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Abstract

Discriminative Sparse Coding in the Analysis of Electrocardiogram
During Ventricular Arrhythmias,
Master of Applied Science, 2015,

Iman Kalaji,
Department of Electrical and Computer Engineering, Ryerson University.

Abnormalities in the rhythmic electromechanical contractions of the heart results in cardiac
arrhythmias. When these abnormalities rise from the ventricles of the heart, they are classified as
ventricular arrhythmias. The two major types of ventricular arrhythmias are ventricular tachycar-
dia (VT) and ventricular fibrillation (VF). Ventricular fibrillation is the most dangerous among the
two arrhythmias, that usually leads to sudden cardiac deathif not treated immediately. Annually
about 40,000 sudden cardiac deaths are reported in Canada. Due to high mortality rate and serious
impact on quality of life, researchers have been focusing oncharacterizing ventricular arrhythmias
that may lead to delivering optimized treatment options in improving the survival rates.

In this thesis two major types of ventricular arrhythmias were analyzed and quantified by
performing a discriminative sparse coding analysis calledlabel consistent K-SVD using time-
frequency dictionaries that are well localized in time and frequency domains. The analyzed sig-
nals were 670 ECG ventricular arrhythmia segments from 33 patients extracted from the Malig-
nant Ventricular Ectopy and Creighton University Tachy-Arrhythmia databases. Using the LC-
KSVD dictionary learning approach, an overall maximum classification accuracy of 73.3% was
achieved with a hybrid optimized wavelet dictionary. Based on the comparative analysis, the
trained (learned) dictionaries yielded better performance than the untrained dictionaries. The re-
sults indicate that discriminative sparse coding approachhas greater potential in extracting signal
adaptive and morphologically discriminative time-frequency structures in studying ventricular ar-
rhtyhmias.
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Chapter 1

Introduction

T
HE heart is the major muscular organ of the cardiovascular system. It pumps blood into

all other organ systems of the human body and it helps deliveroxygen and other essential

nutrients that are needed to maintain their physiological functions. Abnormalities in the rhythmic

electromechanical contractions of the heart results in cardiac arrhythmias, when these abnormali-

ties rise from the ventricles of the heart, they are classified as ventricular arrhythmias. Ventricular

arrhythmias are serious life threatening abnormal rhythm which could be lethal and requires im-

mediate medical attention. The need to understand the different types of ventricular arrhythmias

and the differentiation between them motivates ventricular arrhythmia signal analysis approaches

from an engineering perspective. In these approaches, the focus has been to develop tools to either

better understand the mechanisms that cause ventricular arrhythmias or to provide an automated

detection method to predict arrhythmic events by analyzingthe heart’s electrical activity during

arrhythmias and to deliver appropriate therapy in a timely manner.

1.1 Electrophysiology of the Cardiovascular System

The cardiovascular system circulates blood to transport nutrients, oxygen, carbon dioxide, and hor-

mones to the body’s cells and organs. Improper and inadequate circulation can result in cell and/or

organ damages. The cardiovascular system consists of the heart (which acts as a pump), blood,

and blood vessels. As shown in Figure 1.1, there are four chambers of the human heart, the left

and right atria and the left and right ventricles. The atria and ventricles are separated by valves,
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the right atria and right ventricle are separated by the tricuspid valve while the left atria and left

ventricle is separated by the bicuspid valve. The left and right chambers are separated by a muscle

wall called septum. The left atria receive oxygenated bloodfrom the lungs and pumps it into the

left ventricle to be sent to the body, while the right atria receive the de-oxygenated blood from the

body and then pump it to the right ventricle and from the rightventricle the blood is sent to the

lungs.

Figure 1.1: The anatomy of the heartc©McGraw-Hill [1]

The conductive system of the heart starts from the top of right atrium to the end of the ventri-

cles; it consists of the sinoatrial (SA) node, atrioventricular (AV) node, atrioventricular bundles,

the left and right bundles of branches, and Purkinje fibres. To measure the electrical activity of

the heart over a period of time, an electrical impulse is initiated at the sinoatrial (SA) node which

causes the atria to depolarize. When the atria are filled with the blood that is delivered from the

lungs, the pressure build up causes the atria to contract andopen the bicuspid and tricuspid valves.

After the electrical impulse reaches the atrioventricular(AV) node, it travels through the atrioven-

tricular fibers (AV bundles) and then the slow conducting Purkinje fibers. The electrical excitation
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of the ventricles in addition to the pressure build up causesthe semilunar valves to open and the

ventricles to contract (depolarization). This electricalconduction pathway is shown in Figure 1.2.

The rhythmic electrical activity of the heart can be an indication of a normal functioning cardio-

vascular system.

For a normal sinus rhythm such as the one that is shown in Figure 1.3, the contraction of the

atria generates a P wave of the ECG signal where the electricalimpulse travels from the sinoatrial

(SA) node to the atrioventricular (AV) node. While the QRS complex captures the depolarization

of the ventricles, and the T wave captures the repolarization (relaxation) of the ventricles. On

average, an adult human heart beats 75 times per minute [1]

Figure 1.2: The electrical conduction pathway of the heartc©McGraw-Hill [1]

1.2 Ventricular Arrhythmias

Arrhythmias that are originated from the abnormal electromechanical contractions of the heart’s

ventricles are called ventricular arrhythmias. Since the function of the ventricles is to pump blood

out to the organs of the body, arrhythmias related to them arefatal. The two most common ven-

tricular arrhythmias that affect peoples lives are ventricular tachycardia (VT) and ventricular fib-
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Figure 1.3: The electrical conduction of normal sinus rhythmc©McGraw-Hill [1]

rillation (VF). In VT the heart beats rapidly (110-250 bpm) and may lead to VF if untreated [3]. In

VF the heart beats extremely rapidly (more than 300 bpm) in anuncoordinated way which causes

the heart to stop pumping blood efficiently. VF is the most dangerous arrhythmia because it may

lead to sudden cardiac death (SCD) if not treated immediately. In Canada more than 40,000 SCDs

occur annually [4]. An example of ECG during each type of ventricular arrhythmia is provided in

Figure 1.4. Due to high mortality rates and serious impact onquality of life ventricular arrhythmias

have been an area of focus in research. With the advances in newer technologies, analysis tools

and treatment options are being developed to help minimizing related deaths, however with limited

success.

1.2.1 Ventricular Tachycardia

VT is usually a predecessor to VF, it is abnormally fast but mostly organized rhythm in the ven-

tricles. Patients with VT may experience the symptoms of angina (chest discomfort), fainting,

dizziness, palpitations, and shortness of breath. These symptoms may start and stop suddenly,

and in some cases there may be no symptoms [5]. Treatment options for VT vary depending
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Figure 1.4: Three second ventricular tachycardia (top), three second ventricular fibrillation (bot-
tom)

on the type and the stability of patient condition. Intravenous anti-arrhythmic medications are

usually the first line therapy, electrical defibrillation and CPR might be required in critical con-

ditions. For long-term treatment options oral anti-arrhythmic medications may be needed. Some

VT may be managed by radio-frequency catheter ablation, where certain tissues that causes the

irregular rhythm are ablated which will stop the abnormal rhythm [5]. There are two subclasses of

VT, monomorphic ventricular tachycardia (MVT) and polymorphic ventricular tachycardia (PVT).

MVT has an organized structure where all of the QRS waves will be symmetrical, at each beat the

morphology of the signal is maintained, the MVT originates from a single focus within the ven-

tricles [6]. In PVT, the QRS waves will not be symmetrical, andwith variation in morphology of

the arrhythmic signal [7], in PVT there are multiple ventricular foci with the resultant QRS com-

plexes [8]. Ventricular tachycardias that last longer than30 seconds are categorized as sustained

VT, while if it is less than 30 seconds are categorized as non-sustained VT.
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1.2.2 Ventricular Fibrillation

VF is more lethal than VT; it is a life threatening arrhythmia. When a person suffers VF, the

electrical impulses in the ventricles become arrhythmic, where many random foci sources in the

ventricles along the cardiac muscle attempt to take controlof the heart which causes the ventricles

to have uncoordinated asynchronized contractions [9]. This will result in ineffective or no blood

flow to major organs, including the brain, causing oxygen deprivation that may lead to malfunction

of organs and may lead to death. The person who has a VF episodemight become unconscious due

the poor blood circulation to the brain and muscles, where usually cardiopulmonary resuscitation

(CPR) is applied within short period of time. In addition to theCPR an electrical shock through

the chest is applied in the attempt to restart the heart and restore normal heart rhythm. The shocks

are not always successful in restoring normal heart rate. Patients who are at risk to develop VF

require installation of implantable cardioverter defibrillator (ICD). ICDs are programmed to detect

or predict abnormal heart rhythm and either perform pacing maneuvers or deliver electric shocks to

restore normal rhythm. In study of sudden death in ICD recipients, 20 out of 25 recipients received

appropriate ICD therapies before death, where 16 out of the 25were tachyarryhthmia associated

[10]. VF symptoms may occur within minutes to an hour before collapsing such as chest pain,

dizziness, nausea, irregular rapid heartbeat, and shortness of breath [11]. When comparing the

ECG of ventricular arrhythmias to the normal sinus rhythm ECG,we can see significant differences

in the signal structures as shown in Figure 1.4. In the figure the VT shows regular contractions

similar to normal sinus, but without the rest period betweencontractions and different QRS shape,

while the ECG of a patient suffering from VF has irregular, unorganized and non-rhythmic signal

characteristics.

1.3 ECG Analysis During Ventricular Arrhythmias

1.3.1 Time-Domain Analysis

Over the years, researchers have presented many methods to detect or classify ventricular arrhyth-

mias. In the literature time domain features such as ECG amplitude and inter-beat R-R interval has
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been used for classifying arrhythmias [12, 13]. Sequentialhypothesis testing was used by Thakor

et al. to detect VF and VT. In their proposed method the signalwas compared to a threshold of

generating a binary sequence, then the probability distribution of the binary sequence was used

to detect arrhythmias using Walds sequential hypothesis testing procedure [14]. Another time do-

main analysis for the discrimination of tachycardia arrhythmias such as VT and supraventricular

arrhythmias from the normal sinus rhythm was multi-way sequential hypothesis testing [15]. In

this algorithm the likelihood function was calculated of the atrio ventricular delay measurements,

and compared to a threshold to discriminate between the signals [15]. Threshold crossing sample

count (TCSC) was also used in literature to detect VF [16], it isan improved algorithm of the

threshold crossing algorithm. Throne et al. compared four different time domain techniques to

discriminate tachycardia from normal sinus rhythm. The compared techniques were the bin area

method (BAM), correlation waveform analysis (CWA), derivative area method (DAM), and accu-

mulated difference of slope (ADS) [17]. Another comparisonof algorithms for the application of

recognition of VF was performed by Clayton et al. [18]. The compared techniques were threshold

crossing intervals (TCl), peaks in the auto-correlation function (ACF), signal content outside the

mean frequency (VF filter), and signal spectrum shape [18,19]. These time domain algorithms are

a glimpse of many different time domain techniques that exist in literature.

1.3.2 Frequency-Domain Analysis

Since time domain does not provide the spectral informationof the analyzed signals, frequency

domain analysis is used to evaluated spectral properties. When a signal is transformed into the

frequency domain it is decomposed into a combination of sineand cosine functions of different

frequencies. Researchers used Fourier transform to study ventricular arrhythmias from the perspec-

tive of classification and prediction. Frequency analysis has been used in literature to detect VF

and VT arrhythmias, Jekova et al. [19] used VF-filter leakagealgorithm for VF detection. In this

algorithm a narrow band-stop filter was applied with a central frequency that is equivalent to the

mean signal frequency which results in a VF-filter leakage [19]. Algorithms such as spectral band

analysis have also been used in VF detection. During VF the spectral components of the signal
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results narrow band of frequencies compared to sinus normalrhythm [19]. In spectral analysis for

arrhythmia analysis, the parameters such as the median, dominant, edge frequency and the ampli-

tude of the dominant frequency have been used to predict the success of the resuscitation [20,21].

Other parameters such as the centroid frequency, peak powerfrequency, spectral flatness, and en-

ergy were used for the prediction outcome of the defibrillation of patients that were experiencing

ventricular fibrillation [22]. Frequency analysis is good for stationary signals, however ECG sig-

nals during arrhythmias are non-stationary signals in nature, therefore, time-frequency analysis has

also been used for various arrhythmic applications such as characterization and classification.

1.3.3 Time-Frequency Domain Analysis

In time-frequency analysis the analyzed signals are studied in both time and frequency. This type

of analysis is good for time varying signals such as ECG signals during ventricular arrhythmias.

In general time-frequency analysis can be divided into two categories; the time-frequency energy

distribution based approaches mostly used for signal representation, and adaptive time-frequency

decomposition approaches that are optimal for feature extraction and signals characterization. In

the adaptive time-frequency decomposition, the signal is decomposed and approximated using dif-

ferent time-frequency basis functions from a dictionaryD that are well localized in both time and

frequency domains. Due to the adaptive nature of this approach, the signal approximations can be

achieved as accurately as possible depending upon the characteristics of the time-frequency dictio-

nary used.

In literature the time-frequency analysis have been used inthe field of arrhythmic signals de-

tection and classification. Short time Fourier transform (STFT) has been used in the application

of the prediction of the heart rate variability [23]. Afonsoet. al [24] used the short time trans-

form to compare the time-frequency distribution of normal sinus rhythm, ventricular tachycardia,

ventricular flutter, and ventricular fibrillation in addition to the smoothed pseudo Wigner Ville dis-

tribution, and cone-shaped kernel distribution [24]. Wavelet analysis has been used to classify and

characterize ventricular arrhythmias [25,26]. Khorrami et al. compared Continues Wavelet Trans-
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form (CWT), Discrete Wavelet Transform (DWT), and Discrete Cosine Transform (DCT) in the

application of ECG arrhythmias classification using two pattern classifiers [27]. DWT coefficients

were also used as features to detect and classify four different arrhythmias such as ventricular

tachycardia (VT), supra ventricular tachycardia (SVT), ventricular fibrillation (VFIB) and ven-

tricular flutter (VFL) [28]. A CWT based wavelet analysis usingsingular value decomposition

(SVD) was proposed to classify ventricular arrhythmias in the work of Balasundaram et. al. [29].

Adaptive time-frequency decomposition based approaches have also been reported for detection

and classification of arrhythmic signals; features extracted from the time-frequency basis func-

tions of the dictionary was used to classify between arrhythmias. Depending on the application a

time-frequency dictionary were used. Dictionary design has been used to separate the ventricular

activity and the atrial activity of ECG signals for the purpose of characterizing and modeling atrial

fibrillation [30, 31], also, it has been used in heartbeat classification applications [32, 33]. Recent

works on dictionary learning algorithms based on K-SVD and LC-KSVD approaches has been

reported for ECG beat classifications, modeling of atrial fibrillation, and ECG reconstructions and

compression applications [34–37], more details of these works will be discussed in the upcoming

chapter.

1.4 Motivation

Ventricular arrhythmias such as VF and VT have different signal morphologies and their opti-

mal therapy options are different. As mentioned earlier VT signal usually has more organized

signal structure, while the ECG of VF signal is more irregular, chaotic signal. While there are

many existing works in literature that uses various methodsto detect and classify ventricular ar-

rhythmias, identifying and learning meaningful underlying signal structures in terms of adaptive

time-frequency basis functions could lead to better understanding of the subclasses within these

arrhythmias and especially the overlap zone between them.

The primary objective of this thesis is to learn and model thediscriminative signal structures

of the VT and VF arrhythmias using a time-frequency decomposition approach. Considering the
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time-varying nature of these arrhtyhmias, modeling the discriminative signal structures using sig-

nal adaptive time-frequency dictionaries as base dictionary would be ideal. In achieving this goal,

the proposed work will explore a dictionary learning algorithm (LC-KSVD) that jointly optimizes

time-frequency dictionaries by minimizing both reconstructive and discriminative errors. The re-

sulting discriminative sparse code could serve as a representative model that will lend itself as a

compact descriptor for further feature analysis and characterization. The outcome of this work may

lead a way to identify ventricular arrhythmia specific discriminative time-frequency space which

may be useful in decision making algorithms on the choice of therapy. An initial study of this

approach has been recently accepted and published [38].

The detailed block diagram of the proposed approaches in achieving the above objectives is

shown in Figure 1.5.

10



Figure 1.5: Thesis outline

1.5 Thesis outline

The thesis is outlined as follows:

• Chapter 2 –Methods Background. This chapter will provide information on the background

of signal processing and pattern classification tools that are used in this thesis as well as

specific background information on the literature survey that is related to the signal analysis

methods.

• Chapter 3 –LC-KSVD Parameters for Ventricular Arrhythmia Analysis. This chapter will

11



present the LC-KSVD dictionary learning process and detail on the choice of LC-KSVD

parameters which are data dependent.

• Chapter 4 –Feature Extraction and Pattern Classification. This chapter will present the fea-

ture extraction and pattern classification using the discriminative sparse code representation

of the two arrhtyhmias. Results for various scenarios including comparative performance

evaluation are presented and summarized.

• Chapter 5 –Conclusion and Future Works. This chapter will summarize the thesis with con-

clusions and directions for future work, as well as the potential applications of the proposed

work.
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Chapter 2

Methods Background

I
N this chapter the background information on methods used inthis thesis are presented. The

chapter details different time-frequency approaches and leads to specific approaches suitable

for the application at hand. In addition, the chapter also presents classification methods that will

be used for performance evaluation.

2.1 Time-Frequency Domain Analysis

One of the early techniques of time-frequency analysis is short time Fourier transform (STFT).

In STFT, the signal is divided into smaller segments where the segmented signals are assumed to

be stationary. The segments are then multiplied by a window function (nonzero, usually a Hann

window, Butterworth, Gaussian bell, etc). While sliding the window function along the time axis,

a two-dimensional representation of the signal is computedas shown in equation 2.1 [39],

Y (k, l) =
N−1
∑

n=0

y(n)g(n− l)e−i2Πkn
N (2.1)

whereg(n− l) is the discrete window function withl shifts.

Short time Fourier transform gives a fixed resolution in bothtime and frequency determined

by the fixed window function. Narrow window gives good time resolution but poor frequency
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resolution while wide window gives good frequency resolution but poor time resolution. When

analyzing a VF signal it is hard to localize the occurrence oftime of a particular frequency due to

its non-stationary nature. Therefore, shrinking of the window g provides a better localization in

time for the frequencies occurring in the specific window. The drawback of making the window

length shorter is that it worsens the frequency resolution which makes it hard to determine accurate

energy of the frequency. Due to this limitation of STFT, a multi-resolution analysis is developed

called Wavelet transform. It is similar to STFT, however thesignal is multiplied by a mother

wavelet (e.g morlet) and the transform is computed separately for different segments. The width of

the window of the mother wavelet is adaptively changed as thetransform is computed depending on

the time and the frequency content of the signal [39] as shownin Figure 2.1 [2]. Mother wavelets

are mathematical functions that are localized in both time and frequency domains and have specific

properties. The wavelet transform implementation is givenby the equation 2.2 [39],

Figure 2.1: a) Coverage of the time-frequency plane for the STFT. b) Coverage of the time-
frequency plane for the wavelet. c) Corresponding basis function of the STFT. d) Corresponding
basis function of the wavelets [2]
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y(s, l) = 1/
√
s

N
∑

n=1

y(n)ψ∗ (n− l)
s

(2.2)

where l represent the discretized time,s the scale parameter andy(s, l) represents the wavelet

coefficients for the discrete time signaly(n). The scaling parameters is related to the frequency,

when the scale shrinks or expands the time window of the mother wavelet frequency characteristics

changes accordingly. Due to having the frequency parameterbeing proportional to the scale of the

window function, the wavelet bases will not provide a good estimate on the frequency content of

waveforms that are well localized by their Fourier transform (not flexible enough) [40]. This leads

to the advent of other time-frequency decomposition approaches. One such signal approximation

approach is the matching pursuit [40].

Matching pursuit (MP) [40] is a greedy algorithm that expresses any signalf by decomposing

it into a linear expansion of waveforms from a dictionaryD. In Hilbert spaceL2(R), the matching

pursuit iteratively selects a waveform from a redundant dictionaryD = (gγ(t))γǫΓ to best approx-

imate part of the signal. MP is a non-linear expansion but it maintains an energy conservation

that will guarantee its convergence. The waveforms in the dictionaryD are called atoms; ifD is a

time-frequency dictionary then the atoms are well localized in time and frequency. Time-frequency

atoms can be generated by scalings, translatingu and modulatingξ the functiong(t)ǫL2(R) de-

fined by equation 2.3 [40],

gγ(t) =
1√
s
g(
t− u
s

)eiξt (2.3)

whereγ is the index of the atoms in the dictionary.

Any signalf(t) can be represented by different atoms and can be written as inequation 2.4.

[40]:
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f(t) =
+∞
∑

n=−∞

angnγ(t) (2.4)

wherean is the expansion coefficient.

The matching pursuit adaptive decomposition starts first byfinding an atomgγ0 in the redundant

dictionaryD that best match the inner structure of the signalf , after the inner product is computed

between thef andgγ0, a residueRf is computed (equation 2.5) [40]:

f =< f, gγ0 > gγ0 +Rf (2.5)

In this decomposition the| < f, gγ0 > | is maximized and the residual‖Rf‖ is minimized.

There after theRf is sub-decomposed following the same procedure by finding anatom from

the dictionary that best match the residue and then computing the inner product between the new

residue and its best matching atom (equation 2.6) [40].

Rnf =< Rnf, gγn > gγn +Rn+1f (2.6)

This sub-decomposition continues until the residue ideally reaches zero, a threshold is set, or

a maximum number of iterations is reached. Afterm decompositions the signal is expressed as in

equation 2.7 [40],

f =
m−1
∑

n=0

< Rn, gγn > gγn +Rmf (2.7)

with an energy conservation equation 2.8 [40] as the following:

‖f‖2 =
m−1
∑

n=0

| < Rn, gγn > |2 + ‖Rmf‖2 (2.8)
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A summary of the Matching Pursuit Algorithm is provided in the Algorithm 1 box below.

Algorithm 1: Matching Pursuit Algorithm

1 Input: Signalf(t) , DictionaryD
2 Output: Coefficientsan , gnγ
3 initialization
4 Rf ← f(t)
5 n← 1
6 Repeatfind gnγ ǫ D with maximum inner product|< Rn, gγn >|
7 an← < Rn, gγn >
8 Rn+1← Rn - angnγ
9 n← n+ 1

10 StopWhen‖Rn‖ reaches the specified threshold or ideally reaches zero, or maximum
number of iteration is reached.

One of the enhancements of the MP algorithm is the orthogonalmatching pursuit (OMP).

Orthogonal matching pursuit follows the same technique as the standard matching pursuit except

that it adds an extra step. When an atom is chosen to match part of the signal, it will be chosen

so that the residual is always orthogonal to the atom. Hence,the same atom cannot be selected

more than once [41]. In OMP, the coefficients of all the dictionary elements that are chosen are

recalculated by solving the least-squares problem [41].

2.2 Time-Frequency Dictionaries

As mentioned earlier to perform matching pursuit decomposition, well localized time-frequency

(TF) atoms are used, where they can be generated by scalings, translatingu and modulatingξ

the functiong(t)ǫL2(R) as shown in equation 2.3. The collection of family of TF atomsform a

dictionary. Matching pursuit decomposition depends on thechoice of the dictionary. There are two

types of dictionaries, parametric and data driven dictionaries [42]. The choice of the dictionary is

important and application dependent.
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2.2.1 Parametric Dictionaries

The parametric dictionary can be generated by changing the three parameters that defines an atom

(s,u,ξ), which gives a storage advantage where only those parameters need to be stored [42]. The

most common dictionary that is used in literature and applications is Gabor dictionary, where the

window function is a Gaussian window. A one real discrete Gabor atom is defined as [40],

gγ,φ(n) = gs(n− p)cos(
2πk

N
n+ φ) (2.9)

with the discrete parameters of atomγ = (s, p, 2πk
N
, φ) and discrete window functiongs defined

as [40],

gn(n) =
Ks√
s

+∞
∑

p=−∞

g(
n− pN

s
) (2.10)

andKs is used to normalize‖gγ‖ = 1

An example of a Gabor atom is given in Figure 2.2

Dictionary selection and design is the most critical step insignal decomposition with respect to

classification and characterization. When a time-frequencydictionary is used for the classification

of ventricular arrhythmias, the selected atoms of the dictionary needed to be representative of each

arrhythmia. The information of those atoms can then be used as features to discriminate between

the arrhythmias.

Hernandes et al. [30] investigated in designing a multi-component dictionary to separate atrial

and ventricular activity of ECG signals to analyze and characterize atrial fibrillation. The ventric-

ular activity of an ECG signal has much higher amplitude compared to the atrial activity which

makes it hard to detect atrial arrhythmias such as atrial fibrillation. For this particular application

the dictionary was built by the union of two sub-dictionaries called multi-component dictionary,
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Figure 2.2: Gabor Atom

where each sub-dictionary is particularly good for describing a certain morphology of the signal.

The first sub-dictionary represented the ventricular activity (VA), while the second sub-dictionary

represented the atrial activity (AA). In order to have a goodseparation between the two activities

of the signals (VA and AA) the two sub-dictionaries must havea low correlation between each

other. Based on the shape and the frequency ranges of the ventricular and atrial activity, general-

ized Gaussian atoms were used to approximate the VA signal and Gabor to approximate the AA

signal [30]. Gabor dictionary was also used in other work such as Mailh et. al [34] and Escoda et.

al [31] for separation of atrial activity from the ventricular activity.

Dictionary design and selection was not only investigated in the separation of ECG signal com-

ponent such as VA and AA, it was also investigated in the application of classifying arrhythmic

heart beats. Christove et. al [32], performed a study to classify heart beats using the MP algorithm.

They approximated each heartbeat with a small number of atomic waveforms taken from a Wavelet

Packet (WP) and used its coefficients for classifications. Thedifferent types of heart beats they in-

vestigated were normal beats, premature ventricular contractions, left bundle branch blocks, right
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bundle branch blocks, and paced beats [32]. In this study they concluded that Symmlet 8 wavelet

packet atom can be best correlated with the signal structures of each heartbeat class, and that 10 of

such waveforms were enough to describe most of the beats in the MIT-BIH arrhythmia database

with an acceptable accuracy [32]. The same dictionary was also used in other work with respect to

heart beat classification [33].

2.2.2 Learned Dictionaries

The second type of dictionaries are the data driven dictionaries also known as learned dictionaries,

these dictionaries start from an over complete redundant dictionary and get trained using a training

data to adapt its content to the given signals to provide a better approximation. One of the earlier

methods of dictionary learning is probabilistic approach to construct new dictionary [43,44]. In this

approach the probability distribution of the training signalsP (yi) is matched with the probability

distributionP (Y | D) of the input signalsyi given a dictionaryD. In this method the input signal y

is represented as a linear combination between the dictionary elementsD and sparse representation

w with some Gaussian white noisec and variance (equation 2.11) with the assumption thatP (yi |
D) are independent [44].

y = Dw + c (2.11)

From equation 2.11 the prior distributionP (yi | w,D) can be defined as [44]

P (yi | w,D) = ke
‖yi−Dw‖2

2σ2 (2.12)

wherek is a constant. The likelihood function is computed as the following [44]

P (yi | D) =

∫

P (yi, w | D)dw =

∫

P (yi | w,D).P (w)dw (2.13)
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with P (w) = eλ ‖w‖ , because the integration is hard to evaluate theP (yi | w,D) is only calculated

at the maximum values ofw, thereforeD can be evaluated as [44]

D = argDmax

N
∑

i=1

max
wi P (yi, wi | D) = argDmin

N
∑

i=1

min
wi ‖yi −Dw‖2 + λ ‖wi‖ (2.14)

Another dictionary learning algorithm found in literatureis the method of optimal directions

(MOD) [45]. The method of optimal directions is characterized by searching for the optimal atoms

of a dictionary while fixing the sparse coefficients. This method follows the K-means and uses

any adaptive decomposition method to update the dictionaryD [45]. In MOD the DictionaryD is

first initialized of sizeN ×K, then each training signaly is approximated using vector selection

algorithm as [45]

ŷ =
k

∑

i=1

w(i)di (2.15)

where thew(i) are the coefficients that corresponds to each atom. After thesignal is approximated,

the residuals for all training vectors are calculatedr = y− ŷ and the atoms are adjusted so the total

MSE becomes smaller. The adjustment of the atoms is made by the following equation [45]:

d̃i = di + δi, i = 1, .., k (2.16)

whereδi denotes the adjustment of the atom. After updating the residual, the new residual for the

training signal becomes [45]

r=r −
k

∑

i=1

w(i)δi (2.17)
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The update of the residual continues until the stopping criteria is reached (such as the maximum

number of iterations or a constant MSE is approached) [45].

Unlike MOD where it only updates the atoms of the dictionary,in the K-SVD method [43] the

dictionary is updated by updating one atom and its related sparse coefficients while all other atoms

and coefficients remain unchanged. The K-SVD method is a flexible algorithm that is used in

dictionary learning; it is a generalization of the K-means algorithm [43]. Like any other dictionary

learning methods this algorithm is performed using an objective function (equation 2.18) which is

given by [43]

min
D,X ‖Y −DX‖22 (2.18)

In the objective function theY corresponds to the column matrix of the training signals,D

is a column matrix for all of the dictionary elements andX is the row coefficient matrix that

corresponds to the dictionary elements. K-SVD uses two stages to update, in the first stage the

sparse coding is updated, where it keeps the dictionaryD fixed and search for coefficients of the

dictionary that satisfy equation 2.18 using any type of pursuit such as OMP. The second stage of

the K-SVD algorithm is updating the atoms of the dictionaryD, in this stage the sparse matrixX

is assumed to be fixed and only one column of the dictionarydk is updated at a time. Hence, the

penalty function is redefined as in equation 2.19 [43]

||Y −DX||22 = ||Y −
k

∑

j=1

djX
j
T ||22 = ||(Y −

∑

j 6=k

djX
j
T )− dkXk

T ||22 = ||Ek − dkXk
T ||22 (2.19)

The termEk is the approximation error of allyi when thekth atom is removed. In equation 2.19

theDX is decomposed into a sum ofK rank-1 matrices, whereK − 1 atoms are fixed and thekth

atom is used. Findingdk andXk
T is done using the Singular Value Decomposition (SVD) method,

this is where K-SVD gets its name from [43]. The SVD will produce the closest rank-1 matrix that
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minimizes the error. Before going through the SVD some modifications to theEk matrix needs to

be applied to overcome the problem of having a filledxkT matrix. First, we define [43]

wk(i|1 < i < K, xkT (i) 6= 0) (2.20)

wherewk is the indicies that point to the signalsyi that uses the atomdk. Then the matrixΩk is

defined of a sizeN × |wk| that has ones on thewk(i) i
th positions and zeros elsewhere [43]. To

create a smaller matrix ofxkR we use the following equation [43], which will result in a smaller

matrix with deleted zero entries:

xkR = Ωk × xkT (2.21)

Also multiplying theΩk with theY will create a matrixY R
k of the signals that are using thedk

atoms [43]. Similarly, multiplying it by the error matrixEk will produce theER
k matrix. This will

redefine the objective function in equation 2.19 with the minimization as the following [43]:

||EkΩk − dkXk
TΩk||22 = ||ER

k − dkXk
R||22 (2.22)

After this modification to the matrix, the SVD decomposesER
k toU∆V T .Then the new updated

dk will be the first column ofU and the coefficient vectorxkR is the first column ofV multiplied by

∆(1, 1) to normalize the dictionary. Then all the atoms of the dictionaries will be updated using

the same method [43].

The K-SVD dictionary learning algorithm has been used in literature for ventricular cancella-

tion and atrial modeling in the ECG of patients that are suffering from atrial fibrillation, where it

models AA and cancel the VA via sparsity-base source separation approach [34]. In this approach

mutual incoherent dictionaries were used (one to representthe VA and the second to represent the

AA), where the signals that are sparse on one of them cannot besparse on the other one. Sim-

ilar to the dictionary design by [30] that was discussed earlier, but instead of using Gabor and

generalized Gaussian dictionaries to represent AA and VA respectively, learned dictionaries were
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used. The K-SVD has been also used in literature to reconstruct ECG signals from under-sampled

database on constructing a combined over-complete dictionary that consist of trained dictionary by

K-SVD dictionary learning algorithm of DCT or wavelet basis dictionaries [35], having a learned

dictionary achieved good approximation performance to reconstruct the data. Also the K-SVD

has been used in electrocardiogram compression algorithm using over-complete dictionary [36]. A

summary of the K-SVD Algorithm is provided below in the Algorithm 2 box.

Algorithm 2: K-SVD Algorithm

1 Input: Training SignalsyiNi=1 , Initial DictionaryDiǫR
n×K

2 Output: Trained DictionaryDnew ,Xi

3 initialization
set initial dictionaryDi with l2 normalization

4 setj = 1
5 Sparse Coding UpdateComputexi for each training signalyi using any pursuit

min
xi
‖yi −Dxi‖22

6 Dictionary Atoms Update for eachdk:

• check for the training signals that usesdk

• compute the overall error matrixEk

Ek = Y −∑

j 6=k djX
j
T

• apply SVDER
k = U∆V T

update thedk with first column ofU
update theXk

R with the first column ofV multiplied by∆(1, 1)

j = j + 1

2.2.3 Label-Consistent K-SVD

Label-Consistent K-SVD (LC-KSVD) is an algorithm that achieve sparse coding using a learned

discriminative dictionary. In the dictionary learning process, this method uses the class labels from

a training data consisting of multiple groups, and associates these label information with each

dictionary item to enforce discriminative sparse codes. This results in similar sparse coding for

the signals that are within the same class. Furthermore, theobjective function incorporates a label

consistency constraint (known as ”discriminative sparse-code error”) and is also combined with
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the classification and reconstruction error [46], the objective function is defined as the following

[46,47]:

< D,W,A,X >= argmin
D,W,A,X ||Y −DX||22 + α||Q− AX||22 + β||H −WX||22 s.t.∀i, ||xi||≤T

(2.23)

The reconstruction error is defined by the term||Y − DX||22 for a set of the input signalsY ,

the dictionaryD and its sparse representationX. The second term||Q − AX||22 (discriminative

sparse-code error) approximates the discriminative sparse codesQ using the sparse codesX and

the transformation matrixA, whereQ = [q1....qN ] ǫ R
K×N . The objective of the sparse code

error is to provide similar sparse representations for signals of the same class, which could help

improve the classification performance when using a linear classifier. Theα parameter before

the discriminative sparse-code error is used to determine the contribution of the label consistent

regularization to the reconstruction. As for the third termof the objective function||H −WX||22,
it represents the classification error. The classifier parameters and the class labels for the input

signalsY areW andH respectively whereH = [h1...hN ] ǫ R
m×N . Theβ parameter controls the

relative significance of the classification error terms to the objective function. A sparsity constraint

factorT was also added to ensure that each signal, when decomposed, has fewer thanT non-zero

elements [47] [46]. As mentioned earlier in LC-KSVD the optimal solution is solved using the

KSVD algorithm, therefore the equation 2.23 can be redefinedas [46,47]:

< D,W,A,X >= argmin
D,W,A,X

∥

∥

∥

∥

∥

∥





Y√
αQ√
βH



−





D√
αA√
βW



X

∥

∥

∥

∥

∥

∥

2

2

s.t.∀i, ||xi||≤T (2.24)

In order to apply the LC-KSVD Algorithm an initialization of the parametersD0, A0 andW0

is needed. To initializeD0, we perform few iterations of the K-SVD for each class separate then

combine the outputted dictionaries of each K-SVD. Then the label of each dictionary itemdk is

initialized based on which class it belongs. To initializeA0, the multi-variant ridge regression is

used and the solution forA0 is computed as the following [46,47]:
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A = (XX t + λ2I)
−1XQt (2.25)

similarly to theA0 the solution forW0 is computed as the following [46,47]:

W = (XX t + λ2I)
−1XH t (2.26)

whereX is the sparse codes of the initial dictionaryD0 and training signalsY .

With the initialized parameters, the LC-KSVD can be performed using equation 2.23. The

classification procedure of the testing signals after the dictionary learning stage using LC-KSVD

is performed as follows: The trained dictionaryDnew, transformation matrixA, and classifier

parameters matrixW are obtained, then each of the matrices are transformed using the below

equations 2.27, 2.28, 2.29 [46,47]

D̂ =
d1
||d1||2

,
d2
||d2||2

, . . . ,
dk
||dk||2

(2.27)

Â =
a1
||d1||2

,
a2
||d2||2

, . . . ,
ak
||dk||2

(2.28)

Ŵ =
w1

||d1||2
,
w2

||d2||2
, . . . ,

wk

||dk||2
(2.29)

When a signalyi is tested, its sparse representation is computed using equation 2.30 [46,47]

xi = argmin
xi

∥

∥

∥
yi − D̂xi

∥

∥

∥

2

2

(2.30)

After computing thexi, the linear predictive classifier̂W is used to estimate the labelz of the

tested signalyi as shown in equation 2.31 [46,47].
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zestimated = argmax
z (zactual = Ŵxi) (2.31)

A summary of the LC-KSVD Algorithm is provided below in the Algorithm 3 box.

Algorithm 3: LC K-SVD Algorithm

1 Input: Training SignalsyiNi=1 , Label of The Training SignalsH, Initial Dictionary
D0ǫR

nxK , α, β
2 Output: Trained DictionaryDnew , Discriminative Sparse codesXi

3 initialization
initialization of theD0, A0,W0

• D0 is initialized by performing few iterations of using the K-SVD Algorithm
for each class and combine the output to resultsD0

• A0 is initialized using the sparse code matrix from the initialdictionary
A = (XX t + λ2I)

−1XQt

• W0 is initialized using the sparse code matrix from the initialdictionary
W = (XX t + λ2I)

−1XH t

setj = 1
Solve for the objective function below using the K-SVD algorithm:
< D,W,A,X >= argmin

D,W,A,X ||Y −DX||22+α||Q−AX||22+β||H−WX||22 s.t.∀i, ||xi||≤T
j = j + 1
Obtain the discriminative sparse matrixX
Predict the labelz of the testing signalyi using the linear predictive classifieŝW and the
obtainedxi
zestimated = argmax

z (zactual = Ŵxi)

LC-KSVD has been used in literature for face, action, scene, and object category recogni-

tion [46]. From an arrhythmic perspective the LC-KSVD has been used recently in classification

of electrocardiogram beats such as supra ventricular ectopic beats (SVEB) and ventricular ectopic

beats (VEB) using low sampling rate [37]. The features that were used to train the dictionary were

the RR interval, heartbeats interval, segmented morphology, and fixed interval morphology. It was

concluded that the LC-KSVD provided enough discriminative power to classify using low sam-
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pling rate and simple features [37].

For this thesis, the LC-KSVD will be used over other approaches. Due to having different

VT and VF morphologies, the sparse coding of the dictionary that represent each arrhythmia can

be learned to discriminate between them. For the adaptive signal decomposition OMP will be

used. The selected atoms need to be similar to the signal characteristics within the group and

at the same time dissimilar between groups. Hence, selecting the proper dictionary to represent

arrhythmic signal is critical. Using LC-KSVD has an advantage that it trains both the dictionary

and the linear classifier simultaneously. A limitation of using the LC-KSVD to classify signals is

the computational time that it takes to train a dictionary and its sparse code representation. This

is a one time cost incurred in training the dictionaries. This computational complexity time is

dependent on the size of the dictionary, the number of training data, and the number of iterations.

2.3 Linear Discriminant Analysis

After learning the discriminative sparse codes using the dictionary learning methods, we need to

quantify the discriminative ability of the resulting sparse code and also would require performance

evaluation over parametric choices of the dictionary learning process. In order to achieve this we

need to resort to pattern classification tools. In this thesis we will be using linear discriminant

analysis (LDA) based classifiers and cross validation approaches. A brief description of these

approaches are presented below.

The LDA based linear classifier is built by training sets of features that are already labeled (i.e

already been classified), this approach goes under the category of supervised machine learning.

The number of linear functions needed forc classes isc–1 functions, where each one will separate

one class from the other classes. This will result in the feature space to be divided into different

regions and each class to be assigned to one. The dimensionality in LDA is reduced by projecting

thed training samplesx onto a line or plane, a specific orientation of the line or plane can provide

a good separation of the projected samples. This projectionis given by the equation 2.32 [48]
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y = wtx (2.32)

wherey is the projection of the corresponding samplesx onto a line in the direction ofw (weight

vectors). To find the best direction ofw, we need to maximize the difference between the means

µi relatively to the standard deviationsi of each class (scatter). For two-class classification, this

criterion function is defined as [48]

J(W ) =
|µ̃1 − µ̃2|2

s̃21 + s̃22
(2.33)

To express the criterion function in 2.33 as a function ofW , we re-define the|µ̃1 − µ̃2|2 in

terms of the means of the original feature space as the following [48]

(µ̃1 − µ̃2)
2 = (µ1W

T − µ2W
T )2 = W t(µ1 − µ2)(µ1 − µ2)

TW = W tSBW (2.34)

whereSB is the between class scatter. Similarly, the summation of the variance of each class is

defined as the within class scatter matrixSW . Therefore, the criterion function 2.33 is re-defined

as [48]:

J(W ) =
W TSBW

W TSWW
(2.35)

In the LC-KSVD algorithm, a multi-class linear predictive classifier is included in the objective

function of LC-KSVD2 for classifier construction, while in LC-KSVD1 the classifier term is elim-

inated [46]. In the analysis presented in this thesis the classification accuracies will be computed

using linear classifiers, also, a comparative performance evaluations of different classifiers will be

presented.
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2.4 Cross Validation

In prediction and classifications techniques cross validation is usually needed to asses how the

testing results are independent from the training data sets. It gives an insight on how the classifica-

tion model will generalize to an independent data set to overcome over-fitting problems. In cross

validation, the data is divided into training and testing sets. In the m-fold cross validation the data

set is randomly divided intom equally sized sub-samples, then one of them sub-samples will be

used as a validation data for testing the model and the remaining m–1 sub-samples are used as

training data. This is repeatedm times where each fold (sub-sample) is used once as the validation

data as shown in Figure 2.3, and thenm results from the folds are averaged. In this method all

observations are used for both training and validation, andeach observation is used for validation

exactly once. When the number of folds equals the number of observation (m = n), the m-fold

cross validation becomes the leave-one-out (LOO) cross validation [48].

Figure 2.3: M fold cross validation structure

30



2.5 Background Summary

In this chapter the background information on relevant signal processing tools that will be used

in this thesis were investigated as well as their application in literature with respect to arrhyth-

mias. The discussed analyses were the adaptive time-frequency decompositions, time-frequency

dictionaries, dictionary learning algorithms, linear discriminative analysis, and data validation.
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Chapter 3

LC-KSVD Parameters For Ventricular
Arrhythmia Analysis

I
N this chapter the process involved in choosing optimal parameters for LC-KSVD specific to

ventricular arrhythmias is presented. The chapter describes the database extraction process and

signal pre-processing followed by dictionary selection. The chapter then presents the process of

experimentally determining the critical parameters of theLC-KSVD for the proposed study.

3.1 Database and Pre-processing

The analyzed signals of this study were obtained from the MIT-BIH ventricular arrhythmia database

that is publicly available through Physionet [49]. The ventricular fibrillation signals were obtained

from the Creighton University Ventricular Tachy-arrhythmia Database. This database has 35 eight-

minute ECG recordings of patients who experienced episodes of sustained ventricular tachycardia,

ventricular flutter, and ventricular fibrillation. Out of the 35 ECG recordings of this database

23 recordings had VF signals which were used to extract threesecond VF segments. The other

database that is used is the Malignant Ventricular Ectopy Database, this database includes 22 half-

hour ECG recordings of patients who experienced episodes of sustained ventricular tachycardia,

ventricular flutter, and ventricular fibrillation. Out of the 22 recordings 10 contained VT episodes

and were used to extract three second VT segments. In total 670 segments (335 for each arrhyth-

mia) were extracted from the recordings and used in this thesis. The electrocardiograms from these

databases were already annotated the VF and VT, therefore these annotations were used for label-
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ing the samples. Figure 3.1 illustrates one example arrhythmia signal for VF and VT respectively.

All signals were uniformly down sampled to a 250 Hz sampling frequency. The signals were

then filtered using a bandpass filter to retain the frequency components such that low frequency ar-

tifacts and high frequency noise were removed from the ECG [50]. The cutoff frequencies used for

filtering were between 0.75 Hz to 30 Hz, these values were derived from the literature were ventric-

ular arrhythmias signals were filtered between 0.3 to 30 Hz and 1.7 to 30 Hz for a comparison [21].
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Figure 3.1: Sample signals of VF and VT

3.2 Dictionary Selection

The selection of the base time-frequency dictionaries usedin this analysis before training were

selected based on the existing works in the literature. As stated in chapter 2 of this thesis Ga-

bor dictionary been used to approximate the atrial activityof a person with atrial fibrillation ar-

rhythmia [30, 31, 34]. In other work a Wavelet Packet (WP) dictionary of the Symmlet mother

wavelet used to describe different arrhythmic and non-arrhythmic heart beats [32, 33], as well as
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the Daubechie wavelet [51]. Hence, the dictionaries that will be used in this analysis are Gabor

dictionary, Symmlet wavelet, and Daubechies in least-symmetric wpsymmlet wavelet.

3.2.1 Gabor Dictionary

Gabor dictionary is often used in time-frequency analyses due to its optimal time and frequency

energy concentration. The Gabor dictionary was constructed using the equations 2.9 and 2.10

with the discrete parametersγ = (s, p, 2πk
N
, φ). The parameters of the constructed dictionary were

selected as the follows, for the scale parameterss = [8, 16, 32, 64, 128, 512, 750] (wheres ǫ 2m

where3 < m < 9) in addition to the window scale size of the signal. The smallscale parameters

capture the transient time of the signal that exist in the ventricular arrhythmias especially in VF,

while the large window scale can account for the overall structure of the signals. The scale param-

eter is related to the time with respect to the sampling frequency, for example a window scale of

64 accounts for 0.256 seconds of the signal. For the frequency parameter the selected ranges were

fn = [0 − 0.1] where (fn = f

fs
, thefn is the normalized frequency andfs is the sampling fre-

quency). This range was chosen because in literature it was reported that the frequency spectrum

of individual QRS complex is found in the range of0–20 Hz [52] which corresponds to0–0.08 of

normalized frequency. The dominant frequency of ventricular tachycardia (VT) is at4Hz and the

the amplitude of the spectral analysis decreases as the frequency increases [52, 53]. Also it was

reported that the frequency ranges of ventricular fibrillation (VF) are concentrated between4–7

Hz [52,54].

For the time parameterp = [0, 64, 128, 375, 512, 750] ranges were selected with phaseφ = [0]

for this application. The time parameter only controls where the center of the atom is placed. Due

to K-SVD limitation of having the number of the dictionary atoms lower than the number of the

training signals, only specific time locations were selected instead of all of the time locations of

the signals. The phase parameter specifies the offset of the cosine factor of the Gabor function

where it can be any real numbers between -180 and 180. The values 0 and 180 correspond to sym-

metric functions, while -90 and 90 correspond to antisymmetric functions. Using the previously
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discussed parameters a Gabor dictionary was generated witha combination of these parameters of

the size750× 462. Figure 3.2 provides four different Gabor atoms that are generated in the Gabor

dictionary.
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Figure 3.2: Four different Gabor atoms from the generated dictionary ofdifferent translation and
scales

3.2.2 Wavelet Dictionaries

The Wavelet dictionaries that were used in this analysis were generated dictionaries using the

three-indexed family of analyzing functions 3.1 [55].

Wj,n,k(x) = 2
−j

2 W2(2
−jx− k) (3.1)
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wherek is the time-localization parameter,j the scale parameter ofnth order [55].

The Symmlet wavelets are near symmetric, orthogonal, and biorthogonal wavelets. Their gen-

eral characteristics that they are compactly supported wavelets with least asymmetry and highest

number of vanishing moments, it’s associated scaling filters are near linear-phase filters [56] [55].

In literature the Symlet4 wavelet has been used to representand classify arrhythmias [57,58]. The

wavelets used in this analysis are theSym4 at level 5 andWpsym4 Daubechies least-asymmetric

wavelet packet at level 3 due to their structure that is similar to the ECG signal morphology and its

properties. The generated dictionaries were of the size750 × 752 each. Figure 3.3 provides four

different wavelet atoms that were generated in the wavelet dictionary.
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Figure 3.3: Four different Wavelet atoms from the generated dictionaries
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3.2.3 Optimal Dictionary

To apply the dictionary learning algorithm LC-KSVD, the number of the training signals of each

arrhythmic class has to be larger than the dictionary that will be learned, this is an implementation

constraint of the K-SVD algorithm [43]. Therefore, a subsetof the generated dictionaries will be

used for the analysis so the dictionary size is smaller than the trained signals. Hence, the chosen

dictionary size was set to 230 so it can be smaller than the 268training data sets. Before selecting

the 230 atoms three different hybrid dictionaries were generated from a combination of two of

the three dictionaries that were discussed previously (Dictionary 1: Gabor and Sym4, Dictionary

2: Gabor and Wpsym4, Dictionary 3: Sym4 and Wpsym4). To choose the 230 atoms of each

hybrid dictionary, matching pursuit algorithm was appliedon 50 random arrhythmic signals of

the database, and then the first230 atoms of the first few iterations that best describes the signals

were selected to create the new optimal dictionaries for theanalysis. In order to test if the new

sub-dictionaries can describe other arrhythmic signals, matching pursuit was applied on different

signals (not the50 that were randomly selected) where more than90% of the energy were captured.

The following graphs demonstrate three testing signals (the original and the reconstructed) as well

as the captured energy.

3.3 Choice of Optimal Parameters

Recalling from chapter 2 the LC-KSVD objective function is:

< D,W,A,X >= argmin
D,W,A,X ||Y −DX||22+α||Q−AX||22+β||H−WX||22 s.t.∀i, ||xi||≤T (3.2)

The α and theβ parameters are used to determine the contribution of the label consistent

regularization to the reconstruction error and the relative significance of the classification error of

the objective function respectively.α controls the contribution of the discriminative error termin

the minimization whereasβ controls the contribution of classifier error term. These parameters

are data dependent and for this analysis they were chosen based on many trials. Considering the

factors from the literature [46], the optimal values ofα andβ were searched in the range of 0.01

to 6. A subset of database (536 arrhythmia segments) was usedto identify the optimalα andβ
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Figure 3.4: Matching pursuit on VF signal (Top) and it’s captured energy(bottom) using Dictio-
nary 1
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Figure 3.5: Matching pursuit on VT signal (Top) and it’s captured energy(bottom) using Dictio-
nary 2
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Figure 3.6: Matching pursuit on VF signal (Top) and it’s captured energy(bottom) using Dictio-
nary 3

parameters using Gabor and Sym4 dictionaries, where the choice of the dictionary and signals

were at random.

First, the classification error of the objective function inequation 3.2 is eliminated (i.e setting

β to 0). After 2000 iterations, the total error consisting of the reconstruction error and the dis-

criminative sparse code error (error 1) was obtained as shown in Table 3.1, also in this table the

classification accuracy of testing signals using the trained dictionary was obtained. Then the clas-

sifier error term is included in the objective function (error 2), and the total error is obtained after

2000 iterations using a combination of differentα andβ values, as shown in Figure 3.10, as well

as the classification accuracy using the different ranges (Figure 3.9).

From Table 3.1 the total error for using differentα values ranges from0.017 to 0.023. Having a

value ofα less than2 produced an error less than1%, while having anα value of4 and6 produced

an error greater than1%. Having an error lower than1% produced a higher classification accuracy

compared to errors greater than1%. The Figures 3.7 and 3.8 show the classification accuracies

for the subset of data and the error 1 respectively, as could be observed the highest classification
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Table 3.1: Classification accuracy and reconstruction error for differentα parameters for 2000
iterations of LC-KSVD

α Classification accuracy (%) Reconstruction error
0.01 64.2% 0.004
0.1 67.2% 0.004
0.5 69.4% 0.002
1 76.1% 0.005
2 78.4% 0.008
4 60.4% 0.017
6 61.2% 0.023

occurs at anα value of 2 with an acceptable error of less than1%, hence we chose the optimal

value ofα to be 2 using Gabor and Sym4 dictionary. This value was also tested using different

subset of data and an optimized dictionary that consists of acombination of all three dictionaries,

which produced similar results (highest classification accuracy atα = 2).

Similarly, when theβ parameter was included, the total error 2 and the classification accuracies

were obtained. Figures 3.9 and 3.10 show the range of classification accuracies and the ranges of

error 2 for differentα andβ values ranged from68–76% respectively. The box plots show the

variations in the results for differentβ values for specificα values. As could be observed the

median of the classification range of the box plot is highest for anα value of 2 (with error still less

than1%) and for the optimal value ofβ, the average classification accuracy using different values

for β atα =2 was taken into consideration and arrived at an optimal value of 0.01. The values of

the errors and classification accuracies using differentα andβ can be found in Appendix B. When

the same analysis was done using different subsets of signals and the three combined dictionaries,

the value ofα being 2 andβ being 0.01 resulted in a higher classification accuracy withlower total

error compared to other values. Therefore, the chosen optimal values that were used in the further

analysis wereα = 2 andβ = 0.01. As for the sparsity factorT , different values were pre-selected

such as (10, 30, 50, 100) and tested. In the literature [46] the selected sparsity factor was 30 for

their database. Using the pre-selected values for the analysis, it was concluded that higher error

and lower classification accuracy were obtained by having a low sparsity factor. The higher the

sparsity factor the higher the computational time it took toevaluate the sparse matrix of the signals.
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Hence, the optimal value that was selected to be used in this analysis was 50, where for any value

higher than 50 there was no significant change in the error andit was merely computationally more

expensive without much gain.
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Figure 3.7: Classification accuracies using differentα values

3.4 Chapter 3 Summary

This chapter discussed the choice of initial dictionaries that will be trained using the Label Con-

sistent K-SVD algorithm. Also in this chapter reduced size of dictionaries were selected for the

analysis due to the restriction of having a number of the training signals smaller than the dictionary

elements. The optimal selection was then based on applying the adaptive decomposition matching

pursuit on a subset of signals, and the first 230 atoms of the decomposition were used to create

the energy optimal dictionaries.The chapter also presented the process involved in the selection of

the parametersα andβ that controls the relative contribution of error in the LC-KSVD objective

function stated in equation 3.2.
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Figure 3.9: Boxplot of the classification accuracy ranges using different α andβ values
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Chapter 4

Feature Extraction and Pattern
Classification

F
OR any classification application patterns/features are needed to be extracted in order to

discriminate between classes in reduced dimensional space. Depending on the patterns dis-

tribution in the feature space the classifier type can vary between linear, quadratic or if the data

distribution is complex a multi layer neural network classifier is usually used. In this chapter we

present the validation of the discriminative sparse codes obtained using LC-KSVD approach by

how well these codes could discriminate VT and VF. The classification accuracies were computed

using linear classifiers. Comparative performance evaluations on various scenarios are also pre-

sented.

4.1 Features/ Feature Space

In pattern recognition techniques usually a measurable quantity is used for recognition, this quan-

tity is called a feature. Features measure specific properties of data that is informative and discrim-

inative. When more than one feature is used a feature vectorx is created, where the vectorx is in a

d-dimensional spaceRd called the feature space. The feature space dimension depends on the num-

ber of feature that will be used [48]. In this analysis the feature that will be used for discriminating

between the arrhythmic groups is the discriminative sparsecode of the learned dictionary using

LC-KSVD algorithm. For each tested data the sparse code usingthe learned dictionary is obtained

and then multiplied by the learned classifier parameters which will results in a score estimate. The
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resultant score is a 2 row matrix, the index of the maximum score represents the classified class.

Figure 4.1 represents the feature space of the score estimate of VF and VT testing signals.

Figure 4.1: An example of feature space of the estimated score feature, where blue pluses repre-
sents VF tested signals and red circles represents VT testedsignals

4.2 LC-KSVD analysis on Arrhythmic Signals

In this section the results are divided into two parts, analysis using the optimized dictionaries that

were discussed in the previous chapter and analysis using full dictionaries (i.e., not optimized) for

comparative performance evaluation. In the optimized dictionaries analysis section, the classifi-

cation accuracies of the three optimized dictionaries werecompared. In addition a comparison

between the LC-KSVD1 (β=0) and LC-KSVD2, where in the LC-KSVD1 the classifier error term

is eliminated from the objective function and in the LC-KSVD2it is included. In this chapter when-

ever it is not specified if it is LC-KSVD1 or LC-KSVD2 (i.e LC-KSVDonly) it means LC-KSVD2

(the classifier error is included in the objective function). The accuracy of detecting arrhythmic sig-

nals were compared using a trained versus non-trained dictionaries, and the effect of the dictionary
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size on the classification accuracy and computational time was also discussed.

In the second part of the results analysis where the full dictionaries were used, the dictionaries

were trained using an artificial increased database size by adding noise to the actual data. Clas-

sification accuracies of the three dictionaries were compared, in addition to the results of using

a trained dictionary versus a non-trained one. A flow chart ofthe results distribution for various

scenarios is illustrated in figure 4.2.

4.2.1 Results Using Optimized Dictionaries

In this analysis, the 335 VF signal segments and 335 VT signalsegments were filtered and then

used for the analysis. In this analysis a 5-fold cross validation will be used to validate the results

over the LOO cross validation as LOO is computationally expensive for the application in hand.

The 670 signals were divided into five equal folds, where fourfolds used for training the dictionar-

ies and one fold was used for testing. This was repeated five times with different validating fold

at a time and the overall classification accuracy was computed as the average accuracy of the five

folds.

Initially, three types of dictionaries were pre-selected for the analysis as mentioned earlier;

Gabor, Symlet4, and Wpsymlet4 dictionaries. The dictionaryparameters were restricted to a sub-

set size that has been optimized in Chapter 3 to keep the dictionary size smaller than the training

data set [43]. The weight factorsα andβ were set to 2 and 0.01 respectively, and the sparsity

factorT to be 50. Using these parameter values, the training was donefor 2000 iterations (where

more than 90% of the signal energy was captured), and the classification of the testing signals was

performed as described in the Chapter 2 using equation 2.31. Table 4.1 shows the different clas-

sification accuracies of VF and VT signals with different combinations of the dictionaries Gabor,

Symlet4, and Wpsymlet4 wavelet. Highest overall average classification accuracy of 73.3% was

obtained for the hybrid dictionary of Symlet4–Wpsymlet4 compared to 71.6% and 72.8% for the

Gabor–Symlet4 and Gabor–Wpsymlet4 respectively. The confusion matrix of the classification of

the tested signals provided in Table 4.2, where 70.1% of VF signals were accurately characterized

as VF and 82.1% were accurately characterized as VT. As stated in table 4.3 the range of correctly
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Figure 4.2: Flow chart of the results analysis

47



characterizing VF and VT ranges between 52–71% and 82–95% respectively for different folds.

The misclassified VF signals had a similar signal structure to VT signals, while the misclassified

VT signals were more disorganized and had a similar structure towards VF when observed. The

choice of having an optimized hybrid dictionary over individual one for training was that it per-

formed better in classifying the arrhythmic signals compared to individual ones, while choosing

a hybrid optimized dictionary of a combination of the three dictionaries did not effect the results

significantly.

Table 4.1: Average classification accuracy for different combinations of the optimized dictionaries
for 2000 iterations of LC-KSVD

Dictionary type combination Classification accuracy (%)
Gabor–Symlet4 71.6%

Gabor–Wpsymlet4 72.8%
Symlet4–Wpsymlet4 73.3%

Table 4.2: Confusion matrix of discriminating VF and VT signals using optimized Sym-
let4–Wpsym4 dictionaries of LC-KSVD

VF VT Total
tested signals VF 47 20 67

VT 12 55 67
% VF 70.1 29.8 100

VT 17.9 82.1 100

When theβ parameter was set to zero, which means that the classifier error was removed from

the objective function, the overall classification accuracy of LC-KSVD1 using Symlet4–Wpsymlet4

became 70.4% compared to 73.3% when the classification errorterm was included (i.e., LC-

KSVD2). Figure 4.3 shows the distribution of classificationaccuracies of the five folds using

LC-KSVD1 and LC-KSVD2 algorithms. For LC-KSVD1, a separate linear classifier was trained,
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Table 4.3: Range of the 5-folds confusion matrix of discriminating VF and VT signals using
optimized Symlet4–Wpsym4 dictionaries of LC-KSVD

Classification accuracy range
VF 52–71 %
VT 82–95 %

therefore, its performance in classifying depends on how discriminative is the sparse codex. De-

pending on the fold that is used for training the dictionary,the accuracy to classify arrhythmias by

including the classifier error term in the objective function or eliminating it differs. From Table 4.4,

it can be shown that the five folds have lower classification accuracies using the LC-KSVD1 over

the LC-KSVD2. This means that the learned dictionary sparse codex using these trained folds is

less discriminate when the linear classifier error is not included compared to when it is included in

the objective function. For this particular example training with the classifier error term improves

the ability to accurately classify arrhythmias.
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Figure 4.3: Boxplot of classification accuracies of LC-KSVD1 and LC-KSVD2
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Table 4.4: The Classification accuracy for the five folds data sets using LC-KSVD1 and LC-
KSVD2

Data Sets LC-KSVD1 LC-KSVD2
fold 1 72.4% 73.9%
fold 2 67.2% 70.9%
fold 3 73.1% 73.9%
fold 4 73.9% 76.2%
fold 5 65.7% 71.6%
overall 70.4% 73.3%

The classification accuracy using the LC-KSVD trained Symlet4–Wpsymlet4 dictionary sparse

code as a feature for classification was compared to the classification of the signals using the sparse

code of non-trained dictionary, and as observed in Figure 4.4, the overall classification accuracy

using the non-trained dictionary was observed to be less with 67.5% compared to the 73.3% for the

trained dictionary. This improvement due to having more adaptive trained atoms as shown in Fig-

ure 4.5 compared to the non-trained ones in Figure 3.3. Also the Figures 4.6 and 4.7 shows the clas-

sification accuracies using trained and non-trained dictionaries combinations of Gabor–Wpsym4

and Gabor–Sym4 respectively.

Table 4.5: The Classification accuracy for the five folds data sets using the optimized trained and
non-trained Symlet4–Wpsym4 dictionaries

Data Sets Trained Dictionary (%) Untrained Dictionary (%)
fold 1 73.9% 66.4%
fold 2 70.9% 67.2%
fold 3 73.9% 67.9%
fold 4 76.1% 69.4%
fold 5 71.6% 66.4%
overall 73.3% 67.5%

The discrimination of the arrhythmic signals using the LC-KSVD algorithm does not only de-
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Figure 4.4: Boxplot of the classification accuracy of the five fold data sets of VF and VT using
optimized trained and non-trained Symlet4–Wpsymlet4 dictionaries
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Figure 4.5: Examples of Symlet4–Wpsymlet4 trained dictionary atoms
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Figure 4.6: Boxplot of the classification accuracy of the five fold data sets of VF and VT using
optimized trained and non-trained Gabor–Wpsymlet4 dictionaries

pend on the type of the dictionary that is used, but also on thesize of the dictionary. Having a large

dictionary can provide better classification accuracies, because more atoms would represent the

different types of signals. Figure 4.8 can show that with thedecrease of the size of the dictionary,

the classification accuracy decreases. Increasing the sizeof the dictionary increases the computa-

tional time it takes to perform the LC-KSVD as shown in Figure 4.9, where the computational time

of performing LC-KSVD on one fold was computed. Also the characterizing of the arrhythmias

depends on what folds were used for training the dictionary.

A comparison on the performance of different types of classifiers such as linear, quadratic, and

multi layer neural network, to classify the score feature ofthe LC-KSVD was performed. Figure

4.10 shows that there is no significant difference in using the quadratic classifier or a multi layer

neural network classifier over a linear classifier to classify.
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Figure 4.7: Boxplot of the classification accuracy of the five fold data sets of VF and VT using
optimized trained and non-trained Gabor–Symlet4 dictionaries
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Figure 4.8: Classification accuracy using different sizes of the Gabor–Wpsym4 dictionary

4.2.2 Results Using Full Dictionary

Due to the limitation of having the number of the dictionary elements larger than the used database,

the dictionary sizes were restricted to do the analysis. To overcome this and be able to use the entire

dictionary an artificially derived database is generated from the original 670 segments by adding

five different Gaussian white noise of 12, 15, 20, 25, and 30 dBto those segments. The resul-

tant synthetic database consists of 3800 segments (1900 VF signal segments and 1900 VT signal

segments) including the original 670 arrhythmic segments.After obtaining the new database the

combinations of two dictionaries were chosen to be trained using the LC-KSVD with the same

weight factorsα = 2 andβ = 0.01, the sparsity factorT = 50 and number of iterations (i.e.,

2000 iterations). To validate the results a 5-fold cross validation was used, where the data-set was

first randomly mixed up and then divided into five equal sets (760 segments each), and then the

dictionaries were trained using four folds and tested with the remaining one.
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Figure 4.9: Computational time of one fold using LC-KSVD with respect to different sizes of the
Gabor–Wpsym4 dictionary
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Table 4.6 provide the classification accuracy of the three different dictionary combinations,

where the Gabor–Symlet4 dictionary provide the highest classification accuracy of 87.4% com-

pared to 86.2% and 87.0% of Gabor–Wpsymlet4 and Symlet4–Wpsymlet4 respectively. Using a

full dictionary to characterize arrhythmic signals improved the classification accuracy, where char-

acterizing VF signals was improved over the characterizingof VT signals, this is reflected in Tables

4.7 and 4.8 of the confusion matrix of classifying VF and VT signals using the learned dictionary

Gabor–Wpsymlet4.

Table 4.9 shows the five fold classification accuracies of VF and VT signals with the Ga-

bor–Wpsymlet4 wavelet hybrid dictionary with a total overall average classification accuracy of

% 86.2. When the classification accuracy of tested signals is compared using a trained and non-

trained dictionary, as expected the trained dictionary improves the accuracy over the non-trained

one as shown in Figure 4.11, similarly when compared using the other two dictionaries such as

Gabor–Symlet4 and Wpsymlet4–Symlet4.

Table 4.6: Average classification accuracy for different combinations of the full dictionaries for
2000 iterations of LC-KSVD

Dictionary type combination Classification accuracy (%)
Gabor–Symlet4 87.4%

Gabor–Wpsymlet4 86.2%
Symlet4–Wpsymlet4 87.0%

Table 4.7: Confusion matrix of discriminating VF and VT signals using full Gabor–Wpsym4
dictionaries of LC-KSVD

VF VT Total
tested signals VF 358 22 380

VT 75 305 380
% VF 94.2 5.8 100

VT 19.7 80.3 100
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Table 4.8: Range of the 5-folds confusion matrix of discriminating VF and VT signals using full
Gabor–Wpsym4 dictionary of LC-KSVD

Classification accuracy range
VF 90–97 %
VT 70–84 %

Table 4.9: The Classification accuracy for the four data sets using non-trained and LC-KSVD
trained full Gabor–Wpsymlet4 dictionary

Data Sets Trained Dictionary (%) Untrained Dictionary (%)
fold 1 87.2% 77.0%
fold 2 87.2% 77.2%
fold 3 82.8% 76.8%
fold 4 85.8% 78.2%
fold 5 87.8% 78.2%
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Figure 4.11: Boxplot of the classification accuracies of the five folds using trained and non-trained
Gabor–Wpsymlet4 dictionary
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4.3 Results Summary

In the presented analysis, the highest classification accuracy of VF and VT signals obtained was

73.3%, using the optimized Symlet4–Wpsymlet4 and a database of 670segments. When the error

classifier term was removed from the objective function the classification accuracy reduced from

73.3% to 70.4%. The classification accuracy of trained dictionary was higher (73.3%) than the

non-trained dictionaries (67.5%) re-emphasizing the benefits of using a data adaptive dictionary

learning approach in learning more discriminative information. As expected increasing the dictio-

nary size increases the ability to accurately classify signals by improving the modeling flexibility

but at the expense of computational time.

For the full dictionaries analysis using an artificial increased database from the actual data the

highest classification accuracy of VF and VT signals was obtained using the Gabor–Symlet4 of

87.4% compared to87.0% of Symlet4–Wpsymlet4, and86.2% Gabor–Wpsymlet4. Although

higher classification accuracies were achieved using the artificially increased database, this may

not reflect the true scenario as the added noise could have biased the signal morphologies more

towards VF which might explain the higher classification accuracies of VF in comparison with

VT. This exercise was to show that with increased database sizes we might have more flexibility

in modeling these arrhtyhmias, however in reality obtaining vast databases for ventricular arrhyth-

mias is a difficult challenge due to high mortality rates, ethical, and data privacy issues.

From the results section of this thesis, it can be concluded that the discriminative sparse cod-

ing using dictionary learning methods such as LC-KSVD does demonstrate high potential in suc-

cessfully capturing the compact discriminative structures (time-frequency subspace) of ventricular

arrhtyhmias.
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4.4 Chapter 4 Summary

This chapter presented the performance evaluation of the discriminative spare coding of ventricular

arrhythmias using dictionary learning algorithm LC-KSVD. The chapter presents the results for

different scenarios (hybrid dictionaries, LC-KSVD1, LC-KSVD2) and comparative performances

between trained and non-trained approaches. The effect of dictionary size and the database sizes

on the performance was also demonstrated. The chapter was concluded with a summary of results.
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Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions

In this thesis, automated learning of underlying discriminative structures of ventricular arrhythmias

was investigated. A label consistent K-SVD dictionary learning algorithm was used to analyze ven-

tricular fibrillation and ventricular tachycardia ECG segments using the discriminative sparse code

obtained from a trained dictionary. A databases consistingof 670 arrhythmia segments from the

publicly available MIT-BIH databases was used to train and classify using a predictive linear clas-

sifier. Optimal parameter choices for the analysis of ventricular arrhtyhmia were identified experi-

mentally. Using these parameters, hybrid dictionaries were trained and their discriminative sparse

codes were generated and these codes were validated for their discriminating ability. Three differ-

ent hybrid optimized dictionaries: Gabor–Symlet4, Gabor–Wpsymlet4, and Symlet4–Wpsymlet4

achieved classification accuracies of 71.64%, 72.84%, and 73.28% respectively.

The comparative results between trained and non-trained dictionaries validate the need for dic-

tionary learning approaches in learning the underlying discriminative signal structures. Compact

representation of these arrhythmias may lead to better characterization and insight into subclasses

of these arrhythmias. This will also positively impact the intelligence of decision algorithms in im-

plantable devices. From a mechanistic view point, these discriminative sparse code representations

might reveal hidden information in the genesis of these arrhythmias.
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5.2 Future Work

Future work includes characterizing sub classes of arrhythmias such as polymorphic and monomor-

phic ventricular tachycardia, and organized and dis-organized ventricular fibrillation. In addition,

with discriminative sparse coding we can identify sparse code templates for groups of arrhythmic

signals which can be correlated to pathologies. Also, usingthese discriminative sparse code tem-

plates from multi-channel ECG recording it might be possibleto infer regional variations in the

arrhythmic activities.
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Appendix A

Abbreviations

ECG Electrocardiogram

VF Ventricular Fibrillation

VT Ventricular Tachycardia

MVT Monomorphic Ventricular Tachycardia

PVT Polymorphic Ventricular Tachycardia

VA Ventricular Activity

AA Atrial Activity

STFT Short Time Fourier Transform

CWT Continues Wavelet Transform

DWT Discrete Wavelet Transform

MP Matching Pursuit

OMP Orthogonal Matching Pursuit

K-SVD K-Singular Value Decomposition

LC-KSVD Label Consistent K-SVD

LDA Linear Discriminant Analysis

LDC Linear Discriminant Classifier

QDC Quadratic Discriminant Classifier

MNN Multi Layer Neural Network
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Appendix B

Optimization Results

B.1 Sample optimization results using differentα for a subset
of data using Gabor and Sym4 dictionary

Table B.1: Classification accuracy and error 1 for differentα parameters for 2000 iterations of
LC-KSVD

α Classification accuracy (%)Error 1
0.01 64.18% 0.004
0.1 67.16% 0.004
0.5 69.40% 0.002
1 76.12% 0.005
2 78.36% 0.008
4 60.45% 0.017
6 61.19% 0.023

B.2 Sample optimization results using differentα and β for a
subset of data using Gabor and Sym4 dictionary
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Table B.2: Total error 2 for different combinations ofα andβ parameters for 2000 iterations of
LC-KSVD

α = 0.01 α = 0.1 α = 0.5 α = 1 α = 2 α = 4 α = 6
β = 0.01 0.0033 0.0037 0.0011 0.0045 0.0089 0.016 0.025
β = 0.1 0.0033 0.0033 0.0019 0.0051 0.0088 0.017 0.024
β = 0.5 0.0039 0.003 0.0016 0.0043 0.0092 0.015 0.028
β = 1 0.0042 0.0037 0.0018 0.0045 0.0094 0.016 0.024
β = 2 0.003 0.0025 0.0007 0.0046 0.0092 0.016 0.023
β = 4 0.002 0.0021 0.0017 0.0007 0.0088 0.016 0.024
β = 6 0.0017 0.0016 0.0019 0.0047 0.0091 0.016 0.022

Table B.3: Classification accuracy for different combinations ofα andβ parameters for 2000
iterations of LC-KSVD

α = 0.01 α = 0.1 α = 0.5 α = 1 α = 2 α = 4 α = 6
β = 0.01 61.19% 70.89% 65.67% 66.42% 73.13% 79.85% 71.64%
β = 0.1 68.66% 67.16% 73.13% 63.43% 68.66% 77.61% 62.69%
β = 0.5 62.69% 65.67% 69.40% 70.9% 76.12% 72.39% 70.15%
β = 1 61.194% 64.92% 74.63% 72.39% 73.89% 79.10% 65.67%
β = 2 62.69% 64.92% 71.64% 72.39% 74.63% 71.64% 73.13%
β = 4 64.92% 75.73% 65.67% 71.64% 75.37% 72.39% 70.9%
β = 6 67.91% 69.40% 73.13% 73.88% 70.15% 71.64% 69.40%
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