCO OVER STRAW BALE	
FIGURE 20: PROPOSED ASSEMBLY. THE RSI IS 6.722 (M ² K/W) AND THE TOTAL THICKNESS IS 0.52 METRES	43
FIGURE 21: FULL SECTION OF PROPOSED ASSEMBLY.	45
FIGURE 22: BASEMENT WALL TO SLAB CONNECTION.	54
FIGURE 23: BASEMENT WALL TO ABOVE GRADE STRAW BALE WALL CONNECTION.	54
FIGURE 24: CORNER BETWEEN TWO WALLS CONNECTION.	55
FIGURE 25: STRAW BALE WALL TO THE ROOF - OBTUSE CONNECTION	55
FIGURE 26: STRAW BALE WALL TO THE ROOF - ACUTE CONNECTION	56
FIGURE 27: HEAD AND SILL WINDOW DETAIL	
FIGURE 28: THERMAL BRIDGE ANALYSIS AT FOUNDATION	
FIGURE 29: WALL SECTION SHOWING POINTS OF INTEREST FOR HYGROTHERMAL ANALYSIS	
FIGURE 30: MEAN RH (%) OF NE WALL IN SASKATOON	
FIGURE 31: MEAN RH (%) OF NE WALL IN CALGARY	
FIGURE 32: MEAN RH (%) OF NE WALL IN KELOWNA	
FIGURE 33: TEMPERATURE AND RH PROFILE OF THE INSULATED SHEATHING LAYER ON NE WALL IN SASKATOON	65

List of Tables

TABLE 1: PASSIVE HOUSE CERTIFICATION REQUIREMENTS.	5
TABLE 2: RSI VALUES OF REFERENCE HOUSE ASSEMBLIES	26
TABLE 3: WINDOW PERFORMANCE DATA	27
TABLE 4: SUBJECT LOCATION SELECTION CRITERIA	29
TABLE 5: FLOOR AREA CALCULATION METHODS	30
TABLE 6: NUMBER OF RESIDENTS CALCULATION METHOD	
TABLE 7: PHIUS CLIMATE-SPECIFIC TARGETS FOR SELECT LOCATIONS	
TABLE 8: As-Designed Outputs and Targets for Select Cities	31
TABLE 9: OUTPUTS (SHOWING COMPLIANCE) AND TARGETS FOR SELECT CITIES	
TABLE 10: WALL RSI RANGES FOR SELECT CITIES.	
TABLE 11: SUMMARY OF INSULATIONS TO BE USED WITH STRAW BALE	
TABLE 12: MATERIAL PROPERTIES OF COMPONENTS USED IN THE FIRST-GENERATION STRAW BALE ASSEMBLY	46
TABLE 13: WUFI PASSIVE OUTPUT SHOWING IMPACT OF A 'FIRST-GENERATION' STRAW BALE ASSEMBLY ADAPTED TO REFERENCE H FOR SELECT CITIES (COMPARED TO THE 'AS DESIGNED' AND PHIUS+ 2015 TARGETS). TARGETS THAT ARE NOT SATISFIED ARE	Ē
HIGHLIGHTED	
TABLE 14: MATERIAL PROPERTIES OF THE ADDITIONAL COMPONENTS USED IN THE PROPOSED STRAW BALE ASSEMBLY.	
TABLE 15: WUFI PASSIVE OUTPUT SHOWING IMPACT OF THE PROPOSED STRAW BALE ASSEMBLY ADAPTED TO REFERENCE HOUSE FO	
ICFA SCENARIOS FOR THE SELECT CITIES (COMPARED TO THE 'AS DESIGNED' AND PHIUS+ 2015 TARGETS). TARGETS THAT A	
satisfied are highlighted. Simulations were based on a 0.0225 cfm.ft ² air leakage rate	
TABLE 16: WUFI PASSIVE OUTPUT SHOWING IMPACT OF CHANGING AIRTIGHTNESS ON OVERALL PERFORMANCE (COMPARED TO TH	
PHIUS+ 2015 targets). Targets that are not satisfied are highlighted.	
TABLE 17: PHIUS BOUNDARY CONDITIONS	
TABLE 18: CALCULATED THERMAL BRIDGES FOR PROPOSED ASSEMBLY.	
TABLE 19: THERM MODEL OUTPUTS AT INTERFACES, INCLUDING PSI-VALUE AND LOWEST INTERIOR SURFACE TEMPERATURE FOR	
'TYPICAL' CONNECTION.	
TABLE 20: MATERIAL PROPERTIES USED IN WUFI PLUS ANALYSIS.	61

List of Appendices

APPENDIX I: PHPP FOR REFERENCE HOUSE	68
APPENDIX II: REFERENCE HOUSE DRAWINGS	89
APPENDIX III: WUFI PASSIVE REPORTS	
APPENDIX IV: PLOTS FROM HYGROTHERMAL ANALYSIS	
APPENDIX V: WUFI PASSIVE OUTPUT WITH ADJUSTED OCCUPANCY	151

1.0 Introduction

1.1 Introduction

To secure a safe, reliable and low carbon energy future, it is crucial that there be major improvements to the energy performance of Canada's housing stock. Residential buildings in Canada account for 17% of final energy consumption across all uses (Natural Resources Canada, 2014), and represent 55% of energy used by buildings (Natural Resources Canada, 2016), revealing a significant opportunity for reducing energy consumption and related greenhouse gas emissions through energy conservation measures. Space heating, which makes up 63% of residential energy consumption (Natural Resources Canada, 2017), is of particular consequence when designing 'low energy' housing.

Only recently have specific energy efficiency requirements found their way into local building codes - through the adoption of Section 9.36. of the National Building Code of Canada - but these requirements are minimal by other international precedents, where 'near' or 'at' net-zero energy consumption housing is becoming status quo (Yip & Richman, 2015). Indeed, the National Research Council (2016, June 14) estimates that adopting Section 9.36. will yield energy savings of 10-20% over that of 2009 construction but still a long way off what would be required to reasonably achieve net-zero housing. By some estimates, an 80% reduction in heating energy use is better aligned with meeting the net-zero target (Yip & Richman, 2015), which, in the short term at least, will be achieved by following the 'performance path' permitted by the standard, and likely through one of the voluntary energy performance programs offered in Canada.

One of the most aggressive energy conservation programs is Passivhaus, a voluntary certification scheme that originated in Germany in the early 1990s, and later adopted to the North American context by PHIUS (Passive House Institute US). Certified homes have an annual space heating demand that is upwards of 90% lower than for a

conventional house (Passive House Institute US , 2017). This is primarily achieved through superinsulation, air tightness, and thermal bridge-free construction techniques. While the certification is proven in its ability to drastically reduce operational energy demands, setting strict limits on heating demands for instance, some evidence suggests that the extra materials needed to achieve such high performance, especially the high amounts of insulation needed, may exact a high embodied energy cost on a project and thus counter-balancing the operational savings (Stephan, Crawford, & Myttenaere, 2013). Seeing that climate stabilization is a major driver for PHIUS (and for many of the other energy efficiency standards and policies), and the founding pillar of the original Passive House standard, efforts to limit embodied energy are imperative, especially as these energy costs are front loaded on a project, creating an energy and emissions deficit amortized over the life of a project. Even if balanced over time, the scientific community stresses that emission reductions are needed now, not in 20 years. As such, low embodied energy materials, and perhaps those capable of sequestering carbon, will best be able to reduce emissions now and in the future.

One potential insulation material that may satisfy these needs is straw bales - an agricultural by-product that has been used as wall insulation in buildings for more than 125 years. An optimized straw bale wall system will be presented and adapted to a single- family detached reference house designed to meet the Passive House Standard. It will be evaluated for applicability across three Western Canadian cities - Saskatoon, Calgary, and Kelowna - using WUFI Passive energy simulation software. The results will demonstrate the effectiveness of using straw bales in achieving Passive House certification in Western Canada.

1.2 Background

Cereal straw - a byproduct of grain cultivation, including wheat, rye, flax, barley and rice - is a ubiquitous, renewable and low embodied energy resource that, when baled, serves as a useful 'building block' with high levels of thermal insulation (a 360mm to 460mm thick plastered straw bale wall has a thermal resistance of approximately RSI-5.28 m²K/W (14 to 18 inches results in approximately R-30). The atmospheric carbon

captured through a plant's lifecycle is locked within its tissues and is sequestered within the walls of a building over the life of the project. These seemingly rudimentary bales produced by a machine that has changed little in 120 years are increasingly being used in novel ways in contemporary architecture worldwide, with projects in the USA, Canada, Europe, Australasia, Japan and China (Magwood, Mack, & Therrien, 2005; Holzhueter, 2010).

Typical 2-string bales are 360mm x 460mm x 889mm to 1016mm, weighing 18 to 23 kg (Figure 1), offering a relatively speedy and low-tech building technique that requires few specialized tools or skills. But unlike most construction materials that are standardized, uniform, and modular by design, packaged in a form that is optimized for easy construction or easily manipulated for flexible arrangement, straw bales are best used intact; cutting, notching, and shaping bales is challenging and time consuming. Well executed designs seek to design around the bale module, maximizing the use of full bales, and thus resulting in a more buildable and efficient design.

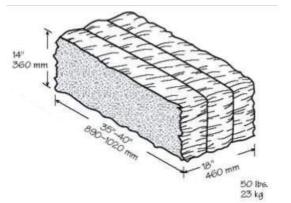


Figure 1: Typical 2-String Bale Dimensions (Wilson, 1995)

Whilst there are many positive attributes associated with using straw bales in buildings, with a growing body of research demonstrating long-term durability where best practices are followed (more of this in Section 2.2), wall thickness is largely dictated by the bale dimensions. This means incremental additions of insulation to achieve thermal insulation values exceeding RSI- 5.28 m²K/W are not as straightforward as adding several more inches of straw, and adding a second bale width is for the most part

impractical. Creating a wall assembly that achieves the R-values recommended by PHIUS (RSI- 6.87 to 11.45 m²K/W for climate zones 6 and 7, which correspond to the select cities being studied), while still utilizing a typical 2-string straw bale, requires an approach that deviates from the typical straw bale building technique of stacking bales in a single width and plastering the bale face inside and out - what some have labeled a "first-generation" assembly (Graham, 2014).

1.3 Objectives

The objective of this research is to determine how typical 2-string straw bales may be used within above-grade wall assemblies for single family dwellings seeking to achieve Passive House certification (PHIUS+ 2015). Computer simulation, informed by best practices revealed during the literature review, will be used to create an optimized assembly that will then be adapted to a detached single-family reference house in three Western Canadian cities - Saskatoon, Calgary, and Kelowna - to satisfy the Standard.

1.4 Problem Statement and Research Questions

Although the PHIUS+ 2015 standard only focuses on reducing operational energy (Passive House Institute US, 2017), requirements for reducing the environmental and climate impacts associated with building materials and construction processes are on the rise. Architecture 2030, a leader in addressing the climate impact caused by the building industry, has called for zero carbon emissions by 2050 for all new construction, including both operational and embodied carbon (Architecture 2030, 2014). The use of cellulosic building materials, including straw bales, offers an important tool in the path towards zero carbon building. *Yet, at the time of this writing, there are no PHIUS+ 2015-certified projects built using straw bales* (L. White, personal communication Nov 9, 2017). This research will enable a clearer understanding of how typical 2-string straw bales may be used to satisfy these rigorous performance standards.

This project seeks to answer the following research questions:

• Are typical 2-string straw bales suitable for creating super-insulated wall assemblies?

 What is the configuration of the straw bale wall assembly and associated details that would satisfy Passive House certification (PHIUS+ 2015) in three Western Canadian cities - Saskatoon, Calgary, and Kelowna?

2.0 Literature Review

2.1 Passive House in North America

The performance-driven Passive House standard (PHI) that originated in Germany under the direction of Dr. Wolfgang Feist during the early 1990's emphasized five basic principles - thermal insulation, Passive House windows, ventilation with heat recovery, airtightness, and a thermal-bridge-free design (Paguin-Bechard, n.d.). Along with a series of recommendations, the PHI standard sets a minimum airtightness target (\leq 0.6ACH50), and limits primary energy consumption to \leq 120 kWh/m²/year. It also established a strict annual space heating limit of 15 kWh/m²/year, regardless of where the building is located. Originally PHI partnered with Passive House Institute US (PHIUS) - the group that brought passive house principles to the US - but disagreements ensued over the appropriate approach for North America, where the climate is radically more variable than exists in continental Europe, not to mention the context for which building occurs (Paquin-Bechard, n.d.). PHIUS, working in partnership with the Building Science Corporation and the US Department of Energy, established a new standard with "climate-specific" targets tailored to their locale (Passive House Institute US, 2017). The latest iteration of this climate-specific standard is called PHIUS+ 2015 and its certification requirements are summarized in Table 1 (PHI requirements are included for comparison).

Criteria	Unit	PHIUS	PHI
Primary Energy	varies	≤ 6200 kWh/person/year*	≤120 kWh/m²/year
Annual Heating Demand	kWh/m ²	Climate specific** (3.16- 37.9)	15
Annual Cooling Demand	kWh/m ²	Climate specific** (3.16 - 67.6)	15
Peak Heating Load	W/m ²	Climate specific** (2.55 - 17.2)	10

Table 1: Passive House Certification Requirements, adapted from PHIUS (2015).

	W/m ²	Climate specific**	8
Peak Cooling Load		(1.8 - 8.9)	
Airtightness	varies	≤0.05 cfm/ft ² envelope @ 50Pa	≤ 0.6ACH @ 50Pa
	% efficiency	53 - 95	≥ 75
Ventilation	Wh/m ³	0.159 - 1.313	≤ 0.447
	m ² K/W	~ RSI-4.40 - 14.09	≥ RSI-6.78
Thermal Envelope	W/mK	~ U-0.069 - U-0.0216	≤ U-0.0450
Thermal Bridge	W/mK	$\Psi \leq 0.01$	$\Psi \le 0.01$
Free			
Windows Installed	W/mK	0.71-0.138	≤ 0.26
SHGC	%	~ 0.27 - 0.61	~ 0.50 - 0.55
Max <i>AT</i> Interior Air	°C	≤4.0°C	≤3.0°C [∂]
vs Interior Surface			
Temperature ^Ω			
Minimum Fresh	m³/hr	30.6	30.6
Air/person			
* PHIUS calculates the number of residents as the number of bedrooms plus one.			

* PHIUS calculates the number of residents as the number of bedrooms plus one.

** The targets for each of the select Western Canadian cities are listed in Section 5.2.4.

^Ω This comfort range is in keeping with ISO 7730, which documents the thermal comfort parameters for human comfort

(PASSIPEDIA, 2017).

^{*∂*} Passive House Institute, 2016

Since 2011, when PHIUS and PHI parted ways, there has been exponential growth in passive house certifications in the US, with PHIUS-certifications accounting for the bulk of the market share (Figure 2; Frappe-Seneclauze, Heerema, & Wu, 2016). This growth, according to Klingenberg (2017), indicates that the certification protocols and climate-specific targets were successful in removing barriers that hindered earlier adoption.

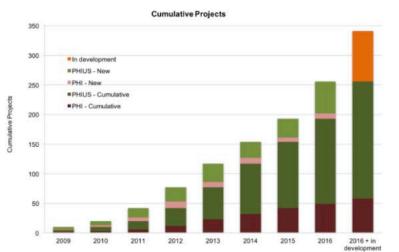


Figure 2: Passive House projects are on the rise and PHIUS-certified projects represent the bulk of the North American market share (adapted from Frappe-Seneclauze, Heerema, & Wu (2016).

2.2 Recent Developments in Straw Bale Construction

The main push for building with straw bales is the perceived environmental benefits. The combination of a low embodied energy/carbon and high insulation value material means that using straw bales can help reduce both embodied and operational energy/carbon by building with them. Offin (2010) found that a house built with a loadbearing straw bale assembly had the least embodied energy of all construction styles. Magwood (2015b) has published similar findings in relation to embodied carbon.

Despite these benefits, Canada does not have provincial or national straw bale building codes, and those straw bale buildings that have been approved have done so on a case-by-case basis (ASRi, 2013). Anecdotal evidence suggests that professional builders have been met with resistance when attempting to obtain warranty insurance for straw bale homes, so those wishing to live in a straw bale home must apply for an owner-builder exemption, which carries its own risks and responsibilities (ASRi, 2013). A lack of standardized best practices, misconceptions regarding fire and seismic safety, and durability concerns, particularly relating to moisture, have been cited as barriers to mainstream adoption of straw bale building (ASRi, 2013; King, 2006; Holzhueter, 2010).

Recently, though, the International Code Council (ICC) officially recognized straw bale construction with its inclusion of Appendix S in the 2015 International Residential Code (IRC) – the basis for the residential building code in virtually every jurisdiction in the United States (The Institutes CPCU Society: Underwriting Interest Group, 2016). This is an important development and is a major step forward in the acknowledgement of straw bales as a suitable building material. Its inclusion in the IRC will hopefully make consumers, builders, lenders, insurers, and inspectors less leery of straw as a building material, thus increasing the number of permitted straw bale projects in the US. One can only hope that this development will raise awareness that will trickle north of the border.

2.2.1 Structure

Straw bales can be used as a structural component in a building - structural loadbearing or structural shear wall - or simply as infill (ASRi, 2013). Variations of these are many and are well described in the Alternatives Solution Resource (ASRi, 2013), as well as in the various current books about straw bale construction (Magwood, 2005; Steen, Steen, & Bainbridge, 1994; Lacinski & Bergeron, 2000). While structural loadbearing assemblies are generally the simplest to build, reduce wood use, and thus have a lower embodied energy and carbon footprint (Offin, 2010), they preclude having a roof during construction making the technique only practical in the driest of climates. Snow and seismic loads require additional structural considerations. For these reasons, infill techniques represent the majority of North American straw bale buildings (Bronsema, 2010).

There are numerous structural details pertaining to straw bale buildings, particularly where straw bales are used as a structural component. Bruce King's "Design of Straw Bale Buildings" (2006) provides a good summary of the current state of the art, covering the load bearing capacity of walls, plaster strengths and reinforcing, earthquake resistance, fire safety measures, and other related topics.

2.2.2 Hygrothermal Properties of Straw Bale Walls

Thermal Performance

The thermal conductivity of straw bales has been well researched over the past 25 years. The type of straw, its moisture content, density and the orientation of the fibres, and other elements such as the type of finish, all impact the overall thermal performance of the assembly. A thorough overview of the history of this research is provided by Bronsema (2010), where it is noted that the quality of the results for the overall thermal performance of an assembly is strongly influenced by the construction technique utilized. Density has a significant influence on conductivity, with higher bale densities generally providing better thermal performance (International Code Council (ICC), 2015). Appendix S of the 2015 IRC, states that "bales shall have a minimum dry

density of 6.5 pounds per cubic foot (104 kg/cubic meter). The dry density shall be calculated by subtracting the weight of the moisture in pounds (kilograms) from the actual bale weight and dividing by the volume of the bale in cubic feet (cubic meters)" (International Code Council (ICC), 2015).

While there is a poor correlation between the measured conductivity of straw and the measured R-value of plastered walls (Bronsema, 2010), testing of plastered straw bale walls using a guarded hot-box facility, has led to some recommendations. Andersen (2001) (as cited in Bronsema, 2010) advises using a conductivity for straw of 0.08 W/m-K, a value slightly more conservative than the reported range of 0.06-0.075 W/m-K suggested by Struabe & Burnett (2005). Where best practices are followed, Bronsema (2010) advises using conductivities between 0.060 and 0.070 W/m-K for bales laid on edge (heat flow perpendicular to the grain) and between 0.065 and 0.075 W/m-K for bales laid on flat (heat flow parallel to the grain).

These values, though they are in line with the oft-citied 4.76 m²K/W to 5.28 m²K/W given to a plastered straw bale wall (ASRi, 2013; King, 2006; Magwood, Essential Prefab Straw Bale Construction, 2016; Stone, 2003), they are generous compared to thermal resistance values for straw bales included in Appendix S of the 2015 International Residential Code (IRC). In it, the permitted R-values are 1.3 per inch (0.11 W/m-K) for bales laid flat and 2 per inch (0.072 W/m-K) for bales on-edge. This is likely a broad net intended to capture instances where best practices are not followed, but seeing that straw bale construction is now effectively codified, at least in many parts of the US, these values are significant. Given the tremendous experience of those involved in shaping Appendix S, and noting the inherent variability of straw bales as a building material, using these especially conservative values seems prudent, especially in high performance construction where precision matters.

The type of plaster used with the assembly has little bearing on the thermal resistance of the assembly since the R-value of the plaster is generally less than 5 percent of the R-value of the straw bale (Bronsema, 2010).

Air Permeability and Convection

Air spaces that bypass insulation in cavities results in natural convection, which negatively impacts the thermal resistance of an assembly. Filling voids between bales and framing members with loose straw to a density comparable to the bale is essential for maintaining thermal continuity. The importance of this was demonstrated by Andersen (2001), who found that the U-factor increased by more than 10% by not properly dealing with voids within the straw bale assembly being tested, an effect that increases with temperature differences through the straw (as citied in Bronsema, 2010). Similar findings were reported by Rissanen & Viljanen (1998) in their work on the thermal conductivity in flax straw.

Reducing air gaps between the plaster and straw is also important, as this too can contribute to natural convection, thus increasing heat flow. A 1996 test on a straw bale wall system at the Oak Ridge National Labs (ORNL), resulted in R-values one third of what had previously been reported (Stone, 2003). This result was due to the presence of numerous and significant air gaps between the bales and the interior mounted sheetrock and between the bales and the exterior stucco (Stone, 2003). To the testers credit, this was a demonstration for elementary school teachers and not as a rigorous attempt at measuring thermal performance. It does however serve a purpose in demonstrating the need to avoid gaps between bales and the finish used to encase them.

Moisture

Rotting of straw is the largest durability concern for straw bale buildings (Holzhueter, 2010). Reducing high moisture levels in straw from built-in moisture, interior and exterior humidity, driving rain, splash back, ground moisture and plumbing leaks is necessary to prevent decay. The process of decay in cellulosic materials, including straw, is covered in detail by Holzhueter (2010) and Bronsema (2010), and in lesser detail by King (2006).

To deal with built-in moisture, the moisture content of straw bales at the time of installation should not exceed 20% the total weight of the bale (ASRi, 2013;

International Code Council (ICC), 2015). Once moisture content exceeds 20% mold spores may start to grow (ASRi, 2013).

Rain control is crucial to avoid freeze-thaw damage, corrosion and decay, and the 'Canadian holistic approach' as described by the three D's, 1) Deflection, 2) Drainage/Storage/Exclusion, 3) Drying, should guide decisions to mitigate durability and health problems (King, 2006).

Building shape and site design are important considerations, especially as straw bale walls tend to use the storage approach for dealing with moisture (King, 2006). Thus, minimizing wetting is essential. According Gonzales (n.d.), the 3-foot (~1 metre) overhang rule-of-thumb has been used for one-storey buildings, while larger roof overhangs are recommended for taller buildings (as citied in ASRi, 2013). Where there is high exposure, rainscreen designs are possible and desirable. In all cases, adequate drip overhangs and flashing details must be in place to move water away from the walls.

Grade separation and the use of porous surfaces are used to control splashback, and keeping bales a minimum of 203 mm (8 inches) above grade is generally considered the minimum for straw bale walls (King, 2006). A moisture break between the ground (typically the foundation interface) and the wall prevents moisture migration through capillary action.

Air Barriers

Airtightness is important to reduce energy loss and to guard against condensation problems assosciated with uncontrolled movement of moisture-laden air into wall assemblies. Interior plasters generally provide the air barrier to a straw bale wall assembly but they must be continuous to be effective. Where plasters meet dissimilar materials, particularly at intersections with the floor, window and door jambs, ceiling, and framing members, careful detailing is required to ensure there is no air leakage into the wall assembly. Historically, achieving airtightness with straw bale assemblies has

been a challenge - a point well described by Racusin, Graham, & McArleton (2011), whereby post-occupancy energy performance evaluations of seven recently built straw bale homes in the northeastern US found substantial air leakage (all projects tested \geq 2.5 ACH50), even where secondary air barrier strategies were deployed. This research represents the largest single effort to collect energy performance metrics on straw bale homes in North America to date. Assembly specific strategies for controlling air leakage at critical intersections, including recommendations from the report, are covered in Section 5.3.5.

Vapour Control

Numerous studies have shown that straw bale wall assemblies must have the ability to transfer and release water vapour in order to prevent long-term accumulation of moisture (Gagne, 1997; Jolly, 2000; Holzhueter, 2010; Bronsema, 2010). Managing the moisture balance depends on having air barriers and using vapour control measures that minimize diffusion wetting and that promote drying of incidental moisture. The combination of straw and plaster has significant vapour diffusion resistance and large moisture storage capacity, making conventional 'vapour barrier' strategies unnecessary and even detrimental (King, 2006).

A typical 460mm (18 inch) straw bale has a vapour permeance ranging from 110-230 ng/Pa-s-m (~2 to 4 US perms) and evidence suggests the total cumulative permeance of the plaster skins on either face should not be less than 290 ng/Pa-s-m (~5 US perms), including any any surface treatment or sealer, to encourage fast drying (ASRi, 2013). Appendix S of the 2015 International Residential Code (IRC) states that "Class I and II vapour retarders shall not be used on a strawbale wall, nor shall any other material be used that has a vapor permeance rating of less than 3 [US] perms [172 ng/Pa-s-m]..." (International Code Council (ICC), 2015, pp. S-7).

In general, limiting humidity to 80% RH within the assembly will prevent mould growth, though Bronsema (2010) suggests that this static limit imposed for all temperatures is

overly conservative, and "does not include time to germination...[and that] small fluctuations above these limits are likely not going to lead to mould growth..." (pg. 56). Keeping below this upper limit is, however, a useful reference point for evaluating the suitability of an assembly in regards to health and long term durability (PHIUS, 2015).

2.3 Case Studies on High Performance Straw Bale Walls

The following case studies provide an overview of how typical 2-string straw bales have been used to build high performance wall assemblies. Common to the projects is an increased emphasis on airtightness, super insulation, and reduced thermal bridging to achieve the increasingly rigorous performance standards such as Passive House.

2.3.1 S-House

As part of the "Building for Tomorrow" subprogram, the Center of Appropriate Technology (GrAT/Gruppe Angepasste Technologie) at the Vienna University of Technology developed a concept house ("S-House"), which sought to meet the strict energy targets of the passive house method using renewable materials. The target was to create a building that used only 10 percent of the resources and energy compared to conventional Austria construction (GrAT, 2004).

Figure 3: S-House (GrAT, 2004)

The wall assembly was made up of an inner wooden plate structure (CLT), wrapped in straw bales on the exterior. The exterior straw bales were then coated with a single coat of clay plaster to seal the bales, thus making the ventilated façade less vulnerable. Custom designed Treeplast screws - made from a lignin based biopolymer and measuring 365mm (14.6 inches) in length - were used to fasten counterlathing to the straw bale wall in order to mount the wooden siding, completing the rainscreen (Figure 4; Wimmer, Hohensinner, & Drack, 2004).

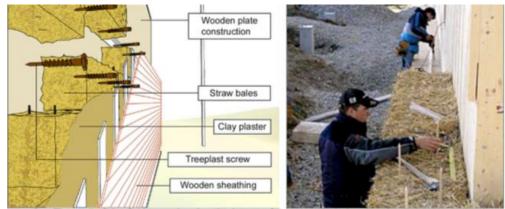


Figure 4: The wall of the S-House showing the layers of the straw bale insulated novel construction in a model and on the building site (adapted from Wimmer, Hohensinner, & Drack (2004)).

The building was fitted with sensors to allow for long-term monitoring of the building components and materials, assessing humidity, temperature, heat flow, and proofing of airtightness. Unfortunately, only several months of data has been made publically available (http://www.s-house.at/BSaktuelleWerte.htm)¹, making it difficult to draw conclusions on the success of this system. It does, however, mimic a "perfect wall" assembly, with the structure inbound of the insulation, which has the added protection of a ventilated rain screen. According to Brian Fuentes, a Colorado-based architect who has used the S-House as inspiration for the straw bale projects he has worked on, including his own home, says the "S-House" represents a high achievement for integrating straw bales into high performance buildings (personal conversation Sept 19, 2017).

¹ Requests for additional monitoring data for the S-House were unsuccessful.

2.3.2 Modcell

Developed through a collaboration with the Department of Architecture & Civil Engineering at the University of Bath, Modcell strawbale SIPs (structural insulated panels) have gone through rigorous scientific monitoring and testing, culminating in industry standards that show their energy efficiency, fire safety, long term durability, and ability to withstand extreme weather events (University of Bath, 2017). BM TRADA's Q-Mark certification provides assurances of all these qualities and enables developers and homebuyers to obtain insurance and mortgages for straw bale homes and buildings (University of Bath, 2017).

The ModCell Core + panel has received recognition as a 'Certified Passive House Component', meeting the necessary heat transfer coefficient for the building envelope, thermal bridge free design connection details, and airtightness requirements for all components and connection details (ModCell, 2017). A 400mm (16 inch) deep wood frame contains the straw bales and the system is dry lined using breathable sheathing boards - a 15mm (5/8 inch) OSB3 VCL sheathing board on the interior, and a combination 12mm (1/2 inch) external breather board with a 40mm (~1 5/8 inch) wood fibre breather/plaster carrier - and finished with 7-8mm (~1/3 inch) of breathable exterior lime render (Figure 5/Figure 6; ModCell, 2017). The 0.49m thick wall panel has a thermal heat transfer coefficient of 0.122 (W/m²K), which results in a RSI of 8.20 $(m^{2}K/W; R-46.54)^{2}$.

² The Modcell thermal resistance claim relies on straw bales with a thermal conductivity in the ballpark of 0.06 W/m-K (noting that their bales are 400mm deep versus 356mm deep for common North American straw bales on edge). This is in line with the recommend thermal conductivity range of 0.060 and 0.070 W/m-K for bales on edge noted in the literature review, and the slightly more generous than the 0.0721 W/m-K given to straw bales used in this research.

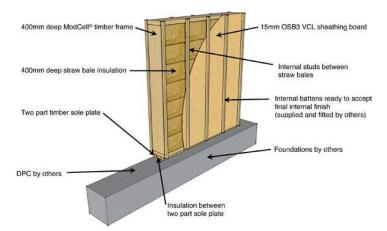


Figure 5: ModCell Core + Internal View (adapted from (ModCell, 2017)

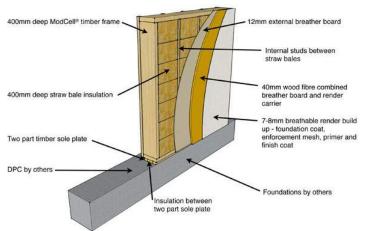


Figure 6: ModCell Core + External View (adapted from (ModCell, 2017)

ModCell Core + has been developed with 26 compliant construction details including basement, wall and rood intersections, ceiling, partition and window details that can be used across Europe (ModCell, 2017). Modcell panels have been used in dozens of projects across Europe, including in schools/secondary institutions, business complexes, retail/commercial spaces, community projects and residential dwellings.

2.3.3 StrawCell

StrawCell - a portmanteau that merges straw bales with dense packed cellulose - is a concept developed by New Frameworks of Vermont. The assembly affixes a typical 2-string bale to an externally framed wall that is dense packed with cellulose (Graham, 2014). Its development came about after an energy audit of seven straw bale homes

initiated by the group, which showed some consistent problem areas. *StrawCell* sought to create better straw wall details to promote greater airtightness, accommodate modifications for increased energy performance (e.g. increased R-value), and to make construction easier and more affordable (Graham, 2014).

The layers of the assembly from exterior to interior include (Figure 7):

- Exterior siding over a ventilated rain screen;
- WRB over 13mm (1/2 inch) insulated sheathing;
- 2x6 exterior load bearing wall insulated with dense packed cellulose;
- Straw bale on edge secured to 2x framing and plastered on the interior face (New Frameworks, 2013).

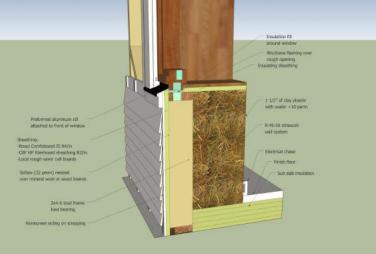


Figure 7: The StrawCell Wall Assembly (New Frameworks, 2013).

Some of the distinguishing features of this system include:

- No exterior plaster, which eliminates a time-consuming and weather sensitive step (this has the added benefit of extending the building season for working with straw bales, which is often limited to warm months);
- Straw bales are placed to the interior of the frame, making them less susceptible to weather during construction;
- 13mm (½ inch) vertical lath is used on the inside face of the bales to sandwich the bales to the framed wall. This creates stability in the unplastered wall so that

the bale strings can be cut to reduce time associated with stuffing the voids between bales;

- Interior structural elements are eliminated, thus creating fewer interruptions that can interfere with the interior plaster air barrier;
- Windows and doors are finished in the same way as typical construction;
- The additional depth of insulation makes achieving increasing standards for superinsulated structures (e.g. Passivhaus) possible;
- Increased flexibility for siding options to fit with the local building vernacular (New Frameworks, 2013).

Overall, adding 140mm of dense packed cellulose to the straw bale wall adds an additional RSI-3.79 m²K/W, resulting in a total RSI-9.07 m²K/W for the entire assembly. This represents a 70% increase in thermal resistance over a typical single-width plastered straw bale wall. Additionally, the cellulose blown against the face of the bales deals with any voids resulting from the irregularity of the bale surface, and thus creates a flat, thermally connected surface for which subsequent layers can be affixed.

2.3.4 Zero House

The Zero House was a joint project between The Endeavour Centre and Ryerson University's Department of Architectural Science and centered around five main concepts: 1) zero net energy use, 2) zero carbon footprint, 3) zero toxins, 4) zero construction waste, 5) zero cost premium over conventional construction (Alter, 2017). The demonstration unit was designed not as a sand alone house, but as a unit that could be assembled into a larger housing development (Alter, 2017). The entire building was prefabricated and modular, and included a variety of assembly configurations used to showcase the range of options for achieving these goals.

Two of the walls included straw bales in a prefabricated panel (Figure 8) using two different insulation boards - one wood fibre-based, the other mycelium-based - on the exterior face of the panel to boost the R-value of the assembly. The interior was finished with ReWall EssentialBoard - a structural sheathing product made from 100% recycled

beverage containers. The RSI values of these assemblies were 6.87 m²K/W and 7.22 m²K/W respectively (Endeavour Centre, 2017).

Figure 8: Straw SIP used in Zero House (Endeavour Centre, 2017).

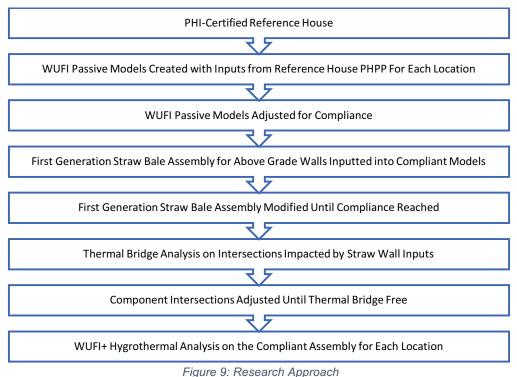
The water vapor transmission of the interior structural sheathing product (<57.2135 ng/Pa-s-m (1 US perm), which constitutes a Class I vapor retarder) does not satisfy best practice, and fails to comply with the recommendations in Appendix S of the 2015 International Residential Code (IRC). Despite this, the design team was comfortable with assembly after a hygrothermal analysis done by the Ryerson Architectural Science students involved with the project showed no signs of elevated moisture (C. Magwood, personal communication Dec 17, 2017). This suggests that assemblies that deviate from best practice may indeed yield acceptable results but must be assessed on a case by case basis to avoid issues related to durability, health and performance.

2.4 Literature Review Conclusion

Passive Houses have set a high bar for energy performance, long-term durability, and human health and comfort. The Standard represents where most building/energy codes are headed (Yip & Richman, 2015), and the performance targets align with the conservation goals promoted by organizations such as Architecture 2030, at least with regards to operational energy savings. Limiting embodied carbon emissions in buildings

is also needed and straw bales have many qualities that make them well suited to high performance construction, while also sequestering carbon and locking it up over the life of the project. However, the successful use of straw bales in high performance building requires that best practices be followed. Choosing bales with the desired density and ensuring that voids are filled to reduce natural convection is necessary to achieve thermal performance in line with published values, while managing moisture is largely a matter of good design and proper implementation, especially with regards to ensuring adequate airtightness and controlling rain exposure. Using dry bales and keeping them dry during the construction process is necessary to avoid microbial decay. The case studies above demonstrate novel ways of combining straw bales with compatible offthe-shelf building materials to satisfy increasingly stringent energy performance standards, though the development of these hybrid assemblies is still very much in its infancy. Just as the StrawCell assembly was developed to address the specific needs of those building in the cold and wet climate of the Northeastern USA, it is only natural that other configurations will come about to meet the unique needs of other regions, whether to satisfy local code requirements, to achieve certain performance targets, to make use of locally available materials and/or trade skills, or to deal with weather and climate variables. High performance straw bale assemblies specific to Western Canada have received little focus and this research seeks to address this gap by defining and evaluating a high performance straw bale wall assembly that is regionally relevant and climate appropriate, and specific to achieving PHIUS+ 2015 in the three select cities.

3.0 Research Approach


A reference house previously certified by the Canadian Passive House Institute (CanPHI) in 2015 was used to test the impact of a straw bale wall assembly developed to satisfy the various compliance thresholds needed to achieve PHIUS+ 2015 certification for the select cities. A complete description of the reference house is presented in Section 4.0. A whole building energy model was created using WUFI Passive - a software program used to determine the operating energy consumption in accordance with the Standard. Early assessments comparing predicted modeled performance with actual usage from measured data shows that the PHIUS+ 2015 algorithms and assumptions appear accurate, though this work has largely been restricted to multifamily dwellings (Klingenberg, 2017). It is anticipated that as projects become more numerous, and as more measured data is collected, similar assessments will be conducted on differing building archetypes, creating more measured data feedback loops in an effort to hone the accuracy of the modeling tools (Klingenberg, 2017).

The model was populated using the parameters from the Passive House Planning Package (PHPP) submitted with the original PHI certified project (the full PHPP is included in Appendix I). Three models - one for each of the select cities - were created and simulations were run using PHIUS approved climate data for each location. As the performance requirements are unique to each location, and because protocols for achieving compliance differ between the two Standards, minor adjustments were made to each model to achieve compliance with the PHIUS+ 2015 standard. An overview of the whole building energy modeling process is provided in Section 5.2.

Once compliance was achieved for each of the select locations, the 'as-designed' above-grade walls were then substituted with a straw bale wall assembly that maintained compliance. Defining an appropriate straw bale assembly was accomplished through an iterative process, adjusting the assembly as necessary to satisfy the targets set by the Standard for each location, and informed by the best practices revealed during the literature review. An overview of this assembly is provided in Section 5.3.

Where modifications were made to the original design to accommodate the straw bale wall assemblies, thermal bridge analysis was carried out. An overview of thermal bridge free construction is provided in Section 5.3.5 and the results of the thermal bridge analysis are given in Section 6.2.

Finally, the hygrothermal performance of each straw bale wall assembly used to achieve PHIUS+ 2015 compliance for each of the select cities was conducted using WUFI Plus. A full overview of this process is covered in Section 6.3. The research approach is summarized in a flow chart in Figure 9 below.

i igale el ricecalen rippied

4.0 Reference Building Design

4.1 Building Typology

The reference building is a single-family detached (SFD) house with a basement suite built in Calgary, Alberta and certified by the Canadian Passive House Institute (CanPHI) in 2015 (Figure 10). This home was chosen for three primary reasons. Firstly, since this is a certified Passive House, the integrity of the design - orientation, floor plan layout, windows and components, and mechanical systems - could be maintained while simply allowing for the wall assembly to be modified to measure the impact on performance. Secondly, SFDs represent over half of the residential dwelling units in Canada and over 67% of total built floor area (Natural Resources Canada, 2014). It also represents the primary typology for which straw bales are used in construction (ASRi, 2013). Thirdly,

the inclusion of a secondary suite in the home represents an additional technical challenge for achieving the Standard but the prevalence of secondary suites in Canada is on the rise and this trend is projected to continue (Canada Mortgage and Housing Corporation, 2017).

Figure 10: Reference House (Passive House Canada, 2017)

4.2 Reference House Description

4.2.1 Building Geometry and Orientation

The reference house has a treated floor area of 256.4 m² (2759.9 ft²), with a 104.6 m² (1,125.8 ft²) basement suite and the remaining 1,634.1 ft² (151.8 m²) divided between the main floor and loft area. The building geometry is compact, with a minimal footprint. The front of the house orients south-southwest at 196 degrees. The architectural drawings of the basement and main floor plans are shown in Figure 11. Site plan, sections and elevations of the reference home have been included in Appendix II.

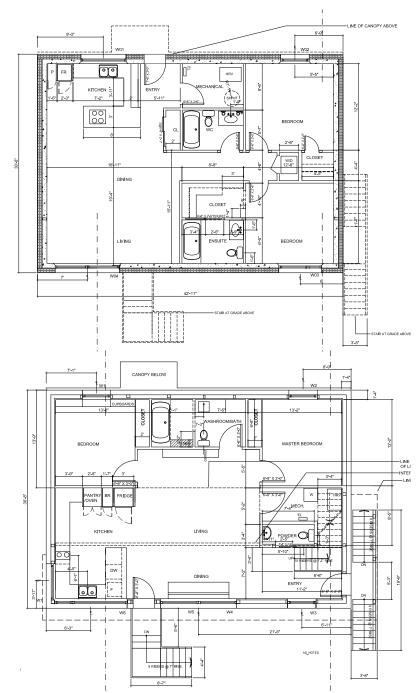


Figure 11: Basement (upper) and Main Floor (lower) Floor Plans (adapted from LVDesign, 2014).

4.2.2 Suitability for Straw Bale Integration

Overall, the reference house design is not ideally suited for straw bales. It's sloping roofline, for example, would require that the straw bales be modified and fitted to the shape rather than the shape conforming to the bale. Furthermore, fitting bales above the structural beam supporting the clerestory would prove challenging. As was discussed in the literature review, designing around a bale module is the most effective path to creating a high performance enclosure. Eliminating complex shapes during the design phase is essential for maintaining thermal continuity and air tightness, while also improving buildability. These points will be further discussed in Section 5.3.

4.2.3 Building Envelope

The basement slab and walls are traditional concrete wrapped in 203mm (8 inches) of EPS foam, with the concrete slab exposed to provide accessible thermal mass. The main level and loft walls are 38x140mm (2x6 inch) framing with additional exterior rock wool insulation. The roof assembly consists of a 406mm (16 inch) TJI with blown-in fibreglass, with an additional 38x38mm (2x2) insulated service cavity behind the interior gypsum wall board. The reference building envelope sections are presented in Figure 12 and assembly thermal properties are summarized in Table 2.

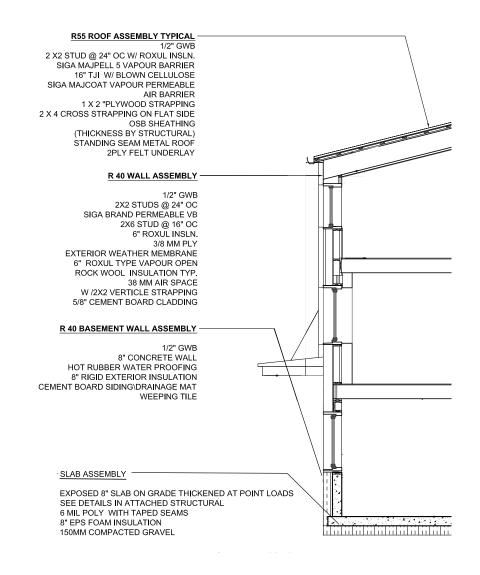


Figure 12: Reference House Section (adapted from LVDesign, 2014).

Assembly Type	Insulation Type	RSI-value (m ² K/W)	RSI-value (m ² K/W)	
		from WUFI Passive*	from PHPP	
Basement Wall	EPS	6.37	6.42	
Slab	EPS	6.31	6.39	
Above Grade Wall	Mineral Wool	8.03	7.70	
Roof	Blown-in Fibreglass &	10.54 10.36		
	Mineral Wool	10.04	10.50	
* These RSI values are from WUFI Passive using the assembly configuration noted in the architectural plans and thermal				
conductance values noted in the PHPP. The differences in values are the result of rounding between metric and imperial inputs				
and their conversion within WUFI Passive.				

4.2.4 Glazing Size and Orientation

PHI-certified triple-glazed windows were used throughout. The window frames are PVC with PU-foam insulation in the air chambers. A warm edge spacer is used and the sealed units are filled with Krypton gas. South and west-facing windows have a high solar heat gain coefficient (SHGC), while north-facing windows have a low SHGC. There are no east-facing windows. A summary of the window properties specified for the reference building is provide in Table 3. The total window area is 39.4 m² (28.3 m² glazed area).

Window	Façade	Frame Type	Total U-value*	SHGC (-)
Number			(W/m ² -K)	
1	South	Fixed	0.76	0.5185
2	South	Tilt & Turn	0.77	0.5185
3	South	Casement	0.77	0.5185
4	South	Fixed	0.84	0.5185
5	South	Tilt & Turn	0.83	0.5185
6	South	Fixed	0.77	0.5185
7, 8	South	Fixed	0.75	0.5185
9	South	Tilt & Turn	0.82	0.5185
10, 11	South	Fixed	0.80	0.5185
12, 13	South	Fixed	0.62	0.5185
14, 15	South	Awning	0.81	0.5185
16, 17	North	Tilt & Turn	0.76	0.4165
18	North	Fixed	0.76	0.4165
19	North	Tilt & Turn	0.77	0.4165
20	North	Fixed	0.71	0.4165
21	North	Fixed	0.70	0.4165
22	North	Casement	0.76	0.4165
23	West	Fixed	0.81	0.5185
* Total U-value represents weighted centre-of-glass and frame U-				
value, including the Ψ_{Spacer} & $\Psi_{\text{Installation.}}$				

Table 3: Window Performance Data

4.2.5 Doors

There is a total of three exterior doors. Two (one north-facing, another east-facing) are solid 3 hinge fiberglass PU-insulated doors with a single deadbolt. The U-Value for each of these doors is $0.80 \text{ W/m}^2\text{K}$. The remaining door (south-facing) contains a 1.5 m^2 PHI-certified triple-glazed unit with U-Value of $0.82 \text{ W/m}^2\text{K}$ and a SHGC of 0.5185. A warm edge spacer is used and the sealed units are filled with Krypton gas.

4.2.6 Ventilation System

Two separate ERVs were installed to provide ventilation in each dwelling unit - one in the basement suite, another for the upper levels. It is a certified component by PHI, and is rated for air flow rates of 60 to 150m³/h (Zehnder, n.d.). Each unit has an effective heat recovery efficiency of 89.4% and an electric efficiency of 0.42 Wh/m³. The units allow for air flow balancing and has frost protection for the heat exchanger with continuous fresh air supply down to -15°C (outdoor air).

4.2.7 Heating, Cooling and Domestic Hot Water (DHW)

Solar thermal flat plate collectors, covering 11m², provide an estimated 74% of DHW needs. A condensing gas boiler with an 80% efficiency (at constant operation) feeds hydronic coils in the supply air streams for additional space heating and makes up the balance of DHW needs.

4.2.8 Thermal Bridges

No thermal bridging data was inputted into the PHPP, suggesting that a thermal bridge analysis was not completed or the values were not significant enough to require inclusion.

4.2.9 Air Tightness

An air change rate of 0.3 1/h was used for calculation purposes. This value also aligns with the verified pressurization test result as reported in the PHPP.

5.0 Reference Building Simulations

5.1 Chosen Geographic Locations

Geographic locations were selected to reflect three relatively different climates in Western Canada (Table 4), each with good access to a straw resource and in locations with a population of over 100,000 people, whereby sustained population growth is anticipated to carry into the future (Statistics Canada, 2017). The three locations selected were Saskatoon, Calgary, and Kelowna.

Location	Climate	Factors*	Annual	Distance from			
	Heating	Cooling	Precipitation	Straw $(km)^{\Omega}$			
	Degree	Degree	(mm)**	. ,			
	Days	Days					
	(HDD)	(CDD)					
Saskatoon, SK	5785.6	101.5	353.7	<25			
Calgary, AB	4967.9	45.7	418.8	<50			
Kelowna, BC	3554.5	218.8	386.9	<100			
* Adapted from Canada Weather Stats (2017) and represent an average of the 1992 to 2016 weather data.							
** From weatherbase.com							
^Ω Based on the author	or's experience ob	taining straw in th	ese areas.				

Table 4: Subject Location Selection Criteria

5.2 Whole Building Energy Model

5.2.1 Whole Building Energy Modeling Software

WUFI Passive 3.1 was used to create a whole building energy model using the design and parameters of the reference house described in Section 4.2. Fraunhofer Institute for Building Physics collaborated with PHIUS and Owens Corning to develop a software tool that is suited to the varying climate zones found in North America (PHIUS, 2017). Climate-specific performance targets are entered into the software, along with PHIUSapproved climate data, allowing for buildings to be easily evaluated for compliance with the PHIUS+ 2015 Passive Building Standard.

5.2.2 Weather Data

Climate data may be entered manually or loaded into the WUFI Passive software in a pre-formatted file type, though all climate data must be approved by PHIUS for each project (PHIUS, 2017). The climate files for the select cities were acquired from PHIUS in an XLS format and loaded directly into WUFI Passive without modification.

5.2.3 WUFI Passive Modeling Procedure & Assumptions

A 3-D model was created in SketchUp based on the architectural plans and imported into WUFI Passive. The model was then populated with the parameters from the Passive House Planning Package (PHPP) submitted with the original project. The

inputted floor area value was adjusted to reflect the fact that PHIUS+ and PHI calculate living space differently. While PHI calculates Treated Floor Area (TFA) - the living or useful floor area within the thermal envelope, PHIUS calculates the Conditioned Floor Area (iCFA) - the interior (drywall-to-drywall) floor area within the conditioned space with at least seven feet ceiling height (Passive House Institute US, 2017). The calculation method has implications for the performance targets, which are largely measured on a per unit of floor area basis. The calculated areas for the reference house based on the two calculation methods are shown in Table 5.

Table 5: Floor Area Calculation Methods

Certification Standard	Measurement Method	Area
CanPHI	Treated Floor Area (TFA)	256.4 m ² (2759.9 ft ²)
PHIUS+ 2015	Internal Conditioned Floor Area (iCFA)	245.7 m ² (2644.6 ft ²)

PHIUS and PHI also calculate the number of occupants differently. The calculation method and the calculated number of residents for the reference house based on each standard is shown in Table 6.

T-1-1- 0	N I I	- C D istanta	0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	M - 411
Table 6:	Number	of Residents	Calculation	метпоа

Certification Standard	Measurement Method	# of Occupants				
CanPHI	35m ² /person	7.3				
PHIUS+ 2015	# of bedrooms + 1*	6				
* This is calculated per dwelling unit. In the case of the reference house, there are 2 units, each with 2 bedrooms.						

5.2.4 WUFI Passive Simulations

Using the parameters outlined in Section 4, and accounting for any changes owing to PHIUS requirements (see Section 5.2.3), a model was created for each location to determine compliance with the PHIUS+ 2015 Passive Building Standard using PHIUS-approved climate data and the climate-specific performance targets. The performance targets for each location are listed in Table 7.

Location	Zone	Annual Heating Demand (kWh/m ² a)	Annual Cooling Demand (kWh/m ² a)	Peak Heating Load (W/m ²)	Peak Cooling Load (W/m ²)			
Saskatoon, SK	7A	28.39	3.15	19.24	11.67			
Calgary, AB	7A	27.13	3.15	19.24	10.41			
Kelowna, BC	6	21.77	15.77	11.99				
Additional targets	:							
Source Energy Der								
Airtightness: ≤0.05 cfm/ft ² envelope* @ 50 Pa * gross envelope area external of the thermal boundary								

Table 7: PHIUS (Climate-Specific	Targets for	Select Locations
------------------	------------------	-------------	------------------

5.2.5 WUFI Passive Results and Discussion

The 'as-designed' reference home complied with 4 of 5 of the climate-specific targets in all three locations. The annual cooling demand, however, was exceeded in all instances, surpassing the limit by a factor of 2.96 in Calgary, 3.49 in Saskatoon, and 4.78 in Kelowna. These results of this initial analysis are displayed in Table 8.

Location	Ann Heat Dem (kWh/	ting and	-	Cooling and /m ² a)	Peak H Load (\		Peak Cooling Load (W/m ²)		Source Energy Demand (kWh/person- yr)	
	Output	Target	Output	Target	Output	Target	Output	Target	Output	Target
Saskatoon, SK	20.11	28.39	10.96	3.15	16.2	19.24	8.11	11.67	6,082	6,200
Calgary, AB	11.27	27.13	9.29	3.15	13.27	19.24	6.33	10.41	5,729	6,200
Kelowna, BC	8.86	21.77	15.01	3.15	11.04	15.77	9.02	11.99	5,727	6,200

Table 8: As-Designed Outputs and Targets for Select Cities

The inflated annual cooling demand is the result of greater internal heat gains in the WUFI Passive model compared to the PHPP outputs. While the PHPP contained specific interior lighting and consumer electronic loads, PHIUS+ requires the use of default reference quantities for these variables, one for PHIUS+ Interior Lighting, another for PHIUS+MELs (miscellaneous electric loads, including televisions and plug loads. These loads are much greater, resulting in significantly larger internal heat gains, which translate into higher annual cooling demands. To remedy this, each model was adjusted for compliance.

Three primary adjustments were made to achieve compliance, though not all three were needed in all locations. This was an iterative process, beginning with the 'low-hanging-fruit'. These included:

- Increasing natural night ventilation, a cooling strategy called 'night flushing' that allows cool night air to carry away heat absorbed by the building during the day (Griffin, 2010), from 0.02 [1/h] used in the PHPP calculations to the default value of 0.3 [1/h] in the WUFI Passive software. This was applied to all three locations, and put Calgary in compliance with the Standard.
- 2) Increasing the percentage of high efficiency lighting from the 0% used in the PHPP calculations to 100% in the WUFI Passive software. This was applied to Saskatoon and Kelowna and had a measured impact in the correct direction but it was not sufficient to achieve compliance in either location.
- Changing the south and west-facing windows from high SHGC models to low SHGC models. This change was applied to Saskatoon and Kelowna and resulted in both locations achieving compliance.

The results of these changes are listed in Table 9.

Location	Annual Heating Demand (kWh/m ² a)		Dem	Annual Cooling Demand (kWh/m ² a)		Peak Heating Load (W/m²)		Peak Cooling Load (W/m ²)		Source Energy Demand (kWh/person- yr)	
	Adjusted Output	Target	Adjusted Output	Target	Adjusted Output	Target	Adjusted Output	Target	Adjusted Output	Target	
Saskatoon, SK	23.36	28.39	2.73	3.15	16.58	19.24	5.97	11.67	5,409	6,200	
Calgary, AB	11.57	27.13	2.19	3.15	13.54	19.24	3.93	10.41	5,674	6,200	
Kelowna, BC	11.95	21.77	3.06	3.15	11.21	15.77	5.73	11.99	4,997	6,200	

Table 9: Outputs (showing compliance) and Targets for Select Cities

While these changes negatively impacted the annual heating demand, overall it reduced total annual energy demand (heating & cooling) in all 3 locations; reducing it by 19% in Saskatoon, 49% in Calgary, and 59% in Kelowna.

With each of the models now compliant with the PHIUS+ 2015 Passive Building Standard, a straw bale wall assembly was fitted to the model for all above grade walls. The assembly is defined in the proceeding section.

5.3 Developing the Straw Bale Wall Assembly

5.3.1 Assessment Criteria

As the case studies revealed, there are multiple opportunities for achieving a highperforming building envelope with straw bales. To achieve Passive House certification, the wall assembly must satisfy four primary criteria, including:

- 1) Adequate thermal resistance;
- Climate appropriate construction such that mold and moisture risks are minimized;
- 3) Thermal bridge free construction;
- 4) Air tightness.

The recommended assembly will need to satisfy these primary criteria - verified in WUFI Passive (see Section 6.1) - while also addressing some practical considerations - buildability, cost, reduced maintenance, and the overarching goal of reduced embodied carbon. These secondary criteria provide a lens by which to evaluate the materials/methods needed to satisfy the primary criteria.

Of particular importance is the buildability of the assembly, especially as conventional trades are unlikely to be familiar with straw bale construction. High performance construction, especially where air tight enclosures are required, already face challenges from the trades (Magwood, 2012b); introducing an unfamiliar material only adds to this challenge. Simplifying the assembly as much as possible to match standard practice is necessary to increase the likelihood of achieving the primary criteria required to meet the Standard. And though straw bale SIPs, such as those used by ModCell, have been used successfully in projects achieving Passive House certification (in Europe), the intention of this evaluation is to recommend a site-built (and not prefabricated) assembly

that follows the convention of how the majority of houses are constructed in North America. This assessment will begin by looking at buildability.

5.3.2 Buildability

According to Erb (2014), "a wall built according to standard practices is the most buildable wall because standard practice is "easy" in the sense that it is well-understood by all involved" (pg. 15). While most of the trades are unlikely to be familiar with straw bales, aligning the rest of the assembly with standard practices, where practical, is likely to improve the buildability. It's also worth noting that Passive House assemblies are considered less buildable in North America because they deviate from code-minimum construction methods and require more time, material, and care to build (Erb, 2014). Additional training and supervision is likely for any Passive House project in North America, not just those involving straw bale. An ideal assembly, then, is one that maximizes both buildability and the overall performance potential.

With straw bale, the framing method impacts the performance potential to a large degree, influencing: 1) thermal bridging, 2) windows and door installation, including where they may be mounted within the wall plane, 3) ease of installing bales and the tightness of the overall wall (more voids and areas stuffed with loose straw results in greater heat transfer); and 4) opportunities for affixing additional components - air sealing products, sheathing and insulating boards, cabinets, or strapping for a rainscreen³. There are no fewer than a dozen framing methods for straw bale construction (Magwood, 2015a), but not all are well suited to the goals of an idealized assembly. Balicki (2014) provides an overview of many of the most common framing methods used in Passive House construction - exterior insulation, double stud, Larsen truss, vertical TJI, all of which suit themselves to straw bale construction, and have indeed been used in straw bale projects, though not with an equivalent efficiency.

³ Rainscreen assemblies are increasingly common on straw bale wall assemblies and deal with one of the greatest susceptibilities of straw - the potential for microbial decay from wind-driven rain. Rainscreens also reduce maintenance and allow for a variety of siding options.

Getting most of a straw bale to the exterior of the structure involves one of two options, 1) embedding the frame within the bales - which requires notching and stuffing around the framing (impacting the integrity of the wall); mid-wall framing makes for difficult attachment of additional building components; 2) placing the bales to the exterior of the frame (similar to the S-House in Section 2.3.1) - but this generally involves additional footings - one for the structure, another to carry the bale loads - adding cost and complexity. Roof loads are also difficult, as overhangs must be cantilevered far from the structure. While it does approximate an ideal assembly, mimicking the "perfect wall", whereby most of the insulation is exterior of the frame, the use of straw bales to do so adds complexity and neither of the aforementioned designs could be regarded as particularly 'buildable'.

Of the remaining three - double stud, Larsen truss, vertical TJI - one stands out as the most buildable. Erb (2014), who assessed the framing methods described by Balicki (2014) for buildability, reported that double stud framing "is very similar to standard practice", scoring it in the "strong buildability" category alongside exterior insulation (Figure 13). It's also the framing method most commonly used with dense packed cellulose, a wall assembly becoming increasingly common (Magwood, 2015a). This framing method provides a thermal break between the framing members and simplifies the install of additional components mentioned previously, which, as the following sections will demonstrate, increase the performance potential needed to achieve compliance.

Figure 13: Double stud framing used with straw bale (Endeavour Centre).

5.3.3 Adequate Thermal Resistance

The *PHIUS*+ 2015 Certification Guidebook (Passive House Institute US, 2017) provides R-Value Guidelines for the various building assemblies - wall, ceiling, slab - based on the designated climate zone. The recommended RSI ranges for walls in each of the select cities is listed in Table 10.

Location	Zone	RSI Ranges (m ² K/W)*
Saskatoon, SK	7A	8.63 - 11.45
Calgary, AB	7A	8.63 - 11.45
Kelowna, BC	6	6.87 - 8.98
* Actual values will vary by	v project.	

Table 10: Wall RSI Ranges for Select Cities, adapted from (PHIUS, 2017).

These guidelines offer a soft target but the R-value is specific to each project and is influenced by such things as the surface to volume ratio of the house, its orientation and microclimate, the number occupants, and all the other components and mechanical systems that influence the design and operation of the project. WUFI-Passive is used to balance these variables, allowing the modeler to 'turn the dials' on the design and system components to achieve compliance. As such, the RSI ranges may deviate from the recommendations depending on the overall building design and modeled occupant behaviour. But seeing that a typical, "first generation", straw bale wall assembly has an RSI of 5.28 (m²K/W), which falls 30% to 117% below the recommendations, additional insulation is likely needed to achieve adequate thermal resistance for compliance. The literature review (Section 2) identified some of the opportunities to increase thermal resistance of straw bale assemblies, notably the use of insulation placed to the exterior of the bales. Insulated sheathing products (e.g. Sonoclimat Eco4), non-structural insulation boards (e.g. Roxul Comfortboard), or dense pack cellulose abutting the bales (e.g. StrawCell) can be used to increase the thermal resistance of the assembly. Table 11 notes the thermal conductivity of several insulation products that may be used in conjunction with straw bales.

	Typical Thickness (mm)	λ (W/mK)
SonoClimate Eco4	38	0.0534
Roxul Comfortboard	32, 38, 51, 63.5, 76	0.0361
Dense Pack Cellulose (3.5 lbs/ft ³)	variable	0.0361

Table 11: Summary of Insulations to be Used with Straw Bale

The right material to be used in a straw bale assembly is not necessarily the one with the greatest R-value. Choosing components that serve multiple functions within an assembly is a worthwhile goal, as it is the overall quality of the assembly that is important in high performance enclosures. For example, insulated sheathing may satisfy structural needs and serve as a secondary air barrier, while the framing needed for dense pack cellulose may serve as the structural component for the building. Understanding the ancillary benefits of a product will help guide the decision-making process.

5.3.4 Climate appropriate construction

Appendix B of the *PHIUS+ 2015 Certification Guidebook* provides moisture control guidelines that, if followed, generally lead to a "green light" for the assembly. They list four above-grade wall assemblies that capture most of the possible enclosure configurations, which include:

a) Framed assemblies with all or most of the insulation inside of the sheathing and between the framing members,

b) Framed assemblies with some insulation outboard of the framing and some insulation between the framing members,

c) Assemblies with all or most of the insulation outboard of the structure (framed or solid), and

d) Assemblies with insulation comprised only of air-impermeable and Class II vapor control insulation between, within, or outside of the structure.

Each of these configurations comes with a list of zone-specific criteria that must be met for the assembly to be deemed "appropriate". Assembly configuration 'c' is noted as being "the simplest and most robust wall to design with respect to vapour control" (Passive House Institute US , 2017, p. 76), and most closely approximates the perfect wall concept. As was already discussed in Section 5.3.2, this is difficult to achieve with straw bales. In many cases, configuration 'b' is the most suitable to high-performance straw bale assemblies, with some insulation value external to the framing or structure. For zones 6 to 8, which captures most of Canada, the "[insulated] sheathing-to-cavity R-value ratio" ranges from >0.50 to >0.70 (Passive House Institute US , 2017, p. 78), which is not only difficult but unnecessary for straw bale assemblies. WUFI analysis has shown that when best practices are followed, super insulated vapour-open straw bale assemblies manage moisture to within acceptable tolerances for maintaining a healthy wall assembly (ModCell, 2017).

5.3.5 Thermal Bridge Free Construction

One of the "hard requirements" for PHIUS+ 2015 certification is avoiding significant thermal bridges to reduce heat loss and to avoid mold growth on interior surfaces made susceptible by low temperatures associated with thermal bridging. The thermal bridge coefficient (Psi-value) "represents the difference between the thermally interrupted component and the uninterrupted component that is assumed for the balance" (PASSIPEDIA, 2016). Thermal bridges occur where insulation is non-continuous, often at transition areas between dissimilar materials. These areas are to be modeled in THERM and if the thermal bridge is significant enough (Psi \geq 0.01 W/mK) it must be accounted for in the WUFI Passive software. Additionally, compliance requires that the maximum temperature difference between the interior air and the interior surface temperature not be more than 4.0°C (PHIUS, 2015).

As was discussed in Section 5.3.2, the framing system chosen for the assembly has a large impact on thermal bridging. Some framing systems are inherently better suited to reduced thermal bridging than others. For example, a double stud wall is naturally thermally broken, whereas a wall framed with a TJI is not. The framing system also has

38

implications for window and door installation, and for the mounting of insulated sheathing products that may reduce thermal bridging at vulnerable intersections.

It is typically at the transition areas from one assembly to another (e.g. foundation to wall connection) where insulation continuity is difficult to maintain (Figure 14), and where thermal bridges are most pronounced. Choosing a framing system that allows for the inclusion of an adequate amount of insulation at these transition areas is important for a thermal bridge free design.

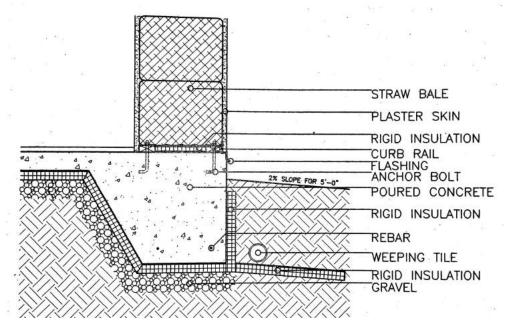


Figure 14: A Typical Straw Bale to Foundation Detail Where Insulation is Not Continuous (Magwood & Walker, 2001).

Aligning the insulation planes is also important to reduce thermal bridging. In the case of the reference house, the 'as designed' above grade walls have externally mounted insulation that extends in the same plane as the externally mounted EPS insulation on the basement walls. To carry the loads of the straw bale assembly through the foundation using a typical thermally broken base plate, it requires offsetting the above grade walls from the basement walls, forcing the isotherms to fall out of plane, and creating a thermal bridge (Figure 15). Even when a solid baseplate is used to canteliver the bales over the EPS insulation, and adding significantly more insulated sheathing

and overinsulation at the basepate, an undesirable thermal bridge is created (Figure 16).

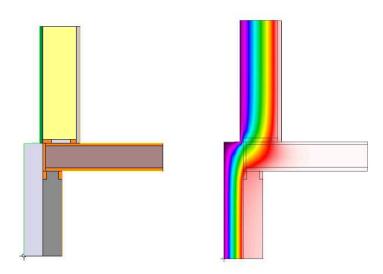


Figure 15: Straw bale assembly (with typical thermally broken base-plate) mounted on 'as designed' reference house foundation, showing distortion of the isotherms. Psi=0.100 W/mK. The lowest interior surface temperature was $4.9 \,^{\circ}$ C.

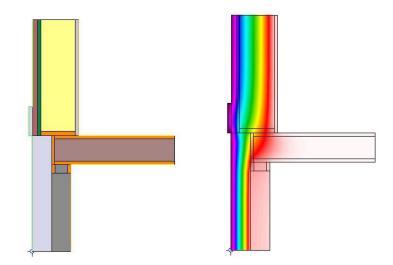


Figure 16: A solid base-plate allows the straw bale wall to cantilever over the EPS insulation but even with additional insulation and overinsulation at the connection point, an undesirable thermal bridge is created. Psi=0.049 W/mK. The lowest interior surface temperature was 11.8°C.

Choosing a foundation system that better suites the insulation profile of a straw bale is desirable to reduce the need for overinsulation and to improve buildability. Switching the 'as designed' foundation to an ICF (insulated concrete form) foundation results in a straightening of the isotherms and mitigates the thermal bridge, even with a simpler straw bale wall assembly (Figure 17). The thickness of the EPS insulation and concrete

was maintained between the 'as-designed' wall and the substituted ICF foundation and, therefore, the thermal resistance was maintained at an RSI of 6.73 m^2 K/W as noted in Table 2.

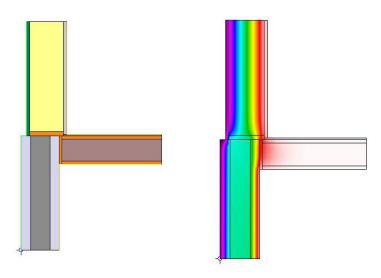


Figure 17: Using an ICF foundation allows the use of a simpler straw bale wall assembly without thermal bridging at the interface. Psi=0.0097 W/mK. The lowest interior surface temperature was 16.5° C.

5.3.6 Air Tightness

Achieving air tight assemblies with straw bales can pose a challenge. While plasters provide an air barrier, they must be continuous to be effective. Where plasters meet dissimilar materials, particularly at intersections with the floor, window and door jambs, ceiling, and framing members, careful detailing is required to ensure there is no air leakage into the wall assembly. Overlapping plasters with adjoining wood is one strategy to achieve air tightness. A variation of this is to use an 'air fin', which is typically a piece of drywall, tar paper, house wrap or homasote with added mesh to provide an adherent surface for the plaster (Figure 18). The air fin is then placed behind the framing or fixed to the framing with tape or acoustic sealant over which plaster is applied, effectively continuing the plaster without interruption. It is worth noting that the effectiveness of these non-commercial, 'homemade' air fins has been shown to be inconsistent, with some resulting in bonding issues that result in unwanted air leakage (Magwood, 2012a). A better solution for this detailing is to use the increasingly available

off the shelf fleece air barrier tapes designed to hold plaster, thus making airtight construction much easier and effective (Figure 19).

Figure 18: Tar paper/diamond lath air fin at window buck (Frey, 2014).

Figure 19: CONTEGA FC tape ready to accept stucco over straw bale (475 High Performance Building Supply, 2014).

Another strategy is to use sheet materials to provide the air barrier. Care must be taken to choose products that maintain the "vapour-open" profile required to keep a straw bale wall assembly healthy. Sheet products that may be used include gypsum wall board (interior use only), wood fibre sheathing - a compressed wood fibre board with a waxbased binder - and magnesium oxide board (permeability ratings can vary widely depending on the manufacturer, so confirming the permeability is essential). Manufactured wood sheathing (plywood and oriented strand board (OSB)) does not have the necessary water vapour permeability to be used with straw bale wall assemblies (Magwood, 2016).

The major benefit of using sheet products is that they provide a solid backing for supporting air sealing tapes, making the air sealing process more robust and increases installation efficiency. And as was discussed in Section 2.2.2, care must be taken to fill out any voids between the bale face and the sheet material, as these voids allow for natural convection that lower the insulating ability.

5.3.7 Proposed Assembly

The proposed assembly (Figure 20) came about through an iterative process, beginning with simulations using a 'first-generation' wall assembly to establish a reference point (the results are summarized in Section 6.1.1), and adjusted as necessary to satisfy the targets set by the Standard for each location, and further informed by the best practices and case studies described in the literature review. The assessment criteria are listed in Section 5.3.1.

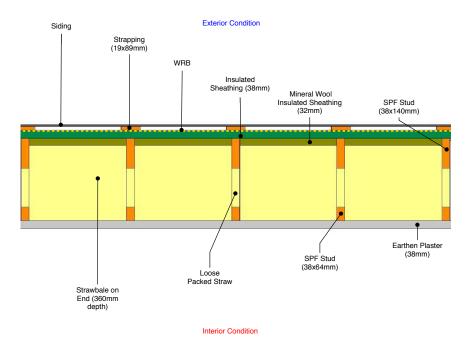


Figure 20: Proposed assembly. The RSI is 6.722 ($m^2 K/W$) and the total thickness is 0.52 metres.

The assembly (Figure 21) consists of a double stud wall - 38x140mm (2x6 inch) outer stud and 38x64mm (2x3 inch) inner stud - built on 495mm centers (19.5 inches). This allows full bales to be used, placed on end, with the 360mm (14 inch) dimension creating the thickness of the wall - a configuration has the straw fibres running perpendicular to heat flow, and thus a higher R-value per inch. The base plate is 387mm wide (15.25 inches), with doubled up top plates to connect the wall to the roof bearing assembly. The exterior 38x140mm stud is offset from the exterior-most bale face by 32mm (1.25 inches) to accommodate the mineral wool insulated sheathing (e.g. Roxul Comfortboard) that will add to the R-value of the assembly, while also compressing into any voids that may be present on the bale face (thus reducing convective heat transfer)⁴. Outboard of the framing and the mineral wool insulated sheathing is 38mm (1.5 inches) of insulated sheathing (e.g. SonoClimat Eco4) to provide additional structural support and a solid backing for the mounting of the air-tight water resistant barrier (WRB; Solitex Mento+) which will be taped with a compatible airtight product (e.g. Tescon Vana by Pro Clima). 19x89mm (1x4 inches) vertical strapping will be mounted outboard of the WRB and the assembly will be finished with siding (e.g. Hardiboard). The interior bales will be finished with 38mm (1.5 inches) of earthen plaster (2 - 3 coats as per convention), and detailed with a felt-based air sealing tape (e.g. Contega PV by Pro Clima) designed for plasters. This tape is affixed to the adjoining interface and floated into the plaster to create an air-tight seal.

⁴ The primary purpose of the mineral wool insulated sheathing is to reduce natural convection that has been found to occur between the bale face and sheet materials. The easy to handle mineral wool insulated sheathing (which typically comes in 600x1200mm sheets) is flexible enough to facilitate easy filling of voids behind the material as it is installed, thus eliminating voids that cause natural convection. It has the added benefit of adding additional thermal resistance and provides a solution that eliminates all wet construction from the exterior of the assembly, increasing the construction window for building with straw bales.

An alternative to this, especially where installation is not temperature sensitive (e.g. during months where freezing is not a risk), is to replace the mineral wool insulated sheathing with a coat of earthen plaster. The offset framing allows the plaster to be screeded across the framing faces to create a flat surface for which to affix the outboard insulated wood fibre sheathing. In this instance, if additional thermal resistance was required, the mineral wool insulated sheathing could be moved outbound of the WRB.

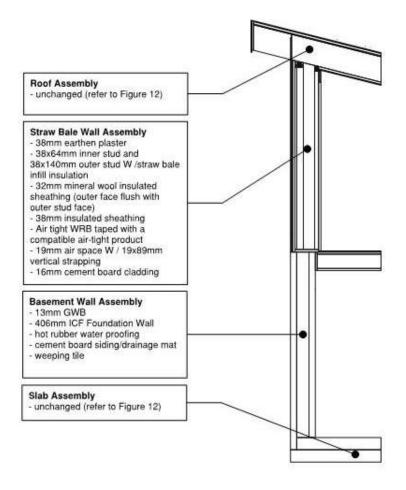


Figure 21: Full section of proposed assembly.

The total R-value of the assembly is 6.72 m²K/W (from 8.05 m²K/W). The final thickness, including the vented rainscreen is 0.52 metres (from 0.41 metres for the 'as designed' wall assembly) - a 26% increase in thickness. The impact this has on floor area (iCFA) is discussed below. The results generated from substituting the 'as-designed' walls for the reference house with the proposed straw bale assembly are detailed in the results section that follows.

6.0 Results and Discussion

6.1 WUFI Passive Results

6.1.1 'First-Generation' Assembly

A typical 'first-generation' wall assembly comprised of a single width of bales on end with the interior and exterior bale faces plastered with 38mm of an earthen (clay-based) plaster was inputted to the PHIUS+ 2015-compliant models for each of the select cities. The assembly has a total R-value of 5.01 m²K/W. It's worth noting that the plaster type has negligible effect on the thermal resistance of the assembly, so any plaster system - clay-lime, lime, cement-lime - could have been used for this analysis. The physical properties of the components used in the simulations for the first-generation straw bale assembly are listed in Table 12.

Material	Thickness (mm)	Density (kg/m ³)	Conductivity (W/mK)	Heat Capacity (J/kgK)	Solar Absorptance (-)
Straw bale (on edge) $^{\Omega}$	355.7	110	0.0721	1350	-
Earthen plaster $^{\Omega}$	38.1	1400	0.6	850	0.9
^Ω From Bronsema (2010)).				

Table 12: Material properties of components used in the first-generation straw bale assembly.

To assess the sensitivity of air leakage on the model, two sets of simulations were generated. The first simulation applied the 0.3 1/h air change rate (which corresponds to 0.0225 cfm/ft² within the WUFI Passive model) used in the reference house PHPP model, while in the second simulation the air leakage rate was increased to 0.05 cfm/ft² - a value that represents the maximum air leakage rate allowed for certification. For these simulations, the iCFA was kept the same as the reference house, thus suggesting the slight increase in wall thickness (0.43m from 0.41m) would be 'pushed' to the exterior. A summary of the results for the five primary compliance criteria are listed in Table 13.

Table 13: WUFI Passive output showing impact of a 'first-generation' straw bale assembly adapted to reference house for select cities (compared to the 'as designed' and PHIUS+ 2015 targets). Targets that are not satisfied are highlighted.

Saskatoon							
Metric	Target	adjus	signed' - ted for liance	Stra	eneration w bale cfm/ft ² AC)	Straw	neration / bale n/ft ² AC)
	Target	Output	% Below Target	Output	% Below Target	Output	% Below Target
Annual Heating Demand (kWh/m ² a)	28.39	23.36	21.5	32.1	-11.6	35.93	-21.0
Annual Cooling Demand (kWh/m ² a)	3.15	2.73	15.4	2.05	53.7	2.05	53.7
Peak Heating Load (W/ m ²)	19.24	16.58	16.0	19.52	-1.4	23.14	-16.9
Peak Cooling Load (W/ m ²)	11.67	5.97	95.5	4.46	161.7	4.4	165.2
Source Energy Demand (kWh/person•yr)	6,200	5409	14.6	5796	7.0	5952	4.2
Calgary							
Metric	Target	'As designed' - adjusted for compliance		First Generation Straw bale (0.0225 cfm/ft ² AC)		First Generation Straw bale (0.05 cfm/ft ² AC)	
	ruiget	Output	% Below Target	Output	% Below Target	Output	% Below Target
Annual Heating Demand (kWh/m ² a)	27.13	11.57	134.5	16.63	63.1	19.52	39.0
Annual Cooling Demand (kWh/m ² a)	3.15	2.19	43.8	2.16	45.8	2.17	45.2
Peak Heating Load (W/ m ²)	19.24	13.54	42.1	15.86	21.3	19.06	0.9
Peak Cooling Load (W/ m ²)	10.41	3.93	164.9	2.86	264.0	2.73	281.3
Source Energy Demand (kWh/person•yr)	6200	5674	9.3	5892	5.2	5987	3.6
Kelowna				-			
Metric	Target	adjus	signed' - ted for lliance	Stra	eneration w bale cfm/ft ² AC)	Straw	neration / bale n/ft ² AC)
		Output	% Below Target	Output	% Below Target	Output	% Below Target
Annual Heating Demand (kWh/m ² a)	21.77	11.95	82.2	16.29	33.6	18.67	16.6
Annual Cooling Demand (kWh/m ² a)	3.15	3.06	2.9	2.96	6.4	2.96	6.4
Peak Heating Load (W/ m ²)	15.77	11.21	40.7	13.1	20.4	15.51	1.7
Peak Cooling Load (W/ m ²)	11.99	5.73	109.2	5.2	130.6	5.17	131.9
Source Energy Demand (kWh/person•yr)	6200	4987	24.3	5204	19.1	5287	17.3

The results show that, with the exception of Saskatoon, the straw bale wall assembly satisfied all of the PHIUS+ 2015 primary certification criteria, even with the air leakage rate increased to the maximum permitted by the Standard (which is still a fraction of what is common of standard building practice). The decreased thermal resistance of the assembly had a negative impact on the annual heating demand and peak heating load in all locations; it did however have a beneficial impact on the annual cooling demand and peak cooling load in all locations. The source energy demand was little changed and complied in all locations. Regarding the Saskatoon model, the straw bale assembly was inadequate for meeting the annual heating demand and peak heating load, exceeding the target by 11.6% and 1.4% respectively. Increasing the air leakage rate to the maximum allowable limit resulted in poorer performance, with the target being exceeded by 21% for the annual heating demand and 16.9% for peak heating load.

It needs to be said that while these outputs comply with the primary certification criteria for Calgary and Kelowna, and provide a useful reference point for building from, a 'first-generation' straw bale assembly is not well suited to achieving the other criteria outlined in Section 5.3 necessary to achieve compliance. Air tightness and thermal bridge free construction are two matters that are not well suited to such a simplified system, thus necessitating an evolution toward a hybrid system that combines the desirable qualities of straw bale (e.g. thermal resistance, low embodied carbon, aesthetics) with complimentary materials to create an assembly suited to high performance enclosures. The next section summarizes the results of the proposed assembly.

6.1.2 Proposed Assembly

The proposed wall assembly was inputted to the PHIUS+ 2015-compliant models for each of the select cities. The physical properties of the straw bale and earthen plaster are taken from above, while the additional components used in the proposed assembly are listed in Table 14.

48

Table 14: Material	properties of th	e additional	components	used in the	proposed s	traw bale assen	ıbly.

Material	Thickness (mm)	Density (kg/m³)	Conductivity (W/mK)	Heat Capacity (J/kgK)	Solar Absorptance (-)		
SonoClimat Eco 4*	38.1	264.3	0.0534	1400	-		
Roxul Comfortboard**	31.8	128.1	0.0361	850	-		
 * Highlighted values are from the SonoClimate Eco 4 technical data sheet obtained at mslfibre.com. The heat capacity was obtained from the default wood fibre insulation board in the WUFI+ materials database. ** Highlighted values are from the Roxul Comfortboard technical data sheet obtained at http://www.roxul.com/products/roxul-comfortboard-80/. The heat capacity was obtained from the default Roxul ComfortBoard in the WUFI+ materials database. 							

Seeing that the proposed wall assembly is considerably thicker than the 'as designed' wall assembly (0.52m from 0.41 m), two sets of simulations were performed to assess the sensitivity of the increased wall thickness on the models. In the first scenario, the additional wall thickness is 'pushed' to the exterior, maintaining the same iCFA as the reference house model. The second scenario maintains the plane of the basement walls with that of the above grade walls, thus reducing the iCFA from 245.7m² to 236.7m². Both were modeled with an air change rate of 0.0225 cfm/ft² (which corresponds to the 0.3 1/h air change rate achieved by the reference house). Because the PHIUS+ 2015 targets are measured on a per-unit of area basis, a smaller iCFA results in an energy intensity penalty, thus negatively impacting the results. This is a consideration that must be balanced during the design phase. A summary of the results for the five primary compliance criteria are listed in Table 15.

Table 15: WUFI Passive output showing impact of the proposed straw bale assembly adapted to reference house for two iCFA scenarios for the select cities (compared to the 'as designed' and PHIUS+ 2015 targets). Targets that are not satisfied are highlighted. Simulations were based on a 0.0225 cfm.ft² air leakage rate.

Saskatoon								
Metric	Torgot	'As designed' - adjusted for compliance		Straw bale (iCFA = 236.7m²)		Straw bale (iCFA = 245.7m ²)		
Metric	Target	Output	% Below Target	Output	% Below Target	Output	% Below Target	
Annual Heating Demand (kWh/m ² a)	28.39	23.36	21.5	28.59	-0.7	28.59	-0.7	
Annual Cooling Demand (kWh/m ² a)	3.15	2.73	15.4	2.16	45.8	2.16	45.8	
Peak Heating Load (W/ m ²)	19.24	16.58	16.0	18.45	4.3	18.45	4.3	
Peak Cooling Load (W/ m ²)	11.67	5.97	95.5	4.59	154.2	4.59	154.2	
Source Energy Demand (kWh/person•yr)	6,200	5409	14.6	5563	11.5	5563	11.5	

Calgary							
Metric	Target	'As designed' - adjusted for compliance		Straw bale (iCFA = 236.7m ²)		Straw bale (iCFA = 245.7m²)	
Metric	Target	Output	% Below Target	Output	% Below Target	Output	% Below Target
Annual Heating Demand (kWh/m ² a)	27.13	11.57	134.5	13.89	95.3	13.07	107.6
Annual Cooling Demand (kWh/m ² a)	3.15	2.19	43.8	2.30	37.0	2.12	48.6
Peak Heating Load (W/ m ²)	19.24	13.54	42.1	14.85	29.6	14.25	35.0
Peak Cooling Load (W/ m ²)	10.41	3.93	164.9	3.01	245.8	2.95	252.9
Source Energy Demand (kWh/person•yr)	6200	5674	9.3	5718	8.4	5781	7.2
Kelowna							
Metric	Target	'As designed' - adjusted for compliance		Straw bale (iCFA = 236.7m ²)			/ bale 245.7m ²)
Metric	Target	Output	% Below Target	Output	% Below Target	Output	% Below Target
Annual Heating Demand (kWh/m ² a)	21.77	11.95	82.2	14.08	54.6	13.35	63.1
Annual Cooling Demand (kWh/m ² a)	3.15	3.06	2.9	3.12	1.0	2.91	8.2
Peak Heating Load (W/ m ²)	15.77	11.21	40.7	12.41	27.1	11.89	32.6
Peak Cooling Load (W/ m ²)	11.99	5.73	109.2	5.36	123.7	5.2	130.6
Source Energy Demand (kWh/person•yr)	6200	4987	24.3	5064	22.4	5109	21.4

As was mentioned above, reducing the iCFA had a negative impact on performance and pushed the Annual Heating Demand for Saskatoon slightly above the target (from 27.3 kWh/m²a to 28.59 kWh/m²a, and 0.7% above the target). All other targets were satisfied in Saskatoon with the reduced iCFA. Calgary and Kelowna satisfied the targets under both scenarios. Where the iCFA was maintained, adapting the proposed straw bale assembly to the above grade walls of the reference house satisfied the five primary performance targets for all 3 locations (the full WUFI Passive reports for each location are included in Appendix IV). This remainder of the discussion will centre on these models (where the iCFA = 245.7m²), as it provides an apples-to-apples comparison to the reference house. The compliance achieved in the above simulations is also based on the thermal resistance across a clear section of wall. To determine if there is penalty to the thermal resistance owning to thermal bridging at the connections between the proposed assembly and the existing components, further analysis is required. This is examined in Section 6.2.

The results also show that even with the same assembly, there is not a linear relationship between the climate-specific PHIUS targets and the modeled outputs. For example, Saskatoon complies within 4% of the annual heating demand target, while Calgary, with only a slightly smaller annual heating demand target (27.13 versus 28.39 kWh/m²a), achieves it by a margin of 63.1%⁵. Kelowna achieves its annual heating demand target by 63.1%. This non-linear relationship suggests that performing a whole house model is necessary to determine the suitability of various components, walls included, in determining the overall performance of a building. Inferring an assembly's R-value for a corresponding climate zone is not likely to give dependable results.

As was noted above, it was also assumed that the airtightness achieved with the wall assembly in the reference house was maintained with the proposed straw bale wall assembly. The proposed assembly was designed to offer ample opportunities for air sealing, including some redundancy. For example, the use of exterior mounted insulated sheathing mounted behind an airtight membrane provides a good measure of initial air tightness, while the earthen plaster used in conjunction with air sealing tape at vulnerable intersections provides redundancy on the interior. To test the sensitivity of air tightness on the overall performance of the building, additional simulations for two variations (0.04 cfm/ft² & 0.05 cfm/ft²) were conducted. The results are summarized in Table 16.

⁵ The similar annual heating demand permitted under PHIUS+ 2015 for Saskatoon and Calgary is curious, as Saskatoon is a much colder climate (see Table 4), though both locations are similar in other respects - wind speed (<u>https://www.currentresults.com/Weather/Canada/Cities/wind-annual-average.php</u>) and mean daily insolation values (<u>http://www.nrcan.gc.ca/18366</u>). This disparity is perhaps something PHIUS needs to address.

Table 16: WUFI Passive output showing impact of changing airtightness on overall performance (compared to the
PHIUS+ 2015 targets). Targets that are not satisfied are highlighted.

Saskatoon								
Metric	Target	(airtigh	v bale tness = _cfm/ft ²)	Straw bale (airtightness = 0.04 cfm/ft ²)		Straw bale (airtightness = 0.05 cfm/ft ²)		
	Target	Output	% Below Target	Output	% Below Target	Output	% Below Target	
Annual Heating Demand (kWh/m ² a)	28.39	27.3	4.0	29.68	-4.3	31.05	-8.6	
Annual Cooling Demand (kWh/m ² a)	3.15	2	57.5	2	57.5	2	57.5	
Peak Heating Load (W/ m ²)	19.24	17.71	8.6	20.01	-3.8	21.32	-9.8	
Peak Cooling Load (W/ m ²)	11.67	4.45	162.2	4.42	164.0	4.4	165.2	
Source Energy Demand (kWh/person•yr)	6,200	5605	10.6	5699	8.8	5753	7.8	
Calgary								
Metric	Target	(airtigh	Straw bale (airtightness = 0.0225 cfm/ft ²)		Straw bale (airtightness = 0.04 cfm/ft ²)		Straw bale (airtightness = 0.05 cfm/ft ²)	
	raigot	Output	% Below Target	Output	% Below Target	Output	% Below Target	
Annual Heating Demand (kWh/m ² a)	27.13	16.63	63.1	18.45	47.0	19.52	39.0	
Annual Cooling Demand (kWh/m ² a)	3.15	2.16	45.8	2.16	45.8	2.17	45.2	
Peak Heating Load (W/ m ²)	19.24	15.86	21.3	17.90	7.5	19.06	0.9	
Peak Cooling Load (W/ m ²)	10.41	2.86	264.0	2.78	274.5	2.73	281.3	
Source Energy Demand (kWh/person•yr)	6200	5892	5.2	5952	4.2	5987	3.6	
Kelowna	1					-		
Metric	Target	(airtigh	v bale tness = cfm/ft ²)	(airtightn	w bale less = 0.04 n/ft ²)			
	raigot	Output	% Below Target	Output	% Below Target	Output	% Below Target	
Annual Heating Demand (kWh/m ² a)	21.77	13.35	63.1	14.79	47.2	15.62	39.4	
Annual Cooling Demand (kWh/m ² a)	3.15	2.91	8.2	2.91	8.2	2.91	8.2	
Peak Heating Load (W/ m ²)	15.77	11.89	32.6	13.43	17.4	14.3	10.3	
Peak Cooling Load (W/ m ²)	11.99	5.2	130.6	5.18	131.5	5.17	131.9	
Source Energy Demand (kWh/person•yr)	6200	5109	21.4	5154	20.3	5181	19.7	

These results reveal the scale of impact that airtightness has on overall performance, most notably impacting the performance during the heating season. While Calgary and Kelowna could buffer the impact of a leakier building, the Saskatoon model could not, with the annual heating demand and peak heating load exceeding the target at both intervals. This again speaks to the need to develop an assembly that lends itself to airtight construction. With the Saskatoon model edging so close to its performance targets, if an extremely high degree of airtightness could not be assured (e.g. ~0.0225 cfm/ft²) it may be necessary to add additional outboard insulation to buffer the effects of increased air leakage.

6.2 Thermal Bridge Analysis

6.2.1 THERM Software

THERM is a 2-dimensional heat-transfer modeling program developed at Lawrence Berkeley National Laboratory (LBNL). It also practitioners to model 2-dimensional heat transfer effects in building components where thermal bridges are of concern, allowing a precise evaluation of a component's energy efficiency. It also provides local temperature patterns that could lead to condensation, moisture damage, and/or structural concerns. THERM is also commonly used with the Berkeley Lab WINDOW program to determine window product U-factors and SHGCs.

6.2.2 Thermal Bridge Simulations

Five intersections were identified for thermal bridge analysis: the basement wall to slab (Figure 22), basement wall to above grade straw bale wall (Figure 23), corners between two walls (Figure 24), and two connections of the straw bale wall to the roof - one for the obtuse connection (Figure 25) and another for the acute connection (Figure 26). Each of these 'typical' building envelope connection details was created and simulated in THERM.

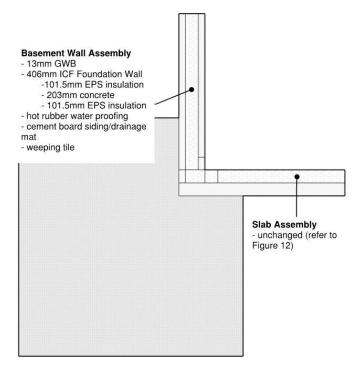


Figure 22: Basement wall to slab connection.

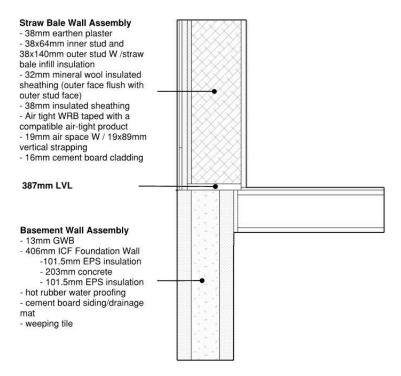


Figure 23: Basement wall to above grade straw bale wall connection.

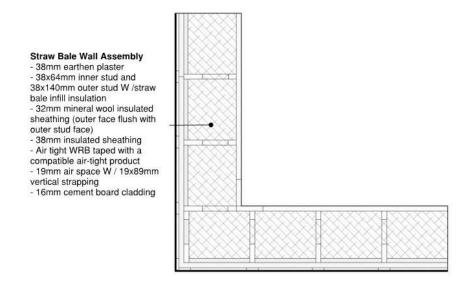


Figure 24: Corner between two walls connection.

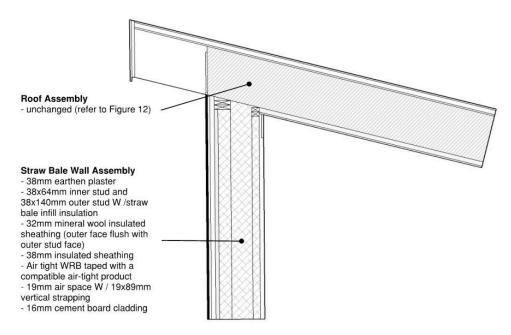


Figure 25: Straw bale wall to the roof - obtuse connection.

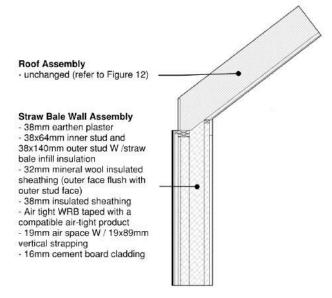


Figure 26: Straw bale wall to the roof - acute connection.

It was assumed that windows would be installed in a similar manner to the reference house, with 2 inches of ridged insulation installed on the head and sill prior to mounting the window frame (Figure 27). A $\Psi_{\text{Installation}}$ of 0.040 (W/mk) was assumed for all windows and reflected in the total window u-value reported in Table 3.

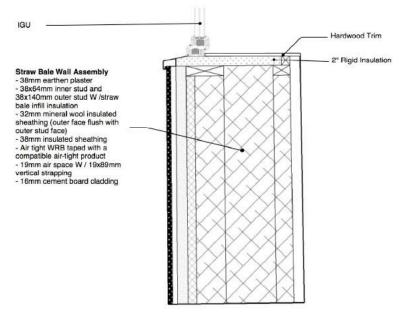


Figure 27: Head and Sill Window Detail (adapted from LVDesign, 2014).

Assessing the thermal bridge across a component requires that boundary conditions be defined. The boundary conditions were supplied by PHIUS and are represented in Table 17.

Boundary Condition	Temperature (°C)	Convective Coefficient (W/m ² K)*					
Exterior	-10	2.555 (vented)					
		25 (exposed)					
Ground	5	567821					
Interior	20	7.5 (vertical surfaces);					
	5.88 (horizontal su						
		5.0 (horizontal and vertical					
surfaces at corners).							
* Coefficients are taken from the PHIUS-supplied <i>boundary</i> condition & generic spacer importer.							

Table	17:	PHIUS	Boundary	Conditions
-------	-----	-------	----------	------------

All results had an error of less than 9% across 15 iterations. U-value tags were applied to interior and exterior building envelope components. The linear thermal bridge heat loss coefficients are summarized below in Table 18.

Interface	Thermal Bridge Type	Calculated Psi Factor (W/mK)	Thermal Bridge Free Connection Achieved? (Psi ≥ 0.01 W/mK)			
Basement wall to slab	Perimeter	0.0123	No*			
Basement wall to above grade wall	Perimeter	0.0097	Yes			
Corner between above grade walls	Ambient	- 0.0696	Yes			
Top of wall to roof bearing assembly (obtuse angle)	Perimeter	- 0.1649	Yes			
Top of wall to roof bearing assembly (acute angle)	Perimeter	- 0.0336	Yes			
* This thermal bridge was not included in the WUFI Passive assessment owing to its negligible si and insignificant effect on the model.						

Table 18: Calculated Thermal Bridges for Proposed Assembly.

The thermal bridge analysis indicates that the proposed assembly does not result in thermal bridging as defined by PHIUS (Psi \geq 0.01 W/mK). Outputs from the THERM analysis are visually represented in Table 19 below; the lowest resulting surface

temperature is also noted to show compliance with the PHIUS' minimum interior surface temperature criteria for thermally-bridged construction details.

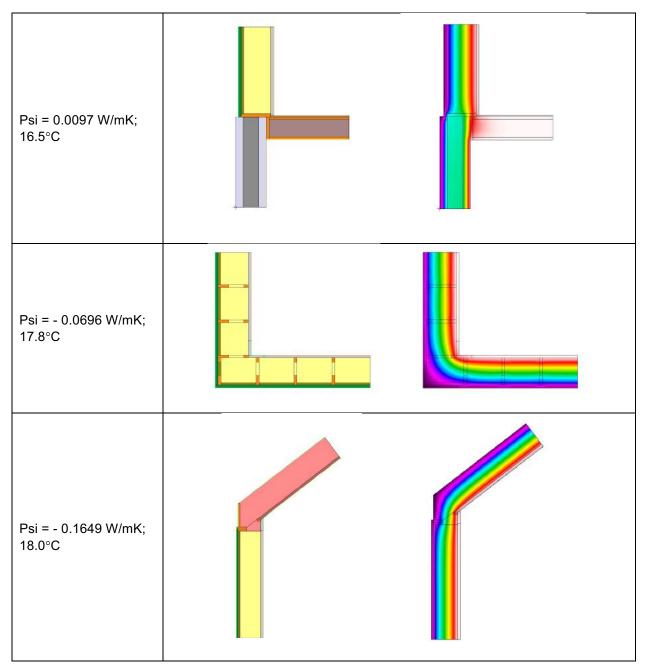
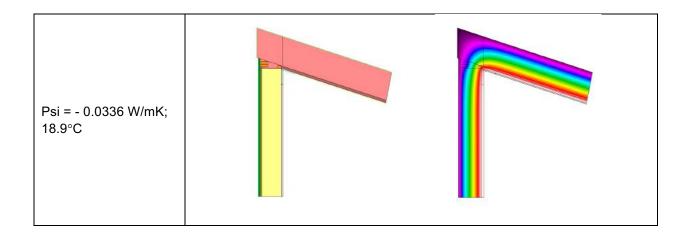



 Table 19: THERM Model Outputs at Interfaces, including Psi-Value and Lowest Interior Surface Temperature for each 'typical' connection.

As was discussed in Section 5.3.4, the basement walls were changed to ICFs to better align the insulation plane created with the proposed assembly and to increase buildability. This configuration resulted in a small thermal bridge where the ICF basement wall meets the slab (psi = 0.0123 W/mK; Figure 28). The lowest minimum interior surface temperature is 16.2°C, which complies with PHIUS' criteria for thermally-bridged construction details. This thermal bridge was omitted from the WUFI Passive simulations for the 3 select cities owing to its negligible size.

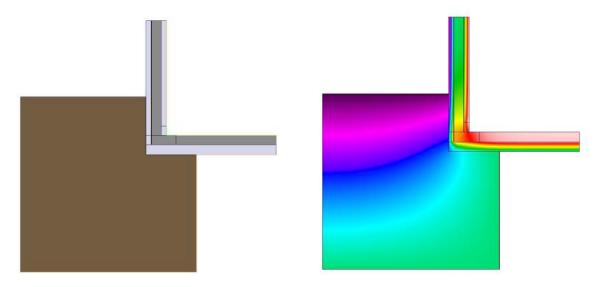


Figure 28: Thermal Bridge Analysis at Foundation. A small thermal bridge (psi = 0.0123 W/mK) exists at the interface between the slab and the ICF basement walls. The lowest interior surface temperature was 16.2°C.

6.3 Hygrothermal Analysis

When the zone-specific criteria set out in Appendix B of the *PHIUS+ 2015 Certification Guidebook* (Passive House Institute US, 2017) are not met, a hygrothermal analysis (WUFI) is required to demonstrate that the proposed assembly manages moisture within an accepted range. Since the proposed assembly deviates from the zone-specific criteria moisture control guidelines established by PHIUS, namely that the insulated sheathing-to-cavity ratio be 0.5 to 0.7 for climate zones 6 and 7/8 respectively, hygrothermal analysis was conducted on the proposed straw bale assembly.

6.3.1 WUFI Plus

WUFI Plus is a simulation tool developed to compute dynamic heat and moisture transfer in a one-dimensional assembly. Its capabilities include modeling heat and moisture transfer through multilayered assemblies using user defined exterior and interior conditions, including temperature, relative humidity, driving rain, and solar radiation. According to Bronsema (2010):

Heat transfer is calculated through thermal conduction, enthalpy of moisture movement and phase changes, solar radiation and nighttime radiation. Surface film coefficients are used to calculate heat loss to the surroundings in a manner that is similar to the conduction equations, these films can be constant or wind dependent. Moisture movement is broken into two compounds: vapor and liquid. The vapor movement is computed by vapor diffusion as well as solution diffusion. Liquid transport is characterized by capillary conduction and surface diffusion (p. 152).

WUFI simulations are accurate in predicting hygrothermal behavior in building enclosures so long as robust climate data is used, and the correct physical and boundary conditions are supplied (Straube & Schumacher (2003) as cited in Bronsema, 2010).

60

6.3.2 WUFI Plus Simulations

Hygrothermal simulations were run for the proposed straw bale assembly in each of the three select cities. Hourly weather files (.wac format) were obtained for each location and used for the analysis.

Material properties were created using technical data sheets from the manufactures. Where specific properties were not provided, defaults found in the material database for similar materials were used. The properties most crucial for accurate hygrothermal analysis are listed in Table 20.

Material	Thickness (mm)	Density (Kg/m ³)	Conductivity (W/mK)	Diffusion Resistance Factor (-)	Heat Capacity (J/kgK)	Porosity (-)
Solitex Mento	0.6	130	0.17	83	2300	0.001
Plus WRB^∂	0.0	100	0.11		2000	0.001
SonoClimat Eco 4*	38.1	264.3	0.0534	3.3	1400	0.999
Roxul Comfortboard**	31.8	128.1	0.0361	1.1	850	0.95
Straw bale (on edge) $^{\Omega}$	355.7	110	0.0721	1.7	1350	0.95
Earthen plaster $^{\Omega}$	38.1	1400	0.6	5	850	0.24

Table 20: Material Properties Used in WUFI Plus Analysis.

^{*∂*} Highlighted values are from the Solitex Mento Plus technical data sheet obtained at https://www.foursevenfive.ca/wp-content/uploads/2015/09/SolitexMentoPlusSpec.pdf. The density, heat capacity, and porosity were obtained from the default water resistive barrier in the WUFI+ materials database.

* Highlighted values are from the SonoClimate Eco 4 technical data sheet obtained at mslfibre.com. The heat capacity and porosity were obtained from the default wood fibre insulation board in the WUFI+ materials database.

** Highlighted values are from the SonoClimate Eco 4 technical data sheet obtained at http://www.roxul.com/products/roxulcomfortboard-80/. The heat capacity and porosity were obtained from the default Roxul ComfortBoard in the WUFI+ materials database.

^Ω Highlighted values from Bronsema (2010).

Following ASHRAE 160P (Section 4.6.1 - Rain Penetration), the default value for water penetration through the exterior surface was set at 1% of the water reaching the exterior face of the water resistive barrier (PHIUS, 2015). Again, following the PHIUS (2015) guideline, an air change rate of 50 [1/h] was applied to the vented cavity using the actual thickness of the ventilation cavity (19mm).

The average relative humidity corresponding to five points of interest within the wall the 38mm wood fibre insulated sheathing (immediately behind the WRB), the 32mm mineral wool insulated sheathing inbound of it, the outer 108mm of straw bale (bound by the outbound 38x140mm stud), the inner 63.5mm of straw bale (bound by the inbound 38x63.5mm stud), and the 38mm of interior earthen plaster - are plotted across a 5 year period for each of the select cities (Figure 29).

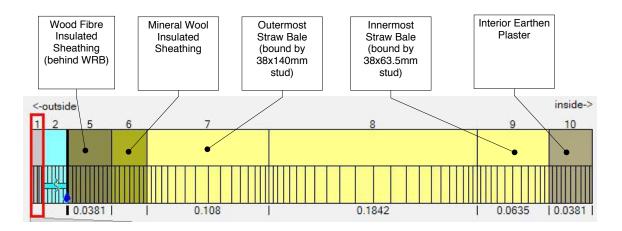


Figure 29: Wall Section Showing Points of Interest for Hygrothermal Analysis

Plots corresponding to the NE orientation are given (this orientation shows the most severe increase in RH in the outermost layer) - Saskatoon is represented in Figure 30; Calgary in Figure 31: and Kelowna in Figure 32. The plots corresponding to the other orientations - NW, SW, SE - are shown in Appendix IV.

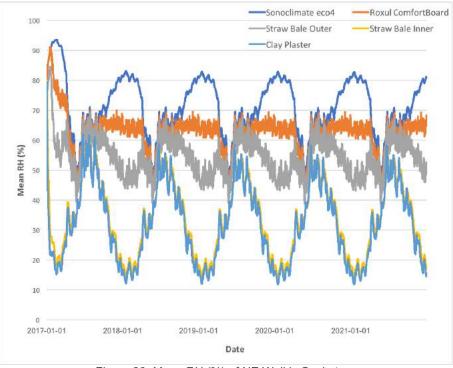


Figure 30: Mean RH (%) of NE Wall in Saskatoon

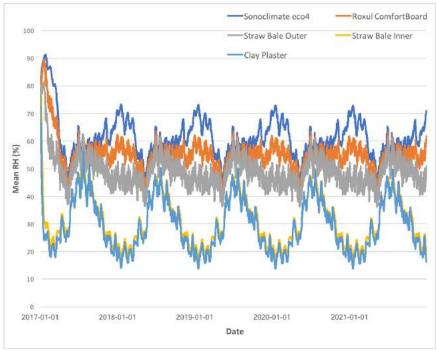


Figure 31: Mean RH (%) of NE Wall in Calgary

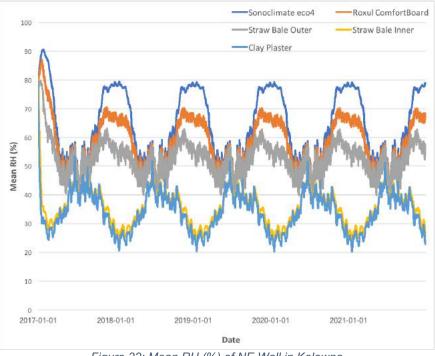


Figure 32: Mean RH (%) of NE Wall in Kelowna

These plots show a clear pattern of seasonal wetting and drying, with no noticeable increase in RH over that time. The wall assembly in Calgary and Kelowna show seasonal cycling within safe limits (<80% RH) for all layers over the 5 year period. In Saskatoon, the insulated sheathing (e.g. Sonoclimat Eco4) shows elevated RH during winter months but there is strong drying as temperatures begin to increase. ASHRAE Standard160P states that in order to minimize the conditions for mould growth the: "30-day running average surface RH<80% when the 30-day running average surface temperature is between 5C and 40C (p.12)." The data were assessed using these criteria for the NE wall in a typical year (2018). It was found that the conditions for mould growth defined by ASHRAE Standard 160P were not present, suggesting the proposed straw bale wall assembly is not at risk in the Saskatoon climate. Temperature and RH for the insulated sheathing layer are plotted together for the Saskatoon in Figure 33. Again, the NE wall is shown as it represents the most extreme case.

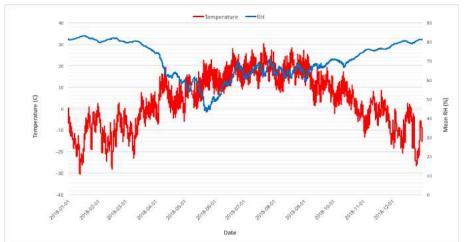


Figure 33: Temperature and RH profile of the Insulated Sheathing Layer on NE Wall in Saskatoon

6.4 Summary

The results show that the proposed assembly is capable of meeting the PHIUS+ 2015 certification criteria in each of the 3 select cities. Achieving a high degree of airtightness (as was achieved with the reference house) is, however, necessary to satisfy the targets. Seeing that straw bale buildings have historically struggled to achieve extremely high degrees of air tightness, it would be prudent to model with an air change rate closer to the maximum permitted under the Standard. This is especially true of locations, Saskatoon for instance, where the performance targets are narrowly satisfied even with an assumed air change rate far below that permitted under the Standard. This allows the designer to turn the dials in other areas (e.g. adding more outboard insulation to the straw bale wall assembly) to ensure the performance targets are satisfied.

The inclusion of a secondary suite skews the results by increasing the total occupancy by one⁶, and this has implications for the target criteria, increasing the heating demand and load, as well as the source energy demand (cooling demand and load decrease owing to fewer occupants and associated internal gains; see Appendix V for full results). Occupancy needs to be considered early in the design process, as the number of occupants has a significant impact on the overall performance of the home.

⁶ Recall, PHIUS+ 2015 calculates the occupancy at # of bedrooms +1. In the case of the reference house, there are 2 units, each with 2 bedrooms, resulting in 6 occupants. Removing the basement suite results in 5 occupants.

The proposed assembly takes inspiration from the case studies, particularly the prefabricated straw bale panels that have successfully been used in passive house projects, using complimentary materials to maintain thermal continuity and air tightness, and to add additional thermal resistance necessary for compliance. While these high performance straw bale assemblies may be seen as a vast departure from the rather elegant and uncomplicated plastered bale wall that early practitioners used to good effect, for straw bale building to remain relevant the systems must evolve to meet new code and performance requirements, and to satisfy occupant expectations relating to durability and aesthetics.

7.0 Conclusions

Though straw bales have not been used in a PHIUS+ 2015-certified project to date, the results of the analysis indicate that straw bales can be a beneficial component in satisfying the requirements of the Standard in Western Canada. The literature review identified the qualities of straw bales required to assure reliable performance from the material, while also highlighting the key characteristics of complementary materials need to create a superinsulated straw bale assembly. These material qualities are necessary to achieve thermal performance, as well as to mitigate any issues relating to excessive moisture within the assembly. Deficiencies related to thermal bridging and air tightness are minimized by following one of the main guiding principles of Passive House design, namely simple form. Designing around a bale module is the most effective path to maintaining the integrity of the thermal envelope, and minimizing transitions reduces thermal bridging and reduces the air control detailing necessary for air tight construction. Merging thoughtful design with material compatibility allows straw bales to be used in creating building enclosures capable of achieving the Passive House standard, while also minimizing the embodied carbon of the enclosure.

66

8.0 Future Work

With the theoretical groundwork in place, there remains a need to test straw bale buildings that are specifically designed with the goal of achieving Passive House standards, particularly in regards to achieving the air tightness goals set out by the standards. There remains ample opportunity to evaluate alternate assembly configurations using straw bales, and associated components, within high performance enclosures, including both modular (and pre-fabricated) and site-built assemblies. There will no doubt be adherents to the more traditional straw bale assemblies that employ both interior and exterior plasters. As such, evaluating the performance of different plaster compositions (e.g. clay, lime, cement-lime), particularly their effect on the moisture characteristics of advanced straw bale assemblies, is worthy of investigation.

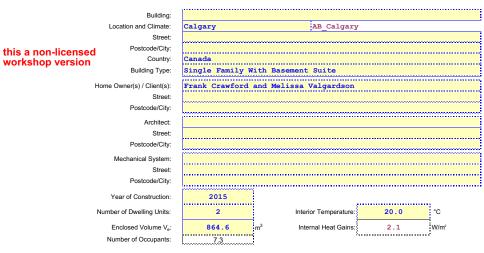
Appendix I: PHPP for Reference House

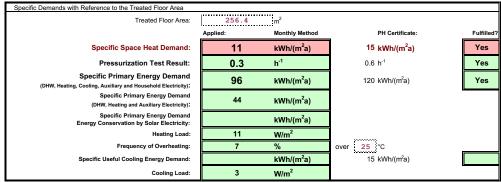
Copyright PHPP 1998-2007 Passivhaus Institut Version 1.0

BRIEF INSTRUCTIONS

Place your mouse here to see the PHPP help.

Passive House Verification: Meaning of Field Formats


Example	Field Format	Meaning
	Courier, blue, bold on yellow background	Input Field: Please enter the required value here
6619	Arial, black, standard on white background	Calculation field; please do not change
78.8	Courier New, purple, bold on white background	Field with references to another sheet - should not be changed.
126.0	Arial, black, large & bold on green background	Important result

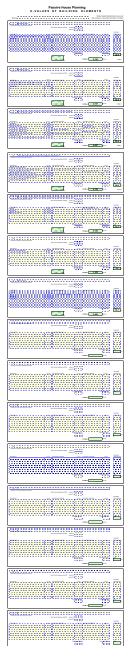

Passive House Planning: Worksheet Directory

Worksheet Name	Function	Brief Description	Required for the c
Verification	Building Data; Summary of Results	Building description, selection of the calculation method, summary of results	yes
Areas	Areas Summary	Building Element Areas, Thermal Bridges, Treated Floor Area. Use exterior dimension references!	yes
U-List	U-Value Summary	List of calculation results from the U-Values worksheet, Building Element Database	yes
U-Values	Calculation of Standard Building Element U-Values	Heat transmission coefficient calculations in accordance with DIN EN ISO 6946.	yes
Ground	Calculation of Reduction Factors Against Ground	More precise calculation of heat losses through the ground	if applicable
Windows	U _W -Value Determination	Input of geometry, orientation, frame lengths, frame widths, U_{g} and U-values of the frame, and the thermal bridge heat loss coefficients of the connections; from these inputs, determine U_{W} and total radiation.	yes
WinType	Characteristic Values of Glazings and Frames	Lists of glazings and window frames with all necessary characteristics	yes
Shading	Determination of Shading Factors and Influence of Window Orientation	Input of shading parameters, e.g. balcony, neighbouring building, window reveal and calculating the shading factors	yes
Ventilation	Air Flow Rates, Exhaust/Supply Air Balancing, Pressurization Test Results	Sizing the ventilation system from extract and supply air requirements, infiltration air change rate and actual efficiency of heat recovery, input of pressurization test results	yes
Annual Heat Demand	Annual Heat Demand / Annual Method	Calculation of the annual space heat demand according to the energy balance method following EN 13790: Transmission + Ventilation - η (Solar Gains + Internal Gains)	yes
Monthly Method	Monthly Method Following EN 13790	Calculation procedure for the monthly method following EN 13790. Make appropriate selection in the Verification worksheet, if calculations should be performed following this procedure	if selected
Heating Load	Building Heat Load Calculation	Calculation of the nominal heat load using a balance procedure for the design day. max transmission + max ventilation - h (minimum solar gains + internal heat gains)	yes
Summer	Assessment of Summer Climate	Calculation of the frequency of overheating as a measure of summer comfort	yes
Shading-S	Determination of Shading Factors for the Summer	Shading factors for the summer period	yes
SummVent	Determination of Summer Ventilation	Estimation of air flow rates for natural ventilation during the summer period	if used
Cooling	Monthly Method for Cooling Demand	Calculation of the annual useful cooling demand, analogous to Monthly Method worksheet	if present
Cooling Units	Latent Cooling Energy	Calculation of the energy demand for dehumidification and choice of cooling method	if present
Cooling Load	Building Cooling Load Calculation	Calculation of the daily average cooling load of the building	no
DHW+Distribution	Distribution losses; DHW Requirement and Losses	Heat loss calculation of the distribution systems (heating; DHW); calculation of the useful heat requirement of DHW and storage losses	yes
SolarDHW	Solar DHW Heating	Calculation of the solar fraction of DHW	if a solar system is present
Electricity	Electricity Demand for Dwellings	Calculation of the electricity demand of Passive Houses with residential use	yes
Electricity Non-Dom	Electricity Demand for Non-Domestic Use	Calculation of the electricity demand for lighting, electric devices and kitchens for non-domestic buildings	no
Aux Electricity	Auxiliary Electricity Demand	Calculation of auxiliary electricity and corresponding primary energy demand	yes
PE Value	Specific Primary Energy and CO ₂ Demands	Selection of heat generators, calculation of the specific primary energy and CO2 demands from the present results	yes
Compact	Efficiency of Heat Generator Compact Heat Pump Unit	Calculation of the efficiency of a combined heat generation for heating and DHW exclusively by means of an electric compact heat pump unit under the boundary conditions of the project	if present
Boiler	Efficiency of Heat Generator Boiler	For the calculation of the efficiency of heat generation with standard boilers (NT and calorific boilers) for the project given boundary conditions.	if present
District Heat	District Heat Transfer Station	Calculation of the final and primary energy demands (heat)	if present
Climate Data	Climate Region Selection or Definition of User Data	Climate data for the worksheets Annual Heat Demand, Windows, Heating Load, Monthly Method, Summer, Cooling, Cooling Units, Cooling Load	if not standard
IHG	Internal Heat Gains in Dwellings	Calculation of the internal heat gains based on the Electricity and Aux Electricity sheets.	no
IHG Non-Dom	Internal Heat Gains for Non-Domestic Use	Calculation of the internal heat gains for non-domestic buildings based on the Electricity Non-Dom worksheet and the occupancy	no
Use Non-Dom	Patterns of Non-Domestic Utilisation	Input or selection of utilisation patterns for planning of electricity demand and internal heat gains	no
Data	Database	Table of primary energy factors following Gemis and database	по

Passive House Verification

We confirm that the values given herein have been	Issued on:	
determined following the PHPP methodology and based		
on the characteristic values of the building. The calculations	signed:	
with PHPP are attached to this application.		

AREAS DETERMINATION


uilding:

Heat Demand 11 kWh/(m²a)

					Summary	
Group Nr.	Area Group	Temp Zone	Area	Unit	Comments	Building Element Overvi
1	Treated Floor Area		256.41	m²	Living area or useful area within the thermal envelope	
2	North Windows	Α	11.25	m²		North Windows
3	East Windows	Α	0.00	m²		East Windows
4	South Windows	Α	26.60	m²	Results are from the Windows worksheet.	South Windows
5	West Windows	Α	1.58	m²		West Windows
6	Horizontal Windows	Α	0.00	m²		Horizontal Windows
7	Exterior Door	Α	5.18	m²	Please subtract area of door from respective building element	Exterior Door
8	Exterior Wall - Ambient	Α	232.20	m²	Window areas are subtracted from the individual areas specified in the "Windows" worksheet.	Exterior Wall - Ambient
9	Exterior Wall - Ground	В	49.77	m²	Temperature Zone "A" is ambient air.	Exterior Wall - Ground
10	Roof/Ceiling - Ambient	Α	132.02	m²	Temperature zone "B" is the ground.	Roof/Ceiling - Ambient
11	Floor Slab	В	117.06	m²		Floor Slab
12			0.00	m²	Temperature zones "A", "B", "P" and "X" may be used. NOT "I"	
13			0.00	m²	Temperature zones "A", "B", "P" and "X" may be used. NOT "I" Factor for >	(
14		Х	0.00	m²	Temperature zone "X": Please provide user-defined reduction factor (0 < f, < 1): 75%	
						Thermal Bridge Overview
15	Thermal Bridges Ambient	Α	0.00	m	Units in m	Thermal Bridges Ambient
16	Perimeter Thermal Bridges	Р	0.00	m	Units in m; temperature zone "P" is perimeter (see Ground worksheet).	Perimeter Thermal Bridges
17	Thermal Bridges Floor Slab	В	0.00	m	Units in m	Thermal Bridges Floor Slab
18	Partition Wall to Neighbour	I	0.00	m²	No heat losses, only considered for the heat load calculation.	Partition Wall to Neighbou
Total T	hermal Envelope		575.65	m²		Average Therm. Envelope

av ratio 0.30

							8			User-	200	User Sub-		Subtraction	2000		Selection of the Corresponding Building
Area Nr.	Building Element Description	Group Nr.	Assigned to Group	Quan- tity	× (a [m]	x	b [m]	+	Deter- mined [m²]		traction [m ²]		Window Areas [m ²])=	Area [m²]	Element Assembly
	Treated Floor Area	1	Treated Floor Area	2	х(12.192	х	8.534	+	24.15	-)=	256.4	
	North Windows	2	North Windows													11.3	From Windows shee
	East Windows	3	East Windows													0.0	From Windows shee
	South Windows	4	South Windows	P	leas	se com	ple	ete in W	ind	dows v	NOI	rksheet	or	ly!		26.6	From Windows shee
	West Windows	5	West Windows													1.6	From Windows shee
	Horizontal Windows	6	Horizontal Windows											-	_	0.0	From Windows shee
	Exterior Door	7	Exterior Door	2	х(1.15	х	2.25	+		-)-		=	5.2	U-Value Exterior Doo
1	EXW North Basement	9	Exterior Wall - Ground	1	х(12.80	х	1.22	+		-) -	3.7	=	11.9	Basement Wall 🔻
2	EXW North Basement Above Ground	8	Exterior Wall - Ambient	1	х(12.80	х	1.52	+		-) -	0.0	=	19.5	Basement Wall
3	EXW North Main Level	8	Exterior Wall - Ambient	1	х(12.80	х	4.88	+		-) -	7.5	=	54.9	Wall 2x6 with ser
4	EXW South Basement	9	Exterior Wall - Ground	1	х (12.80	х	1.22	+		-) -	0.0	=	15.6	Basement Wall
5	EXW South Basement Above Ground	8	Exterior Wall - Ambient	1	х(12.80	х	1.52	+		-)-	6.3	=	13.2	Basement Wall
6	EXW South Main Level	8	Exterior Wall - Ambient	1	х(12.80	х	2.44	+		-)-	20.3	=	10.9	Wall 2x6 with ser
7	EXW East Basement	9	Exterior Wall - Ground	1	х(9.14	х	1.22	+)-	0.0	=	11.1	Basement Wall
8	EXW East Basement Above Ground	8	Exterior Wall - Ambient	1	х(9.14	х	1.52	+		-)-	0.0	=	13.9	Basement Wall
9	EXW East Main Level	8	Exterior Wall - Ambient	1	х(9.14	х	4.64	+		-)-	0.0	=	42.5	Wall 2x6 with ser
10	EXW West Basement	9	Exterior Wall - Ground	1	х(9.14	х	1.22	+		-)-	0.0	=	11.1	Basement Wall
11	EXW West Basement Above Ground	8	Exterior Wall - Ambient	1	х(9.14	х	1.52	+		-) -	0.0	=	13.9	Basement Wall
12	EXW West Main Level	8	Exterior Wall - Ambient	1	х(9.14	х	4.64	+		-) -	1.6	=	40.9	Wall 2x6 with serv
13	EXW South Clearstory	8	Exterior Wall - Ambient	1	х(12.80	х	1.75	+		-)-	0.0	=	22.4	Wall 2x6 with ser
14					x (х		+		-) -	0.0	=		
15					X (х		+		-)-	0.0	=		
16	Roof North	10	Roof/Ceiling - Ambient	1	X (12.80	x	7.010	+		-)-	0.0	=	89.7	R60 Roof with ser
17	Roof South	10	Roof/Ceiling - Ambient	1	x (12.80	x	3.30	+		-)-	0.0	=	42.3	R60 Roof with ser
18	Basement Floor Slab	11	Floor Slab	1	X (12.80	х	9.14	+		-)-	0.0	=	117.1	basement floor
19					X (х		+		-)-	0.0	=		V
20	Ground Floor Living room	1	Treated Floor Area		x (x		+		-)-	0.0	=		
21	Ground Floor Living room	1	Treated Floor Area		x (x		+).	0.0	=		
22	Ground Floor Kitchen	1	Treated Floor Area		x (x		+).	0.0	=		
23	Ground Floor Office / Guest room	1	Treated Floor Area		x (x		+).	0.0	=		·
24	Ground Floor Utility room	1	Treated Floor Area		x (x		+).	0.0	=		
25	Ground Floor Storage	1	Treated Floor Area		x(x		+		÷).	0.0	=		
26	First Floor Room 1	1	Treated Floor Area		x(x		÷.) -) -	0.0	=		l i
20	First Floor Room 2	1	Treated Floor Area	-	x(x		+		-) -	0.0	=		· · · · · · · · · · · · · · · · · · ·
28	First Floor Room 3	1	Treated Floor Area	-	x (x		+		F		,-	0.0	=		
20	First Floor Room 4	1	Treated Floor Area		x (x		+		-)-	0.0	-		
29 30	First Floor Koom 4 First Floor Corridor	1	Treated Floor Area		X(x		+		-)-	0.0	=		

HEAT LOSSES VIA THE GROUND

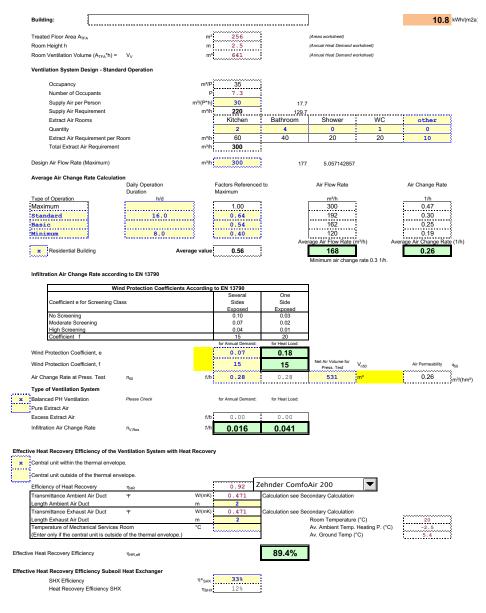
Ground	Characteristi	cs		7	Clim	ate Data	
Thermal Conductivity	λ		W/(mK)		Av. Indoor Temp. Winter	Ti	20.0 °C
Heat Capacity	ρC	2.0	MJ/(m ³ K)		Av. Indoor Temp. Summer	T,	25.0 °C
Periodic Penetration Depth	δ	3.17	m		Average Ground Surface Temperature	T _{g,ave}	5.4 °C
				4	Amplitude of Tg.ave	T _{g.^}	13.0 °C
					Length of the Heating Period	n	6.7 months
					Heating Degree Hours - Exterior	G,	110.7 kKh/a
Building Data					Floor Slab U-Value	Uf	0.157 W/(m²K)
Floor Slab Area	А	117.1	m ²		Thermal Bridges at Floor Slab	Ψ _B *I	0.00 W/K
Floor Slab Perimeter	Р	44.0	m		Floor Slab U-Value incl. TB	U,	0.157 W/(m ² K)
Charact. Dimension of Floor Slab	B'	5.32	m		Eq. Thickness Floor	d,	12.8 m
Floor Slab Type (select only one)			Please cho	ose one option only.			
Heated B x Slab on G		nderground Floor			Unheated basement Suspended Floor		
For Basement or Underground Flo	or Slab						
Basement Depth	z	3.00	m		U-Value Belowground Wall	UwB	0.156 W/(m ² K)
Additionally for Unheated Baseme	nts			~~~~~~	Height Aboveground Wall	h	m
Air Change Unheated Basement	n	0.20	h ⁻¹		U-Value Aboveground Wall	Uw	0.156 W/(m²K)
Basement Volume	v	234	ma		U-Value Basement Floor Slab	UfB	0.157 W/(m ² K)
			,	7	F		
For Perimeter Insulation for Slab o Perimeter Insulation Width/Depth	n Grade		m		For Suspended Floor U-Value Crawl Space	п	W/(m²K)
Perimeter Insulation Width/Depth Perimeter Insulation Thickness	-		m		U-Value Crawl Space Height of Crawl Space Wall	U _{Crawl} h	w/(m·K)
Conductivity Perimeter Insulation	d _n		m W/(mK)		U-Value Crawl Space Wall		m W/(m²K)
conductivity Perimeter Insulation	λη		Saa/(IIIK)		Area of Ventilation Openings	U _W εP	W/(m*K) m ²
Location of the Perimeter Insulation	horizor	ntal	3		Area of Ventilation Openings Wind Velocity at 10 m Height	v v	
check only one field)	norizoi verti		1		Wind Velocity at 10 m Height Wind Shield factor	v f _w	4.0 m/s 0.05 -
			1	_			
Additional Thermal Bridge Heat Lo Phase Shift		neter	months		Steady-State Fraction Harmonic Fraction	Ψ _{P,stat} *I	0.000 W/K 0.000 W/K
Phase Shift	β		months		Harmonic Fraction	Ψ _{P,harm} *I	0.000 W/K
Groundwater Correction							
Depth of the Groundwater Table	ZW		m		elowground El. (w/o Ground)	L _{reg}	18.32 W/K
Groundwater Flow Rate	q _w	0.05	m/d		sulation Standard	d/B'	2.40 -
Groundwater Correction Factor	G.,	1.0044532			roundwater Depth roundwater Velocity	z _w /B' I/B'	0.56 - 0.16 -
		1.0044332			,		
Basement or Underground Floor S	lab						
Eq. Thickness Floor Slab	d,	12.8			Phase Shift	β	months
U-Value Floor Slab	Ubf	0.12	W/(m ² K)		Exterior Periodic Transmittance	Lpe	11.58 W/K
Eq. Thickness Basement Wall	dw	12.85	m				
U-Value Wall	Ubw		W/(m²K)				
Steady-State Transmittance	Ls	30.67	W/K				
Unheated Basement							
Steady-State Transmittance	Ls	13.11	W/K		Phase Shift	β	1.41 months
					Exterior Periodic Transmittance	Lpe	2.59 W/K
Slab on Grade Heat Transfer Coefficient	11.	0.43	W/(m²K)		Phase Shift	в	1.41 months
Heat Transfer Coefficient Eq. Ins. Thickness Perimeter Ins.	U ₀ d'	0.13			Exterior Periodic Transmittance	,	1.41 months 7.21 W/K
Eq. Ins. Thickness Perimeter Ins. Perimeter Insulation Correction	α [.] ΔΨ	0.00	m W/(mK)		Extensi Penduc Hansmittance	Lpe	7.21 VV/K
Perimeter Insulation Correction Steady-State Transmittance	ΔΨ Ls	15.46					
	45						
Suspended Floor Above a Ventilat	ed Crawl Spa	ce (at max. 0.5 r	n Below Gro	und)	-		-
Eq. Ins. Thickness Crawl Space	d _g		m		Phase Shift	β	months
U-Value Crawl Space Floor Slab	U _g		W/(m²K)		Exterior Periodic Transmittance	Lpe	W/K
U-Value Crawl Space Wall & Vent.	Ůx		W/(m²K)				
Steady-State Transmittance	Ls		W/K				
Interim Results							
Phase Shift	β		months		ate Heat Flow	Φ_{stat}	226.5 W
Steady-State Transmittance	Ls	15.46		Periodic H	eat Flow	Φ_{harm}	38.8 W
Exterior Periodic Transmittance	Lpe	7.21	W/K	Heat Loss	es During Heating Period	Q _{tot}	1302 kWh
			Ground F	eduction Factor fo	r "Annual Heat Demand" Sheet		0.642
Monthly Average Ground T-	nnorsture -	for Monthle	Method				
Monthly Average Ground Ter	nperatures 3	or wonthly	Method 5	6 7	8 9 10	11	12 Average
Month 1 2							
Month 1 2 Winter 3.9 2.6 Summer 4.6 3.4	2.8	4 4.2 5.0	6.6 7.3	9.2 11.4 10.0 12.2	12.6 12.5 11.1 13.4 13.3 11.9	8.7	6.1 7.6 6.9 8.4

REDUCTION FACTOR SOLAR RADIATION, WINDOW U-VALUE

Bui	lding:					Annual Heat Demand: 10.82462	kWh/(m²a)			Heat	ating Degree Hours:		
Climate:											110.7		
Window Area Orientation	Dirt	Non- Perpendicu- lar Incident Radiation	Glazing Fraction	g-Value	Reduction Factor for Solar Radiation	Window Area	Window U-Value	Glazing Area	Average Global Radiation	т	ransmission Losses	Heat Gains Solar Radiatio n	
maximum:	0.95	0.85				m ²	W/(m ² K)	m²	kWh/(m²a)		kWh/a	kWh/a	
North	0.95	0.85	0.706	0.49	0.46	11.25	0.74	7.9	99		921	249	
East	0.95	0.85	0.000	0.00	0.00	0.00	0.00	0.0	329		0	0	
South	0.95	0.85	0.718	0.61	0.49	26.60	0.77	19.1	770		2271	6126	
West	0.95	0.85	0.773	0.61	0.16	1.58	0.81	1.2	433		142	67	
Horizontal	0.95	0.85	0.000	0.00	0.00	0.00	0.00	0.0	477		0	0	
				0.58	0.47	39.43	0.76	28.3]		3335	6442	6128.69

			Window Open		Installed	Glazing		Frame		g-Value	U-Va	lue	Win	dow Fram	e Dimensi	ons	¥-V	alue		Results		
Quan- tity	Description	Orientation	Width	Height	in Area in the Areas worksheet Nr.	Select glazing from the WinType worksheet	Nr.	Select window from the WinType worksheet	Nr.	Perpen- dicular Radiation	Glazing	Frames	Width - Left	Width - Right	Width - Below	Width - Above	Ψ_{Spacer}	W installation	Window Area	Glazing Area	U-Value Window	Glazed Fraction per Window
			m	m	Select:	Select:		Select:		-	W/(m ² K)	W/(m ² K)	m	m	m	m	W/(mK)	W/(mK)	m ²	m ²	W/(m ² K)	%
1	Basement South Living	South	1.346	1.397	EXW South Base 5	klear wall triple high SHG	9	Klear wall future proof fixed	10	0.61	0.60	0.66	0.08	0.08	0.08	0.08	0.025	0.040	1.9	1.49	0.76	0.79
	Basement South Living operable	South	1.346	1.397	EXW South Base 🔽 🍯	klear wall triple high SHG	9	Klear wall future proof operable 💌	9	0.61	0.60	0.66	0.13	0.13	0.13	0.13	0.025	0.040	1.9	1.26	0.77	0.67
	Basement South Master Bedroom op	South	1.219	1.397	EXW South Base 🔽 🏼 5	klear wall triple high SHG 🖉	9	Klear wall future proof operable 💌		0.61	0.60			0.13		0.13	0.025	0.040	1.7	1.11	0.77	0.65
	Basement South Master Bedroom	 South 	0.610	1 397	EXW South Base 🗾 5	klear wall triple high SHG	9	Klear wall future proof fixed	10	0.61	0.60	0.66	0.08	0.08	0.08	0.08	0.025	0.040	0.9	0.57	0.84	0.67
				1	-	-													}			{
1	main Kitchen South operable	South	0.775	1.092	EXW South Mair 🔤 🌀	klear wall triple high SHG	9	Klear wall future proof operable 💌	9	0.61	0.60	0.66	0.13	0.13	0.13	0.13	0.025	0.040	0.8	0.44	0.83	0.52
	main Kitchen South	South	2.134	1.092	EXW South Mair 🔽 🌀	klear wall triple high SHG	9	Klear wall future proof fixed		0.61	0.60	0.66	0.08	0.08	0.08	0.08	0.025	0.040	2.3	1.87	0.77	0.80
				1		~		•						;					}			{
	Dining	South	1.524	1.562	EXW South Main 🗹 👩	klear wall triple high SHG	9	Klear wall future proof fixed 💌	10	0.61	0.60	0.66	0.08	0.08	0.08	0.08	0.025	0.040	4.8	3.88	0.75	0.82
				÷		•		┓						;					}	1	1	{
1	dining door	South	0.914	2.134	EXW South Mair 🔽 🌀	klear wall triple high SHG	9	Klear wall future proof operable 💌	9	0.61	0.60				0.13		0.025		2.0	1.25	0.81	0.64
						-								(}			{
						-		.											}		-	{
1	Back Entry Window	South	1.219	1.219	EXW South Mair 🚾 🗧	klear wall triple high SHG	9	Klear wall future proof operable	9	0.61	0.60	0.66	0.13	0.13	0.13	0.13	0.025	0.040	1.5	0.94	0.82	0.63
						•		_														{
						▼		_						(}			{
2	loft south large middle	South	1.600	0.940	EXW South Mair 🔽 🌀	klear wall triple high SHG	9	Klear wall future proof fixed	10	0.61	0.60	0.66		0.08			0.025		3.0	2.29	0.80	0.76
2	loft south small middle	South	1.181	0.940	EXW South Mair 🗹 🧕 6	klear wall triple high SHG	9	Klear wall future proof fixed	10	0.61	0.60	0.66	0.08	0.08	0.08	0.08	0.025	0.040	2.2	1.63	0.62	0.73
						~		-											{			{
	loft south operable outside	South	1.956	0.940	EXW South Mair 🗹 🧕 6	klear wall triple high SHG 🖉	9	Klear wall future proof operable 🖃		0.61	0.60			0.13		0.13	0.025	0.040		2.35		0.64
			:	<u>.</u>		-									:				<u> </u>	<u>.</u>	<u>.</u>	1
2	main bedrooms north	North				klear wall triple low SHG	10	Klear wall future proof operable 💌	9	0.49	0.50	0.66	0.13	0.13	0.13	0.13	0.025	0.040	3.0	1.88	0.76	0.63
1	loft north bath	North	1.219	1.067	EXW North Mair 🔽 3	klear wall triple low SHG	10	Klear wall future proof fixed		0.49	0.50	0.66	0.08	0.08	0.08	0.08	0.025	0.040	1.3	0.98	0.76	0.75
1	loft north bedroom operable	North	1.219	1.067		klear wall triple low SHG	10	Klear wall future proof operable 💌		0.49	0.50	0.66		0.13			0.025		1.3	0.79	0.77	0.61
1	loft north large	North	1.219	1.588	EXW North Mair 💌 3	klear wall triple low SHG	10	Klear wall future proof fixed 🔍	10	0.49	0.50	0.66	0.08	0.08	0.08	0.08	0.025	0.040	1.9	1.54	0.71	0.79
			<u>.</u>			▼		–											<u>.</u>	<u>.</u>	i	<u>į</u>
1	basement kitchen north	North	1.930	1.168		klear wall triple low SHG	10	Klear wall future proof fixed 📃	10	0.49	0.50	0.66	0.08	0.08	0.08	0.08	0.025	0.040	2.3	1.81	0.70	0.80
1	basement bedroom north op	North	1.219	1.219	EXW North Base 🗾 1	klear wall triple low SHG	10	Klear wall future proof operable 🖃	9	0.49	0.50	0.66	0.13	0.13	0.13	0.13	0.025	0.040	1.5	0.94	0.76	0.63
						-													{			<u>}</u>
1	main kitchen west	West	1.448	1.092	EXW West Main 🗾 12	klear wall triple high SHG	9	Klear wall future proof fixed	10	0.61	0.60	0.66	0.08	0.08	0.08	0.08	0.025	0.040	1.6	1.22	0.81	0.77

CALCULATING SHADING FACTORS


Climate: AB_Calgary Building: Latitude: 51.046 °

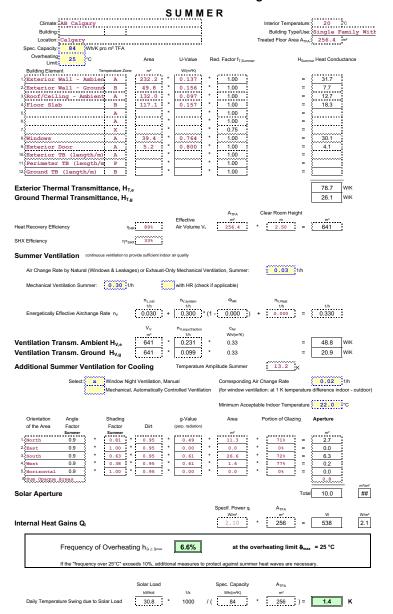
Orien-tation	Glazing Area m²	Reduction Factor r _s
North	7.94	80%
East	0.00	100%
South	19.09	85%
West	1.22	26%
Horizontal	0.00	100%

10.825 kWh/(m2a) 6.597% Frequency of Overheating:

Quantity	Description	Deviation from North	Angle of Inclination from the Horizontal	Orientation	Glazing Width	Glazing Height	Glazing Area	Height of the Shading Object	Horizontal Distance	Window Reveal Depth	Distance from Glazing Edge to Reveal	Overhang Depth	Distance from Upper Glazing Edge to Overhang	Additional Shading Reduction Factor	Horizontal Shading Reduction Factor	Reveal Shading Reduction Factor	Overhang Shading Reduction Factor	Total Shading Reduction Factor
		Degrees	Degrees		m	m		m	m	m	m	m	m	%	%	%	%	%
					W _G	h _G	A _G	h _{Hori}	d _{Hori}	OReveal	d _{Reveal}	0 _{over}	d _{over}	r _{other}	r _H	r _R	r _o	r _s
· · · · · · · · · · · · · · · · · · ·	Basement South Living		90	South	1.20		1.5			0.15	0.05	0.30	0.10	100%	100%	95%	94%	
1	Basement South Living operable		90				1.3			0.15	0.05		0.10	100%	100%	94%	94%	89%
1	Basement South Master Bedroom o		90	South		1.15	1.1		{	0.15	0.05		0.10	100%	100%	94%	94%	88%
1	Basement South Master Bedroom	164	90	South	0.46	1.25	0.6			0.15	0.05	0.30	0.10	100%	100%	88%	94%	83%
	main Kitchen South operable	164	90	South	0.52	0.84	0.4			0.15	0.05	0.74	0.28	100%	100%	89%	87%	78%
1	main Kitchen South	164	90	South	1.98	0.94	1.9			0.15	0.05	0.74	0.28	100%	100%	97%	88%	85%
			<u>}</u>	<u></u>	<u> </u>					<u> </u>								
2	Dining	164	90	South	1.37	1.41	3.9		<u>.</u>	0.15	0.05	0.74	0.28	100%	100%	95%	90%	86%
	dining door	164	90	South	0.66	1.88	1.3			0.15	0.05	0.74	0.28	100%	100%	91%	92%	84%
1	Back Entry Window	164	90	South	0.97	0.97	0.9			0.15	0.05	0.74	0.28	100%	100%	94%	88%	82%
2	loft south large middle	164	90	South	1.45	0.79	2.3			0.23	0.05	0.90	0.58	100%	100%	93%	88%	83%
2	loft south small middle	164	90	South	1.03	0.79	1.6			0.23	0.05	0.90	0.58	100%	100%	91%	88%	80%
	loft south operable outside	164	90	South	1.71	0.69	2.4			0.23	0.05	0.90	0.58	100%	100%	94%	88%	83%
2	main bedrooms north	344	90	North	0.97	0.97	1.9			0.15	0.05			100%	100%	92%	100%	92%
	loft north bath	344	90	North	1.07	0.92	1.0			0.15	0.05			100%	100%	92%	100%	92%
1	loft north bedroom operable	344	90	North	0.97	0.82	0.8			0.15	0.05			100%	100%	92%	100%	92%
	loft north large	344	90	North	1.07	1.44	1.5			0.15	0.05			100%	100%	92%	100%	92%
1	basement kitchen north	344	90	North	1.78	1.02	1.8		<u> </u>	0.15	0.05	1.52	0.30	100%	100%	95%	61%	58%
1	basement bedroom north op	344	90	North	0.97	0.97	0.9			0.15	0.05	1.52	0.30	100%	100%	92%	60%	55%
1	main kitchen west	254	90	West	1.30	0.94	1.2	6.10	3.66	0.15	0.05			100%	28%	91%	100%	26%

VENTILATION DATA

SPECIFIC ANNUAL HEAT DEMAND


Climate: AB_Calgary				Temperature: 20.	
Building:					Family With Basement
Location: Calgary			I reated H	oor Area A _{TFA} : 256	per m²
	Area	U-Value	Temp. Factor ft	Gt	Treated
Building Element Temperatu 1. Exterior Wall - Ambient	re Zone m ^a A 232.2	W/(m²K) * 0.137		kKh/a kWh 10.7 = 351	
2 Exterior Wall - Ground	в 49.8	* 0.156	and the second	10.7 = 550	
3. Roof/Ceiling - Ambient	A 132.0	* 0.097		10.7 = 141	
4 Floor Slab	в 117.1	* 0.157		10.7 = 130	
5	A]*[* 1.00 *	=	
6.	A	{*{	* 1.00 *	=	
7.	x		* 0.75 *	=	
8 Windows	A 39.4	* 0.764	* 1.00 * 1	10.7 = 333	
9 Exterior Door	A 5.2	* 0.800		10.7 = 458	in the second
<pre>10 Exterior TB (length/m) 11 Perimeter TB (length/m)</pre>	A	······	* 1.00 * * 0.64 *		
11 Perimeter TB (length/m) 12 Ground TB (length/m)	P B	•{*	* 0.64 *		
Total of All Building Envelop					kWh/(m²a)
Transmission Heat Losses Q _T				Total 1056	6 41.2
			A _{TFA} Clear F	Room Height	
			m ²	m m ^a	
Ventilation System:	Effective Air Volum	e, V _V	256.4 *	2.50 = 641	0
Effective Heat Recovery Efficiency	η _{eff} 89%	.}			
of Heat Recovery Efficiency of Subsoil Heat Exchanger	128		Φ	n	
Endency of Subson Heat Exchanger	η _{SHX} 12%	n _{V,system} 1/h	Φ _{HR}	n _{V,Res} 1/h 1/h	
Energetically	Effective Air Exchange		(1 0.91)+ 0	.016 = 0.04	1
	Vv	n _v	C _{Air}	G	
	mª	1/h	Wh/(m ^a K)	kKh/a kWh	a kWh/(m²a)
Ventilation Heat Losses Q _v	641	* 0.041	* 0.33 *	110.7 = 956	3.7
			Reduc	tion Factor	
		QT		/Weekend Saving kWh	a kWh/(m²a)
Total Heat Losses Q _L		kWh/ (10566	+ 956)	Saving kWh 1.0 = 1152	
Orientation of the Area	Reduction Factor See Windows Sh			iation HP Nh/(m²a) kWh	a
1. North	0.46	* 0.49	* 11.25 *	99 = 249	
2 East	0.40	* 0.00	* 0.00 *	329 = 0	
3. South	0.49	* 0.61	* 26.60 *	770 = 612	6
4. West	0.16	* 0.61		433 = 67	
5 Horizontal	0.40	_}* <u>{0.00</u>	* 0.00 *	477 = 0	
Available Solar Heat Gains $\mathbf{Q}_{\mathbf{S}}$				Total 644	2 kWh/(m²a) 2 25.1
		Length Heat. Peri		A _{TFA}	
Internal Heat Gains Q	kh/d 0.024	* 205	* 2.10 * 3	256.4 = 264	
				kWh	a kWh/(m²a)
		Free Heat Q _F	(Q _s + Q ₁ = 908	
		Ratio of Free Heat to	OSSES	$Q_F / Q_L = 0.7$)
Internation Franks Used Online			10 10 5 1 11 11	- (o /b)	
Utilisation Factor Heat Gains η_{G}		(1	$(Q_F / Q_L)^5) / (1 - (0)^6)$	$Q_F / Q_L^{6} = 92\%$	a kWh/(m²a)
Heat Gains Q _G			ηα		
			IIG	GF = 031	+ 32.4
Annual Heat Demand Q _H			Q	- Q _G = 320	
			-		
	Limiting Value	kWh/(m²)	Requir	(Yes/	,

For buildings with a gain-loss-ratio above 0,7 you should use the Monthly Method (cf. manual).

SPECIFIC SPACE HEATING LOAD

S	PECIFIC SP	PACE H	EATING	LOA	D	
Building:		}	Bu	ilding Type/Use:	Single Family Wi	th Basement Suite
Location: Calgary				Floor Area A _{TFA} :	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Interior 20
				}	AB_Calgary	Temperature: 20
Design Temperatu	ure Radiation: North East	South West H	orizontal			
Weather Condition 1: -24.4	°C 11 46	155 36	55 W/m²			
	*C 10 34 *C Area U-Value	116 30 Factor	42 W/m ² TempDiff 1	TempDiff 2	P ₇ 1	P _T 2
Building Element Temperature		Always 1	K	K K	w	w w
1 Exterior Wall - Ambient	A 232.2 * 0.137	(except "X") * 1.00	* 44.4 or	37.2	= 1408	or 1180
	B 49.0 0.150	* 1.00	* 17.4 or	17.4	= 134	or 134
3 Roof/Ceiling - Ambient 4 Floor Slab	B 117.1 * 0.157	* 1.00 * 1.00	* 44.4 or * 17.4 or	37.2 17.4	= 566 = 318	or 474 or 318
5	A	* 1.00	* 44.4 or	37.2	= {	or
- The second		* <u>1.00</u> * 0.75	* 44.4 or * 44.4 or	37.2 37.2	=	or or
8.Windows	X * A 39.4 * 0.764	* 1.00	* 44.4 or	37.2	= 1338	or 1121
		* 1.00	* 44.4 or	37.2	= 184 =	or 154 or
10 Exterior TB (length/m) 11 Perimeter TB (length/m)	A	* 1.00 * 1.00	* 44.4 or * 17.4 or	37.2	=	or
12 Ground TB (length/m)	в *	* 1.00	* 17.4 or	17.4	=	or
13.House/DU Partition Wall	I	* 1.00	* 3.0 or	3.0	=	or
Transmission Heat Losses \mathbf{P}_{T}				T		
				Total	= 3949	or 3382
Ventilation System:		A _{TFA} m ²	Clear Room Height	m²		
• considered by stem.	Effective Air Volume, V _V	256.4	* 2.50 =	641		
Efficiency of Heat Recovery	η _{HR} 89%	Heat Recovery Efficiency SHX	33%	Efficiency SHX	т <u>вн</u> х 1 22%	_{195HX} 2 or 20%
of the Heat Exchanger	n _v ,Res (Heating	Load) n _{visualem}	Φ_{HR}	Ф _{НR}		
	1/h	1/h			1/h	1/h
Energetically Effective Air Exchang	ige n, 0.041	+ 0.262	*(1- 0.92 or	0.92) = 0.062	or 0.063
- V _L	n, n,	C _{Air}	TempDiff 1	TempDiff 2	P _v 1	P _V 2
m² 641.0	1/h 1/h * 0.062 or 0.063	Wh/(m ³ K) * 0.33	к * 44.4 or	к 37.2	= 585	or 495
2.1.0			0			
Total Heating Land C					P_1	PL 2
Total Heating Load P _L				P _T + P _V	= 4533	or 3876
Orientation the Area	Area g-Value m² (perp. radiation	Reduction Factor n) (see Windows workshee	Radiation 1 at) W/m ²	Radiation 2 W/m ²	P _s 1 W	P _S 2 W
1. North	11.3 * 0.5 0.0 * 0.0	* 0.5	* 9 or	9	= 23	or 23
2. East 3. South	0.0 * 0.0 26.6 * 0.6	* <u>0.4</u> * 0.5	* 46 or * 150 or	34	= 0 = 1196	or 0 or 892
4. West	1.6 * 0.6	* 0.2	* 59 or	47	= 9	or 7
5. Horizontal	0.0 * 0.0	* 0.4	* 55 or	42	= 0	or 0
Solar Heat Gain, Ps				Total	= 1229	or 922
			Spec. Power	ATFA	P ₁ 1	P ₁ 2
Internal Heat Gains P			W/m²	m²	w	W
			1.6 *	256	= 410	or 410
					P ₆ 1	P ₆ 2
Heat Gains P _g					W	W
				Ps+Pi	= 1639	or 1333
				P _L - P _G	= 2894	or 2544
Heating Load P _#					-	2894 W
Hoading Load FR					-	2034
Specific Heating Load P_H /	A _{TFA}				=	11.3 W/m²
Input Max. Supply Air Temper	rature 52 °C				*C	°C
Max. Supply Air Temperature $\vartheta_{\mathrm{Supp}}$	_{ily,Max} 52 °C	Supply Air Temp	erature Without Heating	θ _{Supply,Min}	16.3	16.8
For Comparison: Heating L		/ Supply Air. P	Supply Air,Max	=	1980 W specific	7.7 W/m²
				-	-	(Yes/No)
				Supply	Air Heating Sufficient?	No

PHPP 2007, Heating Load

79

CALCULATING SUMMER SHADING FACTORS

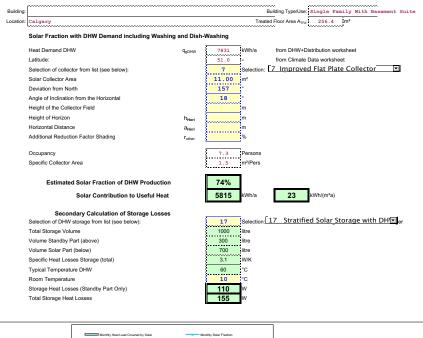
	Building: Latitude:	51.046					1		North East South West Horizontal	m ² 7.94 0.00 19.09 1.22 0.00	r _s 81% 100% 63% 38% 100%				ner worksheet: ating h _{9≥9max} Input Field	1	l		
															Summer		Su	Immer	
Quantit y	Description:	Deviation from North	Angle of Inclination from the Horizontal	Orientation	Glazing Width	Glazing Height	Glazing Area	Height of the Shading Object	Horizontal Distance	Reveal Depth	Distance from Glazing Edge to Reveal	Overhang Depth	Distance from Upper Glazing Edge to Overhang	Additional Shading Reduction Factor (Summer)		Horizontal Shading Reduction Factor	Reveal Shading Reduction Factor	Overhang Shading Reduction Factor	Total Summer Shading Reduction Factor
	-	Degrees	Degrees		WG	m h _G	Ag	m h _{Horl}	m d _{Hori}	m	m d _{Reveal}	m	m d _{over}	%	%	% r _H	%	% r _o	% r _s
1	Basement South Liv	164	90	South	1 20	1.25	AG 1.5	Hori	UHori	o _{Reveal} 0.15	0.05	0 _{over} 0.30	0.10	r _{other}		ин 100%	r _R 94%		81%
1	Basement South Liv	164	90	South	1.10	1.15	1.3			0.15	0.05	0.30	0.10		<u>+</u>	100%	93%	87% 85%	79%
1	Basement South Mas	164	90	South	0.97	1.15	1.1			0.15	0.05	0.30	0.10		}	100% 100%	92% 86%		79% 75%
1	Basement South Mag	164	90	South	0.46	1.25	0.6			0.15	0.05	0.30	0.10		Į	100%	86%	85% 87%	75%
													ļ		<u>}</u>				
~~~~	main Kitchen South	~~~~~	90		0.52	0.84	0.4		<u>.</u>	0.15		0.74	0.28		<u>}</u>	100% 100%	88% 96%	54% 57%	47% 55%
1	main Kitchen South	164	90	South	1.98	0.94	1.9	}	ķ	0.15	0.05	0.74	0.28		<u>}</u>	100%	96%	5/%	55%
2	Dining	164	90	South	1 37	1.41	3.9			0.15	0.05	0.74	0.28		{	100%	94%	69%	65%
	Dining				1.37						{		0.28		<u>}</u>	\$		2	
1	dining door	164	90	South	0.66	1.88	1.3	}		0.15	0.05	0.74	0.28		<u>}</u>	100%	90%	77%	69%
								[				:							
											}	į	į		<u> </u>	ļ		[	
1	Back Entry Window	164	90	South	0.97	0.97	0.9	<u> </u>		0.15	0.05	0.74	0.28		<u>}</u>	100%	92%	58%	54%
		•••••									}		÷		}	·····		{	
2	loft south large r	164	90	South	1.45	0.79	2.3			0.23	0.05	0.90	0.58		}	100%	92%	60%	55%
	loft south small r		90	South	1.03	0.79	1.6		·	0.23	0.05	0.90	0.58			100%	90%	60%	54%
					<u>.</u>						[		<u></u>		{				
2	loft south operabl	164	90	South	1.71	0.69		[		0.23	0.05	0.90	0.58		[	100%		58%	54%
					<u>.</u>			{			}				{	<u>}</u>		100%	93%
~~~~	main bedrooms nort	344	90	North	0.97	0.97	1.9	<u> </u>		0.15	0.05				{	100% 100%	93% 93%	100% 100%	93% 93%
	loft north bath	344	90	North	1.07	0.92	1.0	<u>}</u>		0.15	0.05		+		{	100%	93%	100%	93%
1	loft north bedroor loft north large	344	90	North	1.07	1.44	1.5	}		0.15	0.05	÷	÷		}	100%	93%	100%	93%
							1.5		 !			•••••••	*		}	{······			* • • • • • • • • • • • • • • • • • • •
	basement kitchen r	344	90	North	1.78	1.02	1.8			0.15	0.05	1.52	0.30		1	100%	96%	63%	60%
1	basement bedroom r	344	90	North	0.97	0.97	0.9			0.15	0.05	1.52	0.30		{	100%	93%	62%	58%
					ļ						{				{	1			
1	main kitchen west	254	90	West	1.30	0.94	1.2	6.10	3.66	0.15	0.05		÷		5	39%	96%	100%	38%

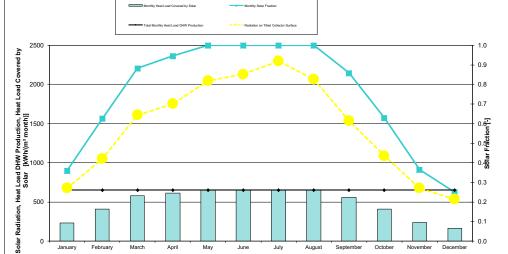
SUMMER VENTILATION

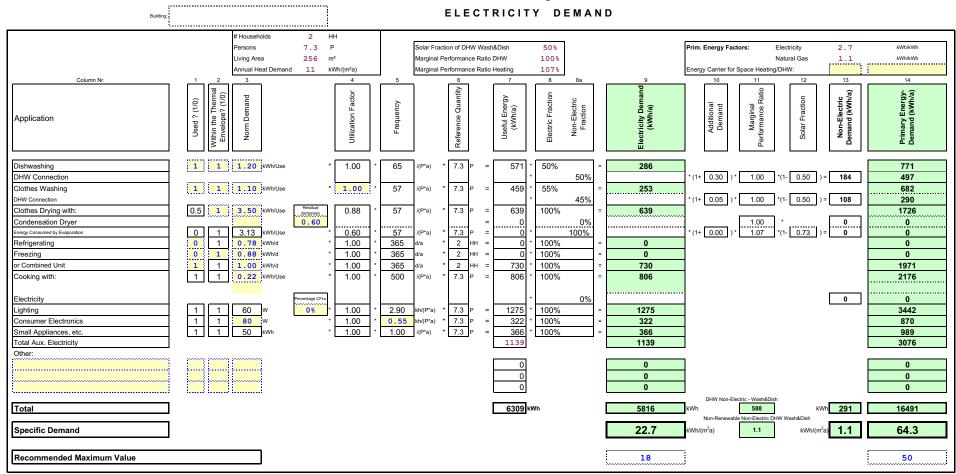
Building:			Building Type/Use:	Single Fami	ly With Baser	ment Suite	
Location: Calgary			Building Volume	641	m³		
· · · · · · · · · · · · · · · · · · ·		:		l	i		
Description	Day GRF			Night			
Fraction of Opening Duration	10%			50%			
Climate Boundary Conditions							
Temperature Diff Interior - Exterior	4			1			ĸ
Wind Velocity	1			0			m/s
Window Group 1							
Quantity	4			1			
Clear Width	0.78			0.99			m
Clear Height	2.12			2.12			m
Tilting Windows?	x			x			
Opening Width (for tilting windows)	0.060			0.060			m
Window Group 2 (Cross Ventilation)							
Quantity							
Clear Width							m
Clear Height							m
Tilting Windows?							
Opening Width (for Tilting Windows)							m
Difference in Height to Window 1							m
· · · · · · · · · · · · · · · · · · ·							
Single-Sided Ventilation 1 - Airflow Volume	191	0	0	25	0	0	m³/h
Single-Sided Ventilation 2 - Airflow Volume	0	0	0	0	0	0	m³/h
Cross Ventilation Airflow Volume	191	0	0	25	0	0	m³/h
Contribution to Air Change Rate	0.03	0.00	0.00	0.02	0.00	0.00	1/h

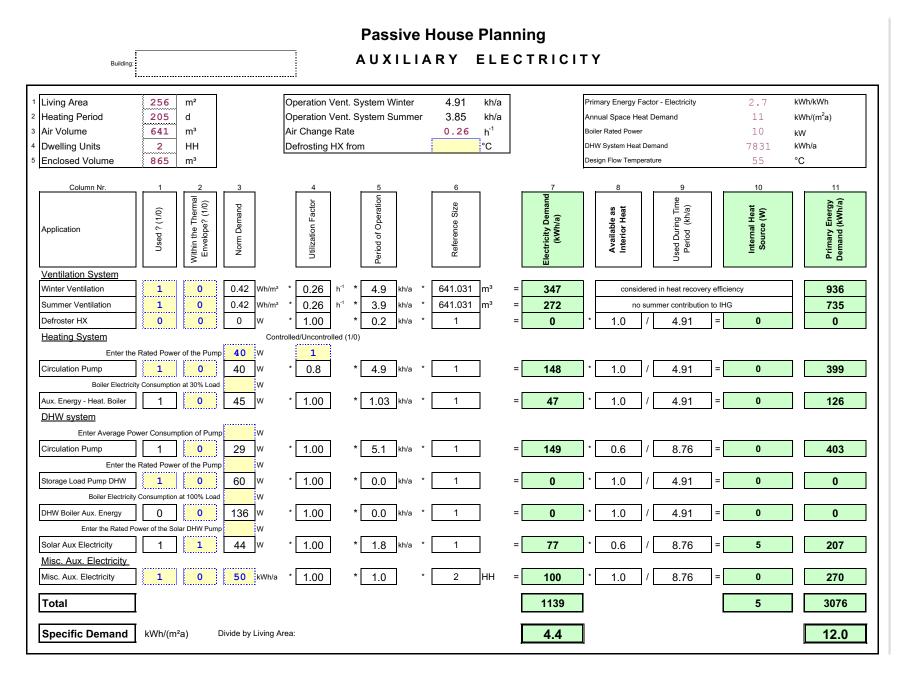
Summary of Summer Ventilation Distribution

ourinnary or o			
		Daily Average Air Change Rate	
Description Ventila	tion Type	Change Rate	
Day GRF		0.03	1/h
		0.00	1/h
Night		0.02	1/h

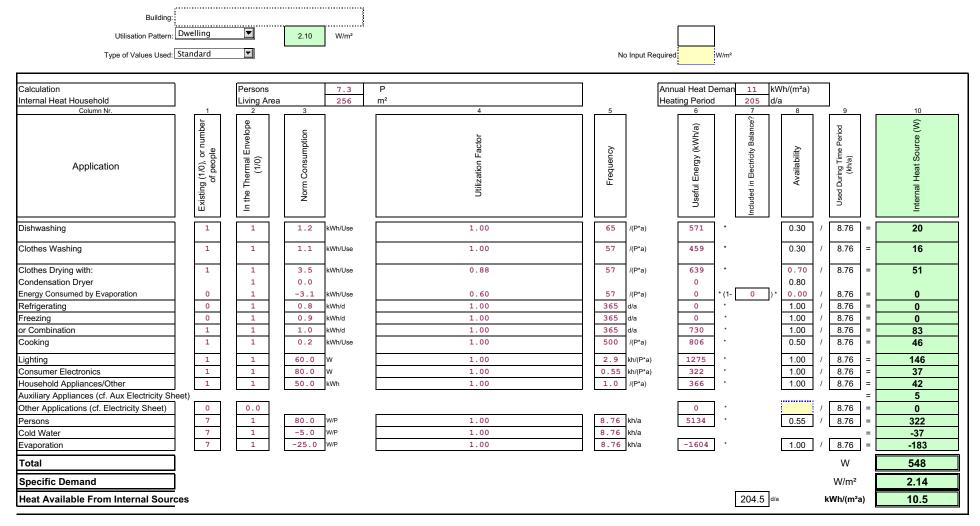

COOLING LOAD

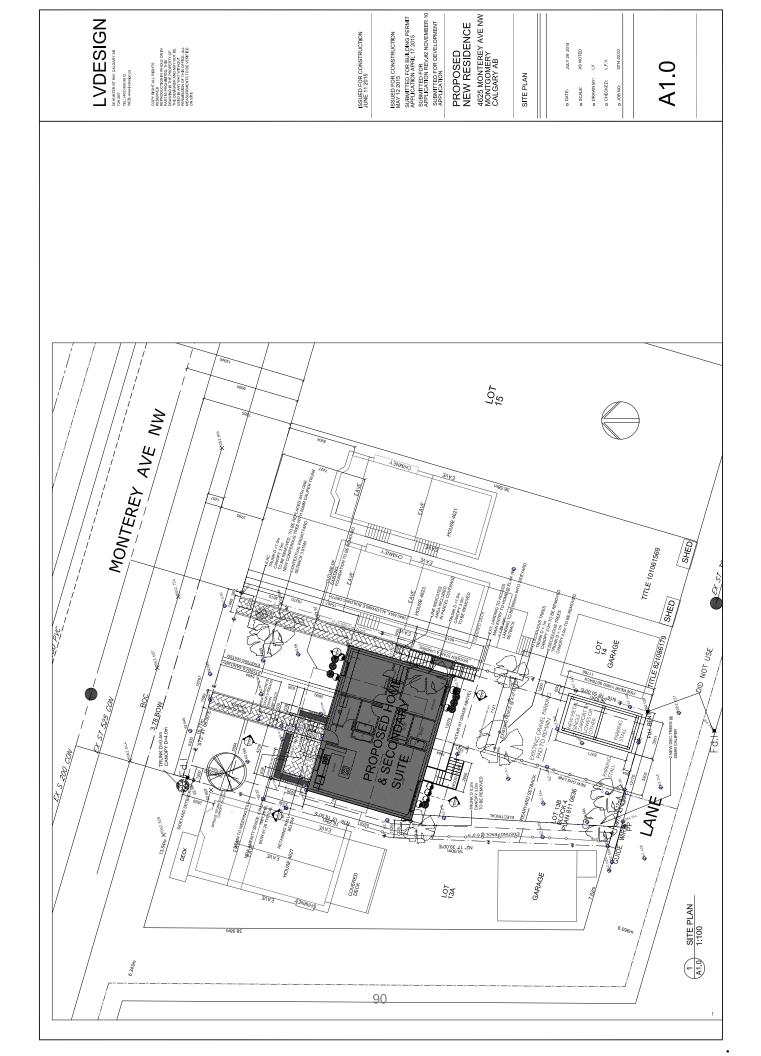

Building					Build	ling Type/Use: 1	Single Family With B Interior 2!	5 °C
Location: Calgary				Tre		loor Area A _{TFA} :	256.4 m ²	
ږ	Vh/(m²K) (Enter in "Summe	er" worksheet.)		Cli	mate (Cooling Load): 1	AB_Calgary	
Ambient Air	Sky	Ground	Radiat	ion: North	East	South	West Horizontal	
Design Temperature: 20.5	°C 0.0 °C Area	13.4 ° U-Value	C Factor	75 TempDiff	170	140	140 250 W/m²	
Building Elements Temperature		W/(m²K)	Always 1 (except "X")	к		w		
1 Exterior Wall - Ambient	A 232.2 *	0.137	* 1.00	* -4.5	=	-143		
2 Exterior Wall - Ground 3 Roof/Ceiling - Ambient	B 49.8 * A 132.0 *	0.156	* 1.00 * 1.00	* -11.6 * -4.5	=	-90 -57		
4 Floor Slab	B 117.1 *	0.157	* 1.00	* -11.6	=	-212		
	A *		* 1.00	* -4.5	=			
6	A *	·····{	* 1.00	* -4.5	=			
7. 8 Windows	X *	0.764	* 0.75 * 1.00	* -4.5 * -4.5	=	-136		
8 Windows 9 Exterior Door	A 39.4 A 5.2	0.800	* 1.00	* -4.5	=	-19		
10 Exterior TB (length/m)	A *		* 1.00	* -4.5	=			
11. Perimeter TB (length/m)	P		* 1.00	* -11.6	=			
12.Ground TB (length/m) 13.House/DU Partition Wall	B *	·····	* 1.00 * 1.00	* -11.6 * 3.0	=			
	Langbiert W/K	TempDiff K	L _{Bky} W/K	TempDiff K	-	·		
14 Radiation Correction	-4.6 *	-4.5	+ 4.5	* -25.0	=	-93		
						,		
Transmission Heat Losses P_T				Total	=	-749		
			A _{TFA}	Clear Room Heigl	ht			
Ventilation System:			m²	m		m ³		
	Effective	Air Volume, V _V	256.4	* 2.50	=	641		
			Vent. Transm.	TempDiff				
		Exterior	W/К 48.8	* -4.5	=	-220		
		Ground	20.9	* -11.6	=	-242		
Additional Summer Ventilation:								
				.				
 Window Night Ventilation, Manual Mechanical, Automatically Controlled Ven 	· · · ·		Air Change Rate	0.02 1/				
Mechanical, Automatically Controlled Ven	liation	Minimum Indoo	kWh/d	22.0 °C		w		
Heat Removal Cooling Design Day	Window Ventilation		-2.1	/ 0.024	=	-89 0		
(from Cooling worksheet)	Automatic Night Vent	tilation	0.0	/ 0.024	=	0		
Ventilation Heat Load P _v				Total	-	-551		
Ventilation Heat Load I y				1 otdi				
Orientation	Area	g-Value	Reduction Factor	Radiation		Ps		
of the Area	Area m²	g-value (perp. radiation)	Reduction Factor	W/m ²		rs W		
1. North	11.3 *	0.5	* 0.49	* 76	=	205		
2. East	0.0 *	0.0	* 0.40	* 170	=	0		
 South West 	26.6 * 1.6 *	0.6	* 0.39 * 0.25	* 146 * 146	=	919 35		
for a second	0.0 *	0.6	* 0.40	* 250	-	0		
5. Horizontal 6. Sum Opaque Areas)		0.40	200		123		
//								
Heat Gain - Solar Heat Load, P _S				Total	=	1282		
			Spec. Power	A _{TFA}		P		
			W/m²	m²		w		
Internal Heat Load P			3.1	* 256	=	795		
Cooling Load P _C			$P_T + P_V + P_S + P_I$	I.	=	777	w	
Specific Maximum Cooling	Load Pc / AFR				=	3.0	W/m²	
	U LD							
	U LD							
	Solar Load	Time	Spec. Capacity	A _{TFA}				
Daily Temperature Swing due to Solar Load		Time	Spec. Capacity Wh/(m ² K)	A _{TFA} m ² * 256) =	1.4	к	

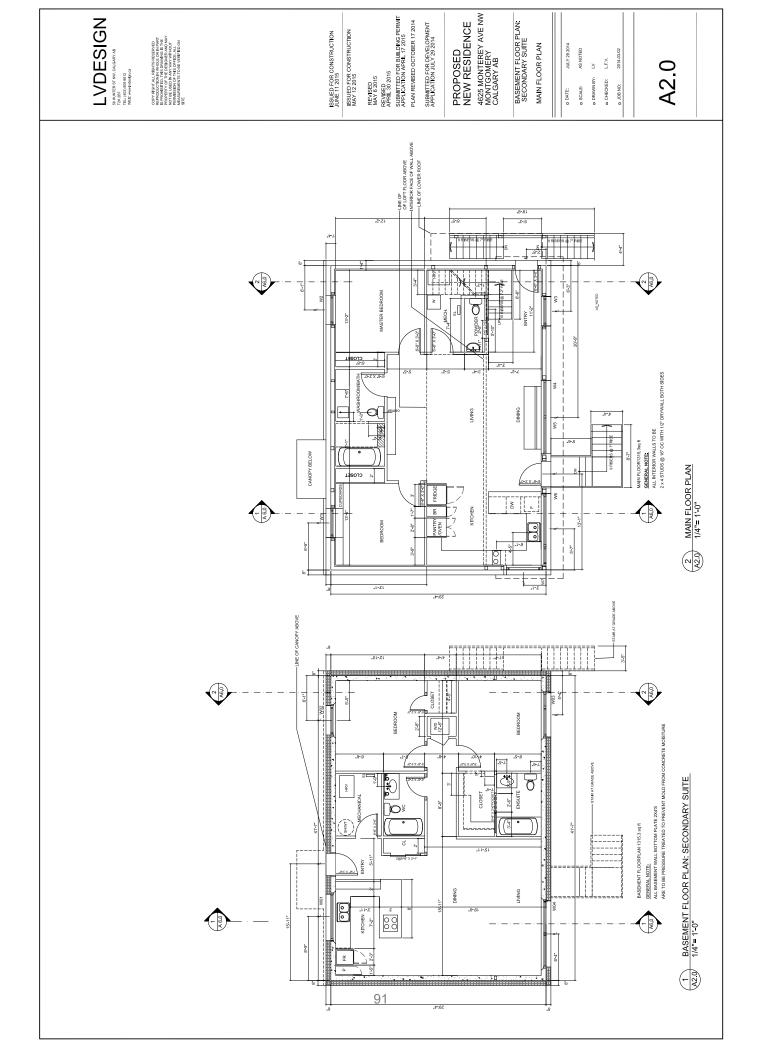

HEAT DISTRIBUTION AND DHW SYSTEM

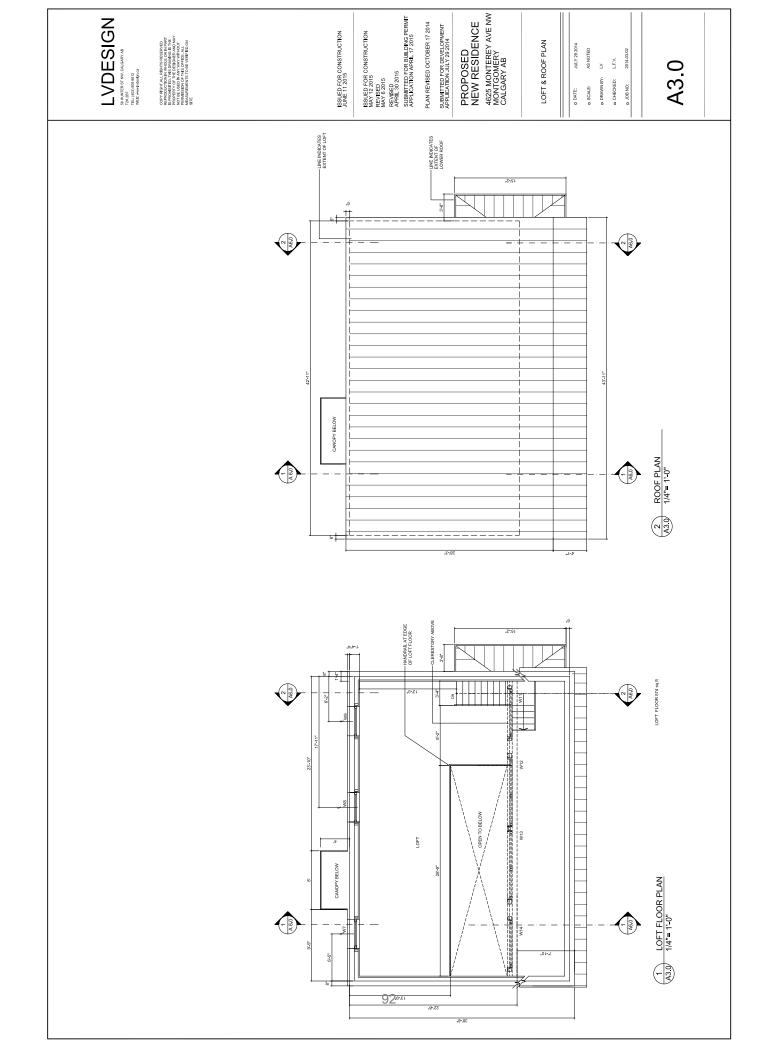

Utilisation Factor DHW Distrib and Storage n_axvL = q _{DHW} / (q _{DHW} + q _{WV}) 61.6% - Total Heat Demand of DHW system Q _{pDHW} = Q _{DHW} + Q _{WL} 7831 kWh/a					
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Buildi	ing:			
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$					
The Department of the Section of the Sectin of the Section of the Section					
		Se: Single Family With	Basement Suite		
		ATFAC 256 M ⁺			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>		ave: U.6 KW			
Spec Hall Nutrition Light Nutrition Light Nutrition Light Nutrition <	Marginal Utilisability of Additional Heat Gai	ins: 65%			
L en former Head Loss Conference per per les Design Per regenerative Design Per regnerative				Warm Region Cold Region	Total
Heat Loss Conflicating arm Pipe V Privet Tamparatare of Benom Trongo Micho Bergos Pass Bage Files: Capability Benom Trango Micho Bergos Pass Bage Micho Bergos Bergos Bage Bage Bergos Bage Bage Bergos Micho Bergos Bage Bage Bergos Bage Bage Bergos Bage Bage Bergos Bage Bage Bage Bage Bage Bage Bage Bage		(Decised)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
Disp: Flow Temporation Sam Proc. Darge Visit Party Sign Proc. Temporation Sign Proc. Darge Visit Disp: Flow Temporation Control (clock) Sign Proc. Darge Visit Sign P					
Decky System Heal Load Pursue (matrixe) V/V Provide System Control (cond) Decky Return Temperatures No.		- 74			
Point Temperature Control (price) 0			Value		
Desky Rubin Temperature bit 4.714+(a_2,c)/2002 4.810 T<		Pheating (exist./calc.)		2.9	kW
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Flow Temperature Control (check)				
Properties n_0 <th></th> <th></th> <th></th> <th>45.0</th> <th></th>				45.0	
Properties n_0 <th></th> <th>q*_{HL}</th> <th>$= \Psi (\vartheta_m - \vartheta_X) t_{Heating} * 0.024$</th> <th>22</th> <th>Total 1,2,3 kWh/(m·a)</th>		q* _{HL}	$= \Psi (\vartheta_m - \vartheta_X) t_{Heating} * 0.024$	22	Total 1,2,3 kWh/(m·a)
Specif. Losses u_{u} $= 2Q_u / h_{RA}$ $U(u)$ <th< th=""><th>Possible Utilization Factor of Released Heat</th><th>η_G</th><th></th><th>65%</th><th>·</th></th<>	Possible Utilization Factor of Released Heat	η _G		65%	·
Specif. Losses $q_{e_{e_{e}}} = i Q_{e_{e}} / A_{TA}$ $m_{u_{e_{e}}} = q_{e_{e}} (q_{e} + q_{e})$ 12 DW: Stander Distribution $h_{u_{e}} = q_{e} (q_{e} + q_{e})$ 30% 30% 12 DW: Stander Distribution $h_{u_{e}} = q_{e} (q_{e} + q_{e})$ 30% 30% 30% DW: Stander Distribution and Dah $h_{u_{e}}$ (more stand or Distribution and Dah 12 30% 12 DW: Mon-Electric Waits and Dah $h_{u_{e}}$ (more stand or Distribution and Storage 12 12 12 DW Distribution and Storage $V_{u_{e}}$ (more stand or Distribution and Storage 10 12 12 Dual production properties $h_{u_{e}}$ (more stand or Distribution and Storage 10 12 12 Dial production properties $h_{u_{e}}$ (more stand or Distribution and Storage 10 12 12 Dial production properties $h_{u_{e}}$ (more stand or Distribution and Storage 10 12 12 Dial production properties $h_{u_{e}}$ (more stand or Distribution and Storage 10 15 10 10 Dial production properties $h_{u_{e}}$ (more stand or Distribution and Storage 10 15 10 10 Dial production properties $h_{u_{e}}$ (more stand or Distribution properties) 10 15 10 10 Dial production properties $h_{u_{e}}$ (more stand or Distribution properties) 10 10 10 Dial production factor of Rolessed Heat $\eta_{u_{e}}$ (more stand or Distribution propering 10 10 10 <td< th=""><th>Annual Losses</th><th>Q_{HL}</th><th>$= L_H \cdot q_{HL}^* \cdot (1-\eta_G)$</th><th>312 0 0</th><th>312 kWh/a</th></td<>	Annual Losses	Q _{HL}	$= L_H \cdot q_{HL}^* \cdot (1-\eta_G)$	312 0 0	312 kWh/a
Utilization Factor of Space Heat Distribution $h_{\rm H.L}$ $= q_{\rm eft} (q_{\rm eft} + q_{\rm eft})$ 90%DHW Standard Usful Heat5.5.4.Average Cold Water Temperature of the Supply User Interview of the Distribution $Q_{\rm Supplementare of Dessing Water (PT)$ (Exercise) worksheed2.56 (S.S.G. (S.S.G.C.))2.56<	Specif. Losses			······	
DHY. Standard Useful Heat 5.5.45. Vorus (Proper Among Water 3 Learnell) 2.5.00. Line Prevance 40 Marks 1000 DHY Non-Electic Water Temperature of the Supply Derive Non-Electic Water and Dian Description 40 Marks 1000 2.5.00. Line Prevance 40 Marks 1000 Specif. Useful Heat - DHW Oniv Specif. Useful Heat - DHW Oniv 48266 Why International Storage Largeth of Circulation Phose (Flow + Return) Large (Proper) Y (Proper) 99.10. Total Delay Circulation programmer Bage (Proper) Y (Proper) 0.255.0. Total Delay Circulation props (Flow + Return) Large (Proper) Y (Proper) Y Y (Proper) Delay Circulation programmer Bage (Proper) Y (Proper) Y Y (Proper) Delay Circulation period of operation. Use (Proper) Y (Proper) Y Y Delay Circulation period of operation. Use (Proper) Y Y Y Y Total Largeth of Individual Pipes Quart Quart 2.057(Star2O)+200 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y<					
5.5.4. V_{BM} (Pipeter A strange Value 2 LawsP(I) DHV Non-Electric Water Temperature of the Stoppy Used Water Temperature of the Stoppy Temperature of the Stoppy Temperature of the Stoppy Temperature of the Stop Temperature of the Stoppy Det Work Temperature of the Stop Temperature Design Fior Temperature Annual Heat Loss motivation Prostible Utilization Fior Mater Prostible Utilization Fior Mater	ounsation Factor of Space Heat Distribution	n _{a,HL}	$= q_H / (q_H + q_{HL})$		
5.5.4.5. V _{BM} (Pipetor Average Value 32 Laxe/Pit) 23.0 Line Reference 40 Law	DHW: Standard Useful Heat				
Average Cold Water Temperature of the Stupply DHY Mon Flacticity: Wata not DHS Description 5.4. C DHY Mon Flacticity: Wata not DHS C 482.6 WWa 482.6 WWa Specif. Useful Heat - DHW Open/ 0 482.6 WWa 482.6 WWa 482.6 WWa 482.6 WWa 482.6 WWa 18.8 DHW Distribution and Storage Variant Mathematical Month Variant Mathematical Month 7 Call So Call So Call So Call So Call <t< th=""><th></th><th>VDHW (Project or Ave</th><th>erage Value 25 Litres/P/d)</th><th></th><th>25.0 Litre/Person/d</th></t<>		VDHW (Project or Ave	erage Value 25 Litres/P/d)		25.0 Litre/Person/d
Useful Heat - DHW Q_{DHV} 4826 kWh/aSpecif. Useful Heat - DHW Q_{DHV} Q_{DHV} Q_{DHV} M_{TA} $KWh/(m^2)$ $B.8.8$ DHW Distribution and Storage V_{HC} V_{HC} V_{HC} V_{HC} V_{HC} V_{HC} V_{HC} DHW Distribution and Storage V_{HC} <	Average Cold Water Temperature of the Supply				5.4 °C
Useful Heat - DHW Op/W 4826 KVM/ra Specif. Useful Heat - DHW Qp/W = Qp/W / ATXA KVM/ra KVM/ra 18.83 DHW Distribution and Storage V Weam Region Cold Region Total I length of Circulation Pipes (Flow + Return) Lig (Project) N/ra Weam Region Cold Region Total Transportation of the DFM System Sign Return Temperature Sign Return Temperature Sign Return Temperature N/ra Cold Region N/ra Design Rotum Temperature Sign Rotum Temperature Sign Return Temperature N/ra Cold Region N/rd Cold Region Cold Regi					588 kWh/a
Specif. Useful Heat - DHW QDHW = QDHW / ATLA KWN (m²a) 18.8 DHW Distribution and Storage Image / Popied/ Heat Loss Coefficiant par m Pipe W (Popied/ W (Popied/ Temperature of the Room Through Which the Pipes Pass Dasign Flow Temperature Dasign Flow Temperature Temperature of the Robinson Prossible Utilization Factor of Released Heat Tradi Length of Individual Pipes Eduction Pipe Dameter Heat Loss for Dividual Pipes Dasible Utilization Factor of Released Heat Tog_1 = Temperature Dasible Utilization Factor Diversitie Total Heat Losses of the DHW System Total Heat Dases of the DHW System Daset Temperature T	Useful Heat - DHW	QDHW			
DHW Distribution and StorageLangth of Circulation Pipes (Flow + Return)Leg (Project)Heat Loss Coefficient per m Pipe ψ (Project)Temperature of the Room Through While the Pipes Pass θ_{μ} Mechanical RoomDesign Poter Temperature θ_{μ} Design Poter Temperature θ_{μ} Daily circulation period of operation. Ud_{cc} (Project)Daily circulation period of operation private θ_{μ} Daily circulation period of operation. Ud_{cc} Possible Ullization Factor of Released Heat η_{cc} Quert Q_{cc} $= 0.8757(\theta_{art}20)+20$ Annual Heat Loss from Circulation Lines Q_{cc} Quert $Q_{crossed}$ Total Length of Individual Pipes $U_{cl}(Project)$ Return Circulation Lines Q_{cc} Quert θ_{lc} Quert θ_{lc} Possible Ullization Factor of Released Heat η_{cd} η_{cd} θ_{lc} q_{cd} $= q_{cc}(q^2 \cdot (1 + \eta_{cd}))$ Annual Heat Loss of Individual Pipes $U_{cl}(Project)$ q_{cd} $= q_{cd}(q^2 + Q_{d_{cd}})$ Annual Heat Losse of the DHW System Q_{cl} q_{cd} $= q_{cd}(q_{cd}) + Q_{d_{cd}}$ Annual Heat Losses of the DHW System Q_{cl} q_{cd} $= q_{cd}(q_{cd}) + Q_{d_{cd}}$ Annual Heat Losses of the DHW System Q_{cl}	Specif Liseful Heat - DHW		= 0/ 4		
Length of Circulation Pipes (Flow + Return)Ling (Project)99.1nHeat Loss Coefficient per m Pipe Ψ (Project)0.151N/m/KTemperature of the Room Through Which the Pipes Pass g_{K} Mechanizer Room0.151N/m/KDesign Flow Temperature g_{R} (Project)0.151N/m/KDesign Flow Temperature g_{R} (Project)0.151N/m/KDesign Row Temperature g_{R} (Project)0.151N/m/KDesign Row Temperature g_{R} (Project)18.0N/dPossible Ullization partod of operation per year q_{2} = $4^{n}(g_{Reg}/g_{D})_{200}$ 8770N/dAnnual Heat Loss from Circulation Lines Q_{2} = $4^{n}(g_{Reg}/g_{D})_{200}$ 8770N/dTotal Length of Individual Pipes L_{L} (Project)49.550.154mExterior Pipe Damater q_{2} = $4^{n}(g_{Reg}/g_{D})_{100}$ 49.550.154mPossible Ullization Factor of Released Heat T_{Reg} π_{Reg} $g_{2,2%}$ 0.144W/h/aAnnual Heat Loss Per Tap Opening $Q_{1,2}$ = $q_{1,2}$ (Tring_1) 49.55 0.540.540.54Annual Heat Loss of Individual Pipes $Q_{1,2}$ = $4^{n}(g_{1,2}Q_{1,2})$ 49.56 0.14W/h/aAnnual Heat Losse from Storage P_{2} Q_{2} = $q_{2}C_{1}Q_{2}$ W/h/a $40.159.7$ Annual Heat Losse of the DHW System $Q_{n,K}$ $Q_{n,K}$ $Q_{n,K}$ $M/h/a$ Total Lengt Factor DHW System $Q_{n,K}$ $Q_{n,K}$ $Q_{n,K}$ $Q_{n,K}$ Specif.		4DHW	GONWYTTEA		10.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				2	
$ \begin{array}{c c} Length of Circulation Pipes (Flow + Return) \\ Heat Loss Coefficient pro Pipe \\ Heat Loss of the DHW System \\ Design Flow Temperature of the Room Through Which the Pipes Pass \\ Same Flow. Design Flow Temperature \\ Circulation period of operation. \\ Ubscience (Project) \\ Circulation period of operation. \\ Circulation period of operation. \\ Same Flow. Same Flow Temperature \\ Circulation Flow Same Flow $	DHW Distribution and Storage				Total
Temperature g_{h} Mechanizal Recom 20 100 100 Design Flow Temperature g_{had} Flow. Design Value 60.0 100 100 Design Flow Temperature g_{had} $0.075'(g_{had}20)+20$ 60.0 100 100 Design Flow Temperature g_{h} $0.075'(g_{had}20)+20$ 55 100 100 Design Flow Temperature g_{h} $0.075'(g_{had}20)+20$ 55 100 100 Circulation period of operation. d_{he} 100 100 100 100 Possible Ullization Factor Of Released Heat 100 00 100 33.3 100 100 Annual Heat Loss from Circulation Lines Q_c $= 1_{head}} q^2 (1+000w)$ 2355 000 000 100 Total Length of Individual Pipes L_{ij} (Project) $0.01.4$ 0.0242 $0.01.4$ 0.0242 $0.01.4$ 0.0242 Heat Loss For Tap Opening $Q_{bottetat}$ $(q_{conv}/d_{conv$					
Design Flow Temperature θ_{dutt} flow. Design Value 60.0 $^{\circ}C$ Daily circulation period of operation. td_{Cle} (Project) 18.0 10.0 Design Fatur Temperature 9_R 0.875 ($9_{dest}20$)+20 55 Circulation period of operation per year b_{cc} $= 365$ td b_{cle} 55 Annual Heat Released per m of Pipe $q^2 z$ $= W$ (g_{des} - g_d) b_{cc} 37.3 WW/ma Annual Heat Loss from Circulation Lines Q_Z $= L_{Lis} \cdot q^2 : (1 \cdot t_{100HW})$ 38.2% 2355 2355 Total Length of Individual Pipes L_U (Project) m m m m^2 Exterior Pipe Diameter $d_{U, Pipe}$ (Project) m^2 m^2 m^2 m^2 Annual Heat Loss form Circulation Lines Q_Z $= L_{Lis} \cdot q^2 : (1 \cdot t_{100HW})$ m^2 m^2 Total Length of Individual Pipes L_U (Project) m^2 m^2 m^2 Exterior Pipe Diameter d_U p_{ep} (Project) m^2 m^2 m^2 Annual Heat Loss form Circulation Lines Q_U $= n_{pipe} - 3 \cdot 3.85 / n_U$ 40.15 m^2 Annual Heat Loss of Individual Pipes Q_U $= m_{pine} / 3.760$ m^2 m^2 Annual Heat Loss of Individual Pipes Q_U $= m_{pine} / 3760$ m^2 m^2 Annual Heat Loss of Individual Pipes Q_U $= m_{pine} / 3760$ m^2 m^2 Total Heat Losses of the DHW System Q_{nL} $= Q_{2r} / Q_r + Q_0$ WW/a Total Heat Losses of the DHW S		L _{HS} (Project)			m
Design Flow Temperature θ_{dast} flow. Design Value 60.0 $^{\circ}C$ Daily circulation period of operation. td_{Gre} (Project) 18.0 10.0 Design Return Temperature θ_R $= 0.875(\theta_{dast}20)+20$ 55 Circulation period of operation per year b_{Ce} $= 365 td_{Cas}$ 5570 Annual Heat Released per of Pipe q^2_Z $= W(\theta_{das}-y_0)_{Cec}$ 37.3 WW/ma Annual Heat Loss from Circulation Lines Q_Z $= L_{His} \cdot q^2_2 \cdot (1-\eta_{Cos}W)$ 36.2% 2355 2355 Total Length of Individual Pipes L_U (Project) m m m m Exterior Pipe Diameter d_U, p_{ep} (Project) m m m m Heat Loss form Circulation Lines Q_Z $= L_{His} \cdot q^2_2 \cdot (1-\eta_{Cos}W)$ m m m Cocupancy Coefficient n_{Tep} n_{period} m m m MV/ha popeningCocupancy Coefficient $n_{q_L,U}$ $= n_{max}/d5760 h_{0}$ 49.5 m m Annual Heat Loss of Individual Pipes Q_U $= n_{max}/d5760 h_{0}$ 651 m WW/a Annual Heat Loss of Individual Pipes Q_U $= n_{pex}/d760^{\circ}h_{0}$ WW/a m MW/a Total Lesses form Storage P_S P_S WW/a MW/a MW/a MW/a Total Heat Losses of the DHW System Q_{nL} $= Q_{2}M/Q_{0}Q_{0}$ WW/a MW/a Total Heat Losses of the DHW System Q_{nL} $= Q_{MW}/(Q_{NW} + Q_{W})$ <td< th=""><th>Length of Circulation Pipes (Flow + Return)</th><th></th><th></th><th>99.1</th><th></th></td<>	Length of Circulation Pipes (Flow + Return)			99.1	
Daily circulation period of operation.tdc_{cet} (Project)Design Return Temperature $\mathfrak{R}_{\mathrm{R}}$ $= 0.875^{+}(\mathfrak{R}_{\mathrm{det}}/20)+20$ $\mathfrak{R}_{\mathrm{S}}$ Circulation period of operation per year $\mathfrak{L}_{\mathrm{cet}}$ $= 365^{+}t_{\mathrm{Cet}}$ $\mathfrak{R}_{\mathrm{S}}$ Annual Heat Released per mol Pipe $\mathfrak{q}^{-}_{\mathrm{Z}}$ $= \Psi(\mathfrak{R}_{\mathrm{m}}^{-}\mathfrak{H}_{\mathrm{d}})$ $\mathfrak{R}_{\mathrm{S}}$ Possible Utilization Factor of Released Heat $\mathfrak{N}_{\mathrm{COW}}$ $\mathfrak{R}_{\mathrm{max}}/2656^{+}\eta_{\mathrm{G}}$ $\mathfrak{R}_{\mathrm{S}}$ Annual Heat Loss from Circulation Lines $\mathfrak{Q}_{\mathrm{C}}$ $= 1_{\mathrm{Lis}}^{+}\mathfrak{q}^{+}\mathfrak{c}^{+}(-1_{\mathrm{COW}})$ $\mathfrak{R}_{\mathrm{S}}$ Total Length of Individual Pipes $\mathfrak{L}_{\mathrm{U}}(Project)$ $\mathfrak{R}_{\mathrm{U}}$ $\mathfrak{R}_{\mathrm{S}}$ $\mathfrak{R}_{\mathrm{S}}$ Exterior Pipe Diameter $\mathfrak{d}_{\mathrm{U},\mathrm{pres}}(Project)$ $\mathfrak{R}_{\mathrm{U}}$ $\mathfrak{R}_{\mathrm{U}}$ $\mathfrak{R}_{\mathrm{U}}$ Heat Loss Per Tap Opening $\mathfrak{q}_{\mathrm{ubristati}}$ $= \mathfrak{n}_{\mathrm{res}}$ $\mathfrak{355.^{\circ}/\mathfrak{h}_{\mathrm{U}}$ $\mathfrak{R}_{\mathrm{U}}$ Annual Heat Loss $\mathfrak{Q}_{\mathrm{U}}$ $= \mathfrak{n}_{\mathrm{res}}$ $\mathfrak{356.^{\circ}/\mathfrak{h}_{\mathrm{U}}$ $\mathfrak{R}_{\mathrm{U}}$ $\mathfrak{R}_{\mathrm{U}}$ Possible Utilization Factor of Released Heat $\mathfrak{n}_{\mathrm{U}}$ $= \mathfrak{n}_{\mathrm{res}}$ $\mathfrak{355.^{\circ}/\mathfrak{h}_{\mathrm{U}}$ $\mathfrak{R}_{\mathrm{U}}$ Annual Heat Loss form Storage $\mathfrak{P}_{\mathrm{S}}$ $\mathfrak{Q}_{\mathrm{U}}$ $= \mathfrak{R}_{\mathrm{S}}$ $\mathfrak{R}_{\mathrm{U}}$ $\mathfrak{R}_{\mathrm{U}}$ Annual Heat Losses form Storage $\mathfrak{Q}_{\mathrm{S}}$ $= \mathfrak{P}_{\mathrm{S}}$ $\mathfrak{R}_{\mathrm{U}}/\mathfrak{R}_{\mathrm{U}}$ $\mathfrak{R}_{\mathrm{U}}/\mathfrak{R}_{\mathrm{U}}$ Total Losses of the DHW System $\mathfrak{Q}_{\mathrm{K}}$ $= \mathfrak{Q}_{\mathrm{C}}/\mathfrak{Q}_{\mathrm{C}}$ $\mathfrak{R}_{\mathrm{U}}/\mathfrak{R}_{\mathrm{U}}$ \mathfrak{R}_{U	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe	Ψ (Project)	200m	99.1 0.151	W/m/K
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass	Ψ (Project) 9 _X Mechanical Ro		99.1 0.151 20	W/m/K °C
$ \begin{array}{c c} \operatorname{Circulation period of operation per year } & \begin{tabular}{llllll} blue blue blue blue blue blue blue blue$	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature	Ψ (Project) 9 _X Mechanical Ro 9 _{dist} Flow, Design V		99.1 0.151 20 60.0	W/m/K °C °C
Annual Heat Released per m of Pipe q^2_2 $= \Psi(i_{Mr}^2 q) E_{Grc}$ 37.3 37.3 KMh/m/aPossible Utilization Factor of Released Heat η_{GDHW} $=_{kaster} q/3654^{\circ} \eta_G$ 36.2% 2355 2355 Annual Heat Loss from Circulation Lines Q_2 L_1 (Project) 2355 2355 xWh/a Total Length of Individual Pipes L_1 (Project) 0.014 m m Exterior Pipe Diameter $d_{L,Pipe}$ (Project) 0.014 m m Heat Loss Per Tap Opening $Q_{roticutad}$ $=(c_{cact Vesc*} c_{sact Wast} Qasto Anu)$ 49.5 m Occupancy Coefficient m_{Tap} $=n_{max}.3.365 / n_{LU}$ 0.014 m Annual Heat Loss of Individual Pipes Q_1 $=n_{max}.3.365 / n_{LU}$ 0.014 m Annual Heat Loss of Individual Pipes Q_1 $=n_{max}.3.365 / n_{LU}$ 0.014 m Annual Heat Loss of Individual Pipes Q_2 $=n_{Tap}$ (Project) $n_{tabutrey} 0700 n_{16}$ 36.2% Annual Heat Loss of Individual Pipes Q_2 $=n_{tabutrey} 0870 n_{16}$ 36.2% $n_{tabutrey} 0.2542$ Average Heat Released From Storage P_3 $m_{tabutrey} 0870 n_{16}$ $n_{tabutrey} 0.2542$ $n_{tabutrey} 0.2542$ Average Heat Released From Storage P_3 $m_{tabutrey} 0870 n_{16}$ $n_{tabutrey} 0.2560 n_{16}$ $n_{tabutrey} 0.2560 n_{16}$ Annual Heat Losses of the DHW System Q_{rk} $=Q_{rk} 0_{rk} A_{rrak}$ $WWh'a$ Total Lasses of the DHW System Q_{rkL} $=Q_{rk} 0_{rk}$	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Dailyi circulation period of operation.	Ψ (Project) 9 _X Mechanical Ro 9 _{dist} Flow, Design V td _{Circ} (Project)	Value	99.1 0.151 0.0 0.0 00.0 0.0 18.0 0.0	W/m/K °C °C h/d
Possible Utilization Factor of Released Heat η_{GDHW} $=\eta_{uestary}/365 d^{+}\eta_G$ 36.2% $=1$ $-$ Annual Heat Loss from Circulation Lines Q_2 $= L_{15} \cdot q^2 \cdot (1 \cdot \eta_{GDHW})$ 2355 2355 2355 Total Length of Individual Pipes L_U (Project) 49.5 m 49.5 mExterior Pipe Diameter d_{LD} (Project) 0.2542 0.14 mHeat Loss Per Tap Opening $q_{redectad}$ $= (q_{receVactor q_{star} Aux)(k_m + k_1)$ 0.2542 $WW'ra$ Occupancy Coefficient $Prago= n_{Ver.3} \cdot 3.365 / n_{LU}0.0140.2542WW'raAnnual Heat Lossq_{Log}q_{udetadd}= (q_{veceVactor q_{star} Aux)(k_m + k_2)0.0242WW'raAnnual Heat Loss of Individual PipesQ_u= \eta_{U} \cdot (1 \cdot \eta_{L_2})0.0140.0242WW'raAnnual Heat Loss of Individual PipesQ_u= q_U \cdot (1 \cdot \eta_{L_2})0.0242WW'raAnnual Heat Loss of Individual PipesQ_u= q_U \cdot (1 \cdot \eta_{L_2})0.014WW'raAverage Heat Released From StorageP_SWW'ra0.0242WW'raAverage Heat Released From StorageQ_g= P_{S}.760 kh'(1 \cdot \eta_{C,S})0.00 kWh'raTotal Heat Losses of the DHW SystemQ_{MK}= Q_2 + Q_1 + Q_SWW'raTotal Heat Losses of the DHW SystemQ_{MK}= Q_{MK} / A_{TFA}WW'raUtilisation Factor DHW Distrib and Storage\eta_{a,WL}= Q_{MW} / (Q_{DWW} + Q_{WV})61.6\%Total $	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature	$\begin{array}{c} \psi \ (\textit{Project}) \\ \vartheta_X \ \textit{Mechanical Rc} \\ \vartheta_{dist} \ \textit{Fiow, Design} \\ td_{Circ} \ (\textit{Project}) \\ \vartheta_R \end{array}$	=0.875*(9 _{dis} r20)+20	99.1	W/m/K *C *C h/d *C
Annual Heat Loss from Circulation Lines Q_2 $u_{introder}$ Q_2 $u_{introder}$ Q_2 $u_{introder}$ Q_2 Q_2 Q_2 $U_{introder}$ Q_2 Q_2 Q_2 $U_{introder}$ Q_2 Q_2 Q_2 $U_{introder}$ Q_2 <th>Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year</th> <th>Ψ (Project) 9_X Mechanical Rc 9_{dist} Flow, Design 1 td_{Cire} (Project) 9_R ^tCire</th> <th>=0.875*(9_{dist}r20)+20 = 365 td_{Circ}</th> <th>99.1 </th> <th>W/m/K °C °C h/d °C h/a</th>	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year	Ψ (Project) 9 _X Mechanical Rc 9 _{dist} Flow, Design 1 td _{Cire} (Project) 9 _R ^t Cire	=0.875*(9 _{dist} r20)+20 = 365 td _{Circ}	99.1	W/m/K °C °C h/d °C h/a
Total Length of Individual PipesLu (Project)Exterior Pipe Diameter $d_{1,peg}$ (Project)Heat Loss Per Tap Opening $q_{modedatal}$ Q_{cupacy} Coefficient n_{rap} $Anual Heat Lossn_{rap}Possible Utilization Factor of Released Heat\eta_{0,U}q_{u}q_{u} (1-\eta_{0,U})Annual Heat Lossq_{d}q_{u}q$	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient par m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe	Ψ (Project) 9 _X Mechanical Ro 9 _{dist} Flow, Design 1 td _{Circ} (Project) 9 _R ¢crc q*z	=0.875*(9 _{disr} 20)+20 = 365 td _{Circ} = Ψ (9 _m -9 _X) t _{Circ}	99.1	Wim/K °C °C h/d °C h/a
Exterior Pipe Diameter $d_{U,Pipe}$ (Project)0.014mHeat Loss Per Tap Opening $Q_{notivitadi= (q_new/korr@u.k/uk)(q_new)}0.2542MW hite openingOccupancy CoefficientPrap= n_{Pires} . 3.365 / n_{Li}40111Tap openings per yearAnnual Heat LossQ_L= n_{Tap} \cdot q_{notividadi}1019.7.KW hita openingPossible Utilization Factor of Released HeatTi_{Q,L}= q_{unstruet} / 2700^{\circ} Pi_{D}650.5651Annual Heat Loss of Individual PipesQ_U= q_U \cdot (1 \cdot \eta_{Q,L})650.5651KW hitaAverage Heat Released From StorageP_SWTotal 1.2.3Total 1.2.3Total 1.2.3Annual Heat Loss of the DHW SystemQ_{VL}= Q_2 + Q_4 + Q_5W hitaTotal 1.2.3Total Heat Losses of the DHW SystemQ_{VL}= Q_{VL} / A_{TTA}KW hita11.7Utilisation Factor DHW Distrib and Storage\eta_{a,WL}= Q_{DW} / (Q_{DHW} + Q_{WV})61.6%11.7Total Heat Demand of DHW systemQ_{gDHW}Q_{DHW} = Q_{DWH} / Q_{RL}7831KW hita$	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat	Ψ(Project) 9 _X Mechanical Rc 9 _{dat} Flow, Design 1 td _{Circ} (Project) 9 _R ¢Circ q [*] z ΠοDHW	Value =0.875*(9 _{dist} 20)+20 = 365 td _{Cinc} = Ψ (9 _m -9 _c) t _{Cinc} =t _{heating} /365d * η _G	99.1 0.151 20 0.000 60.0 0.000 18.0 0.000 55 0.000 37.3 38.2%	W/m/K *C h/d *C h/a k/Wh/m/a
Exterior Pipe Diameter $d_{U,Pipe}$ (Project)0.014mHeat Loss Per Tap Opening $Q_{notivitadi= (q_new/korr@u.k/uk)(q_new)}0.2542MW hite openingOccupancy CoefficientPrap= n_{Pires} . 3.365 / n_{Li}40111Tap openings per yearAnnual Heat LossQ_L= n_{Tap} \cdot q_{notividadi}1019.7.KW hita openingPossible Utilization Factor of Released HeatTi_{Q,L}= q_{unstruet} / 2700^{\circ} Pi_{D}650.5651Annual Heat Loss of Individual PipesQ_U= q_U \cdot (1 \cdot \eta_{Q,L})650.5651KW hitaAverage Heat Released From StorageP_SWTotal 1.2.3Total 1.2.3Total 1.2.3Annual Heat Loss of the DHW SystemQ_{VL}= Q_2 + Q_4 + Q_5W hitaTotal 1.2.3Total Heat Losses of the DHW SystemQ_{VL}= Q_{VL} / A_{TTA}KW hita11.7Utilisation Factor DHW Distrib and Storage\eta_{a,WL}= Q_{DW} / (Q_{DHW} + Q_{WV})61.6%11.7Total Heat Demand of DHW systemQ_{gDHW}Q_{DHW} = Q_{DWH} / Q_{RL}7831KW hita$	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat	Ψ(Project) 9 _X Mechanical Rc 9 _{dat} Flow, Design 1 td _{Circ} (Project) 9 _R ¢Circ q [*] z ΠοDHW	Value =0.875*(9 _{dist} 20)+20 = 365 td _{Cinc} = Ψ (9 _m -9 _c) t _{Cinc} =t _{heating} /365d * η _G	99.1 0.151 20 0.000 60.0 0.000 18.0 0.000 55 0.000 37.3 38.2%	W/m/K *C h/d *C h/a k/Wh/m/a
Heat Loss Per Tap Opening $Q_{uncleftual}$ $=(uncvVucer_{uncv}Vucer_{uncv}Vuc)(uncr0)$ 0.2542 KWh/tap openingOccupancy Coefficient $PrapePrave, 3.365 r_{0,1}4011Tap openings per yearAnnual Heat LossQ_{10}= Prape9000000000000000000000000000000000000$	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines	Ψ (Project) 3 _x (Mechanical RC 9 _{dist} , Flow, Design 1 td _{Ore} (Project) 3 _R t _{ore} q [*] z. η _{GDHW} O _Z	Value =0.875*(9 _{dist} 20)+20 = 365 td _{Cinc} = Ψ (9 _m -9 _c) t _{Cinc} =t _{heating} /365d * η _G	99.1	W/m/K °C °C h/d °C h/a k/th/m/a - - 2355 k/Wh/a
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes	Ψ (Project) 9 _X Mechanical Re 9 _{disk} Flow, Design 1 td _{C2rc} (Project) 9 _R ¹ _C rc 0 ⁺ _Z ¹ _C Dchw Q _Z L _U (Project)	Value =0.875*(9 _{dist} 20)+20 = 365 td _{Cinc} = Ψ (9 _m -9 _c) t _{Cinc} =t _{heating} /365d * η _G	99.1 0.151 20 0.000 60.0 0.000 18.0 0.000 55 0.000 570 0.000 37.3 38.2% 2355 0.0000 49.5 0.0000	W/m/K °C °C h/d °C h/a KWh/m/a kWh/a m
Annual Heat Loss q_{U} $= n_{Tap} \cdot q_{hediatad}$ 1019.7 kWh/aPossible Utilization Factor of Released Heat $n_{0,U}$ $= h_{uative} Q760^{\circ} n_{0}$ 96.2% 650.5 651 Annual Heat Loss of Individual Pipes Q_{U} $= q_{U} \cdot (1 - n_{0,U})$ 660.5 651 kWh/a Average Heat Released From Storage P_{S} W $T_{cold} + 12.3$ $WWha$ Annual Heat Losses from Storage P_{S} W $T_{cold} + 12.3$ $WWha$ Annual Heat Losses of the DHW System Q_{VL} $= Q_2 + Q_3 + Q_S$ 0 kWh/a Total Heat Losses of the DHW System Q_{VL} $= Q_{WL} / A_{TFA}$ $WWh'a$ Specif. Losses of the DHW System q_{WL} $= Q_{WL} / A_{TFA}$ $WWh'a$ Utiliastion Factor DHW Distrib and Storage $\eta_{a,WL}$ $= Q_{DWH} / Q_{DHW} + Q_{WV}$ 61.6% Total Heat Demand of DHW system Q_{gDHW} $Q_{DHW} + Q_{WV}$ 61.6%	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter	Ψ (Project) 3 _X , Mechanical Re 3 _{dat} Flow, Design 1 td _{Gire} (Project) 3 _R 4 [*] Cro 4 [*] C 1 [*] Cor 4 [*] Cro 4 [*] C 1 [*] Cor 4 [*] Cro 4 [*]	$\begin{split} &= 0.875^{*}(\vartheta_{dist} 20)^{*}20 \\ &= 365 \ td_{Cisc} \\ &= \Psi \left(\vartheta_{m} - \vartheta_{0} \right) t_{Cic} \\ &= \vartheta_{matring}/365d^{*} \eta_{G} \\ &= L_{HS} \cdot q^{*}_{Z} \cdot \left(1 \cdot \eta_{GDHW} \right) \end{split}$	99.1	W/m/K °C °C h/d °C h/a kWh/m/a 2355 kWh/a m m
Possible Utilization Factor of Released Heat $\eta_{G,U}$ $=b_{matrix}/8760^{+}\eta_G$ 36.2% -1 Annual Heat Loss of Individual Pipes Q_J $=q_U \cdot (1-\eta_{G,L})$ 650.5 651 kWh/a Average Heat Released From Storage P_S W $Total 1.23$ $Total 1.23$ Average Heat Released From Storage P_S W $Total 1.23$ $Total 1.23$ Possible Utilization Factor Of Released Heat $\eta_{C,S}$ $=P_S.760 kh' (1-\eta_{C,S})$ 0 kWh/a Total 1.43 $=V_{S}.760 kh' (1-\eta_{C,S})$ 0 kWh/a $Total 1.23$ Total Heat Losses of the DHW System Q_{VL} $=Q_2 + Q_4 + Q_5$ 3005 kWh/a Specif. Losses of the DHW System q_{VL} $=Q_{OWL} / A_{TFA}$ $KWh/(m^*a)$ 11.7 Utiliastion Factor DHW Distrib and Storage $\eta_{a,NL}$ $=Q_{OWH} / Q_{NL}$ 61.6% 7831 kWh/a	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening	Ψ (Project) 3 _x Mechanical RC 9 _{det} Flow, Design 1 td _c Drc (Project) 9 _R 4 ₂ rc 1 _{GDHW} Q _z L _U (Project) d _{U_Project} (Project) 9 _R	Value =0.875'(3_{clar} -20)+20 = 365 td _{Cuc} = $\Psi (3_{clr}$ - $3_{cl}) t_{Cuc}$ = t_{westy} /36561 * n_{G} = $L_{wes} \cdot q^{*}_{2} \cdot (1 - \eta_{CDHW})$ =($c_{\mu cc} V_{rcs} + c_{aba} V_{bac})(3_{cbc} - 3_{cb})$	99.1	W/m/K °C °C h/d °C h/a KWh/m/a - 2355 kWh/a m m KWh/tap opening
Annual Heat Loss of Individual Pipes Q _j = q _j (1 n ₀ _j) 650.5 651 WWr/a Average Heat Released From Storage Ps Total 12.3 W Total 12.3 W Annual Heat Losses from Storage Qs = Ps 8.760 khr (1-n ₀ _s) 0 kWhr/a V Total Heat Losses of the DHW System Q _{ML} = Q ₂ +Q ₁ +Q ₅ 3005 XWhr/a Specif. Losses of the DHW System q _{ML} = Q _{2MV} / (1 _{TTA} KWhr/a V Utilisation Factor DHW Distrib and Storage η _{a,NL} = Q _{2MV} / (Q _{DWW} + Q _{WL}) 61.6% - Total Heat Losmand of DHW system Q _{DHW} = Q _{DHW} / Q _{NL} 7831 kWhr/a	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient	Ψ (Project) 9 _X Mechanical Re 9 _{dats} Flow, Design 1 td _{Cinc} (Project) 9 _R ¹ _{Cinc} <i>q</i> [*] _z ¹ _{Cinc} <i>q</i> [*] _z ¹ _{Cinc} <i>Q</i> _z L _U (Project) <i>d</i> _{U. [Pice} (Project) <i>d</i> _{U. [Pice]} (Project) (Project) <i>d</i> _{U. [Pice]} (Project) <i>d</i> _{U. [P}	$\begin{split} &= 0.875^*(3_{ABC},20) + 20 \\ &= 365 \ td_{CBC} \\ &= 9^{4}(3_{BT},3_{Q}) \ t_{CBC} \\ &= t_{MSS} - 9^{2}_{Q} \ t_{CBC} \\ &= t_{MS} - (1_{Pl},3_{Q}) \ t_{CBC} \\ &= t_{HS} - (1_{Pl},3_{Q}) \ t_{CBC} \\ &= t_{HS} - (1_{Pl},3_{Q}) \ t_{CBC} \\ &= (t_{PDC},t_{CBC},t_{CBC},t_{ABC},t_{ABC}) \ t_{CBC} \\ &= (t_{PDC},t_{CBC},t_{CBC},t_{ABC},t_{ABC},t_{ABC}) \ t_{CBC} \\ &= (t_{PDC},t_{CBC},t_{CBC},t_{ABC},t_{$	99.1 0.151 20 60.0 18.0 55 6670 37.3 36.2% 2355 49.5 0.014 0.2542 4011	W/m/K °C °C h/d °C h/a KWh/m/a 2355 kWh/a m m KWh/ap opening Tap opening sper year
Average Heat Released From Storage PG Possible Utilization Factor of Released Heat PG_S = theating/8760*PG W Annual Heat Losses from Storage PG W W Total Losses form Storage QNL = Pg S.760 khr (1+Tq_S.5) 0 kWh/a Total Heat Losses of the DHW System QNL = Qg +Qg +Q_G S 3005 kWh/a Specif. Losses of the DHW System QNL = Q_{ML} / ATFA kWh/a 11.7 Utilisation Factor DHW Distrib and Storage Pa_AUL = QDHW / (QDHW + QW) 61.6% - Total Heat Demand of DHW system QDHW = QDHW / QDHW + QWL 7831 kWh/a	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Tirrough Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss	Ψ (Project) 3x, Mechanical Re 3dsat Flow, Design 1 td _{cline} (Project) 3k 4cre 4 [*] 1 [*] Core 4 [*] 2 [*] 1 [*] Core 4 [*] 2 [*] 4 [*] 2 [*] 4 [*] 4 [*] 4 [*] 4 [*] 4 [*] 4 [*] 4 [*] 4	Value =0.875*(9_{dist} 20)+20 = 365 td _{Cisc} = Ψ (9_{m} -9 ₂) Cmc = h_{satisf} 365d * η_{G} = L_{HS} : q_{2}^{-} ($1, \eta_{GD}$ HW) = ($e_{\mu crc} N_{coc} + e_{cask} N_{das})(8_{HC} + 8_{2})$ = n_{Parts} . 3 .365 / n_{LU} = n_{Tac} ' q_{rad} value	99.1	W/m/K °C °C h/d °C h/a KWh/m/a 2355 kWh/a m m KWh/ap opening Tap opening sper year
Possible Utilization Factor of Released Heat. η _{G_S} =theating/0760*η _G O Annual Heat Losses from Storage Q _S = P _S 8.760 kh*(1-η _{G_S}) O kWh/a Total Heat Losses of the DHW System Q _{WL} = Q ₂ +Q ₄ +Q _S 3005 kWh/a Specif. Losses of the DHW System q _{WL} = Q ₂ +Q ₄ +Q _S \$KWh/a \$KWh/a* Utilisation Factor DHW Distrib and Storage η _{A,WL} = Q _{DWH} / Q _{DHW} * Q _W) \$61.6% - Total Heat Demand of DHW system Q _{gDHW} = Q _{DWH} / Q _{ML} 7831 kWh/a	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Tirrough Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss	Ψ (Project) 3 _x Mechanical R 9 _{det} Flow, Design 1 td _c _{Drc} (Project) 9 _R 4 ₂ re q [*] z η _{GDHW} Q _z L _U (Project) d _{U_Proj} e (Project) 9 _R η _{rap} 9 _L η _{G_U}	Value =0.875'(θ_{clar} 20)+20 = 965 td _{Clar} = Ψ_{clar} - θ_{cl}) t _{Clar} = t_{wall} - θ_{cl}) t _{Clar} = t_{wall} - θ_{cl} - $(1-\eta_{CD}+w)$ = t_{wall} - θ_{cl} - $(1-\eta_{CD}+w)$ = n_{Wall} - 3 .365 / n_{Ul} = n_{Wall} - 3 .365 / n_{Ul} = n_{Tap} - (θ_{clar}) + θ_{clar} + $\theta_$	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.14 0.2542 4011 1019.7 36.2% 36.2%	W/m/K "C "C h/d "C h/a KWh/m/a - 2355 KWh/a m m KWh/tap opening Tap openings per year KWh/a
Annual Heat Losses from Storage Qs = Pg 8.760 kh·(1·η _{Q.S}) O kWh/a Total Heat Losses of the DHW System QwL = Q ₂ +Q ₀ +Q _S 3005 kWh/a Specif. Losses of the DHW System QwL = Q ₂ +Q ₀ +Q _S 3005 kWh/a Utilisation Factor DHW Distrib and Storage η _{a,WL} = Q _{DHV} / Q _{DHW} + Q _{WV}) 61.6% - Total Heat Demand of DHW system Q _{gDHW} = Q _{DHV} / Q _{DHW} + Q _{WV} 7831 kWh/a	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Released per m of Pipe Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss	Ψ (Project) 3 _x Mechanical R 9 _{det} Flow, Design 1 td _c _{Drc} (Project) 9 _R 4 ₂ re q [*] z η _{GDHW} Q _z L _U (Project) d _{U_Proj} e (Project) 9 _R η _{rap} 9 _L η _{G_U}	Value =0.875'(θ_{clar} 20)+20 = 965 td _{Clar} = Ψ_{clar} - θ_{cl}) t _{Clar} = t_{wall} - θ_{cl}) t _{Clar} = t_{wall} - θ_{cl} - $(1-\eta_{CD}+w)$ = t_{wall} - θ_{cl} - $(1-\eta_{CD}+w)$ = n_{Wall} - 3 .365 / n_{Ul} = n_{Wall} - 3 .365 / n_{Ul} = n_{Tap} - (θ_{clar}) + θ_{clar} + $\theta_$	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.14 0.2542 4011 1019.7 36.2% 36.2%	W/m/K °C °C h/d °C h/a K/Wh/m/a - 2355 k/Wh/a m m K/Wh/lap opening Tap opening per year K/Wh/a - 51 k/Wh/a
Annual Heat Losses from Storage Qs = Pg/8.760 kh·(1·ηq_s) O kWh/a Total Heat Losses of the DHW System Q _{WL} = Qg+Qg+Qg 3005 kWh/a Specif. Losses of the DHW System q _{WL} = Qg+Qg+Qg \$	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss	Ψ (Project) 3x, Mechanical Re 3dsts Flow, Design 1 td _{cline} (Project) 4z 4z 1/GOHW Qz Lu (Project) 4u (Proj	Value =0.875'(θ_{clar} 20)+20 = 965 td _{Clar} = Ψ_{clar} - θ_{cl}) t _{Clar} = t_{wall} - θ_{cl}) t _{Clar} = t_{wall} - θ_{cl} - $(1-\eta_{CD}+w)$ = t_{wall} - θ_{cl} - $(1-\eta_{CD}+w)$ = n_{Wall} - 3 .365 / n_{Ul} = n_{Wall} - 3 .365 / n_{Ul} = n_{Tap} - (θ_{clar}) + θ_{clar} + $\theta_$	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.14 0.2542 4011 1019.7 36.2% 36.2%	W/m/K °C h/d °C h/d °C h/a KWh/m/a 2355 KWh/a Tap opening Tap opening KWh/a
Total Heat Losses of the DHW System Q _{ML} = Q ₂ +Q ₀ +Q ₅ 3005 kWh/a Specif. Losses of the DHW System q _{ML} = Q _{ML} / A _{TTA} kWh/a ⁻¹ kWh/a ⁻¹ kWh/a ⁻¹ Utilisation Factor DHW Distrib and Storage η _{a,ML} = q _{DHW} / (q _{DHW} + q _{WV}) 61.6% - Total Heat Demand of DHW system Q _{pDHW} = Q _{DHW} 4 _{Q_{ML}} 7831 kWh/a	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Tirrough Which the Pipes Pass Design Flow Temperature Disign Circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss Possible Utilization Factor of Released Heat Annual Heat Loss Possible Utilization Factor of Released Heat Annual Heat Loss Possible Utilization Factor of Released Heat Annual Heat Loss of Individual Pipes	Ψ (Project) 3 _x Mechanical Re 3 _{det} Flow, Design 1 td _{Gire} (Project) 3 _R 4 ₂ re 4 ₂ Tore 4 ₀ Project) 4 ₀ Proj	Value =0.875'(9_{dist}-20)+20 = 365 td_{Cist} = 4''(9_{dir}-9_{dir}) t_{Circ} = t_{wall}-9356'1''_{16} = L_{w5} \cdot q^{*}_{2} \cdot (1\eta_{CD}\eta_{wl}) = (r_{perc}) V_{02} + r_{wall} V_{wal})(9_{dir}-9_{dir}) = n_{Perc} \cdot 3 \cdot 365' n_{U} = n_{Perc} \cdot 3 \cdot 365' n_{U} = n_{Perc} \cdot 9 - 2 \cdot 10^{-10} +	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.14 0.2542 4011 1019.7 36.2% 36.2%	W/m/K °C h/d °C h/d °C h/a KWh/m/a 2355 KWh/a Tap opening Tap opening KWh/a
Total Heat Losses of the DHW System Q _{VKL} = Q ₂ /40 ₃ +Q ₅ 3005 kWh/a Specif. Losses of the DHW System q _{ML} = Q _{ML} / A _{TEA} kWh/a ⁻¹ kWh/a ⁻¹ kWh/a ⁻¹ Utilisation Factor DHW Distrib and Storage η _{k,ML} = q _{DHW} / (q _{DHW} + q _{WV}) 61.6% - Total Heat Demand of DHW system Q _{pDHW} = Q _{DHW} + Q _{WL} . 7831 kWh/a	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss of Individual Pipes Evasible Utilization Factor of Released Heat Annual Heat Loss of Individual Pipes	$\begin{array}{c} \Psi\left(Project\right)\\ g_{y} \ (Mechanical Re\\ g_{dat} \ Flow, Design 1\\ td_{Dre} \ (Project)\\ g_{R}\\ \xi_{Dre}\\ \xi_{Dre}\\ \eta_{CDHW}\\ Q_{Z}\\ L_{U} \ (Project)\\ d_{U} \ Proje \ (Project)\\ q_{Odt}\\ How (Max)\\ q_{U}\\ \eta_{C} \ U\\ Q_{U}\\ \eta_{C} \ U\\ Q_{U}\\ P_{S}\\ \eta_{C_{S}} \ S\end{array}$	Value =0.875'(3 _{Mar} ,20)+20 = 365 td _{Cac} = 4''(3 _m -3 ₀) t _{Cac} = t _{max} (356 t ⁺ 1 ₀) = t _{max} (356 t ⁺ 1 ₀) = t _{max} (356 t ⁺ 1 ₀) = t _{max} (3, 3.365 / n _U) = n _{max} (3, 3.365 / n _U) = n _{max} (3700'1 ₀) = t _{max} (8760'1 ₀)	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.14 0.2542 4011 1019.7 36.2% 36.2%	W/m/K "C h/d "C h/a kWh/m/a 2355 kWh/a m m kWh/tap opening Tap openings per year kWh/a Tap openings per year kWh/a Tap openings per year kWh/a Tap openings per year kWh/a Tap openings per year kWh/a
Specif. Losses of the DHW System q _{WL} = Q _{NL} / A _{TFA} KWh/(m²a) 11.7 Utilisation Factor DHW Distrib and Storage η _{a,WL} = q _{DHW} / (q _{DHW} + q _{WV}) 61.6% - Total Heat Demand of DHW system Q _{gDHW} = Q _{DHW} + Q _{WL} 7831 kWh/a	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss of Individual Pipes Possible Utilization Factor of Released Heat Annual Heat Loss of Individual Pipes	$\begin{array}{c} \Psi\left(Project\right)\\ g_{y} \ (Mechanical Re\\ g_{dat} \ Flow, Design 1\\ td_{Dre} \ (Project)\\ g_{R}\\ \xi_{Dre}\\ \xi_{Dre}\\ \eta_{CDHW}\\ Q_{Z}\\ L_{U} \ (Project)\\ d_{U} \ Proje \ (Project)\\ q_{Odt}\\ How (Max)\\ q_{U}\\ \eta_{C} \ U\\ Q_{U}\\ \eta_{C} \ U\\ Q_{U}\\ P_{S}\\ \eta_{C_{S}} \ S\end{array}$	Value =0.875'(3 _{Mar} ,20)+20 = 365 td _{Cac} = 4''(3 _m -3 ₀) t _{Cac} = t _{max} (356 t ⁺ 1 ₀) = t _{max} (356 t ⁺ 1 ₀) = t _{max} (356 t ⁺ 1 ₀) = t _{max} (3, 3.365 / n _U) = n _{max} (3, 3.365 / n _U) = n _{max} (3700'1 ₀) = t _{max} (8760'1 ₀)	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.14 0.2542 4011 1019.7 36.2% 36.2%	W/m/K "C "C h/d "C h/a kWh/a 2355 kWh/a m m KWh/tap opening tap openings per year kWh/a Tap openings per year kWh/a 0 kWh/a
Utilisation Factor DHW Distrib and Storage n_xwL = q_{DHW} / (q_{DHW} + q_{WV}) 61.6% - Total Heat Demand of DHW system Q _{gDHW} = Q _{DHW} / Q _{WL} 7831 kWh/a	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation pry var Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss of Individual Pipes Possible Utilization Factor of Released Heat Annual Heat Loss of Individual Pipes Annual Heat Loss of Individual Pipes Average Heat Released From Storage Possible Utilization Factor of Released Heat Annual Heat Losses from Storage	$\begin{split} & \Psi\left(Project\right) \\ & g_{X} \ Mechanical Re \\ & g_{dest} \ Flow, Design 1 \\ & td_{circ}\left(Project\right) \\ & g_{R} \\ & tors \\ & q^*z \\ & tors \\ & q^*z \\ & tors \\ & q^*z \\ & tors \\ & tors \\ & Q_{Z} \\ & L_{U}\left(Project\right) \\ & d_{U_{L}}(project) \\ & d_{U_{L}}(pr$	Value =0.875'(3 _{MSC} 20)+20 = 365 td _{Clac} = Ψ (3 _m -3 ₀) t _{Clc} = t_{max} = t_{max}	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.14 0.2542 4011 1019.7 36.2% 36.2%	W/m/K °C °C h/d °C h/a KWh/a 2355 KWh/a Tap openings per year KWh/a Tap openings per year KWh/a Tap openings per year KWh/a Tap openings per year KWh/a Tap 12.3 W
Utilisation Factor DHW Distrib and Storage n_a.w.L = q_{DHW} / (q_{DHW} + q_{MV}) 61.6% - Total Heat Demand of DHW system Q _{gDHW} = Q_{DHW} / Q_{WL} 7831 kWh/a	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation pry vear Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss of Individual Pipes Possible Utilization Factor of Released Heat Annual Heat Loss of Individual Pipes Annual Heat Loss of Individual Pipes Average Heat Released From Storage Possible Utilization Factor of Released Heat Annual Heat Losses from Storage	$\begin{split} \Psi & (Project) \\ & \mathcal{K}_{X} & \textit{Mechanical Re} \\ & \mathcal{K}_{data} & \textit{Flow}, \textit{Design 1} \\ & \mathcal{K}_{data} & \textit{Flow}, \textit{Design 1} \\ & \mathcal{K}_{data} & \textit{Kow}, \textit{Design 1} \\ & \mathcal{K}_{data} & \mathcal{K}_{data} \\ & \mathcal{K}_{data} & $	Value =0.875'(3 _{MSC} 20)+20 = 365 td _{Clac} = Ψ (3 _m -3 ₀) t _{Clc} = t_{max} = t_{max}	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.14 0.2542 4011 1019.7 36.2% 36.2%	W/m/K °C °C h/d °C h/a KWh/a 2355 KWh/a Tap openings per year KWh/a Tap openings per year KWh/a Tap openings per year KWh/a Tap openings per year KWh/a Tap 12.3 W
Total Heat Demand of DHW system Q _{gDHW} = Q _{DHW} +Q _{WL} 7831 kWh/a	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss Possible Utilization Factor of Released Heat Annual Heat Loss Possible Utilization Factor of Released Heat Annual Heat Loss of Individual Pipes Exterior Open Heat Released From Storage Possible Utilization Factor of Released Heat Annual Heat Losses from Storage	Ψ (Project) 3x, Mechanical Re 3d _{stat} Flow, Design 1 td _{Gire} (Project) 3k Gre 4z TGD+W Qz L _U (Project) d _{U_DPR} (Project) Genetivated Prop Qu TG_U Qu PS TG_S QS	Value =0.875'(3 ₁₆₅ 20)+20 = 365 td _{C16} = Ψ (3 ₃₇₆ -3 ₅) Crc = $\frac{1}{4}$ (3 ₆₇₇ -3 ₅) (3 ₆₇₇ -3 ₇₁) = $\frac{1}{4}$ (3 ₆₇₆ -3 ₇₁) = $\frac{1}{4}$ (1-1 $\frac{1}{1}$ (3 ₅) = Q_2 + Q_1 + Q_5	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.14 0.2542 4011 1019.7 36.2% 36.2%	W/m/K °C h/d °C h/d °C h/a KWh/a 2355 kWh/a 2355 kWh/a 651 KWh/a Total 1.2.3 W 0 kWh/a Total 1.2.3 KWh/a
	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss Possible Utilization Factor of Released Heat Annual Heat Loss Possible Utilization Factor of Released Heat Annual Heat Loss Possible Utilization Factor of Released Heat Annual Heat Loss of Individual Pipes Average Heat Released From Storage Total Heat Losses form Storage	Ψ (Project) 3, Mechanical Re 3 dats Flow, Design 1 tdoine (Project) 4, 2 1 Gorw V Qz 1 Gorw Qz 4, (Project) 4, (Projec	Value =0.875'(9,gar 20)+20 = 365 td_{Cuc} = 4''(9,m-9_{2}) t_{Dic} = t_{westrog}/3650' n_{G} = L_{west} - q^{-}_{2} \cdot (1-\eta_{Co})w) = fires - 3.365 / fu = fires - 9, dividendal = t_{westrog}/8760' n_{G} = P_{S} \cdot 8.760 kh (1-\eta_{G_{S}}) = $Q_{2}+Q_{1}+Q_{S}$ = Q_{VL} / A_{TFA}	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.14 0.2542 4011 1019.7 36.2% 36.2%	W/m/K °C h/d °C h/d °C h/a KWh/a 2355 KWh/a Tab opening Tap opening per year KWh/a Total 12.3 W 0 KWh/a Total 12.3 KWh/a Total 12.3 KWh/a KWh/a Total 12.3 KWh/a Total 12.3 KWh/a KWh/a Total 12.3 KWh/a Total 12.3 KWh/a Total 12.3 KWh/a Total 12.3 KWh/a Total 12.3 KWh/a
Total Spec. Heat Demand of DHW System Q _{pDHW} = Q _{pDHW} / A _{TFA} kWh/(m²a) 30.5	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Dily virculation period of operation. Design Return Temperature Circulation period of operation per vear Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss Possible Utilization Factor of Released Heat Annual Heat Losses of Individual Pipes Average Heat Released From Storage Possible Utilization Factor of Released Heat Annual Heat Losses from Storage Total Heat Losses of the DHW System Specif. Losses of the DHW System	Ψ (Project) 3, Mechanical Re 3 dists Flow, Design 1 tdoine (Project) 4, Constant 4, Consta	Value =0.875'(9_{dist}-20)+20 = 965 td_{Cist} = 4''(9_m-9_5) t_{Disc} = t_{water}/36561 * 1_{16} = t_{water}/36561 * 1_{16} = t_{water}/36561 * 1_{16} = n_{Pis_1} \cdot 3 \cdot 365 f_{10} \cdot 1 = n_{Pis_2} \cdot 3 \cdot 365 f_{10} \cdot 1 = n_{Pis_2} \cdot 3 \cdot 365 f_{10} \cdot 1 = n_{Pis_2} \cdot 3 \cdot 365 f_{10} \cdot 1 = q_U \cdot (1 - 1q_{0}, u) = t_{water}/8760'' T_{16} = P_{S} \cdot 8.760 kh' (1 - 1q_{0}, s) = Q_2 + Q_1 + Q_S = Q_{Vit} / A_{TEA} = Q_{DWV} / (Q_{DitW} + Q_{WV})	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.14 0.2542 4011 1019.7 36.2% 36.2%	W/m/K "C h/d "C h/d "C kWh/a - 2355 kWh/a - - - - - - - - - - - - - - - - - - -
	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Dily virculation period of operation. Design Return Temperature Circulation period of operation per vear Annual Heat Released per m of Pipe Possible Utilization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss Possible Utilization Factor of Released Heat Annual Heat Losses of Individual Pipes Average Heat Released From Storage Possible Utilization Factor of Released Heat Annual Heat Losses from Storage Total Heat Losses of the DHW System Specif. Losses of the DHW System	Ψ (Project) 3, Mechanical Re 3 dists Flow, Design 1 tdoine (Project) 4, Constant 4, Consta	Value =0.875'(9_{dist}-20)+20 = 965 td_{Cist} = 4''(9_m-9_5) t_{Disc} = t_{water}/36561 * 1_{16} = t_{water}/36561 * 1_{16} = t_{water}/36561 * 1_{16} = n_{Pis_1} \cdot 3 \cdot 365 f_{10} \cdot 1 = n_{Pis_2} \cdot 3 \cdot 365 f_{10} \cdot 1 = n_{Pis_2} \cdot 3 \cdot 365 f_{10} \cdot 1 = n_{Pis_2} \cdot 3 \cdot 365 f_{10} \cdot 1 = q_U \cdot (1 - 1q_{0}, u) = t_{water}/8760'' T_{16} = P_{S} \cdot 8.760 kh' (1 - 1q_{0}, s) = Q_2 + Q_1 + Q_S = Q_{Vit} / A_{TEA} = Q_{DWV} / (Q_{DitW} + Q_{WV})	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.014 0.2542 4011 1019.7 36.2% 36.2%	W/m/K "C h/d "C h/d "C h/d "C h/a KWh/m/a - 2355 KWh/a m m KWh/a - - KWh/a - - KWh/a -
	Length of Circulation Pipes (Flow + Return) Heat Loss Coefficient per m Pipe Temperature of the Room Through Which the Pipes Pass Design Flow Temperature Daily circulation period of operation. Design Return Temperature Circulation period of operation per year Annual Heat Released per m of Pipe Possible Ultization Factor of Released Heat Annual Heat Loss from Circulation Lines Total Length of Individual Pipes Exterior Pipe Diameter Heat Loss Per Tap Opening Occupancy Coefficient Annual Heat Loss of Individual Pipes Possible Ultization Factor of Released Heat Annual Heat Loss Possible Ultization Factor of Released Heat Annual Heat Loss of Individual Pipes Average Heat Released From Storage Possible Ultization Factor of Released Heat Annual Heat Losses from Storage Total Heat Losses of the DHW System Specif. Losses of the DHW System Utilisation Factor DHW Distrib and Storage	Ψ (Project) 3 _V , Mechanical Re 3 _{dest} Flow, Design 1 tdoire (Project) 3 _R 4 _U Project) 4 _U Project)	Value =0.875'(9_{Mer}^{2}20)+20 = 365 Id_{Dic} = 4''(9_m-9_{0})t_{Dirc} = t_{Hais} \cdot q^{2}_{2}(1-q_{Dirw}) = $L_{Hais} \cdot q^{2}_{2}(1-q_{Dirw})$ = n_{Pers} , 3.365/ n_{Ul} = n_{Pers} , 3.365/ n_{Ul} = n_{Pers} , 3.365/ n_{Ul} = $q_{U}(1-q_{D}_{U})$ = $l_{Veating}/8760^{\circ}\eta_{G}$ = $Q_{U} \cdot (1-q_{G}_{U})$ = $P_{S} 8.760 kh \cdot (1-q_{G}_{S})$ = $Q_{2}t Q_{U} + Q_{S}$ = Q_{Me} / A_{TEA} = $q_{Dirw} / (q_{Dirw} + q_{WV})$ = $Q_{Dirw} + Q_{WL}$	99.1 0.151 20 0.0 60.0 0.0 18.0 55 6570 37.3 36.2% 2355 0.014 0.2542 4011 1019.7 36.2% 36.2%	W/m/K "C "C h/d "C b/a KWh/a - 2355 kWh/a - - 2355 kWh/a - - - - - - - - - - - - - - - - - - -

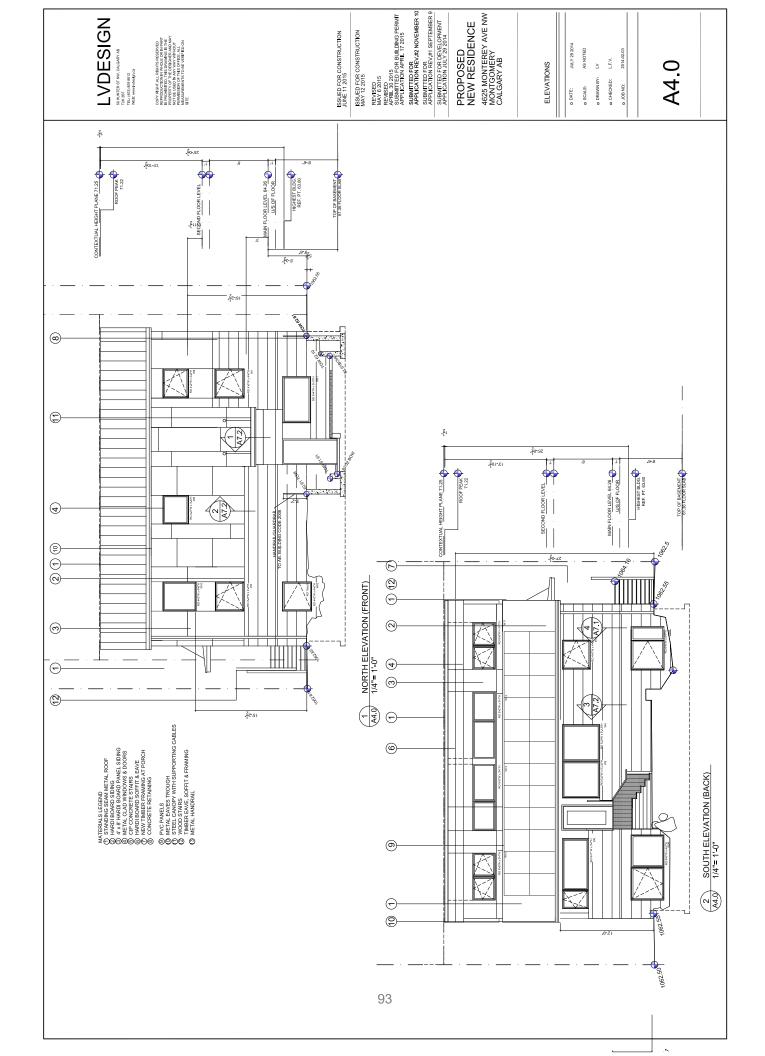
Passive House Planning HOT WATER PROVIDED BY SOLAR

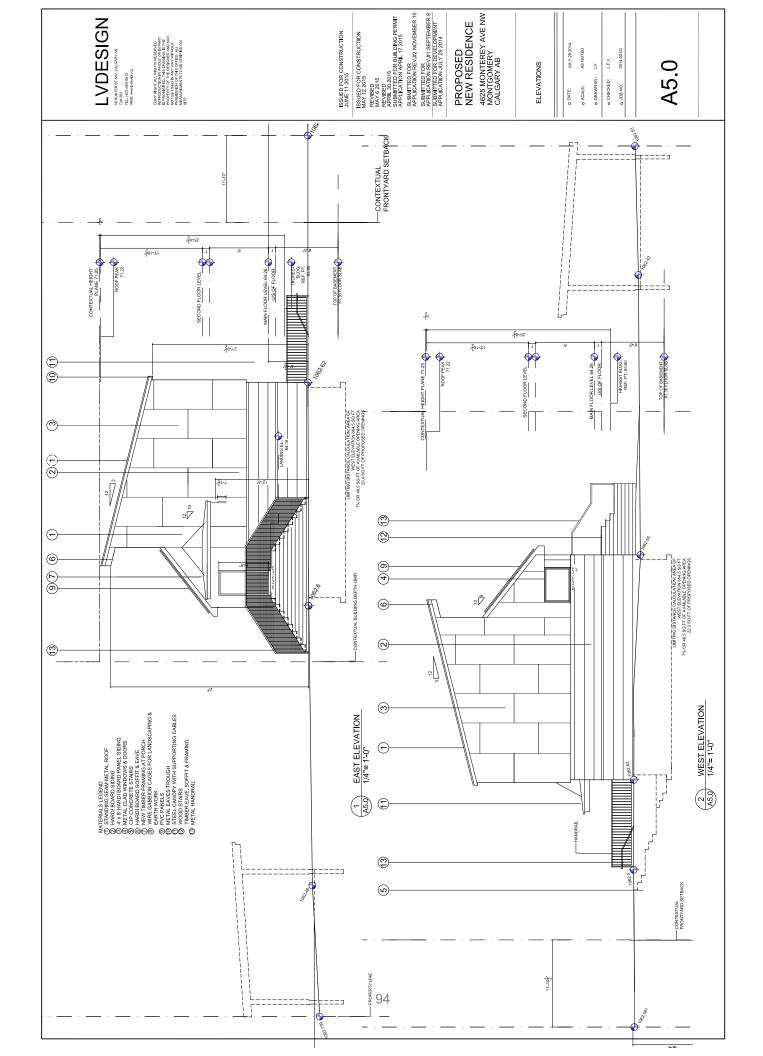



EFFICIENCY OF DISTRICT HEATING STATIONS


Building:		Building Type/Use:	Single Family	With Basement Suite
Location: Calgary		Treated Floor Area A _{TFA} :	256	m²
Covered Fraction of Space Heat Demand		(PE Value worksheet)	0%	
Annual Heat Demand kWh/a	Q _H	(DHW+Distribution)	3088	kWh
Solar Fraction for Space Heat	η _{Solar, H}	(Separate Calculation)		
Effective Annual Heat Demand	$Q_{H,Wi} = Q_{H}^{*}(1 - \eta_{Solar, H})$		0	kWh
Covered Fraction of DHW Demand		(PE Value worksheet)	0%	
DHW Demand	Q _{DHW}	(DHW+Distribution)	7831	kWh
Solar Fraction for DHW	$\eta_{Solar,\ DHW}$	(SolarDHW worksheet)	74%	
Effective DHW Demand	Q _{DHW,Wi} =Q _{DHW} *(1-η _{Solar, DHW})		0	kWh
Heat Source		Gas	s CGS 35% PH	IC 🔻
Primary Energy Factor		(Data worksheet)	1.1	kWh/kWh
CO2-Emissions factor (CO2-Equivalent)		(Data worksheet)	130	g/kWh
Utilisation Factor Heat Transfer Station	η _{a,HX}		107%	
			kWh/a	kWh/(m²a)
Final Energy Demand Heat Generation	Q _{final} :	= Q _{Use} * e _{a,DH}	0	0.0
Annual Primary Energy Demand			0	0.0
			kg/a	kg/(m²a)
Annual CO ₂ -Equivalent Emissions			0	0.0


INTERNAL HEAT GAINS




Appendix II: Reference House Drawings

Appendix III: WUFI Passive Reports

PHIUS+ 2015 VERIFICATION

BUILDING INFORMATION

Category:	Residential
Status:	In planning
Building type:	New construction
Year of construction:	
Units:	2
Number of occupants:	6 (Design)

Boundary conditions

Climate:	Saskatoon, SK
Internal heat gains:	3.2 W/m ²
Interior temperature:	20 °C
Overheat temperature:	25 °C

1

Building geometry

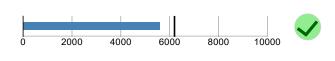
Enclosed volume:	1,043.3 m ³
Net-volume:	864.6 m ³
Total area envelope:	631.6 m ²
AV ratio:	0.6 1/m
Floor area:	245.7 m ²

PASSIVEHOUSE REQUIREMENTS

Certificate criteria:

PHIUS+ 2015 Standard

Heating demand

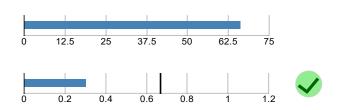

							-
specific:	27.3 kWh/m²a						
target:	28.39 kWh/m²a	0	5 10	15	20 25	30	
total:	6,706.64 kWh/a						
Cooling demand							
sensible:	2 kWh/m²a						
latent:	0 kWh/m²a						
specific:	2 kWh/m²a						
target:	3.15 kWh/m²a	Ö	5 10	15	20 25	30	
total:	490.68 kWh/a						
Heating load							
specific:	17.71 W/m²						
target:	19.24 W/m ²	0	5	10	15	20	
total:	4,351.66 W						
Cooling load							
specific:	4.45 W/m ²						
target:	11.67 W/m ²	0	5	10	15	20	
total:	1,094.08 W						

PHIUS+ 2015 VERIFICATION

Source e	energy
----------	--------

PHIUS+ Source Zero: NO

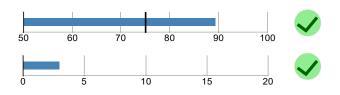
total:	33,631.87	kWh/a
specific:	5,605	kWh/Person a
target:	6,200	kWh/Person a
specific:	136.88	kWh/m²a

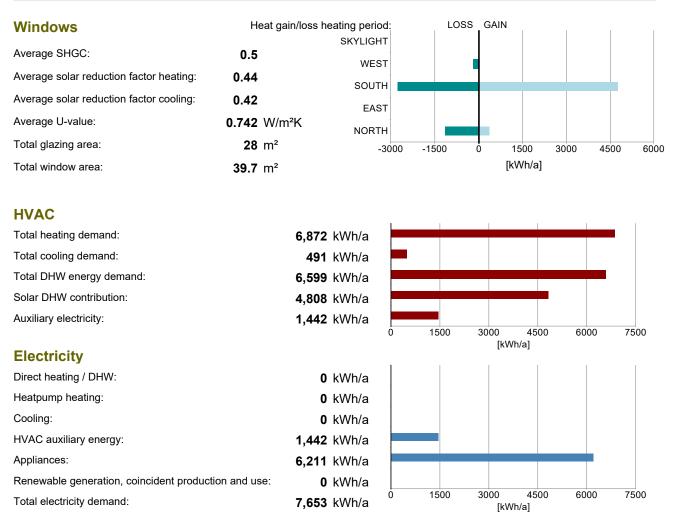


Site energy

total:	16,242.74	kWh/a
specific:	66.11	kWh/m²a

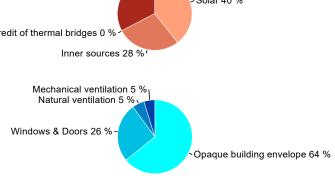
Air tightness


ACH50:	0.3	1/h
CFM50 per envelope area:	0.41 I	m³/m²h
target:	0.67	1/h
target CFM50:	0.91 I	m³/m²h


PASSIVEHOUSE RECOMMENDATIONS

HRV efficiency:	89.4 %
Frequency of overheating: Cooling system is not required	2.9 %

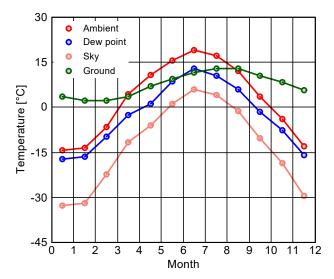
Frequency of overheating only applies if there is not a [properly sized] cooling system installed.

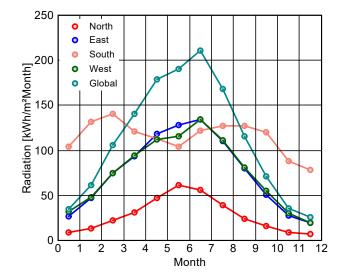

BUILDING ELEMENTS

HEAT FLOW - HEATING PERIOD

Heat gains

Solar:	6,663 kWh/a	Mechanical heating 33 %
Inner sources:	4,684 kWh/a	
Credit of thermal bridges:	0 kWh/a	Credit of thermal bridges 0 %
Mechanical heating:	6,707 kWh/a	Inner sources 28 %'
Heat losses		Mechanical ventilation 5 %
Opaque building envelope:	11,586 kWh/a	Natural ventilation 5 %
Windows & Doors:	4,662 kWh/a	Windows & Doors 26 % -
Natural ventilation:	948 kWh/a	Opaque building envelope 64 %
Mechanical ventilation:	857 kWh/a	


3


CLIMATE

Latitude:	52.1	0
Longitude:	-106.6	0
Elevation of weather station:	515	m
Elevation of building site:	515	m
Heat capacity air:	0.33	Wh/m³K
Daily temperature swing summer:	12.9	к
Average wind speed:	4	m/s

Ground

Average ground surface temperature:	3.6 °C
Amplitude ground surface temperature:	16.7 °C
Ground thermal conductivity:	2 W/mK
Ground heat capacity:	2 MJ/m ³ K
Depth below grade of groundwater:	3 m
Flow rate groundwater:	0.1 m/d

Calculation parameters

Length of heating period

Heating degree hours

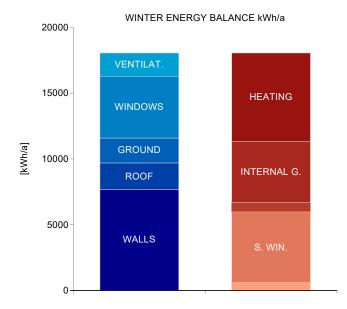
Phase shift months

138.3 kKh/a 1.4 mths 118.1 h

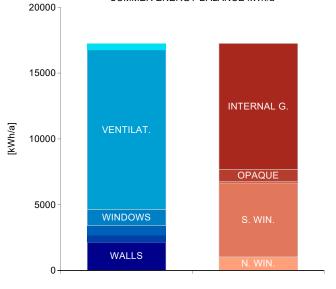
303 days/a

Time constant heating demand Time constant cooling demand

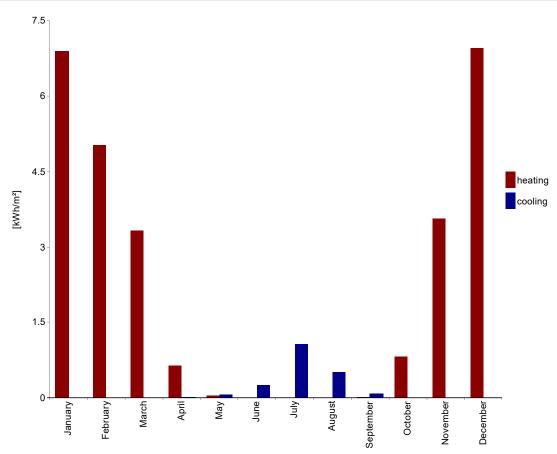
Jan.	Feb.	March	April	May	June	Ju	y	Aug.	Sep	t.	Oct.	Nov.	Dec.
69.2	69.2	69.2	69.2	69.2	69.2	69	2	69.2	69.	2	69.2	69.2	69.2
Climate for					Heati	ng lo	ad 1	Heat	ing l	oad 2	Coc	ling	
Temperatu	re [°C]					-	28.4			-21.	5	23	.2
Solar radiation North [W/m²]		11			9		7	4					
Solar radia	tion East [\	N/m²]					37			24		18	38
Solar radiation South [W/m²]			148			85		17	73				
Solar radiation West [W/m²]			43		24			191					
Solar radia	tion Global	[W/m ²]					46			30		29	90


Relevant boundary conditions for heating load calculation: Heating load 1

ANNUAL HEAT DEMAND

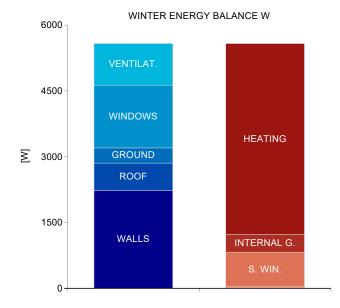

Transmission losses :	16,248	kWh/a
Ventilation losses:	1,805	kWh/a
Total heat losses:	18,053	kWh/a
Solar heat gains:	8,105	kWh/a
Internal heat gains:	5,698	kWh/a
Total heat gains:	13,803	kWh/a
Utilization factor:	82.2	%
Useful heat gains:	11,346	kWh/a
Annual heat demand:	6,707	kWh/a
Specific annual heat demand:	27.3	kWh/m²a

ANNUAL COOLING DEMAND

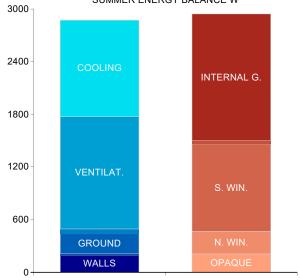

Solar heat gains:	7,661	kWh/a
Internal heat gains:	9,582	kWh/a
Total heat gains:	17,242	kWh/a
Transmission losses :	13,261	kWh/a
Ventilation losses:	35,133	kWh/a
Total heat losses:	48,394	kWh/a
Utilization factor:	34.6	%
Useful heat losses:	16,752	kWh/a
Cooling demand - sensible:	491	kWh/a
Cooling demand - latent:	0	kWh/a
Annual cooling demand:	491	kWh/a
Specific annual cooling demand:	2	kWh/m²a

SUMMER ENERGY BALANCE kWh/a

SPECIFIC HEAT/COOLING DEMAND MONTHLY



Month	Heating [kWh/m²]	Cooling [kWh/m²]
January	6.9	0
February	5	0
March	3.3	0
April	0.6	0
Мау	0	0.1
June	0	0.3
July	0	1.1
August	0	0.5
September	0	0.1
October	0.8	0
November	3.6	0
December	7	0


HEATING LOAD					
	First climate	Second climate			
Transmission heat losses:	4,613.9 W	4,027 W			
Ventilation heat losses:	949.2 W	818.4 W			
Total heat loss:	5,563 W	4,845.4 W			
Solar heat gain:	818.3 W	472.6 W			
Internal heat gain:	393.1 W	393.1 W			
Total heat gains heating:	1,211.4 W	865.7 W			
Heating load:	4,351.7 W	3,979.7 W			
Relevant heating load:	4,3	51.7 W			
Specific heating load:	17.7 W/m ²				

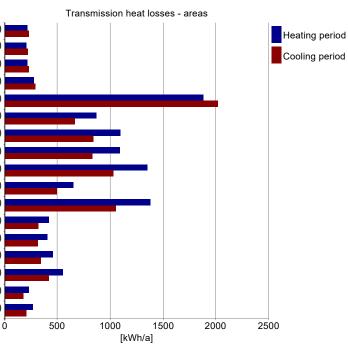
COOLING LOAD

Solar heat gain:	1,491.9	W
Internal heat gain:	1,451.8	W
Total heat gains cooling:	2,943.7	W
Transmission heat losses:	569.9	W
Ventilation heat losses:	1,279.7	W
Total heat loss:	1,849.6	W
Cooling load - sensible:	1,094.1	W
Cooling load - latent:	0	W
Relevant cooling load:	1,094.1	W
Specific maximum cooling load:	4.5	W/m²

SUMMER ENERGY BALANCE W

Σ

AREAS


Transmission heat losses - areas

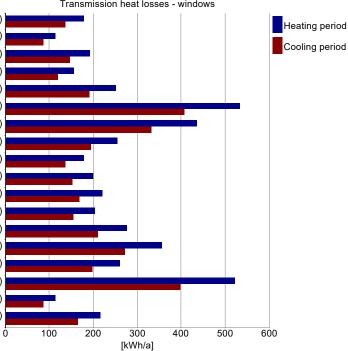
Name	Area [m²]	Average U-value [W/m²K]	Absorption coefficient	Emission coefficient	Reduction factor shading [%]	Transmission losses heating [kWh/a]	Transmission losses cooling [kWh/a]
VC.1: Basement Ground Walls: NW (A302°, 13.92 m², width 9.347 m)	13.9	0.154	0	0	0	214.1	229.7
VC.1: Basement Ground Walls: SE (A122°, 13.59 m², width 9.347 m)	13.6	0.154	0	0	0	209.1	224.3
VC.1: Basement Ground Walls: NE (A32°, 14.13 m², width 13.068 m)	14.1	0.154	0	0	0	217.5	233.3
VC.1: Basement Ground Walls: SW (A212°, 17.81 m², width 13.068 m)	17.8	0.154	0	0	0	274	293.9
VC.2: Slab: Horizontal (122.15 m², width 15.138 m)	122.2	0.154	0	0	0	1886.7	2023.9
VC.3: Main Exterior Walls: SW (A212°, 37.94 m², width 13.068 m)	37.9	0.145	0.4	0.9	100	870.2	663.7
VC.3: Main Exterior Walls: NW (A302°, 48.09 m², width 9.347 m)	48.1	0.145	0.4	0.9	100	1103	841.3
VC.3: Main Exterior Walls: SE (A122°, 47.58 m², width 9.347 m)	47.6	0.145	0.4	0.9	100	1091.4	832.4
VC.3: Main Exterior Walls: NE (A32°, 58.95 m², width 13.068 m)	59	0.145	0.4	0.9	100	1352.2	1031.3
VC.4: Lower Roof: SW (A212°, 43.9 m², width 13.068 m)	43.9	0.094	0.4	0.9	100	649.2	495.1
VC.5: Upper Roof: NE (A32°, 93.39 m², width 13.068 m)	93.4	0.094	0.4	0.9	100	1381	1053.3
VC.6: Basement Ambient Walls: SE (A122°, 17.28 m², width 9.347 m)	17.3	0.153	0.4	0.9	100	417.6	318.5
VC.6: Basement Ambient Walls: NW (A302°, 16.95 m², width 9.347 m)	16.9	0.153	0.4	0.9	100	409.7	312.5
VC.6: Basement Ambient Walls: SW (A212°, 18.85 m², width 13.068 m)	18.9	0.153	0.4	0.9	100	455.6	347.5
VC.6: Basement Ambient Walls: NE (A32°, 22.85 m², width 13.068 m)	22.9	0.153	0.4	0.9	100	552.3	421.3
VC.7: East Door: NW (A302°, 2.09 m², width 1.016 m)	2.1	0.703	0.4	0.9	100	232.4	177.2
VC.8: Basement Door: NE (A32°, 2.43 m², width 1.067 m)	2.4	0.703	0.4	0.9	100	269.6	205.6

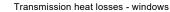
Degree hours [kKh/a]

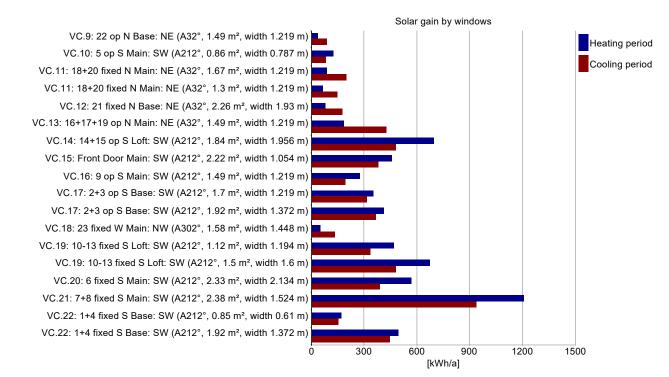
	Heating	Cooling
Ambient heating	158.1	120.6
Ground heating	100	107.3

VC.1: Basement Ground Walls: NW (A302°, 13.92 m², width 9.347 m) VC.1: Basement Ground Walls: SE (A122°, 13.59 m², width 9.347 m) VC.1: Basement Ground Walls: NE (A32°, 14.13 m², width 13.068 m) VC.1: Basement Ground Walls: SW (A212°, 17.81 m², width 13.068 m) VC.2: Slab: Horizontal (122.15 m², width 15.138 m) VC.3: Main Exterior Walls: SW (A212°, 37.94 m², width 13.068 m) VC.3: Main Exterior Walls: NW (A302°, 48.09 m², width 9.347 m) VC.3: Main Exterior Walls: SE (A122°, 47.58 m², width 9.347 m) VC.3: Main Exterior Walls: NE (A32°, 58.95 m², width 13.068 m) VC.4: Lower Roof: SW (A212°, 43.9 m², width 13.068 m) VC.5: Upper Roof: NE (A32°, 93.39 m², width 13.068 m) VC.6: Basement Ambient Walls: SE (A122°, 17.28 m², width 9.347 m) VC.6: Basement Ambient Walls: NW (A302°, 16.95 m², width 9.347 m) VC.6: Basement Ambient Walls: SW (A212°, 18.85 m², width 13.068 m) VC.6: Basement Ambient Walls: NE (A32°, 22.85 m², width 13.068 m) VC.7: East Door: NW (A302°, 2.09 m², width 1.016 m) VC.8: Basement Door: NE (A32°, 2.43 m², width 1.067 m)

THERMAL BRIDGES

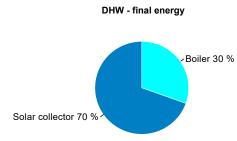

Name	Length [m]	Psi-value [W/mK]	Transmission losses [kWh/a]	Transmission losses cooling [kWh/a]
------	---------------	---------------------	-----------------------------------	---

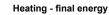

WINDOWS

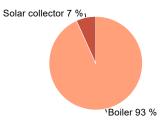

Transmission heat losses - windows

Name	Quan- tity	Incli- nation [°]	U-value total [W/m²K]	SHGC (perpen- dicular)	Reduction factor shading [%]	Reduction factor shading summer [%]	Solar gain heating [kWh/a]	Solar gain cooling [kWh/a]	Transmission losses heating [kWh/a]	Transmission losses cooling [kWh/a]
VC.9: 22 op N Base: NE (A32°, 1.49 m², width 1.219 m)	1	90	0.757	0.5	54.5	56.4	39.3	87.5	177.8	135.6
VC.10: 5 op S Main: SW (A212°, 0.86 m², width 0.787 m)	1	90	0.832	0.5	74.5	53	123	82.5	113.1	86.3
VC.11: 18+20 fixed N Main: NE (A32°, 1.67 m², width 1.219 m)	1	90	0.729	0.5	86	92.4	86.5	200	192.7	147
VC.11: 18+20 fixed N Main: NE (A32°, 1.3 m², width 1.219 m)	1	90	0.758	0.5	84.5	91.5	63.6	148.2	155.9	118.9
VC.12: 21 fixed N Base: NE (A32°, 2.26 m², width 1.93 m)	1	90	0.705	0.5	57.6	58.9	80.6	177.2	251.3	191.7
VC.13: 16+17+19 op N Main: NE (A32°, 1.49 m², width 1.219 m)	3	90	0.757	0.5	84.6	91.5	183.1	426	533.5	406.9
VC.14: 14+15 op S Loft: SW (A212°, 1.84 m², width 1.956 m)	2	90	0.75	0.5	80	59	694.5	482.2	436	332.6
VC.15: Front Door Main: SW (A212°, 2.22 m², width 1.054 m)	1	90	0.728	0.5	82.8	73.3	457.6	380.9	255.6	195
VC.16: 9 op S Main: SW (A212°, 1.49 m², width 1.219 m)	1	90	0.757	0.5	79.5	58.8	275.3	191.7	177.8	135.6
VC.17: 2+3 op S Base: SW (A212°, 1.7 m², width 1.219 m)	1	90	0.742	0.5	86.2	81.7	353.8	315.6	199.8	152.4
VC.17: 2+3 op S Base: SW (A212°, 1.92 m², width 1.372 m)	1	90	0.729	0.5	87	82.4	414	368.9	220.7	168.4
VC.18: 23 fixed W Main: NW (A302°, 1.58 m², width 1.448 m)	1	90	0.813	0.6	28.1	37.5	50.3	132.1	203.3	155
VC.19: 10-13 fixed S Loft: SW (A212°, 1.12 m², width 1.194 m)	2	90	0.778	0.5	77.5	58.8	470.2	336	276	210.5
VC.19: 10-13 fixed S Loft: SW (A212°, 1.5 m², width 1.6 m)	2	90	0.749	0.5	79.7	60.4	674	480.3	356.4	271.8
VC.20: 6 fixed S Main: SW (A212°, 2.33 m², width 2.134 m)	1	90	0.707	0.5	82.3	60.1	570	392	260.4	198.6
VC.21: 7+8 fixed S Main: SW (A212°, 2.38 m², width 1.524 m)	2	90	0.693	0.5	84	69.2	1,208.8	937.2	521.8	398
VC.22: 1+4 fixed S Base: SW (A212°, 0.85 m², width 0.61 m)	1	90	0.843	0.5	80.8	78	169.1	153.6	113.5	86.6
VC.22: 1+4 fixed S Base: SW (A212°, 1.92 m², width 1.372 m)	1	90	0.714	0.5	87.9	84.1	495.9	446.7	216.4	165

VC.9: 22 op N Base: NE (A32°, 1.49 m², width 1.219 m) VC.10: 5 op S Main: SW (A212°, 0.86 m², width 0.787 m) VC.11: 18+20 fixed N Main: NE (A32°, 1.67 m², width 1.219 m) VC.11: 18+20 fixed N Main: NE (A32°, 1.3 m², width 1.219 m) VC.12: 21 fixed N Base: NE (A32°, 2.26 m², width 1.93 m) VC.13: 16+17+19 op N Main: NE (A32°, 1.49 m², width 1.219 m) VC.14: 14+15 op S Loft: SW (A212°, 1.84 m², width 1.956 m) VC.15: Front Door Main: SW (A212°, 2.22 m², width 1.054 m) VC.16: 9 op S Main: SW (A212°, 1.49 m², width 1.219 m) VC.17: 2+3 op S Base: SW (A212°, 1.7 m², width 1.219 m) VC.17: 2+3 op S Base: SW (A212°, 1.92 m², width 1.372 m) VC.18: 23 fixed W Main: NW (A302°, 1.58 m², width 1.448 m) VC.19: 10-13 fixed S Loft: SW (A212°, 1.12 m², width 1.194 m) VC.19: 10-13 fixed S Loft: SW (A212°, 1.5 m², width 1.6 m) VC.20: 6 fixed S Main: SW (A212°, 2.33 m², width 2.134 m) VC.21: 7+8 fixed S Main: SW (A212°, 2.38 m², width 1.524 m) VC.22: 1+4 fixed S Base: SW (A212°, 0.85 m², width 0.61 m) VC.22: 1+4 fixed S Base: SW (A212°, 1.92 m², width 1.372 m)


Summary building envelope


	Total area / length	Average U-value / Psi value	Transmission losses
Exterior wall ambient:	273 m ²	0.156 W/m²K	6,754 kWh/a
Exterior wall ground:	59.4 m ²	0.154 W/m²K	914.6 kWh/a
Basement:	122.2 m ²	0.154 W/m²K	1,886.7 kWh/a
Roof:	137.3 m ²	0.094 W/m²K	2,030.2 kWh/a
Windows:	39.7 m ²	0.742 W/m²K	4,662.1 kWh/a
Doors:	0 m ²	0 W/m²K	0 kWh/a
Thermal bridge ambient:	0 m	0 W/mK	0 kWh/a
Thermal bridge perimeter:	0 m	0 W/mK	0 kWh/a
Thermal bridge floor slab:	0 m	0 W/mK	0 kWh/a


Shading

	Heating	Cooling
Reduction factor North:	75 %	79.9 %
Reduction factor East:	100 %	100 %
Reduction factor South:	82.3 %	67.6 %
Reduction factor West:	28.1 %	37.5 %
Reduction factor Horizontal:	100 %	100 %

	DHW				Heating		Total			
System	Covered DHW demand [%]	Estimated solar fraction [%]	Final energy demand [kWh/a]	Covered heating demand [%]	Estimated solar fraction [%]	Final energy demand [kWh/a]	Performance ratio	CO2 equivalent emissions [kg/a]	Source energy demand [kWh/a]	
Boiler, Example Boiler	100	72.9	2,104.9	100	6.8	6,485	1	2,147.5	9,448.9	
Solar collector, Example Solar Collector	0	0	4,807.9	0	0	470.7	0	0	0	
Σ	100	72.9	6,912.8	100	6.8	6,955.7		2,147.5	9,448.9	

Boiler

Boiler type:	Gas	
Condensing:	yes	
In thermal envelope:	yes	
Boiler output:	10	kW
Efficiency at 30% load:	99	%
Efficiency at normal output:	93	%
Heatloss at 70°C standby:	1.7	%

WUFI®Plus V.3.1.1.0: Ryerson University/Lubyk Ashley

VENTILATION

Infiltration pressure test ACH50: 0.	3	1/h
Total extract air demand: 30	0	m³/h
Supply air per person: 3	0	m³/h
Occupancy:	6	
Average air flow rate: 16	8	m³/h
Average air change rate: 0.1	9	1/h
Effective ACH ambient: 0.0	3	1/h
Effective ACH ground: 0.0	1	1/h
Energetically effective air exchange: 0.0	4	1/h
Infiltration air change rate: 0.0	2	1/h
Infiltration air change rate (heating load): 0.0	5	1/h

Type of ventilation system:	Balanced PH ventilation
Wind screening coefficient (e):	0.07
Wind exposure factor:	15
Wind shield factor:	0.05

Ventilation heat losses:

1,555.74 kWh/a

Devices

Name	HRV / ERV efficiency [-]	Electric efficiency [Wh/m³]	Heat recovery efficiency SHX [-]	Effective recovery efficiency [-]
Main Floor HRV	0.9	0.42	0.3	0.9
Basement Suite HRV	0.9	0.42	0.3	0.9
Altogether	0.9	0.42	0.1	0.9

Name	Length (total) [m]	Clear cross-section [m²]	U-value [W/m²K]	Assigned ventilation units
Supply / outdoor air duct	2	0.0324	9.26	Main Floor HRV, Basement Suite HRV
Extract / Exhaust air duct	2	0.0324	9.26	Main Floor HRV, Basement Suite HRV
Σ	4			

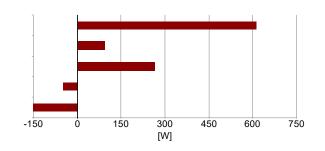
*length * quantity ** thermal conductivity / thickness

SUMMER VENTILATION

ACH night ventilation:	0.3	1/h
ACH natural summer:	0.03	1/h
Mechanical ventilation summer:	0.3	1/h
Mechanical ventilation summer with HR:	no	
Preferred minimum indoor temperature for night ventilation:	20	°C
Overheating temperature:	25	°C

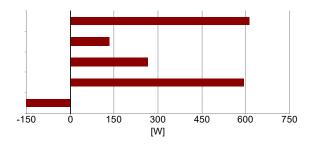
ELECTRICITY DEMAND - AUXILIARY ELECTRICITY

Туре	Quantity	Indoor	Norm demand	Electric demand [kWh/a]	Source energy [kWh/a]		Elect	ic dema	nd	
Boiler DHW system auxiliary energy	1	yes	136 W	24.4	77					
Boiler heating auxiliary energy	1	yes	45 W	96	303.4					
Solarcollector auxiliary energy	1	no	44 W	77	243.3					
Ventilation winter	1	yes	0.4 Wh/m ³	390.9	1235.3					
Ventilation summer	1	yes	0.4 Wh/m ³	350.8	1108.5					
Heating system circulation pump	1	yes	73.4 W	303.4	958.6					
DHW circulating pump	1	yes	29.7 W	157.6	497.9					
DHW storage load pump	1	yes	63.7 W	42	132.8					
Σ				1442	4556.8	Ó 1	00 [l	200 (Wh/a]	300	400


ELECTRICITY DEMAND RESIDENTIAL BUILDING

Туре	Quantity	Indoor	Norm demand	Electric demand [kWh/a]	Non-electric demand [kWh/a]	Source energy [kWh/a]		Electr	ic deman	d	
Kitchen dishwasher	1	yes	1.2	234	134.7	887.6					
Laundry - washer	1	yes	1.1	206.9	78.7	740.4					
Laundry - dryer	1	yes	3.5	1047.4	0	3309.7					
Energy consumed by evaporation	0	yes	3.1	0	273.9	301.3					
Kitchen fridge/freeze combo	2	yes	1	730	0	2306.8					
Kitchen cooktop	1	yes	0.2	660	0	2085.6					
PHIUS+ 2015 Interior lighting	1	yes	856	856	0	2704.9					
PHIUS+ 2015 Misc electric loads	1	yes	2,476.5	2476.5	0	7825.9					
Σ	8			6210.8	487.2	20162.1	0 7		1500 Wh/a]	2250	3000

INTERNAL HEAT GAINS


Heating season

Electricity total:	614	W
Auxiliary electricity:	95.4	W
People:	264	W
Cold water:	-47.6	W
Evaporation:	-150	W
Σ:	783.6	W
Specific internal heat gains:	3.2	W/m²

Cooling season

Electricity total:	614	W
Auxiliary electricity:	132.3	W
People:	264	W
Cold and hot water:	592.6	W
Evaporation:	-150	W
Σ:	783.6	W
Specific internal heat gains:	3.2	W/m²

DHW AND DISTRIBUTION

DHW consumption per person per day:	25	Ltr/Person/day
Average cold water temperature supply:	5.4	°C
Useful heat DHW:	3,949.6	kWh/a
Specific useful heat DHW:	16.1	kWh/m²a
Total heat losses of the DHW system:	2,649.8	kWh/a
Specific losses of the DHW system:	10.8	kWh/m²a
Performance ratio DHW distribution system and storage:	1.7	
Utilization ratio DHW distribution system and storage:	0.6	
Total heat demand of DHW system:	6,599.4	kWh/a
Total specific heat demand of DHW system:	26.9	kWh/m²a
Total heat losses of the hydronic heating distribution:	165	kWh/a
Specific losses of the hydronic heating distribution:	0.7	kWh/m²a
Performance ratio of heat distribution:	102.5	%

Region	Length [m]	Annual heat loss [kWh/a]		
Hydronic heating distribution pipes				
In conditioned space	39.6	165		
Σ	39.6	165		
DHW circulation pipes				
In conditioned space	99.1	1742.1		
Σ	99.1	1742.1		
Individual pipes				
In conditioned space	49.5	394.4		
Σ	49.5	394.4		
Water storage				
Device 5 (Water storage: DHW)		513.3		
Σ		513.3		

SOLAR DHW

Name	Area of solar thermal array [m²]	Solar thermal yield [kWh/m²a]	Useful storage capacity [Liter]	Optimal storage capacity [Liter]	Reduction factor shading [-]	Estimated solar fraction of DHW [-]	Contribution to useful heat [kWh/m²a]
Device 4 (Solar collector: Heating, DHW): Example Solar Collector	11	546	700	825	1	0.729	4,807.934
Σ	11	546	700	825		0.7	4807.9

BUILDING INFORMATION

Category:	Residential
Status:	In planning
Building type:	New construction
Year of construction:	
Units:	2
Number of occupants:	6 (Design)

Boundary conditions

Climate:	Calgary Int. Airp. AB
Internal heat gains:	3.8 W/m ²
Interior temperature:	20 °C
Overheat temperature:	25 °C

Building geometry

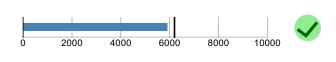
Enclosed volume:	1,043.3 m³
Net-volume:	864.6 m ³
Total area envelope:	631.6 m ²
AV ratio:	0.6 1/m
Floor area:	245.7 m ²

PASSIVEHOUSE REQUIREMENTS

Certificate criteria:

PHIUS+ 2015 Standard

Heating demand specific: 16.63 kWh/m2a 10 5 15 20 25 30 target: 27.13 kWh/m²a total: 4,085.4 kWh/a **Cooling demand** sensible: 2.16 kWh/m²a latent: 0 kWh/m²a specific: 2.16 kWh/m²a 10 15 20 25 30 target: 3.15 kWh/m²a total: 531.53 kWh/a **Heating load** specific: 15.86 W/m² 5 10 15 20 target: 19.24 W/m² total: 3,896 W **Cooling load** specific: 2.86 W/m² 10 15 20 5 target: 10.41 W/m² total:

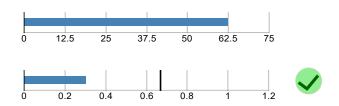

113

702 W

Source e	nergy
----------	-------

PHIUS+ Source Zero: NO

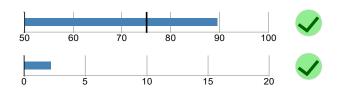
total:	35,354.41	kWh/a
specific:	5,892	kWh/Person a
target:	6,200	kWh/Person a
specific:	143.89	kWh/m²a



Site energy

total:	15,360.24 kWh/a	
specific:	62.52 kWh/m²	а

Air tightness


ACH50:	0.3	1/h
CFM50 per envelope area:	0.41	m³/m²h
target:	0.67	1/h
target CFM50:	0.91	m³/m²h

PASSIVEHOUSE RECOMMENDATIONS

HRV efficiency:	89.4 %	
Frequency of overheating: Cooling system is not required	2.1 %	

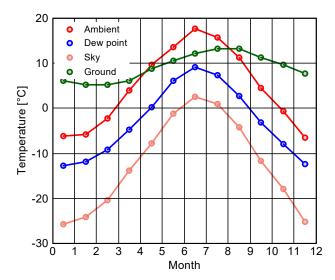
Frequency of overheating only applies if there is not a [properly sized] cooling system installed.

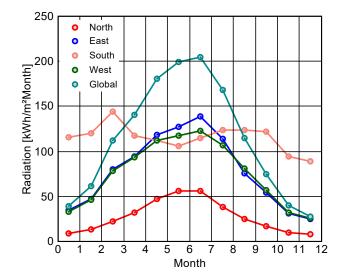
BUILDING ELEMENTS

Windows	Heat gain/loss h	•		LOSS	GAIN		
Average SHGC:	0.58	SKYLIGHT					
Average solar reduction factor heating:	0.44	WEST					
Average solar reduction factor cooling:	0.41	SOUTH					
Average U-value:	0.79 W/m²K	EAST					
Total glazing area:	28 m ²	NORTH -4		000 0) 2000	4000 6	6000 8000
Total window area:	39.7 m ²				[kWh/a]		
HVAC							
Total heating demand:	4,471	kWh/a					
Total cooling demand:	532	kWh/a					
Total DHW energy demand:	7,326	kWh/a					
Solar DHW contribution:	5,419	kWh/a					
Auxiliary electricity:	1,415	kWh/a					
			0	1500	3000 450 [kWh/a]	6000	7500
Electricity						1	1
Direct heating / DHW:	0	kWh/a					
Heatpump heating:	0	kWh/a					
Cooling:	0	kWh/a					
HVAC auxiliary energy:	1,415	kWh/a		•			
Appliances:	7,545	kWh/a					
Renewable generation, coincident production	and use: 0	kWh/a					
Total electricity demand:	8,960	kWh/a	Ó ·	1600	3200 480 [kWh/a]	0 6400	8000

HEAT FLOW - HEATING PERIOD

Heat gains


Solar: Inner sources: Credit of thermal bridges: Mechanical heating:	7,945 kWh/a 5,442 kWh/a 0 kWh/a 4,085 kWh/a	Mechanical heating 20 % Credit of thermal bridges 0 % Inner sources 33 %
Heat losses Opaque building envelope: Windows & Doors: Natural ventilation: Mechanical ventilation:	11,489 kWh/a 4,390 kWh/a 839 kWh/a 754 kWh/a	Mechanical ventilation 4 % Natural ventilation 5 % Windows & Doors 25 % Opaque building envelope 66 %


CLIMATE

Latitude:	51.1	0
Longitude:	-114	0
Elevation of weather station:	1,077	m
Elevation of building site:	1,077	m
Heat capacity air:	0.33	Wh/m³K
Daily temperature swing summer:	13.1	К
Average wind speed:	4	m/s

Ground

Average ground surface temperature:	5.6 °C
Amplitude ground surface temperature:	12.1 °C
Ground thermal conductivity:	2 W/mK
Ground heat capacity:	2 MJ/m ³ K
Depth below grade of groundwater:	3 m
Flow rate groundwater:	0.1 m/d

Calculation parameters

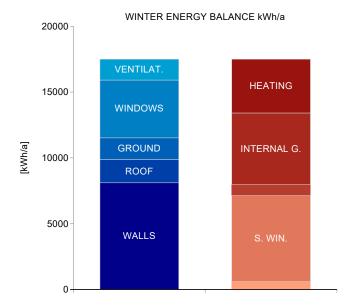
Length of heating period	303 days/a
Heating degree hours	117.5 kKh/a
Phase shift months	1.4 mths

Time constant heating demand

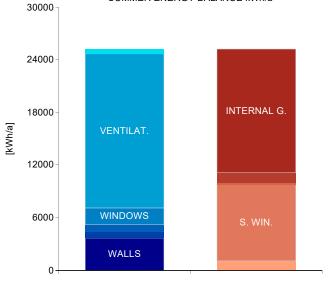
kKh/a mths 108.5 h

Time constant cooling demand

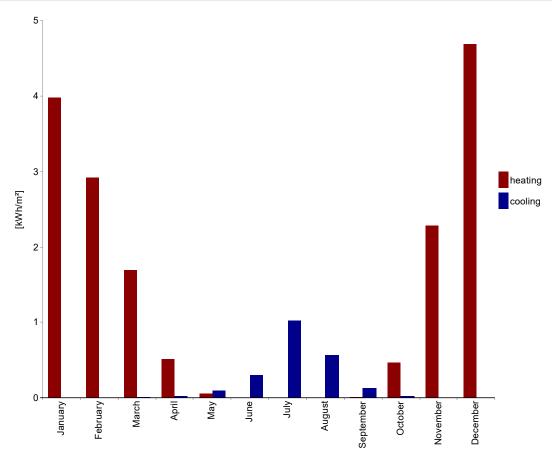
Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
65.8	65.8	65.8	65.8	65.8	65.8	65.8	65.8	65.8	65.8	65.8	65.8
Climate for Heating load 1			ad 1	Heating le	pad 2	Cool	ing				
Temperatu	re [°C]					-23		-16.8	3	20.	9
Solar radia	tion North	[W/m²]				12		10		80)
Solar radia	Solar radiation East [W/m²]			49		40		21	2		
Solar radia	r radiation South [W/m²] 166			137		16	3				
Solar radia	radiation West [W/m²]		40		35		17	1			
Solar radia	olar radiation Global [W/m²]		53		42		28	5			


Relevant boundary conditions for heating load calculation: Heating load 1

ANNUAL HEAT DEMAND

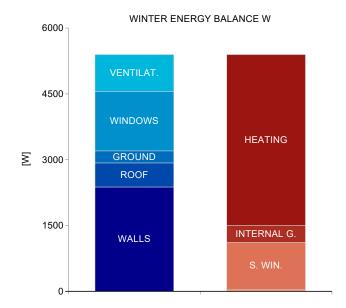

Transmission losses :	15,879	kWh/a
Ventilation losses:	1,593	kWh/a
Total heat losses:	17,472	kWh/a
Solar heat gains:	9,926	kWh/a
Internal heat gains:	6,799	kWh/a
Total heat gains:	16,724	kWh/a
Utilization factor:	80	%
Useful heat gains:	13,386	kWh/a
Annual heat demand:	4,085	kWh/a
Specific annual heat demand:	16.6	kWh/m²a

ANNUAL COOLING DEMAND

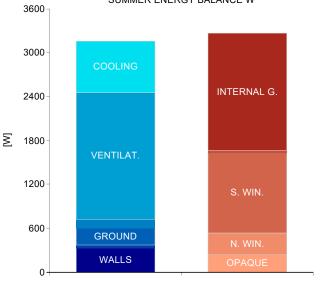

Solar heat gains:	11,131	kWh/a
Internal heat gains:	14,099	kWh/a
Total heat gains:	25,230	kWh/a
Transmission losses :	22,320	kWh/a
Ventilation losses:	55,043	kWh/a
Total heat losses:	77,363	kWh/a
Utilization factor:	31.9	%
Useful heat losses:	24,699	kWh/a
Cooling demand - sensible:	532	kWh/a
Cooling demand - latent:	0	kWh/a
Annual cooling demand:	532	kWh/a
Specific annual cooling demand:	2.2	kWh/m²a

SUMMER ENERGY BALANCE kWh/a

SPECIFIC HEAT/COOLING DEMAND MONTHLY



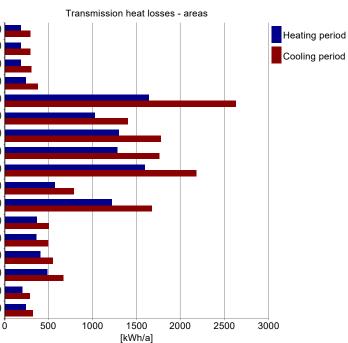
Month	Heating [kWh/m²]	Cooling [kWh/m²]
January	4	0
February	2.9	0
March	1.7	0
April	0.5	0
Мау	0.1	0.1
June	0	0.3
July	0	1
August	0	0.6
September	0	0.1
October	0.5	0
November	2.3	0
December	4.7	0


HEATING LOAD		
	First climate	Second climate
Transmission heat losses:	4,551.1 W	3,954.9 W
Ventilation heat losses:	842.3 W	724.9 W
Total heat loss:	5,393.4 W	4,679.8 W
Solar heat gain:	1,104.3 W	917.4 W
Internal heat gain:	393.1 W	393.1 W
Total heat gains heating:	1,497.4 W	1,310.5 W
Heating load:	3,896 W	3,369.2 W
Relevant heating load: Specific heating load:		896 W
Specific fleating load.		15.9 W/m²

Solar heat gain:	1,658.5	W
Internal heat gain:	1,609.5	W
Total heat gains cooling:	3,268	W
Transmission heat losses:	836.7	W
Ventilation heat losses:	1,729.3	W
Total heat loss:	2,566	W
Cooling load - sensible:	700	14/
Ũ	702	••
Cooling load - latent:	U	W
Relevant cooling load:	702	W
Specific maximum cooling load:	2.9	W/m²

SUMMER ENERGY BALANCE W

AREAS


Transmission heat losses - areas

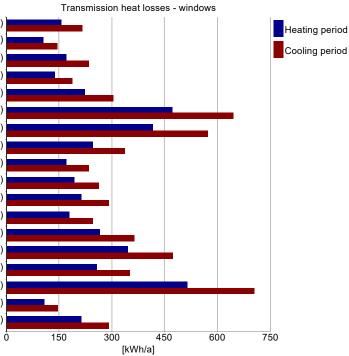
Name	Area [m²]	Average U-value [W/m²K]	Absorption coefficient	Emission coefficient	Reduction factor shading [%]	Transmission losses heating [kWh/a]	Transmission losses cooling [kWh/a]
VC.1: Basement Ground Walls: NW (A302°, 13.92 m², width 9.347 m)	13.9	0.154	0	0	0	186	298.1
VC.1: Basement Ground Walls: SE (A122°, 13.59 m², width 9.347 m)	13.6	0.154	0	0	0	181.6	291.1
VC.1: Basement Ground Walls: NE (A32°, 14.13 m², width 13.068 m)	14.1	0.154	0	0	0	188.9	302.7
VC.1: Basement Ground Walls: SW (A212°, 17.81 m², width 13.068 m)	17.8	0.154	0	0	0	238	381.4
VC.2: Slab: Horizontal (122.15 m², width 15.138 m)	122.2	0.154	0	0	0	1638.9	2626.6
VC.3: Main Exterior Walls: SW (A212°, 37.94 m², width 13.068 m)	37.9	0.193	0.4	0.9	100	1023.2	1401.8
VC.3: Main Exterior Walls: NW (A302°, 48.09 m², width 9.347 m)	48.1	0.193	0.4	0.9	100	1296.9	1776.9
VC.3: Main Exterior Walls: SE (A122°, 47.58 m², width 9.347 m)	47.6	0.193	0.4	0.9	100	1283.2	1758.1
VC.3: Main Exterior Walls: NE (A32°, 58.95 m², width 13.068 m)	59	0.193	0.4	0.9	100	1589.9	2178.2
VC.4: Lower Roof: SW (A212°, 43.9 m², width 13.068 m)	43.9	0.094	0.4	0.9	100	574.1	786.5
VC.5: Upper Roof: NE (A32°, 93.39 m², width 13.068 m)	93.4	0.094	0.4	0.9	100	1221.3	1673.3
VC.6: Basement Ambient Walls: SE (A122°, 17.28 m², width 9.347 m)	17.3	0.153	0.4	0.9	100	369.3	505.9
VC.6: Basement Ambient Walls: NW (A302°, 16.95 m², width 9.347 m)	16.9	0.153	0.4	0.9	100	362.3	496.4
VC.6: Basement Ambient Walls: SW (A212°, 18.85 m², width 13.068 m)	18.9	0.153	0.4	0.9	100	403	552.1
VC.6: Basement Ambient Walls: NE (A32°, 22.85 m², width 13.068 m)	22.9	0.153	0.4	0.9	100	488.5	669.2
VC.7: East Door: NW (A302°, 2.09 m², width 1.016 m)	2.1	0.703	0.4	0.9	100	205.5	281.6
VC.8: Basement Door: NE (A32°, 2.43 m², width 1.067 m)	2.4	0.703	0.4	0.9	100	238.4	326.7

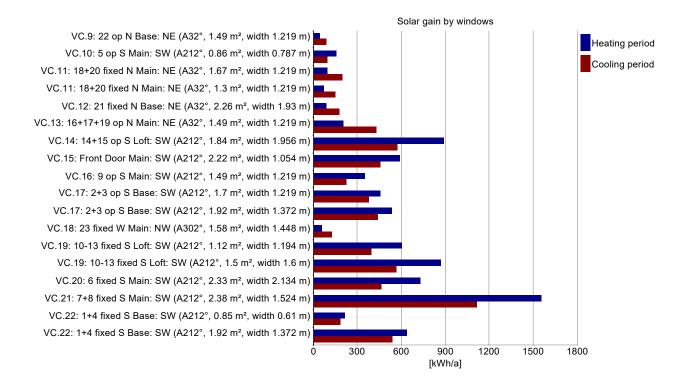
Degree hours [kKh/a]

	Heating	Cooling
Ambient heating	139.8	191.5
Ground heating	86.9	139.2

VC.1: Basement Ground Walls: NW (A302°, 13.92 m², width 9.347 m) VC.1: Basement Ground Walls: SE (A122°, 13.59 m², width 9.347 m) VC.1: Basement Ground Walls: NE (A32°, 14.13 m², width 13.068 m) VC.1: Basement Ground Walls: SW (A212°, 17.81 m², width 13.068 m) VC.2: Slab: Horizontal (122.15 m², width 15.138 m) VC.3: Main Exterior Walls: SW (A212°, 37.94 m², width 13.068 m) VC.3: Main Exterior Walls: NW (A302°, 48.09 m², width 9.347 m) VC.3: Main Exterior Walls: SE (A122°, 47.58 m², width 9.347 m) VC.3: Main Exterior Walls: NE (A32°, 58.95 m², width 13.068 m) VC.4: Lower Roof: SW (A212°, 43.9 m², width 13.068 m) VC.5: Upper Roof: NE (A32°, 93.39 m², width 13.068 m) VC.6: Basement Ambient Walls: SE (A122°, 17.28 m², width 9.347 m) VC.6: Basement Ambient Walls: NW (A302°, 16.95 m², width 9.347 m) VC.6: Basement Ambient Walls: SW (A212°, 18.85 m², width 13.068 m) VC.6: Basement Ambient Walls: NE (A32°, 22.85 m², width 13.068 m) VC.7: East Door: NW (A302°, 2.09 m², width 1.016 m) VC.8: Basement Door: NE (A32°, 2.43 m², width 1.067 m)

THERMAL BRIDGES

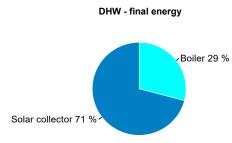

Name	Length [m]	Psi-value [W/mK]	Transmission losses [kWh/a]	Transmission losses cooling [kWh/a]
------	---------------	---------------------	-----------------------------------	---


WINDOWS

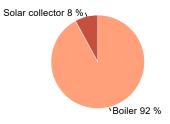
Transmission heat losses - windows

Name	Quan- tity	Incli- nation [°]	U-value total [W/m²K]	SHGC (perpen- dicular)	Reduction factor shading [%]	Reduction factor shading summer [%]	Solar gain heating [kWh/a]	Solar gain cooling [kWh/a]	Transmission losses heating [kWh/a]	Transmission losses cooling [kWh/a]
VC.9: 22 op N Base: NE (A32°, 1.49 m², width 1.219 m)	1	90	0.757	0.5	54.7	56	44.3	87.3	157.3	215.5
VC.10: 5 op S Main: SW (A212°, 0.86 m², width 0.787 m)	1	90	0.883	0.6	73.8	51.7	158	97.4	106.2	145.5
VC.11: 18+20 fixed N Main: NE (A32°, 1.67 m², width 1.219 m)	1	90	0.729	0.5	86	92.4	97.3	201	170.5	233.5
VC.11: 18+20 fixed N Main: NE (A32°, 1.3 m², width 1.219 m)	1	90	0.758	0.5	84.5	91.4	71.6	148.8	137.8	188.9
VC.12: 21 fixed N Base: NE (A32°, 2.26 m², width 1.93 m)	1	90	0.705	0.5	57.7	58.5	90.8	177	222.3	304.5
VC.13: 16+17+19 op N Main: NE (A32°, 1.49 m², width 1.219 m)	3	90	0.757	0.5	84.7	91.4	206.1	427.9	471.8	646.4
VC.14: 14+15 op S Loft: SW (A212°, 1.84 m², width 1.956 m)	2	90	0.813	0.6	79.4	57.7	893	570.9	417.9	572.5
VC.15: Front Door Main: SW (A212°, 2.22 m², width 1.054 m)	1	90	0.794	0.6	82.4	72.3	589.9	455.4	246.6	337.8
VC.16: 9 op S Main: SW (A212°, 1.49 m², width 1.219 m)	1	90	0.819	0.6	78.9	57.4	354	227	170.1	233.1
VC.17: 2+3 op S Base: SW (A212°, 1.7 m², width 1.219 m)	1	90	0.806	0.6	85.9	81	456.7	379.3	191.9	263
VC.17: 2+3 op S Base: SW (A212°, 1.92 m², width 1.372 m)	1	90	0.795	0.6	86.7	81.7	534.5	443.4	212.9	291.7
VC.18: 23 fixed W Main: NW (A302°, 1.58 m², width 1.448 m)	1	90	0.813	0.6	28.3	37.8	54.6	129.7	179.8	246.3
VC.19: 10-13 fixed S Loft: SW (A212°, 1.12 m², width 1.194 m)	2	90	0.85	0.6	76.9	57.5	604.7	398.2	266.6	365.3
VC.19: 10-13 fixed S Loft: SW (A212°, 1.5 m², width 1.6 m)	2	90	0.824	0.6	79.1	59	867	569.4	346.6	474.8
VC.20: 6 fixed S Main: SW (A212°, 2.33 m², width 2.134 m)	1	90	0.786	0.6	81.7	58.7	733.1	464.1	256	350.7
VC.21: 7+8 fixed S Main: SW (A212°, 2.38 m², width 1.524 m)	2	90	0.774	0.6	83.5	68	1,557.2	1,116.4	515	705.5
VC.22: 1+4 fixed S Base: SW (A212°, 0.85 m², width 0.61 m)	1	90	0.908	0.6	80.5	77.3	218.2	184.7	108.2	148.2
VC.22: 1+4 fixed S Base: SW (A212°, 1.92 m², width 1.372 m)	1	90	0.793	0.6	87.6	83.5	640.3	537.4	212.3	290.9

VC.9: 22 op N Base: NE (A32°, 1.49 m², width 1.219 m) VC.10: 5 op S Main: SW (A212°, 0.86 m², width 0.787 m) VC.11: 18+20 fixed N Main: NE (A32°, 1.67 m², width 1.219 m) VC.11: 18+20 fixed N Main: NE (A32°, 1.3 m², width 1.219 m) VC.12: 21 fixed N Base: NE (A32°, 2.26 m², width 1.93 m) VC.13: 16+17+19 op N Main: NE (A32°, 1.49 m², width 1.219 m) VC.14: 14+15 op S Loft: SW (A212°, 1.84 m², width 1.956 m) VC.15: Front Door Main: SW (A212°, 2.22 m², width 1.054 m) VC.16: 9 op S Main: SW (A212°, 1.49 m², width 1.219 m) VC.17: 2+3 op S Base: SW (A212°, 1.7 m², width 1.219 m) VC.17: 2+3 op S Base: SW (A212°, 1.92 m², width 1.372 m) VC.18: 23 fixed W Main: NW (A302°, 1.58 m², width 1.448 m) VC.19: 10-13 fixed S Loft: SW (A212°, 1.12 m², width 1.194 m) VC.19: 10-13 fixed S Loft: SW (A212°, 1.5 m², width 1.6 m) VC.20: 6 fixed S Main: SW (A212°, 2.33 m², width 2.134 m) VC.21: 7+8 fixed S Main: SW (A212°, 2.38 m², width 1.524 m) VC.22: 1+4 fixed S Base: SW (A212°, 0.85 m², width 0.61 m) VC.22: 1+4 fixed S Base: SW (A212°, 1.92 m², width 1.372 m)


Summary building envelope

	Total area / length	Average U-value / Psi value	Transmission losses
Exterior wall ambient:	273 m ²	0.19 W/m²K	7,260.2 kWh/a
Exterior wall ground:	59.4 m ²	0.154 W/m²K	794.5 kWh/a
Basement:	122.2 m ²	0.154 W/m²K	1,638.9 kWh/a
Roof:	137.3 m ²	0.094 W/m²K	1,795.4 kWh/a
Windows:	39.7 m ²	0.79 W/m²K	4,389.6 kWh/a
Doors:	0 m ²	0 W/m²K	0 kWh/a
Thermal bridge ambient:	0 m	0 W/mK	0 kWh/a
Thermal bridge perimeter:	0 m	0 W/mK	0 kWh/a
Thermal bridge floor slab:	0 m	0 W/mK	0 kWh/a


Shading

	Heating	Cooling
Reduction factor North:	75.1 %	79.7 %
Reduction factor East:	100 %	100 %
Reduction factor South:	81.8 %	66.5 %
Reduction factor West:	28.3 %	37.8 %
Reduction factor Horizontal:	100 %	100 %

	DHW			Heating			Total		
System	Covered DHW demand [%]	Estimated solar fraction [%]	Final energy demand [kWh/a]	Covered heating demand [%]	Estimated solar fraction [%]	Final energy demand [kWh/a]	Performance ratio	CO2 equivalent emissions [kg/a]	Source energy demand [kWh/a]
Boiler, Example Boiler	100	74	2,223.3	100	8	4,176.7	1.1	1,600	7,040
Solar collector, Example Solar Collector	0	0	5,419.2	0	0	359	0	0	0
Σ	100	74	7,642.5	100	8	4,535.7		1,600	7,040

Heating - final energy

Boiler

Boiler type:	Gas	
Condensing:	yes	
In thermal envelope:	yes	
Boiler output:	10	kW
Efficiency at 30% load:	99	%
Efficiency at normal output:	93	%
Heatloss at 70°C standby:	1.7	%

WUFI®Plus V.3.1.1.0: Ryerson University/Lubyk Ashley

VENTILATION

0.3 1/h
300 m³/h
30 m³/h
6
168 m³/h
0.19 1/h
0.03 1/h
0.01 1/h
0.04 1/h
0.02 1/h
0.05 1/h

Type of ventilation system:	Balanced PH ventilation
Wind screening coefficient (e):	0.07
Wind exposure factor:	15
Wind shield factor:	0.05

Ventilation heat losses:

1,326.78 kWh/a

Devices

Name	HRV / ERV efficiency [-]	Electric efficiency [Wh/m³]	Heat recovery efficiency SHX [-]	Effective recovery efficiency [-]
Main Floor HRV	0.9	0.42	0.3	0.9
Basement Suite HRV	0.9	0.42	0.3	0.9
Altogether	0.9	0.42	0.1	0.9

Name	Length (total) [m]	Clear cross-section [m²]	U-value [W/m²K]	Assigned ventilation units
Supply / outdoor air duct	2	0.0324	9.2	Main Floor HRV, Basement Suite HRV
Extract / Exhaust air duct	2	0.0324	9.2	Main Floor HRV, Basement Suite HRV
Σ	4			

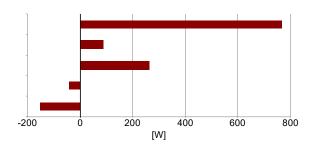
*length * quantity ** thermal conductivity / thickness

SUMMER VENTILATION

ACH night ventilation:	0.3	1/h
ACH natural summer:	0.03	1/h
Mechanical ventilation summer:	0.3	1/h
Mechanical ventilation summer with HR:	no	
Preferred minimum indoor temperature for night ventilation:	20	°C
Overheating temperature:	25	°C

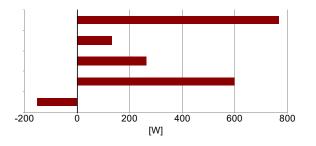
ELECTRICITY DEMAND - AUXILIARY ELECTRICITY

Туре	Quantity	Indoor	Norm demand	Electric demand [kWh/a]	Source energy [kWh/a]		El	ectric dema	nd	
Boiler DHW system auxiliary energy	1	yes	136 W	25.9	81.9					
Boiler heating auxiliary energy	1	yes	45 W	61.7	194.9					
Solarcollector auxiliary energy	1	no	44 W	77	243.3					
Ventilation winter	1	yes	0.4 Wh/m ³	397.6	1256.4					
Ventilation summer	1	yes	0.4 Wh/m ³	340.5	1075.9					
Heating system circulation pump	1	yes	73.4 W	308.5	975					
DHW circulating pump	1	yes	29.7 W	157.6	497.9					
DHW storage load pump	1	yes	63.7 W	46.7	147.5					
Σ				1415.4	4472.8	Ó	100	200 [kWh/a]	300	40


ELECTRICITY DEMAND RESIDENTIAL BUILDING

Туре	Quantity	Indoor	Norm demand	Electric demand [kWh/a]	Non-electric demand [kWh/a]	Source energy [kWh/a]		Electri	c deman	b	
Kitchen dishwasher	1	yes	1.2	234	148.5	902.8					
Laundry - washer	1	yes	1.1	206.9	86.8	749.3					
Laundry - dryer	1	yes	3.5	1047.4	0	3309.7					
Energy consumed by evaporation	0	yes	3.1	0	199	218.9					
Kitchen fridge/freeze combo	2	yes	1	730	0	2306.8					
Kitchen cooktop	1	yes	0.2	660	0	2085.6					
PHIUS+ 2015 Interior lighting	1	yes	2,190	2190	0	6920.4					
PHIUS+ 2015 Misc electric loads	1	yes	2,476.5	2476.5	0	7825.9					
Σ	8			7544.8	434.4	24319.5	0 7		500 Wh/a]	2250	3000

INTERNAL HEAT GAINS


Heating season

Electricity total:	766.3	W
Auxiliary electricity:	90.2	W
People:	264	W
Cold water:	-41.8	W
Evaporation:	-150	W
Σ:	934.9	W
Specific internal heat gains:	3.8	W/m²

Cooling season

Electricity total:	766.3	W
Auxiliary electricity:	133.4	W
People:	264	W
Cold and hot water:	598.4	W
Evaporation:	-150	W
Σ:	934.9	W
Specific internal heat gains:	3.8	W/m²

DHW AND DISTRIBUTION

DHW consumption per person per day:	25	Ltr/Person/day
Average cold water temperature supply:	5.4	°C
Useful heat DHW:	3,949.6	kWh/a
Specific useful heat DHW:	16.1	kWh/m²a
Total heat losses of the DHW system:	3,376.3	kWh/a
Specific losses of the DHW system:	13.7	kWh/m²a
Performance ratio DHW distribution system and storage:	1.9	
Utilization ratio DHW distribution system and storage:	0.5	
Total heat demand of DHW system:	7,325.9	kWh/a
Total specific heat demand of DHW system:	29.8	kWh/m²a
Total heat losses of the hydronic heating distribution:	385.6	kWh/a
Specific losses of the hydronic heating distribution:	1.6	kWh/m²a
Performance ratio of heat distribution:	109.4	%

Region	Length [m]	Annual heat loss [kWh/a]				
Hydronic heating distribution pipes						
In conditioned space	39.6	385.6				
Σ	39.6	385.6				
DHW circulation pipes						
In conditioned space	99.1	2219.7				
Σ	99.1	2219.7				
Individual pipes						
In conditioned space	49.5	502.5				
Σ	49.5	502.5				
Water storage						
Device 5 (Water storage: DHW)	654					
Σ	Σ					

SOLAR DHW

Name	Area of solar thermal array [m²]	Solar thermal yield [kWh/m²a]	Useful storage capacity [Liter]	Optimal storage capacity [Liter]	Reduction factor shading [-]	Estimated solar fraction of DHW [-]	Contribution to useful heat [kWh/m²a]
Device 4 (Solar collector: Heating, DHW): Example Solar Collector	11	546	700	825	1	0.74	5,419.22
Σ	11	546	700	825		0.7	5419.2

BUILDING INFORMATION

Category:	Residential
Status:	In planning
Building type:	New construction
Year of construction:	
Units:	2
Number of occupants:	6 (Design)

Boundary conditions

Climate:	Kelowna AP, BC
Internal heat gains:	3.2 W/m ²
Interior temperature:	20 °C
Overheat temperature:	25 °C

1

Building geometry

Enclosed volume:	1,043.3 m³
Net-volume:	864.6 m ³
Total area envelope:	631.6 m ²
AV ratio:	0.6 1/m
Floor area:	245.7 m ²

PASSIVEHOUSE REQUIREMENTS

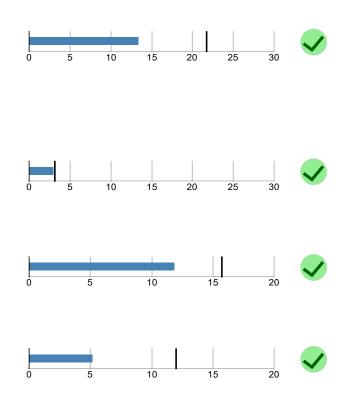
Certificate criteria:

PHIUS+ 2015 Standard

Heating demand

specific:	13.35	kWh/m²a
target:	21.77	kWh/m²a
total:	3,279.45	kWh/a

Cooling demand


sensible:	2.91	kWh/m²a
latent:	0	kWh/m²a
specific:	2.91	kWh/m²a
target:	3.15	kWh/m²a
total:	715.6	kWh/a

Heating load

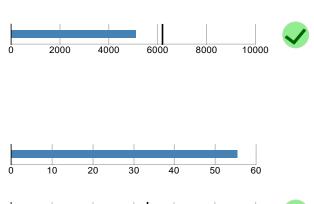
specific:	11.89 W/m ²
target:	15.77 W/m ²
total:	2,922.48 W

Cooling load

specific:	5.2 W/m ²
target:	11.99 W/m ²
total:	1,277.05 W

Source e	energy
----------	--------

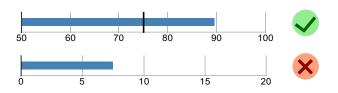
PHIUS+ Source Zero: NO

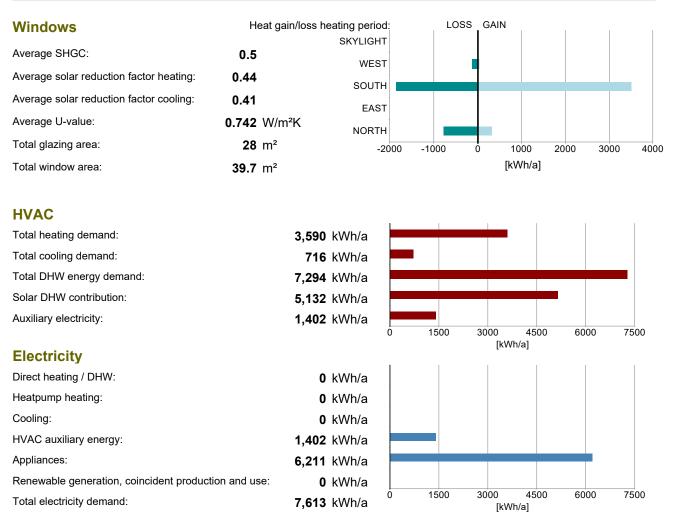

30,656.81	kWh/a
5,109	kWh/Person a
6,200	kWh/Person a
124.77	kWh/m²a
	6,200

total:	13,612.37 kWh/a
specific:	55.4 kWh/m²a

Air tightness

ACH50:	0.3	1/h
CFM50 per envelope area:	0.41	m³/m²h
target:	0.67	1/h
target CFM50:	0.91	m³/m²h




PASSIVEHOUSE RECOMMENDATIONS

HRV efficiency:	89.4 %
Frequency of overheating: Cooling system is not required	7.5 %

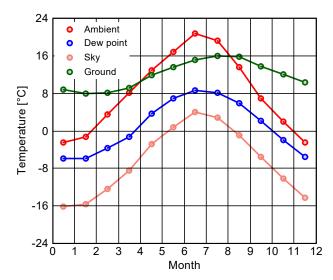
Frequency of overheating only applies if there is not a [properly sized] cooling system installed.

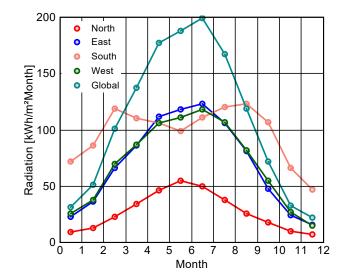
BUILDING ELEMENTS

HEAT FLOW - HEATING PERIOD

Heat gains

Solar: Inner sources: Credit of thermal bridges:	4,779 kWh/a 4,128 kWh/a	Mechanical heating 23 % Credit of thermal bridges 0 %
Credit of thermal bridges: Mechanical heating:	0 kWh/a 3,279 kWh/a	Inner sources 36 %
Heat losses Opaque building envelope:	7,761 kWh/a	Mechanical ventilation 5 % Natural ventilation 5 %
Windows & Doors: Natural ventilation:	3,207 kWh/a 652 kWh/a	Windows & Doors 26 % - Opaque building envelope 64 %
Mechanical ventilation:	565 kWh/a	


3


CLIMATE

Latitude:	50	0
Longitude:	-119.4	0
Elevation of weather station:	430	m
Elevation of building site:	430	m
Heat capacity air:	0.33	Wh/m³K
Daily temperature swing summer:	16.9	к
Average wind speed:	4	m/s

Ground

Average ground surface temperature:	9.1	°C
Amplitude ground surface temperature:	11.7	°C
Ground thermal conductivity:	2	W/mK
Ground heat capacity:	2	MJ/m³K
Depth below grade of groundwater:	3	m
Flow rate groundwater:	0.1	m/d

22

27

Calculation parameters

Length of heating period	273 days/a
Heating degree hours	93.7 kKh/a
Phase shift months	1.4 mths
Time constant heating demand	118.1 h

Time constant cooling demand

Solar radiation West [W/m²]

Solar radiation Global [W/m²]

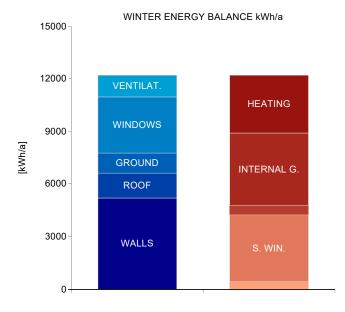
	in ocoming o	omana									
Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
69.2	69.2	69.2	69.2	69.2	69.2	69.2	69.2	69.2	69.2	69.2	69.2
Climate for					Heating load 1 Heating load 2		Cooling				
Temperature [°C]			-12.3		-7.6		24	1			
Solar radiation North [W/m²]				12		10		63	3		
Solar radiation East [W/m²]			26		17		204				
Solar radiation South [W/m²]			68 50			174					

27

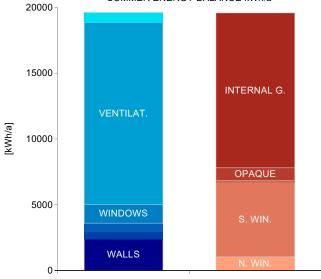
35

Relevant boundary conditions for heating load calculation: Heating load 1

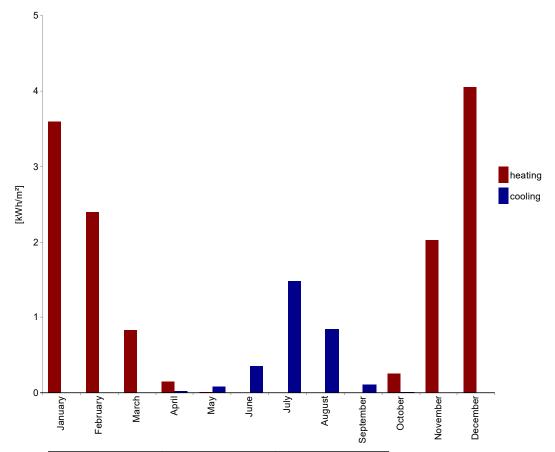
4


171

ANNUAL HEAT DEMAND

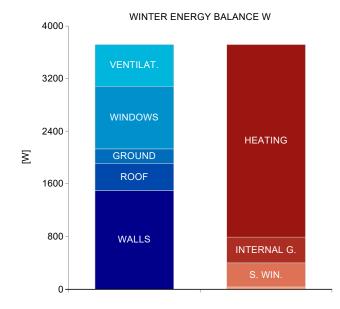

Transmission losses :	10,968	kWh/a
Ventilation losses:	1,217	kWh/a
Total heat losses:	12,186	kWh/a
Color haat vaine.		
Solar heat gains:	6,004	kWh/a
Internal heat gains:	5,186	kWh/a
Total heat gains:	11,190	kWh/a
Utilization factor:	79.6	%
Useful heat gains:	8,906	kWh/a
Annual heat demand:	3,279	kWh/a
Specific annual heat demand:	13.3	kWh/m²a

ANNUAL COOLING DEMAND

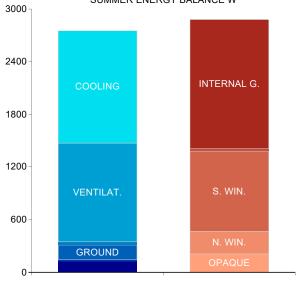

Solar heat gains:	7,788	kWh/a
Internal heat gains:	11,770	kWh/a
Total heat gains:	19,558	kWh/a
Transmission losses :	14,620	kWh/a
Ventilation losses:	40,800	kWh/a
Total heat losses:	55,421	kWh/a
Utilization factor:	34	%
Useful heat losses:	18,843	kWh/a
Cooling demand - sensible:	716	kWh/a
Cooling demand - latent:	0	kWh/a
Annual cooling demand:	716	kWh/a
Specific annual cooling demand:	2.9	kWh/m²a

SUMMER ENERGY BALANCE kWh/a

SPECIFIC HEAT/COOLING DEMAND MONTHLY


Month	Heating [kWh/m²]	Cooling [kWh/m²]
January	3.6	0
February	2.4	0
March	0.8	0
April	0.1	0
Мау	0	0.1
June	0	0.4
July	0	1.5
August	0	0.8
September	0	0.1
October	0.3	0
November	2	0
December	4.1	0

WUFI®Plus V.3.1.1.0: Ryerson University/Lubyk Ashley


HEATING LOAD				
	First climate	Second climate		
Transmission heat losses:	3,083 W	2,683.2 W		
Ventilation heat losses:	632.3 W	543.4 W		
Total heat loss:	3,715.3 W	3,226.6 W		
Solar heat gain:	399.7 W	300.3 W		
Internal heat gain:	393.1 W	393.1 W		
Total heat gains heating:	792.8 W	693.4 W		
Heating load:	2,922.5 W	2,533.2 W		
Relevant heating load:	2,92	22.5 W		
Specific heating load:	11.9 W/m ²			

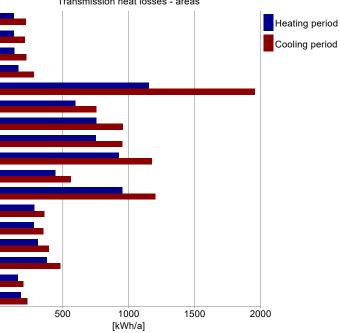
COOLING LOAD

Solar heat gain:	1,408.4	W
Internal heat gain:	1,468.4	W
Total heat gains cooling:	2,876.8	W
Transmission heat losses:	469.1	W
Ventilation heat losses:	1,130.6	W
Total heat loss:	1,599.7	W
Cooling load - sensible:	1,277	\٨/
Ũ	-	
Cooling load - latent:	0	W
Relevant cooling load:	1,277	W
Specific maximum cooling load:	5.2	W/m²

SUMMER ENERGY BALANCE W

Σ

AREAS


Transmission heat losses - areas

Name	Area [m²]	Average U-value [W/m²K]	Absorption coefficient	Emission coefficient	Reduction factor shading [%]	Transmission losses heating [kWh/a]	Transmission losses cooling [kWh/a]
VC.1: Basement Ground Walls: NW (A302°, 13.92 m², width 9.347 m)	13.9	0.154	0	0	0	131.3	222.6
VC.1: Basement Ground Walls: SE (A122°, 13.59 m², width 9.347 m)	13.6	0.154	0	0	0	128.2	217.3
VC.1: Basement Ground Walls: NE (A32°, 14.13 m², width 13.068 m)	14.1	0.154	0	0	0	133.4	226
VC.1: Basement Ground Walls: SW (A212°, 17.81 m², width 13.068 m)	17.8	0.154	0	0	0	168	284.8
VC.2: Slab: Horizontal (122.15 m ² , width 15.138 m)	122.2	0.154	0	0	0	1157	1961
VC.3: Main Exterior Walls: SW (A212°, 37.94 m², width 13.068 m)	37.9	0.145	0.4	0.9	100	598.7	757.8
VC.3: Main Exterior Walls: NW (A302°, 48.09 m², width 9.347 m)	48.1	0.145	0.4	0.9	100	758.8	960.5
VC.3: Main Exterior Walls: SE (A122°, 47.58 m², width 9.347 m)	47.6	0.145	0.4	0.9	100	750.8	950.3
VC.3: Main Exterior Walls: NE (A32°, 58.95 m², width 13.068 m)	59	0.145	0.4	0.9	100	930.2	1177.5
VC.4: Lower Roof: SW (A212°, 43.9 m², width 13.068 m)	43.9	0.094	0.4	0.9	100	446.6	565.3
VC.5: Upper Roof: NE (A32°, 93.39 m², width 13.068 m)	93.4	0.094	0.4	0.9	100	950.1	1202.6
VC.6: Basement Ambient Walls: SE (A122°, 17.28 m², width 9.347 m)	17.3	0.153	0.4	0.9	100	287.3	363.6
VC.6: Basement Ambient Walls: NW (A302°, 16.95 m², width 9.347 m)	16.9	0.153	0.4	0.9	100	281.8	356.7
VC.6: Basement Ambient Walls: SW (A212°, 18.85 m², width 13.068 m)	18.9	0.153	0.4	0.9	100	313.5	396.8
VC.6: Basement Ambient Walls: NE (A32°, 22.85 m², width 13.068 m)	22.9	0.153	0.4	0.9	100	380	481
VC.7: East Door: NW (A302°, 2.09 m², width 1.016 m)	2.1	0.703	0.4	0.9	100	159.9	202.4
VC.8: Basement Door: NE (A32°, 2.43 m², width 1.067 m)	2.4	0.703	0.4	0.9	100	185.5	234.8

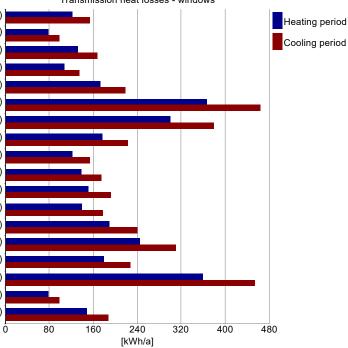
Degree hours [kKh/a]

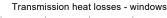
	Heating	Cooling
Ambient heating	108.8	137.7
Ground heating	61.3	104

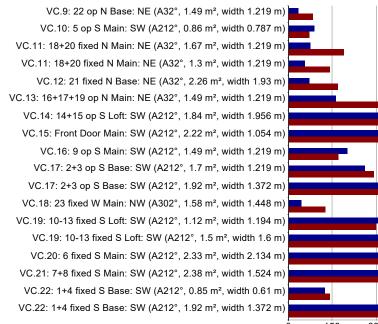
VC.1: Basement Ground Walls: NW (A302°, 13.92 m², width 9.347 m) VC.1: Basement Ground Walls: SE (A122°, 13.59 m², width 9.347 m) VC.1: Basement Ground Walls: NE (A32°, 14.13 m², width 13.068 m) VC.1: Basement Ground Walls: SW (A212°, 17.81 m², width 13.068 m) VC.2: Slab: Horizontal (122.15 m², width 15.138 m) VC.3: Main Exterior Walls: SW (A212°, 37.94 m², width 13.068 m) VC.3: Main Exterior Walls: NW (A302°, 48.09 m², width 9.347 m) VC.3: Main Exterior Walls: SE (A122°, 47.58 m², width 9.347 m) VC.3: Main Exterior Walls: NE (A32°, 58.95 m², width 13.068 m) VC.4: Lower Roof: SW (A212°, 43.9 m², width 13.068 m) VC.5: Upper Roof: NE (A32°, 93.39 m², width 13.068 m) VC.6: Basement Ambient Walls: SE (A122°, 17.28 m², width 9.347 m) VC.6: Basement Ambient Walls: NW (A302°, 16.95 m², width 9.347 m) VC.6: Basement Ambient Walls: SW (A212°, 18.85 m², width 13.068 m) VC.6: Basement Ambient Walls: NE (A32°, 22.85 m², width 13.068 m) VC.7: East Door: NW (A302°, 2.09 m², width 1.016 m) VC.8: Basement Door: NE (A32°, 2.43 m², width 1.067 m) ò

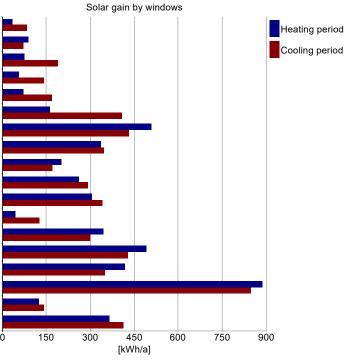
Transmission heat losses - areas

THERMAL BRIDGES

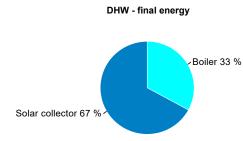

Name	Length [m]	Psi-value [W/mK]	Transmission losses [kWh/a]	Transmission losses cooling [kWh/a]
------	---------------	---------------------	-----------------------------------	---


WINDOWS

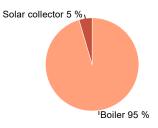

Transmission heat losses - windows


Name	Quan- tity	Incli- nation [°]	U-value total [W/m²K]	SHGC (perpen- dicular)	Reduction factor shading [%]	Reduction factor shading summer [%]	Solar gain heating [kWh/a]	Solar gain cooling [kWh/a]	Transmission losses heating [kWh/a]	Transmission losses cooling [kWh/a]
VC.9: 22 op N Base: NE (A32°, 1.49 m², width 1.219 m)	1	90	0.757	0.5	54.8	55.6	34.8	82.6	122.3	154.8
VC.10: 5 op S Main: SW (A212°, 0.86 m², width 0.787 m)	1	90	0.832	0.5	73.1	50.3	89.7	73.3	77.8	98.5
VC.11: 18+20 fixed N Main: NE (A32°, 1.67 m², width 1.219 m)	1	90	0.729	0.5	86.1	92.3	76.4	191.3	132.6	167.8
VC.11: 18+20 fixed N Main: NE (A32°, 1.3 m², width 1.219 m)	1	90	0.758	0.5	84.6	91.3	56.1	141.7	107.2	135.7
VC.12: 21 fixed N Base: NE (A32°, 2.26 m², width 1.93 m)	1	90	0.705	0.5	57.9	58.1	71.4	167.5	172.9	218.9
VC.13: 16+17+19 op N Main: NE (A32°, 1.49 m², width 1.219 m)	3	90	0.757	0.5	84.7	91.4	161.7	407.4	367	464.5
VC.14: 14+15 op S Loft: SW (A212°, 1.84 m², width 1.956 m)	2	90	0.75	0.5	78.7	56.2	507.6	430.8	300	379.7
VC.15: Front Door Main: SW (A212°, 2.22 m², width 1.054 m)	1	90	0.728	0.5	81.9	71.2	336.3	347.1	175.9	222.6
VC.16: 9 op S Main: SW (A212°, 1.49 m², width 1.219 m)	1	90	0.757	0.5	78.2	56	201.2	171.2	122.3	154.8
VC.17: 2+3 op S Base: SW (A212°, 1.7 m², width 1.219 m)	1	90	0.742	0.5	85.5	80.2	260.8	290.7	137.4	174
VC.17: 2+3 op S Base: SW (A212°, 1.92 m², width 1.372 m)	1	90	0.729	0.5	86.3	80.9	305.2	339.9	151.9	192.2
VC.18: 23 fixed W Main: NW (A302°, 1.58 m², width 1.448 m)	1	90	0.813	0.6	28.5	38.1	44.3	127.1	139.8	177
VC.19: 10-13 fixed S Loft: SW (A212°, 1.12 m², width 1.194 m)	2	90	0.778	0.5	76.2	56.1	343.7	300.7	189.9	240.3
VC.19: 10-13 fixed S Loft: SW (A212°, 1.5 m², width 1.6 m)	2	90	0.749	0.5	78.5	57.6	493	430.1	245.2	310.3
VC.20: 6 fixed S Main: SW (A212°, 2.33 m², width 2.134 m)	1	90	0.707	0.5	81	57.3	416.8	350.2	179.1	226.7
VC.21: 7+8 fixed S Main: SW (A212°, 2.38 m², width 1.524 m)	2	90	0.693	0.5	82.9	66.7	887	847.5	359	454.4
VC.22: 1+4 fixed S Base: SW (A212°, 0.85 m², width 0.61 m)	1	90	0.843	0.5	80.1	76.6	124.5	141.6	78.1	98.8
VC.22: 1+4 fixed S Base: SW (A212°, 1.92 m², width 1.372 m)	1	90	0.714	0.5	87.3	82.8	365.7	412.3	148.9	188.4

VC.9: 22 op N Base: NE (A32°, 1.49 m², width 1.219 m) VC.10: 5 op S Main: SW (A212°, 0.86 m², width 0.787 m) VC.11: 18+20 fixed N Main: NE (A32°, 1.67 m², width 1.219 m) VC.11: 18+20 fixed N Main: NE (A32°, 1.3 m², width 1.219 m) VC.12: 21 fixed N Base: NE (A32°, 2.26 m², width 1.93 m) VC.13: 16+17+19 op N Main: NE (A32°, 1.49 m², width 1.219 m) VC.14: 14+15 op S Loft: SW (A212°, 1.84 m², width 1.956 m) VC.15: Front Door Main: SW (A212°, 2.22 m², width 1.054 m) VC.16: 9 op S Main: SW (A212°, 1.49 m², width 1.219 m) VC.17: 2+3 op S Base: SW (A212°, 1.7 m², width 1.219 m) VC.17: 2+3 op S Base: SW (A212°, 1.92 m², width 1.372 m) VC.18: 23 fixed W Main: NW (A302°, 1.58 m², width 1.448 m) VC.19: 10-13 fixed S Loft: SW (A212°, 1.12 m², width 1.194 m) VC.19: 10-13 fixed S Loft: SW (A212°, 1.5 m², width 1.6 m) VC.20: 6 fixed S Main: SW (A212°, 2.33 m², width 2.134 m) VC.21: 7+8 fixed S Main: SW (A212°, 2.38 m², width 1.524 m) VC.22: 1+4 fixed S Base: SW (A212°, 0.85 m², width 0.61 m) VC.22: 1+4 fixed S Base: SW (A212°, 1.92 m², width 1.372 m)


Summary building envelope

	Total area / length	Average U-value / Psi value	Transmission losses
Exterior wall ambient:	273 m ²	0.156 W/m²K	4,646.4 kWh/a
Exterior wall ground:	59.4 m ²	0.154 W/m²K	560.9 kWh/a
Basement:	122.2 m ²	0.154 W/m²K	1,157 kWh/a
Roof:	137.3 m ²	0.094 W/m²K	1,396.7 kWh/a
Windows:	39.7 m ²	0.742 W/m²K	3,207.3 kWh/a
Doors:	0 m ²	0 W/m²K	0 kWh/a
Thermal bridge ambient:	0 m	0 W/mK	0 kWh/a
Thermal bridge perimeter:	0 m	0 W/mK	0 kWh/a
Thermal bridge floor slab:	0 m	0 W/mK	0 kWh/a


Shading

	Heating	Cooling
Reduction factor North:	75.2 %	79.5 %
Reduction factor East:	100 %	100 %
Reduction factor South:	81.2 %	65.3 %
Reduction factor West:	28.5 %	38.1 %
Reduction factor Horizontal:	100 %	100 %

DHW			Heating			Total			
System	Covered DHW demand [%]	Estimated solar fraction [%]	Final energy demand [kWh/a]	Covered heating demand [%]	Estimated solar fraction [%]	Final energy demand [kWh/a]	Performance ratio	CO2 equivalent emissions [kg/a]	Source energy demand [kWh/a]
Boiler, Example Boiler	100	70.4	2,517.7	100	4.6	3,481.4	1.1	1,499.8	6,599.1
Solar collector, Example Solar Collector	0	0	5,131.6	0	0	165.6	0	0	0
Σ	100	70.4	7,649.3	100	4.6	3,647		1,499.8	6,599.1

Heating - final energy

Boiler

Boiler type:	Gas	
Condensing:	yes	
In thermal envelope:	yes	
Boiler output:	10	kW
Efficiency at 30% load:	99	%
Efficiency at normal output:	93	%
Heatloss at 70°C standby:	1.7	%

WUFI®Plus V.3.1.1.0: Ryerson University/Lubyk Ashley

VENTILATION

Infiltration pressure test ACH50: 0.	3	1/h
Total extract air demand: 30	0	m³/h
Supply air per person: 3	0	m³/h
Occupancy:	6	
Average air flow rate: 16	8	m³/h
Average air change rate: 0.1	9	1/h
Effective ACH ambient: 0.0	3	1/h
Effective ACH ground: 0.0	1	1/h
Energetically effective air exchange: 0.0	4	1/h
Infiltration air change rate: 0.0	2	1/h
Infiltration air change rate (heating load): 0.0	5	1/h

Type of ventilation system:	Balanced PH ventilation
Wind screening coefficient (e):	0.07
Wind exposure factor:	15
Wind shield factor:	0.05

Ventilation heat losses:

1,044.76 kWh/a

Devices

Name	HRV / ERV efficiency [-]	Electric efficiency [Wh/m³]	Heat recovery efficiency SHX [-]	Effective recovery efficiency [-]	
Main Floor HRV	0.9	0.42	0.3	0.9	
Basement Suite HRV	0.9	0.42	0.3	0.9	
Altogether	0.9	0.42	0.1	0.9	

Ducts

Length (total) [m]	Clear cross-section [m²]	U-value [W/m²K]	Assigned ventilation units
2	0.0324	9.14	Main Floor HRV, Basement Suite HRV
2	0.0324	9.14	Main Floor HRV, Basement Suite HRV
4			
	(total) [m] 2 2	(total) cross-section 2 0.0324 2 0.0324	(total) [m] cross-section [m²] U-value [W/m³K] 2 0.0324 9.14 2 0.0324 9.14

*length * quantity ** thermal conductivity / thickness

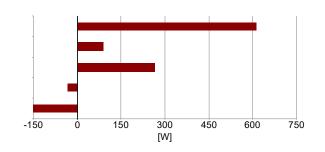
SUMMER VENTILATION

ACH night ventilation:	0.3	1/h
ACH natural summer:	0.03	1/h
Mechanical ventilation summer:	0.3	1/h
Mechanical ventilation summer with HR:	no	
Preferred minimum indoor temperature for night ventilation:	20	°C
Overheating temperature:	25	°C

13

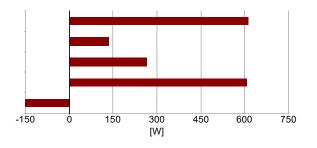
ELECTRICITY DEMAND - AUXILIARY ELECTRICITY

Туре	Quantity	Indoor	Norm demand	Electric demand [kWh/a]	Source energy [kWh/a]		Ele	ectric dema	ind	
Boiler DHW system auxiliary energy	1	yes	136 W	29.4	92.9					
Boiler heating auxiliary energy	1	yes	45 W	51.4	162.3					
Solarcollector auxiliary energy	1	no	44 W	77	243.3					
Ventilation winter	1	yes	0.4 Wh/m ³	371.7	1174.6					
Ventilation summer	1	yes	0.4 Wh/m ³	380.4	1202.1					
Heating system circulation pump	1	yes	73.4 W	288.5	911.5					
DHW circulating pump	1	yes	29.7 W	157.6	497.9					
DHW storage load pump	1	yes	63.7 W	46.5	146.8					
Σ				1402.4	4431.6	Ó	100	200 [kWh/a]	300	400


ELECTRICITY DEMAND RESIDENTIAL BUILDING

Туре	Quantity	Indoor	Norm demand	Electric demand [kWh/a]	Non-electric demand [kWh/a]	Source energy [kWh/a]		Electric	demand		
Kitchen dishwasher	1	yes	1.2	234	146.8	901					
Laundry - washer	1	yes	1.1	206.9	85.8	748.2					
Laundry - dryer	1	yes	3.5	1047.4	0	3309.7					
Energy consumed by evaporation	0	yes	3.1	0	213.1	234.4					
Kitchen fridge/freeze combo	2	yes	1	730	0	2306.8					
Kitchen cooktop	1	yes	0.2	660	0	2085.6					
PHIUS+ 2015 Interior lighting	1	yes	856	856	0	2704.9					
PHIUS+ 2015 Misc electric loads	1	yes	2,476.5	2476.5	0	7825.9					
Σ	8			6210.8	445.7	20116.5	0 75	50 15 [kW	00 'h/a]	2250	3000

INTERNAL HEAT GAINS


Heating season

Electricity total:	614	W
Auxiliary electricity:	89.7	W
People:	264	W
Cold water:	-31.6	W
Evaporation:	-150	W
Σ:	791.5	W
Specific internal heat gains:	3.2	W/m²

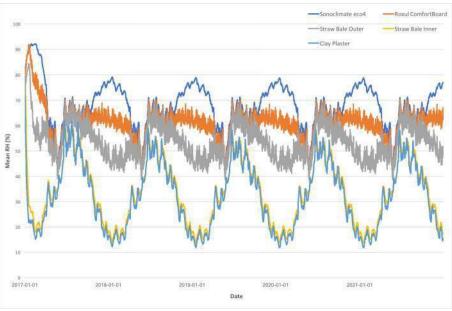
Cooling season

Electricity total:	614	W
Auxiliary electricity:	134.2	W
People:	264	W
Cold and hot water:	608.6	W
Evaporation:	-150	W
Σ:	791.5	W
Specific internal heat gains:	3.2	W/m²

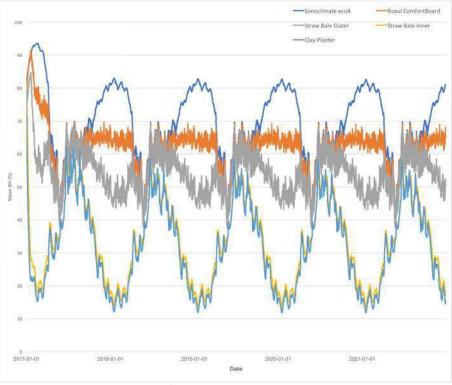
WUFI®Plus V.3.1.1.0: Ryerson University/Lubyk Ashley

15

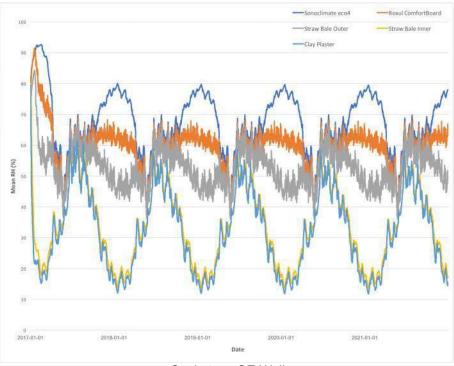
DHW AND DISTRIBUTION

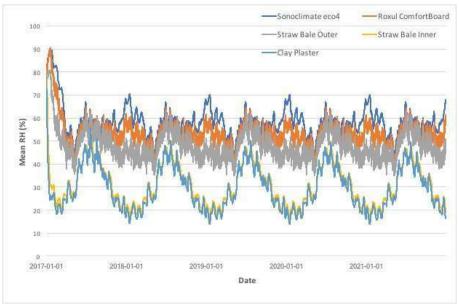

DHW consumption per person per day:	25	Ltr/Person/day
Average cold water temperature supply:	5.4	°C
Useful heat DHW:	3,949.6	kWh/a
Specific useful heat DHW:	16.1	kWh/m²a
Total heat losses of the DHW system:	3,344.1	kWh/a
Specific losses of the DHW system:	13.6	kWh/m²a
Performance ratio DHW distribution system and storage:	1.8	
Utilization ratio DHW distribution system and storage:	0.5	
Total heat demand of DHW system:	7,293.7	kWh/a
Total specific heat demand of DHW system:	29.7	kWh/m²a
Total heat losses of the hydronic heating distribution:	310.8	kWh/a
Specific losses of the hydronic heating distribution:	1.3	kWh/m²a
Performance ratio of heat distribution:	109.5	%

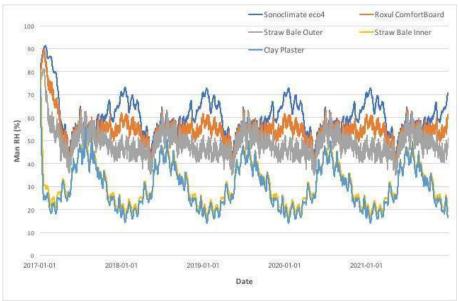
Region	Length [m]	Annual heat loss [kWh/a]					
Hydronic heating distribution pipes							
In conditioned space	39.6	310.8					
Σ	39.6	310.8					
DHW circulation pipes							
In conditioned space	99.1	2198.6					
Σ	99.1	2198.6					
Individual pipes							
In conditioned space	49.5	497.7					
Σ	49.5	497.7					
Water storage							
Device 5 (Water storage: DHW)	647.8						
Σ		647.8					

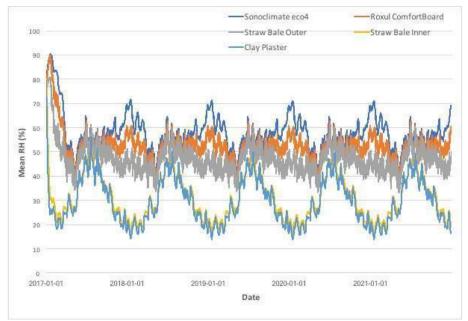

SOLAR DHW

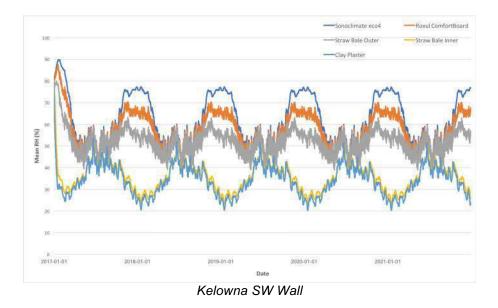
Name	Area of solar thermal array [m²]	Solar thermal yield [kWh/m²a]	Useful storage capacity [Liter]	Optimal storage capacity [Liter]	Reduction factor shading [-]	Estimated solar fraction of DHW [-]	Contribution to useful heat [kWh/m²a]
Device 4 (Solar collector: Heating, DHW): Example Solar Collector	11	546	700	825	1	0.704	5,131.56
Σ	11	546	700	825		0.7	5131.6

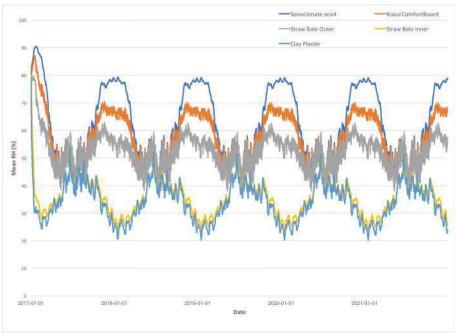

Appendix IV: Plots from Hygrothermal Analysis


Saskatoon SW Wall

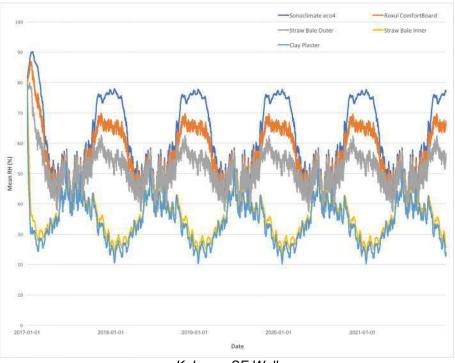

Saskatoon NW Wall


Saskatoon SE Wall


Calgary SW Wall



Calgary NW Wall



Calgary SE Wall

Kelowna NW Wall

Kelowna SE Wall

Appendix V: WUFI PASSIVE OUTPUT WITH ADJUSTED OCCUPANCY

WUFI Passive output showing impact of the proposed straw bale assembly adapted to reference house for two occupancy scenarios (6 occupants corresponds to the 'as-designed' home with the secondary suite, while 5 occupants corresponds to the same home without a secondary suite - the additional kitchen and HRV unit were removed, and occupant loads were adjusted to reflect the change) for the select cities (compared to the 'as designed' and PHIUS+ 2015 targets). Targets that are not satisfied are highlighted.

Saskatoon						
			v bale	Straw bale		
Metric	Target	6 occupants		5 000	cupants	
	Ű	Output	% Below Target	Output	% Below Target	
Annual Heating Demand (kWh/m ² a)	28.39	27.3	4.0	28.96	-2.0%	
Annual Cooling Demand (kWh/m ² a)	3.15	2	57.5	1.72	83.1%	
Peak Heating Load (W/ m ²)	19.24	17.71	8.6	17.80	8.1%	
Peak Cooling Load (W/ m ²)	11.67	4.45	162.2	4.07	186.7%	
Source Energy Demand (kWh/person•yr)	6,200	5605	10.6	6275	-1.2%	
		Calgary				
Metric	Target		v bale upants		w bale cupants	
Metric	rarget	Output	% Below Target	Output	% Below Target	
Annual Heating Demand (kWh/m ² a)	27.13	16.63	63.1	20.45	32.7	
Annual Cooling Demand (kWh/m ² a)	3.15	2.16	45.8	1.69	86.4	
Peak Heating Load (W/ m ²)	19.24	15.86	21.3	15.93	20.8	
Peak Cooling Load (W/ m ²)	10.41	2.86	264.0	2.17	379.7	
Source Energy Demand (kWh/person•yr)	6200	5892	5.2	5874	5.5	
	1	Kelowna				
Metric	Target		v bale upants	Straw bale 5 occupants		
	Target	Output	% Below Target	Output	% Below Target	
Annual Heating Demand (kWh/m ² a)	21.77	13.35	63.1	14.68	48.3	
Annual Cooling Demand (kWh/m ² a)	3.15	2.91	8.2	2.52	25.0	
Peak Heating Load (W/ m ²)	15.77	11.89	32.6	11.95	32.0	
Peak Cooling Load (W/ m ²)	11.99	5.2	130.6	4.80	149.8	
Source Energy Demand (kWh/person•yr)	6200	5109	21.4	5653	9.7	

Works Cited

- 475 High Performance Building Supply. (2014, Aug 26). *How to Select the Right Tape*. Retrieved Nov 7, 2017, from 475 High Performance Building Supply: https://foursevenfive.com/how-to-select-the-right-tape/
- Alter, L. (2017, Sept 29). Zero House zeros out greenhouse gases, utility bills, toxic materials. Retrieved from Tree Hugger: https://www.treehugger.com/slideshows/green-architecture/zero-house-bignothing/
- Andres, P. (2015). Investigation of the Life Cycle Carbon Impact of Passive House Building Envelopes in Canada! . Ryerson University, Toronto.
- Architecture 2030. (2014, June 4). *Roadmap to Zero Emissions*. Retrieved Nov 1, 2017, from http://architecture2030.org/files/roadmap_web.pdf
- Ashour, T., Georg, H., & Wu, W. (2011). Performance of straw bale wall: A case of study. *Energy and Buildings, 43*, 1960–1967.
- ASRi. (2013). The Straw Bale Alternative Solutions Resource. ASRi. ASRi.
- Attwood, B. (2012). A Comparison Of Building Envelope Performance Levels Between Ontario, Denmark, Germany And The Passive House Standard, In The Low-Rise, Residential Context . MRP, Ryerson University.
- Badea, A., Baracu, T., Dinca, C., Tutica, D., Grigore, R., & Anastasiu, M. (2014). A lifecycle cost analysis of the passive house "POLITEHNICA" from Bucharest. *Energy and Buildings, 80*, 542–555.
- Balicki, A. (2014). *REDUCING LINEAR THERMAL BRIDGING IN PASSIVE HOUSE DETAILS.* MRP, Ryerson University, Toronto.
- Bronsema, N. (2010). *Moisture Movement and Mould Management in Straw Bale Walls* for a Cold Climate. Thesis, University of Waterloo, Civil Engineering, Waterloo.
- Burnett, E. &. (2005). *Building Science for Building Enclosures.* Westford, MA: Building Science Press.
- Canada Mortgage and Housing Corporation. (2017). *Permitting Secondary Suites*. Retrieved from Canada Mortgage and Housing Corporation: https://www.cmhcschl.gc.ca/en/inpr/afhoce/afhoce/afhostcast/afhoid/pore/pesesu/pesesu_001.cfm
- Canada Weather Stats. (2017). Retrieved from Canada Weather Stats: https://www.weatherstats.ca
- Endeavour Centre. (2017, Jul 06). Zero House. Retrieved from Endeavour Centre: http://endeavourcentre.org/category/zero-house/
- Endeavour Centre. (n.d.). Peterborough, Canada.
- Erb, N. P. (2014). TOWARDS ASSESSING BUILDABILITY IN WOOD FRAMED, SUPERINSULATED WALL ASSEMBLIES. MRP, Ryerson University, Toronto.
- Frappe-Seneclauze, T., Heerema, D., & Wu, K. (2016). Accelerating Market Transformation for High-Performance Building Enclosures: State of market, policy developments, and lessons learned from the Passive House movement. Pembina Institute. Calgary: Pembina Institue.
- Frey, S. (2014, Oct 16). Vermont's First Strawbale Senior Affordable Housing Project. Retrieved Nov 07, 2017, from Linkedin:

https://www.linkedin.com/pulse/20141016183130-7345603-vermont-s-first-strawbale-senior-affordable-housing-project/

- Gagne, L. (1997). *Pilot study of moisture control in stuccoed straw bale walls.* . Report for Canada Mortgage and Housing Corporation, Ottawa.
- Graham, B. (2014, Nov 17). *StrawCell 3rd Generation Strawbale Wall*. Retrieved from New Frameworks: http://newframeworks.com/2015/02/strawcell-3rd-generation-strawbale-wall/
- GrAT. (2004). S-House. Retrieved from GrAT: http://www.s-house.at/BSs-house.htm
- GrAT. (2004). S-House: Balanced Technologies. Retrieved from http://www.shouse.at/presentation_s_house.pdf
- Griffin, K. A. (2010). *Night flushing and thermal mass: maximizing natural ventilation for energy conservation through architectural features*. Thesis, UNIVERSITY OF SOUTHERN CALIFORNIA, USC SCHOOL OF ARCHITECTURE, Los Angeles.
- Holzhueter, K. (2010). *The Hygrothermal Environment of Straw Bale Walls in Japan and Building Practices to Control Interstitial Moisture*. Thesis, Nihon University, Bioresource Sciences.
- International Code Council (ICC). (2015, Oct 18). *Appendix S Strawbale Construction with Commentary.* Retrieved Oct 09, 2017, from CASBA: http://www.strawbuilding.org/news/3587353
- Jolly, R. (2000). *Strawbale moisture monitoring report.* Report for Canada Mortgage and Housing Corporation, Ottawa.
- King, B. (2006). Design of Straw Bale Buildings. San Rafael, CA: Green Building Press.
- Klingenberg, K. (2017). *Measuring Passive House Energy Performance*. Retrieved Nov 15, 2017, from Green Building Advisor:

http://www.greenbuildingadvisor.com/blogs/dept/guest-blogs/measuring-passivehouse-energy-performance

- Lacinski, P., & Bergeron, M. (2000). *Serious Straw Bale: A Home Construction Guide* for All Climates. White River Junction: Chelsea Green Publishing Company.
- LVDesign. (2014, July 14). Basement Floor Plan: Secondary Suite/Main Floor Plan. A2.0. Calgary, AB: Provided by Frank Crawford.
- LVDesign. (2014, July 29). Detail. A7.1. *LVDesign*. Calgary, AB: Provided by Frank Crawford.
- LVDesign. (2014, July 29). Sections at Stair & Kitchen. A6.0. *LVDesign.* Calgary, AB: Provided by Frank Crawford.
- Magwood, C. (2005). *More Straw Bale Building: A Complete Guide to Designing and Building with Straw.* Gabriola Island, British Columbia, Canada: New Society Publisher.
- Magwood, C. (2012a, Nov 07). *Blower Door Test #1*. Retrieved from Endeavour Centre: http://endeavourcentre.org/2012/11/blower-door-test-1/
- Magwood, C. (2012b, Nov 18). Why it's hard to make a really energy efficient house.... Retrieved Oct 17, 2017, from Endeavour Centre: http://endeavourcentre.org/2012/11/why-its-hard-to-make-a-really-energyefficient-house/
- Magwood, C. (2015a, May 12). *Haus Talk 12 Straw Bale Wall Systems*. (P. B. Canada, Producer) Retrieved Oct 17, 2017, from [video file]: https://www.youtube.com/watch?v=EFv8oNIKwws

- Magwood, C. (2015b, Nov 06). *The (Carbon) Elephant in the Room*. Retrieved Nov `08, 2017, from Endeavour Centre: http://endeavourcentre.org/2015/11/the-carbon-elephant-in-the-room/
- Magwood, C. (2016). *Essential Prefab Straw Bale Construction.* Gabriola Island, BC, Canada: New Society Publishers.
- Magwood, C., & Walker, C. (2001). *Straw Bale Details: A Manual for Designers and Builders.* Gabriola Island, BC, Canada.
- Magwood, C., Mack, C., & Therrien, T. (2005). *More straw bale building: a complete guide to designing and building with straw.* . Gabriola Island, BC: New Society Publishing .
- ModCell. (2017). *Passive House certified panel*. Retrieved Oct 17, 2017, from ModCell Straw Technology: http://www.modcell.com/news/modcell-now-passive-certified/
- ModCell. (2017). *Technical*. Retrieved Oct 17, 2017, from ModCell Straw Technology: http://www.modcell.com/technical/
- National Research Council Canada. (2016, June 14). *Energy efficiency housing*. Retrieved September 11, 2017, from National Research Council Canada: https://www.nrc-

cnrc.gc.ca/eng/solutions/advisory/codes_centre/faq/energy_housing.html

- Natural Resources Canada. (2014, Jan 29). *Comprehensive Energy Use Database*. Retrieved Nov 2, 2017, from Natural Resources Canada: http://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/menus/trends/comprehensiv e_tables/list.cfm
- Natural Resources Canada. (2014, May 9). *Housing Research*. Retrieved from Natural Resources Canada:

http://www.nrcan.gc.ca/energy/efficiency/housing/research/13628

Natural Resources Canada. (2016, February 1). Additional Statistics on Energy. Retrieved from Natural Resources Canada:

http://www.nrcan.gc.ca/publications/statistics-facts/1239

Natural Resources Canada. (2017, July 26). *Heating Equipment*. Retrieved from Natural Resources Canada:

http://www.nrcan.gc.ca/energy/products/categories/heating/13740

- New Frameworks. (2013, Oct 03). *Ennis Hill Strawcell Wall System*. Retrieved from New Frameworks: newframeworks.com/2013/10/ennis-hill-strawcell-wall-systempost-1-10313/
- Offin, M. (2010). *Strawbale Construction: Assessing and Minimizing Embodied Energy.* MSc. diss., Queen's University, Kingston.
- Paquin-Bechard, C. (n.d.). *Everything you need to know about Passive House*. Retrieved from Eco Home: http://www.ecohome.net/guide/everything-need-know-passive-house
- PASSIPEDIA. (2016, Aug 02). *Basic principle for calculating thermal bridges*. Retrieved Nov 3, 2017, from PASSIPEDIA The Passive House Resource:

https://passipedia.org/basics/building_physics_-_basics/thermal_bridges/tbcalculation/basic_principle_for_calculating_thermal_br idges PASSIPEDIA. (2017, Jan 31). *Thermal comfort parameters*. Retrieved Nov 09, 2017, from Passipedia: https://passipedia.org/basics/building_physics_basics/thermal_comfort/thermal_comfort_parameters?s[]=iso&s[]=7730

Passive House Canada. (2017, Nov 2). *Montgomery Passive House*. Retrieved from Passive House Canada:

http://www.passivehousecanada.com/projects/montgomery-passive-house/# Passive House Institute US . (2017). PHIUS+ 2015 Pasive Building Standard - North

- America: Certification Guidebook. Passive House Institute US . Chicago: PHIUS.
- PHIUS. (2015). Certified Passive House Consultant Study Guide.
- PHIUS. (2015). CPHC Training Module 13. PHIUS. PHIUS.
- PHIUS. (2017). PHIUS+ 2015: Passive Building Standard -- North America. Retrieved Nov 2, 2017, from Passive House Institute US: http://www.phius.org/phius-2015new-passive-building-standard-summary
- Racusin, J., Graham, B., & McArleton, A. (2011). *Final Report for Energy Performance of Straw Bale Buildings Research Program.* New Frameworks Natural Building. Montgomery, VT: New Frameworks Natural Building.
- Rissanen, R., & Viljanen, M. (1998). Kasvikuitupohjaiset materiaalit lämmöneristeinä (Bio-fibre based building materials; properties and utilization) - Report 77 (in Finnish with English abstract).

Statistics Canada. (2017, Mar 30). *Population size and growth in Canada: Key results from the 2016 Census*. Retrieved Nov 17, 2017, from Statistics Canada: https://www.statcan.gc.ca/daily-quotidien/170208/dq170208a-eng.htm

- Steen, A., Steen, B., & Bainbridge, D. (1994). *The Straw Bale House.* White River Junction, VT: Chelsea Green.
- Stephan, A., Crawford, R., & Myttenaere, K. (2013). A comprehensive assessment of the life cycle energy demand of passive houses. *Applied Energy*, *112*, 23-34.
- Stone, N. (2003). *Thermal Performance of Straw Bale Walls.* Retrieved Nov 08, 2017, from Ecological Building Network: www.ecobuildnetwork.org
- Straube, J., & Schumacher, C. (Sept 14-18 2003). Hygrothermal Enclosure Models: Comparison with Field Data. *Proceedings of 2nd Int'l Conference on Building Physics: Research in Building Physics.* Leuven, Belgium.
- The Institutes CPCU Society: Underwriting Interest Group. (2016, Dec 27). *Strawbale Construction Takes a Leap Forward with IRC Appendix S*. Retrieved Nov 09, 2017, from The Institutes CPCU Society: Underwriting Interest Group: https://underwriting.ig.cpcusociety.org/news/strawbale-construction-takes-leapforward-irc- appendix-s
- University of Bath. (2017). *Straw scientifically proven as viable building material*. Retrieved Oct 04, 2017, from Univerity of Bath: http://www.bath.ac.uk/casestudies/straw-scientifically-proven-as-viable-building-material/
- Wilson, A. (1995, May 1). *Building Green*. Retrieved from Straw: the next great building material?: https://www.buildinggreen.com/feature/straw-next-great-building-material
- Wimmer, R., Hohensinner, H., & Drack, M. (2004). S-HOUSE SUSTAINABLE BUILDING DEMONSTRATED BY A PASSIVE HOUSE MADE OF RENEWABLE RESOURCES. Retrieved from GrAT: http://www.shouse.at/SB_05_FullPaper.pdf

- Yip, A., & Richman, R. (2015). Reducing Ontario's new single-family residential heating energy consumption by 80% by 2035: economic analysis of a tiered framework of performance targets. *Canadian Journal of Civil Engineering*, 42, 1135–1145.
- Zehnder. (n.d.). Zehnder ComfoAir 200. Retrieved Dec 17, 2017, from Zehnder America: http://zehnderamerica.com/wp-content/uploads/2017/09/Comfoair-200-Updates-Specs-2017-2018.pdf