
 

 
PROTEIN STRUCTURAL CLASS PREDICTION USING PREDICTED SECONDARY 

STRUCTURE AND HYDROPATHY PROFILE 

 

by 

 

Syeda Nadia Firdaus 

Bachelor of Science in Computer Science and Engineering 

The University of Asia Pacific, Bangladesh, 2005 

 

 

A thesis  

presented to Ryerson University 

in partial fulfillment of the  

requirements for the degree of 

Master of Science 

in the Program of 

Computer Science  

 

 

Toronto, Canada, 2013 

©Syeda Nadia Firdaus 2013 

 



 

 

 

ii 

 

 
 

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

 

I authorize Ryerson University to lend this thesis to other institutions or individuals for the 

purpose of scholarly research 

 

I further authorize Ryerson University to reproduce this thesis by photocopying or by other 

means, in total or in part, at the request of other institutions or individuals for the purpose of 

scholarly research. 

 

I understand that my thesis may be made electronically available to the public. 

  



 

 

 

iii 

 

 
Protein Structural Class Prediction Using Predicted Secondary Structure and Hydropathy 

Profile 

 

Syeda Nadia Firdaus 

Master of Science in Computer Science 

Ryerson University, 2013 

 

 

Abstract 

This thesis explores machine learning models based on various feature sets to solve the protein 

structural class prediction problem which is a significant classification problem in 

bioinformatics. Knowledge of protein structural classes contributes to an understanding of 

protein folding patterns, and this has made structural class prediction research a major topic of 

interest. In this thesis, features are extracted from predicted secondary structure and hydropathy 

sequence using new strategies to classify proteins into one of the four major structural classes: 

all-α, all-β, α/β, and α+β. The prediction accuracy using these features compares favourably with 

some existing successful methods. We use Support Vector Machines (SVM), since this learning 

method has well-known efficiency in solving this classification problem. On a standard dataset 

(25PDB), the proposed system has an overall accuracy of 89% with as few as 22 features, 

whereas the previous best performing method had an accuracy of 88% using 2510 features. 
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Chapter 1 

 

Introduction    

  
In the fast paced scientific world, the amount of biological data is already vast and continues to 

grow rapidly. These data are handled by applications developed in the field of bioinformatics. In 

this field of science, the discipline of biology, computer science, and information technology 

merge together to face the challenges of biological science [1]. The research done in 

bioinformatics is mainly focused on managing biological data and extracting useful information 

from them. Structural bioinformatics is a sub-section  of bioinformatics which is concerned with 

the use of biological structures like proteins, DNA, RNA, etc., to advance the knowledge of 

biological systems [2]. Research is being done on biological macromolecule structure prediction 

and structural classification. Predicting the structural class of protein is a major area of research 

in structural bioinformatics due to its importance in understanding the nature and function of 

protein. Protein is the basic building block of every living cell and participates essentially in 

every biological process within cells. Understanding the function of each protein is very 

important to generate insight into biological systems. Predicting the structural class of a protein 

has become a major topic of interest due to its contribution towards understanding protein 

folding patterns and their impact on function.  

1.1   Motivation 

Protein structural class prediction is an important area of research within the field of overall 

protein structure prediction. Protein structural class focuses on one global aspect in our 

understanding of protein folding. Each protein has an unique 3D shape created by its folding 
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which determines its function. Structure prediction is an important area of research since it helps 

one to understand or discover the function of unknown proteins. Details of the 3D structures of 

proteins are very complicated, irregular, and expensive to determine. Researchers try to find out 

overall topological folding patterns of a protein which are simple, regular, and similar to other 

proteins. The goal of protein structural class prediction methods is to find out some simple or 

regular patterns from complicated or irregular 3D structures and then apply these patterns to 

predict the desired but still unknown information about proteins. Since folding can determine 

protein function and a wrongly folded protein causes disease,  predicting structural class is of 

interest to the researchers from the drug industry as well.  

     The importance of determining protein structural class to obtain knowledge about the overall 

shape and function of protein,  made us interested to do research in this area. Protein structural 

class prediction is a mature area of research, but problem has not been fully solved yet. The latest 

paper achieved 87% accuracy with very high dimensional feature vector. With our research, we 

tried to contribute some new measures to predict protein structural class more accurately and 

with fewer features.  

1.2   Research Statement 

The object of these research is to develop methods which can predict the structural class of a 

protein accurately. Generally if a method follows the SCOP classification scheme [3], then it 

classifies a protein into one of the following main four structural classes: all-α, all-β, α+β, and 

α/β.   If a method follows CATH classification scheme [4] then it classifies a protein into one of 

the following main four classes: mainly α, mainly β, mixed α,β, and a few secondary structures. 

(Description of SCOP and CATH are in Section 2.6). 

     More specifically, the goal of our research is to develop a structural class prediction method 

which follows SCOP classification scheme and can predict proteins with twilight-zone similar 

sequences into structural classes more accurately with less number of features. Twilight-zone 

similar sequences are the sequences which are very less similar to each other. In protein 

structural class prediction research, use of low similar sequences as training and testing data is 

very important because classification models are developed based on machine learning 

techniques. The performance of these classification models is measured using the training and 
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testing sequences from the same dataset. If the sequences in the dataset are very similar, then the 

model is trained and tested with similar sequences, resulting in misleadingly high accuracy. 

When sequences in the dataset are less similar then the prediction accuracy will truly show its 

performance towards unknown, maybe less similar data. 

     We use 25PDB dataset which is very popular for work with low similar sequences. The 

Support Vector Machine (SVM) soft computing technique is used to build the classification 

model. We have generated several feature sets and checked the performance of the resulting 

models. Our objective is to extract effective features from protein sequences, in order to obtain 

more accurate prediction using less features.   

1.3    Objective 

The objective of this research is to explore some new ideas for extracting features from protein 

amino acid sequence and predicted secondary structure sequence in order to predict structural 

classes more accurately using fewer features than other published methods. To achieve this 

objective, the plan of work is as follows: 

 

� Construct feature sets including new features from predicted protein secondary structure 

sequence and hydropathy sequence corresponding to amino acid sequence of protein and  

evaluate their performances. 

�  Evaluate the effectiveness of using the Term Frequency-Inverse Document Frequency 

Technique to extract useful patterns from protein secondary structure sequences to 

determine protein structural class. 

� Construct a feature set using patterns extracted from the sequence constructed using 

hydropathy profile of amino acids in protein amino acid sequence and check its 

performance. 

� Check the performance of  combinations of feature sets for structural class prediction.  
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1.4   Assumption and Scope 

The objective of this thesis is to predict structural classes using fewer features than other 

published methods and obtaining more accurate results. We assume that using less features will 

reduce computational time and resource usage. We use the Support Vector Machine 

classification algorithm, assuming that it will give good performance for our classification model 

as it has for previous published methods. We did not check other classification algorithms like 

Neural Network and Fuzzy Logic as want to compare our results with other published results 

which used the SVM classification algorithm. 

     We restrict the scope of this research  to the 25PDB dataset, since it is a benchmark dataset 

for low similarity sequences. 

1.5   Organization of Chapters  

The thesis is organized as follows: 

 

� Chapter 2 describes some introductory information about proteins, structures and 

structural classes of proteins. The information presented here is related to later discussion 

in the thesis. 

� Chapter 3 presents some recent significant published research in the area of protein 

structural class prediction. 

� Chapter 4 is presents the materials and method used in the thesis. The dataset,  feature 

sets and classification method are described in this chapter. 

� Chapter 5 presents the results of the thesis work. This chapter includes the comparison of 

performance of various feature sets developed for this thesis. The comparison of 

performance of the best performing feature sets with some major published work is also 

presented in this chapter. 

� Chapter 6 concludes the thesis work along with some proposals for future research.    
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Chapter 2 

 

Preliminaries 

 
In this chapter, some preliminary information regarding proteins, protein structures and structural 

classes are provided. The concept presented here are relevant for later description of thesis work.  

2.1   Protein 

Protein is an essential component to the structure and function of all living cells. It is a complex 

molecular compound consisting of amino acids joined by peptide bonds. The peptide bonds link 

the carboxyl group (-COOH) of one amino acid to the amino group (-NH2) of another amino acid 

[5]. There are 20 different amino acids known as residues (see Table 2.1) [6].  The chain of 

amino acids comprising a protein is folded into a unique three dimensional shape. The unique 

sequence and shape of a protein determines its function. The shape of a protein is described using 

four levels of structure: primary, secondary, tertiary, and quaternary. 

2.2   Protein Primary Structure  

The linear sequence of amino acids in a protein is referred to as the primary structure of the 

protein. For example, the primary structure of protein, "Angiotensin I" (PDB id of "Angiotensin 

I" is 1N9U) is: "asp - arg - val - tyr - ile - his - pro - phe - his - leu" [7]. Each amino acid in this 

example is represented by its three-letter code. The sequence is also written as "D-R-V-Y-I-H-P-

F-H-L", in one letter codes. 20 amino acids and their corresponding one-letter and three-letter 

codes are given in Table 2.1 [6].  
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Table 2.1:  20 amino acids and their one-letter and three-letter code [6]. 

 

Amino Acid Three-letter code One-letter code 

alanine Ala A 

arginine Arg R 

asparagine Asn N 

aspartic acid Asp D 

cysteine Cys C 

glutamine Gln Q 

glutamic acid Glu E 

glycine Gly G 

histidine His H 

isoleucine Ile I 

leucine Leu L 

Lysine Lys K 

methionine Met M 

phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

threonine Thr T 

tryptophan Trp W 

tyrosine Tyr Y 

Valine Val V 
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2.3   Protein Secondary Structure 

In a protein, amino acids adjacent to one another interact to form segments with defined structure 

called secondary structure. The most common secondary structure elements are α-helix and β-

sheet, introduced by Linus Pauling and coworkers in 1951 [8].  

     An α-helix segment is a single, spiral chain of amino acids stabilized by hydrogen bonds [9]. 

A β-sheet segment consists of two or more polypeptide chains, called β-strand, where hydrogen 

bonds between the chains form a twisted and pleated structure [10-11]. A segment with neither 

α-helix nor β-sheet structure is referred to as a random coil segment [12]. The β-sheets are said to 

be parallel or antiparallel, depending on whether the β-strands run in the same or opposite 

directions, respectively, where direction is by the amino-carboxyl orientation of the amino acids 

in the chain. Visualizations of α-helix (H) [13], β-sheet segment with two anti-parallel β-strands 

(E) [14], and random coil (C) segments are shown in Figure 2.1 [15]. 

 

  

                                                                                                 

                                          (a)                                  (b)                                    (c) 

Figure 2.1: Visualizations of (a) α-helix (H) segment [13], (b) β- sheet  segment with two β- 

strands (E)  [14], and (c) random coil (C) segment [15].   

 

     A protein's secondary structure is sometimes represented as a linear sequence of the letters H, 

E and C, according to whether the corresponding amino acid is in an α-helix, β- strand or random 

coil. This corresponding secondary structure sequence can be predicted with an accuracy of 

about 77% by some excellent methods including PSIPRED [16] and YASPIN [17]. An example 

of amino acid sequence of a protein along with its corresponding predicted secondary structure 

sequence ( generated using PSIPRED) is given below: 



 

 

Amino acid sequence of protein

EILIEGNRTIIRNFRELAKAVN

Predicted secondary structure seq

CEEECCCHHHHHHHHHHHHHHC

 

Here, each letter in the amino acid

letter code, and each letter in the s

that the amino acid participates in

 2.4   Protein Tertiary S

The relative orientation of secondar

protein's unique three-dimensional

tertiary structure is very difficult a

structure is shown in Figure 

http://polyview.cchmc.org/polyview

secondary structure segments (α-

as green, and coil segments are colo

 

Figure 2.2: Visualization of t

        "Electron Transport"  is 1naq) 
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protein, "Probable translation initiation factor 2 beta 

NRDEEFFAKYLLKETGSAGNLEGGRLILQRR  

tructure sequence: 

CCCHHHHHHHHHHHHCCCCCCCCCEEEEEEC 

amino acid sequence  represents the identity of the amino ac

letter in the secondary structure represents the secondary s

in. 

ertiary Structure 

 of secondary structure elements with respect to each other d

dimensional shape known as the tertiary structure of the

difficult and expensive to determine. Visualisation of a

 Figure 2.2 (created using Polyview visualization soft

.org/polyview3d.html) where the protein is colored acc

-helix segments are colored as red, β-sheet segmen

ents are colored as blue). 

 

ization of tertiary structure of protein "Electron Transport
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actor 2 beta subunit"  

 

 the amino acid by its one-

 secondary structural state 

other determines the 

of the protein. The 

alisation of a protein's 3D 

lization software [18] at  

according to its 

gments are colored 

" (PDB id of 



 

 

2.5   Protein Quaternary
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multiple, disconnected amino acid 

quaternary structure of the protein

is shown in Figure 2.3 (Created u

different chains in a protein are rend

    

Figure 2.3: Visualization of quatern

of " Protein kinase inhibitor "  is 1A

2.6   Protein Structural C

Protein structural classification is th
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the same arrangements and c
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tructural Classification 
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8]) where the two 

kinase inhibitor " (PDB id  

s based primarily on shape 

simple and local folding 
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� Class: Common folds are clustered into a class based on their secondary structural 

content and some other features. The current version of the SCOP database, v. 1.75 

(release in June,2009) classifies proteins into eleven structural classes: i) all-α, ii) all-β,  

iii) α/β,  iv) α+β, v) multi-domain protein, vi) membrane and cell-surface proteins, vii) 

small proteins, viii) coiled-coil proteins, ix) low resolution proteins, x) peptide, and  xi) 

designed proteins. 

  

 

 

                              (a)                         (b)                           (c)                              (d) 

Figure 2.4: Visualisations of representative proteins belonging to the four structural classes: a) 

all-α (Name: Hemoglobin a, PDB id: 2hbc) [19],  b) all-β (Name: jacalin alpha chain, PDB id: 

1ku8) [20],  c) α/β (Name: Ribonuclease inhibitor, PDB id: 1bnh) [21], and d) α + β (Name : 

Pyruvoyl-dependent histidine decarboxylase, PDB id: 1pya) [22]  

 

     Among these 11 classes, the four major structural classes are all-α, all-β, α/β and α+β. Most 

researchers deal with these four structural classes, since they contain the majority of protein 

sequences. The main features of proteins belonging to these four structural classes are described 

below [3].  

 

� all-α : The all-α class contains proteins that are basically composed of α-helix folding.  

� all-β : The all- β class contains proteins that are basically composed of β-sheet folding.  

� α/β :   The α/β class includes proteins having alternating  α-helix and β-strand.  

� α+β : The α+β class includes proteins where folds are formed by scattered α-helices and 

β-strands. 

 

Visualisations of example proteins belonging to all these four classes are given in Figure 2.4. 



 

 

 

11 

 

 

The CATH structural classification scheme assigns proteins to the following hierarchal levels 

[4]: 

� Homologous superfamily : Proteins having similar sequence, structures and functions are 

clustered into a homologous superfamily. 

� Topology: Homologous superfamilies whose proteins share common arrangement and 

order of secondary structures are clustered into a topology.  

� Architecture: This level of grouping is based on gross orientation or arrangement 

(example: barrel, roll or sandwich) of secondary structures in proteins. 

� Class: This level of grouping is based on secondary structural content. In this level 

proteins are grouped into the following four categories: i) mainly α, ii) mainly β, iii) 

mixed α - β, and iv) few secondary structures. 

 

One of the main differences between SCOP and CATH scheme lies in the class level.  In the 

CATH scheme, there is only one class to represent mixed  α and β.  In the SCOP scheme, there 

are two separate classes (the α+β and the α/β class) to represent protein with both α and β 

secondary structure. 

2.7  Support Vector Machine 

Since its development by Vapnik and his group in former AT&T Bell Laboratories [23], Support 

Vector Machine (SVM) has proved to be an efficient technique  for data classification and 

regression. The basic idea behind SVM technique is to create a linear separating hyperplane 

which maximizes the distance between two classes. Figure 2.5 [24] illustrates, with triangles and 

ovals, data belonging to two different classes. The classes can be fully separated by a hyperplane ��� + � = 0, where v is a variable vector (x,y), w is a weight vector (w1,w2), and b is 

essentially another weight. The weights represent the model which the SVM binary machine 

infers from the training data. A binary SVM classifies data point �
   as belonging to the  +1 class 

if  ���
 + � > 0,  and data point vi is classified as -1 if  ���
 + � < 0.   

     The decision boundary is the hyperplane from which the distance of nearest data point of each 

class is maximum. The distance between two classes of data should be as large as possible. Two 
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more hyperplanes H1 and H2 are considered that can also separate data and there is no data point 

between them. The distance between H1 and H2 is called the margin. The objective of SVM is to 

maximize the margin to reduce the probability of misclassification. It sets the value of w and b to 

maximize the distance between the planes ��� + � = ±1. 

 

 

 

 

 

 

 

 

 

                                   

 

Figure 2.5: Linearly separable data [24] 

  

      In many cases, real world datasets are not perfectly linearly separable. SVM solves this 

problem by introducing a "soft margin"  design. When there is no hyperplane that can separate 

the full data clearly, then the soft margin method selects a hyperplane that allows some data 

points of one class to be classified as a different class while separating data as well as possible.  

 

 

 

 

x 

H2 

H1 

Data from another  class 

margin 

wTv + b = 1 wTv + b = 0 
wTv + b = -1 

Data from one class  

Decision boundary 

y 

x 
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                                           (a)                                                                (b)         

 Figure 2.6:  (a) Non separable data in 2D space, (b)Separated data in 3D space by hyperplane   

                       where transformation Φ is done by a kernel function [25].  

     

When data are not linearly separable at all and the soft margin option alone does not help, then 

SVM handles the problem by mapping the input space into a higher dimensional feature space 

where there is more possibility to find a separating hyperplane. This mapping is done by a kernel 

function. SVM maps every data point of the input space into high-dimensional space via some 

transformation Φ:  x → φ(x). For example, Figure 2.6(a) is showing  non linearly separable data 

in 2D feature space [25]. SVM maps the data into 3D feature space where they are separable as 

shown in Figure 2.6(b) [25].  In Figure 4.3, data point 'A' in 2D space is (x1, x2) which is mapped 

to A'(z1, z2, z3) in 3D space. 

     Some basic kernel functions used by SVM techniques are as follows where xi and xj are 

feature vectors in input the space ,"." is a dot product, and K  determines the mapping Φ [23][26]: 

i)  Polynomial (homogeneous) : K( xi , xj )  =  ( xi . xj ) d    

ii) Polynomial (inhomogeneous) : K( xi , xj )  =  (( xi . xj ) + 1) d    

Φ 

z3 

z1 x1 

x2 

z2 

A'(z1, z2, z3) 

A(x1, x2) 
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iii) Radial basis function K(xi , xj) = exp(− ɣ||�
 − ��||  ) 
iv)Hyperbolic tangent:  K (xi , xj) = tanh( ρ(xi , xj) + c))  for some ρ> 0  and c>0 
The main concept of SVM is based on binary classification. It is extended to do multi-class 

classification where a multi-class problem is considered as multiple binary class problem. The 

most commonly used multi-class classification approaches are as follows: 

i) One-against-all: In this approach, for an n class problem, n binary classifiers are created 

where each classifier distinguishes data between one class and the remaining (n-1) classes.  For 

example, for a 3 class (A,B,C) problem, 3 binary classifiers will classify test data as A / ~A, B / 

~B and C / ~C, where "X / ~X" means "belong to class X or not belong to class X". Every 

classifier will calculate a decision function value regarding whether the test data belong to that 

class. Finally a test data is classified as belonging to the class for which the decision function 

value is highest. 

ii) One-against-one: In this approach for the n class problem, 
((()*)   binary classifiers are 

designed.  For each pair of classes, a binary classifier will classify data between that pair of 

classes. For example, for 3 class (A, B, C) problem, 3 binary classifier will classify data as A / B, 

A / C and B / C.  Finally the classification is done using maximum win voting strategy. In this 

strategy when a binary classier assigns a test instance to one of the two classes then that class 

will get a vote. Lastly the class with the highest vote is considered as the true class for that test 

data.  
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Chapter 3 

 

Related Work 

 
The concept of protein structural class was proposed by Levitt and Chothia in 1976 [27]. They 

used a diagrammatic two dimensional representation to illustrate the known structure of 31 

proteins. They classified proteins into 4 major structural classes (all-α, all-β, α/β, and α+β) by 

visually inspecting the representation. The CATH structural classification scheme classifies a 

protein following the methods proposed by Levitt and Chothia [27] except for mixing the α/β and 

α+β  class to create Mixed α-β class. In SCOP classification scheme, classification of  proteins is 

done by visual inspection and comparison of sequence [28]. Both SCOP and CATH use visual 

inspection and automatic tools, but the papers are not clear on which tools are used. 

     In contrast to SCOP and CATH classification which rely on 3D structural analysis, there have 

been attempts to predict structural classes based on sequence and properties of amino acids. 

Protein structural class prediction is a significant problem studied by bioinformatics researchers 

for a long time. During the past 3 decades, many methods have been developed to address this 

problem. Success in this field is very slow due to the large number of possible protein structures 

and the lack of knowledge concerning factors influencing protein physical structure stability. 

Protein structural class prediction methods typically have two main steps. First, class 

discriminating features are extracted from amino acid sequences of proteins. Each protein can 

then be represented by a feature vector whose dimension is fixed, regardless of the length of the 

protein. In the second step those features are fed into suitable classification mechanisms to 

classify proteins into one of the main four structural classes. A classification algorithm  

indentifies the class of a new unseen instance based on the knowledge obtained during the 
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training phase. In the training phase, the data along with their known class information is fed into 

the classification model to prepare the model for testing phase. The main differences among the 

published methods are their strategies to extract class discriminating features from sequences and 

the choice of classification algorithm. Some of the features used in published methods are 

described in Section 3.1, and classification algorithms used by some successful methods are 

described in Section 3.2.  

3.1   Feature Extraction Strategies    

3.1.1   Features Extracted From Amino Acid Sequence of Proteins 

The earliest methods of classification of proteins used only features extracted directly from the 

amino acid sequences. In those methods, the researchers established a correlation between amino 

acid sequences and the corresponding structural classes. Zerin et al. [29] used the occurrence 

frequency of each of 20 amino acid and  all possible combination of three consecutive amino 

acids known as triplets in the protein sequence. Using support vector machine classification 

algorithm their method achieved 71.4% prediction accuracy. Subsequent research showed that 

information related to only amino acid composition, such as the frequency of each amino acid or 

peptide,  may have limited prediction ability, since the folding pattern of a proteins is the result 

of collective interaction among the residues in protein sequence [30]. To improve the accuracy of 

predictions, features representing amino acid position and order were introduced in the later 

research. Wu et al. [31] combined amino acid word frequency, word position and 

physiochemical properties of amino acid to represent  proteins, where a word is a short sequence 

of amino acids of length n also referred to as "n-gram" pattern.  They calculated the position 

information of amino acids based on the concept of measuring inter-nucleotide distances as 

described in [32-33].  They transformed the amino acid sequence into a numerical sequence 

which contains position information of each element. For each of the 20 amino acids they used 

the interval distance between the two nearest positions of that amino acid and calculated the 

probability of occurrence of that amino acid at that interval. They also calculated the 1-word 

frequency (frequency of word with length "1")  of hydropathy states in the sequences after 
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transforming amino acid sequence of protein to hydropathy sequence, based on the hydropathy 

profile of amino acids.   

     Zhang et al. [34] constructed a 46 dimensional feature vector, where 20 values represent 

amino acid frequency, 20 values represent amino acid correlation at various distances, and 6 

values represent frequency of hydrophobic amino acid couples. The calculations of the amino 

acid distance correlation are described by Equation (1) - (5) of [34].  Hydrophobic amino acids 

are those that avoid interaction with water. The distance correlation is relevant because amino 

acids which are far apart in the sequence may be close neighbours after folding. They used the 

support vector machine algorithm based on a binary tree as described in [35]. Ding et al. [36] 

used the concept of pseudo amino acid composition (PseAA) introduced by Chou [37] to 

incorporate information about the order of amino acid residues in proteins as features. They used 

eight physiochemical properties like volume, polarity, and hydrophobic value to construct eight 

PseAA vectors to represent each protein. Each of these eight vectors was a 40 dimensional 

vector, where 20 values were the frequency of the 20 amino acids and 20 values were the 

correlation values between k-tier contiguous residues.  Using each of these physiochemical 

property, they used Equations (2)-(6) of [37] to generate correlation values between k-tier 

(k=1,...,20) contiguous residues in the protein chain. The difference between Ding et al. [36] and 

chou's [37] method is that Ding et al. used eight different physiochemical property to generate 

eight PseAA vectors, whereas Chou [37] constructed only one PseAA vector using three 

physiochemical property values. For multiclass classification, Ding et al. [36]  used dual layer 

fuzzy support vector machine  (FSVM) as establish by Abe [38]. For each protein sample, eight 

PseAA vectors were fed into eight FSVM in the first layer. Outputs of the first layer generated 

by eight FSVM classifiers were again reclassified in the second layer. Their dual layer FSVM 

network showed 92.6% overall accuracy on a dataset taken from [39]. This accuracy is higher 

than accuracies reported in this thesis, however, as mentioned earlier, accuracy is influenced by 

choice of dataset. The high accuracy was achieved on dataset constructed by Chou [39]. There 

are a few more reports [40-42] based on extracting features from  amino acid sequence of 

proteins.  
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3.1.2   Features Extracted from PSI-BLAST Profiles of Sequence 

PSI-BLAST [43] (Position-Specific Iterative Basic Local Alignment Search Tool) profiles of 

sequences have also been used in structural class prediction methods as they reflect the 

evolutionary relationship among sequences [44-45].  PSI-BLAST [43] generates a position-

specific scoring matrix (PSSM) or profile from multiple sequence alignment which reflects how 

closely a query sequence is to the database of collected sequences. Taigang et al. [44] 

transformed the PSSM generated by PSI-BLAST into a fixed length feature vector by auto 

covariance (AC) transformation. They used AC transformation as it is a powerful statistical tool 

for analyzing sequence vectors in other areas of bioinformatics [46-49]. Their model, using a 

combination of PSSM and the AC method, showed good performance (74.1% accuracy for a 

dataset with low similar sequences) while reflecting evolutionary information and sequence 

order information at the same time. 

 3.1.3    Features Based on Functional Domains of Sequence 

Functional domains are the regions in an amino acid sequence of protein that carry out a specific 

function. Proteins typically have several functional domains. Using these functional domains as 

features in the structural class prediction problem, some researchers tried to capture the 

relationship among distant amino acids which is crucial for protein folding [50-51]. Chou et al. 

[50] used an integrated domain database [52] (InterPro database) which contains many sequences 

along with functional domain information. InterPro release 6.2 documents 7785 different 

functional domains (http://www.ebi.ac.uk/interpro). Chou et al. [50] represented each protein as 

a 7785 dimensional vector, where each feature is Boolean. A "1"  represents the presence of a 

particular functional domain, and a "0" represents the absence of  that functional domain in a 

protein. They suggest that functional domains of a protein correlate well with its structural class.     

     Amin et al. [51] followed Chou et al. [50] and used functional domains as class discriminating 

features. They used InterPro Release 30.0 which contains 21,178 functional domain entries. Of 

the 21,178 functional domains they only considered the domains which appear in the proteins of 

their dataset. Thus, their method used 2,400 functional domains as features. They also extracted 

features from predicted protein secondary structure. To reduce the dimension of the feature 

vector and select the most effective features they used the correlation based feature selection 
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(CFS) method [53]. CFS is a filtering method to select from the original feature set a smaller set 

of non-redundant features which have powerful class discriminating ability. They also checked 

their method of class prediction on intrinsically disordered proteins (biologically active proteins 

with no specific full 3D structure) and achieved reasonable prediction accuracy (76.20%).  

3.1.4   Features Extracted from Predicted Protein Secondary Structure 

Sequence 

Recently, many good methods have been developed using only features extracted from predicted 

protein secondary structure sequence [54-56]. The structural class of a protein mainly depends on 

its secondary structural content. Some researchers extracted features from predicted secondary 

structure sequence instead of amino acid sequence of protein. In these methods the researchers 

used secondary structure sequences predicted by methods like PSIPRED [16] and YASPIN [17]. 

Liu and Jia [54] constructed three novel features to differentiate between the α+β class and the 

α/β class more accurately. They used some previously used effective features from research [57-

58] like content of α-helix (H) and β-strand (E) in the sequence, maximum and average length of 

H and E segments, and composition moment vector of H and E in the sequence. One would 

expect the predicted states H and E to alternate more frequently in a protein belonging to the α/β 

class than in a protein belonging to the α+β class where α-helix and β-strands are isolated. 

Therefore, one of their newly developed features was the normalized alternating frequency of H 

and E. They also included two newly developed features based on count of anti-parallel β-strands 

in the sequence, considering the fact that β-sheets in the α/β  class proteins are usually composed 

of parallel β-strands whereas in the α+β class proteins, β-sheets are normally composed of anti-

parallel β-strands. They also showed that their newly constructed features had good impact in 

identifying  the α/β  and the α+β class proteins with accuracies of 81.5% and 76% respectively.  

     Along with some previously used features from [54,58], Zhang et al. [55] introduced some 

new features to capture the distribution of α-helix (H) and β-strand (E) in the sequence. They 

made  a reduced representation of sequences using only H and E, while ignoring Coil (C). Then, 

using a transition probability matrix, they computed features based on probability of transition 

from H to E and E to H. They showed that their newly developed features based on transition 

probability matrix made good contribution in the overall accuracy of 83.9%. Ding et al. [56] also 
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constructed several new features to extract information from predicted secondary structure 

sequences, such as the following: the variance of the length of H and E segments; variance of the 

positions of H and E in the secondary structure sequence; average length of H and E segments in 

the sequences, while ignoring coil segments. They also showed that their newly designed 

features are good for predicting the α+β  and α/β class proteins compared with some established 

methods. 

3.1.5  Features from both Amino Acid Sequence and Predicted Secondary 

Structure Sequence  

Some successful methods used both amino acid sequences and predicted secondary structure 

sequences to extract features [45,51,58,59]. These methods try to incorporate useful class 

discriminating information from both amino acid sequence and predicted secondary structure 

sequence of protein. In 2008, Kurgan et al. [58] proposed a structural class prediction method 

popularly known as SCPRED. For this research, initially they extracted 2146 features from the 

amino acid sequence. These 2146 features included physiochemical values of amino acid based 

features, amino acid component based features like 1
st 

and 2
nd 

order composition moment vector, 

and property groups based features. The 20 amino acids can be subdivided into groups based on 

any one of several physiochemical properties.  For example, according to electronic property, 20 

amino acids are classified into following five groups: electron donor, weak electron donor, 

electron acceptor, weak electron accepter and neutral [58]. Features like composition percentage 

of electronic groups of amino acids, composition percentage of hydrophobic groups of amino 

acids were calculated. They also extracted 176 features from predicted protein secondary 

structure sequences which include maximum and average length of secondary structure segment, 

composition moment vector of secondary structural state. They reduced the dimension of their 

initial feature set from 2322 to 9 by using Hall's [53] correlation based feature selection method. 

The algorithm chose 8 features from secondary structure sequence and 1 from amino acid 

sequence, confirming the class discriminating quality of features extracted from secondary 

structure sequences. 

     Mohammad and Hampapathalu [59] extracted features from secondary structure sequences, 

but also considered the solvent accessibility information of amino acid residues and residue pairs 
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in the amino acid sequence. They used features like frequency of each amino acid to occur in a 

particular secondary structural states (H, E or C). Frequencies of amino acids pairs predicted as 

secondary structural state H, E and C were also  measured for their model. They calculated the 

solvent accessibility state information for each amino acid in the protein from ACCpro [60]. 

Solvent accessibility of an amino acid residue is described as a binary value, either buried or 

exposed in terms of the degree of its interaction with the water molecules. They calculated 

features like frequency of 'buried' or 'exposed' residues. They also calculated the frequencies of 

amino acid pairs having solvent accessibility state 'buried', 'exposed' or 'partially buried'.  Here 

they considered an  amino acid pair to be in 'buried' or 'exposed' state only if  both the residues 

were predicted  in 'buried' or 'exposed' state, respectively, otherwise the pair was considered as in 

'partially buried' state. Finally they checked their prediction model with different individual 

feature set and with the combination of these feature sets. They successfully showed that using 

information from both protein sequence and predicted secondary structure sequence could give 

better prediction accuracy (80.9%) than some other contemporary methods like SCPRED [58] 

with79.7% accuracy and Kurgan and Chen [61] with 62.7% accuracy .     

     Amin et al. [51] followed Kurgan et al. [58] and Yang et al. [62] to extract features from 

predicted secondary structure sequence of protein.  Along with functional domain features they 

checked the contribution of features from secondary structure sequence in predicting structural 

classes. They used the CFS method to select the effective class discriminating features from 

initial feature set, resulting in only 77 functional domain features from the initial 2400 features, 

and 34 secondary structural features from the initial 110 features. This study too confirmed the 

effectiveness of secondary structural features in solving this problem.     

     Mizianty and Kurgan [45] used features based on the PSI-BLAST profile of proteins along 

with features from amino acid sequence and predicted secondary structure sequence of protein. 

After checking a combination of feature sets, they found that a combination of features from PSI-

BLAST and predicted secondary structure sequence gave the best class discriminating 

performance (83.5% prediction accuracy) for a twilight zone dataset.   
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3.2   Classification Algorithm 

Soft computing techniques like Support Vector Machine (SVM), Artificial Neural Network 

(ANN), Fuzzy Logic (FL) are  machine learning techniques often used to construct  classification 

models for protein structural class prediction. The strength of  soft computing techniques to give 

human-like expert decisions and to handle ambiguous and uncertain situations as well as to 

process approximate and flexible information with low solution cost make them an effective 

choice to be used by bioinformatics researchers who need to deal with a large amount of faulty 

uncertain data.  

     Support Vector Machine seems to be the most popular among all soft computing techniques 

to solve the protein structural classification problem as it has been used in many projects 

[29,31,44-45,51,54-56,58-59]. The basic idea behind this supervised machine learning method is 

to create a hyperplane which not only separate but also maximizes the distance between two 

classes. It then assigns the prediction label according to on which side of this hyperplane a test 

case falls. (described in Chapter 2, Section 2.7). SVM solves the multiclass problem by creating 

either one-against-one binary classifiers or one-against-all binary classifiers. Amin et al. [51], 

Kurgan et al. [58] and Mohammad and Hampapathalu [59] developed one-against-one binary 

classifiers. Amin et al. used the initial predictions by binary classifiers to predict final class 

labels by pair-wise coupling technique as presented by [63]. Mohammad and Hampapathalu [59]  

used a voting scheme to assign the most probable class to the query protein sequence. Wu et al. 

[31] constructed one-against-all binary classifiers. Some methods combined SVM with other 

techniques to get a more efficient result [34][36]. Zhang et al. [34] developed SVM based on 

binary tree methods whereas Ding et al. [36] combined fuzzy logic with SVM.  

     Some methods used Artificial Neural Networks (ANN) to solve the prediction problem [64-

65]. They chose ANN due to its self-organizing and self-adaptability properties. After learning 

and training on representative proteins, it refers the relevant features of proteins, and then it can 

assign a query protein to a specific structural class.      

       Chou et al. [50] used an intricate sorting method to do class prediction, where a similarity 

score was calculated between the query protein and all proteins in the dataset. The query protein 

is assigned to the class of a protein in the dataset which is most similar to it as in nearest 

neighbour approaches.  



 

 

 

23 

 

 

 

 

Chapter 4 

 

Materials and Methods   

 
This chapter provides the description of materials and methods which are used to generate and 

test protein structural class prediction models for this research.  

4.1 Dataset  

In order to be able to compare our results with other published results, we test our method on the 

frequently used 25PDB protein sequence dataset. 25PDB is a benchmark dataset for research on 

fairly dissimilar sequences, since pair-wise sequence similarity is not more than 25% in this 

dataset. The dataset was created using 25% PDBSELECT list [66] and was published in [67].  It 

contains high quality and low similar proteins,  that is, proteins with high resolution structures 

and pair-wise similarity not more than 25%. The proteins were selected from PDB release 

February, 2005 to generate the 25PDB dataset. 25PDB contains 1673 protein sequences, where 

443 sequences belong to the all-α class, 443 sequences belong to the all-β class, 441 sequences 

belong to the α+β class and 346 sequences belong to the α/β class. 25PDB was used in many 

standard methods [45,51,54-59,62]. We obtained the 25PDB dataset along with the 

corresponding secondary structure sequence set from 

http://biomine.ece.ualberta.ca/SCPRED/SCPRED.htm. Mohammad et al. [59] also used the 

dataset from the above mentioned web address. The predicted secondary structure sequences 

corresponding to protein amino acid sequences were predicted using the PSIPRED method [16] . 
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4.2   Generation of Feature Sets  

The generation of a feature set is the most important step in the process of developing a protein 

structural class prediction model, once the machine learning software has been selected. Proteins 

are represented by their amino acid sequences which are alphabetical sequences over an alphabet 

of 20 letters representing amino acids. To feed these amino acid sequences into a classification 

algorithm like a support vector machine, different length sequences should be represented by a 

fixed length numeric feature vector. Various techniques are used to calculate numeric feature 

values from these sequences. The performance of a prediction model greatly depends on the 

techniques of extracting effective, class-discriminating features from sequences. In order to 

develop a more accurate protein structural class prediction model, we experimented with four 

different feature sets and their combinations. Since secondary structural content and spatial 

arrangement plays an important role in structural class allocation, two feature sets were 

developed based on predicted secondary structural class information. Another feature set was 

developed based on both secondary structural state and hydropathy profile. The fourth feature set 

was based on only hydropathy profile of amino acids. The hydropathy profile was chosen due to 

its importance in protein folding. This extends the work of Wu et al. [31] where they used 

hydropathy profile to create a reduced representation of protein sequence over alphabet {I,E,A} 

corresponding to three hydropathy states internal, external and ambivalent, and then extracted six 

features based on 1-word frequencies and position information. 

4.2.1   Feature Set Constructed from Predicted Secondary Structural State 

Profile  

An example of amino acid sequence and corresponding predicted secondary structure sequence 

of protein is given below.  
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Example 1 

Amino Acid Sequence (AAS):   

PVITLPDGSQRHYDHAVSPMDVALDIGPGLAKACIAGRVNGELVDACDLIEN 

Predicted Secondary Structure Sequence (PredSSS): 

CEEECCCCCEEECCCCCCHHHHHHHCCHHHHCCEEEEEECCEECCCCCCCCC  

 

For each protein we extract 22 features based on the corresponding predicted secondary structure 

sequence. Ten of these features are re-used from [55] and [58],  and 12 features are newly 

constructed. The details of these features calculated from the predicted secondary structure 

sequence along with their values using the PredSSS of Example 1 are described in the following 

paragraphs.  

 

Features also used in previous research: 

1. Probabilities of secondary structural states α-helix, p(H), and β-strand, p(E) in a secondary        

structural sequence are used due to their proven ability to discriminate among structural   

classes. The probabilities are calculated using the following formula: 

                                                                        p(i)= (-.                                                                                 (1) 

    where /
= total number of occurrences of secondary structural state i in the sequence, for i ∈{H, E }, and 3= length of sequence. Using PredSSS of Example 1, values for 2 features p(H) 

and p(E) are 0.2115 and 0.2692 respectively where / 4 = 11, /5  = 14, and 3 = 52.  

2. Since the  lengths of the α-helix and β-strand structural components can reflect their spatial     

arrangement and have influence in forming shapes, the following features are also extracted 

from secondary structural sequence. Again N is the length of the sequence of the whole 

protein. 

�  Two  features based on normalized length of the longest segment are calculated by 

 

                                           378�9:; 
= <=>?@A-.                                                              (2)  
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           where 78�9:;
 = length of longest i- segment in the sequence for i ∈{H, E }. Using 

PredSSS of Example 1, values for  378�9:; 4 and  378�9:; 5 are 0.1346 and 

0.1153 respectively where  78�9:; 4 = 7,  78�9:; 5= 6 and 3 = 52. 

� Two  features based on normalized average length of the segment are calculated by 

 

                                           3B�;9:;
  = CDA?@A-.                                                                       (3) 

 

         where B�;9:;
 = average length of i -segment in the sequence for i ∈{H, E }. 

Using PredSSS of Example 1, value for 3B�;9:; 4 and  3B�;9:; 5 are 0.1058 

and 0.0673 respectively where  B�;9:; 4= 5.5,  B�;9:; 5= 3.5 and 3 = 52. 

3. The composition moment vector, CMV, encodes both the secondary structural state  

composition and position in the predicted secondary structure sequence. The 1st order 

composition moment vectors for secondary structural state component α-helix (H) and β-

strand (E) are calculated using the following formula:  

                                              E7F
 = 
*.(.)*) ∑ �
�(-�H*                                                        (4) 

 

where i ∈{H, E } and N is the length of the secondary structure sequence for the whole 

protein, �
� is the index of the IJK position of the i-structural state, and /
 is the total number 

of residues in the i-structural state in the sequence. In PredSSS of length 3 = 52 from 

Example 1, there are two segments of α-helix starting at indices 19 and 28. The composition 

moment vector for H is , E7F4= 
*(L )(L*) (19 + 20 + 21 + 22 + 23 + 24 + 25 + 28 + 29 +

30 + 31) = 0.1026. There are 4 β-strand segments in PredSSS of Example 1 starting at 

indices  2, 10, 34 and 42. Then E7F5= 
*(L )(L*)  (2 + 3 + 4 + 10 + 11 + 12 + 34 + 35 +

36 + 37 + 38 + 39 +  42 + 43)  =  0.1305. 
4.  Let the word "segment" refer to a maximal subsequence of the secondary structure  where the 

sequence is all one state. Probabilities of α-helix (H) and β-strand (E)  segments are calculated 

using the following formula: 

                                                          UV@A(i) =  
�WJ=X?@A-�WJ=X?@A                                                                (5) 
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     where YZ[8\9:; = total number of segments (H, E or C) in the sequence and YZ[8\9:;
 = 

total number of i-segment in the sequence for i ∈{H, E }. In PredSSS of Example 1, total 

number of H segment, YZ[8\9:;4 = 2, total number of E-segment, YZ[8\9:;5 = 4, and total 

number of C-segment. YZ[8\9:;] = 7. Total number of segments, YZ[8\9:; = 2+4+7 = 13. 

The values of UV@A(H)  and UV@A(E)  are 0.1538  and 0.3077,  respectively.  
Newly constructed features in this thesis: 

5. State change probabilities in predicted secondary structure sequence are calculated and used as 

features. We define a state change as a change of secondary structural state from one state to 

different state like a change from α-helix (H) to β-strand (E) or from α-helix (H) to coil (C), in 

the predicted secondary structure sequences. These probabilities are calculated using formula 

(1), with /
= total number of occurrences of predicted secondary structural state change i in 

the sequence, for i ∈{HE, EH, HC, CH, EC, CE }, and N = total number of state changes in the 

sequence. In PredSSS of Example 1, there are a total of 12 state changes including 4 from C 

to E,  4 from E to C, 2 from C to H, and 2 from H to C. So, p(CE)= p(EC)= c*  , and p(CH)= 

p(HC)=  * . Other state change probabilities (HE, EH ) are 0 for this example. In a sequence 

belonging to the all-α class, probabilities of state change from β-strand (E) to coil is low 

whereas for sequences belonging to the all-β class the situation is reverse. In sequences 

belonging to α/β and α+β class, the probability of state change from α-helix (H) to β-strand 

(E) is greater than in the other two classes as they are composed of both α-helix (H) and β-

strand (E) states. In Zhang et al. [55], probabilities of state transition from α-helix (H) to β-

strand (E) and from β-strand (E) to α-helix (H) were calculated in a different manner, since 

they converted secondary structure sequence to a reduced segment sequence composed of 

only α-helix (H) and β-strand (E) segments before calculating probabilities. We use state 

change probabilities from α-helix (H) to β-strand (E) , from α-helix (H) to coil (C), from coil 

(C) to α-helix (H), from coil (C) to β-strand (E), from β-strand (E) to coil (C) and from β-

strand (E) to α-helix (H) as features.  

6. State change moment vectors (SCMV) are calculated to reflect the position at which the state 

changes in secondary structure sequences. These features are displayed to differentiate 

between α+β and α/β class sequences as sequences in these classes possess all types of state 
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change, but their arrangement and positions may have distinguishing characteristics. Six  

State Change Moment Vectors (SCMV) are calculated using the following  formula: 

 

                                             9E7F
 = 
*.(.)*) ∑ �
�(-�H*                                                       (6) 

 

where i ∈{HC, HE, CH, CE, EC, EH}, and N is the length of the protein's secondary structure 

sequence, �
� is the position in the sequence of the IJK occurrence of a state change i, and /
 is 

the total number of times the state changes i. In PredSSS of length 3=52 from Example 1, 

there are 4 state changes from C to E at indices 2, 10, 34, and 42. Therefore, state change 

moment vector for CE is, 9E7F]5= 
*(L )(L*) (2 + 10 + 34 + 42) = 0.0332 . There are 4 state 

changes from E to C at indices 5, 13, 40 and 44, making 9E7F5]= 
*(L )(L*) (5 + 13 + 40 +

44) = 0.0346. There are 2 state changes from C to H at indices 19 and 28, making 9E7F]4= 

*(L )(L*) (19 + 28) = 0.0177 .  There are 2 state changes from H to C at indices 26 and 32, 

making 9E7F4]= 
*(L )(L*) (26 + 32) = 0.0219 . In this example there are no state changes 

from H to E or E to H, making 9E7F45 = 9E7F54 = 0.  While our work was in progress, 

Ding et al. [53] published work using features based on two 2
nd

 order composition moment 

vectors E7F45 and E7F54, which may represent the same concept as our 9E7F45 and 9E7F54 (Ding et al. [53] did not give the equation they use for calculating E7F45 and E7F54).   

4.2.2   Feature Set Constructed from Predicted Secondary Structure and 

Hydropathy Profile 

Physiochemical properties of amino acids are generally believed to have significant impact in 

forming protein structures, since these properties affect the tendency for certain amino acid side 

chains to be exposed to water. Therefore it is not surprising that various physiochemical 

properties of amino acids such as hydropathy, polarity, isoelectric point and flexibility have been 

used to predict structural classes [31,36,58,68-69]. For this study, the hydropathy profile of 

amino acids has been chosen, assuming it to have major impact on protein folding. The 
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hydropathy profile describes the hydrophobic and hydrophilic nature of segments of a protein 

based on amino acid sequence of protein. Liu and Wang [70] categorized the 20 amino acids into 

three groups according to hydropathy: Internal (I), External (E) and Ambivalent (A). Amino 

acids belonging to the Internal group are likely to be found in the interior of protein's structure, 

whereas amino acids from the External group are likely to appear at the surface. We use the 

following rule from Liu and Wang [70] to categorize amino acids according to hydropathy: 

                                  F(S(i)) = i  j  kl  9(k) = m, j, n, 7, F            o  kl 9(k) = p, o, q, r, 3, s, t    B  kl 9(k) = 9, Y, u, E, v, w, x, By                                              (7) 

Here S(i) represent the ith 
amino acid in amino acid sequence of protein, and F(S(i)) represents 

its corresponding replacement according to its hydropathic nature. Below is an example of amino 

acid sequence of protein and its corresponding hydropathy sequence generated using formula (7).  

 

Example 2.1 

Amino Acid Sequence (AAS):   

PVITLPDGSQRHYDHAVSPMDVALDIGPGLAKACIAGRVNGELVDACDLIEN 

Hydropathy sequence (HS):  

AIIAIAEAAEEEAEEAIAAIEIAIEIAAAIAEAAIAAEIEAEIIEAAEIIEE 

 

For each protein in the dataset, the corresponding hydropathy profile sequence (HS) is used to 

construct 72 features. Details of these features along with their values calculated using the HS of 

Example 2.1 are given below: 

1. Probabilities of hydropathy states Internal, p(I), External, p(E), and Ambivalent, p(A) in the 

hydropathy profile sequence are calculated as features using the formula (1) where /
= total 

number of occurrences of hydropathy state i in the sequence for i ∈{I, E, A}, and 3= length of 

sequence. For HS in Example 2, the values of 3 features p(I), p(E), and p(A) are 0.2885, 

0.3077, and 0.4038 respectively where /|=15, /5  = 16, /C = 21, and 3 = 52. 

2. Normalized longest length and normalized average length of the three different hydropathy 

blocks, I  block, E block and A block, in the sequence are calculated using formulas (2) and 
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(3) for  i ∈ {I, E, A}. For HS of Example 2.1, the values for  378�9:;|, 378�9:;5, and  378�9:;C are 0.0385, 0.0577, and 0.0577 respectively where  78�9:;| = 2,  78�9:;5 = 78�9:;C = 3, and 3 = 52. The values for  3B�;9:;|, 3B�;9:;5, and  3B�;9:;C are 

0.0243, 0.0403, and 0.0288 respectively where  B�;9:; |= 1.2727,  B�;9:; 5 =1.25, and  B�;9:; C  = 1.5. 
3. The conditional probabilities of a hydropathy state occurring at position i given a certain  

hydropathy state at the previous position  (i-1) are calculated to reflect the spatial arrangement 

of different hydropathy states in the sequences. Nine conditional probabilities are calculated 

using the following formula: 

                                                             p(hi  | hi-1)  = }(K-~� ,   K-) }(K-~�)                                                           (8) 

    where  U(ℎ
)*, ℎ
) = the probability of state ℎ
)* being followed by state ℎ
  in the sequence 

and  U(ℎ
)*) = probability of state i-1 in the sequence. Here, U(ℎ
)*, ℎ
) and U(ℎ
)*)  are 

calculated using formulas (9) and (10), respectively.  

                                                    U(ℎ
)*, ℎk) = �WJ=X�-~��-  .)*                                                                     (9) 

                                                      U(ℎ
)*)= �WJ=X�-~�  .                                                                 (10) 

    where YZ[8\K-~�K-=  total number of occurrences of state pair [ℎ
)*, ℎ
]  in the sequence, 3= 

length of the sequence, and YZ[8\K-~�= total number of occurrences of state ℎ
)* in the 

sequence. State ℎ
  belongs to hydropathy state space {I, E, A}. Thus, U(ℎ
)*, ℎ
)  produces 9 

combinations.  For HS of Example 2.1,  the probability that  E occurs at a position given that 

A occurs at the previous position, p(E |A) is  }(C,   5) }(C)  = �.*�c� �.c���   where U(B, o) = � L*  and 
U(B)=  * L  , as the total number of occurrence of A followed by E, YZ[8\C5 = 7 , total number 

of occurrence of A, YZ[8\C = 21, and length of sequence,  3 = 52.   

4. To reflect the impact of two consecutive hydropathy state elements on two consecutive 

secondary structural state elements at the same position, another conditional probability is 

used. Here we calculate 54 conditional probability values which reflect the impact of  
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hydropathy state pair h which belongs to set {EE, EI, EA ,II, IE, IA, AA, AI, AE} on secondary 

structural state pair s which belongs to the set {HC, CH, EC, CE, HE, EH} using following 

formula:  

                                                                p(s |h)  = }(K ,   V)}(K)                                                                  (11)  
where U(� | ℎ ) =  probability that secondary structure pair s occurs given that hydropathic 

pair h  is at the same position in the sequence,  U(ℎ) =  probability that hydropathic state pair 

h occurs in the sequence, and U(ℎ, �) = probability of h and s co-occurs at a given location. 

Here,  U(ℎ , �) and U�ℎ�� are calculated using formulas (12) and (13), respectively:  
                                                               U(ℎ , �) = �WJ=X�,� .)*                                                                  (12) 

                                                           U(ℎ)= �WJ=X� .)*                                                                     (13) 

where YZ[8\V,K= total number of times structure pair s occurs where hydropathic pair h  

occurs, 3=length of the sequence, and YZ[8\K= total number of occurrences of state pair h in 

the sequence.   
    
Example 2.2 

Hydropathy sequence (HS):  

AIIAIAEAAEEEAEEAIAAIEIAIEIAAAIAEAAIAAEIEAEIIEAAEIIEE 

Predicted Secondary Structure Sequence (PredSSS): 

CEEECCCCCEEECCCCCCHHHHHHHCCHHHHCCEEEEEECCEECCCCCCCCC  

 

Using Example 2.2, the conditional probability of secondary structural state pair EC in 

PredSSS if EA occurs at the same positions in HS,  p(EC |EA)  is  }(5C ,   5])}(5C)  = 0.1176, since  
the probability that secondary structure pair EC co-occurs with the hydropathic pair EA is  
U(oB , oE) = * L* , and the probability of hydropathy state pair EA occurring in the sequence is 
U(oB)= � L*. There is only one occurrence of secondary structural state pair EC in PredSSS and  
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hydropathy state pair EA in HS at same position (index 12), so YZ[8\5],5C= 1. The total 

number of occurrence of hydropathy state pair EA in HS is  YZ[8\5C= 6, and the length of the 

sequence is 3 = 52. 
4.2.3  Feature Set formed by Extracting n-gram Patterns from Predicted 

Secondary Structure Sequence 

A protein secondary structure sequence is a string of any length over the set Σ= {H, E, C}. An n-

gram pattern is defined to be a block of length n consisting of n characters over set Σ. To reflect 

the information related to predicted secondary structural content and its arrangement in a 

secondary structure sequence, n-gram patterns are extracted from the predicted secondary 

structure sequence. Frequencies of n-gram patterns are used as features to describe the sequence 

where n = 2, 3, 4, 5. Two feature sets are developed using frequencies of n-gram patterns. The 

initial feature set is developed using the frequencies of all n-gram patterns. To extract n-gram 

patterns, a sliding window of length n is moved from left to right one character at a time over the 

sequence as shown in Figure 4.1, and then frequencies of all n-gram patterns are calculated. The 

dimension of the initial feature set is 3
2 

+ 3
3 

+ 3
4
 + 3

5
 = 360, since for a window of length n there 

are 3
n
 different possible patterns that can be counted. 

     The second feature set is a reduced version of the initial one. In this case, the Term Frequency 

- Inverse Document Frequency (TF-IDF) technique is used to select "important" patterns from 

the sequences. Yang et al. [71] used TF-IDF technique on amino acid sequences of proteins to 

extract features in order to classify proteins into different functional groups. TF-IDF is a numeric 

statistic to find important terms from a set of documents  [72]. It is based on the fact that if a 

term is frequent in many documents, then it has low quality for distinguishing documents, and if 

it is present in few documents  frequently then it has the ability to differentiate those documents 

from others. The TF-IDF technique assigns weights to terms present in documents. The terms 

with higher weight are assumed to be important terms, having the capability to separate a 

document from others. 

     For this thesis, we construct a feature set which includes important class discriminating 

patterns from protein secondary structure sequences. Here each protein sequence is treated as a 

document. Weights of different length patterns from sequences are calculated  using the TF-IDF 
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technique. Patterns with weight higher than a chosen threshold are selected as important patterns. 

The frequency of selected patterns in a sequence are calculated to form the feature vector for that 

sequence.  According to the TF-IDF technique, the weight wp,s of a pattern p in sequence s is 

calculated using the following formula:    

                                                                  wp,s = fp,s  ln .(�                                                                  (14) 

where fp,s  is the frequency of pattern p in sequence s, N is the total number of sequences in the 

dataset, and /} is the number of sequences in which pattern p occurs. The final weight wp  of 

pattern p is calculated using the following formula: 

                                                                        wp = max wp,s                                                                                                           (15) 

                                                                       s ∈ S 

where S denote the whole dataset. 

 

 

Figure 4.1: Sliding window technique to extract n-gram patterns from predicted secondary 

structure sequence of protein. Window sizes of 2,3,4, and 5 are each shown at two positions. 

     For this dataset (25PDB), the weight of patterns usually lies between 0 and 10, with very few 

exceptions where the weight is more than 10.  In the next steps we set the threshold at 5 so that 

the patterns having weight more than 5 are selected for inclusion as features. This way we select 

approximately the best 50% of the patterns. Frequencies of these selected patterns are used to 

form a feature vector. Thus, the TF-IDF technique is used to select patterns having good 
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distinguishing quality. In this case 140 patterns are selected, which reduces the dimension of 

feature vector from the initial one by 60%.  

4.2.4   Feature Set formed by Extracting n-gram Patterns from Hydropathy 

Profile 

In order to assess the impact of hydropathy blocks in structural class allocation, we extracted n-

gram patterns from the hydropathy sequence. Here, n-gram patterns constructed over the 

alphabet {I, E, A}, with n = 2, 3, 4, 5 are extracted using the same process as in the previous case 

with the predicted secondary structural patterns. We construct and test the complete set of 

hydropathic n-gram patterns, a 360-dimensional feature vector. Since the classification ability of 

this feature set turned out to be less than satisfactory (as described in Chapter 5, Section 5.1), the 

pattern filtration using the TF-IDF process is not applied.  

4.3 Classification Algorithm  

Protein structural class prediction is a typical classification problem in the area of bioinformatics 

which can be solved by supervised machine learning technique. Supervised machine learning 

methods can classify unknown test data based on the knowledge gained during a training 

process. Several machine learning methods like Artificial Neural Network (ANN), Support 

Vector Machine (SVM) , Bayesian Network, and Markov models are used in bioinformatics 

research [73]. Among all these machine learning techniques, SVM is gaining popularity in 

bioinformatics due to its good performance in real word problems, ability to handle high 

dimensional noisy data and efficiency in handling variable length sequences and graphs [74]. 

Many successful protein structural class prediction models use SVM [29,31,44-45,51,54-56,58-

59] due to its proven competence. After reviewing the research on predicting protein structural 

classes based on SVM, we decided to use SVM as the classification algorithm.       

     To implement SVM, we use the LIBSVM [75-76] tool in MATLAB. We downloaded 

LIBSVM software version 3.12 from http://www.csie.ntu.edu.tw/~cjlin/libsvm. The radial basis 

function is used here because of its proven superiority in solving classification problems [77-78]. 

Parameters C=4 and gamma = 0.5 are chosen by the grid search strategy available in LIBSVM 
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software [75-76]. Protein structural class prediction is a multi-class classification problem, since 

a new protein is to be predicted as belonging to one of the four structural classes (all-α, all-β, 

α+β, and α/β ). We implement the one-against-all multi-class approach where four binary 

classifiers are generated to classify data as all-α / ~all-α, all-β / ~all-β, α+β / ~α+β, and α/β / 

~α/β.  The accuracy of these classifiers was calculated by their ability to classify test data 

correctly. (Details of methods used to measure the accuracy of models is discussed in the next 

section).  

4.4   Performance Measure 

To measure the performance of the SVM prediction model, we use the statistical method of k-

fold cross validation. In supervised learning, a certain amount of labeled data is available for 

training the prediction model. The performance of a prediction model depends on its efficiency 

on detecting the labels of unlabeled data. To estimate performance one can set aside some of the 

labeled data for testing, making sure that the test data is not also used for training.  Where the 

available data is limited, then the process of training on part of the labeled data and testing on the 

remaining part can be repeated to improve the estimate of accuracy. In k-fold cross validation, 

the total dataset is divided into k parts where k-1 parts are used for training the model and the 

remaining part is used for testing using the model trained by training data. The process is then 

repeated k times, so that each instance in the dataset is used once as a test instance. Figure 4.2 

shows an example of k = 3 fold cross validation. In Turn 1, the left 
 � of the data are used to train 

the model, and the right third of the data is used to test the inferred model. The result is the 

model's accuracy on that test. Turns 2 and 3 use different thirds for testing and the rest for 

training. The results are averaged to give the estimated accuracy of the model trained on the 

whole dataset. The accuracy of each model, for example Model 1 in Figure 4.2, is defined by the 

following formula: 

 

                                                          Accuracy= �� � �.�� � �. � �� ��.                                                      (16) 
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where TP, TN, FP, and FN correspond to the number of true positive, true negative, false  

positive and false negative classifications, respectively. True positive refers to actual positive 

data classified as positive, true negative refers to actual negative data classified as negative, false 

positive refers to actual negative data classified as positive, and false negative refers to actual 

positive data classified as negative. 

 

  

 

 

 

 

 

Legends 

 

       Figure 4.2: Flowchart of cross-validation procedure  

      

     The k-fold cross validation prediction accuracy is defined as the average accuracy over the k 

models developed in this way. The measure is used as the estimate of accuracy of a model built 

on all the labeled data. We used 10-fold, 15-fold, and 20-fold cross validation to measure the 

performance of each of the four binary classifiers developed with each of the nine different 

feature sets.  The overall accuracy of these models for a given feature set was calculated using 

following formula: 

                                        Overall accuracy = 
∑ =����=��- ∗ JWJ=X-�-�� ∑ JWJ=X-�-��                                              (17) 

Training data 

Testing data 

Whole dataset 

Turn 3 
Turn 2 

Turn 1 

1 

Model 1 

Result 

Model 2 

Result 

Model 3 

Average 

Result 
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where the summation is over the four classes, [Z[8\
 is total number of sequences in class i, and 8����8� 
 is the 10-fold / 15-fold / 20-fold cross validation prediction accuracy for class i. The 

final overall accuracy of each model (shown in the rightmost column of Table 5.2 in Section 5.1) 

is the average of accuracies measured using 10-fold, 15-fold and 20-fold cross validation 

techniques.  

     The Jackknife test is also used to measure the accuracy of the SVM model, after choosing the 

best performing feature set. The Jackknife test is k-fold cross validation, where k is equal to 

number of proteins in the dataset. In this case, each protein is used as the test dataset in turn 

while the model is trained with the rest of the sequences. Again, the overall prediction accuracy 

of the model was calculated using formula (17). 

     To evaluate the effectiveness of every classification model, four additional measures were 

used: Matthews correlation coefficient (MCC), Sensitivity, Specificity and Precision [79-80]. 

Sensitivity, specificity, precision and MCC score for each type of class prediction are given by 

formulas (18) - (21). 

                                                   Sensitivity = ���. � ��                                                                                (18) 

                                                      Specificity  = �.����.                                                                               (19) 

                                                   Precision= ���� � ��                                                                           (20) 

  
                                                MCC = ((�� )( �.)  ) (��)( �.))¢(�����) (����.)(�.���)(�.��.)                                          (21) 

 

Sensitivity refers to the fraction of actual positives correctly identified for a given class.  

Specificity refers to the fraction of actual negatives correctly identified for a given class. 

Precision refers to the fraction of positives  that are true positives. Matthews correlation 

coefficient (−1 ≤ MCC ≤ +1) corresponds to prediction quality where +1 represents perfect 

prediction, and -1 represents total disagreement between prediction and learning. 
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4.5   Overall Approach 

The steps to implement our classification models are shown in Figure 4.3. Our input file (25PDB 

dataset) contains amino acid sequences of proteins, corresponding predicted secondary structure 

sequences and their true class labels. We used both predicted secondary structure sequences and 

amino acid sequences to create feature sets F1-F8. Programming language C was used to extract 

features from sequences as well as to create input file for LIBSVM.  When we used predicted 

secondary structure sequences then features were directly extracted from them. When we used 

amino acid sequences then firstly those amino acid sequences were transformed to hydropathy 

sequences  and then features were extracted from hydropathy sequences. To create input file for 

LIBSVM, class information are added to features. In the input file for LIBSVM, every protein 

sequence was represented by a fixed dimensional feature vector along with its true class label. 

Nine classification models were developed using nine different feature sets. The input files were 

fed into the LIBSVM version 3.12. The cross validation, training, and testing tasks were done in  

MATLAB interface using LIBSVM software to give final results.  
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Figure 4.3: Flowchart of implementation steps 
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Chapter 5 

 

Results 

 
We develop several different feature sets for structural class prediction. These feature sets and 

combinations thereof are used to generate SVM classifiers which in turn are tested. A list of all 

of these feature sets is given in Table 5.1. The performance of the SVM models trained on the 

different feature sets is given in Table 5.2. The final overall accuracy of each model is measured 

as the average of its accuracies calculated using 10-fold, 15-fold, and 20-fold cross validation 

methods. 10-fold cross validation was also used in [58] and [59] to measure the performance of 

protein structural class prediction model. Comparisons of these results with those of published 

methods are described below.  

                                     Table 5.1: Feature sets used for class discrimination 

Index # of features Feature Set Definition 

F1 

F2 

F3 

F4 

F5 

F6 

F7 

F8 

F9 

22 

72 

360 

140 

360 

94 

212 

162 

234 

Predicted secondary structure state profile 

Predicted secondary structure and hydropathy state profile 

All n-gram patterns from predicted secondary structure sequence 

Filtered n-gram patterns from predicted secondary structure seq. 

All n-gram patterns from hydropathy sequence 

F1 + F2 

F2 + F4 

F1 + F4 

F1 + F2 + F4 
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Table 5.2: Performance of feature sets measured by Cross Validation (CV)  

Feature   

 Set 

Fold & 

Avg. class-

wise acc(%) 

Class-wise  accuracy(%)  Overall 

Acc(%) 

Average 

Acc(%) 

(Standard 

Deviation) 

All α All β  α+ β α/ β 

 

 

F1 

 

10F  CV 

15F  CV 

20F CV 

 

 

94.44 

94.32 

94.32 

 

91.33 

91.51 

91.39 

 

79.68 

79.86 

79.68 

 

89.20 

89.66 

89.60 

 

88.64 

88.80 

88.70 

 

 

88.71 

(0.08) 

Average 94.36 91.78 79.74 89.49 

 

 

F2 

 

10F  CV 

15F  CV 

20F CV 

 

 

93.78 

93.78 

93.60 

 

88.52 

88.64 

88.46 

 

73.69 

73.70 

73.70 

 

83.56 

84.10 

84.40 

 

84.97 

85.12 

85.09 

 

 

85.26 

(0.08) 

Average 93.72 88.54 73.70 84.02 

 

 

F3 

 

10F  CV 

15F  CV 

20F CV 

 

94.68 

94.68 

94.63 

 

90.91 

91.09 

91.03 

 

76.27 

76.63 

76.69 

 

79.49 

79.50 

79.44 

 

85.68 

85.83 

85.80 

 

 

 

 

85.77 

(0.08) 

Average 94.66 91.01 76.53 79.48 

 

 

F4 

 

10F  CV 

15F  CV 

20F CV 

 

 

94.62 

94.62 

94.62 

 

90.85 

91.03 

90.97 

 

75.85 

75.91 

76.03 

 

79.32 

79.32 

79.32 

 

85.51 

85.57 

85.59 

 

 

 

85.56 

(0.04) 

Average 94.62 90.95 75.93 79.32 

 

 

F5 

 

10F  CV 

15F  CV 

20F CV 

 

76.47 

77.23 

77.17 

 

73.87 

73.58 

73.58 

 

70.98 

73.64 

73.64 

 

79.74 

79.32 

79.32 

 

75.01 

75.75 

75.73 

 

 

 

75.50 

(0.42) 

Average 76.96 73.68 72.75 79.46 

 

 

F6 

 

10F  CV 

15F  CV 

20F CV 

 

94.26 

94.20 

94.32 

 

 

91.33 

91.27 

91.45 

 

80.81 

80.75 

80.51 

 

89.54 

89.24 

89.54 

 

88.96 

88.85 

88.93 

 

 

 

 

88.91 

(0.06) 

Average 94.26 91.35 80.69 89.44 
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Table 5.2 Continued 

Feature   

 Set 

Fold & 

Avg. class-

wise acc(%) 

Class-wise  accuracy(%)  Overall 

Acc(%) 

Average 

 Acc(%) All α All β  α+ β α/ β 

 

 

F7 

 

10F  CV 

15F  CV 

20F CV 

 

 

93.84 

94.32 

94.14 

 

90.97 

91.09 

91.03 

 

79.43 

79.80 

79.92 

 

88.40 

88.11 

88.11 

    

88.15 

88.35 

88.32 

 

 

 

88.27 

(0.11) 

 

Average 94.10 91.03 79.72 88.21 

 

 

F8 

 

10F  CV 

15F  CV 

20F CV 

 

 

94.80 

94.80 

94.68 

 

91.69 

91.57 

91.63 

 

 

80.87 

80.87 

80.81 

 

89.96 

89.78 

89.90 

 

89.30 

89.23 

89.23 

 

 

89.25 

(0.04) 

 

Average 94.76 91.63 80.85 89.88 

 

 

F9 

 

10F  CV 

15F  CV 

20F CV 

 

94.20 

94.26 

94.14 

 

91.15 

91.27 

91.33 

 

80.63 

81.35 

80.99 

  

89.54 

89.71 

89.78 

 

88.86 

89.13 

89.03 

 

  

89.00 

(0.14) 

Average 94.20 91.25 80.99 89.43 

 

5.1   Performance Comparison Among the Various Feature Sets 

Table 5.2 shows that for the all-α class, every feature set except F5 performs very well (accuracy 

93%-94%), and for the all-β class, every feature set except F2 and F5 shows 90%-92% accuracy. 

F2 shows ~89% accuracy for the all-β class, which is better than the accuracy of ~74% given by 

F5. For the α+β and α/β classes, performance of feature sets F1 and F6-F9 are considerably better 

than the others. The poor performance of feature set F5 for all classes, where F5 is constructed 

based on frequencies of n-gram hydropathy patterns, suggests that this information alone does 

not possess very good structural class distinguishing ability. Feature set F2, which does better 

than F5, is based on both hydropathy information and secondary structural information. Feature 

set F1, which has only 22 features and which is based on predicted secondary structural content, 

gives very good overall prediction accuracy. This corroborates the expected impact of predicted 

secondary structural content in predicting structural classes. The feature sets F6-F9 are 
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combinations of feature sets, and these show slightly better results than F1. The improved 

accuracy is at the cost of higher dimension.  

     Feature sets F3 and F4 both are developed based on n-gram secondary structural patterns in 

predicted secondary structure sequences. Feature set F3 is developed using all n-gram secondary 

structural patterns, whereas F4 is constructed based on filtered n-gram patterns.  The predicted 

accuracy of the model based on feature set F3 is less than one percentage point better than F4, 

whereas in F4 the dimension of the feature set is reduced by 60% using TF-IDF. This suggests 

that the TF-IDF method is a good choice for filtering this type of  pattern. Between F3 and F4, 

low dimensional feature set F4 is combined with other feature sets to check the performance of 

combinations. Feature set F5, based on n-gram hydropathy patterns, is not filtered using the TF-

IDF method, because of its relatively poor performance compared to other feature sets. Feature 

set F8 with 162 features from sets F1 and F4 shows the  highest average overall accuracy 

(89.25%). Feature set F9 with 234 features from F1, F2, and F4 shows an average overall 

accuracy of 89% which is slightly less than F8. Note that F9 is a superset of F8, and it does a 

little worse than F8. Although the difference between the accuracies with F8 and F9 is not 

statistically significant according to t-test they are consistent with the well known concept of data 

mining that increasing the number of features does not necessarily increase the performance of a 

model, and may even decrease the performance. The performance of a model depends less on the 

number of features, and more on the class discriminating quality of features. 

     The average of the 10k, 15k, and 20k  cross-validation accuracies of each model based on 

feature sets F1-F9  are shown in Figure 5.1 (a-d). This summarizes average class-wise accuracies 

presented in Table 5.2.  Figure 5.1 shows that models based on any feature set other than F5 are 

similar in their prediction accuracy of the all-α and the all-β classes. The overall prediction 

quality of the models mainly differs according to the α+β and α/β class data.  
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                                            (a)                                                             (b)           

 

 

                                           (c)                                                               (d) 

 

    Figure 5.1: Performance of feature sets F1 - F9 for (a) all-α class, (b) all-β class, (c) α+β class,                   

                       and (d) α/β class 
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5.2   Prediction Quality of Different Models 

Most research papers use not only cross validation accuracy for the multiclass classification but 

also calculate the specificity, sensitivity, precision, and MCC score to evaluate the prediction 

quality of classification model. We measure these statistics for prediction quality twice using 

different training and testing sets. For both observations, the whole dataset is divided into 

training and testing sets where 20% of the data are selected randomly for testing and the rest 

80% data are used for training the models. The prediction qualities in terms of average 

specificity, average sensitivity, average precision, and average MCC score for each class of nine 

models for the two experiments are shown in Table 5.3.  

     Table 5.3 shows that the specificity score (average 91.5%) is greater than the sensitivity score 

(average 72.6%) ( These are averages over the 36 classes representing nine feature sets and four 

structural classes). This indicates that all these model are better in predicting the negative class (-

1) data than positive class (+1) class data. The average MCC score for predicting the all-α and 

the all-β class is more than 0.80 and 0.70, respectively, for all these models except the one based 

on F5. This indicates fairly good prediction ability in classifying the all-α and all- β class data.  

The MCC score for classification of the α/β class data is between 0.60 and 0.76 for all models 

except F5. These scores are not as good as the MCC score for the all-α and all-β class, but they 

are better than the MCC scores for predicting  the α+β class data (which is less than 0.50). This 

indicates that these feature sets are not as good in supporting prediction of the α+β class data as 

they are in supporting prediction of the other three classes. 
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Table 5.3:  Performance of feature sets F1 - F9 using average of Specificity, Sensitivity, 

Precision, and MCC scores. The average of two experiments is shown, plus or minus the 

range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature 

Set 

Structural 

 Class 

Avg 

Spec (%) 

Avg 

Sens (%) 

Avg 

Prec (%) 

Avg 

MCC 

 

 

F1 

all α 96.5 

±1.5 

90.0 

±1.0 

91.5 

±2.5 

0.87 

±3.0 

all β 97.5 

±1.5 

78.5 

±1.5 

93.5 

±4.5 

0.82 

±4.0 

α+ β 85.5 

±0.5 

70.0 

±11 

48.5 

±6.5 

0.48 

±4.0 

α/β 95.0 

±1.0 

80.5 

±6.5 

81.5 

±5.5 

0.76 

±1.0 

 

 

F2 

all α 91.0 

±2.0 

92.5 

±0.5 

79.5 

±4.5 

0.83 

±1.5 

all β 86.0 

±0.0 

85.5 

±1.5 

74.0 

±5.0 

0.70 

±2.5 

α+ β 95.5 

±1.5 

28.5 

±1.5 

63.5 

±11.5 

0.33 

±3.0 

α/β 89.5 

±1.5 

73.5 

±5.5 

63.5 

±0.5 

0.60 

±2.5 

 

 

F3 

all α 95.0 

±1.0 

91.5 

±0.5 

89.0 

±3.0 

0.86 

±1.0 

all β 94.5 

±2.5 

85.5 

±1.5 

87.0 

±8.0 

0.81 

±5.5 

α+ β 88.5 

±1.5 

58.0 

±2.0 

57.5 

±1.5 

0.46 

±3.0 

α/β 92.5 

±1.5 

63.5 

±9.5 

62.5 

±0.5 

0.56 

7.5 
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Table 5.3 Continued 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature 

Set 

Structural 

 Class 

Avg 

Spec(%) 

Avg 

Sens (%) 

Avg 

Prec  (%) 

Avg 

MCC 

 

 

 

F4 

all α 95.0 

±0.0 

93.0 

±0.0 

89.5 

±0.5 

0.87 

±0.0 

all β 

 

95.0 

±2.0 

84.0 

±3.0 

89.0 

±6.0 

0.80 

±5.5 

α+ β 

 

85.5 

±2.5 

62.0 

±3.0 

50.5 

±3.5 

0.44 

±5.5 

α/β 

 

95 

±0.0 

50.5 

±7.5 

64.0 

±1.0 

0.56 

±12.0 

 

 

 

F5 

all α 67.5 

±1.5 

78.5 

±0.5 

51.0 

±5.0 

0.42 

±2.0 

all β 

 

75.5 

±0.5 

68.0 

±0.0 

51.0 

±1.0 

0.41 

±0.5 

α+ β 

 

95.0 

±2.0 

8.5 

±1.5 

34.0 

±12.0 

0.10 

±0.0 

α/β 92.0 

±2.0 

26.0 

±3.0 

46.5 

±3.5 

0.22 

±0.0 

 

 

 

F6 

all α 

 

96.5 

±0.5 

86.0 

±3.0 

93.0 

±1.0 

0.84 

±1.0 

all β 

 

97.0 

±1.0 

75.5 

±0.5 

92.5 

±2.5 

0.77 

±1.5 

α+ β 

 

87.5 

±1.5 

60.5 

±9.5 

50.5 

±0.5 

0.45 

±4.5 

α/β 

 

91.5 

±1.5 

89.0 

±4.0 

66.0 

±7.0 

0.72 

±2.5 
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Table  5.3 Continued 

 

 

  

Feature 

Set 

Structural 

 Class 

Avg 

Spec  (%) 

Avg 

Sens  (%) 

Avg 

Prec  (%) 

Avg 

MCC 

 

 

 

 

F7 

all α 96 

±1.0 

89.0 

±1.0 

92.5 

±1.5 

0.86 

±1.0 

all β 

 

96.5 

±0.5 

77.0 

±1.0 

92.0 

±2.0 

0.77 

±1.0 

α+ β 

 

88.5 

±1.5 

56.0 

±7.0 

50.0 

±3.0 

0.42 

±1.0 

α/β 

 

91.5 

±1.5 

85.0 

±8.0 

65.5 

±5.5 

68.5 

±1.5 

 

 

 

 

F8 

all α 95.6 

±0.5 

91.2 

±0.5 

87.5 

±0.5 

0.86 

±0.0 

all β 

 

96.0 

±1.0 

81.5 

±2.5 

88.5 

±3.5 

0.79 

±4.0 

α+ β 

 

87.5 

±0.5 

60.0 

±3.0 

63.5 

±0.5 

0.49 

±2.0 

α/β 92.0 

±2.0 

80.5 

±0.5 

73.0 

±4.0 

0.71 

±3.5 

 

 

 

F9 

all α 

 

96.5 

±0.5 

89.5 

±1.5 

90.5 

±2.5 

0.87 

±0.5 

all β 

 

96.0 

±0.0 

80.5 

±0.5 

89.0 

±1.0 

0.79 

±0.0 

α+ β 

 

88.0 

±1.0 

62.0 

±7.0 

59.5 

±3.5 

0.49 

±3.0 

α/β 91.5 

±2.5 

81.0 

±0.0 

73.0 

±7.0 

0.71 

±4.5 
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5.3   Visualization of Clustering and Prediction Quality of Different 

Models 

Figure 5.2 presents visualizations obtained using MATLAB LIBSVM to show the clustering as 

well as the prediction quality of nine models. These visualizations are based on the training and 

testing sets used in the first experiment of Section 5.2 to measure the prediction quality of 

different models. The X and Y axis of these visualizations are arbitrarily chosen by MATLAB 

LIBSVM code. In these visualizations, four different colors are used to represent four different 

classes as following: red for the all-α, orange for the all-β class, yellow for the α+β class, and 

green for the α/β class data. The visualizations of clustering with the best performing feature set 

F8 (Figure 5.2(h)) and worst performing feature set F5 (Figure 5.2(e)) show the difference in 

their clustering quality. In Figure 5.2(e)  the clusters/class data represented by 4 different colored  

circles are jumbled together. No class is clearly separable from the others, which implies the 

poor clustering ability of model with feature set F5. In Figure 5.2(h) the class data represented by 

red (all-α) and orange (all-β) circles are clearly separable. The class data represented by yellow 

(α+β) and green (α/β) circles are not as plainly separable as red (all-α) and orange (all-β) class 

data, but the clusters are clearly visible.  The poor classification using F5 can be seen in Figure 

5.2(e) where the misclassified data (the edge color and fill color of circles are not the same ) are 

more visible than they are in Figure 5.2(h) using feature set F8.                

     From all these visualizations it is evident that all these feature sets except F5 are good in 

clustering and predicting the all-α and all-β class data, since in every case the clusters with red 

and orange colored circles are fairly separable. Using feature set F5, the clusters with red (all-α) 

and orange (all-β) colored circles are not separable which confirms their poor prediction ability 

(comparing to models with other feature sets) for the all-α and all-β class data.  
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                (a) Clustering  using F1                                      Classification using F1 

 

                 (b) Clustering using F2                                          Classification using F2 

Figure 5.2: Visualizations of example clustering and classification using feature sets F1-F9. In 

each case, the left panel shows the clustering where four different colored filled circles represent 

four different classes of data (red for the all-α, orange for the all-β, yellow for the α+β, and green 

for the α/β class data). The right panel shows the classification, where unfilled circles represent 

training data, and filled circles represent test data. The fill color represents the class label 

determined by the SVM model and the edge color represents the true class label. (Circle colors 

are same for class data as in clustering in left panel). 
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              (c) Clustering using F3                             Classification using F3 

 

 

                                    (d) Clustering using F4                                 Classification using F4 

 

Figure 5.2 Continued 
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          (e) Clustering using F5                                 Classification using F5 

 
 

 

 

 

 

 

 

 

 

 

 

 

                             (f) Clustering using F6                                     Classification using F6 

 

Figure 5.2 Continued 
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          (g) Clustering using F7                             Classification using F7 

 

 

           (h) Clustering using F8                                 Classification using F8 

 

Figure 5.2 Continued 
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 (i) Clustering using F9                              Classification using F9 

 

Figure 5.2 Continued 

            

5.4   Performance Comparison with Published Methods 

Our best performing models (according to cross validation accuracy) are based on feature sets F8 

(combination of F1 and F4) and F1(feature set constructed from predicted secondary structure 

state profile). These models are compared with some published results in Table 5.4 (All these 

published results are based on 25PDB dataset). Set F1, although not quite as accurate as F8, is 

included in the comparison because of its low dimension. Since most of these published results 

are based on the jackknife test (see Chapter 4, Section 4.4), our results are also measured with 

jackknife test in this table. Table 5.4 shows that our classifiers based on F1 or F8 give higher 

prediction accuracies for all-β, α+β and α/β class than the results reported in the literature for the 

25PDB dataset. Our classifier's (F8) best overall prediction accuracy (89.25%) is marginally 

better than the previous best performing method (87.8%) [51]. The latter result is based on 2510 

features whereas our model uses only 234 features. Amin et al. [51] reduced the number of 

features using correlation based feature selection method, but after filtering down to 57 features, 
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their overall prediction accuracy is 86.67% which is not as good as our model which has only 22 

features (88.69%).  The model proposed in [56] has slightly higher prediction accuracy than our 

method for the  all-α class (95% vs. 94.7%), but does considerably worse than our method for the 

other classes (81.3% vs. 91.6% for all-β, 77.6% vs. 80.9% for α+β, and 83.2% vs. 89.7% for 

α/β). 

     Ding et al. [56] used only 11 features, all based on predicted secondary structure, and 

obtained accuracies of 95.0% for all-alpha and 83.4% overall, whereas our F1 set has 22 such 

features and does a little worse on all-alpha (94.3%) but better overall (88.7%). Thus, it appears 

that adding more features based on secondary structural content and arrangement improves the 

performance on the three classes other than all-α.  

     Our best performing model with feature set  F8 has accuracy 91.6% on the all-β class, which 

is 6% better than the highest published accuracy (85.6%) obtained by Zhang et al [55]  and 

11.53%  better accuracy than the lowest published accuracy (80.1%) given by SCPRED [58] as 

shown in Table 5.4. This shows that the features used in our design are more effective in 

classifying  the all-β  class data and give 6%-11% more accurate results than the published 

methods mentioned in Table 5.4. 

     For the α+β class data,  Liu et al. [44] obtained 55.3% accuracy whereas our model with F8 

shows 80.93% accuracy, which is 25.6% better. This suggests that PSI-Blast profiles of protein 

sequences which represent the evolutionary relationship information  of sequences used by Liu et 

al. [44] are not very effective in classifying  the α+β class data. For classifying the α+β class 

data our model with F8 shows (80.9%) accuracy which is 3.4% better accuracy  than the 

accuracy obtained by Ding et al. (77.6%) [56]  and 4.9% better accuracy than Liu et al. (76%) 

[54]. All these three methods (our model with F8, [56], and [54]) extracted information only 

from predicted protein secondary structure sequences, which shows the effectiveness of 

information obtained from secondary structure sequence in predicting the α+β class data. 

     For the α/β class data, our model with F8 obtained 89.8% accuracy which is 6% better than 

the accuracy given by Ding et al. (83%) [56]. Our model with F8 (89.8%) shows 16.1% better 

accuracy than accuracy obtained by Liu et al. (73.7%) [44]. This shows that the proposed method 

with feature set F8 in this thesis is 6% to 16% more accurate in classifying α/β class data than the 

published methods mentioned in Table 5.4. 
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Table 5.4: Performance comparison of  different methods using Jackknife test for 25PDB   

 dataset 

 

Method Refe- 

rence 

Class-wise  accuracy(%)  Overall 

acc(%) all-α all-β  α + β α/ β 

SCPRED, with 9 features [58] 92.6 80.1 71.0 

 

74.0 79.7 

Method using secondary structural 

information with 11 features 

 

[54] 92.6 81.3 76.0 81.5 82.9 

Method for low-similarity sequence 

based on secondary structure with 

11features 

 

[55] 95.0 85.6 73.2 81.5 83.9 

SVM based method  with 63 

features 

 

[59] 93.7 82.4 65.8 75.5 80.4 

Method using auto-covariance 

transformation of PSI-BLAST 

profile with 140 features 

 

[44] 85.3 81.7 55.3 73.7 74.1 

Method based on predicted 

secondary structure with 11 features 

 

[56] 95.03 81.26 77.55 83.24 84.34 

Method based on functional domain 

and predicted secondary structure 

with 57 features 

 

[51] - - - - 86.67 

Method based on functional domain 

and predicted secondary structure 

with 2510 features 

 

[51]     87.80 

Method based on predicted 

secondary structure with 22 features 

(F1) 

 

This  

Paper 

94.26 91.33 79.91 89.36 88.69 

Method based on predicted 

secondary structure with 162 

features (F8) 

This  

Paper 

94.74 91.63 80.93 89.78 89.25 
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     Table 5.4 shows that on the all-α class data, our proposed two models (F1 and F8) have 

similar accuracy to the published models (above 90% accuracy). For all-β class data our 

proposed two models with F1 (91.33%) and F8 (91.63%) show more than 90% accuracy, 

whereas all the published methods in Table 5.4  obtained accuracy in between 80%-90%. Table 

5.4 also shows that for the α+β and α/β class data, the methods using features extracted from 

only predicted secondary structure sequences [54-56] achieved more than 70% and 80% 

accuracy, respectively. Our proposed two models F1 and F8, based on only features extracted 

from predicted secondary structure sequence also achieved more than 70% and 80% accuracy in 

predicting the α+β and α/β class data, respectively.  Mohammad and Hampapathalu [59] used 

some features from predicted secondary structure sequence along with features extracted from 

amino acid sequence of protein and achieved 65.8% and 75.5% accuracy for the α+β and α/β 

class data, respectively. This suggests that use of information from predicted secondary structure 

sequence does not ensure higher prediction accuracy for the α+β and α/β class data. The higher  

prediction accuracy depends on extraction of effective information from the sequences. 
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Chapter 6 

  

Conclusion and Future Work 

Protein structural class prediction is a mature area of research, but there is still some room for 

improvement, especially when training and testing on proteins with low sequence similarity. We 

built SVM models to predict the structural class of these proteins based on information gathered 

from predicted secondary structure and the hydropathy profile. We did our experiments on the 

25PDB dataset (20-25% pairwise sequence identity), which is a popular benchmark for research 

with twilight-zone similar sequences. The Contributions of this thesis are as follows: 

 

� We constructed a feature set including new features from predicted protein secondary 

structure sequence and evaluated its performance. 

� We constructed a new feature set using the hydropathy profile of amino acids and 

checked its performance. 

� We evaluated the effectiveness of using Term Frequency-Inverse Document Frequency 

technique to extract useful patterns from protein secondary structure sequences to 

determine protein structural class. To our knowledge nobody else used the TF-IDF 

approach for extracting important patterns from secondary structure sequence. 

� We constructed a feature set using patterns extracted from sequence constructed using 

hydropathy profile of amino acids in protein amino acid sequence and checked its 

performance. We found that features based solely on hydropathy profile do not provide 

high prediction accuracy. 

� We checked the performance of combinations of feature sets for structural class 

prediction.  
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� We showed that the performance of our method using various feature sets compares 

favourably with published state-of-the art systems. The slightly superior prediction ability 

of our method mainly depends on extraction of extra spatial information from predicted 

secondary structure sequence. 

� We showed that the performance of a classifier using one of our newly created feature 

sets is at least as accurate as current models, and uses 10 times fewer features. 

� Our feature set F9 (with 216 features) is a superset of best performing feature set F8 (with 

162 features) but gives lower prediction accuracy than F8. This shows that increasing the 

number of features does not increase prediction ability and that adding irrelevant features 

can decrease the prediction quality.    

 

The limitations of this research work are as follows: 

� We compared the performance of developed models with some published methods. The 

ideal way is to replicate the previously published models before comparing them with 

newly developed model. We could not replicate the published methods due to the lack of 

implementation information provided in respective research papers. We just compared 

our results with the results shown in published literatures. 

� We assumed that use of less features would require less computational time. We did not 

check the actual computational time of newly developed models for this thesis. 

� We used only one dataset to test the performance of newly developed method due to time 

constraint.  

� We found the feature sets which give better accuracy than other published methods, but 

did not find the exact features which are responsible for this improvement in accuracy. 

 

In future work, we would like to include the following tasks: 

� According to the test results, the specificity scores of binary classifiers are always greater 

than their sensitivity scores. This might be caused by the design of one-against-all binary 

classifiers to solve the multiclass problem. In our proposed method one-against-all  

binary classifiers are trained by a larger amount of -1 class data and little  +1 class data. 

For example, only 443 positive labeled (+1) instances and 1230 negative labeled (-1) 

instances are available to train and test the all-α/~all-α binary classifier. For this 
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unbalanced proportion, the classifiers  can be biased in classifying the -1 class data over 

classifying +1 class data. In future work we would like to develop SVM models with the 

same feature sets using the one-against-one multiclass classification method to see if 

there is any change in the specificity and sensitivity scores.    

 

� Each of the SVM models using one of the nine different feature sets shows better 

performance in predicting the all-α, all-β, and α/β class data than in predicting the α+β 

class data. We would like to search for effective features to increase the efficiency in 

predicting the α+β class data. The all-α, all-β, and α/β class sequences follow some 

regular trends. For example, the all-α and all-β class sequences are mainly composed of 

α-helix and β-strand patterns, respectively. The α/β class sequences follow βαβ motifs, 

where β-strands alternate with α-helices. In the α+β class sequences, α-helix and β-

strands appear separately with no specific trends. This lack of regularity may make it 

difficult to extract specific features to predict the α+β class data. In the future, we would 

try to search for some features which would be helpful for predicting the α+β class data 

more accurately.     
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