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Abstract

Discriminative Sparse Coding in the Analysis of Electroaagdam
During Ventricular Arrhythmias,
Master of Applied Science, 2015,
Iman Kalaji,
Department of Electrical and Computer Engineering, Ryersonessity.

Abnormalities in the rhythmic electromechanical conti@ts of the heart results in cardiac
arrhythmias. When these abnormalities rise from the vdasriof the heart, they are classified as
ventricular arrhythmias. The two major types of ventriciderhythmias are ventricular tachycar-
dia (VT) and ventricular fibrillation (VF). Ventricular fiblation is the most dangerous among the
two arrhythmias, that usually leads to sudden cardiac déatit treated immediately. Annually
about 40,000 sudden cardiac deaths are reported in Canadao Digh mortality rate and serious
impact on quality of life, researchers have been focusinghamacterizing ventricular arrhythmias
that may lead to delivering optimized treatment optionsnprioving the survival rates.

In this thesis two major types of ventricular arrhythmiasrevanalyzed and quantified by
performing a discriminative sparse coding analysis calidsl consistent K-SVD using time-
frequency dictionaries that are well localized in time areytiency domains. The analyzed sig-
nals were 670 ECG ventricular arrhythmia segments from 3@matextracted from the Malig-
nant Ventricular Ectopy and Creighton University Tachytthmia databases. Using the LC-
KSVD dictionary learning approach, an overall maximum siisation accuracy of 73.3% was
achieved with a hybrid optimized wavelet dictionary. Basedtlee comparative analysis, the
trained (learned) dictionaries yielded better perforneati@n the untrained dictionaries. The re-
sults indicate that discriminative sparse coding apprdechgreater potential in extracting signal
adaptive and morphologically discriminative time-fregag structures in studying ventricular ar-
rhtyhmias.



Acknowledgments

| would like to express my sincere gratitude to my supervidorK. Umapathy for the continuous
support, guidance, and motivation. His guidance helpednradlithe time of research, | could
not have imagined having a better adviser and mentor for mstenatudy. | also thankfully
acknowledge Mr. Balasundaram for providing me with his helg seedback whenever | needed
it. Last but not least | would like to thank my parents, whainsd me for higher studies and have
supported me throughout the entire process, both by keepengotivated and helping me putting
the pieces together. | will be grateful forever for your lawd support, | could not have done it
without you. The most special thank goes to my partner aeadi;i my husband Mohammad for
his love and support during the difficult times and for alwhgig so patient with me. Love you.



To my beloved parents,

to my husband,

and to my best friend my brother.



Contents

Author’s Declaration ii
Abstract iii
Acknowledgments iV
Dedication Y
List of Tables viii
List of Figures IX
1 Introduction 1
1.1 Electrophysiology of the Cardiovascular System . . . . ...... . ... ..... 1
1.2 Ventricular Arrhythmias . . . . . . . . . . . e 3
1.2.1 Ventricular Tachycardia . . . ... .. .. ... ... ... ..... 4

1.2.2 \entricular Fibrillation . . . . . .. .. . ... ... . 6

1.3 ECG Analysis During Ventricular Arrhythmias . . . . .. .. ... ... ... 6
1.3.1 Time-DomainAnalysis . . . . . . . . . . . . . ... 6

1.3.2 Frequency-Domain Analysis . . . . . . . .. ... ... .. ... a.. 7

1.3.3 Time-Frequency Domain Analysis . . . . . . . . ... ... . . ... 8

1.4 Motivation . . . . . . . . e e e e 9
1.5 Thesisoutline . . . . . . . . . . e 11

2 Methods Background 13
2.1 Time-Frequency Domain Analysis . . . . . . . . . . . . . e 13
2.2 Time-Frequency Dictionaries . . . . . . . . . . . . . e e 17
2.2.1 Parametric Dictionaries . . . . . . . . . . .. e 18

2.2.2 LearnedDictionaries . . . . ... ... .. ... e 20

2.2.3 Label-ConsistentK-SVD . . . . . . . . ... 24

2.3 Linear Discriminant Analysis . . . . . . . . . . .. e 28
24 CrossValidation. . . . . . . ... 30
2.5 Background Summary . . . ... e e 31

Vi



3 LC-KSVD Parameters For Ventricular Arrhythmia Analysis 32

3.1 Database and Pre-processing . . . . . . . . . . . ... e e 32
3.2 Dictionary Selection . . . . . . . . . .. 33
3.2.1 GaborDictionary . . . . . ... e 34
3.2.2 WaveletDictionaries . . . . . . . . . . e 35
3.2.3 OptimalDictionary . . . . . . . . . . . e 37
3.3 Choice of Optimal Parameters . . . . . . . . . . . .. . .. .. ... ... 37
3.4 Chapter3Summary . . . . . . . . . e e e e 41
4 Feature Extraction and Pattern Classification 44
4.1 Features/FeatureSpace . . . . . . . . . . . e 44
4.2 LC-KSVD analysis on Arrhythmic Signals . . . . . . . ... ... ... .... 45
4.2.1 Results Using Optimized Dictionaries . . . . . ... ... ....... 46
4.2.2 Results Using Full Dictionary . . . . ... ... ... ... ...... 54
4.3 ResultsSummary . . . . . . . . e e 59
4.4 ChapterdSummary . . . . . . . o e e 60
5 Conclusions and Future Work 61
5.1 Summary and Conclusions . . . . . . .. . ... 61
5.2 Future Work . . . . . . . . e e 62
A Abbreviations 63
B Optimization Results 64
B.1 Sample optimization results using differentor a subset of data using Gabor and
Syma dictionary . . . . .. e e e 46
B.2 Sample optimization results using differentand 5 for a subset of data using
Gabor and Sym4 dictionary . . . . . . ... e 64
Bibliography 66

Vil



List of Tables

3.1 Classification accuracy and reconstruction error féedhta parameters for 2000

iterations Of LC-KSVD . . . . . . . . . . 04
4.1 Average classification accuracy for different comboret of the optimized dictio-

naries for 2000 iterations of LC-KSVD . . . . . . . . . . .. . ... .. .. .. 48
4.2 Confusion matrix of discriminating VF and VT signals usioptimized Sym-

let4—Wpsym4 dictionaries of LC-KSVD . . . . . . . . . . .. .. ... .. .. 48
4.3 Range of the 5-folds confusion matrix of discriminating &d VT signals using

optimized Symlet4—Wpsym4 dictionaries of LC-KSVD . . . . . . . .. .. .. 49
4.4 The Classification accuracy for the five folds data setsgusC-KSVD1 and LC-

KSVD2 . . . e 50
4.5 The Classification accuracy for the five folds data setsggusie optimized trained

and non-trained Symlet4—Wpsym4 dictionaries . . . . 50
4.6 Average classification accuracy for different comboret of the fuII dlctlonarles

for 2000 iterations of LC-KSVD . . . . . . . . . . . . ... . 57
4.7 Confusion matrix of discriminating VF and VT signals usfoll Gabor-Wpsym4

dictionaries of LC-KSVD . . . . . . . . . . 57
4.8 Range of the 5-folds confusion matrix of discriminating &d VT signals using

full Gabor-Wpsym4 dictionary of LC-KSVD . . . . . . .. ... ... .. .. 58
4.9 The Classification accuracy for the four data sets usingireoned and LC-KSVD

trained full Gabor-Wpsymlet4 dictionary . . . .. .. .. ... .. ... ... 58
B.1 Classification accuracy and error 1 for differenparameters for 2000 iterations

of LC-KSVD . . . . e 64
B.2 Total error 2 for different combinations afand 3 parameters for 2000 iterations

Oof LC-KSVD . . . . 65
B.3 Classification accuracy for different combinationswadnd 5 parameters for 2000

iterations of LC-KSVD . . . . . . . . . . e 56

viii



List

1.1
1.2
1.3
1.4

1.5
2.1

2.2
2.3

3.1
3.2

3.3
3.4

3.5
3.6

3.7
3.8
3.9
3.10

4.1

4.2
4.3

of Figures

The anatomy of the hea@McGraw-Hill [1] . . . . . ... ... ... ... ... 2
The electrical conduction pathway of the heéaicGraw-Hill [1] . . . . . . . .. 3
The electrical conduction of normal sinus rhyt@McGraw-Hill [1] . . . . . .. 4
Three second ventricular tachycardia (top), threerske@ntricular fibrillation
(bottom) . . . . . e 5
Thesisoutline . . . . . . . . . . . . e 11

a) Coverage of the time-frequency plane for the STFT. be@me of the time-
frequency plane for the wavelet. c) Corresponding basistiomof the STFT. d)

Corresponding basis function of the wavelets[2] . ... ... ...... .. ... 14
Gabor Atom . . . . . 91
M fold cross validation structure . . . . . . . . .. ... L o 30
Samplesignalsof VFand VT . . . . . . . . . . . .. ... ... e 33
Four different Gabor atoms from the generated dictipoadifferent translation
andscales . . . ... 35
Four different Wavelet atoms from the generated dieti@s . . . . . . .. .. .. 36
Matching pursuit on VF signal (Top) and it's capturedrgggbottom) using Dic-

tionary 1 . . . . . 38
Matching pursuit on VT signal (Top) and it's capturedrgyebottom) using Dic-

tionary 2 . . . . . e e 38
Matching pursuit on VF signal (Top) and it's capturedrgggbottom) using Dic-

tionary 3 . . . . . 39
Classification accuracies using differentalues . . . . . . ... ... ... ... 41
Total error 1 using differentvalues . . . . . . . ... .. ... ... ....... 42
Boxplot of the classification accuracy ranges using iifie andg values . . . . 42
Boxplot of the total error 2 ranges using differerandg values . . . . . . .. .. 43

An example of feature space of the estimated score &anere blue pluses

represents VF tested signals and red circles representeséddtsignals . . . . . . 45
Flow chartof theresultsanalysis . . . . . . . . .. .. ... . ... .... 47
Boxplot of classification accuracies of LC-KSVD1 and LC-K®¥/ . . . . . . .. 49



4.4

4.5
4.6

4.7

4.8
4.9

Boxplot of the classification accuracy of the five fold dsgts of VF and VT using

optimized trained and non-trained Symlet4—Wpsymlet4 oinctries . . . . . . . . 51
Examples of Symlet4—Wpsymlet4 trained dictionary atams. . . . . . .. . .. 51
Boxplot of the classification accuracy of the five fold dsgts of VF and VT using
optimized trained and non-trained Gabor-Wpsymlet4 dietims . . . . . . . . . 52
Boxplot of the classification accuracy of the five fold dsgts of VF and VT using
optimized trained and non-trained Gabor-Symlet4 dictiesa. . . . . . ... .. 53
Classification accuracy using different sizes of the GalMpsym4 dictionary . . . 54
Computational time of one fold using LC-KSVD with respexctifferent sizes of

the Gabor—-Wpsym4 dictionary . . . . . . . . . . . . . . .. 55

4.10 Comparing different types of classifiers for classiyiine feature score of the LC-

KSVD . . 56

4.11 Boxplot of the classification accuracies of the five faldsg trained and non-

trained Gabor-Wpsymlet4 dictionary . . . . . . . . . . ... .. a. .. 58



Chapter 1

Introduction

HE heart is the major muscular organ of the cardiovasculsiesy. It pumps blood into
T all other organ systems of the human body and it helps dadixggen and other essential
nutrients that are needed to maintain their physiologigatfions. Abnormalities in the rhythmic
electromechanical contractions of the heart results idiaararrhythmias, when these abnormali-
ties rise from the ventricles of the heart, they are classd®ventricular arrhythmias. Ventricular
arrhythmias are serious life threatening abnormal rhythmeckvcould be lethal and requires im-
mediate medical attention. The need to understand theelifféypes of ventricular arrhythmias
and the differentiation between them motivates ventricatehythmia signal analysis approaches
from an engineering perspective. In these approachesptiis has been to develop tools to either
better understand the mechanisms that cause ventriculgstiamias or to provide an automated
detection method to predict arrhythmic events by analytivegheart’s electrical activity during

arrhythmias and to deliver appropriate therapy in a timedyner.

1.1 Electrophysiology of the Cardiovascular System

The cardiovascular system circulates blood to transpariemis, oxygen, carbon dioxide, and hor-
mones to the body’s cells and organs. Improper and inadeguratilation can result in cell and/or
organ damages. The cardiovascular system consists of #re(ladich acts as a pump), blood,
and blood vessels. As shown in Figure 1.1, there are four bhesrof the human heart, the left

and right atria and the left and right ventricles. The atnid &entricles are separated by valves,



the right atria and right ventricle are separated by thei$pad valve while the left atria and left
ventricle is separated by the bicuspid valve. The left agltrthambers are separated by a muscle
wall called septum. The left atria receive oxygenated blwoth the lungs and pumps it into the
left ventricle to be sent to the body, while the right atrieei®e the de-oxygenated blood from the
body and then pump it to the right ventricle and from the riggntricle the blood is sent to the

lungs.

Aorta

Superior Pulmonary
vena cava trunk

Pulmonary

semilunar valve
Right Left atrium
atrium

. i Mitral (bicuspid)

Tricuspid valve
valve

Chordae
Papillary — tendineae
muscles — Interventricular
Inferior J  septum

'y

vena cava = =
Figure 1.1: The anatomy of the heai@McGraw-Hill [1]

The conductive system of the heart starts from the top ot agfium to the end of the ventri-
cles; it consists of the sinoatrial (SA) node, atrioventiac (AV) node, atrioventricular bundles,
the left and right bundles of branches, and Purkinje fiborasm€&asure the electrical activity of
the heart over a period of time, an electrical impulse isated at the sinoatrial (SA) node which
causes the atria to depolarize. When the atria are filled Wétbtood that is delivered from the
lungs, the pressure build up causes the atria to contract@emthe bicuspid and tricuspid valves.
After the electrical impulse reaches the atrioventric(#f) node, it travels through the atrioven-

tricular fibers (AV bundles) and then the slow conductingkije fibers. The electrical excitation
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of the ventricles in addition to the pressure build up catlsesemilunar valves to open and the
ventricles to contract (depolarization). This electricahduction pathway is shown in Figure 1.2.
The rhythmic electrical activity of the heart can be an iatien of a normal functioning cardio-
vascular system.

For a normal sinus rhythm such as the one that is shown in &, the contraction of the
atria generates a P wave of the ECG signal where the eledtripalse travels from the sinoatrial
(SA) node to the atrioventricular (AV) node. While the QRS cteraptures the depolarization
of the ventricles, and the T wave captures the repolarizgtielaxation) of the ventricles. On

average, an adult human heart beats 75 times per minute [1]

Interatrial septum

Sinoatrial node ; ‘
(SA node) o ~—_— 0\ ,Right and
\ ‘ left bundle

/ branches
Atrioventricular :
node (AV node)

Atrioventricular
bundle
(bundle of His)

Purkinje fibers

Interventricular septum Apex of heart
Figure 1.2: The electrical conduction pathway of the he@#cGraw-Hill [1]

1.2 Ventricular Arrhythmias

Arrhythmias that are originated from the abnormal elecgohanical contractions of the heart’s
ventricles are called ventricular arrhythmias. Since theefion of the ventricles is to pump blood
out to the organs of the body, arrhythmias related to thenfeaa¢é The two most common ven-

tricular arrhythmias that affect peoples lives are ventactachycardia (VT) and ventricular fib-
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(e) QRS complex: Ventricles
depolarize and contract

(g) T wave: Ventricles
repolarize and relax

[ pepolarization
I Repoiarization

Figure 1.3: The electrical conduction of normal sinus rhyti@McGraw-Hill [1]

rillation (VF). In VT the heart beats rapidly (110-250 bpnmdamay lead to VF if untreated [3]. In
VF the heart beats extremely rapidly (more than 300 bpm) inremoordinated way which causes
the heart to stop pumping blood efficiently. VF is the mostgdanus arrhythmia because it may
lead to sudden cardiac death (SCD) if not treated immedidtel§anada more than 40,000 SCDs
occur annually [4]. An example of ECG during each type of vieatar arrhythmia is provided in
Figure 1.4. Due to high mortality rates and serious impacdjuality of life ventricular arrhythmias
have been an area of focus in research. With the advancesver technologies, analysis tools
and treatment options are being developed to help minimiztated deaths, however with limited

Success.

1.2.1 Ventricular Tachycardia

VT is usually a predecessor to VF, it is abnormally fast bustiyoorganized rhythm in the ven-
tricles. Patients with VT may experience the symptoms ofirmng¢chest discomfort), fainting,
dizziness, palpitations, and shortness of breath. Thespteyns may start and stop suddenly,

and in some cases there may be no symptoms [5]. Treatmewnedor VT vary depending
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Figure 1.4: Three second ventricular tachycardia (top), three secentticular fibrillation (bot-
tom)

on the type and the stability of patient condition. Intrawes anti-arrhythmic medications are
usually the first line therapy, electrical defibrillationda@PR might be required in critical con-
ditions. For long-term treatment options oral anti-arhimyic medications may be needed. Some
VT may be managed by radio-frequency catheter ablationyevbertain tissues that causes the
irregular rhythm are ablated which will stop the abnormathim [5]. There are two subclasses of
VT, monomorphic ventricular tachycardia (MVT) and polymbic ventricular tachycardia (PVT).
MVT has an organized structure where all of the QRS waves wilymmmetrical, at each beat the
morphology of the signal is maintained, the MVT originatesni a single focus within the ven-
tricles [6]. In PVT, the QRS waves will not be symmetrical, awmith variation in morphology of
the arrhythmic signal [7], in PVT there are multiple ventiter foci with the resultant QRS com-
plexes [8]. Ventricular tachycardias that last longer tB@rseconds are categorized as sustained

VT, while if it is less than 30 seconds are categorized assustained VT.



1.2.2 Ventricular Fibrillation

VF is more lethal than VT; it is a life threatening arrhythmisVhen a person suffers VF, the
electrical impulses in the ventricles become arrhythmicerg many random foci sources in the
ventricles along the cardiac muscle attempt to take coofritie heart which causes the ventricles
to have uncoordinated asynchronized contractions [9]s Wil result in ineffective or no blood
flow to major organs, including the brain, causing oxygerrigafion that may lead to malfunction
of organs and may lead to death. The person who has a VF eprsgbiebecome unconscious due
the poor blood circulation to the brain and muscles, whetallys cardiopulmonary resuscitation
(CPR) is applied within short period of time. In addition to 6ER an electrical shock through
the chest is applied in the attempt to restart the heart astdreenormal heart rhythm. The shocks
are not always successful in restoring normal heart ratéerRa who are at risk to develop VF
require installation of implantable cardioverter defiltibr (ICD). ICDs are programmed to detect
or predict abnormal heart rhythm and either perform paciagenvers or deliver electric shocks to
restore normal rhythm. In study of sudden death in ICD reaigie20 out of 25 recipients received
appropriate ICD therapies before death, where 16 out of th@e2b tachyarryhthmia associated
[10]. VF symptoms may occur within minutes to an hour befastapsing such as chest pain,
dizziness, nausea, irregular rapid heartbeat, and slsgrnfebreath [11]. When comparing the
ECG of ventricular arrhythmias to the normal sinus rhythm E®@&can see significant differences
in the signal structures as shown in Figure 1.4. In the figheeMT shows regular contractions
similar to normal sinus, but without the rest period betweemntractions and different QRS shape,
while the ECG of a patient suffering from VF has irregular, igamized and non-rhythmic signal

characteristics.

1.3 ECG Analysis During Ventricular Arrhythmias
1.3.1 Time-Domain Analysis

Over the years, researchers have presented many methagtetdar classify ventricular arrhyth-

mias. In the literature time domain features such as ECG &mdgliand inter-beat R-R interval has



been used for classifying arrhythmias [12, 13]. Sequehgipbthesis testing was used by Thakor
et al. to detect VF and VT. In their proposed method the sigrasd compared to a threshold of
generating a binary sequence, then the probability digtoh of the binary sequence was used
to detect arrhythmias using Walds sequential hypothesimtgprocedure [14]. Another time do-
main analysis for the discrimination of tachycardia arnimyias such as VT and supraventricular
arrhythmias from the normal sinus rhythm was multi-way ssial hypothesis testing [15]. In
this algorithm the likelihood function was calculated oé thtrio ventricular delay measurements,
and compared to a threshold to discriminate between thalsi§its]. Threshold crossing sample
count (TCSC) was also used in literature to detect VF [16], ansimproved algorithm of the
threshold crossing algorithm. Throne et al. compared fafferént time domain techniques to
discriminate tachycardia from normal sinus rhythm. The parad techniques were the bin area
method (BAM), correlation waveform analysis (CWA), derivatarea method (DAM), and accu-
mulated difference of slope (ADS) [17]. Another comparisdralgorithms for the application of
recognition of VF was performed by Clayton et al. [18]. The pamed techniques were threshold
crossing intervals (TCI), peaks in the auto-correlatiorcfion (ACF), signal content outside the
mean frequency (VF filter), and signal spectrum shape [18;Tt#se time domain algorithms are

a glimpse of many different time domain techniques thattexisterature.

1.3.2 Frequency-Domain Analysis

Since time domain does not provide the spectral informatiotine analyzed signals, frequency
domain analysis is used to evaluated spectral propertiesnvdrsignal is transformed into the
frequency domain it is decomposed into a combination of aime cosine functions of different

frequencies. Researchers used Fourier transform to studiyotdar arrhythmias from the perspec-
tive of classification and prediction. Frequency analysis been used in literature to detect VF
and VT arrhythmias, Jekova et al. [19] used VF-filter leakalg@rithm for VF detection. In this

algorithm a narrow band-stop filter was applied with a cérteguency that is equivalent to the
mean signal frequency which results in a VF-filter leakad@®.[Algorithms such as spectral band

analysis have also been used in VF detection. During VF teetsgd components of the signal



results narrow band of frequencies compared to sinus natwitdm [19]. In spectral analysis for

arrhythmia analysis, the parameters such as the medianndotnedge frequency and the ampli-
tude of the dominant frequency have been used to predictiteess of the resuscitation [20, 21].

Other parameters such as the centroid frequency, peak iegelency, spectral flatness, and en-
ergy were used for the prediction outcome of the defibrdlatf patients that were experiencing
ventricular fibrillation [22]. Frequency analysis is goa tationary signals, however ECG sig-
nals during arrhythmias are non-stationary signals inneatbherefore, time-frequency analysis has

also been used for various arrhythmic applications suclhasacterization and classification.

1.3.3 Time-Frequency Domain Analysis

In time-frequency analysis the analyzed signals are studiboth time and frequency. This type
of analysis is good for time varying signals such as ECG sgydating ventricular arrhythmias.
In general time-frequency analysis can be divided into tategories; the time-frequency energy
distribution based approaches mostly used for signal septation, and adaptive time-frequency
decomposition approaches that are optimal for featur@etxdn and signals characterization. In
the adaptive time-frequency decomposition, the signattocthposed and approximated using dif-
ferent time-frequency basis functions from a diction&ryhat are well localized in both time and
frequency domains. Due to the adaptive nature of this apprdhe signal approximations can be
achieved as accurately as possible depending upon thectdrastics of the time-frequency dictio-

nary used.

In literature the time-frequency analysis have been uselderiield of arrhythmic signals de-
tection and classification. Short time Fourier transformiK¥) has been used in the application
of the prediction of the heart rate variability [23]. Afonst al [24] used the short time trans-
form to compare the time-frequency distribution of normals rhythm, ventricular tachycardia,
ventricular flutter, and ventricular fibrillation in additi to the smoothed pseudo Wigner Ville dis-
tribution, and cone-shaped kernel distribution [24]. Wat/analysis has been used to classify and

characterize ventricular arrhythmias [25, 26]. Khorratrale compared Continues Wavelet Trans-



form (CWT), Discrete Wavelet Transform (DWT), and Discrete @eslransform (DCT) in the
application of ECG arrhythmias classification using twogaticlassifiers [27]. DWT coefficients
were also used as features to detect and classify four elffearrnythmias such as ventricular
tachycardia (VT), supra ventricular tachycardia (SVT)ntveular fibrillation (VFIB) and ven-
tricular flutter (VFL) [28]. A CWT based wavelet analysis usisiggular value decomposition
(SVD) was proposed to classify ventricular arrhythmiashie work of Balasundaram et. al. [29].
Adaptive time-frequency decomposition based approaches &lso been reported for detection
and classification of arrhythmic signals; features exéddtom the time-frequency basis func-
tions of the dictionary was used to classify between armydls. Depending on the application a
time-frequency dictionary were used. Dictionary desigs been used to separate the ventricular
activity and the atrial activity of ECG signals for the purpad characterizing and modeling atrial
fibrillation [30, 31], also, it has been used in heartbeassifecation applications [32, 33]. Recent
works on dictionary learning algorithms based on K-SVD a@KSVD approaches has been
reported for ECG beat classifications, modeling of atriallfdiron, and ECG reconstructions and
compression applications [34—-37], more details of thes&svwill be discussed in the upcoming

chapter.

1.4 Motivation

Ventricular arrhythmias such as VF and VT have differenhalgnorphologies and their opti-
mal therapy options are different. As mentioned earlier \@gnal usually has more organized
signal structure, while the ECG of VF signal is more irregudraotic signal. While there are
many existing works in literature that uses various methodietect and classify ventricular ar-
rhythmias, identifying and learning meaningful undertyisignal structures in terms of adaptive
time-frequency basis functions could lead to better uridetsng of the subclasses within these
arrhythmias and especially the overlap zone between them.

The primary objective of this thesis is to learn and modeldiseriminative signal structures

of the VT and VF arrhythmias using a time-frequency decortiposapproach. Considering the



time-varying nature of these arrhtyhmias, modeling therdisnative signal structures using sig-
nal adaptive time-frequency dictionaries as base dictiomauld be ideal. In achieving this goal,
the proposed work will explore a dictionary learning algfum (LC-KSVD) that jointly optimizes

time-frequency dictionaries by minimizing both reconstive and discriminative errors. The re-
sulting discriminative sparse code could serve as a repi@bes model that will lend itself as a
compact descriptor for further feature analysis and ctiaraation. The outcome of this work may
lead a way to identify ventricular arrhythmia specific disgnative time-frequency space which
may be useful in decision making algorithms on the choicehefapy. An initial study of this

approach has been recently accepted and published [38].

The detailed block diagram of the proposed approaches ie\anh the above objectives is

shown in Figure 1.5.
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Figure 1.5: Thesis outline

1.5 Thesis outline

The thesis is outlined as follows:

e Chapter 2 -Methods Backgroundrhis chapter will provide information on the background
of signal processing and pattern classification tools thatuged in this thesis as well as
specific background information on the literature survet th related to the signal analysis

methods.

e Chapter 3 -LC-KSVD Parameters for Ventricular Arrhythmia Analysibhis chapter will

11



present the LC-KSVD dictionary learning process and detaithee choice of LC-KSVD

parameters which are data dependent.

Chapter 4 +eature Extraction and Pattern Classificatiofihis chapter will present the fea-
ture extraction and pattern classification using the disiciative sparse code representation
of the two arrhtyhmias. Results for various scenarios inolgi@omparative performance

evaluation are presented and summarized.

Chapter 5 -Conclusion and Future Workd his chapter will summarize the thesis with con-
clusions and directions for future work, as well as the piaéapplications of the proposed

work.
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Chapter 2
Methods Background

IN this chapter the background information on methods uselisnthesis are presented. The
chapter details different time-frequency approaches aadd to specific approaches suitable
for the application at hand. In addition, the chapter alssents classification methods that will

be used for performance evaluation.

2.1 Time-Frequency Domain Analysis

One of the early techniques of time-frequency analysis @tdime Fourier transform (STFT).
In STFT, the signal is divided into smaller segments wheeestgmented signals are assumed to
be stationary. The segments are then multiplied by a windowtfon (nonzero, usually a Hann
window, Butterworth, Gaussian bell, etc). While sliding theaow function along the time axis,

a two-dimensional representation of the signal is compaseshown in equation 2.1 [39],

2
L

—12TTkn

Yk, )= ) y(n)g(n—1le ~— (2.1)

n

Il
=)

whereg(n — 1) is the discrete window function withshifts.

Short time Fourier transform gives a fixed resolution in bintie and frequency determined

by the fixed window function. Narrow window gives good timeakition but poor frequency
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resolution while wide window gives good frequency resaatbut poor time resolution. When
analyzing a VF signal it is hard to localize the occurrencaré of a particular frequency due to
its non-stationary nature. Therefore, shrinking of thedeww g provides a better localization in
time for the frequencies occurring in the specific window.e Thiawback of making the window
length shorter is that it worsens the frequency resolutibitivmakes it hard to determine accurate
energy of the frequency. Due to this limitation of STFT, a tintdsolution analysis is developed
called Wavelet transform. It is similar to STFT, however #ignal is multiplied by a mother
wavelet (e.g morlet) and the transform is computed sepgrfatedifferent segments. The width of
the window of the mother wavelet is adaptively changed as#msform is computed depending on
the time and the frequency content of the signal [39] as shovAlgure 2.1 [2]. Mother wavelets
are mathematical functions that are localized in both timfeequency domains and have specific

properties. The wavelet transform implementation is givgtthe equation 2.2 [39],

— ‘IHM‘

< ime = i

9 i r.’! 9 f ||
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|
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| | wi'ﬂ i
I

-

Figure 2.1: a) Coverage of the time-frequency plane for the STFT. b) Cgeea the time-
frequency plane for the wavelet. c¢) Corresponding basistimmof the STFT. d) Corresponding
basis function of the wavelets [2]
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(s, = 1/V5 Y ylmpur D 2.2)

where!l represent the discretized time the scale parameter ands, () represents the wavelet
coefficients for the discrete time signgdln). The scaling parameteris related to the frequency,

when the scale shrinks or expands the time window of the metaeelet frequency characteristics
changes accordingly. Due to having the frequency pararbeteg proportional to the scale of the
window function, the wavelet bases will not provide a gootineste on the frequency content of
waveforms that are well localized by their Fourier transf@not flexible enough) [40]. This leads

to the advent of other time-frequency decomposition apgres. One such signal approximation

approach is the matching pursuit [40].

Matching pursuit (MP) [40] is a greedy algorithm that exgessany signaf by decomposing
it into a linear expansion of waveforms from a dictionddy In Hilbert space.?( R), the matching
pursuit iteratively selects a waveform from a redundantiati@ry D = (g.,(¢))~.r to best approx-
imate part of the signal. MP is a non-linear expansion butatntains an energy conservation
that will guarantee its convergence. The waveforms in theafiary D are called atoms; iD is a
time-frequency dictionary then the atoms are well locairgtime and frequency. Time-frequency
atoms can be generated by scalipgranslatingu and modulating the functiong(t)eL?(R) de-
fined by equation 2.3 [40],

t—u

g, (t) = %w—w (2.3)

S

wherey is the index of the atoms in the dictionary.

Any signal f(¢) can be represented by different atoms and can be written eguiation 2.4.
[40]:
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FE) =Y angny(1) (2.4)

n=—oo

wherea,, is the expansion coefficient.
The matching pursuit adaptive decomposition starts fir§irtsyng an atony, in the redundant
dictionary D that best match the inner structure of the sighafter the inner product is computed

between thef andg,, a residueR f is computed (equation 2.5) [40]:

[ =</f9y0>g0+Rf (2.5)

In this decomposition the < f, g, > | is maximized and the residugR f|| is minimized.
There after theRf is sub-decomposed following the same procedure by findingtam from
the dictionary that best match the residue and then congpthiminner product between the new

residue and its best matching atom (equation 2.6) [40].

Rnf =< Rnfa Gyn > Gyn + Rn+1f (26)

This sub-decomposition continues until the residue igaalhches zero, a threshold is set, or
a maximum number of iterations is reached. Aftedecompositions the signal is expressed as in
equation 2.7 [40],

m—1

f=Y <R.gu>gu+R"f (2.7)

n=0

with an energy conservation equation 2.8 [40] as the folhowi

m—1

AP =1 < R" gyn > P+ | R £ (2.8)

n=0
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A summary of the Matching Pursuit Algorithm is provided iretAlgorithm 1 box below.

Algorithm 1: Matching Pursuit Algorithm
Input: Signalf(¢) , Dictionary D
Output: Coefficientsa,, , g,,,
initialization
Rf < f(t)

1
2
3
4
5 <1
6
7
8
9

Repeatfind g,,, ¢ D with maximum inner produd R,,, g,n >|
an < < Ry, g4n >
Rn+1 — Rn = AnGny
n<n+1
10 StopWhen|| R, || reaches the specified threshold or ideally reaches zeroasinmm
number of iteration is reached.

One of the enhancements of the MP algorithm is the orthogoathing pursuit (OMP).
Orthogonal matching pursuit follows the same techniqudastandard matching pursuit except
that it adds an extra step. When an atom is chosen to matchfgae signal, it will be chosen
so that the residual is always orthogonal to the atom. Hetheesame atom cannot be selected
more than once [41]. In OMP, the coefficients of all the dictiy elements that are chosen are

recalculated by solving the least-squares problem [41].

2.2 Time-Frequency Dictionaries

As mentioned earlier to perform matching pursuit decontposi well localized time-frequency
(TF) atoms are used, where they can be generated by scaltrgnslatingu and modulatingg
the functiong(t)eL*(R) as shown in equation 2.3. The collection of family of TF atdiorsn a
dictionary. Matching pursuit decomposition depends orctiwce of the dictionary. There are two
types of dictionaries, parametric and data driven dicti@sg42]. The choice of the dictionary is

important and application dependent.
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2.2.1 Parametric Dictionaries

The parametric dictionary can be generated by changinditke parameters that defines an atom
(s,u,&), which gives a storage advantage where only those paresmeted to be stored [42]. The
most common dictionary that is used in literature and appbas is Gabor dictionary, where the

window function is a Gaussian window. A one real discrete@abom is defined as [40],

2k

Gry.0(n) = gs(n — p)cos(Tn + ) (2.9)

with the discrete parameters of atom= (s, p, %, ) and discrete window functiop, defined
as [40],

+00
gn(n) = 55 > g(n_SpN) (2.10)

and K is used to normalizég, || =1

An example of a Gabor atom is given in Figure 2.2

Dictionary selection and design is the most critical stegigmal decomposition with respect to
classification and characterization. When a time-frequelidyonary is used for the classification
of ventricular arrhythmias, the selected atoms of the alietry needed to be representative of each
arrhythmia. The information of those atoms can then be usddadures to discriminate between

the arrhythmias.

Hernandes et al. [30] investigated in designing a multiqgonent dictionary to separate atrial
and ventricular activity of ECG signals to analyze and charae atrial fibrillation. The ventric-
ular activity of an ECG signal has much higher amplitude camegbdo the atrial activity which
makes it hard to detect atrial arrhythmias such as atrialléibon. For this particular application

the dictionary was built by the union of two sub-dictionaralled multi-component dictionary,
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where each sub-dictionary is particularly good for desogla certain morphology of the signal.
The first sub-dictionary represented the ventricular &gtWA), while the second sub-dictionary
represented the atrial activity (AA). In order to have a geegaration between the two activities
of the signals (VA and AA) the two sub-dictionaries must haview correlation between each
other. Based on the shape and the frequency ranges of thecutrtand atrial activity, general-
ized Gaussian atoms were used to approximate the VA siguaGaior to approximate the AA
signal [30]. Gabor dictionary was also used in other workhsag Mailh et. al [34] and Escoda et.

al [31] for separation of atrial activity from the ventriemlactivity.

Dictionary design and selection was not only investigatettié separation of ECG signal com-
ponent such as VA and AA, it was also investigated in the appbn of classifying arrhythmic
heart beats. Christove et. al [32], performed a study to ifjassart beats using the MP algorithm.
They approximated each heartbeat with a small number ofiatwaveforms taken from a Wavelet
Packet (WP) and used its coefficients for classifications.diiferent types of heart beats they in-

vestigated were normal beats, premature ventricular actibins, left bundle branch blocks, right
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bundle branch blocks, and paced beats [32]. In this studydbecluded that Symmlet 8 wavelet
packet atom can be best correlated with the signal structfreach heartbeat class, and that 10 of
such waveforms were enough to describe most of the beatg iNIR-BIH arrhythmia database
with an acceptable accuracy [32]. The same dictionary wsswed in other work with respect to

heart beat classification [33].

2.2.2 Learned Dictionaries

The second type of dictionaries are the data driven dicties@lso known as learned dictionaries,
these dictionaries start from an over complete redundatibdary and get trained using a training
data to adapt its content to the given signals to provide tebapproximation. One of the earlier
methods of dictionary learning is probabilistic approazhdnstruct new dictionary [43,44]. In this
approach the probability distribution of the training s\ (y;) is matched with the probability
distributionP(Y" | D) of the input signalg; given a dictionaryD. In this method the input signal y
is represented as a linear combination between the dicli@@ments) and sparse representation
w with some Gaussian white noigsend variance (equation 2.11) with the assumption iat |

D) are independent [44].

y=Dw+c (2.11)

From equation 2.11 the prior distributidi(y; | w, D) can be defined as [44]

[lvs —Dw|?

P(y; | w,D) = ke 202 (2.12)

wherek is a constant. The likelihood function is computed as thiefahg [44]

Py, | D) = / Pysw | D)dw = / Py: | w, D). P(w)dw (2.13)
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with P(w) = e* ||w|| , because the integration is hard to evaluategthg | w, D) is only calculated

at the maximum values af, thereforeD can be evaluated as [44]

=arg? . Zma‘”P yi,w; | D) = arg?;, me lyi — Dwl|® + A ||w;]| (2.14)

Another dictionary learning algorithm found in literatusethe method of optimal directions
(MOD) [45]. The method of optimal directions is charactedzy searching for the optimal atoms
of a dictionary while fixing the sparse coefficients. This noet follows the K-means and uses
any adaptive decomposition method to update the dictiohgd5]. In MOD the DictionaryD is
first initialized of sizeN x K, then each training signglis approximated using vector selection

algorithm as [45]

k
) = Zw(i)dz’ (2.15)

where thew(i) are the coefficients that corresponds to each atom. Aftesigimal is approximated,
the residuals for all training vectors are calculated y — y and the atoms are adjusted so the total

MSE becomes smaller. The adjustment of the atoms is madesldpltbwing equation [45]:

di=d;+6,i=1,.k (2.16)
whered; denotes the adjustment of the atom. After updating the weithe new residual for the

training signal becomes [45]

k
r=r— Z w(i)d; (2.17)
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The update of the residual continues until the stoppingigats reached (such as the maximum
number of iterations or a constant MSE is approached) [45].

Unlike MOD where it only updates the atoms of the dictionarnthe K-SVD method [43] the
dictionary is updated by updating one atom and its relatadsgpcoefficients while all other atoms
and coefficients remain unchanged. The K-SVD method is ablexlgorithm that is used in
dictionary learning; it is a generalization of the K-mealgoathm [43]. Like any other dictionary
learning methods this algorithm is performed using an dlwedunction (equation 2.18) which is

given by [43]

Y — DX (2.18)

In the objective function thé” corresponds to the column matrix of the training signals,
is a column matrix for all of the dictionary elements aidis the row coefficient matrix that
corresponds to the dictionary elements. K-SVD uses twoestag update, in the first stage the
sparse coding is updated, where it keeps the dictiohafixed and search for coefficients of the
dictionary that satisfy equation 2.18 using any type of pitrsuch as OMP. The second stage of
the K-SVD algorithm is updating the atoms of the dictionaryin this stage the sparse matri
is assumed to be fixed and only one column of the dictiodang updated at a time. Hence, the

penalty function is redefined as in equation 2.19 [43]

k
1Y =DX|3=1IY =Y d;iX3ll; = I(Y = > d;X7) — Xzl = || B — deX7ll; (2.29)

j=1 ik

The termFE), is the approximation error of aj} when thek* atom is removed. In equation 2.19
the DX is decomposed into a sum &f rank-1 matrices, wher& — 1 atoms are fixed and thg”
atom is used. Findind, and X% is done using the Singular Value Decomposition (SVD) method

this is where K-SVD gets its name from [43]. The SVD will pragithe closest rank-1 matrix that
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minimizes the error. Before going through the SVD some maatificis to thef, matrix needs to

be applied to overcome the problem of having a fillédmatrix. First, we define [43]

wi(i|1 < i < K, 25.(i) #0) (2.20)
wherewy, is the indicies that point to the signajsthat uses the atom).. Then the matrixX2, is

defined of a sizeV x |w;| that has ones on they (i) " positions and zeros elsewhere [43]. To
create a smaller matrix of%, we use the following equation [43], which will result in a diea
matrix with deleted zero entries:

ok = Qp x ok (2.21)

Also multiplying the);, with theY” will create a matrixy}”* of the signals that are using thig
atoms [43]. Similarly, multiplying it by the error matrik;, will produce theE* matrix. This will

redefine the objective function in equation 2.19 with theimimation as the following [43]:

| EwQ — de XF0| 3 = || EF — du X315 (2.22)

After this modification to the matrix, the SVD decompog##sto U AVT . Then the new updated
d;, will be the first column of/ and the coefficient vectars, is the first column of” multiplied by
A(1,1) to normalize the dictionary. Then all the atoms of the ditdides will be updated using
the same method [43].

The K-SVD dictionary learning algorithm has been used eréture for ventricular cancella-
tion and atrial modeling in the ECG of patients that are surfeefrom atrial fibrillation, where it
models AA and cancel the VA via sparsity-base source saparapproach [34]. In this approach
mutual incoherent dictionaries were used (one to repreéeentA and the second to represent the
AA), where the signals that are sparse on one of them cannspdxse on the other one. Sim-
ilar to the dictionary design by [30] that was discussediearbut instead of using Gabor and

generalized Gaussian dictionaries to represent AA and gpaetively, learned dictionaries were
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used. The K-SVD has been also used in literature to recat$f@G signals from under-sampled
database on constructing a combined over-complete dartydhat consist of trained dictionary by
K-SVD dictionary learning algorithm of DCT or wavelet basisttbnaries [35], having a learned
dictionary achieved good approximation performance t@mstruct the data. Also the K-SVD
has been used in electrocardiogram compression algorisimg over-complete dictionary [36]. A

summary of the K-SVD Algorithm is provided below in the Algbm 2 box.

Algorithm 2: K-SVD Algorithm
1 Input: Training Signalgy;Y , , Initial Dictionary D;e R"*%
2 Output: Trained DictionaryD,,,, , X;
3 initialization
set initial dictionaryD; with [, normalization
4 setj=1
5 Sparse Coding Updat€omputer; for each training signaj; using any pursuit

v |y = Daill3

Z;

6 Dictionary Atoms Update for eachd,.:

e check for the training signals that usés

e compute the overall error matri
Ey=Y — Zj;ék deijr

e apply SVDE! = UAVT
update thel;, with first column ofU
update theX% with the first column of” multiplied by A(1,1)

j=j+1

2.2.3 Label-Consistent K-SVD

Label-Consistent K-SVD (LC-KSVD) is an algorithm that acl@esparse coding using a learned
discriminative dictionary. In the dictionary learning pess, this method uses the class labels from
a training data consisting of multiple groups, and assesi#liese label information with each
dictionary item to enforce discriminative sparse codesis Tésults in similar sparse coding for
the signals that are within the same class. FurthermoraMjeetive function incorporates a label

consistency constraint (known as "discriminative spa@ge error”) and is also combined with
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the classification and reconstruction error [46], the dibjedunction is defined as the following
[46,47]:

< D, W, A, X >=argpi 4 x|IY — DX|[5 + al|Q = AX|[3 + BI|H — WX]|[3 s.0.¥5, ||| <T
(2.23)

The reconstruction error is defined by the tefii — D X||2 for a set of the input signalg,
the dictionaryD and its sparse representatidh The second termj@ — AX||3 (discriminative
sparse-code error) approximates the discriminative spaodesy using the sparse codeés and
the transformation matrixl, whereQ = [q;....qn] € RE*YN. The objective of the sparse code
error is to provide similar sparse representations foragyof the same class, which could help
improve the classification performance when using a linéassdier. Thea parameter before
the discriminative sparse-code error is used to deternmeeontribution of the label consistent
regularization to the reconstruction. As for the third tevhthe objective function|H — W X||3,
it represents the classification error. The classifier patara and the class labels for the input
signalsY” areW and H respectively wherél = [h,...hy]| ¢ R™*Y. The 3 parameter controls the
relative significance of the classification error terms @dbjective function. A sparsity constraint
factor’T" was also added to ensure that each signal, when decompaess@wer thari” non-zero
elements [47] [46]. As mentioned earlier in LC-KSVD the opinsolution is solved using the
KSVD algorithm, therefore the equation 2.23 can be redefasd6, 47]:

Y D 2

<D W,A X >=argiiiax ||| vVa@Q | — | VA | X|| s.t.Vi,||z||<T (2.24)
VBH VBW )

In order to apply the LC-KSVD Algorithm an initialization ofi¢ parameter®,, A, and¥,
is needed. To initializéD0, we perform few iterations of the K-SVD for each class sefeatiaen
combine the outputted dictionaries of each K-SVD. Then #iel of each dictionary iterd, is
initialized based on which class it belongs. To initializg the multi-variant ridge regression is

used and the solution fot, is computed as the following [46, 47]:
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A= (XX 4+ XD)7IXQ! (2.25)

similarly to the A, the solution fori¥}, is computed as the following [46, 47]:

W = (XX'+ \I) ' X H (2.26)

whereX is the sparse codes of the initial dictiondpy and training signal¥’.

With the initialized parameters, the LC-KSVD can be perfadnusing equation 2.23. The
classification procedure of the testing signals after tieahary learning stage using LC-KSVD
is performed as follows: The trained dictionaby,..,, transformation matrix4, and classifier
parameters matrixl” are obtained, then each of the matrices are transformed tisenbelow
equations 2.27, 2.28, 2.29 [46, 47]

A dy do dy,

D= 227
e Tealla Tl (220

2 ay as ag

A= , 2.28
Tl Tl Tl (2.28)

2 wn Wa W,

W - b AR ] 2.29
Tl Tl Tiella (2.29)

When a signalj; is tested, its sparse representation is computed usingieq2a30 [46,47]

, L2
_ min
= arg," ||y — Dz )

(2.30)

After computing ther;, the linear predictive classifiéf’ is used to estimate the labebf the
tested signal; as shown in equation 2.31 [46, 47].
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Zestimated = arg;naw(zactual - sz) (231)

A summary of the LC-KSVD Algorithm is provided below in the Algthm 3 box.

Algorithm 3: LC K-SVD Algorithm

1 Input: Training Signalsgy;Y , , Label of The Training Signal#, Initial Dictionary
DoeR™E o,

2 Output: Trained DictionaryD,,.., , Discriminative Sparse codes;

3 initialization
initialization of theD,, Ay, W,

e Dy is initialized by performing few iterations of using the R/B Algorithm
for each class and combine the output to resiijs

e Ay isinitialized using the sparse code matrix from the inidieitionary
A= (XX + 1) XQ!

e 11, is initialized using the sparse code matrix from the initiitionary
W = (XXt + X)L X H!

setj =1
Solve for the objective function below using the K-SVD aligfam:

< D.W.A, X >= argpit x|IY = DX|[3+0l|Q— AX|[3+ 5| H—~ WX||3 5.6.4, ||:| | <T
j=7+1

Obtain the discriminative sparse matix

Predict the labet of the testing signal; using the linear predictive classifig and the
obtainedr;

_ max 17
Zestimated — AT Y, “ (Zactual - sz)

LC-KSVD has been used in literature for face, action, scend, abject category recogni-
tion [46]. From an arrhythmic perspective the LC-KSVD hasrbased recently in classification
of electrocardiogram beats such as supra ventricular iedieats (SVEB) and ventricular ectopic
beats (VEB) using low sampling rate [37]. The features thatwesed to train the dictionary were
the RR interval, heartbeats interval, segmented morphp&ogy/fixed interval morphology. It was

concluded that the LC-KSVD provided enough discriminatiesver to classify using low sam-
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pling rate and simple features [37].

For this thesis, the LC-KSVD will be used over other approachBue to having different
VT and VF morphologies, the sparse coding of the dictionbaf tepresent each arrhythmia can
be learned to discriminate between them. For the adaptyeakdecomposition OMP will be
used. The selected atoms need to be similar to the signahatkastics within the group and
at the same time dissimilar between groups. Hence, selettienproper dictionary to represent
arrhythmic signal is critical. Using LC-KSVD has an advamrtalat it trains both the dictionary
and the linear classifier simultaneously. A limitation ofngsthe LC-KSVD to classify signals is
the computational time that it takes to train a dictionaryg &s sparse code representation. This
iSs a one time cost incurred in training the dictionaries. sTtwmputational complexity time is

dependent on the size of the dictionary, the number of tigidata, and the number of iterations.

2.3 Linear Discriminant Analysis

After learning the discriminative sparse codes using tleéahary learning methods, we need to
guantify the discriminative ability of the resulting spaxsode and also would require performance
evaluation over parametric choices of the dictionary |lewyprocess. In order to achieve this we
need to resort to pattern classification tools. In this hes will be using linear discriminant
analysis (LDA) based classifiers and cross validation sggres. A brief description of these
approaches are presented below.

The LDA based linear classifier is built by training sets @ttees that are already labeled (i.e
already been classified), this approach goes under theorgtefisupervised machine learning.
The number of linear functions needed farlasses ig—1 functions, where each one will separate
one class from the other classes. This will result in theuleaspace to be divided into different
regions and each class to be assigned to one. The dimerntsiom&lDA is reduced by projecting
thed training samples onto a line or plane, a specific orientation of the line or plaan provide

a good separation of the projected samples. This projeigiven by the equation 2.32 [48]
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=w'z 2.32
Y (2.32)

wherey is the projection of the corresponding sampiesnto a line in the direction oy (weight
vectors). To find the best direction of, we need to maximize the difference between the means
u; relatively to the standard deviation of each class (scatter). For two-class classification, this

criterion function is defined as [48]

J(W) = i — ial” (2.33)

2 2
51+ S5

To express the criterion function in 2.33 as a functioriiof we re-define theyi;, — /i,|* in

terms of the means of the original feature space as the foltpjx 8]

(fir — fi2)? = (W' = poWT)? = Wy — o) (g — o)™ W = WSpW (2.34)

where S is the between class scatter. Similarly, the summation @fvtiriance of each class is
defined as the within class scatter matsix. Therefore, the criterion function 2.33 is re-defined
as [48]:

 WTSpW

JW) = WTSy W

(2.35)

In the LC-KSVD algorithm, a multi-class linear predictivassifier is included in the objective
function of LC-KSVD2 for classifier construction, while in LKSVDL1 the classifier term is elim-
inated [46]. In the analysis presented in this thesis thesdiaation accuracies will be computed
using linear classifiers, also, a comparative performauakiations of different classifiers will be

presented.
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2.4 Cross Validation

In prediction and classifications techniques cross vabdas usually needed to asses how the
testing results are independent from the training data Regves an insight on how the classifica-
tion model will generalize to an independent data set toamree over-fitting problems. In cross
validation, the data is divided into training and testinggssén the m-fold cross validation the data
set is randomly divided inte: equally sized sub-samples, then one ofitheub-samples will be
used as a validation data for testing the model and the rengain-1 sub-samples are used as
training data. This is repeatedtimes where each fold (sub-sample) is used once as the trahida
data as shown in Figure 2.3, and thenresults from the folds are averaged. In this method all
observations are used for both training and validation,eawh observation is used for validation
exactly once. When the number of folds equals the number areéson (» = n), the m-fold

cross validation becomes the leave-one-out (LOO) crosdatain [48].

B Testing set
Fold 1 - [ Trainingset
Fold 3 .

Total number of data set divided into m-folds

Figure 2.3: M fold cross validation structure
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2.5 Background Summary

In this chapter the background information on relevant aligmocessing tools that will be used
in this thesis were investigated as well as their applicaiioliterature with respect to arrhyth-
mias. The discussed analyses were the adaptive time-fiegukcompositions, time-frequency

dictionaries, dictionary learning algorithms, linearatiminative analysis, and data validation.
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Chapter 3

LC-KSVD Parameters For Ventricular
Arrhythmia Analysis

IN this chapter the process involved in choosing optimal ipatars for LC-KSVD specific to
ventricular arrhythmias is presented. The chapter dessiie database extraction process and
signal pre-processing followed by dictionary selectiome Thapter then presents the process of

experimentally determining the critical parameters ofltlleKSVD for the proposed study.

3.1 Database and Pre-processing

The analyzed signals of this study were obtained from the- BIH ventricular arrhythmia database
that is publicly available through Physionet [49]. The vaniflar fibrillation signals were obtained
from the Creighton University Ventricular Tachy-arrhyttanilatabase. This database has 35 eight-
minute ECG recordings of patients who experienced episddasstained ventricular tachycardia,
ventricular flutter, and ventricular fibrillation. Out ofdh35 ECG recordings of this database
23 recordings had VF signals which were used to extract tbeeend VF segments. The other
database that is used is the Malignant Ventricular Ectopalizese, this database includes 22 half-
hour ECG recordings of patients who experienced episodegstdised ventricular tachycardia,
ventricular flutter, and ventricular fibrillation. Out ofél22 recordings 10 contained VT episodes
and were used to extract three second VT segments. In tddadé&yments (335 for each arrhyth-
mia) were extracted from the recordings and used in thissh&ke electrocardiograms from these

databases were already annotated the VF and VT, therefese #mnotations were used for label-
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ing the samples. Figure 3.1 illustrates one example amhigtisignal for VF and VT respectively.

All signals were uniformly down sampled to a 250 Hz sampliregitiency. The signals were
then filtered using a bandpass filter to retain the frequeanyponents such that low frequency ar-
tifacts and high frequency noise were removed from the ECG [Bte cutoff frequencies used for
filtering were between 0.75 Hz to 30 Hz, these values wergekkfrom the literature were ventric-

ular arrhythmias signals were filtered between 0.3 to 30 Hizlanto 30 Hz for a comparison [21].

VF Sample

Amplitude

0 200 400 600 800 1000
Time Samples
VT Sample

Amplitude

0 200 400 600 800 1000
Time Samples

Figure 3.1: Sample signals of VF and VT

3.2 Dictionary Selection

The selection of the base time-frequency dictionaries usedis analysis before training were
selected based on the existing works in the literature. Agedtin chapter 2 of this thesis Ga-
bor dictionary been used to approximate the atrial actiofta person with atrial fibrillation ar-

rhythmia [30, 31, 34]. In other work a Wavelet Packet (WP)idizary of the Symmlet mother

wavelet used to describe different arrhythmic and nonydinrnic heart beats [32, 33], as well as
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the Daubechie wavelet [51]. Hence, the dictionaries thithei used in this analysis are Gabor

dictionary, Symmlet wavelet, and Daubechies in least-sgtnmwpsymmlet wavelet.

3.2.1 Gabor Dictionary

Gabor dictionary is often used in time-frequency analysestd its optimal time and frequency
energy concentration. The Gabor dictionary was constdugteng the equations 2.9 and 2.10
with the discrete parametets= (s, p, %, ). The parameters of the constructed dictionary were
selected as the follows, for the scale parametets [8, 16, 32,64, 128,512, 750] (wheres ¢ 2™
where3 < m < 9) in addition to the window scale size of the signal. The sreedlle parameters
capture the transient time of the signal that exist in than@rar arrhythmias especially in VF,
while the large window scale can account for the overalicstme of the signals. The scale param-
eter is related to the time with respect to the sampling feagy, for example a window scale of
64 accounts for 0.256 seconds of the signal. For the frequaesmameter the selected ranges were
fn = [0 —0.1] where (f,, = fi the f, is the normalized frequency arnfd is the sampling fre-
guency). This range was chosen because in literature iteygasted that the frequency spectrum
of individual QRS complex is found in the range®f20 H = [52] which corresponds t0-0.08 of
normalized frequency. The dominant frequency of ventactdchycardia (VT) is atH z and the
the amplitude of the spectral analysis decreases as theefney increases [52,53]. Also it was
reported that the frequency ranges of ventricular fibrdlat(\VF) are concentrated betweén7
Hz[52,54].

For the time parameter= [0, 64, 128, 375, 512, 750] ranges were selected with phase- [0]
for this application. The time parameter only controls vehigre center of the atom is placed. Due
to K-SVD limitation of having the number of the dictionaryoats lower than the number of the
training signals, only specific time locations were sel@dtstead of all of the time locations of
the signals. The phase parameter specifies the offset ofofirecfactor of the Gabor function
where it can be any real numbers between -180 and 180. Thesvaland 180 correspond to sym-

metric functions, while -90 and 90 correspond to antisymmimétinctions. Using the previously
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discussed parameters a Gabor dictionary was generated witinbination of these parameters of

the sizer50 x 462. Figure 3.2 provides four different Gabor atoms that areegegied in the Gabor

dictionary.
§=32,p=64,in=0.03,phi=0 $=64,p=128,in=0.03,phi=0
v 02 o 02
k] k)
2 2
g 2
< 0 < 0
-0.2 -0.2
0 200 400 600 0 200 400 600
Samples Samples
$=128,p=375,in=0.09,phi=0 $=512,p=512,fn=0.03,phi=0
0.4 0.4
v 02 o 02
T T
= 2
g g
< 0 < 0
-0.2 -0.2
0 200 400 600 0 200 400 600

Samples Samples

Figure 3.2: Four different Gabor atoms from the generated dictionamiftérent translation and
scales

3.2.2 \Wavelet Dictionaries

The Wavelet dictionaries that were used in this analysiseevganerated dictionaries using the

three-indexed family of analyzing functions 3.1 [55].

Winie() = 25 Wa(2 792 — k) (3.1)
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wherek is the time-localization parameterthe scale parameter of" order [55].

The Symmlet wavelets are near symmetric, orthogonal, amthimgonal wavelets. Their gen-
eral characteristics that they are compactly supporteclets/with least asymmetry and highest
number of vanishing moments, it's associated scaling ilkee near linear-phase filters [56] [55].
In literature the Symlet4 wavelet has been used to representlassify arrhythmias [57,58]. The
wavelets used in this analysis are tfwn4 at level 5 andV psym4 Daubechies least-asymmetric
wavelet packet at level 3 due to their structure that is simid the ECG signal morphology and its
properties. The generated dictionaries were of the &igex 752 each. Figure 3.3 provides four

different wavelet atoms that were generated in the wavétébdary.

Symd wavelet Symd wavelet
T T T T T T T T

04 04
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Wpsymd wavelet level 3 Wipsymd waveletlevel 3
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<
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Figure 3.3: Four different Wavelet atoms from the generated dicti@sari
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3.2.3 Optimal Dictionary

To apply the dictionary learning algorithm LC-KSVD, the nuentof the training signals of each
arrhythmic class has to be larger than the dictionary thihbe&ilearned, this is an implementation
constraint of the K-SVD algorithm [43]. Therefore, a subsithe generated dictionaries will be
used for the analysis so the dictionary size is smaller thartrined signals. Hence, the chosen
dictionary size was set to 230 so it can be smaller than the¢r268ng data sets. Before selecting
the 230 atoms three different hybrid dictionaries were ¢gtied from a combination of two of
the three dictionaries that were discussed previouslyti@iary 1: Gabor and Sym4, Dictionary
2: Gabor and Wpsym4, Dictionary 3: Sym4 and Wpsym4). To choose2B80 atoms of each
hybrid dictionary, matching pursuit algorithm was appl®a50 random arrhythmic signals of
the database, and then the fi280 atoms of the first few iterations that best describes theatsgn
were selected to create the new optimal dictionaries foatreysis. In order to test if the new
sub-dictionaries can describe other arrhythmic signaégching pursuit was applied on different
signals (not thé0 that were randomly selected) where more théif of the energy were captured.
The following graphs demonstrate three testing signaésdtiginal and the reconstructed) as well

as the captured energy.

3.3 Choice of Optimal Parameters

Recalling from chapter 2 the LC-KSVD objective function is:
< D,W, A, X >= argpiy a x|[Y —=DX|[3+a||Q—-AX|[5+5||H =W X|[3 5.t.¥i, ||, | <T (3.2)

The a and the parameters are used to determine the contribution of thel adnsistent
regularization to the reconstruction error and the redagignificance of the classification error of
the objective function respectively controls the contribution of the discriminative error teirm
the minimization whereag controls the contribution of classifier error term. Theseapeeters
are data dependent and for this analysis they were chosed basmany trials. Considering the
factors from the literature [46], the optimal valuescotind 3 were searched in the range of 0.01

to 6. A subset of database (536 arrhythmia segments) wastosdentify the optimaly and g
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parameters using Gabor and Sym4 dictionaries, where thieeclod the dictionary and signals
were at random.

First, the classification error of the objective functioremquation 3.2 is eliminated (i.e setting
g to 0). After 2000 iterations, the total error consisting of tleeagnstruction error and the dis-
criminative sparse code error (error 1) was obtained as shiowable 3.1, also in this table the
classification accuracy of testing signals using the thotietionary was obtained. Then the clas-
sifier error term is included in the objective function (&rg), and the total error is obtained after
2000 iterations using a combination of differenaand 5 values, as shown in Figure 3.10, as well
as the classification accuracy using the different rangigsi(€& 3.9).

From Table 3.1 the total error for using differenvalues ranges froi.017 to 0.023. Having a
value ofa less thar2 produced an error less thaft, while having anx value of4 and6 produced
an error greater thair%s. Having an error lower that’ produced a higher classification accuracy
compared to errors greater thavt. The Figures 3.7 and 3.8 show the classification accuracies

for the subset of data and the error 1 respectively, as caulnblserved the highest classification
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Table 3.1: Classification accuracy and reconstruction error for diffeéry parameters for 2000
iterations of LC-KSVD

« | Classification accuracy (%) | Reconstruction error
0.01 64.2% 0.004

0.1 67.2% 0.004

0.5 69.4% 0.002

1 76.1% 0.005

2 78.4% 0.008

4 60.4% 0.017

6 61.2% 0.023

occurs at anv value of 2 with an acceptable error of less than, hence we chose the optimal
value ofa to be 2 using Gabor and Sym4 dictionary. This value was alstedeusing different
subset of data and an optimized dictionary that consistscongbination of all three dictionaries,
which produced similar results (highest classificatioruaacy ato = 2).

Similarly, when the5 parameter was included, the total error 2 and the classdicatcuracies
were obtained. Figures 3.9 and 3.10 show the range of clzsiin accuracies and the ranges of
error 2 for differenta: and § values ranged fromi8-76% respectively. The box plots show the
variations in the results for differert values for specifiex values. As could be observed the
median of the classification range of the box plot is highesaha value of 2 (with error still less
than1%) and for the optimal value of, the average classification accuracy using different w&lue
for g ata =2 was taken into consideration and arrived at an optimalevaf 0.01. The values of
the errors and classification accuracies using diffesieandd 5 can be found in Appendix B. When
the same analysis was done using different subsets of signdlthe three combined dictionaries,
the value ofx being 2 and3 being 0.01 resulted in a higher classification accuracy leitler total
error compared to other values. Therefore, the chosen aptatues that were used in the further
analysis werev = 2 and = 0.01. As for the sparsity factarf’, different values were pre-selected
such as (10, 30, 50, 100) and tested. In the literature [46k#iected sparsity factor was 30 for
their database. Using the pre-selected values for the sinalywas concluded that higher error
and lower classification accuracy were obtained by havirgnasparsity factor. The higher the

sparsity factor the higher the computational time it tookvaluate the sparse matrix of the signals.
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Hence, the optimal value that was selected to be used inrhlgss was 50, where for any value
higher than 50 there was no significant change in the erroitavas merely computationally more

expensive without much gain.
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Figure 3.7: Classification accuracies using differenvalues

3.4 Chapter 3 Summary

This chapter discussed the choice of initial dictionarfes will be trained using the Label Con-
sistent K-SVD algorithm. Also in this chapter reduced siteliotionaries were selected for the
analysis due to the restriction of having a number of theimngi signals smaller than the dictionary
elements. The optimal selection was then based on apply@gdaptive decomposition matching
pursuit on a subset of signals, and the first 230 atoms of thendosition were used to create
the energy optimal dictionaries.The chapter also predghteprocess involved in the selection of
the parameters and/ that controls the relative contribution of error in the LCMI3 objective

function stated in equation 3.2.
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Chapter 4

Feature Extraction and Pattern
Classification

OR any classification application patterns/features aszle@ to be extracted in order to
F discriminate between classes in reduced dimensional spesgeending on the patterns dis-
tribution in the feature space the classifier type can vatwéen linear, quadratic or if the data
distribution is complex a multi layer neural network cldigsiis usually used. In this chapter we
present the validation of the discriminative sparse cod#aimed using LC-KSVD approach by
how well these codes could discriminate VT and VF. The clesdion accuracies were computed
using linear classifiers. Comparative performance evalngaton various scenarios are also pre-

sented.

4.1 Features/ Feature Space

In pattern recognition techniques usually a measurablatgyas used for recognition, this quan-
tity is called a feature. Features measure specific pr@sasfidata that is informative and discrim-
inative. When more than one feature is used a feature vedsaereated, where the vectois in a
d-dimensional spacB? called the feature space. The feature space dimensiondepeihe num-
ber of feature that will be used [48]. In this analysis thedeathat will be used for discriminating
between the arrhythmic groups is the discriminative spaoste of the learned dictionary using
LC-KSVD algorithm. For each tested data the sparse code tisngarned dictionary is obtained

and then multiplied by the learned classifier parametershwill results in a score estimate. The
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resultant score is a 2 row matrix, the index of the maximumescepresents the classified class.

Figure 4.1 represents the feature space of the score estoheE and VT testing signals.

o
4 VF
1
0
row 2
05
Q
. +
+ 1 +
L T
LB LA S
L
0

row 1

Figure 4.1: An example of feature space of the estimated score featimererblue pluses repre-
sents VF tested signals and red circles represents VT tegpeals

4.2 LC-KSVD analysis on Arrhythmic Signals

In this section the results are divided into two parts, asialysing the optimized dictionaries that
were discussed in the previous chapter and analysis udirgjdtionaries (i.e., not optimized) for
comparative performance evaluation. In the optimizediahetries analysis section, the classifi-
cation accuracies of the three optimized dictionaries veerapared. In addition a comparison
between the LC-KSVD14=0) and LC-KSVD2, where in the LC-KSVDL1 the classifier erronter
is eliminated from the objective function and in the LC-KSVIDR included. In this chapter when-
ever itis not specified if it is LC-KSVD1 or LC-KSVD2 (i.e LC-KSVDnly) it means LC-KSVD2
(the classifier error is included in the objective functiohie accuracy of detecting arrhythmic sig-

nals were compared using a trained versus non-traine@dasies, and the effect of the dictionary

45



size on the classification accuracy and computational tiaealso discussed.

In the second part of the results analysis where the fulladieties were used, the dictionaries
were trained using an artificial increased database sizelthy@ noise to the actual data. Clas-
sification accuracies of the three dictionaries were coethan addition to the results of using
a trained dictionary versus a non-trained one. A flow chathefresults distribution for various

scenarios is illustrated in figure 4.2.

4.2.1 Results Using Optimized Dictionaries

In this analysis, the 335 VF signal segments and 335 VT sigaginents were filtered and then
used for the analysis. In this analysis a 5-fold cross vabdawill be used to validate the results
over the LOO cross validation as LOO is computationally exgdee for the application in hand.
The 670 signals were divided into five equal folds, where folds used for training the dictionar-
ies and one fold was used for testing. This was repeated fivestivith different validating fold
at a time and the overall classification accuracy was condpagehe average accuracy of the five
folds.

Initially, three types of dictionaries were pre-selected the analysis as mentioned earlier;
Gabor, Symlet4, and Wpsymlet4 dictionaries. The dictioqemameters were restricted to a sub-
set size that has been optimized in Chapter 3 to keep the mielisize smaller than the training
data set [43]. The weight factors and 5 were set to 2 and 0.01 respectively, and the sparsity
factorT to be 50. Using these parameter values, the training wasfdo2€00 iterations (where
more than 90% of the signal energy was captured), and theifitasion of the testing signals was
performed as described in the Chapter 2 using equation 2adle #.1 shows the different clas-
sification accuracies of VF and VT signals with different domations of the dictionaries Gabor,
Symlet4, and Wpsymlet4 wavelet. Highest overall averagestiaation accuracy of 73.3% was
obtained for the hybrid dictionary of Symlet4—Wpsymlet4 gared to 71.6% and 72.8% for the
Gabor—Symlet4 and Gabor—Wpsymlet4 respectively. The sooriumatrix of the classification of
the tested signals provided in Table 4.2, where 70.1% of YRads were accurately characterized

as VF and 82.1% were accurately characterized as VT. Agistatable 4.3 the range of correctly
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characterizing VF and VT ranges between 52-71% and 82—-95pecgvely for different folds.

The misclassified VF signals had a similar signal structar€T signals, while the misclassified
VT signals were more disorganized and had a similar stradtbwards VF when observed. The
choice of having an optimized hybrid dictionary over indwal one for training was that it per-
formed better in classifying the arrhythmic signals conepato individual ones, while choosing
a hybrid optimized dictionary of a combination of the threetidnaries did not effect the results

significantly.

Table 4.1: Average classification accuracy for different combinagiohthe optimized dictionaries
for 2000 iterations of LC-KSVD

Dictionary type combination | Classification accuracy (%)
Gabor-Symlet4 71.6%
Gabor-Wpsymlet4 72.8%
Symlet4-Wpsymlet4 73.3%

Table 4.2: Confusion matrix of discriminating VF and VT signals usingtiopzed Sym-
let4—Wpsym4 dictionaries of LC-KSVD

VF | VT | Total
tested signal$ VF | 47 | 20 67
VT | 12 | 55 67
% VF [ 70.1] 29.8| 100
VT | 17.9]1 82.1| 100

When thes parameter was set to zero, which means that the classifeerveas removed from
the objective function, the overall classification accyraid C-KSVD1 using Symlet4—-Wpsymlet4
became 70.4% compared to 73.3% when the classification &meor was included (i.e., LC-
KSVDZ2). Figure 4.3 shows the distribution of classificatiaccuracies of the five folds using
LC-KSVD1 and LC-KSVD2 algorithms. For LC-KSVD1, a separateshn classifier was trained,
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Table 4.3: Range of the 5-folds confusion matrix of discriminating VRIaviT signals using
optimized Symlet4—Wpsym4 dictionaries of LC-KSVD

Classification accuracy range
VF 52-71 %
VT 82-95 %

therefore, its performance in classifying depends on haeraninative is the sparse code De-
pending on the fold that is used for training the dictionémg, accuracy to classify arrhythmias by
including the classifier error term in the objective funotar eliminating it differs. From Table 4.4,
it can be shown that the five folds have lower classificatiaruearcies using the LC-KSVD1 over
the LC-KSVD2. This means that the learned dictionary spamsle € using these trained folds is
less discriminate when the linear classifier error is nduied compared to when it is included in
the objective function. For this particular example tragivith the classifier error term improves

the ability to accurately classify arrhythmias.
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Figure 4.3: Boxplot of classification accuracies of LC-KSVD1 and LC-KSVD2
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Table 4.4: The Classification accuracy for the five folds data sets usi@egkKISVD1 and LC-
KSVD2

Data Sets| LC-KSVD1 | LC-KSVD2
fold 1 72.4% 73.9%
fold 2 67.2% 70.9%
fold 3 73.1% 73.9%
fold 4 73.9% 76.2%
fold 5 65.7% 71.6%
overall 70.4% 73.3%

The classification accuracy using the LC-KSVD trained Sy#féfpsymlet4 dictionary sparse
code as a feature for classification was compared to thafatasion of the signals using the sparse
code of non-trained dictionary, and as observed in Figutethie overall classification accuracy
using the non-trained dictionary was observed to be le$s6vit5% compared to the 73.3% for the
trained dictionary. This improvement due to having morepéigla trained atoms as shown in Fig-
ure 4.5 compared to the non-trained ones in Figure 3.3. Als&tgures 4.6 and 4.7 shows the clas-
sification accuracies using trained and non-trained dieti@s combinations of Gabor—Wpsym4

and Gabor—Sym4 respectively.

Table 4.5: The Classification accuracy for the five folds data sets usiagptimized trained and
non-trained Symlet4—Wpsym4 dictionaries

Data Sets| Trained Dictionary (%) | Untrained Dictionary (%)
fold 1 73.9% 66.4%
fold 2 70.9% 67.2%
fold 3 73.9% 67.9%
fold 4 76.1% 69.4%
fold 5 71.6% 66.4%
overall 73.3% 67.5%

The discrimination of the arrhythmic signals using the LCM{Balgorithm does not only de-
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pend on the type of the dictionary that is used, but also ositteeof the dictionary. Having a large
dictionary can provide better classification accuraciesabnse more atoms would represent the
different types of signals. Figure 4.8 can show that withdberease of the size of the dictionary,
the classification accuracy decreases. Increasing thekike dictionary increases the computa-
tional time it takes to perform the LC-KSVD as shown in Figure, 4vhere the computational time
of performing LC-KSVD on one fold was computed. Also the cletgazing of the arrhythmias

depends on what folds were used for training the dictionary.

A comparison on the performance of different types of cfassisuch as linear, quadratic, and
multi layer neural network, to classify the score featur¢hef LC-KSVD was performed. Figure
4.10 shows that there is no significant difference in usirgghadratic classifier or a multi layer

neural network classifier over a linear classifier to clgssif
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4.2.2 Results Using Full Dictionary

Due to the limitation of having the number of the dictionalgmeents larger than the used database,
the dictionary sizes were restricted to do the analysis.véoamme this and be able to use the entire
dictionary an artificially derived database is generatedfthe original 670 segments by adding
five different Gaussian white noise of 12, 15, 20, 25, and 3GalBiose segments. The resul-
tant synthetic database consists of 3800 segments (190@gw& segments and 1900 VT signal
segments) including the original 670 arrhythmic segmeAfter obtaining the new database the
combinations of two dictionaries were chosen to be trairgdguthe LC-KSVD with the same
weight factorsae = 2 and = 0.01, the sparsity factol” = 50 and number of iterations (i.e.,
2000 iterations). To validate the results a 5-fold crosgladion was used, where the data-set was
first randomly mixed up and then divided into five equal se&)(Zegments each), and then the

dictionaries were trained using four folds and tested withremaining one.
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Table 4.6 provide the classification accuracy of the thrdferéint dictionary combinations,
where the Gabor-Symlet4 dictionary provide the highestsifization accuracy of 87.4% com-
pared to 86.2% and 87.0% of Gabor—Wpsymlet4 and Symlet4—\Wpgymespectively. Using a
full dictionary to characterize arrhythmic signals impedvthe classification accuracy, where char-
acterizing VF signals was improved over the characteriaingT signals, this is reflected in Tables
4.7 and 4.8 of the confusion matrix of classifying VF and V@r&ls using the learned dictionary
Gabor-Wpsymlet4.

Table 4.9 shows the five fold classification accuracies of Vit ®T signals with the Ga-
bor-Wpsymlet4 wavelet hybrid dictionary with a total ovéralerage classification accuracy of
% 86.2. When the classification accuracy of tested signalsrigared using a trained and non-
trained dictionary, as expected the trained dictionaryrowes the accuracy over the non-trained
one as shown in Figure 4.11, similarly when compared usiegther two dictionaries such as

Gabor-Symlet4 and Wpsymlet4—Symlet4.

Table 4.6: Average classification accuracy for different combinagioh the full dictionaries for
2000 iterations of LC-KSVD

Dictionary type combination | Classification accuracy (%)
Gabor-Symlet4 87.4%
Gabor—-Wpsymlet4 86.2%
Symletd—Wpsymlet4 87.0%

Table 4.7: Confusion matrix of discriminating VF and VT signals usindl iGabor-Wpsym4
dictionaries of LC-KSVD

VF | VT | Total
tested signal$ VF | 358 | 22 | 380
VT | 75 | 305 380
% VF [94.2] 5.8 | 100
VT | 19.7| 80.3| 100
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Table 4.8: Range of the 5-folds confusion matrix of discriminating VFanT signals using full
Gabor-Wpsym4 dictionary of LC-KSVD

Classification accuracy range
VF 90-97 %
VT 70-84 %

Table 4.9: The Classification accuracy for the four data sets using rened and LC-KSVD
trained full Gabor—Wpsymlet4 dictionary

Data Sets| Trained Dictionary (%) | Untrained Dictionary (%)
fold 1 87.2% 77.0%
fold 2 87.2% 77.2%
fold 3 82.8% 76.8%
fold 4 85.8% 78.2%
fold 5 87.8% 78.2%
8- L
8
|

Classification accuracy (26)

——

trained non-trained

Figure 4.11: Boxplot of the classification accuracies of the five folds gemined and non-trained
Gabor-Wpsymlet4 dictionary
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4.3 Results Summary

In the presented analysis, the highest classification acgwf VF and VT signals obtained was
73.3%, using the optimized Symlet4—Wpsymlet4 and a database oé&gihents. When the error
classifier term was removed from the objective function tlassification accuracy reduced from
73.3% to 70.4%. The classification accuracy of trained dictionary was &igi3.3%) than the
non-trained dictionaries{.5%) re-emphasizing the benefits of using a data adaptive detjo
learning approach in learning more discriminative infotiora As expected increasing the dictio-
nary size increases the ability to accurately classifyagby improving the modeling flexibility

but at the expense of computational time.

For the full dictionaries analysis using an artificial iresed database from the actual data the
highest classification accuracy of VF and VT signals wasinobthusing the Gabor—Symlet4 of
87.4% compared tB7.0% of Symletd—Wpsymlet4, an86.2% Gabor—Wpsymlet4. Although
higher classification accuracies were achieved using tiffecially increased database, this may
not reflect the true scenario as the added noise could hasedthe signal morphologies more
towards VF which might explain the higher classificationwaecies of VF in comparison with
VT. This exercise was to show that with increased databass sve might have more flexibility
in modeling these arrhtyhmias, however in reality obtainiast databases for ventricular arrhyth-

mias is a difficult challenge due to high mortality ratesjadh and data privacy issues.

From the results section of this thesis, it can be conclubatthe discriminative sparse cod-
ing using dictionary learning methods such as LC-KSVD doesatestrate high potential in suc-
cessfully capturing the compact discriminative structyteme-frequency subspace) of ventricular

arrhtyhmias.
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4.4 Chapter 4 Summary

This chapter presented the performance evaluation of fueidiinative spare coding of ventricular

arrhythmias using dictionary learning algorithm LC-KSVIhél chapter presents the results for
different scenarios (hybrid dictionaries, LC-KSVD1, LC-KB¥) and comparative performances
between trained and non-trained approaches. The effecttdrthry size and the database sizes

on the performance was also demonstrated. The chapter welided with a summary of results.
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Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions

In this thesis, automated learning of underlying discriamtive structures of ventricular arrhythmias
was investigated. A label consistent K-SVD dictionary féag algorithm was used to analyze ven-
tricular fibrillation and ventricular tachycardia ECG segntseusing the discriminative sparse code
obtained from a trained dictionary. A databases consisifrg)/0 arrhythmia segments from the
publicly available MIT-BIH databases was used to train aadsify using a predictive linear clas-
sifier. Optimal parameter choices for the analysis of veualar arrhtyhmia were identified experi-
mentally. Using these parameters, hybrid dictionarieeweined and their discriminative sparse
codes were generated and these codes were validated fodigeziminating ability. Three differ-
ent hybrid optimized dictionaries: Gabor—Symlet4, Gabdpsymlet4, and Symletd—\Wpsymlet4

achieved classification accuracies of 71.64%, 72.84%, 8r&B% respectively.

The comparative results between trained and non-trairetdaries validate the need for dic-
tionary learning approaches in learning the underlyingrthsinative signal structures. Compact
representation of these arrhythmias may lead to betteacteization and insight into subclasses
of these arrhythmias. This will also positively impact thesiligence of decision algorithms in im-
plantable devices. From a mechanistic view point, thesgidisnative sparse code representations

might reveal hidden information in the genesis of theseydinrhias.
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5.2 Future Work

Future work includes characterizing sub classes of armif such as polymorphic and monomor-
phic ventricular tachycardia, and organized and dis-aegahventricular fibrillation. In addition,
with discriminative sparse coding we can identify sparsgedemplates for groups of arrhythmic
signals which can be correlated to pathologies. Also, uiege discriminative sparse code tem-
plates from multi-channel ECG recording it might be posstblénfer regional variations in the

arrhythmic activities.

62



Appendix A

Abbreviations

ECG Electrocardiogram

VF Ventricular Fibrillation

VT Ventricular Tachycardia

MVT Monomorphic Ventricular Tachycardia
PVT Polymorphic Ventricular Tachycardia
VA Ventricular Activity

AA Atrial Activity

STFT Short Time Fourier Transform

CWT Continues Wavelet Transform

DWT Discrete Wavelet Transform

MP Matching Pursuit

OMP Orthogonal Matching Pursuit

K-SVD K-Singular Value Decomposition
LC-KSVD Label Consistent K-SVD

LDA Linear Discriminant Analysis

LDC Linear Discriminant Classifier
QDC Quadratic Discriminant Classifier
MNN Multi Layer Neural Network
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Appendix B

Optimization Results

B.1 Sample optimization results using differento for a subset
of data using Gabor and Sym4 dictionary

Table B.1: Classification accuracy and error 1 for differenparameters for 2000 iterations of
LC-KSVD

a | Classification accuracy (%4)Error 1
0.01 64.18% 0.004
0.1 67.16% 0.004
0.5 69.40% 0.002
1 76.12% 0.005
2 78.36% 0.008
4 60.45% 0.017
6 61.19% 0.023

B.2 Sample optimization results using differentoa and S for a
subset of data using Gabor and Sym4 dictionary
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Table B.2: Total error 2 for different combinations of and g parameters for 2000 iterations of

LC-KSVD

a=001la=01|la=05| a=1 | a=2 |a=4|a=6

£=0.01] 0.0033 | 0.0037| 0.0011| 0.0045| 0.0089| 0.016| 0.025
£=0.11] 0.0033 | 0.0033| 0.0019] 0.0051] 0.0088] 0.017| 0.024
£=0.51] 0.0039 | 0.003 | 0.0016| 0.0043| 0.0092] 0.015] 0.028
5=1 0.0042 | 0.0037| 0.0018] 0.0045] 0.0094| 0.016] 0.024
s=2 0.003 | 0.0025] 0.0007| 0.0046( 0.0092| 0.016] 0.023
s=4 0.002 | 0.0021] 0.0017| 0.0007| 0.0088| 0.016] 0.024
5=6 0.0017 | 0.0016( 0.0019] 0.0047| 0.0091| 0.016] 0.022

Table B.3: Classification accuracy for different combinationscofand § parameters for 2000
iterations of LC-KSVD

a=0.01

a=0.1

a=0.5

a=1

a=2

a=4

a=6

3=0.01

61.19%

70.89%

65.67%

66.42%

73.13%

79.85%

71.64%

5=0.1

68.66%

67.16%

73.13%

63.43%

68.66%

77.61%

62.69%

5=05

62.69%

65.67%

69.40%

70.9%

76.12%

72.39%

70.15%

61.194%

64.92%

74.63%

72.39%

73.89%

79.10%

65.67%

62.69%

64.92%

71.64%

72.39%

74.63%

71.64%

73.13%

64.92%

75.73%

65.67%

71.64%

75.37%

72.39%

70.9%

DD
1

1
(o] IESN I

67.91%

69.40%

73.13%

73.88%

70.15%

71.64%

69.40%
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