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Abstract 

 

A combined finite element-Ritz method is developed to effectively model the 3D low-

frequency acoustics in CANDU fuel sub-channels. The complex acoustic behavior of 

CANDU fuel sub-channels in the cross section is captured using the six-node 

isoparametric triangular elements; and the acoustic wave propagation in the axial 

direction is modeled using the polynomials of order n. The Lagrange equations are 

utilized to formulate the system equations of motion. The acoustic system considered in 

this study consists of pipe-like medium (water) with rigid and smooth walls. At the inlet 

of the fuel channel acoustic system, an acoustic pressure wave is prescribed to simulate 

the pulsation induced by the main feeder pumps. At the outlet, the acoustic system is 

assumed to interact with a reacting and absorbing material with prescribed acoustic 

impedance. The method was tested for several scenarios of interest. Numerical results 

obtained are in excellent agreement with the analytical and ANSYS solutions. 
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CHAPTER 1 INTRODUCTION 
 

This chapter is divided into three sections that introduce the background of the research, 

the research objective and the proposed methodology. Section 1.1 presents a description 

of a CANDU reactor along with the observed phenomenon of bundle vibration and the 

possible driving mechanisms, including acoustic induced excitation, which is the main 

focus of this study. Section 1.2 highlights the main objective of this study and introduces 

the assumptions made for the development of the acoustic model. Section 1.3 presents a 

combination of finite element with Ritz method as the proposed scheme to simulate 

acoustic waves in a CANDU fuel channel.  

1.1  Background 

  

In a CANDU reactor, fission reactions are used to heat pressurized heavy water in a 

primary cooling loop. The heated heavy water runs through arrays of pipes for steam 

generation.  This secondary cooling loop powers a steam turbine that is attached to an 

electric generator. The exhaust steam is condensed and re-used as feed water to the steam 

generator (Rouben, 2005).  

The CANDU-6 reactor core consists of approximately 400 fuel channels. Each fuel 

channel is a pressurized tube that contains a string of 12 or 13 fuel bundles and heavy 

water operating at approximately 10 MPa and 300°C, with a mass flow rate of 15-20 

�� ∙ �!!. A shield plug that is designed to hold all bundles against the hydraulic drag 

supports the downstream fuel bundle. In the CANDU-6 model, each bundle is designed 

to have 37 fuel elements of which 18 are located in the outer ring, 12 in the middle ring 

and 6 in the inner ring. This leaves one at the center.  
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Under normal reactor operations, the bundles have been known to show noticeable 

vibration caused by fluid flow, acoustic resonance or fluid-acoustic structure interaction.  

Given the design of the bundles, they can show small-scale motions inside the tube such 

as rolling, sliding and bending vibration with respect to the designed equilibrium position. 

This induces friction and impact between the bundles and the pressure pipe which, over a 

long period of time, appears to be damaging the pressure pipe and the fuel bundle bearing 

pads.  The bundle motion can cause wear and material-loss of the pressure pipe, also 

known as fretting, along with endplate cracking.  

 

As a practical example for bundle vibration due to acoustic resonance, it has been 

reported that the Darlington and Bruce reactors have shown the presence of endplate 

cracking at the outlet bundles. It was also demonstrated that pressure pulsations 

originated from the water pump were acoustically amplified in certain fuel channels. 

Especially, a pulsation frequency of 150 Hz coincided with the resonant frequency of the 

inner seven fuel elements of the 37-element bundle. These acoustic pulsations not only 

induced small rolling motion but they also cause the bundles to vibrate in the axial 

direction. Axial vibration at the resonant frequency led to endplate cracking (Wenhui & 

Manzer, 1991). 

 

1.1.1 Fuel Bundle Vibration Phenomenon 

 

The vibration phenomenon of the fuel bundle can be a result of a particular mechanism or 

a combination of multiple mechanisms. One of these mechanisms, and the main focus of 

this study, is acoustic induced excitation. The acoustic pressure pulsations originated 
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from the pumps can be a source of low frequency acoustic excitation. Solid structures are 

not seriously affected by high frequencies but rather low frequency pressure waves, since 

low frequencies generally cause the structure to respond with a large displacement. Also, 

if the frequency of this acoustic pressure wave matches or is close to one of the natural 

frequencies of the structure, acoustic resonance may be observed. In the literature 

concerning the vibration phenomena of the fuel bundle, many studies have presented 

computer and numerical models to examine the vibration of the fuel bundle in which 

acoustic excitation is not included (Zhang and Yu, 2008; Bhattacharya, Yu & Kawall, 

2012; Bhattacharya, Yu & Kawall, 2013). To generate an accurate approximation of 

behavior of the fuel bundle, it is necessary to account for all the sources of vibration. 

Therefore, there is a need for the implementation of an accurate and efficient acoustic 

model that is able to capture small fluctuation within sub-channels. In addition to acoustic 

induced excitation, other mechanisms that may be responsible for the fuel bundle 

vibration phenomena are: fluid‐elastic instability, vortex shedding and turbulence‐

induced excitation. 

1.1.2 Finite Element Acoustics Literature Review 

 

In the literature, Gladwell and others (1966) originally formulated the development of 

finite element analysis for acoustic problems. A variational method was used to derive 

the appropriate finite element form of the acoustic wave equation (see Appendix A) 

Gladwell also discussed the formulation of structural-acoustic interaction, the impedance 

boundary condition, and the Sommerld radiation conditions. This work was successful 

and forms the basis for most subsequent finite element work in acoustics. Gladwell also 

formulated the acoustic problem in terms of acoustic velocity. The applicable governing 
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equation remains the wave equation with the acoustic velocity as the variable, hence a 

vector equation. As a result, for three-dimensional problems, the equations of motion for 

the velocity formulation of the problem will be three times as large as for the 

corresponding pressure formulation. For this reason, Gladwell concluded that the 

pressure formulation was more efficient. However, some investigations continue to use a 

velocity formulation because the fluid dynamic problems cannot be simplified to the 

pressure wave equation (Astley and Eversman, 1971). In other studies, rewriting the 

velocity formulation to a displacement formulation showed that dealing with non-

conservative forces and interfacial conditions can be easily implemented if Lagrange 

multipliers are used (Yu and Kawall, 2013). 

 

In the field of computational acoustics, early pioneers like Gladwell and Zimmerman  

(1966) and Young (1994) presented models where they used sub-parametric
1
 elements 

for their investigations. For these types of elements, the acoustic variables used at the 

nodes are the pressure and the pressure gradients.  These models are able to capture the 

propagation of acoustic waves in complex domains very well and show smaller transient 

solutions. However, the models often become large and consequently result in programs 

that are expensive to run. Craggs showed that, unlike dynamic and structural problems, 

the detail provided by the pressure gradients was, in most cases, not necessary and that 

typical acoustic problems could be run with a single acoustic pressure variable at each 

node. However, this model requires very fine meshed domains in order to acquire the 

desired accuracy (1972). Every one of these studies uses a full implementation of finite 

                                                        
1
 In the finite element method a sub – parametric element is an element that uses more 

field nodes than geometrical nodes. 
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elements, which, in many cases, raises problems of computational time and is limited to 

studying the propagation of acoustic waves in simple domains.  

 

1.2  Objectives and Assumptions 

 

The objective of this research is to develop an accurate acoustic model to study acoustic 

wave propagation in a three-dimensional domain. The model should capture the behavior 

of acoustic pressure in localized regions. The model is meant to study the acoustic 

induced excitation phenomenon and, therefore, the acoustic response of a fluid medium 

inside a CANDU fuel channel in order to determine the acoustic excitations on individual 

fuel elements or the entire bundle. The mathematical formulation for the acoustic model 

is implemented into a Python/C++ code and a Fortran code so as to suit specific 

applications, such as acoustic – structure interaction studies of elongated structures and 

domains. 

In this study, the following assumptions are made: 1) It is assumed that flow does not 

affect or induces acoustic waves in the system, hence the fluid flow is negligible; 2) To 

avoid energy losses in the system, it is assumed that the pipe walls are smooth, rigid and 

adiabatic; 3) Since the acoustic source is assumed to not be generated by fluid turbulence, 

viscous forces are assumed to be small and therefore the fluid is inviscid. These 

assumptions are applied to every system model in this study. Essentially, these 

assumptions cause the acoustic waves to behave linearly and facilitate the validation of 

the results with the appropriate analytical solution for the system or by comparison 

against numerical results from an FE software such as ANSYS. Further, the fuel channel 
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system is simplified by studying the system when all bundles are aligned so that there are 

no sub-channel discontinuities from one bundle to the next. Hence the system takes the  

form of one long bundle. 

 

1.3  FE-Ritz Method 

 
 

Many engineering acoustic problems are modeled and solved using a finite element-

based commercial software package that offers a sufficient accuracy with an acceptable 

computational time. However, when an acoustic system gets large and requires a very 

fine mesh to capture local and detailed phenomena, the traditional FE analysis becomes 

computationally expensive.    

 

 

Figure 1.1: Geometrical characteristics of fuel Channel. 

L
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In this study, a combined finite element - Ritz method is proposed for handling low 

frequency acoustics in a CANDU fuel channel with complex cross sectional sub-channel 

geometry.  The idea is to model the acoustic behavior of fluid particles within the 

bundle’s coherent sub-channel system at a cross-section with a conventional 2D FE 

method and capture any acoustic fluctuations along the axial direction by means of a 

global polynomial expansion, or Ritz method (Hjelmstad, 2005). The combination of a 

2D method with a 1D approximation is used to approximate the propagation of acoustic 

pulsating waves in a three-dimensional domain. By employing this method, one is able to 

reduce the number of degrees of freedom of the desired problem, and thus the 

computational time, without jeopardizing the accuracy of the solution.  

 

For the mathematical formulation, a displacement-based method is used to examine the 

propagation of three-dimensional acoustic waves through a fluid medium. Compared to 

the classical pressure-based approach used by Craggs (1976), Hackett (1976), and 

Gladwell (1996), a displacement-based formulation as used by Yu and Kawall (2013) 

allows the derivation of the equations of motion by Hamilton’s variation principle, which 

facilitates the implementation of non-classical boundary conditions and interface 

conditions between distinct domains and media. Since the acoustic pressure is a derived 

quantity, it can be obtained at the post-processing stage of the FE analysis.   
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In finite element method, the elements used to discretize a particular domain are divided 

into 3 categories: iso-parametric, sub-parametric and super-parametric
2
 elements. Iso-

parametric elements are those in which the shape functions are the same for both 

geometric and field variables, (Fish & Belytschko, 2007) (Onate, 2009). To approximate 

the acoustic displacement and account for deformation for a fluid particle, the six-node 

iso-parametric triangular elements are used to discretize the cross-sectional plane. On the 

other hand, the variations of the acoustic displacement in the direction normal to the 

discretized plane are handled using a polynomial interpolation. This method uses the 

polynomial expansion as a way of extruding the 2D mesh so that the three-dimensional 

domain is divided into prism elements. As an illustrative example, Figure 1.2 shows a 

graphical representation of fluid-filled region for a 37-rod CANDU fuel channel in which 

acoustic waves propagate. 

                                                        
2
 In the finite element method, a super–parametric element is an element that uses more 

geometrical nodes than field nodes. 
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Figure 1.2: Fluid domain in a fuel channel. 

 

Ideally, the domain depicted in Figure 1.2 is discretized using FE-Ritz elements.  

The cross sectional surface is first meshed and is then extruded by linearly combining it 

with a global polynomial expansion of �!! order.  
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Figure 1.3: Bundle Cross-section meshed using 6 – node triangular elements. 

 

1.4  Chapter Summary 

 

 
This chapter provides a brief description of the CANDU nuclear reactor, its bundle 

vibration problem and the potential causes. Further, it presents the phenomenon of 

acoustic induced excitation as the main topic of this study along with a literature review 

on computational acoustics. This chapter highlights the main objective as the 

development of an acoustic model to study acoustic induced vibration in a CANDU fuel 

channel. The assumptions made for the implementation of the acoustic model are also 

introduced. Lastly, a description of the proposed FE-Ritz method and the logic behind is 

presented in the last section. 
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CHAPTER 2 3D ACOUSTIC SIMULATION 
 

This chapter presents the mathematical formulation for the combined finite element - Ritz 

method. Section 2.1 introduces the derivation of the component mass and stiffness 

matrices for one FE – Ritz method; Section 2.2 explains the implementation of boundary 

conditions, generalized forces and the derivation of equations of motion; Section 2.3 

illustrates the post–processing procedures to obtain nodal pressure from nodal 

displacement quantities. In addition to the mathematical derivation, this chapter also 

presents a brief discussion of Newmark’s method (Zienkiewicz, Taylor  and Fox, 2013).  

 

2.1 Finite Element Formulation of Acoustic System  

 

The acoustic model is constructed to simulate the propagation of acoustic waves within 

coherent sub-channels in a fuel-channel system. An approximation is introduced by 

expressing the displacement components in terms of linear combinations of shape 

functions, which are locally defined within small subdomains ('finite elements') and 

interpolated with a polynomial of �!! order. In this way, the original problem of 

determining the acoustic displacement components at any position in the fluid domain 

may be approximately transformed into a problem of determining the acoustic 

displacement coefficients at some discrete positions in the fluid domain.  

 

The acoustic system component is modeled using six-node isoparametric three-

dimensional prism elements, as shown in Figure 2.1.  This element is constructed by a 

combination of a 2D element and a polynomial expansion. 
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Figure 2.1: FE-Ritz three-dimensional prism element. 

 

Within each element, the acoustic displacement field varies with local natural coordinates, 

ξ, η and ζ, 

 

�!" = �! �, �

�! � … 0

⋮ ⋱ 0
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(2.1.2) 

 

 

is the shape function for a general six-node isoparametric triangle (Zienkiewicz, Taylor 

and Fox, 2013).  
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 N! ζ   = 1  ζ ζ!… ζ!   (2.1.2) 

 

is the shape function for the linear combination of polynomials, where ζ is the normalized 

coordinate 
!

!
 ; and  

�!!

⋮

�!"

 are the displacement coefficient vectors for each node 

(Hjelmstad, 2005). 

 

The displacement along the y and z directions, �!" and �!", respectively, resembles the 

same form as that of �!". Also, note that the field variable chosen to formulate the 

equations of motion for the acoustic system is the acoustic displacement as opposed to 

the acoustic pressure, which can eventually be derived from the acoustic displacement. 

The kinetic and potential energy can be written as: 
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where �! =

�!

�!

�! !  

, the element mass �! , and stiffness matrix �!  are calculated as: 
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for which each of the stiffness components can be computed individually as: 
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And since � ! is symmetric  
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Once the formulation for one element component vector is determined, one can relate the 

element nodal displacements to the global component vector through a transformation 

matrix T!→! , as follows 

 

 �! = �!→!   �  (2.1.14) 

 

One can further use this transformation to obtain the kinetic and potential energies in 

terms of the global nodal displacement as: 

 

 
� =

1

2
� 

!

� �   
(2.1.15) 

 

 
� =

1

2
� 

!
� �   

(2.1.16) 

where the component mass and stiffness matrix are: 

 

� = �!→!

!

�! �!→!

!!

!!!
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� = �!→!

!

�! �!→!

!!

!!!

  

 

  

 

The following Lagrange equations are used to obtain the system equations of motion 

 �

��

�� 

� � 
!

−
�� 

� � 
!
= 0 

 

(2.1.17) 

where � = � − �. Substituting the expressions for the kinetic and potential energy into 

Eq. (2.1.18) and in the absence of external forces, we arrive at 

 � �  + � �  = 0 (2.1.18) 

In finite element, the boundary conditions of the corresponding system are usually 

implemented in a separate matrix or into the stiffness matrix. In many cases, certain 

boundary conditions will reduce the degrees of freedom while in many others the degrees 

of freedom can increase. This depends on what the boundary conditions are and how they 

are implemented.  

 

2.2 Acoustic Boundary Conditions and Equations of Waves 

 

Taking into account that the main focus of the proposed FE-Ritz method is to study the 

propagation of acoustic waves in duct-like domains, it is important to mention the 

physical characteristics of the internal surfaces. In acoustic studies, it is often desired to 

describe boundary conditions in terms of acoustic impedance (Bernhard, 1982). Acoustic 

impedance is defined as the ratio of the acoustic pressure to the normal acoustic velocity 

at the boundary 
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 � = �!�! (2.2.1) 

where �! is the acoustic impedance, � is the acoustic pressure and �! is the acoustic 

velocity normal to the boundary. 

 

The relation between the acoustic velocity and pressure can be written in terms of 

pressure by using the governing equations (Appendix A) 

 ��

��
= −

�

�!

��

��
 

(2.2.2) 

When studying acoustics, there are two idealized boundary conditions (Bernhard, 1982): 

a perfective reflective wall and a completely absorbent or anechoic boundary. In the 

literature, it is common to find a description of reflective boundaries in terms of pressure, 

 ��

��
= 0 

(2.2.3) 

From Eq. (2.2.2) this means that �! = ∞. For a completely absorbent boundary, the wave 

propagates as though no boundary were present and thus the pressure at the boundary is 

 � = ���! (2.2.4) 

Hence, from Eq. (2.2.1) the acoustic impedance,  �! = �� (Bernhard, 1982).  

 

In many cases, the walls are not perfectly rigid and the system is confined to a finite 

space, making the boundaries both absorbent and reflective. The complex specified 

acoustic impedance is defined as: 

 �!

���!
= �! + ��! 

(2.2.5) 
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where, v! is the complex velocity at the boundary, �! is the real part of the acoustic 

impedance, Z! is the imaginary part of the acoustic impedance, ρ is the density of the 

medium and c is the speed of the wave in the medium. 

 

2.2.1 Prescribed Acoustic Impedance of Absorbent and Reactive Walls 

 

When acoustic impedance is imposed at one of the system’s boundaries (i.e. the outlet of 

the pressure pipe), the boundary will dynamically affect the system as it responds to 

incoming acoustic energy. In a sense, this boundary absorbs and reflects some of the 

incoming acoustic wave, which generates a pressure at all points on the boundary.  This 

pressure can be interpreted as a generalized force  Q!" , generalized forces are defined by 

the boundary’s behavior. Yu and Kawall (2013) defined the pressure generated by the 

specified acoustic impedance through the following relation:  

 

 � = �! �! + �! �!  (2.2.6) 

   

where the stiffness k! and damping d! coefficients correspond to the imaginary and real 

parts of the acoustic impendence. If the incoming acoustic pulsation wave has a 

frequency �, the stiffness and damping coefficients are defined as: 

 �! = �!��� (2.2.7) 

 

 �! = �!�� (2.2.8) 
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The pressure generated only depends on the axial acoustic displacement �!. Therefore, 

the generalized force vector is take the form:  

 

Q!" = − ��
�
�2

�
�1

�|
�=�

�� �1 |�=� �2 �� + �� �1 |�=� �2 �� ��

 

Γ

��

�=1

 

(2.2.9) 

 

The generalized force vector can be written as 

 

Q!"  = − ��
�

 
���

 
�� + �� �

 

��
 
� 

��

�=1

 

(2.2.10) 

 

This force vector is the sum of the non-conservative damping and stiffness forces related 

to a damping and a stiffness matrix respectively, which are defined as: 

 

�
 

! 
=

0 0 0

0 0 0

0 0 �
 
!!

! 

 

 

(2.2.11) 

where 

 
�
 
!!

!
= �! �!

!
�!

!|!!! �! |!!! �! � �� ��

 

!

 

 

 

(2.2.12) 

and 

 

�
!
=

0 0 0

0 0 0

0 0 �!!!

 

 

(2.2.13) 

where 
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�!!

!
= �! �!

!
�!

!|!!! �! |!!! �! � �� ��

 

!

 
 

(2.2.14) 

Since the generalized force only acts with respect to axial variations, the other 

components are zero. One can then add the stiffness contribution of the reacting boundary 

to the component stiffness matrix K .  The global generalized forces can write as follows 

   �� = − �
 
�  − �

 
�   (2.2.15) 

for which the Global component non-conservative stiffness and damping matrices are 

 

�
 
= �!→!

!

�
 

! 
�!→!

!!

!!!

 

 

(2.2.16) 

 

 

�
 
= �!→!

!

�
 

! 
�!→!

!!

!!!

 

 

(2.2.17) 

 

2.2.2 Second Order Differential Equations of Waves 

 
The equations of waves in the acoustic system may be obtained from solving the 

following Lagrange equations: 

 �

��

�� 

� � 
!

−
�� 

� � 
!
= �   

 

(2.2.18) 

where �   is the nodal acoustic displacement vector and �   are the generalized forces. 

Substituting Equations (2.1.15), (2.1.16) and (2.2.15) into Equation (2.2.18) yields the 

following second order partial differential equations for the unconstrained system  
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 � �  + � �  = − �
 
�  − �

 
�   (2.2.19) 

 

Naturally, Eq. (2.2.19) is the discretized form of the general wave equation in three 

dimensions where �    and �    are the generalized force matrices that appear due to the 

prescribed acoustic impedance at the outlet of the system. It is worth mentioning that Eq. 

(2.1.9) to Eq. (2.1.13) as well as Eq. (2.2.19) can also be obtained from the weak 

formulation of the general wave equation (Appendix A) by a Galerkin method
3
 

(Zienkiewicz, Taylor and Fox, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
3 Gelerkin methods are a class of variation methods used to obtain the weak formulation 

of an equation. 
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2.3 Post-Processing for Acoustic FE-Ritz Model 

 After solving the system, Eq. (2.2.19) the nodal coefficients solution is obtained as 

 

 

� =

�!!

⋮

�!" !

�!!

⋮

�!"
!

�!!

⋮

�!" !

⋮

�!!

⋮

�!" !

�!!

⋮

�!"
!

�!!

⋮

�!" !

 

 

(2.3.1) 

Further, one can use these nodal coefficients to compute the pressure using the pressure-

displacement relations: 

 

 � = −��! �!! + �!! + �!!  (2.3.2) 

 

which is related to the acoustic displacement by  

 
� = −��!

��

��
+
��

��
+
��

��
 

(2.3.3) 
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where the divergence of the displacement defines the volumetric strain. For a finite 

element, the strain-displacement matrix (Zienkiewicz, Taylor and Fox, 2013) can write 

as: 

 

 

� =

��!!

��
�!(�) 0 0

0
��!!

��
�!(�) 0

0 0 �!!

��!

��
(�)

��!!

��
�!(�)

��!!

��
�!(�) 0

0 �!!

��!

��
(�)

��!!

��
�!(�)

�!!

��!

��
(�) 0

��!!

��
�!(�)

…  (2.3.4) 

 

where   

 

��!

��
=

0

1

�

2

�

�

�

 

⋮

�

�

�

�

!!!

 (2.3.5) 

and the partial derivatives of  N! are calculated as 

 

 ��!!

��

��!!

��

=
1

��

��

��
−
��

��

−
��

��

��

��

��!!

��

��!!

��

 (2.3.6) 
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where  J!  is the determinant of the Jacobian matrix
4
 which is calculated as 

 

 

�� =

��!!

��
�!

��!!

��
�!

��!!

��
�!

��!!

��
�!

!!!

!!!

 

(2.3.7) 

 

By multiplying the strain-displacement matrix by the nodal coefficients vector, one 

obtains the strain components: 

 

 

�!!

�!!

�!!
�!"

�!"

�!"

=

��!!

��
�!(�) 0 0

0
��!!

��
�!(�) 0

0 0 �!!

��!

��
(�)

��!!

��
�!(�)

��!!

��
�!(�) 0

0 �!!

��!

��
(�)

��!!

��
�!(�)

�!!

��!

��
(�) 0

��!!

��
�!(�)

…

�!!

⋮

�!" !

�!!

⋮

�!"
!

�!!

⋮

�!" !

⋮

�!!

⋮

�!" !

�!!

⋮

�!"
!

�!!

⋮

�!" !

 (2.3.8) 

The strain is a function of the triangular coordinates ξ and η. Hence, the pressure is 

calculated at a specific location. 

                                                        
4
 The Jacobian matrix defines a linear map �! → �

!, and in finite element it relates the 

natural coordinate space �, to the global coordinate space �. 
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In acoustic studies, pressure is a better way of interpreting the results, which is why the 

post-processing is done once the time integration is finished.  In the present formulation, 

the time integration should yield displacement, velocity and acceleration and the accuracy 

and convergence rate of the results usually depend on the order of the method used. For 

this study, the method used is Newmark’s method due to its capacity to yield accurate 

solutions for dynamic problems. 

 

2.4 Time Integration: Newmark’s Method 

 

In order to solve Eq. (2.2.19), one is required to discretize it with respect to time so that it 

can be integrated. For dynamic problems, it is recommended to use implicit integration 

methods such as Newmark’s method (Zienkiewicz, Taylor and Fox, 2013) because of its 

unconditional stability and accuracy.  

 

In Newmark’s method, the ability of obtaining stable and accurate solutions depends on 

the correct choice of the parameters �, and �. It is worth highlighting that the method can 

be made unstable for � < 1/2 and unconditionally stable for 2� ≥ � ≥ 1/ 2. 

Additionally, these parameters can also be handled to introduce artificial damping 

(� > 1/2), which may reduce the accuracy.  

 

To discretize the equation, one must first write the displacement, velocity and 

acceleration at time � +△ �: 
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 �  !!△! = �  ! +△ � � 
!
+ 1− � � 

!
+ � � 

!!△!
△ �

! (2.4.1) 

 

 � 
!!△!

= � 
!
+ 1− � � 

!
+ � � 

!!△!
△ � (2.4.2) 

 

 
� 

!!△!
=

1

△ �!�
− �  ! −△ � � 

!
−△ �

!
1

2
− � � 

!
+ �  !!△!  

(2.4.3) 

 

The recurrence formula for Eq. (2.2.19), subjected to an external force load �   at time 

� +△ � can be written as follows: 

 

 � � 
!!△!

+ �
 
� 

!!△!
+ � �  !!△! = �(� +△ �   (2.4.4) 

   

where � = � + �
  .  By substituting the discretized form of � 

!!△!
 and � 

!!△!
 

into the recurrence Eq. (2.4.4) and then solving for �  !!△!, one can obtain the 

recurrence formula in terms of effective stiffness and effective load vector. 

 

 �
∗
�  !!△! = �

∗
  !!△! (2.4.5) 

 

where the effective stiffness matrix is: 

 

 
�
∗
= � +

�

△ ��
�
 
+

1

△ �!�
�  

(2.4.6) 
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The effective load vector is: 

 

 �
∗
  !!△!

= �  !!△! + �
 

1

△ ��
� 

!
+

�

�
− 1 � 

!
+
△ �

2

�

�
− 2 � 

!

+ �
1

△ �!�
� 

!
+

1

△ ��
� 

!
+

1

2�
− 1 � 

!
+ �  

(2.4.7) 

 

In Eq. (2.4.5) �  !!△! is unknown, and is calculated by solving the linear equation 

numerically. In many cases, one can implement an LU decomposition method in order to 

solve the linear system. However, if the size of the matrices is very large, one could use a 

method that substructures the matrices such as banded or skyline solver.  

 

Once the solution for the displacement vector is obtained, one can use Eq. (2.4.2) and Eq. 

(2.4.3) to calculate the solution for velocity and acceleration at time � +△ �. 

 

2.5 Chapter Summary 

 

This chapter presents a model for acoustic wave propagation in a pipe–like domain. 

Acoustic mass and stiffness matrices are derived from the kinetic and potential energy 

while the impedance damping and stiffness matrices are derived from the prescribed 

acoustic impedance. Solving the Lagrange equations and incorporating boundary 

conditions yield the equations of motion for wave propagation. Since the field variable is 

the acoustic displacement, a brief post–processing section is also presented, which 

explains how to obtain the acoustic pressure from the acoustic displacement. In addition, 
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a section on time integration to solve the equations of waves provides a brief review on 

the Newmark method. 
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CHAPTER 3 ACOUSTIC MODEL RESULTS 

 

This chapter presents the implementation of the FE-Ritz method for acoustic wave 

propagation inside a prismatic pipe and the results in both time and space domain. These 

results are compared with their corresponding analytical solutions. Also, this chapter 

presents the acoustic pressure results in time domain and space domain for a one-sixth 

sector of a fuel bundle and full fuel bundle along with their corresponding numerical 

validation. Lastly, the FE – Ritz method is used to study the sound propagation through 

the sub-channel system when it is generated at one discrete location. A graphical post-

processing tool was also developed in order to generate the spatial domain plots for the 

three-dimensional systems. 

3.1 Plane Wave Solution  

 

In order to test the previous FE formulation, one can apply the boundary conditions to 

model simple systems whose solution is already known. Ideally, if sound were to travel 

through a pipe with smooth and rigid walls, its behavior would be that of a plane wave. 

Hence, imposing these conditions to the proposed model should yield the same results as 

those from a plane wave case. It is assumed that, at the outlet of the system, the wave will 

interact with a reacting and absorbing wall. The pressure along the pipe is given by Yu 

and Kawall (2013) as 

 

 
�!(�) = ���!

�! + ��! cos � � − � − � sin � � − �  

cos �� − � �! + ��! sin ��
 

 

(3.1.1) 
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Eq. (3.1.1) is the analytical solution for the acoustic complex pressure everywhere if the 

walls of the pipe are smooth and rigid. For this test case, it is not necessary to completely 

discretize an entire domain, but rather use one element as depicted in Figure 2.1, which 

essentially models a prismatic pipe. 

 

3.1.1 Prescribed Moving Boundary Source 

 

Sound propagation through an internal domain can be introduced by a prescribed initial 

condition or can be originated at the boundary. Based on the assumption of no fluid flow, 

the waves must be produced at a boundary. In order to model an acoustic source at a 

boundary, one can use a time-varying harmonic function, which could be interpreted as a 

speaker inducing sound in the system. For example, this boundary condition can be 

applied at the inlet of the pressure pipe allowing it to vary only with respect to �! as 

 
�  �,�, � |∀!!(!,!,!!!) =

0

0

W!"

sin�� 
(3.1.2) 

   

Applying this condition to Eq. (2.1.1) is the same as prescribing the movement of the 

inlet nodes, which makes the first coefficients equal to W!" sinωt, 

�!"  
�,�, 0 = �! �, � !!!

W!" sin�� + �!!0+⋯+ �!"0

W!" sin�� + �!!0+⋯+ �!"0

⋮

W!" sin�� + �!!0+⋯+ �!"0 !×!×(!!!)!!

 

(3.1.3) 

This constraint can be implemented into a force vector through the stiffness and mass 

matrices by simply substituting the components in all rows and columns that correspond 
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to the u!" coefficient for each node by W!" sinωt and deleting the first row and column. 

In brief, this is incorporated into an acoustic force vector defined as 

 

�!" =

�!,! −�!,!�
!
W!"

�!,! −�!,!�
!
W!"

⋮

�!×!×(!!!),! −�!×!×(!!!),!�
!
W!"

0

 

(3.1.4) 

 

Using this force vector modifies the equation of motion as follows 

 

 
� �  + �

 
�  + � + �

 
�  =

0

0

�!"

sin�� 

(3.1.5) 

 

3.1.2 Smooth and Rigid Walls  

 

Assuming that the walls of the pipe are smooth and rigid simplifies the behavior of 

acoustic waves so that the acoustic displacement varies only along the z-axis within one 

element. This means that the normal displacement with respect to the z-axis at the walls 

of the prism must vanish. This leads to the following boundary condition:  
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Figure 3.1: Rigid boundary conditions for one prismatic pipe. 

 �!",!,!cosφ!,!,! + �!",!,!sinφ!,!,! = 0 (3.1.6) 

 

where �, � and � are the faces of the prism andφ!,φ!,φ! are the normal angles of the 

corresponding side with respect to the local coordinate system.  

Eq. (3.1.6) can also be written in matrix as: 

 

 �!"

�!"

�!" !

=

tanφ! 0 0

0 tanφ! 0

0 0 tanφ!

�!"

�!"

�!"
!

 

�!"

�!"

�!" !

=

tanφ! 0 0

0 tanφ! 0

0 0 tanφ!

�!"

�!"

�!"
!

 

�!"

�!"

�!" !

=

tanφ! 0 0

0 tanφ! 0

0 0 tanφ!

�!"

�!"

�!"
!

 

 

(3.1.7) 

Or  

 

a 

b 

c 

u
n
= 0

u
n
= 0

u
n
= 0
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� ! !
− � ! � !

!

= 0, � ! !
− � ! � !

!

= 0, � ! !
− � ! � !

!

= 0 (3.1.8) 

 

where I and O subscripts represent the interior and corner nodes, respectively.   

These constraints can be implemented into an augmented Lagrangian, which is used in a 

method of Lagrange multipliers to account for the constraint forces at the boundary, and 

established the set of partial differential equations of wave propagation. This is achieved 

this by introducing the following potential to the Lagrangian  

�
∗
= � ! !

− � ! � !
!

!

�! + � ! !
− � ! � !

!

!

�! + � ! !
− � ! � !

  !

!

�!  
(3.1.9) 

 

The Lagrangian with this potential is now the so-called augmented Lagrangian where 

λ! , λ!  and λ!  represent the constraint forces on the faces of the prism. Incorporating 

the work done by the constraint forces at the boundary of the pipe, the equations of 

motion Eq. (3.1.5) takes the form 

 
� ! �  !

+ �
 
! �  !

+ � ! �  ! =

0

0

�!"

sin�� 

(3.1.10) 

Note that Eq. (3.1.10) accounts only for the axial displacement � ! , which is expected 

by virtue of the applied boundary conditions. 

 

This method can be further used for implementing interfacial boundary conditions for 

models with multiple flow-sections or to account for bundle misalignment. 

 



 34 

3.1.3 Plane Wave Results 

 

Numerical results are compared against the analytical solution in both the space and time 

domain, where the space domain illustrates the steady state solution of the system after 

iteration time and the time domain illustrates the time response for the acoustic pressure. 

 

Within one FE-Ritz element, the plane wave results in Figure 3.2 and Figure 3.3 are 

calculated using the following parameters: 

 

Table 3.1: Values of Geometric Properties Used for Plane Wave Test Case in Air. 

Parameters  

Density ρ
!"

!!
 

 

1.2 

Length L (m) 1.705 m 

Speed of sound c (
!

!
) 341 m/s 

Piston velocity V! (
!

!
) 0.01 m/s 

Real acoustic impedance Z! 4 

Imaginary acoustic impedance Z! 3 

Excitation frequency ω (
!"#

!
) 270 

Time step 0.001 sec 

Total time 0.2 sec 

Order of polynomial n 5 
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Figure 3.2: Time domain response of FE-Ritz method for plane wave test case in air. 

 

Figure 3.3: Steady state acoustic pressure for plane wave test case in air. 
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The results shown in Figure 3.4 and Figure 3.5 are found from the parameters in the case 

of a pipe filled with water. 

 

Table 3.2: Values of Geometric Properties Used for Plane Wave Test Case in Water 

Parameters  

Density �
!"

!!
 

 

1000.0 

Length � (�) 1.705 � 

Speed of sound � (
!

!
) 1500 �/� 

Piston velocity �! (
!

!
) 0.01 �/� 

Real acoustic impedance �! 0.5 

Imaginary acoustic impedance �! 7.50 

Excitation frequency � (
!"#$

!
) 270 

Time step 0.001 sec 

Total time 0.2 sec 

Order of polynomial � 5 
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Figure 3.4: Time domain response of FE-Ritz method for plane wave test case in water 

 

Figure 3.5: Steady state acoustic pressure for plane wave test case in water. 
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In Figure 3.2 - Figure 3.5, it can be seen that both the analytical and numerical solution 

are in excellent agreement. 

 

The time domain results in Figure 3.2 and Figure 3.4 show that the computed solution 

reaches steady state within the first three cycles of oscillations; hence the computed 

responses are phase-shifted in order to numerically compare the results against the 

analytical solution. The acoustic impedance for both water and air are arbitrarily 

calculated based on the media in which sound propagates and then stiffness and damping 

characteristics of the material at the outlet. Further, based on the speed of the wave, the 

time step is chosen in order to use at least 10 points per period to capture time domain 

variation. 

 

3.2 Verification of Acoustic Waves in Coherent Sub-Channel Systems  

 

This section presents the results obtained from the plane wave test case within one prism 

element and the results for a global system that simulates the propagation of acoustic 

waves throughout a one-sixth sector, Figure 3.6, of the cylindrical domain depicted in 

Figure 1.2.  

The symmetry of the fuel channel can be used to further reduce the computational time 

since the number of elements required to mesh a sector domain is less than the number of 

elements required to mesh the entire cross-section. Moreover, a meshing criteria needs to 

be satisfied given that, in order to capture small fluctuations, one would require a 

minimum number of nodes per wavelength. The number of nodes is proportional to the 
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wave number of the medium. In this case, the medium is water and applying an induced 

frequency of 80 Hz for which the wave number is 0.3 or of 30 m wavelength, would 

require at least 6 nodes per wavelength and a 3
rd

 order polynomial. 

 

 

Figure 3.6: Cross-section mesh for sector domain. 

3.2.1 Acoustic Wave Propagation in a Sector of Fuel Channel  

 

The following results are computed using the parameters in Table 3.3 for the assumptions 

stated in Chapter 1 and in a fraction of the domain depicted in Figure 1.2. The numerical 

results are then compared against numerical results obtained from ANSYS for a model 

with the same characteristics. 

 

 

 

 



 40 

Table 3.3: Values of Geometric Properties for Global System. 

Parameters 
 

Density ρ
!"

!!
 

 

1000 

Length L (m) 
0.5 m 

Radius  r (m) 0.06 

Piston pressure on inlet area P! (
!"#

!!
) 

5 
Kgm

s!
 

Real acoustic impedance Z! 4 

Imaginary acoustic impedance Z! 0 

Excitation frequency ω (
!"#

!
) 500

rad

s
 

Time step 0.00001 sec 

Total time 
0.1 sec 

Order of polynomial n 5 

 

Figure 3.7 to Figure 3.12 depict the cross-section pressure distribution at different 

locations along the pipe after 0.1 seconds computed with the FE-Ritz method. Figure 3.13 

depicts the space steady state space domain solution of the pressure distribution along the 

pipe. Figure 3.14 shows the comparison between the FE-Ritz model and the ANSYS 

model in time-domain. 



 41 

 

Figure 3.7: Cross-section pressure at different z location: L/12 

 

Figure 3.8: Cross-section pressure at different z location:  L/8 
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Figure 3.9: Cross-section pressure at different z location: L/4. 

  

Figure 3.10: Cross-section pressure at different z location: L/2. 
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Figure 3.11: Cross-section pressure at different z location: 3L/4. 

  

Figure 3.12: Cross-section pressure at different z location: 7L/8. 
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The induced pressure at the inlet has a magnitude of 5 Pa. In order to validate these 

results, an ANSYS model was generated using 8-node acoustic brick elements. The same 

parameters and physical dimensions are applied after manipulating the global matrices to 

fit the boundary conditions. The generated matrices have a dimension of (8910 by 8910) 

with a 2D mesh of 379 elements with 912 nodes. With this in mind, using Python’s 

libraries to solve the system of equations and time integrating for 10000 steps takes 

approximately 10 minutes to yield a solution in a 2.6 GHz Intel Core i5 machine with 8 

GB or RAM. On the other hand, the 3D ANSYS model has 10860 low order elements 

with 14511 and it takes approximately 30 minutes to yield a solution when computed in a 

machine with a 2.67 GHz Inter Xeon processor and 16 GB or RAM.  

 

Figure 3.13: ANSYS Model, Steady state for pressure distribution along sector. 
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For simplicity, the boundary condition is prescribed so that all walls along the pipe are 

considered to be smooth and rigid. Also, similar to the plane wave test case, the inlet is in 

contact with a piston or a loud speaker that generates the acoustic pressure and the outlet 

is made up of a reacting and acoustic material with prescribed acoustic impedance. 

 

 
Figure 3.14: Time domain response for one node located at L/2 (FE-Ritz vs. ANSYS). 

 

The results depicted in Figure 3.7 - Figure 3.12 are within the same range of values at 

the corresponding cross-section when compared to the results in Figure 3.13. Further, the 

results in Figure 3.14 appear to be shifted by a phase angle. This is because the results 

from ANSYS converge after 4 cycles due to the low order element (8-node bricks) used, 

while the FE-Ritz method achieves steady state within the first 2. This can also be noticed 
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at the peak of the ANSYS response, which shows some noise within the first cycles that 

is then smoothed out in the last cycle. 

3.2.2 Acoustic Wave Propagation in Full Fuel Channel  

 

The sector model reduces the degrees of freedom and computational time by using the 

periodicity or symmetry of the bundle. However, the sector results may only be used if 

one were to apply symmetric boundary conditions so that obtaining results for the whole 

bundle would be a matter of rotation.  

 

An advantage of the FE-Ritz method is flexibility of reducing the degrees of freedom 

without affecting the solution by using a low order polynomial, if appropriate. In water, 

the speed of sound is 1500 m/s. If the speaker at the inlet has an excitation at a frequency 

of 80 Hz, the resulting wavelength is approximately 19 m. Ideally, one is able to capture 

the wave using three points per wavelength. Therefore, a third order polynomial is also 

able to capture the wave traveling along a 50 cm bundle which reduces the computational 

time, making it possible to model the entire bundle.  

 

Figure 3.15 to Figure 3.19 are snapshots taken a different cross-sections computed with 

the FE-Ritz method for the same parameters as in Table 3.3.  
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Figure 3.15: Cross-section pressure at z=L/8. 

  

Figure 3.16: Cross-section pressure at z=L/4. 
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Figure 3.17: Cross-section pressure at z=L/2. 

  

Figure 3.18: Cross-section pressure at z=3L/4. 
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Figure 3.19: Cross-section pressure at z=7L/8. 

Since the pressure distribution on the cross-section reaches steady state after a couple of 

coalitions, one can obtain an idea of the pressure distribution for acoustic wave along the 

bundle by plotting the steady state for an arbitrary node, as shown in Figure 3.20.  
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Figure 3.20: Steady state acoustic pressure for arbitrary node after 0.1 sec. 

Note that the peak pressure increases along the pipe up to 0.3 m and then decreases at a 

slower rate. This is due to the acoustic impedance used for this specific case. The 

prescribed acoustic impedance makes the boundary slightly absorbent.  

 

3.2.3 Point Source in Sector 

 

The following test case is presented in order to observe the development of an acoustic 

burst inside the pressure pipe, as shown in Figure 3.21. The system resembles the same 

characteristics as previous examples with the exception of a point source located in the 

middle of the domain. A time-harmonic source is also prescribed at the inlet to achieve 

steady state, once the initial source has disappeared. The following figures were 
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generated with an earlier version of the post-processing module, in which the element 

triangulation was not very compatible with 6-node triangular elements. Nevertheless, one 

is able to observe the wave propagation through the coherent sub-channel system as the 

wave travels along the pressured pipe. 

 

 

 

Figure 3.21: Burst function at 0.02 sec. 

In finite element, this burst function is implemented by exciting one node with a constant 

force, which then decreases over time as governed by the following equation: 

 

 � � = �!��
!!!! (3.2.1) 

 

For this test case, the parameters in Table 3.4 are used. 
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Table 3.4: Values of Geometric Properties for Burst Test Case. 

Parameters 
 

Density ρ
!"

!!
 

 

1000 

Burst amplitude (Pa) 3000 (Pa) 

Length L (m) 
0.01 m 

Radius  r (m) 0.06 

Piston pressure on inlet area P! (
!"#

!!
) 

5 
Kgm

s!
 

Real acoustic impedance Z! 4 

Imaginary acoustic impedance Z! 0 

Excitation frequency ω (
!"#

!
) 270

rad

s
 

Burst frequency −� (
!"#

!
) 50

rad

s
 

Time step 0.0001 sec 

Total time 
0.3 sec 

Order of polynomial n 5 

 

Figure 3.22 to Figure 3.27 depict the pressure distribution on a sector cross-section at 

0.005m away from the inlet for different times: 
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Figure 3.22: Cross-sections at 0.01. 

 

Figure 3.23: Cross-sections at 0.02 sec. 
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Figure 3.24: Cross-sections at 0.03 sec. 

 

Figure 3.25: Cross-sections at 0.05 sec. 
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Figure 3.26: Cross-sections at 0.1 sec. 

 

Figure 3.27: Cross-sections at 0.175 sec. 
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The previous figures illustrate how the initial acoustic source propagates through the 

medium consisting of various sub-channels and walls. One can observe the maximum 

burst at 0.02 seconds in Figure  3.23 and its decay in Figure  3.24 to Figure  3.27. 

Moreover, the pressure burst is produced while the speaker is also producing noise, 

which is why the response at 0.175 sec begins to look like the response in the previous 

test cases. 

 

3.3 Chapter Summary 

 

This chapter presents the results obtained from the FE – Ritz acoustic model for: 1D 

plane wave propagation inside a prismatic pipe, 3D wave propagation in a one-sixth 

sector of a fuel channel and the full fuel bundle channel systems. Furthermore, results for 

point source propagation in a one-sixth sector are also presented, from which one can 

observe the propagation of the acoustic wave through the sub-channel system. The results 

for the 1D plane wave propagation are compared with its corresponding analytical 

solution and shows very good agreement. The one-sixth sector is also modeled in 

ANSYS in order to validate the numerical results of the FE – Ritz model. The results 

from the FE – Ritz model agree with those obtained from ANSYS, showing smaller 

transient solution and accurate results. 
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CHAPTER 4 DISCUSSION AND CONCLUSION 
 

A combination of Finite Element method and Ritz method is employed to develop a 3D 

acoustic model suitable for studying the propagation of acoustic waves in pipe-like 

domains at low acoustic frequencies. This thesis presented the contributions and results: 

 

• The FE – Ritz method is able to model 3D acoustic waves and can facilitate the 

simulation of bundle vibration due to acoustic induced vibration. 

• Taking advantage of the geometry of elongated systems, the FE-Ritz method is 

able to reduce computation time and reduce the duration of the transient solution. 

• The use of acoustic displacement as the field variable facilitates the 

implementation and other boundary condition in the system, making the acoustic 

model highly compatible with other methods and models. 

• The acoustic behavior of fluid particles inside a pressured prism-shape pipe is 

investigated using the combined of FE-Ritz acoustic model. The results in Figure 

3.2 to Figure 3.5 depict the pressure response in time domain and space domain. 

These results also depict the comparison against the analytical solution for the real 

part of acoustic pressure in Eq. (3.1.1), which validates the results for a plane 

wave within one element or in one prismatic pipe.  

• The FE-Ritz method is also used to study the acoustic wave propagation in both 

one-sixth-sector domain and the full domain of a CANDU fuel channel. The 

results are compared against their corresponding numerical ANSYS results from 

Figure 3.7 to Figure 3.14, for which they are found to be in agreement. Moreover, 
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the results yielded by the FE-Ritz based model are computed in one third of the 

time when compared to the ANSYS computation for the one-sixth-sector domain.  

• The acoustic pressure response in a CANDU fuel channel is also computed and its 

results are depicted in Figure 3.15 to Figure 3.20, which show the cross-sectional 

steady state repose at different locations along the pipe and the pressure 

distribution along the pipe. Although the main purpose of the research is to model 

the acoustic wave propagation in a CANDU fuel channel, the method allows a 

wide range of applications at a cheap computational expense.  

• Since the main form of excitation in the first three cases is a time-harmonic source 

at the inlet, the pressure distribution appears constant at every cross-section 

throughout the pipe. In order to see a pressure gradient on a cross-section, the last 

test case deals with a pressure burst at a node. This is essentially a point source 

that peaks at a specific time and quickly decays. The pressure burst is only 

applied to a node while the speaker produces the harmonic excitation previously 

seen in the other test cases. The results are depicted in Figure 3.22 to Figure 3.27 

and they show the propagation of the wave as it develops outwards from the 

center of the domain. Since the burst quickly decays, the response that is obtained 

at the end is similar to the response of the previous test cases. 

 

The procedure presented in this paper has been implemented into a Fortran 77 code and a 

Python/C++ code in order to facilitate its use for a wide range of applications including 

the bundle vibration problem of the CANDU system. Additionally, the analysis done by 

the code has been proven to be faster than the analysis done by a regular 3D finite 
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element module, simply because the FE-Ritz method reduces the degrees of freedom and 

therefore requires less memory and CPU. Further research can be done to solve structure-

acoustic interaction problem. In brief, this research accomplished the development of an 

efficient and accurate method to model 3D acoustic and it has shown results, which 

validate the method and its implementation.  

 

4.1 Future Work and Recommendations for Improvement 

 

The fuel rods in the CANDU system can acoustically resonate because of the 

amplification of acoustic pressure pulsations or simply the presence of the acoustic 

pressure induced by the feeder pump. The behavior can also be studied with an acoustic-

structure interaction model. One of the problems with interaction models is the need for 

automotive meshing and re-meshing. However, with the FE – Ritz acoustic model, it is 

possible to move the mesh manually (for one cross-sectional mesh), based on some 

criteria. This accounts for the displacement of the boundary nodes at discreet regions 

along the length of the pressure pipe, which would require the implementation of 

continuous boundary conditions for a couple meshes along the pipe. An example of this 

can be seen in the case that one is interested in the behavior of a rod or beam inside a pipe 

filled with a fluid subjected to some low-frequency acoustic excitation. Assuming that the 

rod demonstrates a first mode response, one would need to divide the system into a 

couple of meshed regions so that rod displacement is accounted from one mesh to the 

next.  
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APPENDIX A 

The differential equations governing sound propagation are derived from the combination 

of the continuity and momentum equations from fluid mechanics by treating the acoustic 

signals as small fluctuating disturbances. In order to derive the governing equations of 

motion, one assumes that the processes of sound propagation are quasi-static in a 

thermodynamic sense (Crocker, 1998). Consequently, the fluid motion is assumed to be 

inviscid and compressible. If the system is assumed to be isolated, one can also assume 

that no external forces act on the system. Similarly, temperature is assumed to be constant 

throughout the system and thus the fluid density is taken to be only a function of pressure. 

Hence, density is barotropic. As a result, the fluid motion is both isentropic and irrational. 

 

The linear governing equations for an acoustic wave in a fluid are obtained from the 

equations of conservation of mass, Euler’s equation (Newton’s second law) and an 

isentropic disturbance at constant entropy respectively 
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= −∇� 

(4.1.1) 
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Where � is the fluid density, � =

�!

�!

�!

 is the velocity vector, � is the total pressure and c 

is defined as  

 
�
!
=

��

��
!

 
(4.1.4) 

Which turns out to be the speed of sound in an ideal fluid at constant entropy per 

particle(s) (Crocker, 1998). 

 

Linearization of Eq.(4.1.1) and Eq. (4.1.2) is done by using a small perturbation of the  

total pressure as a sum of the reference or ambient pressure and the acoustic pressure 

� = �! + �′ with its corresponding expressions for fluctuation in entropy, fluid 

density, � = �! + �
! and velocity, � = �! + �′ in which the prime variable includes the 

first-order approximation for a general equation of state. Additionally, all ����!! order 

terms are canceled out completely because the ambient variables should correspond to a 

valid state of motion in the system yielding the linearized form of Eq. (4.1.3) 

  

 ��′

��
+ �! ∙ ∇�

!
+ �!∇ ∙ �! + �′  ∙ ∇�! + �!∇ ∙ �′! = 0 

(4.1.5) 

 

For an isentropic fluid, the spatial variation of ambient pressure, density and temperature 

are very small. Therefore Eq. (4.1.3) can be simplified to 

 

 ��′

��
+ �!∇ ∙ �′! = 0 

(4.1.6) 
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which, for an isentropic fluid at constant entropy  and with constant ambient density �!  

 

 �! = �!
!�′ (4.1.7) 

 

Where �! is the ambient speed of sound. Similarly, the linearized form of Eq. (4.1.1) can 

be written as 

 

 
�!  

��′ 

��
= −∇�′ 

(4.1.8) 

  

 

One can manipulate equations (4.1.4) - (4.1.6) in order to write a partial differential 

equation in terms of pressure (Crocker, 1998). 

 

 

 
∇
!�′  +

1

�
!

!

�
!�

��!
= 0 

(4.1.9) 

 

 

Or in terms of acoustic velocity  
!!

!"
= �, 
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− ∇ �!∇ ∙ � = 0 

(4.1.10) 
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where �! is bulk modulus defined as a product of the density and the speed of sound in 

the medium squared, �! = �!�!
!.  

 

Given that fluids do not withstand shear forces, the speed of sound would only change as 

a function of pressure and temperature. 

 

 

 

 

 

 

 

 


