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ABSTRACT 
 

Presented within this thesis is the preliminary design phases for the development of a morphing 

winglet mechanism. The mathematical models and analyses conducted within this thesis provide the 

means for bringing the design concept stage to the testing and validation phases. The kinematic 

modeling of a proposed design is developed. The inverse kinematics of the system are used to 

determine the required inputs to meet the range of motion. The velocity models for the system are 

established for both the forward and inverse cases. The inverse velocity models are used to establish 

a synchronous behaviour between the two serial linkages. Thus, allowing system operation as a 

redundantly actuated parallel mechanism. The results of implementation are evaluated for the initial 

and optimized designs. A proposed velocity profile is developed to facilitate control and desired 

operation of the system. This is then validated by the testing of the system response and error.   
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CHAPTER 1 Introduction 

1.1 Motivation 

The airfoil of a wing is defined as indicated in Figure 1-1, the shape found from the 

intersection of the wing and the plane perpendicular. Figure 1-2 outlines the airfoil geometry and 

nomenclature.  

 

Figure 1-1: Sketch of airfoil in relation to wing geometry [1] 

 

 

Figure 1-2: Airfoil geometry and nomenclator [1] 
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The aerodynamic forces are taken to act at the quarter chord point, shown in Figure 1-3. The 

normal and axial forces are the components of the Lift and Drag forces that act normal/axial to the 

airfoil. The angle between the relative wind and chord line is the angle of attack [1]. The relation 

between the aerodynamic forces and normal and axial forces is indicated in the equations below [1]. 

 𝐿 = 𝑁𝑐𝑜𝑠𝛼 − 𝐴𝑠𝑖𝑛𝛼 (1-1) 

 𝐷 = 𝑁𝑠𝑖𝑛𝛼 + 𝐴𝑐𝑜𝑠𝛼 (1-2) 

 

Figure 1-3: Airfoil with aerodynamic forces indicated [1] 

 

Figure 1-4: Relation between aerodynamic forces and normal and axial components 
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The major factors influencing Lift, Drag, and Moment acting on an airfoil are: [1] 

• Angle of attack  

• Flight velocity  

• Wing area 

• Airfoil geometry  

• Viscosity coefficient 

• Compressibility of the airflow 

An important aspect to consider is that the winglet resembles a finite wing segment, thus the forces 

will be three-dimensional and differ from the standard infinite solutions for the lift/drag etc. 

coefficients. Figure 1-5 shows the primary difference between finite and infinite wings, the 

generation of wing-tip vortices due to shear created at the trailing edge causing rolling of the airflow 

[1]. 

 

Figure 1-5: Airflow vortices in finite wings[1] 

The vortices contribute to downwash, a downward velocity component. The consequences of 

downwash are:[1] 
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• The effective angle of attack is reduced  

• The drag force is increased, referenced as induced drag 

This origin downwash on the flow section near the wingtip is shown in Figure 1-6. The induced 

drag, and effective angle of attack can be calculated as indicated in Equation (1-3), and Equation (1-

4) below [1]. 

 

Figure 1-6: Effect of tip vortices on airflow [2] 

 𝐷𝑖 = 𝐿𝑠𝑖𝑛𝛼𝑖 (1-3) 

 𝛼𝑖 =
57.3 𝐶𝐿

𝜋𝑒1𝐴𝑅
 (1-4) 

Here the span effectiveness factor, e1, is 1 for an elliptical lift profile, and AR is the aspect ratio. As 

the effective angle of attack is reduced, so is the lift curve for the airfoil. The new slope of the lift 

curve for a finite airfoil can be defined in terms of the infinite lift slope as shown in Equation (1-5).  

Note that both Equation (1-4) and (1-5) provide results in terms of degrees, for radians the 57.3 

component would be removed from the calculations.  

 𝑎 =
𝑎0

1+(
57.3𝑎0
𝜋𝑒1𝐴𝑅

)
 (1-5) 

The effects of these vortices are the main reason for the use of winglets in modern commercial 

aircraft. 
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1.1.1 Effect of Winglets on Aerodynamics 

The wingtips, reduce the pressure gradient that results in the shear causing the wingtip vortices, a 

small addition to the wing extending vertically. This was further tested in 1974 by NASA on the 

Boeing KC-135A for cruise flight conditions. It was found that a near vertical winglet provided 

optimal drag reduction and efficiency under cruise flight conditions[3]. 

1.1.2 Types of Winglets Currently Used 

Winglets currently installed on commercial aircraft all fit the near vertical description and provide 

optimal wing efficiency improvement at cruise flight conditions. These include the initial winglets 

used in commercial flight. These designs are pictured in the figures below. The airbus A310 

incorporated the ‘wingtip fence’ which included both upward and downward components as is 

shown in Figure 1-7 [4]. 

 

 

Figure 1-7: Airbus A310 wingtip fence [5] 

Boeing also incorporated winglets into their aircraft. The figure below shows mini-winglets attached 

to the 737-200Adv. These resulted in a range increase of 3%, with 3% fuel savings[6]. 
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Figure 1-8: 737-200Adv. Mini-winglets [6] 

 

Currently Boeing is installing the ‘Advanced Technology’ winglets on the 737 MAX family. These 

winglets combine rake tips and duel feather winglets, resulting in the winglet design shown in Figure 

1-9. These winglets are claimed to provide 1.5% greater fuel efficiency when compared to current 

winglet designs. The claim is that these winglets balance the effective increase in wingspan between 

the upper and lower wing, generating greater lift and higher drag reduction. The diagram in Figure 

1-10 shows this theorized lift distribution compared with the ‘no winglet’ and ‘traditional winglet’ 

cases [6]. 



7 
 

 

Figure 1-9: Boeing advanced technology winglet [6] 

 

Figure 1-10: AT winglet lift profile comparison [6] 

1.2 Project Overview 

A morphing winglet design has been proposed by the corresponding research team at Ryerson. This 

winglet has been designed to meet the requirements outlined by Bombardier Aerospace. The main 

kinematic and velocity requirements of the system being, a 10° to 80° angular range of the cant angle 

and a 1°/s angular velocity. The design kinematics, and velocity capabilities must be established and 

analysed in detail to ascertain whether these requirements can be met. Furthermore, the system 

kinematic and dynamic relations are required for the design and implementation of a controller and 
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test prototype. The proposed design consists of two serial linkages operating synchronously, 

forming a redundantly actuated parallel mechanism. The second linkage is present to assist with the 

load bearing requirements of the system, particularly in-flight. The proposed design must meet strict 

operating conditions while fitting highly constrained sizing requirements. These operational 

requirements have been generated according to the optimal winglet configurations during a standard 

flight profile. This is shown in Figure 1-11 [7]. As a result, the system model must be clearly defined 

so as to prevent clashing of the two linkages, while maintaining synchronous operation. Due to the 

spatial nature of the mechanism the analysis of its kinematics and dynamics is complicated. A major 

complexity in the system design lies in the mechanism output motion occurring in an alternate plane 

than the input motion. The input motion occurs in the XY plane as defined for this system in later 

sections, while the output motion takes place in the XZ plane. This thesis outlines the numerical 

formulation of the system, the optimization and adjustment of the system motion requirements for 

control, and the testing of these formulations on a scaled prototype.  

 

Figure 1-11: Standard flight profile with optimal winglet cant angles [7] 
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1.3 Thesis Outline 

The literature review of current morphing winglets, spatial linkages, and redundantly actuated 

systems is provided in Chapter 2.  

 

Chapter 3 outlines the kinematic modeling of the system. The system motion and capability is 

analysed and a workspace plot is developed. The inverse kinematics of the mechanism are derived 

and used to establish system stroke requirements for target motion.  

 

Chapter 4 covers the velocity modeling of the system. The forward and inverse velocity relations are 

developed, and the synchronization requirements of the system are determined.  

 

Chapter 5 discusses the implementation of the mathematical models develop in this thesis. The 

prototyping and testing of the system is presented in this chapter as a comparison between the 

theoretical system model and the test prototype. This chapter also discusses the simulation of an 

optimized design, and the comparison of the theoretical system response with the experimental. 

Further, an optimized velocity profile is developed in this chapter for facilitation of more accurate 

control.  

Chapter 6 provides the concluding statements and discussion of future work.  
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CHAPTER 2 Literature Review 

2.1 Morphing Winglets 

The concept of a morphing winglet has arisen in aircraft design, due to the benefits of variable cant 

angle on performance. A variety of morphing winglet designs have been proposed, some of which 

are discussed below. These design concepts use a variety of methods to achieve morphing winglets, 

such as a bi-stable set-up, or servo actuated hinges. These designs all include a single actuation 

mechanism with concepts for relatively small-scale winglets. Furthermore, while these concepts 

present a preliminary kinematic analysis, velocity and dynamic analysis, as well as velocity control, 

are yet to be determined. Section 2.2 below consists of an overview of the effects of various cant 

angle configurations on aircraft performance, and a summary of the current morphing winglet 

design concepts.  

2.2 Morphing Winglet Designs 

Beechock and Wang [3] studied the effects of variable cant angle on aircraft performance. The airfoil 

studied was the NACA 653218 series, shown in Figure 2-1. Four winglet configurations were 

studied, cant angle at 0, 30, 45, and 60 degrees. The prototype wing and winglets used for analysis 

are shown in Figure 2-2. Testing indicated that winglets at cant angle of 45 degrees resulted in the 

highest lift, as summarized in Figure 2-3. Tests also indicated an increase in drag coefficient with an 

increase in cant angle, shown in Figure 2-4. The highest L/D ratio was found to be at 45 degrees 

cant, this relation is summarized in Figure 2-5. Furthermore, Beechock and Wang indicate that large 

vortices were formed at high cant angles (45 or 60 degrees) and high AoAs. At low AoA (as would 

occur during cruise) the high cant angles produced minimal drag and vortices [3]. 
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Figure 2-1: NACA 653218[3] 

 

 

Figure 2-2: Prototype wing and winglet[3] 
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Figure 2-3: Lift coefficient with varying cant angles [3] 

 

 

Figure 2-4: Drag coefficient with varying cant angles [3] 

 

Figure 2-5: L/D ratio for varying cant angles[3] 
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2.2.1 Bourdin Variable Cant Angle Winglet 

Bourdin et al. [8] have proposed a design for morphing winglets with a cant angle range of -90 to 90 

degrees. The wing design proposed consisted of a planar wing with a 30°leading edge sweep, aspect 

ratio (AR) of 4.6 and taper ratio of 0.56. The wingtips were modified with the addition of servo 

articulated hinges mounted within the wing profile. These servo driven hinges provide the actuation 

of the winglets from -90 degrees to 90 degrees [8]. 

 

Figure 2-6: Bourdin morphing winglet [8] 
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Figure 2-7: Bourdin wing prototype with winglets at 0 and 90 degrees respectively [8] 

The Bourdin design was tested to determine the effect of winglet deflection on aerodynamic center 

of gravity (c.g.), the results are summarized in Figure 2-8. As can be seen larger winglet deflections 

result in the aerodynamic c.g. moving further ahead in the chordwise direction. This displacement of 

the aerodynamic c.g. provided potential for control of the aircraft longitudinally. Additionally, the 

effects of deflecting only one winglet on the lateral control and balance were analysed, it was found 

that the winglet cant angle is directly proportionate to the roll rate, increasing the roll rate as the cant 

angle was increased. This is shown in Figure 2-9. 
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Figure 2-8: Effect of winglet deflection on aerodynamic c.g. in Bourdin design [8] 

 

Figure 2-9: Bourdin wing, winglet cant angle and roll rate [8] 
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2.2.2 Falcao Morphing Wingtip 

Falcao et al. [9] designed a morphing wingtip with servo-actuated control of the cant and toe angles, 

pictured in Figure 2-10. This design was analysed for use with a multi-mission UAV. Tests indicated 

that the morphing wingtip improved aircraft performance by 25%, a 4% drag reduction, and takeoff 

ground roll reduction of 20%. [9] 

 

Figure 2-10: Falcao morphing wingtip prototype [9] 

 

Figure 2-11: Falcao wingtip morphing mechanism [9] 
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2.2.3 Kim Bi-stable Winglet 

Kim et al. [10]proposed a design for a bistable structure for a morphing winglet in a UAV. The 

design of a two-roll bending device was proposed to achieve the residual stress in the metal sheet 

required to accomplish the bistablility of winglet (Figure 2-12). Using a bistable metallic structure, 

polymer cover, and two-roll bending device, Kim et al. produced a prototype bistable morphing 

winglet able to provide a cant angle of 0 degrees and 60 degrees (Figure 2-13) [10]. 

 

Figure 2-12: Two- roll bending device [10] 

 

 

Figure 2-13: Bistable winglet. a) 0 degree cant, b) 60 degree cant [10] 
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2.3 Mechanism Analysis 

General mechanism analysis is separated into the kinematics and dynamics. The system kinematics 

can be represented by the forward and inverse kinematics. Forward kinematics involve the 

determination of the relationship between the input, and output position and orientation. 

2.3.1 Mobility Analysis 

The degrees of freedom for a mechanism are defined by the mobility. Mobility analysis determines 

the number of independent variables required to define the linkage positions on a particular 

reference frame[11]. The mobility of a system can be defined by the Chebychev-Grubler-Kutzbach 

criterion, this is presented in the equation below [11] 

 𝑀 = 𝜆(𝑁𝑙 − 𝑁𝑗 − 1) + ∑ 𝑓𝑖
𝑁𝑗

𝑖−1 
 (2-1)  

In the above equation, λ is the order of the system. This represents the default degrees of freedom 

(DOF) of the system, 3 for planar mechanisms, and 6 for spatial linkages. N l and Nj are the number 

of links and joints respectively. Finally, the joint DOF is represented by fi.  

Using the Chebychev mobility equation, the movability and redundancy of the system can be 

identified. As would be expected, if the mobility, M, of the mechanism is greater than zero the 

linkage is movable and can be termed a mechanism. Likewise, if M is zero or less the system is a 

structure and not movable[11]. The redundancy of the mechanism is found by comparing the 

mobility, M, with the order of the system, λ. The system is redundant if M is greater than λ, non-

redundant if the two are equal, and constrained if M is less than λ [11]. 

It is important to note that, while the mobility criterion is necessary  not sufficient. Further analysis 

in the design of a mechanism is required, such as the actuator locations, and linkage relative motion. 
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These considerations are required for the initial design stages, accounting for required tasks, and 

feasible configurations [11]. 

2.3.2 Position and Orientation 

The motion of a body takes place in Euclidean space and can be described by the Cartesian frame. 

This frame is formed by an axis triad, using the right-hand convention. A point in space is expressed 

in Cartesian coordinates using its x, y, and z position. A body in space has both a position and 

orientation, known as the pose, and the motion of a body is represented by it translation and 

rotation. [11] The coordinate selection for a closed chain mechanism includes defining the Cartesian 

coordinates, the pose for each link, using the relative coordinates, the relative pose between links, 

starting at the input. Due to this, it is beneficial to define the global frame with origin at the input 

joint or fixed joint on the mechanism[11]. 

2.3.3 Rotation and Translation 

The rotation of a single body about an axis can be defined using the Rotation Matrix for the 

corresponding axis. These rotation matrices can be used to define rotations about the x, y, or z axis 

in the global frame. In this manner the motion of a single body can be described by Equation (2-2) 

below.  

 𝑝 = 𝑅𝑏′ + ℎ (2-2) 

Here p is represents the transformed coordinates of the body, h is the translation vector, R is the 

rotation matrix, and b’ is the original vector.[11] 
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Figure 2-14: Figure representing transformation of single body[11] 

 𝑝𝑖 = 𝑝𝑖−1 + 𝑅𝑜𝑖−1𝑏𝑖−1
′  (2-3) 

This method provides the tools to transform the body fixed coordinates, in a multibody system, to 

the global/fixed reference frame. The figure below shows a multibody system with global and body 

fixed coordinates. The vector method for expressing the positions of each joint in this system in the 

global frame involves Equation (2-3) shown above to find pi for the ith joint. This is done as shown 

in Equation (2-4) below.  

 

Figure 2-15: Multibody system with global and body fixed frames [11] 

 

 𝑝𝑖 = 𝑏𝑜 + 𝑅𝑜1(𝑏1
′ ⋯ + 𝑅𝑖−1𝑖𝑏𝑖

′) (2-4) 

Here Ri-1i is the rotation matrix from i to i-1.  
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2.3.4 Kinematic Analysis 

Kinematic analysis consists of the forward/direct kinematics and the inverse. The direct kinematics 

involves the relationship between the joint angles and the end effector pose. The inverse kinematics 

likewise relates the required end effector pose to the corresponding joint angles. The sections below 

outline the general procedure that is used in the kinematic analysis of mechanisms.  

2.3.4.1 Direct Kinematics  

As stated above, the forward kinematics provide the end effector pose for given joint variable 

values. This is often used to develop a workspace for a kinematic chain. There are two types of 

kinematic chains, open and closed. Open chains possess one fixed end, while the end effector link is 

left free. Closed chain systems form a closed loop with the links, having two fixed ends. Closed 

chains have an input link and an output link rather than an end effector. Section 2.3.1 outlines the 

mobility analysis for a system, this defines the mechanical structure of the chain providing the 

general posture of the linkage [12] The mobility is used to determine the number articulated joints, 

giving the number of joint variables. These joint variables are then used as the inputs for the direct 

kinematics. There are two main methods for solving the direct kinematics of a system: graphical 

analysis, and systematic procedural analysis [12]. The benefits of the graphical approach can be 

summarized as a simplification of the problem, though success of this approach is based on the 

analysis methodology. The procedural analysis involves evaluating the Denavit-Hartenberg (DH) 

parameters for the chain and using these parameters to establish the transformation matrix. This 

method is the optimal choice for long, complex, open kinematic chains. While DH analysis can be 

modified for analysis of closed loop chains, the geometric approach is often desirable, as it can lead 

to simplification of potentially complex equations. 
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2.3.4.2 Inverse Kinematics and Velocity Analysis  

As stated earlier, the inverse kinematics provide the required joint variables for given end effector 

poses. This is a fundamental component to the design and control of a mechanism, as the joint 

motions necessary to achieve specified motions and tasks are provided via this step. The inverse 

kinematics are often more complex than the forward kinematics. This is due to nonlinear equations 

in the solutions for joint variables, the possibility for multiple – even infinite – solutions, or 

potentially no solutions. The mechanism workspace must be analysed beforehand to determine if 

the solutions are possible. Often it is the case, particularly with complex systems, that the solution is 

dependant upon geometric intuition of the problem solver [12]. 

 

The differential kinematics, or velocity analysis, provides the relationship between the joint velocities 

and the end effector velocity. This includes both the angular and linear velocities.  

2.4 Kinematic Analysis of Spatial Linkages in Literature 

2.4.1 Analysis of Spatial 6-bar Mechanism 

Xie et al. [13] have conducted kinematic analysis on the spatial 6-bar linkage mechanism used in 

metallurgical equipment door operators. The paper discusses a method to simplify the analysis of a 

6-bar spatial linkage by separating the mechanism into 2 planar slider-crank mechanisms for 

simplification of analysis. Using this method, the kinematic equations for a slider-crank mechanism 

were applied to determine the kinematics of this overall system. The following equations are the 

equations of motion for each slider-crank as determine by Xie et al. The two parts of the mechanism 

are indicated in the figure bellow.  
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Figure 2-16: Spatial 6-bar mechanism: a) planar slider crank part A, b) planar slider crank part B 

 

 𝑠𝑖𝑛𝜙2 =
ℎ−𝑙1𝑠𝑖𝑛𝜙1

𝑙2
 (2-5) 

 𝑠 = 𝑙1𝑐𝑜𝑠𝜙1 + √𝑙2
2 − (𝑙 − 𝑙1𝑠𝑖𝑛𝜙1)2 (2-6) 

In the above equations 𝜙1 is the position angle of link A or E, 𝜙2 is the position angle of link B or 

D, 𝑙1 and 𝑙2 are the lengths of links 1 and 2 respectively, 𝑠 is the displacement of the slider, and ℎ is 

the offset of the slider[13]. 

The velocity and acceleration equations are determined via differentiation of the above equations (2-

5) and (2-6). The actual solution of the system is conducted by relating the two parts, A and B, via 

the link C. The following equation represents this relationship: 

 𝑠𝑎 + 𝑠𝑏 + 𝑙𝑐 = 𝐻 (2-7) 

here 𝑠𝑎 and 𝑠𝑏 are the displacements of joint 5 in part A and B respectively, 𝑙𝑐 is the length of C, 

and H is the distance between joints 1 and 7 [13]. In this equation 𝑠𝑏 is known, and thus the above 
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equation is used to simplify equation [11] into a linear one variable equations. The reference then 

utilizes MATLAB to complete the solution process and simulation [13]. 

2.4.2 Kinematic solution of a Stephenson-III mechanism 

Lui and Yang [14] present a spherical Stephenson 6-bar mechanism for kinematic analysis. The 

analysis of this linkage is conducted by decomposing the mechanism into a 4-bar, and a 2-bar 

spherical mechanism. The figure below represents the coordinate frames of the mechanism. Using 

reference frame analysis the following solution is presented by Lui and Yang. [14] 

 

Figure 2-17: Mechanism Coordinate Frames[14] 
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Table 2-1: Forward Kinematics Results for Stephenson III 6-bar [14] 

 

Similarly, Lui and Yang determined the inverse kinematics of the system for an input angle given as 

𝜃5 = −143.51. The table below displays these results [14]. These forward and inverse kinematic 

solutions are found in the paper by constructing constraint equations based on the reference frame 

analysis of the mechanisms from previous work, and further simplifying the relations to eliminate 

extraneous roots, thus providing a more simplified solution to the problem.  

Table 2-2: Inverse Kinematics of Stephenson III 6-bar [14] 

𝜽𝟏 (°) -139.88 60.00 111.17 125.12 

 

 

 

 

Joint angle 𝜽𝟒 (°) Output angle 𝜽𝟓 (°) 

-32.22 

-61.93 

33.06 

83.84 

175.22 

116.7 

-143.51 

-61.81 

65.47 

85.53 
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2.4.3 Kinematic Solution for Spatial Parallel Linkage 

Gao and Wu [15]outline the solution of the forward kinematics for a spatial parallel linkage based on 

the corresponding constraint equations. The first stage of this solution is presented as the 

breakdown of the linkage into lower pairs of linkages and establishing the constraint equations for 

these pairs. Table C-1 in the Appendix provides the relevant constraint equations for the lower pairs. 

The reference provides the case study solution of the forward kinematics of a Stewart platform using 

this analysis[15]. 

2.4.4 Kinematic Analysis of a 6R Overconstrained Spatial Mechanism 

This solution proposed by Kong involves the use of the transformation matrix analysis to determine 

the forward kinematics of the 6R overconstrained mechanism. The figure below is the matrix that is 

analysed in this reference [16]. The corresponding general form of the transformation matrix is given 

in Equation (2-8) and the closed loop kinematic relation is given by Equation (2-9).  

 

Figure 2-18: Coordinate frames for 6R mechanism analysed by Kong [16] 
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 𝑇𝑖 = [

𝐶𝜃𝑖 −𝑆𝜃𝑖𝐶𝛼𝑖

𝑆𝜃𝑖 𝐶𝜃𝑖𝐶𝛼𝑖

𝑆𝜃𝑖𝑆𝛼𝑖 𝐶𝜃𝑖𝑙𝑖

−𝐶𝜃𝑖𝑆𝛼𝑖 𝑆𝜃𝑖𝑙𝑖

0 𝑆𝛼𝑖

0 0
𝐶𝛼𝑖 𝑑𝑖

0 1 

] (2-8) 

 𝑇1𝑇2𝑇3𝑇4𝑇5𝑇6 = 𝐼 (2-9) 

2.4.5 Analysis and Simulation of Kinematic Error in a Spatial Linkage 

Xu and Zhang [17] present the analysis and simulation of the kinematic error in a spatial linkage 

using the stochastic model of output error without input error. This formula is given in Equation (2-

10). 

 Δ𝜙 = ∑ (
𝛿𝜙

𝛿𝑞𝑖
)𝑛

𝑖=1 Δ𝑞𝑖 + ∑ (
𝛿𝜙

𝛿𝑐𝑖
)𝑚

𝑖=𝑖 Δ𝑐𝑖 (2-10) 

Here Δ𝑞𝑖 represent the aberrations in the linkage parameters, and Δ𝑐𝑖 the position anomalies of the 

pin in relation to the pin sleeve[17]. 

The paper further applies rejection method to sample random variables with any density function 

for spatial linkages. This is a Monte Carlo simulation method, in the reference it is used to model the 

kinematic error for spatial linkages. The choice of a random variable, 𝑥 ∈ (1, u), with a density 

function 𝑓(𝑥) is given by Equation (2-11), 

 𝑥 = (𝑢 − 1)𝜂1 + 1 (2-11) 

If  

 𝜂2 ≤
𝑓(𝑥)

𝑓0
 (2-12) 

where 𝜂1 and 𝜂2 are random numbers between 0 and 1, and 𝑓0 is the maximum value of 𝑓(𝑥). [17]. 

The authors present the sampling formulas of random vectors of common joints in spatial linkages, 

then simulate the stochastic model of the output error. Once the models are developed, the 
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clearance characteristic element and clearance space parameters are introduced. Thus, giving the full 

effect of joint clearance on kinematic error. These simulation methods can provide higher accuracy 

for cad models of linkages [17]. 

2.5 Redundantly Actuated Systems 

A system containing two serial manipulators with a common payload is equivalent to a redundantly 

actuated parallel manipulator [18]. Actuator redundancy involves inclusion of a greater number of 

actuators than the minimum needed to achieve the manipulator DOFs [19]. Justification for 

redundant actuation consists of 3 main benefits: elimination of singularities, higher system stiffness, 

and distribution of loads among actuated chains. Actuation redundancy can be achieved in two ways: 

actuation of passive joints, and inclusion of additional kinematics chains without increasing the 

system DOF [20]. Additional actuator chains mean greater complexity in the design and analysis of 

the system, however, have greater mechanical feasibility, and are more effective in reducing 

singularities – thus increasing the workspace of the manipulator [21]. The distribution of loads 

among the actuators reduces the individual actuator loads, thus increasing the dynamic capability of 

the system. Greater stiffness increases the accuracy of the system, as well as eliminating joint 

backlash [22]. The solution to the inverse force dynamics of a redundantly actuated system provides 

infinite possible results. This allows for optimization of the joint torques and forces [18]. As a result, 

redundant actuation facilitates a more homogenous force output. Allowing for a lighter and faster 

mechanical structure. [23] Furthermore, redundantly actuated systems have a higher safety in the 

event of breakdown, as the system can still be controlled despite breakdown of one actuation chain 

[23]. 
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2.5.1 Analysis of Redundantly Actuated Systems 

Solving the forward kinematics of redundantly actuated systems consists of two main methods: 

analytical methods, and numerical methods. Analytical methods include the use of additional sensors 

to evaluate the forward kinematics relations, as well as using the Newton-Raphson method to solve 

a more generalized case. A popular solution method is the use of artificial neural networks, this has 

shown some promising results for the FK problem. However, the disadvantages to this method 

include: inability to be adopted for on-line application (necessary for control of parallel 

manipulators), accuracy heavily depends on the training of system (a large data set is needed to 

achieve accurate output), slow convergence speed, local minima and poor generalization [19]. Due 

to the complexity of the system dynamics the inverse force solution for redundantly actuated 

systems cannot be found using standard inverse dynamics methods. Most generally the pseudo-

inverse is found as the solution to the inverse force problem. This method is equivalent to 

minimizing the 2-norm of the torques and forces. The pseudo-inverse solution however, does not 

yield internal forces in the manipulators and thus does not provide the actual force capabilities of the 

system. To determine the maximum force capabilities of redundantly actuated systems optimization 

is necessary [18]. 
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CHAPTER 3 Kinematic Modeling 

The first stage in design verification of a mechanism is the kinematic modeling. This involves the 

coordinate system set-up, definition of the model geometry, mobility analysis, establishment of the 

reference frames, and finally the forward kinematics analysis. These steps are outlined in the 

following sections in this chapter.  

3.1 Coordinate Set-up 

The coordinate system set-up involves the establishment of the global reference frame. The 

coordinate system was selected by setting the direction of the x-axis as positive towards the wingtip. 

Once the x-axis was selected the positive direction of the z-axis was selected to be upwards out of 

the winglet surface. The y-axis definition was determined as the common normal between the x and 

z axes. This coordinate system selection is outlined in the figure below. The x-axis is indicated in 

blue, the z-axis in red and the y-axis in black. As can be seen the origin was selected as the fixed 

anchor joint of the fwd mechanism input actuator, this was selected to simplify vector and reference 

frame setup for the later stages in analysis. This is an important stage in the forward kinematics 

analysis, as it provides the basis for the geometric specifications and constraint definition of the 

system components. Following the determination of the global reference frame, the model geometry 

and system mobility can be established, as carried out in the following sections. 
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Figure 3-1: Global reference frame setup 

3.2 Geometry and Model Definition 

The mechanism is shown in detail in Figure 3-2 below. The system is composed of two closed loop 

linkages acting as a parallel mechanism. There are 3 fixed joints on each chain: A, D, G, and H, K, 

N. Joints B and I, are prismatic actuators, and the inputs for the two chains respectively. Each chain 

is essentially a bell-crank mechanism. Lines 1-2 and 8-9 represent two linear actuators. Two triangles 

formed by lines 3,4,5 and lines 10,11,12 are called bell. Lines 6 and 13 are called toggle links. Lines 7 

and 14 present the same winglet at two different locations.  

In terms of the connection, joins A, D, G, H, K, and N are mounted on the base called spar. The 

joins F, and M are the connection between the mechanism and the winglet, these joints are mounted 

on a winglet interface mount. This connection transfers the mechanism motion into pure winglet 

rotation 
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Figure 3-2: Model Geometry 

 

3.3 Mobility Analysis 

The mobility analysis for the system will be conducted separately for each linkage chain. The 

figure below shows a more detailed diagram of the fwd linkage with each of the joint types labelled. 

Joints A, D, G are revolute joints, B is a prismatic joint, and C E and F are spherical joints. The 

system mobility is calculated as: 

 𝑀 = 6(6 − 7 − 1) + (1 + 1 + 1 + 1 + 3 + 3 + 3) (3-1) 

 𝑀 = 1 (3-2) 

Taking the first chain as an example, Joint A is connected to the actuator and fixed to the base, 

rotating about the Z-axis. Joint B is a prismatic actuator, with translation in the XY plane. Joint D is 

connected to the triangle plate and fixed to the base rotating about the Z-axis. Joint G is fixed the 

base to pivot the winglet about the X-axis. One of our design criteria is to minimize the toggle link, 

link 6, lateral movement. This requires the motion of joint E to remain as close to a straight line as 

possible. This would effectively change joint C into a revolute joint, hence the motion of the bell 

(triangle plate) would be a pivot about joint D in the XY plane.    
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As mentioned before, lines 3,4 and 5 are treated as one link forming the bell and as such the 

internal angles, c, e, and d (shown in Figure 3-4) are design parameters. The output of the end 

effector is a Y axis rotation, with the axis fixed at G. This can be seen more clearly in Figure 3-3. 

Due to this motion constraint, despite the spatial positioning of joints E and F, the motion of these 

points is entirely planar. Joint E moves in the XY plane, and joint F moves in the XZ plane. This 

provides a constraint on the system that simplifies the kinematic analysis and is used in the following 

chapters.  

 

 

Figure 3-3: fwd Linkage joint motions 
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Figure 3-4: Link 3,4, and 5 forming bell crank link 

 

 The second chain is similarly structured, beginning with a fixed hinge with DOF of 1. Joint I 

is a prismatic actuator, with ad DOF of 1. Joints J, K, and N are also rotary actuators with DOF of 

1. Joints L and M are spherical joints similar to joints E and F in the fwd linkage, the same motion 

constraints apply to these joints as well. Lines 10, 11, and 12 can be considered a single link as the 

angle between these two links is fixed, making up the bell crank for the aft linkage (shown in Figure 

3-5).  
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Figure 3-5: Bell crank links aft linkage 

 

The fwd (first) and aft (second) mechanisms operate in an inverse relation to one another. The fwd 

linkage extends to increase the system output (winglet) angle, while the aft linkage is in compression 

during this process. This manner of motion accounts for the load sharing capability of the system 

and prevents possible collisions between the mechanisms. The two serial chains are connected to the 

same platform (winglet/winglet interface) forming a parallel mechanism. Furthermore, the DOF of 

the system is 1, a rotation about the Y-axis, accomplished using both the actuators. This indicates 

that the design can be considered a redundantly actuated parallel mechanism.  
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3.4 Detailed Model Definition 

Throughout the following analyses the notation 𝐩𝐢 is used to designate vectors from the origin 

to the joint locations, 𝐫𝐢 is used to designate the vectors between joints. As a further note, 

considering the output of the system is a frame that runs along the Y axis between points 𝑝6 and 

𝑝12, as such the Y axis coordinates of these points is used as the Y axis coordinate of 𝑝5 and 𝑝11 

accordingly. This simplifies the analysis by allowing the vectors 𝐫𝟓 and 𝐫𝟏𝟏 to be in the XZ plane. 

There is no affect on the accuracy of the analysis as the motion is a pivot about the Y axis attached 

to this frame. As discussed previously the mechanism model is composed of the fwd and aft linkage 

chains. Each chain, for example, the fwd linkage is made up of 2 closed loops. The 2 chains are 

shown in Figure 3-7. The second loop is the spatial loop, due to the vectors 𝐫𝟓and 𝐫𝟔. The angle 𝜃3 

between vectors 𝐫𝟑and 𝐫𝟒 is fixed and a design parameter. Angle 𝜃1 is an internal angle used in 

combination with 𝜙1, to total 𝜃2, for the definition of 𝑝2. Point 𝑝4 can be defined in two ways, the 

simplest method is to use internal angle 𝜃3 and 𝑟4 from fixed point 𝑝3. The output vector of this 

loop can be considered 𝐫𝟒. In the case of loop 2 the fixed point 𝑝6 is used as the starting point. The 

angle 𝜃6 is directly related to the winglet angle and will be taken as the output for the fwd 

mechanism. The interface vector 𝐫𝟒 is present in both loops and acts as the input for this loop.  
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Figure 3-6: Fwd linkage vector setup 
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Figure 3-7: Fwd linkage vector loop definition - (a) Loop 1 (planar loop), (b) Loop 2 (spatial loop)

(b) (a) 
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 The aft linkage vector setup is similar to the fwd mechanism. The system is composed of 

two closed loop chains, one that can be considered planar, and a second spatial chain. The angle 𝜃7 

is used to determine 𝑝8. The point 𝑝9 is fixed, and 𝐫𝟖 is considered the output link. The link 𝐫𝟗 is 

considered an extension of the output link 𝐫𝟖. The angle 𝜃8 is a design parameter and is used to 

determine the pose of link 𝐫𝟗. The output of the second loop is 𝜃11, this is the same as the output of 

the fwd linkage as the two systems are connected to the same output platform.  

 

Figure 3-8: Aft linkage vector setup 
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Figure 3-9: Aft linkage vector loop definition – (a) Loop 1 (planar loop), (b) Loop 2 (spatial loop) 

(a) 

(b) 
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3.5 Forward Kinematics Analysis 

The forward kinematics was modeled with the linear actuator length as the input joint variable. 

In order to define point 𝑝2from here, the joint angle 𝜃2 is required. This angle can be represented as 

the summation of the internal angle 𝜃1, and 𝜙1 the design angle between the vector from 𝑝1 to 𝑝3, 

this is shown in Figure 3-9(a). Applying the cosine law to the triangle formed by 𝑝1, 𝑝2, and 

𝑝3(shown in Figure 3-7)– with the input 𝑟1 and fixed link length 𝑑3 – yields 𝜃1.  

 𝜃2 =  𝜃1 + 𝜙1 (3-3) 

 𝜃1 = arccos [
𝑟1

2+𝑑3
2−𝑟2

2

2𝑟1𝑟13
] (3-4) 

Using the x and y coordinates of point 𝑝3, 𝜙1 can be defined. 

 𝜙1 = arctan (
𝑝3𝑦

𝑝3𝑥

) (3-5) 

Given 𝜃2 point 𝑝2 is defined using a z-axis rotation matrix: 

 𝐩𝟐 = 𝐫𝟏 [
𝑐𝑜𝑠𝜃2

𝑠𝑖𝑛𝜃2

0

−𝑠𝑖𝑛𝜃2

𝑐𝑜𝑠𝜃2

0

0
0
1

] (3-6) 

With point 𝑝2 defined, using the design angle 𝜃3, point 𝑝4 can be defined using the equation below, 

which involves the Z-axis rotation and scaling of 𝑟2 to establish the pose of 𝑟3. 

 𝐩𝟒 = 𝐩𝟑 + 𝑅4𝐮𝟐𝑟3 (3-7) 

𝑅4  is a z-axis rotation matrix, with -𝜃3 as the rotation angle. The angle 𝜃3 is negative by convention, 

as the rotation is clockwise. 
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 𝑅4 = [
cos(−𝜃3) − sin(−𝜃3) 0

sin(−𝜃3) cos(−𝜃3) 0
0 0 1

] (3-8) 

Further, 𝑢2 is the unit vector corresponding to 𝐫𝟐.  

 𝐮𝟐 =
(𝑝2−𝑝3)

|𝑝2−𝑝3|
 (3-9) 

The pose determination for vector 𝐫𝟓 is more involved than the initial analysis. Due to the 

spatial nature of the link, the point 𝑝5 can only be defined based on the two critical points in the 

loop, 𝑝4and 𝑝6. The pose of 𝐫𝟓 can be established using 2 relations, shown in Equations (3-10) and 

(3-11). The two equations below both involve the use of 𝑝5, along with pre-defined points 𝑝4 and 

𝑝6 to define the link lengths 𝑟6 and 𝑟5. At this point in the analysis it is relevant to mention that the 

Y coordinate of 𝑝5 is constant as this point moves similar to a slider in the XZ- plane. This 

simplifies the relations below, making a solution for the remaining coordinates of 𝑝5 obtainable. 

Solving the above relations simultaneously provides the xand z coordinates for 𝑝5.  

 𝑟6 = |𝑝6 − 𝑝5| (3-10) 

 𝑟5 = |𝑝4 − 𝑝5| (3-11) 

 𝑝5𝑦
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3-12) 

The above relations can be solved by expanding the two equations, as shown in Equations 

(3-13) and (3-14). These equations can then be solved simultaneously using the symbolic 

computation toolbox in MATLAB. The resultant explicit expression is a complex relation providing 

the pose of 𝐫𝟓 in terms of 𝑝4 and 𝑝6. Once the coordinates of 𝑝5 are determined, the vector 𝐫𝟔 can 

be defined, the pose of this vector provides the output, Z-axis rotation 𝜃6. 
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 𝑟6 = √(𝑝6𝑥 − 𝑝5𝑥)2 + (𝑝6𝑦 − 𝑝5𝑦 )
2

+ (𝑝6𝑧 − 𝑝5𝑧)2 (3-13) 

 𝑟5 = √(𝑝4𝑥 − 𝑝5𝑥)2 + (𝑝4𝑦 − 𝑝5𝑦)
2

+ (𝑝4𝑧 − 𝑝5𝑧)2 (3-14) 

 

Likewise, the aft linkage forward kinematics is determined using the linear actuator length as 

the joint variable input. Due to the difference in geometry of the chain, the definition of the angle 

𝜃7 is more involved than for 𝜃2. The equations below outline this procedure. The constant angle 𝜙2 

is found using the length 𝑑9 and the X-axis coordinate of 𝐝𝟗. Applying the cosine law to the triangle 

formed by points 𝑝7, 𝑝8and 𝑝9 yields variable angle 𝜙3. Once these intermediary angles are found 

the relevant joint variable 𝜃7 is established.  

 𝜃7 = 𝜙2 − 𝜙3 (3-15) 

 𝜙2 = 𝑎𝑟𝑐𝑜𝑠 (
𝑑9

𝑑9𝑥

) (3-16) 

 𝜙3 = arccos [
𝑑9

2+𝑟7
2−𝑟8

2

2𝑑9𝑟7
] (3-17) 

 𝐩𝟖 = 𝐫𝟕 [
𝑐𝑜𝑠𝜃7

𝑠𝑖𝑛𝜃7

0

−𝑠𝑖𝑛𝜃7

𝑐𝑜𝑠𝜃7

0

0
0
1

] (3-18) 

  

The point 𝑝9 is a fixed position revolute joint, and thus is used for the definition of point 

𝑝10. The vector 𝐫𝟗 is determined by applying a rotation to the unit vector 𝐮𝟖, corresponding to 

vector 𝐫𝟖, thus establishing the orientation for the required vector. The rotated unit vector is then 
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scaled by the length of the link, 𝑟9. These transformations provide the pose of 𝐫𝟗 and are shown in 

Equation (3-19).  

 𝐩𝟏𝟎 = 𝑝9 + 𝑅8𝐮𝟖𝑟9 (3-19) 

The rotation matrix 𝑅8 is composed to represent a Z-axis rotation by an angle of 𝜃9. The angle is 

positive in this case as the difference in orientation of 𝐫𝟖 and 𝐫𝟗 is a 𝜃9counter clockwise rotation 

about the Z-axis. 

The pose of vector 𝐫𝟏𝟎is defined based on the location of 𝑝10 and 𝑝11. The location of 𝑝11 

is determined using a similar analysis to 𝑝5. The two relations involving 𝑝5 are generated using the 

vector norms of 𝐫𝟏𝟎 and 𝐫𝟏𝟏.  

 𝑟10 = |𝑝11 − 𝑝10| (3-20) 

 𝑟9 = |𝑝10 − 𝑝9| (3-21) 

 𝑝10𝑦
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3-22) 

Following the procedure for joint 𝑝5 in the fwd linkage, expanding the equations above yields the 

following system of equations.  

 𝑟10 = √(𝑝11𝑥 − 𝑝10𝑥)2 + (𝑝11𝑦 − 𝑝10𝑦)
2

+ (𝑝11𝑧 − 𝑝10𝑧)2 (3-23) 

 𝑟9 = √(𝑝10𝑥 − 𝑝9𝑥)2 + (𝑝10𝑦 − 𝑝9𝑦)
2

+ (𝑝10𝑧 − 𝑝9𝑧)2 (3-24) 
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Solving these equations simultaneously for the X and Z coordinates of 𝑝10 provides the 

explicit solution for the pose of 𝐫𝟏𝟎. The explicit solution is found using the symbolic computation 

toolbox in MATLAB, due to the complexity of the equations and the solution.  

3.6 Workspace Definition 

Upon establishing the forward kinematic solutions, the workspace of the initial proposed design 

must be evaluated. This is determined by tracking the motion of the end effecter through the 

maximum design stroke range of the actuator. The resultant workspace of the system is shown in 

the figure below. As can be seen in the figure the range of motion of the aft linkage is lower than 

that of the fwd linkage. This presents a problem as both the linkages must have the same output link 

angle, as this angle corresponds to the winglet interface – a solid platform. Without synchronized 

motion of the 2 output links, the configuration causes undesired resistance for the actuators, and 

twisting in the winglet interface. It is, however, a design confirmation to notice that the motion of 

the two output joints is solely in the XZ – plane, shown in Figure 3-10 (b). Furthermore, it can be 

seen from Figure 3-10 (a) that the motion of the bell crank joint 𝑝4 and 𝑝10 is relatively small along 

the Y-axis. The fwd linkage has the largest displacement for this joint, which is under 1 inch. This 

limits the amount of lateral twisting in link 𝐫𝟓 and 𝐫𝟏𝟏. The Z axis translation of joints 𝑝5 and 𝑝11 

shown in Figure 3-10 (a). The goal of the design is to limit the protrusion of the mechanism outside 

the winglet frame. This Z axis motion is representative of such motion. It is shown in the figure that 

this motion is also fairly small, the largest value being about 1 inch below the starting position. The 

next stage involves the inverse kinematics to establish the required stroke lengths for each chain to 

reach the desired output angular range, in a synchronous manner.  
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Figure 3-10: Preliminary Workspace (a) XZ-plane, (b)  XY-plane 

 

(a) 

(b) 



47 
 

3.7 Inverse Kinematics 

The inverse kinematics provides the relations for determining the required actuator length for 

given winglet angle. The output for the fwd linkage was selected as the Y-axis orientation angle of 

link 𝐫𝟔. Using this angle and the length of the link it is possible to determine the pose of link 𝐫𝟔. This 

is represented in Equation (3-28). It is important to recall that the Y coordinate of 𝑝5 is constant, 

and thus the vector can be modeled as a Y-axis rotation by 𝜃6 of intermediary vector 𝐪𝟓. This 

intermediary vector is defined as a vector of length 𝑟6, between 𝑝6 and point 𝑞6. This vector is 

defined in Equation (3-25). The pose of 𝑝5 is then found by rotating the vector 𝐪𝟓 by 𝜙6 about the 

Y-axis and translating from 𝑝6 by the rotated vector of length 𝑟6.  

 𝐪𝟓 = [𝑟6, 0,0] (3-25) 

 𝑅6 =  [
cos(𝜙6) 0 sin(𝜙6)

0 1 0
−sin(𝜙6) 0 cos(𝜙6)

] (3-26) 

 𝜙6 =  −𝜃6 (3-27) 

 𝐩𝟓 = 𝐩𝟔 − 𝑅6𝐪𝟓 (3-28) 

The pose of 𝐫𝟒 is similar in complexity to the determination of the pose of 𝐫𝟓 in the forward 

kinematics. The 2 relations needed are shown in the equations below. The vector norms of 𝐫𝟓 and 

𝐫𝟑 provide the 2 equations required to determine an explicit solution for the pose of 𝐫𝟓. The Z 

coordinate of 𝐩𝟒 is a design variable and is constant for the purpose of establishing the kinematics 

and inverse kinematics.  

 𝐫𝟓 = |𝑝5 − 𝑝4| (3-29) 

 𝐫𝟑 = |𝑝3 − 𝑝4| (3-30) 
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 𝑝4𝑧
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (3-31) 

As with the forward kinematics case, the equations were solved explicitly using MATLAB’s symbolic 

computation toolbox. The expanded form of the above equations is shown below. 

 𝑟5 = √(𝑝5𝑥 − 𝑝4𝑥)2 + (𝑝5𝑦 − 𝑝4𝑦)
2

+ (𝑝5𝑧 − 𝑝4𝑧)2 (3-32) 

 𝑟3 = √(𝑝3𝑥 − 𝑝4𝑥)2 + (𝑝3𝑦 − 𝑝4𝑦)
2

+ (𝑝3𝑧 − 𝑝4𝑧)2 (3-33) 

 

The pose of 𝐫𝟑 is known, as 𝑝3is a fixed point. The remaining vector 𝐫𝟐 is defined using the 

inverse form of Equations (3-7) – (3-9) from the forward kinematics section. The rotation in this 

case is a positive 𝜃3 rotation about the Z-axis. The unit vector, 𝐮𝟒, representing the orientation of 𝐫𝟒 

is rotated using the rotation matrix in Equation (3-34), scaled to the length of 𝑟2, and translated 

relative to 𝐩𝟑. This process is outlined in the equations below.  

 

 𝑅2 =  [
cos(𝜃3) − sin(𝜃3) 0

sin(𝜃3) cos(𝜃3) 0
0 0 1

] (3-34) 

 𝐮𝟒 =
(𝐩𝟑−𝐩𝟒)

|𝐩𝟑−𝐩𝟒|
=

(𝐩𝟑−𝐩𝟒)

𝑟3
 (3-35) 

 𝐩𝟐 = 𝐩𝟑 − 𝑅2𝐮𝟒𝑟2 (3-36) 

Taking the Euclidean norm of 𝐩𝟐 yields the linear actuator length as the output of the inverse 

kinematics for the fwd linkage. 
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 Similarly, the aft linkage inverse kinematics are determined starting with the pose of link 𝐫𝟔. 

The orientation of this link is the input for the inverse kinematics, 𝜃11. The coordinates of 𝑝11 are 

established in the same manner as those of 𝑝5. The corresponding equations are given below.  

 𝐪𝟏𝟏 = [𝑟11, 0,0] (3-37) 

 𝑅11 =  [
cos(𝜙11) 0 sin(𝜙11)

0 1 0
−sin(𝜙11) 0 cos(𝜙11)

] (3-38) 

 𝜙11 =  −𝜃11 (3-39) 

 𝐩𝟏𝟏 = 𝐩𝟏𝟐 − 𝑅11(𝐪𝟏𝟏) (3-40) 

The location of 𝑝10 is determined using the two relations below, involving the two vector norms of 

𝐫𝟏𝟎 and 𝐫𝟗. The Z coordinate of 𝑝10 is constant. The expanded forms of the relations are provided 

in Equations (3-45) and (3-46). The expressions are explicitly solved using the symbolic computation 

Toolbox in MATLAB.  

 𝐫𝟏𝟎 = |𝑝11 − 𝑝10| (3-41) 

 𝐫𝟗 = |𝑝9 − 𝑝10| (3-42) 

 𝑝10𝑧
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (3-43) 

 𝑟10 = √(𝑝11𝑥 − 𝑝10𝑥)2 + (𝑝11𝑦 − 𝑝10𝑦)
2

+ (𝑝11𝑧 − 𝑝10𝑧)2 (3-44) 

 𝑟9 = √(𝑝10𝑥 − 𝑝9𝑥)2 + (𝑝10𝑦 − 𝑝9𝑦)
2

+ (𝑝10𝑧 − 𝑝9𝑧)2 (3-45) 

Point 𝑝9 is fixed, and point 𝑝8 is found using the inverse of Equations (3-15) – (3-18). This process 

is outlined in the equations below.  
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 𝑅8 =  [
cos(𝜃8) − sin(𝜃8) 0

sin(𝜃8) cos(𝜃8) 0
0 0 1

] (3-46) 

 𝐮𝟏𝟎 =
(𝐩𝟗−𝐩𝟏𝟎)

|𝐩𝟗−𝐩𝟏𝟎|
=

(𝐩𝟗−𝐩𝟏𝟎)

𝑟9
 (3-47) 

 𝐩𝟖 = 𝐩𝟗 − 𝑅8𝐮𝟏𝟎𝑟8 (3-48) 

With the pose of 𝐫𝟖 determined, the output of the inverse kinematics of the aft linkage is established 

by taking the Euclidean norm of link 𝐫𝟕. 

Using the inverse kinematics results it is possible to determine the required stroke length to achieve 

synchronized motion of the two chains. Additionally, the target angular range for the output 

platform (winglet interface) can be accurately achieved once the required stroke length is 

determined. 

3.8 Stroke Length Determination for Target Workspace 

Using the inverse kinematics relations, it is possible to determine the required input actuator 

range for both, the fwd and aft, linkages in order to reach the required target output angular range in 

a synchronous manner. This value can be found by inputting the desired angular range into the 

inverse kinematics relations to output the minimum and maximum length of the linear actuator. The 

resultant new stroke lengths as a function of the winglet angle are shown in Figure 3-11. 
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Figure 3-11: Relation between Winglet interface angle and linear actuator stroke length 
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CHAPTER 4 Velocity Analysis 

The velocity relations are calculated for each chain by differentiating the forward and inverse 

kinematic equations. The following sections outline the process in detail. The velocity relations are 

then used to determine the synchronized actuator velocities. Further, the system is studied to 

determine the optimized actuator velocity, the impact of design values on the system velocity, and 

the optimal manner to achieve and maintain the target velocity.  

4.1 Fwd linkage Forward Velocity 

The forward velocity of the fwd linkage is calculated by successively differentiating the 

corresponding forward kinematics equations. The input is the linear velocity of the prismatic link, 

𝐫𝟏, in the form of the stroke speed - referred to as 𝑠2. Differentiating Equation (3-6) leads to: 

 𝐯𝟐 = 𝑠2𝑅2 + 𝑟2�̇�2 (4-1) 

 �̇�2 =   [
−sin(𝜃2) −cos (𝜃2) 0
cos (𝜃2) −sin (θ2) 0

0 0 0

] 𝜔2 (4-2) 

 𝜔2 =
𝑑

𝑑𝑡
(𝜃1 + 𝜙1) (4-3) 

 𝜔2 =  −
1

√(1−(
𝑟1

2+𝑑3
2−𝑟2

2

2𝑟1𝑑3
)

2

)

 (4-4) 

Equations (4-5) – (4-7) show the velocity derivation for point 𝑝4.  Recall that 𝑝3 is a fixed 

point and thus the velocity at this point is 0. The velocity if found by differentiating Equations (3-7) 

– (3-9)  with respect to time. The time varying component at this point is the direction of the 

velocity vector, as the angle 𝜃3 is a fixed design constraint, as is the link length𝑟3. The unit vector 

representing the orientation of the velocity vector of point 𝑝2 is �̇�𝟐.  
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 𝐯𝟒 =
𝑑

𝑑𝑡
(𝐩𝟑 + 𝑅4𝐮𝟐𝑟3) (4-5) 

 𝐯𝟒 = 𝑅4�̇�2𝑟3 (4-6) 

 �̇�2 =
�̇�2

𝑟2
=

𝐯2

𝑟2
 (4-7) 

Ultimately, the velocity of 𝑝5 is found by differentiating Equations (3-10) – (3-11). The 

resulting equations are shown below. The two equations must be solved simultaneously for an 

explicit solution for 𝐯𝟓. The Y coordinates of 𝑝6 and 𝑝5 are constant, along with the Z coordinates 

of 𝑝4, thus the corresponding velocities are 0.  

 0 = 2(𝑝4𝑥
− 𝑝5𝑥

)(−𝑣5𝑥
) + 2(𝑝4𝑧

−  𝑝5𝑧
)(−𝑣5𝑧

) (4-8) 

 0 = 2(𝑝4𝑥
− 𝑝5𝑥

)(𝑣4𝑥
− 𝑣5𝑥

) + 2 (𝑝4𝑦
− 𝑝5𝑦

) (𝑣4𝑦
) + 2(𝑝4𝑧

− 𝑝5𝑧
)(−𝑣5𝑧

) (4-9) 

4.2 Aft linkage Forward Velocity 

Following earlier methods, the aft linkage velocity is calculated similar in manner to the fwd linkage. 

The velocity of 𝑝8 is found by differentiating Equation (3-18). The equation below is the result. The 

input is𝑠7, the stroke length of the linear actuator. 

 𝐯𝟖 = 𝑠7𝑅7 + 𝑟7�̇�7 (4-10) 

 �̇�7 =   [
−sin(𝜃7) −cos (𝜃7) 0
cos (𝜃7) −sin (θ7) 0

0 0 0

] 𝜔7 (4-11) 

 𝜔7 =
𝑑

𝑑𝑡
(𝜙2 − 𝜙3) (4-12) 

The time varying component in Equation (4-12) is 𝜙3. The derivative of 𝜃7 is 𝜔7 the solution for 

which is shown in Equations (4-13) – (4-14). 
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 𝜔7 = −𝜙3̇ (4-13) 

 𝜔7 =
1

√1−(
𝑑9

2+𝑟7
2−𝑟8

2

2𝑑9𝑟7
)

2
 (4-14) 

Point 𝑝9 is fixed meaning the corresponding velocity is 0. The velocity of 𝑝10 is found by 

differentiating Equation (3-19). The resultant velocity equation is given below. 

 𝐯𝟏𝟎 = 𝑅8�̇�𝟖𝑟89 (4-15) 

The time varying component in Equation (4-15) is 𝐮𝟖. The derivative of this is found using the 

equation below.  

 �̇�𝟖 =  −
𝐯𝟖

𝑟8
 (4-16) 

Equations (3-20) – (3-21) are differentiated to find the velocity of 𝑝11. The result is two equations, 

given below, that need to be solved simultaneously for the explicit solution of the velocity of 𝑝11. 

The Y component of the velocity vector for 𝑝11 is 0 as the motion is in the XZ plane.  

 0 = 2(𝑝11𝑥
− 𝑝10𝑥

)(𝑣11𝑥
− 𝑣10𝑥

) + 2 (𝑝11𝑦
− 𝑝10𝑦

) (−𝑣10𝑦
) + 2(𝑝11𝑧

− 𝑝10𝑧)(𝑣11𝑧
) (4-17) 

 0 = 2(𝑝12𝑥
− 𝑝11𝑥

)(−𝑝11𝑥
) + 2(𝑝12𝑧

− 𝑝11𝑧
)(−𝑝11𝑧

) (4-18) 

4.3 Fwd linkage Inverse Velocity 

The inverse velocity of the system must be modeled in order to maintain the required rate of 

output motion in a synchronous manner. The velocity of 𝑝5 was determined first, by differentiating 

Equation (3-28). The equations below indicate the velocity for joint 𝑝5. It is relevant to note here 

that this velocity vector comprises both the angular velocity and linear velocity of the joint.  
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 �̇�6 =  [
−sin(𝜙6) 0 cos(𝜙6)

0 0 0
−cos(𝜙6) 0 −sin(𝜙6)

] 𝜔6 (4-19) 

 𝜙6 =  𝜃6 (4-20) 

 𝐯𝟓 = −𝑅6̇𝜔6(𝑝6 − 𝑞5) (4-21) 

 The velocity of joint 𝑝4 is next found by differentiating Equations (3-29) – (3-30). The 

equations below must be solved simultaneously for the velocity of 𝑝4. The Z velocity of this joint is 

0 as the motion is in the XY-plane. 

 0 = 2(𝑝5𝑥
− 𝑝4𝑥

)(𝑣5𝑥
− 𝑣4𝑥

) + 2 (𝑝5𝑦
− 𝑝4𝑦

) (−𝑣4𝑦
) + 2(𝑝5𝑧

− 𝑝4𝑧
)(𝑣5𝑧

) (4-22) 

 0 = 2(𝑝3𝑥
− 𝑝4𝑥

)(−𝑣4𝑥
) + 2 (𝑝3𝑦

− 𝑝4𝑦
) (−𝑣4𝑦

) (4-23) 

 The velocity of joint 𝑝3 is 0, given that this is a fixed joint. The velocity of joint 𝑝2 is found 

by differentiating Equations (3-34) – (3-35). The resultant equation is shown below.  

 𝐯𝟐 =  −𝑅2�̇�𝟒𝑟2 (4-24) 

Only the unit vector 𝐮𝟒 is changing with time as 𝜃3 is a constant design constraint, indicating that 

the magnitude of the velocity of 𝑝2 and 𝑝4 are equal, simply the direction changes with time. This 

change in direction can be found with �̇�𝟒 as follows:  

 �̇�𝟒 =  −
𝐯𝟒

𝑟3
 (4-25) 

where 𝐯𝟒 is determined by simultaneously solving Equations (4-22) and (4-23). 
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Once the velocity of 𝑝2 is determined, the linear actuator velocity can be found, by dividing the dot 

product of the velocity and position vector by the stroke length, and then multiplying this by the 

unit vector to get the direction and magnitude of the linear velocity.  

 𝐬𝟐 =
𝐯𝟐 ∙𝐩𝟐

|p2|
∙

𝐩𝟐

|𝒑𝟐|
 (4-26) 

The actuator stroke speed is determined by then taking the Euclidean norm of the 𝐬𝟐 vector.  

4.4 Aft Linkage Inverse Velocity 

Due to the similarity of the two linkages the process of generating the velocity functions for 

the aft linkage is not much different than the fwd linkage. The velocity equations for each of the 

joints are determined by differentiating Equations (3-41) – (3-49). Starting with joint 𝑝11 the velocity 

is given below.  

 �̇�11 =  [
−sin(𝜙11) 0 cos(𝜙11)

0 0 0
−cos(𝜙11) 0 −sin(𝜙11)

] 𝜔11 (4-27) 

 𝜙11 =  𝜃11 (4-28) 

 𝐯𝟏𝟏 = −�̇�11𝜔11(𝑝12 − 𝑞11) (4-29) 

Next, the velocity of joint 𝑝10 is established using the derivative of Equations (3-42) – (3-

43). The resulting equations are given below. The two equations need to be solved simultaneously as 

with Equations (4-22) – (4-23). 

 0 = 2(𝑝11𝑥
− 𝑝10𝑥

)(𝑣11𝑥
− 𝑣10𝑥

) + 2 (𝑝11𝑦
− 𝑝10𝑦

) (−𝑣10𝑦
) + 2(𝑝11𝑧

− 𝑝10𝑧
)(𝑣11𝑧

) (4-30) 

 0 = 2(𝑝9𝑥
− 𝑝10𝑥

)(−𝑣10𝑥
) + 2 (𝑝9𝑦

− 𝑝10𝑦
) (−𝑣10𝑦

) (4-31) 
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Point 𝑝9 is fixed and thus the corresponding velocity is 0. The velocity for point 𝑝8 is found 

by differentiating Equations (3-47) – (3-49). The resultant velocity equations are found below.  

 𝐯𝟖 =  −𝑅8�̇�9𝑟8 (4-32) 

In this case, similar to joint 𝑝2, the time varying component is the direction of the velocity 

vector. This is found by taking the derivative of the unit vector 𝐮𝟗.  

 �̇�𝟗 =  −
𝐯𝟏𝟎

𝑟9
 (4-33) 

Once the velocity of 𝑝8 is determined, the linear component of the velocity is found with the 

equation below, similar to the fwd linkage case, this provides the actuator linear velocity. The 

Euclidean norm can be taken of the 𝐬𝟖 vector to determine the stroke speed.  

 𝐬𝟖 =
𝐯𝟖 ∙𝐩𝟖

|p8|
∙

𝐩𝟖

|𝒑𝟖|
 (4-34) 

4.5 Velocity Synchronization 

The velocity solutions can now be used to synchronize the motion of both the linkages. This 

is necessary to prevent clashing of the two chains. Additionally, this ensures the output motion is 

equal for both chains, such that there is no actuator pushback or twisting of the platform. The 

resultant actuator velocities are plotted as a function of winglet interface angle in Figure 4-1 and 

Figure 4-2. The synchronization is achieved by defining the input angular speed, thus ensuring the 

velocities of 𝑝11 and 𝑝5 remain equal. This was checked by monitoring 𝐯𝟏𝟏 and 𝐯𝟓. The 

corresponding script can be found the Appendix [A]. As can be seen in Figure 4-1 the velocity 

increases instantly between the 45°-46° increment. This is due to the results being the theoretical 

instantaneous velocity at each position. In order to accommodate the realistic operation of this 

system velocity tuning would be required. This is addressed in Section 5.5.1. 



58 
 

 

 

Figure 4-1: Fwd linkage actuator speed vs. Input angle 

 

Figure 4-2: Aft Linkage Actuator speed vs. Input angle
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CHAPTER 5 Implementation 

The stages of implementation involve theoretical testing of the system via simulation, design of 

the controller, prototyping of scaled test model, preliminary testing, and full-scale prototyping and 

testing. The scope of this thesis covers the implementation from the simulation phase to the 

preliminary test phase. The sections below cover this process in detail.  

5.1 Simulation 

The simulation of the system was conducted for the forward kinematics, inverse kinematics, 

and inverse velocity relations. The forward kinematics simulation was conducted to determine the 

system workspace. This stage is outlined in detail in Section 3.6. The simulation of the inverse 

kinematics provided the stroke lengths required to attain the desired target winglet angles. This 

process is outlined in Section 3.8.  These results were used for the position control component of 

the controller design. The inverse velocity simulation provided the relation between a target winglet 

angular rate, and the required linear velocity of the actuator. These results were then used for the 

velocity control component of the system. The detailed process is shown in Section 4.5. Further the 

control optimized velocity relation is used to reduce the error seen in the test system. The 

optimization process is given in detail in Section5.5.1. The corresponding scripts for each stage of 

simulation are given in the Appendix. Using these simulations, the theoretical behaviour of the 

system was analysed, and the synchronization requirements established, allowing the testing phase to 

proceed to the development of a controller.  

5.2 Control system set-up 

The preliminary controller was designed, by Gabriel H Campos, for position control of the 

actuator stroke length. The initial design was based on the Inverse Kinematics results. The final 
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version of the controller included the velocity control components, as well as the IK results, and 

angle feedback via a rotary potentiometer. This controller is shown in Figure 5-1. The controller 

uses a ‘master-slave’ relationship to ensure synchronicity of the two sides of the system. It is vital to 

the operation of the system for the two actuators to remain in synchronous operation to prevent 

fighting between the two linkages, to this end the forces of the actuators are monitored as a 

component to the feedback of the system. The primary feedback for the system is a rotary 

potentiometer mounted on the winglet pivot axis, used to return the winglet angle for system 

feedback. 

 

Figure 5-1: Final Controller design  
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5.3 Design Prototyping 

The prototype was created by scaling the design to 50%, and 3D printing the components. 

The Markforged Mark Two 3D printer was used, with carbon fibre reinforced ONYX. The parts 

were mounted on a frame of extruded aluminum spars. The winglet attachment piece was printed, 

along with a foam scale replica of the winglet. The image below shows the test setup and printed 

prototype.  

 

Figure 5-2: Prototype Image 

5.4 Implementation Issues 

There were issues that arose during the implementation of the system. The preliminary model 

was created by 3D printing the CAD design. The initial design had to be scaled to 50% to account 

for the size of the test actuators. This scaling and printing required minor modification of the design, 

while maintaining the position of the key points of the mechanism, to ensure consistency in the 

linkage behavior. It was further noticed at this stage that the original CAD design contained clashing 

components these were modified to prevent issues during operation. The axes had to be aligned and 

component structure adjusted prior to printing. The image of the printed prototype is shown in 

AFT Linkage 

FWD Linkage 
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Figure 5-2. Due to these inaccuracies, and the need for force optimization for the system to account 

for aerodynamic loads, an optimized design was developed. The control results and implementation 

details are given in the next section for the optimized prototype. 

 

Furthermore, the complexity of the IK equations proved difficult to compute online on the 

current system hardware. As such, two proposed solutions were evaluated, the first option being, to 

store the required stroke lengths and velocities for certain key angles – in a lookup table, along with 

a polynomial interpolation function for intermediary points. However, this would be inefficient from 

a data storage point of view. An alternative approach involves fitting a quadratic curve to the 

relation between stroke length and target winglet angle, and a cubic polynomial for the relationship 

between stroke velocity and target winglet angle. In this manner the simplified curve can be stored, 

and the required velocities and stroke lengths can be determined online. As such this second method 

was selected for the controller.  The general algorithm for this approach is shown in Figure 5-3 

below. The specific curve fitting results are given in the next section with the optimized prototype 

details.  

 

Figure 5-3: General controller design algorithm  
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The following was the input used for the controller in the initial prototype, found by fitting a cubic 

curve to the results of the velocity simulation: 

 

Figure 5-4: Controller input  

The figure below shows the resulting actuator lengths as a function of output angle, found by fitting 

a quadratic curve to the results of the IK simulation: 

 

Figure 5-5: Actuator Lengths vs. Time  
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5.4.1 Error Evaluation 

The first prototype was operated using the controller, and the Velocity and IK results. The 

test results are summarized in the table below. There was a considerable error noticed in this initial 

prototype. This is likely due to the modifications made, as well as inexperience with the operation of 

the new printer, resulting in larger than required tolerances allowing for play in the joints. This was 

done as a precaution to prevent the tolerances from being excessively low, increasing joint friction 

and contributing to impact forces on the actuators due to unexpected behavior at the joints. The 

figures below show the error after calibration, as can be seen the actual system lags initially, resulting 

in the output angle being higher/lower than required. This lag is particularly prevalent with 

increasing angles as opposed to decreasing.  This is likely due to the weight of winglet, and 

components of the system allowing for greater bending due to inaccurate fits. Due to the stiffness of 

the printer material, the large tolerances allowed a high amount of bending and twisting in the 

system. 

5.4.1.1 Calibration 

Due to the discrepancies in the preliminary design prototype there was calibration required 

to operate the mechanism as specified. This calibration was carried out by measuring the winglet 

angle via a precision optical digitizer. The process involved using the 3D digitizer target to set points 

for setting up a reference frame, the points were measured from the prototype surface shown in 

Figure 5-6. With the reference plane defined, the axis of rotation was specified between the two 

points shown in Figure 5-7. The rotation arc was then defined by measuring the center of the 

winglet interface at 3 key positions. This arc is shown in Figure 5-8. Using this arc, and the reference 

plane the 0° angle reference was set. Once the reference position is determined, this is used to 

determine the actual protype angle, at 10° increments. Once the measured data was compared to the 
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theoretical target, the error was used to modify the controller to adjust for the offsets. The results of 

this calibration are shown in Figure 5-9 and Figure 5-10. [24] 

 

Figure 5-6: Reference plane for calibration 

 

Figure 5-7: Points used to generate rotation axis 

 

Figure 5-8: Rotation arc definition 
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Figure 5-9: System error for decreasing winglet cant angles  

 

Figure 5-10: System error for increase cant angles  
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5.5 Optimized Design 

The optimized design was developed to maximize the load bearing capabilities of the system 

and eliminate the structural design issues of the initial design. The optimized system design is shown 

in Figure 5-11 and Figure 5-12, the major changes to the design involved reposition of the frame 

points and resizing of the links. As a result of some structural changes, the simulation of the system 

kinematics and velocity had to be modified to account for the spatial nature of the system. While the 

mechanism sizing and positioning was modified, the kinematic and velocity equations remain 

unchanged. The script provided in the Appendix is the modified simulation script for the optimized 

system. The results of the inverse kinematics and inverse velocity simulations are summarized in the 

figures below. 
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Figure 5-11: Optimized design simulation at 80° configuration 

 

Figure 5-12: Optimized design simulation at 10° configuration 
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The following figures show the results of the simulations with the optimized design. Figure 

5-14 shows the stroke lengths corresponding to each target angle. It is clearly shown that the two 

linkages operate inversely to one another. Here it is shown that the stroke length displacement over 

the full operational range for the fwd linkage is 5.97 inches. The stroke length displacement for the 

Aft linkage is -5.76 inches. As such the range of motion of the two sides is not entirely equal. The 

intersection of the two plots occurring between 80°-81°. As can be seen from Figure 5-13 and 

Figure 5-14 there is a minor error in the results of the velocity analysis. This is likely due to 

computational error. The results shown in Figure 5-18 and Figure 5-19 are the instantaneous 

velocity results to the inverse velocity formulations. The results from these curves are not ideal for 

real operation of the system, and the design of a controller. In order to establish a velocity curve 

better suited to real applications motion planning using the acceleration of the actuators is required. 

Due to the limitations of the prototype equipment, this is not possible with the test model. As such 

Section 5.5.1 outlines a rudimentary method to accomplish this.  
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Figure 5-13: IK results for optimized design 

 

Figure 5-14: Stroke length vs. Target angle for inverse velocity results  
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Figure 5-15: Fwd linkage actuator speed vs. current winglet angle 

 

Figure 5-16: Aft linkage actuator speed vs. current winglet angle 
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5.5.1 Velocity Tuning for Control 

The error in the test prototype was affected by the lack of a ramped transition to the target 

velocity being included in the velocity profile. The velocity response of the system was analysed to 

determine the capability of the mechanism. The error in the velocity results was determined by 

comparing the total stroke displacement (10°-80°) to the IK results. It was observed, as can be seen 

in Figure 5-17, that higher target angular velocities resulted in greater error in the system. The target 

angular velocity was varied as a function of time to generate an actuator velocity profile better suited 

for the design of a controller. Due to the lack of information regarding the actuators used in the test 

prototype, this presented a unique challenge. The traditional method of adjusting a ramp according 

to the acceleration capability of the actuators was not applicable for the test model. As such an 

alternate method was selected. This involved setting a ‘delay’ time, over which the system would 

increase the velocity until reaching the target output velocity. This was done by exponentially 

increasing the input angular velocity over the “delay” time. This delay time was varied to asses the 

effect on the system error. In order to determine the optimal angular velocity, and delay, the 

MATLAB multi-objective optimization functions were evaluated. The goal attainment function was 

determined to be best suited to this type problem. Due to the complexity of the velocity equations 

the computation times were larger than expected. It was observed that the selected function 

provided an optimal delay time, yet the angular rate was not significantly modified from the initial 

guess parameters. This is likely indicative of further study being required for the system. The 

parameters selected for the goal attainment optimization algorithm are given in Table 5-1. As such, 

the initial guess for angular rate was manually varied within a narrow range, from 0.1°/s to 5°/s, the 

results of these preliminary tests are summarized below. It was noticed that the delay factor optimal 

value consistently remained near 2.8 seconds. Given the realistic constraints of the hardware, the 

delay was selected as 2.8 seconds without considering the microsecond variations per angular rate.  
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Figure 5-17: Stroke length vs. winglet angle output for 𝜔 = 5°/𝑠 

Table 5-1: Goal Attainment Initializing Parameters 

Parameter Value 

Goal (target error for fwd linkage and aft 

linkage) ≤0.1% 

Lower bound Angular velocity 0.1°/s 

Lower bound Delay factor 

1 s 

(corresponds to instantaneous increase no ramp) 

Upper bound Angular velocity 10°/s 

Upper bound Delay factor 

5 s 

(any longer was considered unreasonable) 

Maximum Iterations 30 

Finite Difference Step Size 0.1 
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Table 5-2: Delay Results for various initial inputs 

Initial Guess 

[angular rate, delay 

time] 

Final Optimized Value [angular rate, delay 

time] 

Error 

[Fwd, Aft] 

[0.5,1] [0.500000008887608,2.857418539447498] [0.0745,0.0464] 

[0.1,1] [0.100000030638924,2.857127485719390] [0.0548,0.0298] 

[10,2] [10.000000035274110,2.857420861231254] [0.0746,0.0465] 

 

In spite of lower angular rates providing better error results, the target angular rate was maintained 

at 1°/s due to the project requirements. The delay was set to 2.8 seconds and the following results 

were obtained from the simulation. 

 

Figure 5-18: Fwd linkage Actuator speed vs Time with delay of 2.8 seconds 
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Figure 5-19:Aft linkage Actuator speed vs Time with delay of 2.8 seconds 

 

Figure 5-20: Stroke length vs. Input angle with delay 
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It is relevant at this stage to discuss the justification for approaching the tuning and system capability 

study from the inverse velocity perspective. The forward velocity profile of the system could be 

analysed and used in tuning, however, due to the requirement for synchronicity in the system this is 

a significantly involved process and could result in minor misalignments of the two linkage outputs. 

As such it was determined that tuning was best conducted on a synchronized system using the 

inverse velocity, to ensure aligned motion of the outputs, preventing any input related force fighting 

in the actuators. 

5.5.2 Model Set-up 

The new prototype was printed at a 60% scale, due to the finalized version of the design no 

significant modifications were required. The prototype was again printed in ONYX for the custom 

components. Similar actuators were used as for the first prototype, along with the aluminum frames 

for mounting. The winglet itself was also the same component as for the initial prototype. The 

images below show the test set-up for the optimized prototype. 

 

Figure 5-21: Prototype test setup Top view 
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Figure 5-22: Prototype test setup with Winglet at 10° 

 

Figure 5-23: Prototype test setup with Winglet at 80° 

The figures below show the polynomial and quadratic fit used in the controller. The final controller 

is shown in Figure 5-26.   
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Figure 5-24: Polynomial fit used for estimation of IK relationship for input to controller  

 

 

Figure 5-25: Quadratic fit used for Inverse Velocity relation estimation for input to the controller  
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Figure 5-26: Final controller design  

 

5.5.3 Error Analysis 

The results of the optimized model are shown in Figure 5-27 to Figure 5-36. Aside from the 

standard causes of error in the physical implementation of systems, i.e. minor parasitic motion in 

components, effects of fiction forces and unaccounted forces in the system itself, there was an 

overshoot in the stroke length and target angle. This overshoot was likely a response to the 

instantaneous velocity increase in the actuators to meet the target angular velocity. Given that the 

actuators cannot instantaneously match the required velocity, there is additional unaccounted for 

motion while the actuators accelerate from static to the required velocity. To ascertain whether this 

was indeed the source of the error the ramped optimized velocity profile was tested with the 

prototype. The results showed an elimination of the overshoot, a match of the target angles, and 

target angular rate after the ramp delay. These results are summarized in the figures below.  
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Figure 5-27: Actuator speed vs. winglet angle without ramp up  

 

 

Figure 5-28: Stroke length vs. Winglet angle without ramp up  
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Figure 5-29: System input for case with ramp up to target angular rate  

 

Figure 5-30: System response to ramped case  
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Figure 5-31: Resultant angular velocity of winglet for ramped case  

 

Figure 5-32: Stroke length vs. Winglet angle ramped case  
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Further the error after mounting the winglet was evaluated. The results indicated an 

overshoot of target angle when the winglet was at 10° and an underachievement when at 80°. Upon 

observation of the system this was due to the winglet weight creating a moment about the mount 

and affecting the output angle. This effect is likely compounded in the prototype due to the 

manufacturing material being prone to bending and twisting effects. It is relevant to consider this 

effect however, as inflight aerodynamic impacts on the winglet would certainly affect the motion of 

the mechanism. The overshoot/undershoot issue would be a minor response, given that twisting 

and imbalanced aerodynamic forces could impact the synchronicity of the system. The controller has 

been designed to account for some of these effects in the form of force feedback. It is vital that a 

detailed force analysis of the system be conducted, as well as the system response to various loads.  

The results of the winglet loaded system are given in the figures below.  
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Figure 5-33: System input with Winglet load  

 

Figure 5-34: System response with Winglet load  
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Figure 5-35: Output Winglet angular velocity with Winglet load  

 

Figure 5-36: Stroke length vs. Winglet angle for loaded case  
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CHAPTER 6 Conclusion 

6.1 Contributions 

This thesis provided the analysis and results required to progress the modeling of a proposed 

morphing winglet design from the design concept stage to prototype development and testing. The 

system was identified as a redundantly actuated parallel mechanism due to the secondary actuator 

required for the force constraints of the system. This results in actuator redundancy for a 1DOF 

system. The kinematic and dynamic modeling of this mechanism was conducted. These results were 

used to validate the use of the design in a morphing winglet project with strictly defined operational 

requirements. The workspace of the mechanism was evaluated, and used to confirm design 

constraints, as well as establish the capability of the design as per the proposed starting 

configuration. The inverse kinematic relations were used to determine the required stroke lengths 

and stroke range to allow the system to meet the design criteria. The velocity relations of the system 

were developed, and the inverse velocity models used to ensure synchronous operation of the 

mechanism linkages. The system motion was simulated to ensure desired operation. The design was 

prototyped and tested by use of a velocity controller designed by a project member as per the 

operational requirements, using the results of the inverse kinematic and velocity simulations. The 

large discrepancy between the theoretical and experimental data was determined to be caused by the 

design issues discussed in Section 5.4. The motion of the optimized model was validated via 

simulation using the IK and inverse velocity relations developed. The velocity profile was further 

tuned for ideal input to the control in the prototype phase. The protype was developed and tested 

against both the standard velocity profile and the tuned case. The improvement in performance in 

the tuned version was considerable and warrants implementation of the optimized profile.  
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6.2 Future Work 

This thesis encompasses the preliminary design stages of a mechanism development. Full scale 

prototyping and testing, as well as further analysis of the system remain to be conducted. The 

velocity profile of the system can be tuned further for the experimental case, using true motion 

planning methods. The force interactions of the system should be evaluated, along with the effect of 

various loads on the mechanism motion. Additionally, the optimization of the system can continue 

in the form a linkage synthesis to eliminate experimental errors. Furthermore, the accuracy of the 

prototype can be increased by increasing the density of the material used. The current printer density 

was set to 40%, increasing this would increase the stiffness of the components, reducing bending 

and twisting effects.  

 

  



88 
 

Appendix A 

Forward Kinematics 

clear; 
clc; 
format long 

 
p{1} = [0;0;0]; 
p{2} = [12.0055;14.5559;0]; 
p{3} = [22.2887;16.6786;0]; 
p{4} = [20.084;20.2534;-0.3787]; 
p{5} = [24.7385;20.7213;-0.3191]; 
p{6} = [26.2385;19.9713;1.1809]; 

 
p_2_final = [12.5893;20.7;0]; 

 
l_1_min = norm(p{2}); 
l_1_max = norm(p_2_final); 

 
l_2 = norm(p{3}-p{2}); 
l_3 = norm(p{4}-p{3}); 
l_4 = norm(p{4}-p{2}); 
l_5 = norm(p{5}-p{4}); 
l_6 = norm(p{6}-p{5}); 
d_1 = norm(p{3}); 
l_1 = l_1_min; 

 
theta_3 = 70.08; 
p_4_z = p{4}(3); 

 
increment = (l_1_max-l_1_min)/100; 
actuator_length = []; 
cangle = []; 
pd = zeros(3,100); 

 
%side 2  
p{7} = [0.0746;19.6652;0]; 
p{8} = p{7}+[24.0096;5.0881;0]; 
p{9} = p{7}+[21.2221;10.862;0]; 
p{10} = p{7}+[19.9996;13.1877;-0.3787]; 
p{11} = p{7}+[24.6639;13.544;-0.3191]; 
p{12} = p{7}+[26.1639;16.144;1.1809]; 

 

l_7_min = 18.7085; 
l_7_max = norm(p{8}-p{7}); 
l_8 = norm(p{9}-p{8}); 
l_9 = norm(p{10}-p{9}); 
l_11 = norm(p{11}-p{10}); 
l_12 = norm(p{12}-p{11}); 
d_7 = norm(p{9}-p{7}); 
l_7 = l_7_max; 
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increment_2 = (l_7_max-l_7_min)/100; 
actuator_length_2 = []; 
cangle_2 = []; 
pd_2 = zeros(3,100); 
 

ende = zeros(3,100); 
ende_2 = zeros(3,100); 
% sim 
for i = 1:100 %forward kinematics 

 
    theta_1 = acosd((l_1^2+d_1^2-l_2^2)/(2*l_1*d_1)); 
    phi_1 = atand(p{3}(2)/p{3}(1)); 
    R_1 = [cosd(theta_1+phi_1) -sind(theta_1+phi_1) 0; sind(theta_1+phi_1) 

cosd(theta_1+phi_1) 0; 0 0 1]; 

 
    theta_2 = asind(d_1*(sind(theta_1)/l_2)); 
    theta_3 = 70.08; 

 
    R_4 = [cosd(-theta_3) -sind(-theta_3) 0; sind(-theta_3) cosd(-theta_3) 0; 

0 0 1]; 

 
    p{2} = R_1*[l_1;0;0]; 

 

 
    chck = norm(p{2}-p{3}); 

 
    p{4} = p{3}+R_4*((p{2}-p{3})/chck)*l_3; 
    p{4}(3) = p_4_z; 

 
    t = l_5^2-(p{5}(2)-p{4}(2))^2; 
    m = p{6}(1)-p{4}(1); 
    n = p{6}(3)-p{4}(3); 
    k = (t-m^2-n^2-l_6^2)/(-2*l_6); 
    r = sqrt(m^2+n^2); 
    alpha_sim = atan2d(-n,m); 
    theta_6 =((acosd(k/r))-alpha_sim); 
    phi_6 = -(90-theta_6); 
%      
    R_6 = [cosd(phi_6) 0 -sind(phi_6); 0 1 0; sind(phi_6) 0 cosd(phi_6)]; 
    p5_y = p{5}(2); 
%     p{5} = p{6}-R_6*[0;0;l_6]; 
    p{5}(2) = p5_y; 
    p{5}(1) = p{6}(1)-l_6*cosd(theta_6); 
    p{5}(3) = p{6}(3)-l_6*sind(theta_6); 

 
% winglet interface plane  
    wing{1}(1) = (p{6}(1))-(1.5*l_6)*cosd(theta_6-35+90); 
    wing{1}(3) = p{6}(3)-(1.5*l_6)*sind(theta_6-35+90); 
    wing{1}(2) = p5_y-1; 

 
    wing{2}(1) = (p{6}(1))+(0.5*l_6)*cosd(theta_6-35+90); 
    wing{2}(3) = p{6}(3)+(0.5*l_6)*sind(theta_6-35+90); 
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    wing{2}(2) = p5_y-1; 

 
    wing{3}(1) = (p{6}(1))+(0.5*l_6)*cosd(theta_6-35+90); 
    wing{3}(3) = p{6}(3)+(0.5*l_6)*sind(theta_6-35+90); 
    wing{3}(2) = p5_y+17; 

 
    wing{4}(1) = (p{6}(1))-(1.5*l_6)*cosd(theta_6-35+90); 
    wing{4}(3) = p{6}(3)-(1.5*l_6)*sind(theta_6-35+90); 
    wing{4}(2) = p5_y+17; 

 
    wing{5}(1) = (p{6}(1))-(1.5*l_6)*cosd(theta_6-35+90); 
    wing{5}(3) = p{6}(3)-(1.5*l_6)*sind(theta_6-35+90); 
    wing{5}(2) = p5_y-1; 
%check  
%check 
    ck = norm(wing{2}-wing{1}) 

 
% winglet plane 
    winglet{1}(1) = (p{6}(1))+((1.5*l_6)*cosd(theta_6-35)); 
    winglet{1}(3) = p{6}(3)+((1.5*l_6)*sind(theta_6-35)); 
    winglet{1}(2) = p5_y-1; 

 
    winglet{2}(1) = (p{6}(1)); 
    winglet{2}(3) = p{6}(3); 
    winglet{2}(2) = p5_y-1; 

 
    winglet{3}(1) = (p{6}(1)); 
    winglet{3}(3) = p{6}(3); 
    winglet{3}(2) = p5_y+17; 

 
    winglet{4}(1) = (p{6}(1))+((1.5*l_6)*cosd(theta_6-35)); 
    winglet{4}(3) = p{6}(3)+((1.5*l_6)*sind(theta_6-35)); 
    winglet{4}(2) = p5_y+17; 

 
    winglet{5}(1) = (p{6}(1))+((1.5*l_6)*cosd(theta_6-35)); 
    winglet{5}(3) = p{6}(3)+((1.5*l_6)*sind(theta_6-35)); 
    winglet{5}(2) = p5_y-1; 

 
if i==1  
    theta_6_initial=theta_6; 
    pd(1,i) = p{4}(1); 
    pd(2,i) = p{4}(2); 
    pd(3,i) = p{4}(3); 
elseif isreal(theta_6) 
    theta_6_final = theta_6; 
    cangle(i-1) = theta_6; 
    actuator_length(i-1) = l_1; 
    pd(1,i) = p{4}(1); 
    pd(2,i) = p{4}(2); 
    pd(3,i) = p{4}(3); 
    range = theta_6_final-theta_6_initial; 
end 

 

% side 2 
    theta_8 = acosd((l_7^2+l_8^2-d_7^2)/(2*l_7*l_8)); 
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    phi_7 = asind((sind(theta_8)*l_8/d_7)); 
    alpha_7 = acosd(p{9}(1)/d_7); 
    theta_7 = alpha_7-phi_7; 
    R_7 = [cosd(theta_7) -sind(theta_7) 0; sind(theta_7) cosd(theta_7) 0; 0 0 

1]; 

 

 
    R_10 = [cosd(180) -sind(180) 0; sind(180) cosd(180) 0; 0 0 1]; 

 
    p{8} = p{7}+R_7*[l_7;0;0]; 

 

 
    chck = norm(p{8}-p{9}); 

 
    p{10} = p{9}+R_10*((p{8}-p{9})/chck)*l_9; 
    p{10}(3) = -0.3787; 

 
    t = l_11^2-(p{11}(2)-p{10}(2))^2; 
    m = p{12}(1)-p{10}(1); 
    n = p{12}(3)-p{10}(3); 
    k = (t-m^2-n^2-l_12^2)/(-2*l_12); 
    r = sqrt(m^2+n^2); 
    alpha_sim = atan2d(-n,m); 
    theta_12 =((acosd(k/r))-alpha_sim); 
    phi_12 = -(90-theta_12); 
%      
    R_12 = [cosd(phi_12) 0 -sind(phi_12); 0 1 0; sind(phi_12) 0 

cosd(phi_12)]; 
    p11_y = p{11}(2); 
    p{11} = p{12}-R_12*[0;0;l_12]; 
    p{11}(2) = p11_y; 
%     p{5}(1) = p{6}(1)-l_6*cosd(theta_6) 
%     p{5}(3) = p{6}(3)-l_6*sind(theta_6) 

 
if i==1  
    theta_12_initial=theta_12; 
    pd_2(1,i) = p{10}(1); 
    pd_2(2,i) = p{10}(2); 
    pd_2(3,i) = p{10}(3); 
elseif isreal(theta_12) 
    theta_12_final = theta_12; 
    cangle_2(i-1) = theta_12; 
    actuator_length_2(i-1) = l_7; 
    pd_2(1,i) = p{10}(1); 
    pd_2(2,i) = p{10}(2); 
    pd_2(3,i) = p{10}(3); 
    range = theta_12_final-theta_12_initial; 
end 

 
%plotting 
if isreal(theta_6) && isreal(theta_12) 
% plotting  
 figure (1) 
for j = 1:5 
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        plot3([p{j}(1) p{j+1}(1)], [p{j}(2) p{j+1}(2)], [p{j}(3) p{j+1}(3)], 

'o-') 
        hold on 

 

if j==4 
            plot3([p{j}(1) p{j-2}(1)], [p{j}(2) p{j-2}(2)], [p{j}(3) p{j-

2}(3)],'o-') 
end 

 
end 

 

for j = 7:11 

 
        plot3([p{j}(1) p{j+1}(1)], [p{j}(2) p{j+1}(2)], [p{j}(3) p{j+1}(3)], 

'o-') 
        hold on 

 
end 

 

 
    grid on 
    axis([-5 40 -5 40 -20 25]); 
    view([0 -1 0]) 
    axis square 
    xlabel('X') 
    ylabel('Y') 
    zlabel('Z') 
    drawnow 
    xlabel('X') 
    ylabel('Y') 
    zlabel('Z') 
    hold off 

 

 
    l_1 = l_1+increment; 
    l_7 = l_7-increment_2; 

 

 
elseif ~isreal(theta_6) || ~isreal(theta_12) 
     disp('out of range') 
break 

 
end 

 

 

 ende(:,i) = p{5}; 
 ende_2(:,i) = p{11}; 

 

 
end 
hold on 
plot3(ende(1,:),ende(2,:),ende(3,:),'-.k','LineWidth',2) 
plot3(ende_2(1,:),ende_2(2,:),ende_2(3,:),'-.r','LineWidth',2) 
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 %% input for IK 
 in_theta_6 = 45; 
 p_4_z = p{4}(3); 
%   
% IK loop 
for k = 1:70 
    i_p{6} = p{6};   
    phi_6 = -(90-in_theta_6); 
    R_6 = [cosd(phi_6) 0 -sind(phi_6); 0 1 0; sind(phi_6) 0 cosd(phi_6)]; 
    i_p5_y = p{5}(2); 

 
    i_p{5} = i_p{6}-R_6*[0;0;l_6]; 
    i_p{5}(2) = i_p5_y; 

 
    c = l_5^2 - (p_4_z-i_p{5}(3))^2; 
    e = p{3}(1)-i_p{5}(1); 
    g = p{3}(2)-i_p{5}(2); 
    h = (c-e^2-g^2-l_3^2)/(2*l_3); 
    r_i = sqrt(e^2+g^2); 
    beta = atan2d(g,-e); 
    theta_5 = 180-(acosd(h/r_i)+beta); 
 

    i_p{4}(1) = p{3}(1)+l_3*cosd(theta_5); 
    i_p{4}(2) = p{3}(2)+l_3*sind(theta_5); 
    i_p{4}(3) = p_4_z; 

 
    i_p{3} = p{3}; 
    i_R_3 = [cosd(theta_3) -sind(theta_3) 0; sind(theta_3) cosd(theta_3) 0; 0 

0 1]; 
    u_34 = ([i_p{3}(1); i_p{3}(2)]-[i_p{4}(1);i_p{4}(2)])/norm([i_p{3}(1); 

i_p{3}(2)]-[i_p{4}(1);i_p{4}(2)]); 
    u_34(3) = 0; 
    i_p{2} = i_p{3}-i_R_3*u_34*l_2; 

 
    i_p{1} = p{1}; 
    check = norm(i_p{3}-i_p{2}); 

 
    ang_act(k,1) = in_theta_6; 
    ang_act(k,2) = norm(i_p{2}); 

 
if k>1 
        ang_act(k-1,3) = (ang_act(k,1)-ang_act(k-1,1)); 
        ang_act(k-1,4) = (ang_act(k,2)-ang_act(k-1,2)); 
elseif k==70 
        ang_act(k,3) = 0; 
        ang_act(k,4) = 0; 
end 

 

 
    figure(3) 
% plotting     
for j = 1:5 
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        plot3([i_p{j}(1) i_p{j+1}(1)], [i_p{j}(2) i_p{j+1}(2)], [i_p{j}(3) 

i_p{j+1}(3)], 'o-') 
        hold on 

 

if j==4 
            plot3([i_p{j}(1) i_p{j-2}(1)], [i_p{j}(2) i_p{j-2}(2)], 

[i_p{j}(3) i_p{j-2}(3)],'o-') 
end 
end 

 
    grid on 
    axis([-4 40 -4 40 -5 5]); 
%axis square  
%view([0 -1 0]) 
    drawnow 

 
    in_theta_6 = in_theta_6+1; 

 

    xlabel('X') 
    ylabel('Y') 
    zlabel('Z') 

 
    hold off 
end 
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Inverse Kinematics 

clear; 
clc; 
format long 

 
p{1} = [144.327;80.845;-0.026]; 
p{2} = [277.496;434.372;-0.026]-p{1}; 
p{3} = [544.11;427.621;-0.005]-p{1}; 
p{4} = [510.174;528.759;-9.626]-p{1}; 
p{5} = [628.358;541.028;-8.105]-p{1}; 
p{6} = [666.46;541.028;30]-p{1}; 

 
phi6 = atan2d(sqrt((p{6}(2)-p{5}(2))^2+(p{6}(3)-p{5}(3))^2),(p{6}(1)-

p{5}(1))); 

 
% converting to inches for scale clarity  
for k = 1:6 
    p{k} = (p{k}/10)*(0.393701); 
end 

 
l_2 = norm(p{3}-p{2}); 
l_3 = norm(p{4}-p{3}); 
l_4 = norm(p{4}-p{2}); 
l_5 = norm(p{5}-p{4}); 
l_6 = norm(p{6}-p{5}); 
d_1 = norm(p{3}); 

 
theta_3 = 70.08; 

 
%% input for IK 
 in_theta_6 = 45; 
 p_4_z = p{4}(3); 
% 
input_ang = zeros(1,71); 
output_stroke = zeros(1,71); 

 
% IK loop 
for k = 1:71 

 
    input_ang(k) = in_theta_6; 

 
    i_p{6} = p{6};   
    i_p{5} = [p{6}(1)-sqrt(l_6^2-(p{6}(2)-p{5}(2))^2);p{5}(2);p{6}(3)]; 
    phi_6 = (-in_theta_6); 
    R_6 = [cosd(phi_6) 0 sind(phi_6); 0 -1 0; -sind(phi_6) 0 cosd(phi_6)]; 

 
    i_p{5} = i_p{6}- R_6*(i_p{6}-i_p{5}); 

 
    chck = norm(i_p{6}-i_p{5}) 

 
    syms rcxrcyrbxrby 
    eqn1= l_5^2==((rbx-rcx)^2)+((rby-rcy)^2)+((p{5}(3)-p{4}(3))^2); 
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    eqn2= l_3^2==((p{3}(1)-rcx)^2)+((p{3}(2)-rcy)^2)+((p{3}(3)-p{4}(3))^2); 
    var = [rcx, rcy]; 
    [solx, soly]=solve([eqn1,eqn2],var); 
    rbx = i_p{5}(1); 
    rby = i_p{5}(2); 
    r_cx = vpa(solx(2)); 
    r_cy = vpa(soly(2)); 

 
    rbx = i_p{5}(1); 
    rby = i_p{5}(2); 
    rcx = subs(r_cx); 
    rcy = subs(r_cy); 
    i_p{4} = [double(rcx);double(rcy);p_4_z]; 

 

 
    chck2 = norm(i_p{5}-i_p{4}) 

 
    i_p{3} = p{3}; 
    i_R_3 = [cosd(theta_3) -sind(theta_3) 0; sind(theta_3) cosd(theta_3) 0; 0 

0 1]; 
    u_34 = ([i_p{3}(1); i_p{3}(2)]-[i_p{4}(1);i_p{4}(2)])/norm([i_p{3}(1); 

i_p{3}(2)]-[i_p{4}(1);i_p{4}(2)]); 
    u_34(3) = 0; 
    i_p{2} = i_p{3}-i_R_3*u_34*l_2; 

 

    i_p{1} = p{1}; 
    check = norm(i_p{3}-i_p{2}); 

 
    ang_act(k,1) = in_theta_6; 
    ang_act(k,2) = norm(i_p{2}); 

 
if k>1 
        ang_act(k-1,3) = (ang_act(k,1)-ang_act(k-1,1)); 
        ang_act(k-1,4) = (ang_act(k,2)-ang_act(k-1,2)); 
elseif k==70 
        ang_act(k,3) = 0; 
        ang_act(k,4) = 0; 
end 

 

 
    figure(3) 
% plotting     
for j = 1:5 

 
        plot3([i_p{j}(1) i_p{j+1}(1)], [i_p{j}(2) i_p{j+1}(2)], [i_p{j}(3) 

i_p{j+1}(3)], 'o-') 
        hold on 

 
if j==4 
            plot3([i_p{j}(1) i_p{j-2}(1)], [i_p{j}(2) i_p{j-2}(2)], 

[i_p{j}(3) i_p{j-2}(3)],'o-') 
end 

 

end 
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    grid on 
    axis([-4 40 -4 40 -5 5]); 
%axis square  
    view([0 -1 0]) 
    drawnow 

 
    in_theta_6 = in_theta_6+1; 
    output_stroke(k) = norm(i_p{2}); 
%     disp(num2str(i_p{5})); 
%     disp(num2str(norm(i_p{2}))); 

 
    xlabel('X') 
    ylabel('Y') 
    zlabel('Z') 

 
    hold off 
end 
%% 
plot(input_ang(1,:),output_stroke(1,:)); 
xlabel('Output Angle(^o)'); 
ylabel('Actuator Stroke length (in)'); 
p = polyfit(input_ang(1,:),output_stroke(1,:),3); 
x1 = 45:115; 
y1 = polyval(p,x1); 
figure(2) 
plot(x1,y1); 
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Inverse Kinematics Aft Linkage 

clear; 
clc; 
format long 

 
p{1} = [144.327;80.845;-0.026]; 
p{7} = [93.827;564.518;-0.044]-p{1}; 
p{8} = [606.491;669.115;-0.006]-p{7}; 
p{9} = [536.828;817.556;-0.017]-p{7}; 
p{10} = [509.797;877.321;-9.641]-p{7}; 
p{11} = [628.358;885.15;-8.105]-p{7}; 
p{12} = [666.46;885.15;30]-p{7}; 

 
phi6 = atan2d(sqrt((p{12}(1)-p{11}(1))^2+(p{12}(3)-p{11}(3))^2),(p{12}(2)-

p{11}(2))); 

 

% converting to inches for scale clarity  
for k = 1:12 
    p{k} = (p{k}/10)*(0.393701); 
end 

 
% l_7_min = norm(p{8}-p{7}); 
l_7_max = norm(p{8}); 
l_8 = norm(p{9}-p{8}); 
l_9 = norm(p{10}-p{9}); 
l_11 = norm(p{11}-p{10}); 
l_12 = norm(p{12}-p{11}); 
d_7 = norm(p{9}); 

 

 

theta_3 = 180.5; 

 
%% input for IK 
 in_theta_6 = 45; 
 p_10_z = p{10}(3); 
% 
input_ang = zeros(1,71); 
output_stroke = zeros(1,71); 

 
% IK loop 
for k = 1:71 

 
    input_ang(k) = in_theta_6; 

 

    i_p{12} = p{12};   
    i_p{11} = [p{12}(1)-sqrt(l_12^2);p{11}(2);p{12}(3)]; 
    phi_6 = (-in_theta_6); 
    R_6 = [cosd(phi_6) 0 sind(phi_6); 0 1 0; -sind(phi_6) 0 cosd(phi_6)]; 

 
    i_p{11} = i_p{12}- R_6*(i_p{12}-i_p{11}); 

 

    chck = norm(i_p{12}-i_p{11}) 
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    syms r11xr11yr10xr10y 
    eqn1= l_11^2==((r11x-r10x)^2)+((r11y-r10y)^2)+((p{11}(3)-p{10}(3))^2); 
    eqn2= l_9^2==((r10x-p{9}(1))^2)+((r10y-p{9}(2))^2)+((p{10}(3)-

p{9}(3))^2); 
    var = [r10x, r10y]; 
    [solx, soly]=solve([eqn1,eqn2],var); 
    r11x = i_p{11}(1); 
    r11y = i_p{11}(2); 
    r_10x = vpa(solx(1)); 
    r_10y = vpa(soly(1)); 

 
    r11x = i_p{11}(1); 
    r11y = i_p{11}(2); 
    r10x = subs(r_10x); 
    r10y = subs(r_10y); 
    i_p{10} = [double(r10x);double(r10y);p_10_z]; 

 

 
    chck2 = norm(i_p{11}-i_p{10}) 

 
    i_p{9} = p{9}; 

 
    chck3 = norm(i_p{10}-i_p{9}) 

 

    i_R_9 = [cosd(theta_3) -sind(theta_3) 0; sind(theta_3) cosd(theta_3) 0; 0 

0 1]; 
    u_910 = ([i_p{9}(1); i_p{9}(2)]-[i_p{10}(1);i_p{10}(2)])/norm([i_p{9}(1); 

i_p{9}(2)]-[i_p{10}(1);i_p{10}(2)]); 
    u_910(3) = 0; 
    i_p{8} = i_p{9}-i_R_9*u_910*l_8; 

 

    i_p{7} = p{7}; 

 
    chck4 = norm(i_p{9}-i_p{8}); 

 
    ang_act(k,1) = in_theta_6; 
    ang_act(k,2) = norm(i_p{8}); 

 

if k>1 
        ang_act(k-1,3) = (ang_act(k,1)-ang_act(k-1,1)); 
        ang_act(k-1,4) = (ang_act(k,2)-ang_act(k-1,2)); 
elseif k==70 
        ang_act(k,3) = 0; 
        ang_act(k,4) = 0; 
end 

 

 
    figure(1) 
% plotting     
for j = 7:11 

 
        plot3([i_p{j}(1) i_p{j+1}(1)], [i_p{j}(2) i_p{j+1}(2)], [i_p{j}(3) 

i_p{j+1}(3)], 'o-') 
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        hold on 

 
end 

 

    grid on 
    axis([-4 40 -4 40 -5 5]); 
%axis square  
    view([0 -1 0]) 
    drawnow 

 
    in_theta_6 = in_theta_6+1; 
    output_stroke(k) = norm(i_p{8}); 
%     disp(num2str(i_p{5})); 
%     disp(num2str(norm(i_p{2}))); 

 
    xlabel('X') 
    ylabel('Y') 
    zlabel('Z') 

 
    hold off 
    test_phi6 = atan2d(sqrt((i_p{12}(2)-i_p{11}(2))^2+(i_p{12}(3)-

i_p{11}(3))^2),(i_p{12}(1)-i_p{11}(1))) 

 
end 
%% 
figure(2) 
plot(input_ang(1,:),output_stroke(1,:)); 
xlabel('Output Angle(^o)'); 
ylabel('Actuator Stroke length (in)'); 
% p = polyfit(input_ang(1,:),output_stroke(1,:),3); 
% x1 = 45:115; 
% y1 = polyval(p,x1); 
% figure(3) 
% plot(x1,y1); 
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Velocity Fwd Linkage 

clear; 
clc; 
format long 

 
p{1} = [144.327;80.845;-0.026]; 
p{2} = [324.871;579.485;-0.026]-p{1}; 
p{3} = [544.11;427.621;-0.005]-p{1}; 
p{4} = [571.2;530.804;-9.626]-p{1}; 
p{5} = [689.229;541.028;-18.838]-p{1}; 
p{6} = [666.46;541.028;30]-p{1}; 

 
% converting to inches for scale clarity  
for k = 1:6 
    p{k} = (p{k}/10)*(0.393701); 
end 

 

 
%%%%%%%%%%correct p{2} from IK%%%%%%%%%%%%%% 
p{2} = [5.242515700126356;13.903727145708107;0.000826772100000]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

l_1_min = norm(p{2}); 
l_2 = norm(p{3}-p{2}); 
l_3 = norm([p{4}(1);p{4}(2);0]-p{3}); 
l_4 = norm(p{4}-p{2}); 
l_5 = norm(p{5}-p{4}); 
l_6 = norm(p{6}-p{5}); 
d_1 = norm(p{3}); 
l_1 = l_1_min; 
theta_3 = 70.08; 
p_4_z = p{4}(3); 

 
actuator_length = []; 
cangle = []; 
pd = zeros(3,100); 

 
% sim 
theta_6 = 45; 
p_5_i = p{5}; 
p_4_i = p{4}; 
p_2_i = p{2}; 

 

ds1=zeros(71,1); 
fktheta6=zeros(71,1); 
s_2 = zeros(71,3); 
s2 = zeros(71,1); 
dt = 5; 

 
% fk sim 
syms frcxfrcyfrbxfrbzfrby 
eqn5= l_6^2==((p{6}(1)-frbx)^2)+((p{6}(2)-frby)^2)+((p{6}(3)-frbz)^2); 
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eqn6= l_5^2==((frcx-frbx)^2)+((frcy-p{5}(2))^2)+((p{4}(3)-frbz)^2); 
var3 = [frbx, frbz]; 
[solx, soly]=solve([eqn5,eqn6],var3); 
fr_bx = vpa(solx(1)); 
fr_bz = vpa(soly(1)); 

 
% velocity sim 
syms v4xv4yv5xv5zr4xr4yr5xr5yr5zr4z 
eqn3 = 0==2*(r5x-r4x)*(v5x-v4x)+2*(r5y-r4y)*(-v4y)+2*(r5z-r4z)*(v5z); 
eqn4 = 0==2*(p{3}(1)-r4x)*(-v4x)+2*(p{3}(2)-r4y)*(-v4y); 
var2 = [v4x, v4y]; 
[solvx, solvy]=solve([eqn3,eqn4],var2); 
d_4x = (vpa(solvx)); 
d_4y = vpa(solvy); 

 
for i = 1:round((70/dt)+1) 

 
    format shortg 

 
    ratio = pi/180; 
    phi_6 = ratio*(theta_6); % relation of theta_6 to phi_6 
    omega_6 = ratio*dt; %d/s 

 
    v{5} = l_6*(omega_6)*[sin(phi_6);0;-cos(phi_6)]; 
    v_5(i,:) = v{5}; 

 
    r5x = p{5}(1); 
    r5y = p{5}(2); 
    r5z = p{5}(3); 
    r4z = p{4}(3); 

 
    r4x = p{4}(1); 
    r4y = p{4}(2); 
    v5x = v{5}(1); 
    v5z = v{5}(3); 
    d4x = double(subs(d_4x)); 
    d4y = double(subs(d_4y)); 

 
    v{4} = [(d4x);(d4y);0]; 

 
    R_3 = [cos(ratio*theta_3) -sin(ratio*theta_3) 0; sin(ratio*theta_3) 

cos(ratio*theta_3) 0; 0 0 1]; % rotation matrix for p{2} in IK using constant 

design angle theta_3 
    d_u34 = -[v{4}(1);v{4}(2)]/l_3; % derivative of the unit vector from p{3} 

to p{4} this is the component that changes with time for v{2} 
    d_u34(3) = 0; 
    v{2} = -R_3*d_u34*l_2; % derivative of p{2}  

 
    s_2(i,:) = (dot(p{2},v{2})/norm(p{2}))*(p{2}/norm(p{2})); 
    s2(i,1) = norm(s_2(i,:)); 
    %% FK simulation     

 
    theta_1 = acosd((l_1^2+d_1^2-l_2^2)/(2*l_1*d_1)); 
    phi_1 = atan2d(sqrt((p{3}(2))^2+(p{3}(3))^2),(p{3}(1))); 
    theta_2 = (theta_1+phi_1); 
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    R_1 = [cosd(theta_2) -sind(theta_2) 0; sind(theta_2) cosd(theta_2) 0; 0 0 

1]; 

 

 

    theta_3 = 70; 

 
    R_4 = [cosd(-theta_3) -sind(-theta_3) 0; sind(-theta_3) cosd(-theta_3) 0; 

0 0 1]; 

 
    fk_p{2} = R_1*[l_1;0;0];     
    chck = norm(fk_p{2}-p{3}); 

 
    fk_p{4} = p{3}+R_4*((fk_p{2}-p{3})/chck)*l_3; 
    fk_p{4}(3) = p_4_z; 

 
    frcx = fk_p{4}(1); 
    frcy = fk_p{4}(2); 
    frby = p{5}(2); 
    frbx = subs(fr_bx); 
    frbz = subs(fr_bz); 
    fk_p{5} = [double(frbx);p{5}(2);double(frbz)]; 
    fk_p{1} = p{1}; 
    fk_p{3} = p{3}; 
    fk_p{6} = p{6}; 
    fk_theta_6 = atan2d(sqrt((fk_p{6}(2)-fk_p{5}(2))^2+(fk_p{6}(3)-

fk_p{5}(3))^2),(fk_p{6}(1)-fk_p{5}(1))); 
    fktheta6(i,1) = ceil(fk_theta_6); 

 
% generating matrix for output plot 
    ang_act(i,1) = theta_6; 
    ang_act(i,2) = l_1; 
    ang_act(i,3) = s2(i,1); 

 
figure(1)   
% plotting 
for j = 1:5 

 
        plot3([fk_p{j}(1) fk_p{j+1}(1)], [fk_p{j}(2) fk_p{j+1}(2)], 

[fk_p{j}(3) fk_p{j+1}(3)], 'o-') 
        hold on 

 
if j==4 
            plot3([fk_p{j}(1) fk_p{j-2}(1)], [fk_p{j}(2) fk_p{j-2}(2)], 

[fk_p{j}(3) fk_p{j-2}(3)],'o-') 
end 
end 

 
    grid on 
    axis([-4 40 -4 40 -22 22]); 
    axis square 
%     view([0 -1 0]) 
    drawnow 

 

    xlabel('X') 
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    ylabel('Y') 
    zlabel('Z') 

 
    hold off 

 
    theta_6 = theta_6+dt; 
    l_1 = l_1+s2(i,1);     

 

 
    p{5} = fk_p{5}; 
    p{4} = fk_p{4}; 
    p{2} = fk_p{2}; 

 
    ds1(i,1) = s2(i,1); 
end 
%%   
figure(2) 
plot(ang_act(:,1),ang_act(:,3)) 
grid on 
xlabel('Input angle [^o]') 
ylabel('Actuator speed to achieve next angle [in/s]') 

 
figure(3) 
plot(ang_act(:,2),ang_act(:,3)) 
grid on 
xlabel('Actuator Length [in]') 
ylabel('Actuator speed to achieve next angle [in/s]') 

 
figure(4) 
plot(ang_act(:,1),ang_act(:,2)) 
grid on 
xlabel('Input Angle [^o]') 
ylabel('Actuator Length [in]') 
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Velocity Aft Linkage 

clear; 
clc; 
format long 

 
p{1} = [144.327;80.845;-0.026]; 
p{7} = [93.827;564.518;-0.044]-p{1}; 
p{8} = [606.491;669.115;-0.006]-p{7}; 
p{9} = [536.828;817.556;-0.017]-p{7}; 
p{10} = [509.797;877.321;-9.641]-p{7}; 
p{11} = [628.358;885.15;-8.105]-p{7}; 
p{12} = [666.46;885.15;30]-p{7}; 

 
% converting to inches for scale clarity  
for k = 1:12 
    p{k} = round((p{k}/10)*(0.393701),4); 
end 

 

 
%%%%%%%%%%correct p{8} from IK%%%%%%%%%%%%%% 
p{8} = [ 25.8349;7.2864;0.00003937]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

phi6 = atan2d(sqrt((p{12}(2)-p{11}(2))^2+(p{12}(3)-p{11}(3))^2),(p{12}(1)-

p{11}(1))); 

 

 
% l_7_min = norm(p{8}-p{7}); 
l_7_max = round(norm(p{8}),3); 
l_8 = round(norm(p{9}-p{8}),3); 
l_9 = round(norm(p{10}-p{9}),3); 
l_11 = round(norm(p{11}-p{10}),3); 
l_12 = round(norm(p{12}-p{11}),3); 
d_7 = round(norm(p{9}),3); 
l_7 = l_7_max; 

 
theta_3 = 180.5; 

 
p_10_z = p{10}(3); 

 
% sim 
theta_6 = 45; 

 
ds1=zeros(71,1); 
fktheta12=zeros(71,1); 
s_2 = zeros(71,3); 
s2 = zeros(71,1); 
dt = 5; % delta_theta_per_second 

 
% fk sim 
syms frcxfrcyfrbxfrbzfrbyfrcz 
eqn5= l_12^2==((p{12}(1)-frbx)^2)+((p{12}(2)-frby)^2)+((p{12}(3)-frbz)^2); 
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eqn6= l_11^2==((frcx-frbx)^2)+((frcy-p{11}(2))^2)+((frcz-frbz)^2); 
var3 = [frbx, frbz]; 
[solx, soly]=solve([eqn5,eqn6],var3); 
fr_bx = vpa(solx(1)); 
fr_bz = vpa(soly(1)); 

 
syms v10xv10yv11xv11zr11xr11yr10xr10yr11zr10z 
eqn3 = 0==(2*(r11x-r10x)*(v11x-v10x))+(2*(r11y-r10y)*(-v10y))+(2*(r11z-

r10z)*(v11z)); 
eqn4 = 0==(2*(p{9}(1)-r10x)*(-v10x))+(2*(p{9}(2)-r10y)*(-v10y)); 
var2 = [v10x, v10y]; 
[solvx, solvy]=solve([eqn3,eqn4],var2);     
d_10x = vpa(solvx); 
d_10y = vpa(solvy); 

 
for i = 1:round((70/dt)+1) 

 
    format shortg 

 
    ratio = pi/180; 
    phi_6 = ratio*(theta_6); % relation of theta_6 to phi_6 
    omega_6 = ratio*dt; %d/s 

 
    v{11} = l_12*omega_6*[sin(phi_6);0;-cos(phi_6)]; 
    v_11(i,:) = v{11}; 

 
    v11x = v{11}(1); 
    v11z = v{11}(3); 
    r11x = p{11}(1); 
    r11y = p{11}(2); 
    r11z = p{11}(3); 
    r10x = p{10}(1); 
    r10y = p{10}(2); 
    r10z = p{10}(3); 

 

 

 
    d10x = (double(subs(d_10x))); 
    d10y = (double(subs(d_10y))); 

 
    v{10} = [(d10x);(d10y);0]; 

 
    R_3 = [cos(ratio*theta_3) -sin(ratio*theta_3) 0; sin(ratio*theta_3) 

cos(ratio*theta_3) 0; 0 0 1]; % rotation matrix for p{2} in IK using constant 

design angle theta_3 
    d_u109 = -v{10}/(norm([p{10}(1);p{10}(2);0]-[p{9}(1);p{9}(2);0])); % 

derivative of the unit vector from p{3} to p{4} this is the component that 

changes with ti 
    v{8} = -(R_3*d_u109*norm([p{9}(1);p{9}(2);0]-[p{8}(1);p{8}(2);0])); % 

derivative of p{2}  

 
    s_2(i,:) = (dot(p{8},v{8})/l_7)*(p{8}/l_7); 
    s2(i,1) = -(norm([s_2(i,1);s_2(i,2)])); 

 



107 
 

    %% FK to simulate 
 

    theta_3 = 180.5; 
    R_10 = [cosd(-theta_3) -sind(-theta_3) 0; sind(-theta_3) cosd(-theta_3) 

0; 0 0 1]; 
 

    fk_p{8} = p{8}; 
    chck = norm(fk_p{8}-p{9}); 

 
    fk_p{10} = ((p{9}+R_10*(([fk_p{8}(1);fk_p{8}(2);0]-

[p{9}(1);p{9}(2);0])/norm([fk_p{8}(1);fk_p{8}(2);0]-

[p{9}(1);p{9}(2);0]))*(norm([p{10}(1);p{10}(2);0]-[p{9}(1);p{9}(2);0])))); 
    fk_p{10}(3) = (p_10_z); 

 

 
    frcx = fk_p{10}(1); 
    frcy = fk_p{10}(2); 
    frcz = fk_p{10}(3); 
    frby = p{11}(2); 
    frbx = (subs(fr_bx)); 
    frbz = (subs(fr_bz)); 
    fk_p{11} = [double(frbx);p{11}(2);double(frbz)]; 
    fk_p{7} = p{7}; 
    fk_p{9} = p{9}; 
    fk_p{12} = p{12};    

 

 
    fk_theta_12 = atan2d(sqrt((fk_p{12}(2)-fk_p{11}(2))^2+(fk_p{12}(3)-

fk_p{11}(3))^2),(fk_p{12}(1)-fk_p{11}(1))); 
    fktheta12(i,1) = (fk_theta_12); 
    fktheta12(i,1) = ceil(fk_theta_12); 

 

% generating matrix for output plot 
    ang_act(i,1) = theta_6; 
    ang_act(i,2) = l_7; 
    ang_act(i,3) = s2(i,1); 

 
figure(1)   
% plotting 
for j = 7:11 

 
        plot3([fk_p{j}(1) fk_p{j+1}(1)], [fk_p{j}(2) fk_p{j+1}(2)], 

[fk_p{j}(3) fk_p{j+1}(3)], 'o-') 
        hold on 

 
end 

 
    grid on 
    axis([-4 40 -4 40 -5 5]); 
%axis square  
%     view([0 -1 0]) 
    drawnow 

 

    xlabel('X') 
    ylabel('Y') 
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    zlabel('Z') 

 
    hold off 

 

    theta_6 = theta_6+(dt); 
    l_7 = l_7+s2(i,1);     

 
    p{8} = p{8}+(v{8}); 

 
    p{10} = fk_p{10}; 
    p{11} = fk_p{11}; 
%     p{8} = fk_p{8}; 

 
    ds1(i,1) = s2(i,1); 
end 
%%   
figure(2) 
plot(ang_act(:,1),ang_act(:,3)) 
grid on 
xlabel('Input angle [^o]') 
ylabel('Actuator speed to achieve next angle [in/s]') 

 
figure(3) 
plot(ang_act(:,2),ang_act(:,3)) 
grid on 
xlabel('Actuator Length [in]') 
ylabel('Actuator speed to achieve next angle [in/s]') 

 
figure(4) 
plot(ang_act(:,1),ang_act(:,2)) 
grid on 
xlabel('Input Angle [^o]') 
ylabel('Actuator Length [in]') 

 

Velocity Tuning 

Goal Attainment 

clear; 
clc; 
x_0 = [1,1]; 
goal = [1e-1,1e-1]; 
weight = abs(goal); 
lb = [0.1,1]; 
ub = [10,5]; 
options = 

optimoptions('fgoalattain','Display','iter','MaxIterations',30,'FiniteDiffere

nceStepSize',1e-1); 
[x,fval,attainfactor] = 

fgoalattain(@velocity_optimization,x_0,goal,weight,[],[],[],[],lb,[],[],optio

ns) 
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Velocity Function used for Tuning 

 
function F = velocity_optimization(x) 
format long 
omega = x(1); 
delay = x(2); 

 
p{1} = [144.327;80.845;-0.026]; 
p{2} = [324.871;579.485;-0.026]-p{1}; 
p{3} = [544.11;427.621;-0.005]-p{1}; 
p{4} = [510.174;528.759;-9.626]-p{1}; 
p{5} = [628.358;541.028;-8.105]-p{1}; 
p{6} = [666.46;541.028;30]-p{1}; 

 
% side 2 
p{7} = [93.827;564.518;-0.044]-p{1}; 
p{8} = [606.491;669.115;-0.006]-p{1}; 
p{9} = [536.828;817.556;-0.017]-p{1}; 
p{10} = [509.797;877.321;-9.641]-p{1}; 
p{11} = [628.358;885.15;-8.105]-p{1}; 
p{12} = [666.46;885.15;30]-p{1}; 

 
% IK delta strokes  
fore_dstroke = 5.970684494864495; 
aft_dstroke = 5.762707551016634; 

 
% converting to inches for scale clarity  
for k = 1:12 
    p{k} = (p{k}/10)*(0.393701); 
end 

 

 
%%%%%%%%%%correct p{2} from IK%%%%%%%%%%%%%% 
p{2} = [5.242515700126356;13.903727145708107;0.000826772100000]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% side 2 

 
l_1_min = norm(p{2}); 
l_2 = norm(p{3}-p{2}); 
l_3 = norm([p{4}(1);p{4}(2);0]-p{3}); 
l_4 = norm(p{4}-p{2}); 
l_5 = norm(p{5}-p{4}); 
l_6 = norm(p{6}-p{5}); 
d_1 = norm(p{3}); 
l_1 = l_1_min; 
theta_3 = 70.08; 
p_4_z = p{4}(3); 

 

 
pp{7} = [93.827;564.518;-0.044]; 
pp{8} = [606.491;669.115;-0.006]-pp{7}; 
pp{9} = [536.828;817.556;-0.017]-pp{7}; 
pp{10} = [509.797;877.321;-9.641]-pp{7}; 
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pp{11} = [628.358;885.15;-8.105]-pp{7}; 
pp{12} = [666.46;885.15;30]-pp{7}; 

 
for k = 1:12 
    pp{k} = (pp{k}/10)*(0.393701); 
end 
% pp{8} = [25.8349;7.2864;0.00003937]; 

 
% side 2 
l_7_max = round(norm(pp{8}),3); 
l_8 = round(norm(pp{9}-pp{8}),3); 
l_9 = round(norm(pp{10}-pp{9}),3); 
l_11 = round(norm(pp{11}-pp{10}),3); 
l_12 = round(norm(pp{12}-pp{11}),3); 
d_7 = round(norm(pp{9}),3); 
l_7 = l_7_max; 
theta_9 = 180.5; 
p_10_z = pp{10}(3); 

 
% sim 
theta_6 = 45; 

 
% side 1 
% fktheta6=zeros(71,1); 
% s_1 = zeros(71,3); 
% s1 = zeros(71,1); 

 
% side 2 
% fktheta12=zeros(71,1); 
% s_2 = zeros(71,3); 
% s2 = zeros(71,1); 

 

% velocity omega definition 
inc = 1/delay; 
omega = 1; 
t = (0:inc:1)*omega; 
unitstep = t>=0; 
ramp = t.^2.*unitstep; 

 

% fk sim 
syms fr4xfr4yfr5xfr5zfr5y 
eqn5= l_6^2==((p{6}(1)-fr5x)^2)+((p{6}(2)-fr5y)^2)+((p{6}(3)-fr5z)^2); 
eqn6= l_5^2==((fr4x-fr5x)^2)+((fr4y-p{5}(2))^2)+((p{4}(3)-fr5z)^2); 
var3 = [fr5x, fr5z]; 
[solx, soly]=solve([eqn5,eqn6],var3); 
fr_5x = vpa(solx(1)); 
fr_5z = vpa(soly(1)); 

 
syms frcxfrcyfrbxfrbzfrbyfrcz 
eqn5= l_12^2==((pp{12}(1)-frbx)^2)+((pp{12}(2)-frby)^2)+((pp{12}(3)-frbz)^2); 
eqn6= l_11^2==((frcx-frbx)^2)+((frcy-pp{11}(2))^2)+((frcz-frbz)^2); 
var3 = [frbx, frbz]; 
[solx, soly]=solve([eqn5,eqn6],var3); 
fr_bx = vpa(solx(2)); 
fr_bz = vpa(soly(2)); 
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% velocity sim 
syms v4xv4yv5xv5zr4xr4yr5xr5yr5zr4z 
eqn3 = 0==2*(r5x-r4x)*(v5x-v4x)+2*(r5y-r4y)*(-v4y)+2*(r5z-r4z)*(v5z); 
eqn4 = 0==2*(p{3}(1)-r4x)*(-v4x)+2*(p{3}(2)-r4y)*(-v4y); 
var2 = [v4x, v4y]; 
[solvx, solvy]=solve([eqn3,eqn4],var2); 
d_4x = (vpa(solvx)); 
d_4y = vpa(solvy); 

 
syms v10xv10yv11xv11zr11xr11yr10xr10yr11zr10z 
eqn3 = 0==(2*(r11x-r10x)*(v11x-v10x))+(2*(r11y-r10y)*(-v10y))+(2*(r11z-

r10z)*(v11z)); 
eqn4 = 0==(2*(pp{9}(1)-r10x)*(-v10x))+(2*(pp{9}(2)-r10y)*(-v10y)); 
var2 = [v10x, v10y]; 
[solvx, solvy]=solve([eqn3,eqn4],var2);     
d_10x = vpa(solvx); 
d_10y = vpa(solvy); 
i = 1; 

 
while theta_6<=115 

 
if i<size(ramp,2) 
        dt = (ramp(i)); 
else 
        dt = ramp(end); 
end 

 
    format longg 

 
    ratio = pi/180; 
    phi_6 = ratio*(theta_6); % relation of theta_6 to phi_6 
    omega_6 = ratio*dt; %d/s 

 
    v{5} = l_6*(omega_6)*[sin(phi_6);0;-cos(phi_6)]; 
    v_5(i,:) = v{5}; 

 
    r5x = p{5}(1); 
    r5y = p{5}(2); 
    r5z = p{5}(3); 
    r4z = p{4}(3); 

 
    r4x = p{4}(1); 
    r4y = p{4}(2); 
    v5x = v{5}(1); 
    v5z = v{5}(3); 
    d4x = double(subs(d_4x)); 
    d4y = double(subs(d_4y)); 

 
    v{4} = [(d4x);(d4y);0]; 

 
    R_3 = [cos(ratio*theta_3) -sin(ratio*theta_3) 0; sin(ratio*theta_3) 

cos(ratio*theta_3) 0; 0 0 1]; % rotation matrix for p{2} in IK using constant 

design angle theta_3 
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    d_u34 = -[v{4}(1);v{4}(2)]/l_3; % derivative of the unit vector from p{3} 

to p{4} this is the component that changes with time for v{2} 
    d_u34(3) = 0; 
    v{2} = -R_3*d_u34*l_2; % derivative of p{2}  

 
    s_1(i,:) = (dot(p{2},v{2})/norm(p{2}))*(p{2}/norm(p{2})); 
    s1(i,1) = norm(s_1(i,:)); 

 
% side 2 
    v{11} = l_12*omega_6*[sin(phi_6);0;-cos(phi_6)]; 
    v_11(i,:) = v{11}; 

 
    v11x = v{11}(1); 
    v11z = v{11}(3); 
    r11x = pp{11}(1); 
    r11y = pp{11}(2); 
    r11z = pp{11}(3); 
    r10x = pp{10}(1); 
    r10y = pp{10}(2); 
    r10z = pp{10}(3); 

 

 

 
    d10x = (double(subs(d_10x))); 
    d10y = (double(subs(d_10y))); 

 
    v{10} = [(d10x);(d10y);0]; 

 
    R_9 = [cos(ratio*theta_9) -sin(ratio*theta_9) 0; sin(ratio*theta_9) 

cos(ratio*theta_9) 0; 0 0 1]; % rotation matrix for p{2} in IK using constant 

design angle theta_3 
    d_u109 = -v{10}/(norm([pp{10}(1);pp{10}(2);0]-[pp{9}(1);pp{9}(2);0])); % 

derivative of the unit vector from p{3} to p{4} this is the component that 

changes with ti 
    v{8} = -(R_9*d_u109*norm([pp{9}(1);pp{9}(2);0]-[pp{8}(1);pp{8}(2);0])); % 

derivative of p{2}  

 
    s_2(i,:) = (dot(pp{8},v{8})/l_7)*(pp{8}/l_7); 
    s2(i,1) = -(norm([s_2(i,1);s_2(i,2)])); 

 
    %% FK simulation     

 
    theta_1 = acosd((l_1^2+d_1^2-l_2^2)/(2*l_1*d_1)); 
    phi_1 = atan2d(sqrt((p{3}(2))^2+(p{3}(3))^2),(p{3}(1))); 
    theta_2 = (theta_1+phi_1); 
    R_1 = [cosd(theta_2) -sind(theta_2) 0; sind(theta_2) cosd(theta_2) 0; 0 0 

1]; 

 

 
    theta_3 = 70; 

 
    R_4 = [cosd(-theta_3) -sind(-theta_3) 0; sind(-theta_3) cosd(-theta_3) 0; 

0 0 1]; 
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    fk_p{2} = R_1*[l_1;0;0];     
    chck = norm(fk_p{2}-p{3}); 

 
    fk_p{4} = p{3}+R_4*((fk_p{2}-p{3})/chck)*l_3; 
    fk_p{4}(3) = p_4_z; 

 
    fr4x = fk_p{4}(1); 
    fr4y = fk_p{4}(2); 
    fr5y = p{5}(2); 
    fr5x = subs(fr_5x); 
    fr5z = subs(fr_5z); 
    fk_p{5} = [double(fr5x);p{5}(2);double(fr5z)]; 
    fk_p{1} = p{1}; 
    fk_p{3} = p{3}; 
    fk_p{6} = p{6}; 
    fk_theta_6 = atan2d(sqrt((fk_p{6}(2)-fk_p{5}(2))^2+(fk_p{6}(3)-

fk_p{5}(3))^2),(fk_p{6}(1)-fk_p{5}(1))); 
    fktheta6(i,1) = ceil(fk_theta_6); 

 
% generating matrix for output plot 
    ang_act(i,1) = theta_6; 
    ang_act(i,2) = l_1; 
    ang_act(i,3) = s1(i,1); 

 
% side 2 
    theta_9 = 180.5; 
    R_10 = [cosd(-theta_9) -sind(-theta_9) 0; sind(-theta_9) cosd(-theta_9) 

0; 0 0 1]; 

 
    fk_p{8} = pp{8}; 
    chck2 = norm(fk_p{8}-pp{9}); 
%%%% 

 
    fk_p{10} = ((pp{9}+R_10*(([fk_p{8}(1);fk_p{8}(2);0]-

[pp{9}(1);pp{9}(2);0])/norm([fk_p{8}(1);fk_p{8}(2);0]-

[pp{9}(1);pp{9}(2);0]))*(norm([pp{10}(1);pp{10}(2);0]-

[pp{9}(1);pp{9}(2);0])))); 
    fk_p{10}(3) = (p_10_z); 

 

 
    frcx = fk_p{10}(1); 
    frcy = fk_p{10}(2); 
    frcz = fk_p{10}(3); 
    frby = pp{11}(2); 
    frbx = (subs(fr_bx)); 
    frbz = (subs(fr_bz)); 
    fk_p{11} = [double(frbx);pp{11}(2);double(frbz)]; 

 

 
    fk_p{11} = fk_p{11}+pp{7}-p{1}; 
    fk_p{10} = fk_p{10}+pp{7}-p{1}; 
    fk_p{8} = fk_p{8}+pp{7}-p{1}; 
    fk_p{7} = p{7}; 
    fk_p{9} = p{9}; 
    fk_p{12} = p{12};  
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    fk_theta_12 = atan2d(sqrt((fk_p{12}(2)-fk_p{11}(2))^2+(fk_p{12}(3)-

fk_p{11}(3))^2),(fk_p{12}(1)-fk_p{11}(1))); 
    fktheta12(i,1) = (fk_theta_12); 
    fktheta12(i,1) = ceil(fk_theta_12); 

 
% generating matrix for output plot 
    ang_act2(i,1) = theta_6; 
    ang_act2(i,2) = l_7; 
    ang_act2(i,3) = s2(i,1); 

 
    theta_6 = theta_6+dt; 
    l_1 = l_1+s1(i,1);  
    l_7 = l_7+s2(i,1);      

 
    p{5} = fk_p{5}; 
    p{4} = fk_p{4}; 
    p{2} = fk_p{2}; 

 
% side 2  
    pp{8} = pp{8}+(v{8}); 
    pp{10} = pp{10}+v{10}; 
    pp{11} = pp{11}+v{11}; 
    i =i+1; 
end 

 
%% for optimization 
dstroke1 = ang_act(i-1,2)-ang_act(1,2); 
dstroke2 = ang_act2(1,2)-ang_act2(i-1,2); 
e1 = (abs(fore_dstroke-dstroke1)/fore_dstroke)*100; 
e2 = (abs(aft_dstroke-dstroke2)/aft_dstroke)*100; 
F = [e1,e2]; 
figure(2) 
plot(ang_act(:,1),ang_act(:,3)) 
grid on 
xlabel('Input angle [^o]') 
ylabel('Actuator speed to achieve next angle [in/s]') 
title('Actuator speed vs. Angle FORE') 

 
figure(3) 
plot(ang_act(:,2),ang_act(:,3)) 
grid on 
xlabel('Actuator Length [in]') 
ylabel('Actuator speed to achieve next angle [in/s]') 
title('Actuator speed vs. Length FORE') 

 
figure(4) 
plot(ang_act(:,1),ang_act(:,2)) 
grid on 
xlabel('Input Angle [^o]') 
ylabel('Actuator Length [in]') 
title('Stroke length vs. Winglet Angle FORE') 

 

%%  side 2 
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figure(5) 
plot(ang_act2(:,1),ang_act2(:,3)) 
grid on 
xlabel('Input angle [^o]') 
ylabel('Actuator speed to achieve next angle [in/s]') 
title('Actuator speed vs. Angle AFT') 

 
figure(6) 
plot(ang_act2(:,2),ang_act2(:,3)) 
grid on 
xlabel('Actuator Length [in]') 
ylabel('Actuator speed to achieve next angle [in/s]') 
title('Actuator speed vs. Length AFT') 

 
figure(7) 
plot(ang_act2(:,1),ang_act2(:,2)) 
grid on 
xlabel('Input Angle [^o]') 
ylabel('Actuator Length [in]') 
title('Stroke length vs. Winglet Angle AFT') 

 
figure(8) 
plot(ang_act(:,1),ang_act(:,2),ang_act2(:,1),ang_act2(:,2)) 
grid on 
xlabel('Input Angle [^o]') 
ylabel('Actuator Length [in]') 
title('Stroke length vs. Winglet Angle BOTH') 
legend('FORE','AFT') 

 

 
end 
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Appendix B 

The figure below shows the cant and toe axis on a wing. The angle indicated by 𝜃 is the cant angle, 

with the axis coming out of the plane representing the cant axis. The toe axis the axis perpendicular 

to that, along the wingspan.  

 

Figure B-1: Wing cant and toe axis diagram 
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Appendix C 

The table below details the individual kinematic equations for the lower pairs of the spatial parallel 

linkage for the Gao and Wu solution process.  

Table C-1: Constraint equations for lower kinematic pairs 
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Appendix D 

Non-computational analytic solution for FK 

A non-computational analytical solution was attempted for the forward kinematics. This solution 

involved simplifying assumptions of the system geometry and eventually proved to be prone to 

error. The equations below outline the solution for the fwd and aft linkages. The error when 

compared to the computational results is shown in Figure (). 

 𝑘 =
𝑟5

2−(𝑝5𝑦−𝑝4𝑦)
2

−(𝑝6𝑥 −𝑝4𝑥)
2

−(𝑝6𝑧−𝑝4𝑧 )
2

−𝑟6
2

−2𝑟6
 (D-1) 

 𝑚 = √((𝑝6𝑥
− 𝑝4𝑥

)
2

+ (𝑝6𝑧
− 𝑝4𝑧

)
2

)  (D-2) 

 𝛼 = 𝑎𝑡𝑎𝑛2 (−
(𝑝6𝑧 −𝑝4𝑧)

2

(𝑝6𝑥 −𝑝4𝑥)
2) (D-3) 

 𝜃6 = cos1 (
𝑘

𝑚
) − 𝛼 (D-4) 

 𝑘2 =
𝑟11

2 −(𝑝11𝑦−𝑝10)
2

−(𝑝12𝑥 −𝑝10𝑥 )
2

−(𝑝12𝑧−𝑝10𝑧 )
2

−𝑟12
2

−2𝑟6
 (D-5) 

 𝑚2 = √((𝑝12𝑥
− 𝑝10𝑥

)
2

+ (𝑝12𝑧
− 𝑝10𝑧

)
2

)  (D-6) 

 𝛼2 = 𝑎𝑡𝑎𝑛2 (−
(𝑝12𝑧−𝑝10𝑧 )

2

(𝑝12𝑥 −𝑝10𝑥 )
2) (D-7) 

 𝜃12 = cos1 (
𝑘

𝑚
) − 𝛼2 (D-8) 
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Non-computational Analytic Solution Error 

The figure below displays the error of the non-computational solution for the FK simulation. While 

the error may seem low, this is significant for the theoretical results, and due to the sensitivity of the 

system accuracy of the analytic solution is vital. This is the cause for continuing with the 

computational analytic solution, despite its complexity.  

 

Figure D-1: Error of non-computational solution 
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