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Abstract 

Concussion and Traumatic brain injuries (TBI) are serious injuries that impair the normal 

functionality of a person’s brain. Symptoms can include confusion, disorientation, loss of 

consciousness, memory lost, and in more sever situations fatality. It is reported that 39% of 

children (ages 10-18 years old) who visit the hospital due to a sports-related head injury were 

diagnosed with concussion and 24% with the possible concussion [1]. In order to bring awareness 

about the seriousness of the TBI to the attention of the policy makers, a neural network based 

sentiment analysis ensemble system that automates the process of gathering the opinion of the 

general public is designed. A preprocessing pipeline is proposed that embeds various word-level 

features into a single concatenated vector. Input vectors are processed by varying Convolutional 

Neural Network (CNN) and Long Short-Term Memory (LSTM) Networks. The proposed 

ensemble system achieves an evaluation score of 62.71% based on its precision and recall, and 

compares well with other state-of-the art systems. 
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 Introduction 

 

1.1 Traumatic Brain Injury & Concussion 
 

One major cause of death and disability in the United States is Traumatic Brain Injury accounting 

for roughly 30% of all deaths caused by injuries. The Centers for Disease Control and Prevention 

(CDCP) defines Traumatic Brain Injury (TBI) as an injury which impairs the normal functionality 

of the brain. TBI can be caused by an impact to the head such as a blow, jolt or bump [2]. However, 

not all instances of an impact to the head results in a TBI, causing some difficulty in the 

identification of TBI. Therefore, there is the need to categorize TBI based on the severity at which 

the brain was injured. The severity can range from mild to severe. Mild TBI (MTBI) or commonly 

known as concussion, is a disruption of normal brain functionality for a short period of time. Either 

term shall further be used interchangeably throughout the remaining of this thesis. Some symptoms 

of MTBI can include but is not limited to confusion, disorientation, temporary memory lost during 

injury, and/or brief loss of consciousness [3]. In contrast, severe TBIs are more discernible due to 

their prolonged period of disruption to the brain. For example, they can include loss of 

consciousness for more than 30 minutes, loss of memory for more than 24 hours, and/or 

penetrating brain injury (i.e., injury which results in an object penetrating the skull and piercing to 

the brain) [3]. While the distinction of MTBI with more severe instances of TBI may be quite 

evident, it is more difficult to identify and quantify the occurrence of MTBI, due to its brief period 

in which a person experiences symptoms. While the tasks of identifying and quantifying MTBI 

are difficult and a portion of MTBI instances are usually unreported, MTBI is still one of the 

leading neurological disorders [3]. Therefore, due to its common occurrence, its association to TBI 
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and the general health of a person, concussion is important topic of research and is the focus of 

this thesis. 

While the area of research within concussion and TBI is broad and encompass multiple discipline 

from medical, engineering, biology, computer science and data science, we review some outlining 

problems with concussion to narrow the scope of focus in this work. In 2013, it was reported that 

TBI related emergency visits, hospitalization and deaths within the United States were caused 

majority by falls and hits to the head by an object. Among those reported, 47% accounted for falls 

while 15% accounted for hits to the head [2]. An interesting aspect, that can be inferred based on 

two statistics, is the commonality of both causes occurring within sports and recreational activities. 

While sports and recreational activities provide a multitude of health benefits, it cannot be denied 

that there also exists some health risk depending on the physicality of the activity. The risk of 

falling or sustaining a hit to the head is very evident in highly physical contact sports and 

recreational activities such as hockey, football, basketball and soccer, but can also be present in 

other non-contact sports like horse riding, skiing and gymnastics. This correlation between sports 

and recreational activities with major causes of TBI and concussion shall aid in narrowing our 

scope of focus to only TBI and concussion instances that relate to sports and recreational activities.  

A motivation to narrowing the scope of this thesis to sports and recreational is based on the number 

of reported children in the United States that visited the emergency department in 2012. It was 

estimated that 320,000 children, ages 19 and under, visited emergency rooms due to a sport related 

injury that included a diagnoses of concussion or TBI. This is an alarming statistic since the brain 

of children are not yet fully matured and such injuries could impair their development [4]. Another 

concerning statistics is the rate of these sports related visits between 2001 to 2012. It has been 

reported that the number of such visits has more than doubled for children 19 years and under 
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during this time-span [2]. Therefore, there is clear evidence of a growing problem with an 

increasing risk to youth participating in sports and recreational activities. As such, more attention 

should be placed on mitigating the potential of sustaining head injuries in sports, especially within 

youth organizations.  

However, sports and recreational activities should not simply be discouraged because of their 

benefit of providing an environment that promotes regular physical activities within youth and 

adults. Regular physical activities are a big contributing factor that affect people’s health in a 

positive way. The CDCP has indicated that the inclusion of physical activity within a person’s 

regular routine can reduce the risk of medical concerns. It can reduce the risk of cardiovascular 

disease by helping reduce blood pressure and cholesterol level. It can also reduce the risk of type- 

2 diabetes, metabolic syndrome, and some types of cancers such as colon, breast, endometrial and 

lung cancer. Lastly, they not only increase the chances of living longer by reducing the risk of 

diseases but by also strengthening an individual’s bones and muscles [5]. Therefore, while there 

is medical risk to sports and recreational activities in the form of concussion, they provide a 

multitude of health benefits due the physical activity they provide. As such, the simple elimination 

and termination of sports and recreational activities should not be enforced but rather other 

guidelines and rules should be developed in order to mitigate the dangers of concussion while 

maintaining their physical activity benefits. 
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1.2 Policy & Regulation 
 

Due to the medical risk associated with TBI and the increasing trend of concussion related injuries 

within sports, it is evident that better policies and regulations are required. Proper regulations and 

policies can help promote the health benefits of sports and recreational activates while minimizing 

the health risk of concussion and traumatic brain injuries. While the prominence of a public issue 

can promote new policy and regulation changes, the general public’s opinion is also an additional 

factor that influences the decisions of policymakers [6]. For example, it is often the situation where 

multiple concerns must be addressed but limited resources or restrictions prevents addressing all 

concerns at the same time. In such situations, the public view of people helps determine concerns 

that are of higher priority to the general public and help lead administrators to focus on concerns 

that are more precedence to the majority population. Another import aspect to the development of 

regulations and policies are the impacts it will produce once instigated.  

Understanding how the public would react to a new policy and regulation prior to its enforcement 

is important because a new policy and regulation could incur unintended consequence due to this 

lack of knowledge. For example, the policy introduced by the National Basketball Association 

(NBA) in 2005 that placed an age restriction for potential athletes. This has resulted in an increase 

of prospecting professional athletes attending college for a single year. These young athletes 

compete in the National Collegiate Athletic Association (NCAA) for the sole purpose of waiting 

a year to gain eligibility. This has results in a backlash of negative opinion and a discrepancy 

towards the  integrity of student-athlete commitment towards academic due to these extremely 

talented players non-commitment to attend class nor gain a degree [7].  
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This rational can also be applied in the case of concussion policies and regulations. For example, 

if a new concussion policy is implemented that is too extreme from the current policy or too 

difficult for the general public in a region to follow, it can cause a negative opinion of the policy 

to the general public and reduce its effectiveness. If the public is unwilling or incapable of 

following the policy, it can create risk of the policy to be ignored. Understanding this beforehand 

can help in determining the necessary actions required. If the public is not yet capable of following 

a new policy, pre-emptive regulations could be implemented first to prepare the general public. 

For example, a new concussion policy that requires all players to be examined by coaches for 

potential concussion after an injury could be less effective if the understanding of concussion by 

coaches can be limited or misconceived. This lack of knowledge could also create the opinion that 

winning is more important than the risk injury. In such case, the policy may be ignored more often. 

Therefore, prior knowledge of the opinion of the public could aid in the development of policy 

that could shift the culture within sports. For example, regulations can be introduced that educate 

coaches on concussion to help bring awareness of its dangers. Once awareness is established, more 

focus can be placed on prevention protocols that mitigate the dangerous of concussion, thus, 

shifting the winning mentality from participating athletes to a more health conscious mentality.  

Another application in which the general public’s opinion can aid in the improvement of policy 

and regulation for a given sport is through a comparative analysis with another sport that contains 

a general positive opinion towards the dangers of concussion. Through sentiment analysis (SA) of 

different sports (i.e., basketball, hockey, football, etc.), one can identify sports that show a positive 

concern for concussion. Decision makers may further analyze the policies and regulations within 

those identified sports, and employ similar policies and regulations. 
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In conclusion, the public’s opinion on sports concussion can bring awareness to policy makers of 

an important issue which affects the general public. In addition, the public’s opinion can be 

monitored from one sporting event to another, to determine if changes to policies and regulations 

have provided a significant impact or if the public’s opinion has remained the same.  For example, 

the public’s opinion on concussion can be analysed from FIFA’s 2014-word cup to that of FIFA’s 

2018-world cup and determine how the opinion may have differed.  

1.3 Motivations 
 

The gathering/analyzing the opinion of the general public is in itself a non-trivial task. The research 

and analysis on the opinion of the general public utilizing traditional methods, such as survey 

sampling interviews, survey questions, and questionnaire distributions, are costly and time 

consuming procedures. The gathering of public opinion via in-person and telephone survey 

interviews requires a large number of human resources and often the survey sample list that 

organizations utilize to contact the public are outdated [8]. In the case of survey questions and 

questionnaires, that are distributed via the web or mail, the type of questions asked can greatly 

affect the type of data that can be gathered, therefore understanding the opinion of the general 

public regarding different topics would require different sets of questionnaires and can be very 

complex. Another downside to survey questionnaires is the possible introduction of bias due to the 

type of questions asked or not asked. For example, questionnaires that focus too much on specific 

characters of a subject, that tends to be positive, may generate skewed results due to the exclusion 

of questions relating to negative features that may not have been initially known. Another major 

challenge faced with traditional survey research, is the high and increasing nonresponse rate. Even 

if we can identify individuals with the knowledge set or background to complete a survey, it is not 
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necessarily the case that all the individuals are willing to participate in the survey. Traditionally, 

there is no immediate benefit, such as monetary reward, for an individual to complete a survey. 

The on-going trend of busier and busier schedules lead individual’s to be less inclined to volunteer. 

This produces less survey results, since a large part of  people are unwilling to cooperate [8], [9].  

This thesis shall thus focus on addressing the problem of understanding the general public’s 

opinion of sports related concussion (SRC) to aid in the development of better policy and 

regulations. We have already illustrated the growing public burden that concussion and TBI have 

towards our society and the commonality of cases exhibited within sports and recreational activity 

injures. It is evident that there is an increasing trend of hospitalized visits due to SRC injuries. 

Thus, there is clear motivation to improve concussion and TBI related policies and regulations 

within sports and recreational activates. The aim of these polices and regulations are to reduce the 

health related risk presented in concussion and TBI, while maintaining public interest in regular 

physical activates offered by sports and recreational activates. There is a motivation to push 

policymakers, in recognizing the importance of better concussion policies and regulations in 

sports. This can be achieved by providing evidence that the issue is of importance by analysing 

the general public’s current view point on the subject matter. Thus, this thesis is aimed to 

identifying a solution to understand the public’s opinion on SRC and TBI. 

 

1.4 Challenges & the Proposed Approach 
 

The immergence of social media, within the past years, has generated a new global trend that has 

resulted in a wealth of information. Among social media platform, Twitter has become a very 

popular micro-blogging service that has provided a convenient and quick outlet for people to voice 
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their opinions on any topic they desire. The service has become the number one social media 

platform within the United States with an average of 330 million active users [10]. This service 

provides the users the ability to post their thoughts and opinion of any topic via tweets, which 

consist of short messages that can included hashtag, emoticons, images, and/or videos. Due to the 

high availability and exponential growth of available un-filtered opinion based data, this thesis 

shall thus utilize such a rich resource of opinion based data. With an abundant number of users 

and a constant increase of available tweets to understand the public’s views, the analysis now 

becomes a challenging task. It is no longer feasible for traditional manual methods to determine if 

the given tweet is depicting a favorable or non-favorable opinion of the user. Thus the need for an 

automated sentiment analysis system (ASAS) becomes an essential tool to determine the public 

opinion via tweets. 

Sentiment Analysis (SA) is the examination of data to determine the view, opinion or attitude 

towards a topic or event and has become a popular area of research in recent years [11]. We propose 

a machine learning method, specifically deep neural networks, to automatically label the sentiment 

of tweets. Machine learning algorithms have grown in popularity in the past years due to their 

capability of learning generalized solutions to complex problems. Similar to human behavior, 

machine learning methods learn the correlation between the problem and answer based on a set of 

examples. Specifically, for supervised learning techniques the relation between the input data and 

the output labelled data are learned by training the model with a large set of training examples. 

Due to this capability of pattern recognition via training samples and the given the complexity of 

the problem and the success that deep neural network techniques have gained in recent years within 

complex domains, we propose machine learning methods to automatically determine the sentiment 

of twitter data. The methods investigated in this thesis shall thus focus on deep neural network 
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techniques. As such, the main focus of this work will primarily be on convolutional neural network 

(CNN), recurring neural network (RNN), and feed forward neural network (FFNN).  

Another challenge in analyzing twitter data, that must be considered, is the variability in the writing 

style of different twitter authors. Due to a character limitation, twitter users have become creative 

in delivering their point across. While some users may be more literal, and their style of posting 

may be more direct and right to the point. In contrast, some users may be more sarcastic providing 

more of a cryptic style towards their post, masking their true opinion. Due to this variability in 

writing style, the level of complexity to analyze one style from another can be greatly different.  

An ensemble system produces a final consensus by combining predictive outputs from different 

models. This notion of ‘two heads are better than one’, stems from the fact that varying information 

can be combined to produce better results. Thus, to increase performance further from a single 

neural network, an ensemble approach is proposed in order to combine the different deep neural 

network models [12]. The main concept of the ensemble system, is combining different predictive 

outputs from different models. 

Traditional sentiment approach focus on establishing a lexicon to represent the sentiment of a word 

or combination of words to determine the overall polarity of the message. However, this thesis 

moves towards a different direction due to the added complexity of understanding the sentiment 

within SRC. Generally, research conducted on SA analysis is focused on two-levels: document-

level or target-level. Document-level analysis attempts to understand the overall sentiment of a 

document. On the other hand, target-level analysis attempts understand the authors opinion on a 

specific subject within a document. However, the sentiment problem in understanding public 

opinion on SRC should be categorized as a variation to comparative SA. Comparative SA, aims at 
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comparing the sentiment of two entities of the same subject [13]. Comparative SA is often applied 

to product/move review. While one may argue that comparative analysis is being performed on 

the sentiment of SRC, there is one key difference between the SA in this thesis and the traditional 

comparative SA. In the SA of SRC, two completely different entities from different subject matter 

is being compared. The goal of the analysis in this thesis is to determine if one entity’s sentiment 

is more favorable than a completely different entity. Specifically, we are interested in determining 

if the authors sentiment on the severity and dangers of concussion is more positive than their 

sentiment on the game of a given sport. We shall further refer to this newly introduced sentiment 

as sentiment ranking analysis (SRA). 

An important aspect, to analyzing text data for the purpose of SA and the utilization of neural 

network is the encoding used to represent words within a sentence. As such, the approach to this 

thesis shall also place emphasis on the encoding methods and preprocessing procedure necessary 

to embed the text into rich vector representations. Thus a method to combine varying linguistic 

information into a single vector representation is proposed in this body of work. This thesis shall 

focus on the following linguistic methods and embeddings: word2vec, part of speech recognition, 

named entity recognition, sentiment lexicon and sentiment polarity. Due to the unique challenge 

of twitter data being brief short messages, the embedding and preprocessing procedures need to be 

normalized to deal with the sparsity within the tweets. 

1.5 Objectives 
 

To summarize, there are three key objectives to the body of work in this thesis: 
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1. Sentiment Pre-processing Pipeline: The first objective is to construct the universal pre-

processing pipeline that combines essential linguistics and sentiment components into 

word vector representation that can be feed into different neural network architectures.  

2. Automated Sentiment Analysis System for Sports Related Concussion Text: The 

second objective is to implement and evaluate the first SRA system and the first automated 

sentiment analysis for SRC text. While documents may contain multiple subjects, prior SA 

has primarily been focus on the general overall sentiment of the document or the 

identification of the sentiment of a single subject within the document. In either case, the 

comparison of different multiple subjects is not considered. However, the problem 

presented within this thesis, contains two main entities (concussion and sports) which are 

being ranked among each other. Thus, this is the first body of work that presents a system 

which ranks the sentiment of two different entities. 

3. A methodology for adaptive development of a sentiment analysis system: Lastly, while 

this thesis focuses on the development of an automated analysis system for concussion 

related data. The terminology in different domain problems may differ from concussion 

data which consist of primarily medical and non-medical terms. As such, the methodology 

should be adaptive to the development of other sentiment analysis, regardless of the domain 

problem. Therefore, the basic principles of the preprocessing pipeline, pre-trained models 

and ensemble approach should be easily adaptable to other problem domains such that 

hyper-tuning would be the only required procedure. 



 

12 

1.6 Thesis Outline 
 

The remainder of this thesis is organized as follows: 

• Chapter 2: is a literature review providing a summary of different deep neural network 

architectures, followed by a summary of related works in sentiment analysis. 

• Chapter 3: provides background information about the methodology of the current work 

in this thesis. Firstly, it describes the different dataset utilized within the body of work. 

Secondly, an illustration of the preprocessing pipeline is provided, followed by a 

description of each deep neural network model. Finally, an explanation of the pre-training 

approach and the ensemble system is provided. 

• Chapter 4: provides the evolution metrics used within the study. It is then followed by the 

presentation and discussion of the results. The first set of results illustrate the performance 

of 3 different analysis conducted on the varying neural network. The last set of results 

provide details of the pre-training and ensemble experiments. 

• Chapter 5: provides a summary of the work conducted in this thesis. It highlights the main 

contributions this body of work offers to the growing and popular research are of sentiment 

analysis in social media. It is then followed by possible directions of future works. 
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 Literature Review 
 

This chapter is segmented into two main sections. Firstly, Section 2.1 provides an overview of 

neural networks and their varying architectures. Secondly, Section 2.2 is dedicated to the related 

works within SA as to depict the current state of active research relating to this thesis.  

 

2.1 Background 
 

Neural network is a broad area of research; therefore, this section is not intended as a compressive 

review of this field. Instead this section will provide an overview of the technical theories and 

algorithms relating to the current body of work. In this section, an explanation of different state-

of-the-art neural network architectures are provided, to illustrate the benefits and limitations of 

each neural network.  

Deep neural networks are a family of powerful machine learning algorithms that have generated 

state-of-the-art results in a verity of problems in recent years. As such, there exists an extensive 

list of literature explaining the learning theories and algorithms of neural networks. So instead of 

repeating the process and providing a comprehensive overview of deep neural network. This 

section is intended to provide an overview of the different unique neural network architectures and 

their contribution to the work of machine learning.  A comprehensive overview of neural network 

can be found in following literature: 

• Schmidhuber’s review on neural network provides a comprehensive detail of the 

development of deep neural network in chronical order [14]. 
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• LeCunn, Bengio, and Hinton’s overview provides a comprehensive explanation on 

Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) [15]. 

• Goodfellow, Bengio and Courville’s book on deep learning provides details on 

Regularization and Optimization for deep learning [16], [17]  

• Ding, Qian, and Zhou’s review on activation function provides a comprehensive summary 

of commonly applied activation functions within neural networks [18].  

2.1.1 Fully Connected Feed Forward Neural Network 

 

Feed Froward Neural Networks (FFNN) are the quintessential building blocks for all sub 

sequential neural networks. They are fully connected stacked layers consisting of input neurons in 

the first layer, hidden neurons in subsequent layers and output neurons in the last layer, as 

 

Figure 2.1: A graph of a Fully Connected Feed Forward Neural Network. Each neuron is fully connected to the 

neurons at the proceeding layer. Each connecting edge of the graph indicates the input of a neuron from its 

connecting neuron. 
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illustrated in Fig. 2.1. The stacking of multiple hidden layers and a nonlinear activation function 

allows FFNN to estimate a nonlinear function, Ϝ(𝑥). This is achieved by learning a set of weights, 

called hyper-parameters that represent the weighted contribution of each preceding input to a given 

neuron. The weighted input can then be summed and passed to a nonlinear activation function to 

generate the neurons output. This output can be formulated as: 

 𝑎𝑖
𝑙 =  ( ∑ 𝑎𝑗𝑤𝑗𝑖

𝑗 ∈𝑁𝑙−1

) + 𝑏𝑖 (2.1) 

 

 𝑧𝑖
𝑙 =  𝜎(𝑎𝑖

𝑙) (2.2) 

where:    

 

• 𝑎 𝑎𝑛𝑑 𝑧 are the input and output of a neuron, respectively. 

• 𝑖 𝑎𝑛𝑑 𝑙 are the index of the ith 𝑛𝑒uron at the 𝑙𝑡ℎ layer.  

•  𝑗 ∈ 𝑁𝑙−1 is the set of neurons from the preceding layer (𝑙 − 1)𝑡ℎ. 

•  𝑤 is the connected weight between two neurons. 

• 𝑏 is a bias weight. 

• 𝜎 is an activation function. 

 

Given (2.2) a generalized form can be written as: 

 𝑧𝑙 =  𝜎(𝑋𝑙−1  ∙ 𝑊𝑙 + 𝐵𝑙) (2.3) 
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where 𝑋𝑙−1 is a 𝑛-dimensional vector, 𝑊𝑙 is (𝑛 ×  𝑚) matrix, and 𝐵𝑙 is a 𝑚-dimensional vector, 

such that n is the number of inputs from the preceding layer, and m is the number of neurons at 

layer 𝑙 [19].   

The weights of a neural network can be learned via gradient descent through the backpropagation 

algorithm. The algorithm contains the following 3 stages: 

1. Forward Pass: In the first stage, observed data is processed in a forward motion, 

producing a set of predicted outputs. 

2. Backwards Pass: In the second stage, the loss function is calculated based on the 

predicted outputs and the ground-truth. For multi-classification problems, 

categorical cross-entropy is commonly used as the loss function. The gradient of 

the loss function in respect to the weights is then calculated to determine how a 

change in the weights affect the loss function.  

3. Update Pass: In the third stage, the weights are updated in the opposite direction of 

the gradient based on a learning rate [19]–[21].  

To prevent the neural network from becoming a lookup table to the training data, also referred as 

overfitting, popular regularization approach, such as dropout can be applied to neural network 

models. Dropout mitigates overfitting by randomly dropping or disabling a percentage of neurons 

causing them not to active. By disabling a new set of neurons after each batch, the network is 

forced to learn the latent pattern in the training data with only a subset of weights. This causes the 

network to only adjust a subset of weights during each batch, resulting in an more generalized 

solution than updating all the weights [22]. 
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A. Categorical Cross-Entropy 
 

The loss function in a neural network is an important function that determines the learning 

objective of the network. The loss function is the calculated error of the networks prediction with 

the ground-truth. This is utilized in calculating the gradient of the weight in order to reduce the 

error of the model’s prediction. Cross-entropy is commonly used in classification problems 

because it measures the error of the model whose output is the probability (a value between 0 to 

1) of the observed data belonging to a specific class. That is to say, a model outputting a value of 

1 for a specific class, indicates that it is 100% sure the observed data belongs to the given class. 

The intuition of categorical cross entropy stems from information theory and gain of information 

between one probability distribution to another. In neural network, this is the measures of how 

unique or “surprise” we are to see a specific prediction from the model. For example, a model 

predicting the probability of y as 1 when the true value is 0, is surprising and provides a lot of 

information within the prediction. In contrast, a model predicting y as 0 when the true value is 0, 

provides no additional information, because the outcome is as expected.  

Thus categorical cross entropy can be formally calculated as 

 𝐸 =  −
1

𝑁
∑ ∑ 𝑝𝑖𝑗

𝐾
𝑗

𝑁
𝑖 log (𝑝𝑖𝑗

′ ) (2.4) 

where E is the error of the model, N is the total number of observed data, K is the total number of 

categorizes, 𝑝′ is the predicted probability of the model in the range of [0,1], and 𝑝 is the ground-

truth such that 
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 𝑝𝑖,𝑗 = {
1, 𝑖𝑓 𝑖𝑡ℎ𝑑𝑎𝑡𝑎 = 𝑐𝑙𝑎𝑠𝑠 𝑗
0, 𝑒𝑙𝑠𝑒

   (2.5) 

where 𝑝𝑖,𝑗 will equal one if the ground-truth is category j [19]. Thus, 𝐸 approaches zero as the 

model confidently predicts high probabilities for ground-truth classes.  Since the log (𝑝𝑖,𝑗
′ ) grows 

exponentially as 𝑝𝑖,𝑗
′  approaches zero, categorical cross entropy places more weight on confident 

predictions that are wrong [23].  

In the ideal situation, the training dataset would contain an equal representation of each class. 

However, that is often not the case in real world problems. As such, (2.3) can be extended as 

followed to alleviate this issue: 

 𝐸 =  −
1

𝑁
∑ ∑ 𝜆𝑗 𝑝𝑖𝑗

𝐾
𝑗

𝑁
𝑖 log (𝑝𝑖𝑗

′ ) (2.6) 

where 𝜆𝑗 is a weighted penalty for class 𝑗. Therefore, a weighted penalty higher than 1 would place 

more weight on incorrect classification of that sentiment. This in turn causes the network to make 

larger adjustments for misclassifying under sampled classes. Vise-versa, a weighted penalty lower 

than 1 would place less emphases on incorrectly classifying data of that sentiment.  

B. Softmax 

 

Thus, in order to utilize the categorical cross entropy function, the output of the neural network 

must be the categorical probability distribution of all possible class outcomes. That is to say, the 

model provides the probability of the data belonging to each class in the range [0, 1]. This can be 

achieved by pairing the softmax function to categorical cross-entropy [24]. The softmax normalize 
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the output distribution such that the sum probability of all outputs equals 1 and each output 

probability is between 0 and 1 [19]. The softmax function can be written as 

 𝑝𝑗
′ =

𝑒
𝑎𝑗

𝑙

∑ 𝑒𝑎𝑘
𝑙

𝑘

   (2.7) 

 

where: 

• 𝑝𝑗
′  is the predicted probability of class j. 

• a is the input of the neuron as in (2.1). 

• k is the index of the 𝑘𝑡ℎ class. 

• 𝑒 is the base of the natural logarithm, otherwise referred to 

as e constant. 

 

 

C. Limitation 
 

While FFNN are powerful and simple neural networks that perform well on prediction and 

classification problems of numerical and categorical datasets. There are some limitations that 

affect performance within highly complex nonlinear problems: 

• FFNN does not perform feature extraction, so data engineering should first be performed 

• Spatial dependency among input data is not considered. So input data is handled uniformly, 

such that neighboring data are treated similarly to non-neighboring data. 

• Temporal dependency among input data is not considered. For example, the importance of 

the second word coming after the first word, but before the third word is not maintained. 

This dependency can be important in natural language processing because two similar text 
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with different sequential order can be semantically different. For example, “John has a son 

named Bob” and “Bob has a son named John” would be identical if we just analyze the 

given words within each sentence. However, we also consider the sequential order the 

words are presented, then the sentence would be semantically different, since Bob being 

John’s son is the same as John being Bob’s son. 

 

2.1.2 Convolutional Neural Networks 

 

Convolutional Neural Networks (CNN) have exhibited state-of-the-art perform in both image 

processing and natural language processing tasks. CNN address both spatial dependency and 

feature extraction limitation present in FFNN. In the case of sequential problems such as natural 

language processing, a 1-dimensional convolution is applied instead of the traditional 2-

dimensional convolution seen for image processing. In a 1-dimensional convolution, the width of 

the filter in a convolution is equal to the dimensional size of the vector of a sequence element (i.e., 

word) and the height is the defined sequence scope of the filter. For example, in Fig. 2.2, input 

size is 𝑚 ×  𝑑 and the 1D filter size is 2, so the window size of the filter is 2 ×  𝑑. Similar to 2D 

convolution, a pairwise multiplication is applied to the input. Instead of applying convolution 

across pixels, like in image processing, convolution is applied sequentially across vectors. So in a 

1D convolution, filters stride only vertically (row-wise). The principle in applying a 1D 

convolution instead of a 2D convolution for natural language processing, stems from n-gram 

representation [25]. By applying convolution with a filter size s, the resulting generated feature 
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map would be the s-gram representation. A more detailed overview of one dimensional 

convolution is provided in [26]. 

 

2.1.3 Recurrent Neural Network 

 

A Recurrent Neural Network (RNN) is one that addresses the sequential dependency concern. 

RNN is similar to FFNN, such that, both contains layers of fully connected neurons. However, 

RNN contains the added benefit of a recurrent connections, which connects the layers output back 

to its input. This loop connection allows the network to maintain information from its previous 

calculation and generate prediction based on prior knowledge, as illustrated in . The neurons in the 

hidden layer do not just receive the input data but also the predicted output (referred to as hidden 

state) from the previous time sequence [27], [28].  

 

 

Figure 2.2: Illustration of a 1-D Convolution. 
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The unrolling of a recurrent neural network illustrates the network as a feedforward network that 

spans across the sequence of time [27]. As such, a recurrent neural network can be trained similar 

to a FFNN by also applying backpropagation but through time [29].  

One limitation to a standard RNN, is the limited available data which is presented during training. 

During training RNN is only capable of retrieving information up to the present future frame. This 

is commonly addressed by feeding the input in a bidirectional orientation, forward and backwards, 

known as a bidirectional RNN. More details regarding the implementation of bidirectional RNN 

is presented in the works of [30]. 

 

Figure 2.3: A graph representing the internal structure of a recurrent neural network. The solid connected edges 

indicate the forward connection between the neurons. The dash line represents a delayed connection, where the 

connected data is from the preceding time. 
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While RNN addresses the issue with temporal dependency, the network’s architecture also makes 

is susceptive to the vanishing and exploding gradient problem [31], [32]. This is due to the 

increasing expansion of product of terms within the chain-rule as the sequence of time increases 

[19]. As a result, RNN has difficulty learning in long sequences. As such, a variance of RNN have 

been introduced to address the gradient problem and long-term memory limitation.  

 

A. Long Short-Term Memory 

 

One variance to RNN is the Long Short-Term Memory (LSTM) neural network that contains a set 

of gating mechanics that allows the LSTM to contain a separate memory cell that maintains 

important information for prediction. This is achieved via three interacting components that 

controls what information is thrown away, what new information is ignored or retained, and what 

information is selected for output [27], [33]. [32] provides more comprehensive details of the 

learning algorithm’s forward and backward pass. 

As shown in Fig. 2.4, LSTM contains 4 parallel neural network layers that allows LSTM to 

delegate specific learning task to each individual layer. Different tasks can be achieved by utilizing 

a combination of different activation functions and merging operations. The following 3 task can 

be achieved: 

• What new information to forget: is achieved by a neural network layer with a 

sigmoid function. The sigmoid function pushes the output to either 0 or 1. This 

output can be interpreted as the percentage of information to retain from memory, 

where 1 indicates 100% retention and 0 representing complete discard. Thus 

information no longer required in memory can then be discarded by applying a pair-
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wise multiplication to the memory and forget percentage learned by the network 

layer. 

• What new information to ignore/retain: is learned via two separate network layers. 

The first layer contains a tanh activation to learn possible predictions similar to 

RNN. The second layer contains a sigmoid activation to learn what information to 

ignore. A pair-wise operation is then performed on both outputs, to produce 

important information that is retained. This new filter information is then added to 

the memory via an add operation. 

• What information to select for prediction: is delegated by a layer that performs a 

sigmoid function. To mitigate the exploding gradient problem, the memory is first 

normalized by a pair-wise tanh operation on the memory that pushes memory in 

the range of (-1, 1). A pair-wise operation is then performed on the normalized 

memory data and selection information, to allow some content from memory to be 

exposed as the prediction. [27], [33] 
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B. Gated Recurrent Unit 
 

Similar to LSTM, Gated Recurrent Unit (GRU) attempts to learn what information to forget and 

what information to update. As illustrated in Fig. 2.5, unlike LSTM, GRU does not contain a 

separate memory cell, but rather the internal hidden state of the GRU itself is maintained and 

outputted via update and reset gates. Since different hidden units contain separate update and reset 

gates, the network is capable of capturing a variety of different time dependencies. That is to say, 

long-term dependency can be achieved by hidden units with infrequent reset activation gates. In 

contrast, units with frequent reset activation gates will contain short-term dependency [34]. It has 

 

Figure 2.4: Graph of an LSTM, illustrating the connecting layers. Solid edges indicate current connection while 

dotted edges indicate a delayed connection (𝑡 − 1). Circular symbols indicate point-wise operation or 

concatenation. Square symbols indicate network with labelled activation, where 𝜎 is a sigmoid function. [33] 
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been seen that in some problems, GRU outperforms LSTM both in converging faster and 

generalization [35].  

 

2.1.4 Residual Neural Network 
 

Really deep neural network has been proven to produce the state-of-the-art performance in all 

areas of machine learning, but as networks get deeper and deeper a degradation problem becomes 

evident [36]. However, intuition tells us that a network with more layers than a shallower network 

with similar architecture should perform as well if not better. The assumption is that the same 

solution that a shallower network is capable of learning is encapsulated within a deeper network. 

For example, the initial layers of the deeper network can be identical to the shallow network and 

 

Figure 2.5: An illustration of GRU, where reset(r) and update(z) gate are sigmoid functions, nodes are matrix 

operations, h is the hidden state, and ∅ is an activation function. 
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the remaining layers simply learn the identity of its prior layer (i.e., the output of the neuron is the 

same as its input). Therefore, the problem must lie within the training optimization, where layers 

in the network have difficulty in learning the identity of its input [36].  

As such, recent works have introduced residual block layers that change the learning objective of 

a layer. Instead of traditional layers, where the layers in the network attempt to learn and optimize 

the original mapping of its input, residual blocks learn and optimize the residual mapping. It can 

be assumed that in the extreme case such that the input is the optimal solution, it is easier to train 

the network to push the residuals to zero than to learn the identity mapping by stacked nonlinear 

layers. As shown in Fig. 2.6, the residual block’s architecture is a feedforward network that 

contains shortcut connections. This shortcut connection allows the network to learn the residual 

and merge the residual to the identity via element-wise addition. 

 

 

Figure 2.6: An illustration of a residual block within a Residual Network (ResNet) as depicted in [36]. 
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However, the inclusion of shortcut connection introduces an issue with matching dimensions. In 

the simplest situation, the dimension of the identity and residual map are of the same dimension, 

forming a solid connection that allows simple element-wise addition to be performed. However, 

in the case where input and output dimensions differ, a 1 × 1 convolution can be applied to the 

identity to project the identity onto the residual [36].  

 

2.1.5 Temporal Convolutional Network 

 

While traditional CNN address spatial dependency, there is limitation to temporal dependency 

within its architecture. As such, CNN has not seen the same dominance in perform in natural 

language processing task as it has in image processing. Temporal Convolutional Network (TCN) 

 

Figure 2.7: Graph rendered  from [37] illustrating dilated casual convolution layers from of filter size 3 and 

increase dilation of [1,2,4]. At the second hidden layer, a neurons field of view is 6 (i.e., its scope allows it two 

see up to 6 input sequence within the past 
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looks to address the temporal limitation in traditional CNN via attention mechanism that allow 

convolution to focus on specific region of interest. This is achieved via dilated casual convolutions 

such that the convolution achieves the following properties: 

• larger receptive field than the linear size depth of the network, allowing network to retain 

longer sequence of history 

• “output at time 𝑡 is convolved only with elements from time 𝑡 and earlier in the previous 

layer” [37] 

[39] provides a compressive overview of dilated convolution.  

It can be seen in Fig. 2.7 that increasing d exponentially at subsequent layers, allows the network 

to retrain longer memory dependency. As such, an increase in network size and/or filter size results 

in long-term dependency. Vise-versa, short-term dependency can be achieved with smaller filter 

size and shallower networks. It is however, important to note that longer sequence history via 

deeper networks can exhibit training optimization problems, as mentioned in section 2.1.4. As 

such, TCN are implemented with Residual blocks [44]–[46]. 

The hypothesis in applying TCN in the domain of natural language processing, is the principle that 

majority of information in a document reside in only certain regions of interest, while the 

remaining portion only contribute to noise. While readers read a sentence, more attention is 

generally drawn towards keywords of interest to interpret the semantics that the author is 

attempting to portray to the reader. TCN attempts to achieve this by learning the attention features 

from the input via multiple causal dilated convolution layers.  
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2.2 Related Works 
 

This section will focus on other areas of research within SA in the attempt to illustrate this body 

of work’s position and contribution with that other research that are most similar. This section 

shall first present related works within traditional SA approaches in preparation for the second 

portion. The second part then shall focus towards state-of-the-art neural network approaches to 

SA. While it is noted that traditional DA methods no longer complete with neural network 

approaches within complex SA task. Related works are presented due to the basic principles and 

components that are applicable within state-of-the-art solutions. In addition, the inclusion to 

illustrate works of traditional SA is primarily due to their contributing inspiration to components 

within the preprocessing pipeline. 

 

2.2.1 Lexicon-Based Approaches 
 

Traditional SA focus on a lexicon-based approach, where a lexicon of n-gram words or characters 

are built to extract the sentiment polarity of a word. That is to say, a dictionary is created that 

describes the positive or negative strength for a given entry within the vocabulary. The most 

simplistic form of generating lexicon is through manual annotation. A method in manually creating 

a lexicon is presented in the paper [45]. It utilizes MaxDiff type questions to infer polarity intensity 

of words based on the answered questions, reducing the required number of words to be manually 

annotated. Through the process of asking which word is the most negative and most positive, one 

may infer that the remaining words lie between the two annotated words. Through a chain of 

questions and results, a ranking of the words can be generated. The clear limitation to this process 
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is the cost problem associated with manual annotation. Therefore, some research have 

demonstrated automatic approaches to generating lexicons [44]. The automated approaches are all 

based on measuring the pointwise mutual information of words. So a word can be automatically 

labelled as positive or negative based on its co-occurrence with other known positive and negative 

words.  

Given the sentiment strength of each individual word, the semantic orientation of a document can 

then be calculated by comparing the positive terms in the document with negative. The works in 

[47]–[49] have illustrated the counting of positive terms and negative terms within the document 

to evaluate its sentiment . The challenging aspect being attempted to be addressed in [50] is the 

polarity adjustment of terms as they appear in sequence of an influencing term. For example, A. 

Kennedy et al attempts to address polarity adjustment caused by negations or intensifiers [51]. 

While P. Chaovalit et al approach focuses on the polarity adjustment of a term based on its 

semantic application [52]. For instance, a document can contain positive terms, but applied in a 

factual sense, causing the polarity of the term to decease. More significantly, terms may be applied 

in an ironic or sarcastic manor, completely reversing and intensifying the polarity of the term. 

 

2.2.2 Neural Network Based Approaches for SA 

 

Neural Networks has seen growing popularity in recent years due to their state-of-the-art 

performance within a verity of problems. SA is no exception to this rule as witnessed with the 

recent trend within SemEval competitions. During SemEval 2015 to 2017 message-level sentiment 

analysis competition , an increasing popularity of deep learning approaches are present among the 

top ranking teams, with deep learning ranking number one for the last two [47]–[49].   
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The work of J. Deriu et al presented in SemEval-2016, achieved the highest ranking via a 

convolutional neural network ensemble system. In their work, they implement, two similar 

convolutional neural networks containing two layers of convolution and a max pooling layer 

followed by a fully connected layer and softmax output layer. They differentiated both models via 

different initialized word embeddings (Google’s Word2vec model) and different parameters for 

convolution and max-pooling (such as filter size) [50]. 

The system presented by C. Baziotis et al is the only top ranked system that does not utilize an 

ensemble model. Instead, they implement a single two layer bidirectional lstm network with an 

attention gate. This allows them to naturally treat the tweet as a sequence of text with lstm while 

also learning, which region of the tweet to emphasize via the attention gate. Similar to the works 

of J. Deriu et al, they also utilize a word embedding model (Stanford’s GloVe model) to pre-train 

their embedding layer [53]. 

M. Cliche et al works was also able to achieve the same top rank as that of C. Baziotis et al. They 

employed a similar approach to J. Deriu et al by utilizing an ensemble model of 10 CNNs and 10 

bidirectional LSTMs. Similar to the other related systems, a Neural network based word 

embedding model is utilized (Word2vec and Facebook’s FastText model). A differentiating factor 

not present in the other works, is the weighted cost function that places a different weighted penalty 

for each class. Since the datasets, contains an under representation of negative sentiments, this 

poses an issue when training the system. As such, this weighing adjusts the cost function, such that 

under represented classes are penalized more than highly represented classes. This allows the 

model to pay more attention towards tweets with negative sentiments during training data [54]. 
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It can be noted that ensemble is a very popular approach to sentiment analysis of twitter data. 

However prior works have primarily utilized neural network models that contained a single vector 

embedding. Such that the embedding model within their preprocessing stage only captured a single 

representation of distance based on co-occurrence of words. Therefore, other linguistic features 

such as part-of-speech, or the semantic orientation are never encoded in the vector representation 

of a word. Thus the neural network models never see the additional linguistic features. Therefore, 

this body of work shares similarities to the above related works via the neural network models 

used and utilization of an ensemble system, but expand of each work by the varying approach 

applied in this work. This thesis focus on a preprocessing pipeline that utilizes various linguistic 

features that is applicable to various neural network models. In addition, the ensemble system also 

utilized a neural network model instead of the traditional ‘hard’/’soft’ voting algorithms utilized 

in other works. 
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 Methodology 
 

This chapter presents the methods, structures and the processes of implementing the automated 

system analysis system (ASAS) for sports related concussion (SRC). The material is presented in 

chronological order to illustrate the sequential building blocks of developing such a system. The 

first section provides details of the dataset utilized in the implementation of this thesis’s main body 

of works. The following section then presents the components of the system beginning from the 

preprocessing pipeline, the varying neural network models evaluated for sentiment classification, 

pre-trained model approach and lastly the ensemble system. For a consolidated list of environment 

configuration and tools utilized in the implementation of the current body of work, Appendix A 

may be referenced. 

3.1 Dataset 
 

In this thesis two categories of datasets are utilized, the main and the external. The main is the 

sports related concussion twitter data which relates to this thesis’s main problem and objectives. 

The external is a group of publically available datasets relating to sentiment analysis of other 

domain problems. These external sets are utilized to evaluate and demonstrate the effectiveness of 

the proposed neural network designs against other data sets. Table 3.1 illustrates the total number 

of sample data available for each data set. 
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3.1.1 Main Dataset 

 

The main datasets were composed of extending the library of labelled data from the original works 

of Workewych et. al. [53]. The dataset was provided and made available to us by neuroscience 

research group of Dr. Michael Cusimano at St. Michaels hospital. A database of twitter data was 

first establishing by the research group via Twitter search engine. A combination of 18 scientific 

and 23 colloquial terms were individually searched during June to July 2013. The original works 

of Workewych et. al. yielded a dataset of 7,483 positives, negative, and neutral tweets. A 

preliminary investigation and evaluation of the neural network models on the original dataset from 

St. Michaels hospital was performed. Since the original dataset contained multiple duplicate re-

tweets the dataset was first filtered to include only unique tweets, which reduced the dataset to 

Table 3.1: A summary of the Datasets. For each dataset, the following information is summarized: total number 

of data, total number labelled data for each sentiment (positive, negative, neutral), and the total distribution of 

each sentiments in percent 

Dataset Total Positive Negative Neutral 

Concussion 15, 800 7, 456 47% 2, 730 17% 5, 614 36% 

SemEval-2016 22, 821 9, 165 40% 3, 429 15% 10, 227 45% 

Kaggle Weather 21, 510 8, 772 41% 6, 931 32% 5, 807 27% 

Rotten Tomato 56, 912 6, 529 11% 4, 945 9% 45, 438 80% 

Senti-Target 6, 184 1, 536 25% 1, 538 25% 3, 110 50% 

UCI 2, 908 1, 459 50% 1, 449 50% 0 0% 

Umich650 1, 027 528 52% 489 48% 0 0% 
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5,478 tweets with a distribution 2,469 positive, 892 negative, and 2,117 neutral sentiments (45% 

positive, 16% negative, 39% neutral). However, the initial performance on the original dataset 

yielded low performance across various neural network models. Since neural network models 

traditionally performance better with larger sample dataset, effort was place on expanding the 

original dataset. Additional tweets were gathered using Twitter’s Search API [54] for the month 

of May 2018 that were then manually filtered and labelled by a group of 9 volunteers from the CI2 

Lab. The search queries used to retrieve additional tweets contained a combination of scientific 

(i.e., TBI, concussion, etc…) and colloquial terms (i.e., out cold, clocked out, etc…). The terms 

were derived from a code book that was initially developed in the works of Workewych et. al. 

[53]. Each tweet where manually labelled by at least two people, to ensure exclusion of bias that 

may be introduced by just a single labeler. Indecisive or split labelled results were further labelled 

by additional labelers until a majority voting of 50% or more was achieved. Firstly, the tweets 

were labelled based on relevance such that tweets not discussing sports related concussion were 

discarded. Afterwards, tweets were labelled based on their sentiment ranking between concussion 

and other sport’s related topic. For example, tweets that indicated an awareness of concussion and 

prioritized its significance over other topics occurring in that sport were labelled positive. A more 

detailed description of the three levels of sentiment are provided in Table 3.2. To aid in the manual 

labelling, an application was developed to reduce the burden on labelers by streamlining the 

process. The application contained a subset of tweets that were presented one by one to labeler to 

label. For each presented tweet, the application first asks the labeler to label the relevance of the 

tweet. Relevant tweet is then asked to be labelled based on their sentiment and non-relevant tweets 

are quickly completed. Afterwards, the next tweet is presented in the same manner. The additional 

labeled tweets were then combined with the original dataset. The consolidated dataset was then 
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filtered to only unique tweets by discarding duplicated retweets. At the end, the concussion twitter 

dataset was expanded to 15,800 tweets.  

The distribution of the tweets’ sentiment is illustrated in Table 3.1. The distribution indicates an 

unbalance distribution with the sentiment labels, most notably the distribution between positive 

and negative sentiments. This distribution can pose a concern during training of a neural network 

and is discussed in more detail in section 3.3. 

 

3.1.2 External Dataset 
 

A total of six different publicly available datasets are utilized in evaluating each standalone deep 

neural network model. In addition, two of the datasets containing twitter data were then used to 

pre-train the deep neural network models within the ensemble model (further discussion in section  

3.3). The datasets included in the external are as follows:  

Table 3.2: Description of Sentiment labels of Concussion Dataset 

Sentiment Description Example 

Positive The author illustrates the severity of concussion and 

its superseding importance above all other sport’s 

related topic 

• RT@[user]: Playing on with a 

concussion isn’t big or brave, 

it’s sheer stupidity. (#lions) 

• @[user] I know. Heard that he 

has a mild concussion. MLB 

needs to find a solution before 

something terrible happens. 

Negative The author illustrate a degrade, lack of concern or 

understanding of the dangerous of concussion 

and/or places more positive sentiments towards 

other sport’s related topic (i.e,. result of the game) 

• I’m so glad Silva got his bell 

rung 

• I really enjoyed seeing 

Anderson Silva get his clock 

cleaned 

Neutral The author provides no opinion about any given 

topic or does not illustrate a stronger positive 

opinion of one topic to another.  

• Toews is definitely concussed 

• Cobb leaving hospital, placed 

on concussion list 
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• SemEval-2016: The dataset contains a set of labelled tweets classifying the general 

sentiment of the tweet into 3-levels (‘positive’, ‘negative’, or ‘neutral’). The dataset 

consists of tweets that have been gathered between July–December 2015. Tweets were 

filtered based on the topics being discussed where only the top 200 most popular topic 

during that time span were kept. The dataset is made available by the semeval-2016 Task 

4: Subtask A competition. They were acquired using SemEval’s download script that 

utilized Twitter’s Search API [58]. Tweets no longer publically available via Twitter API 

were discarded. It can be noted from Table 3.1 that the SemEval-2016 dataset bares the 

most resemblance to the concussion dataset based on their sample distribution (i.e., they 

contain similar distribution among ‘positive’, ‘negative’, and ‘neutral’ tweets). 

• Kaggle Weather: The source dataset contains weather related tweets that are classified 

into five sentiment categories (‘unknown’, ‘not relevant’, ‘positive’, ‘negative’, ‘neutral’) 

[60].  The tweets contain the user’s opinion of the current, past or future weather. 

Therefore, a positive sentiment of the tweet would indicate that the user is happy about the 

weather condition. In order to mold the dataset to conform to the current problem domain. 

The dataset was filtered to only tweets containing relevant known sentiments by discarding 

‘unknown’ and ‘non relevant’ tweets.  

• Rotten Tomato: The source dataset contains a corpus of movie reviews that are labelled 

into five fine-grained sentiment labels (‘negative’, ‘somewhat negative’, ‘neutral’, 

‘somewhat positive’, and ‘positive’). The dataset contains writing styles that introduce the 

challenges of negation, sarcasm, and ambiguity. The dataset was then filtered to only 3-

levels of sentiment (‘negative’, ‘neutral’, and ‘positive’) in order to resemble the main 

dataset. The source dataset can be acquired from [61]. 
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• Senti-Target: The dataset contains a set of tweets that are labelled into 3 sentiment levels 

(‘positive’, ‘negative’, or ‘neutral’) for a given target within the tweet [58].  As such, the 

dataset also contains, the target-topic of the tweet as an additional input. While the dataset 

is geared towards target-level sentiment analysis and the current sentiment problem of this 

work is document-level, the additional input is simply excluded such that the system can 

attempt to predict the sentiment without the additional information. 

• UCI: The dataset contains review sentences from ‘imdb’, ‘amazon’, and ‘yelp’. The 

sentences are labelled into 2-levels (‘positive’, or ‘negative’). The dataset was originally 

created for [59] but is still available via UCI’s machine learning repository [60]. Since the 

size of the data from each review source is very small, in this body of work, the reviews of 

all 3 sources are consolidated to produce a single dataset. The varying review domains 

produces a dataset which contains reviews for movies (imdb), products (amazon) and 

services (yelp). 

• Umich650: The dataset contains labelled sentences of (‘positive’, or ‘negative’) that where 

extracted from social media blogs. The dataset was originally housed at ‘opinmid.com’ but 

is now available via Kaggle competition hosted by Michigan University [62]. The source 

dataset contained multiple duplicate sentences, so the dataset was filtered to only unique 

entries. 

Since no publicly available concussion twitter dataset exist, the above six datasets which have 

already been labelled based on their sentiment are utilized in this thesis. While the subject of each 

dataset differ from the concussion dataset, the characteristics of the data are similar. In the instance 

of SemEval-2016, Kaggle weather, Senti-Target, the dataset was also generated from extracted 
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twitter post. Therefore, the concussion dataset and the three are all twitter data, but with different 

subjects. As per Umich650, the dataset also comes from social media blogs, so it contains the same 

informal unstructured characteristics as the twitter data. Lastly, since Rotten Tomatoes and UCI 

consists of user review, they are also informal in nature. However, they are traditionally longer in 

length than twitter posts which allows the evaluation of the preprocessing pipeline towards datasets 

where the document length are much larger.  

3.2 Preprocessing Pipeline 
 

 

 

Figure 3.1: Diagram Illustrating the Preprocessing Pipeline blocks. 
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This section provides an explanation of the methods applied to the tweet during each section of 

the preprocessing pipeline.  The preprocessing pipeline contains three main blocks as illustrated 

in Fig 3.1 . The first block performs general natural language preprocessing that attempts to mask 

and clean the tweets. The second block performs a sequence of methods to normalize the tweet. 

Lastly, the third block in the pipeline performs vectorization of the twitter data to convert the terms 

into vector embedding representation. 

3.2.1 Block 1: Cleaning  

 

Tweets are informal short and quick posts that are often not reviewed prior to posting. There are 

also different types of tweet posts: communication based (where tweet is addressed to another 

specific user), general (where author is expressing their opinion to the general public), and retweet 

(where user is posting about another user post). As such, tweets often contain slight differences 

due to elements specific to social media (i.e., inclusion of emoticons) and the different types of 

tweet. These minor differences do not contribute to the semantics of the tweet and only may 

introduce unnecessary noise. Stage 1 is responsible for cleaning tweets and removing such noise. 

First, special words are encoded because the specific differences among these words do not 

contribute to the semantic orientation of the tweet. For instance, in a communication based tweet, 

the sentiment is not influenced by who the tweet is being addressed to (i.e., the sentiment remains 

the same regardless if the tweet is address to user A or user B). As such, the user names are encoded 

to the single tag ‘<user>’. A complete list of encoding performed in this stage is provided in Table 

3.3. 

Afterwards, hashtags within tweets provide significant information about the topic of the tweet. 

Users will generally add hashtags to tweets, that categorize and emphasize the topics the user 
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wishes other readers to focus on when view their tweet. As such, an additional preprocessing is 

performed on hashtag to allow the network to differentiate hashtag words with normal words 

within the tweet. The preprocessing algorithm for hashtag, performs segmentation and encoding 

that is best illustrated in the Fig. 3.2. First, the hashtag symbol extracted and encoded with the 

unique tag ‘<hashtag>’. Second, the hashtag context is segmented into individual words resulting 

in an output of the encoded hashtag followed by one or more words. 

 

Lastly, block 1 shortens elongated words and removes retweet indicators and special characters. 

Elongated words are shortened because the decision to use elongated words is more of a personal 

preference that reflects the author’s writing style than contribute to the semantics of the text. For 

example, ‘omggggg’ has the same meaning as ‘omg’.  The length of elongating a word is not 

standardized and can differ from tweet to tweet that causes unnecessary sparsity in the dataset. For 

example, the tweets ‘I am soooooo happy’ and ‘I am soo happy’ are semantically the same but a 

model may not see them the same due to the varying length of the elongated word ‘so’. 

Table 3.3: Encoding Tags 

TYPE EXAMPLE ENCODING 

URL http://t.co/sUXrGDXhpm  <url> 

Username @SampleUser <user> 

Emoticon :-[)  |  <3  |  8\(  |  ;-p+ <smile> 

 <3 <heart> 

 8-( <sadface> 

 ;-p+ <lolface> 

 :- | <neutralface> 

Numbers 3.52 <number> 

 

http://t.co/sUXrGDXhpm
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3.2.2 Block 2: Normalization 

 

Multiple languages contain different forms of a word for grammatical reasons [64]. This, however, 

introduces a sparsity problem within natural language processing. Another problem that lies with 

the sparsity problem is the distribution between common words with that of non-common words. 

As such, this block in the preprocessing pipeline aims at mitigating the sparsity and distribution 

problem by normalizing the data in tweets. 

This is achieved by leveraging Stanford’s CoreNLP to perform tokenization, lemmatization, and 

named entity recognition (NER). First, tokenization is used to extract each word within the tweet. 

After each word is extracted, lemmatization is used to convert each word into its base form. The 

decision to use lemmatization, instead of stemming was in the aim of ensuring additional noise is 

not introduced in the process. Therefore, words (such as ‘saw’) would not be simply cropped in 

the case to provide inaccurate base form, but rather be converted to their lemma (‘see’ or ‘saw’ 

based on part of speech) [65]. To further normalize the tweets, the name of things, such as: a 

 

 

Figure 3.2: An example of the Hashtag Preprocessing 
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person, a location, or an organization etc., are recognized and encoded to a standard term. For 

instance, the name Bob and John would both be encoded to simply ‘<person>’. This further 

reduces unnecessary noise which the neural network model could ignore. The following 7 named 

entities are identified and classified in this current body of work: name, location, organization, 

money, percent, data, time [66]. 

To further normalize the data and address the distribution problem, highly frequent words known 

as stop words are removed within the tweet. Stop words (such as ‘I’, ‘The’, ‘A’, etc…) appear very 

frequently and are very useful for grammatical reasons, they however provide little to no 

contribution to the semantical orientation of the tweet. This is primarily due to their common 

appearance in different tweets, resulting in no significant information gain in differentiating the 

sentiments of tweets solely by the appearance of these common terms. As such these words are 

removed using nltk’s stopwords corpus. 

 

3.2.3 Block 3: Vectorization 
 

The final block of the preprocessing pipeline is the section of the pipeline that converts texts into 

vectors. To achieve the preprocessing pipeline and development methodology objectives, stated in 

section 1.5, the final block of the pipeline should contain two essential characteristics:  

• Interchangeable word embeddings. The pipeline should be capable of seamlessly adding 

or removing additional word embedding models. Different word embedding models, 

produce different features that may be more suitable for one problem than another. As 
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such, the pipeline should be able to allow interchangeability with varying word 

embeddings. 

• Vector structure of tweet should be independent of the receiving neural network model. 

This is to ensure the same vectored input data can be accepted by varying neural network 

models, eliminating the need for separate preprocessing for neural network models with 

different architectures (i.e., FFNN, RNN, or CNN). 

First the interchangeable word embedding can be accomplished by performing parallel word 

embeddings on each word and concatenating each output vector. This produces a single 

consolidated word vector that contains components that focus on specific features of the word. In 

this implementation of an ASAS for concussion data, the following embedding is utilized: 

• Word Vectorization: The motivation to utilize word vectorization, is to acquire a 

distributed representation of the distance between words. In word vectorization, distance 

between words are calculated based on the co-occurrence of words within a threshold 

scope, often a window size of 5. Therefore, a word vectorization embedding attempts to 

cluster vector terms based on their prior 2 and next 2 neighboring terms. This in turn should 

generate vector embedding’s, such that the vector of semantically similar terms like ‘man’ 

and ‘women’ or ‘boy’ and ‘girl’ cluster with equal distance. For example, given the vector 

of each word, the equation, ‘man – woman = boy - girl’, should hold true. That is to say, 

the vector distance between ‘man’ and ‘woman’ is equal to that of ‘boy’ and ‘girl’. Through 

this distance representation, it may be understood that ‘man – woman + girl = boy’ or more 

formally as ‘girl is the equivalence of boy, as woman is to man’. In this body of work, the 

pre-trained GloVe model that was trained with 2 billion tweets is utilized to embed each 
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word within a tweet [41]. The option to utilize the Stanford’s GloVe model instead of 

Google’s word2vec model, stems from the nature of the training data that was used to train 

the model. Since, the word2vec was trained on the Google News corpus, the vocabulary 

and characters of the data would be more formal than that of the twitter data. 

• Part-of-Speech Embedding: Since words have different functions based on how they are 

used, their distinct meanings change based on their function. As such, Parts-of-speech 

(POS) categorizes these functions into a set of distinct grammatical classes. Since a word’s 

function can change the semantic meaning of a sentence, the inclusion of a POS embedding 

can increase performance [65]. The inclusion of POS tagging is also important in the 

Lexicon Embedding phase as we will see in the following point. In the current 

implementation, Parts of Speech analysis is performed on each word via Stanford’s 

CoreNLP. Each word is annotated with the abbreviated tag used in the Penn Treebank POS 

English tag set [66]. A list of the part-of-speech tag can be reference in Appendix B. 

Vectorization is then performed on the abbreviated tags by assigning a unique scaler value 

between the range (0, 1). The unique value is calculated, by dividing the index of the POS 

tag to 36 (the total number of POS tags). 

• Lexicon Embedding: The SentiWordNet 3.0 is directly used as the sentiment lexicon 

because it not only provides the sentiment polarity of a word but outputs the probability 

distribution of the word being ‘positive’, ‘negative’, ‘objective/neutral’. The lexicon is 

automatically generated via a 4 step process [18]. As mentioned in the prior point, the POS 

of a term can influence its polarity shift, as such SentiWordNet 3.0 contains separate 

sentiment polarity values for different POS tags. To ensure the correct sentiment for a given 

term is retrieved, the inclusion of the POS tag is also used to select the sentiment values. 
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The probability distribution of a term’s sentiment is then combined to generate a 3-

dimensional vector. 

• Polarity Shift Embedding: Polarity shift, is the directional polarity of a given word. For 

example, the term ‘good’ has a normal polarity shift within the sentence, “I found the meal 

to be good”. However, the same term can have an inverse polarity shift, if used in a negating 

sentence, “The meal was not good at all”. As such, the inclusion of polarity shift is 

important for sentiment analysis because the presence of negation completely reverses the 

semantic meaning of a phrase. As such, the exclusion of polarity shift can result in 

misunderstanding of a given phrase. A rudimentary approach is utilized to calculate the 

polarity shift of a given word. Terms in a tweet are systematically read and the polarity is 

determined to change if a negation term (i.e., ‘not’) is witnessed. Therefore, polarity 

orientation is considered ‘normal’ up to a negation term. Orientation of subsequent terms 

are then considered ‘inverse’ until the end of the phrase or the presence another negation 

term.  

In order to consolidate the different embedding layers, the output of each embedding is then 

concatenated to generate a single word vector representation. This concatenation operation allows 

a scalable preprocessing pipeline, that is capable of interchangeable embedding’s in order to 

capture varying linguistic features. 

After a 𝑑-dimensional vector is generated for each word, vectors are then concatenated together to 

produce a 𝑛 ×  𝑑 matrix, where 𝑛 is the number of terms in the tweet and 𝑑 is the dimensional 

size of the vector. In order to normalize the data between tweets and allow the preprocessed data 

to be fed into varying neural network architectures, zero padding and truncation is performed on 
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the 0-axis of the matrix. That is to say, zero-padding is performed on the 𝑛 dimension of the matrix, 

if 𝑛 is less than a threshold value, 𝑚. Likewise, truncation is performed on the 𝑛 dimension, if 𝑛 

is greater than 𝑚. As such, the padding and truncation operation outputs 𝑚 ×  𝑑 matrix, where 𝑚 

is the max number of terms. In Fig 3.3, an outline of the dimensional output of each component 

within block 3 can be found. In the implementation of the ASAS for SRC, terms are embedded as 

205-dimensional vectors and a tweets are padded or truncated to 24 terms. A max threshold of 24 

was chosen based on the longest tweet within the dataset.  

3.3 Deep Neural Networks 
 

As mentioned earlier in section 2.2.2, the state-of-the-art sentiment classification is primarily 

conducted via deep neural networks. As such, in the current body of work, various neural network 

 

Figure 3.3: Illustration of block 3 and Dimensions of Preprocessing Pipeline. 
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architectures are empirically evaluated, selected and combined in an ensemble system. This section 

presents the varying neural network architecture and hyper parameters chosen for evaluation. The 

implementation and evaluation of the models in this thesis was conducted in a python environment 

utilizing the keras framework to develop the various models. A detailed list of the python packages 

used in this thesis is provided in Appendix A.  

Due to the potential of each neural network model being incorporated within an ensemble system, 

there should be a common output among each neural network. As such, each neural networks’ last 

layer contains a softmax layer with K number of neurons, where K is levels of sentiments (i.e., K 

= 3 for ‘positive’, ‘negative’, and ‘neutral’ sentiments). This provided a normalized probability 

distribution as output for all the neural networks. In addition, since various deep neural networks 

are all applied to learn the sentiment classification of SRC twitter data within three levels of 

sentiment, a weighted categorical cross-entropy is selected as a common loss function. Since there 

is an imbalance with the class distribution within the concussion dataset, a weighted loss function 

is used to force the model to focus more on the under sampled class. The combination of the 

weighted categorical cross-entropy and the common softmax output layer, allows a common 

learning objective among the neural network model. 

In addition to the common loss function and output, other parameters which can be common among 

the neural network models, such as learning algorithm, epoch, and batch size are selected as 

followed. For learning algorithm, the Adam optimizer algorithm is selected to allow adaptive 

learning of the optimal weights [67]. Adam is a very popular optimizer that generates state-of-the-

art performance due to its unique method of updating the weights of a neural network. Unlike, 

traditional stochastic gradient descent, which updates weight just by the current gradient, weight 

update in Adam is based on the corrected exponentially decaying weighted average of gradient 
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and square gradient. That is to say, Adam adaptively learns by placing more emphases on current 

gradient rather than past gradients as movement is built during each epoch. As per batch size and 

epoch size, a value of 100 and 40 is selected respectively. A high epoch size is selected to ensure 

all networks have adequate number of iterations to learn an optimal pattern from the data. 

However, a high epoch value comes with the risk of overfitting the model to the training data. As 

such, an early detection method is applied during training of all the neural network models to 

ensure models do not over fit. After each epoch, early detection reviews the performance of the 

neural network, if the network is seen not to improve based on a threshold, then training is 

terminated early. In the implementation of the current work, performance is measured as the 

training accuracy of the neural network, and a threshold of 0.002 for improvement is considered. 

Since, early detection is measured on performance, a lower threshold of 0.002 (0.2% increase) that 

non-significant increase in performance is overlooked. To ensure training is not terminated 

prematurely, early detection waits 10 epochs of non-improvement before terminating. Once 

terminated, the weights of the neural network revert back to the values from the epoch that 

produced the highest performance. 

3.3.1 Hyper Parameters 
 

In this section, the unique hyper parameters for each neural network architecture is provided and 

discussed. 

A. FFNN 

 

Four different fully connected neural network models with varying number of layers and neurons 

were evaluated within this body of work. In all four models, a leaky rectified linear unit (ReLu) 
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activation with an alpha of 0.1 was selected in favor of the more traditional ReLu activation. The 

motivation in selecting a small alpha value of 0.1 in this thesis, is to allow only a small leak of 

negative information through. This decision was in order to mitigate the potential of permanently 

disabling some neurons which is present within the ReLu activation. The repercussions of a neuron 

being permanently disabled means that associated weights connected to the neuron may no longer 

update, potentially hindering the training of the network [37].  

In addition to the activation, all four models also implement a variation to the dropout 

regularization to alleviate the potential problem of overfitting, further referred to as decaying 

dropout. Unlike the traditional dropout, the rate of dropout is decayed after each iteration. The 

formula to update the drop rate can be written as 

 𝑟𝑒 = max (0, 1 −
𝑒

𝐸
) ∗ 𝑟0   (3.1) 

where:   

 

• 𝑒 is the current epoch. 

• E is number of epoch iterations. 

• 𝑟0 is the initial drop rate. 

• 𝑟𝑒 is the drop rate for epoch e. 

The principle to the decaying rate in the dropout is to quickly push a subset of weights during the 

initial epoch iterations of training. As the gradient moves down towards the regional cavity of the 

optimal solution, the restriction on the network is loosen and more weights are more freely trained 

during each passing epoch. Since a rate decay’s over time and the network consists of multiple 

fully connected layers, a high initial rate of 0.50 is chosen for all four models. 
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Lastly, the differentiating hyper parameters of the number of hidden layers and neurons for each 

of the four models is as followed: 

1. A FFNN model containing two hidden layers each containing 400 neurons. 

2. A FFNN model containing three hidden layers each with 400 neurons. 

3. A FFNN model containing 4 hidden layers with (775, 225, 75, and 25) neurons from the 

input layer to the output layer, respectively.  

4. A FFNN model containing 4 hidden layers with (400, 200, 100, and 50) neurons from the 

input layer to the output layer, respectively. 

The motivation to the four varying network sizes, is to evaluate models with increasing complexity 

via the addition of hidden layers. In addition, a bottleneck like structure in the last two FFNN 

model with 4 hidden layers attempts to linearly down sample the size of the input to the size of the 

output. The hypothesis to this approach, is to allow the network layers to learn the latent pattern 

that would down sample the input to the output in the attempt to project/encode the input space 

onto the output. 

B. CNN 

 

Similar to FFNN, the CNNs implemented in this body of work, utilize leaky ReLu activation with 

an alpha value of 0.1 and a decaying dropout with a rate of 0.2 after the fully connected layer with 

30 neurons. Since CNN performs feature extraction and down samples the input data, the required 

number of neurons in the fully connected layer is less. As such, the initial drop rate can be set 
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much lower.  Since terms are embedded as 205-dimensional vectors, the number of filters per filter 

size is also 205, maintaining the vector dimension of each term. 

As per the filter sizes of the CNN models, two separate approaches have been evaluated in this 

body of work. The first approach, contains a single layer with varying filter sizes that are then 

down sampled and concatenated to produce an extracted feature vector for the fully connected 

layer. An example of this approach is illustrated in Fig 3.4. It can be seen that varying filter sizes 

capture different n-gram representation of the input text and sampling only the most significant 

information from the n-gram mapping. By sampling only the most influential information from 

each n-gram mapping, the network is able to extract important n-gram features which can then be 

used within the classification layer. 

 

 

 

Figure 3.4: Diagram illustrating a single 1D CNN. The layer consists of 2 filters of size 1 and 2 respectively. 
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In contrast, rather than extending the number of filter sizes in a single layer. The second approach 

extends the number of filter sizes into two layers, such that the feature map from one convolution 

filter is feed into the next convolution filter. This 2 layer stacked 1D convolutional layer is further 

illustrated in Fig 3.5. The principle behind the second approach, aims to extract higher level 

features from the first layer n-gram. For example, given the input sentence ‘Concussion is a serious 

matter’ and a multilayer CNN with filter size of 2 for the first and second convolution layer. The 

first layer attempts to learn the 2-gram features of ‘concussion is’, ‘is a’, ‘a serious’, and ‘serious 

matter’. By stacking a second convolution layer with filter size 2, the network will attempt to learn 

the 2-gram features of the 2-gram features already learned (i.e., it will attempt to learn high-level 

feature of ‘concussion is a’, ‘is a serious’, and so forth). 

 

 

Figure 3.5: Diagram illustrating a 2 layer stack 1D convolution network. The first 1D convolution has a filter 

size of 3 generated a 1 ×  3 feature map. A second convolution takes the 1 ×  3 feature map and applies a 1D 

convolution with filter size 2. 1D max Pooling is then applied after the second convolution producing a scaler 

value. 



 

55 

Therefore, in order to determine suitable n-gram representation for the concussion dataset, varying 

models with different filter sizes are evaluated. Specifically, the following five CNN models with 

their filter size parameters were evaluated: 

• A single layer 1D-CNN with filter sizes of (1, 2).  

• A single layer 1D-CNN with filter sizes (1, 2, 3). 

• A single layer 1D-CNN with filer sizes (3, 4, 5). 

• A single layer 1D-CNN with filer sizes (1, 2, 3, 4, 5). 

• A multi-layer 1D-CNN with filter sizes (1 and 2) for the first and second layers, 

respectively. 

C. RNN 

Since RNN’s typically contain less tuning in regards to the required hyper parameters, only 3 

varying RNN models are evaluated with the variation coming primarily from their architecture 

(LSTM, bidirectional LSTM, and GRU). A bidirectional LSTM, is included in the evaluation to 

determine if the directional orientation of the sequence provides significant impact to the 

performance. For example, both LSTM and GRU are only able to generate prediction based on the 

current and prior words. However, bidirectional LSTM also generate prediction based on the 

current and future words. The intuition to the bidirectional LSTM, is that in some cases the future 

words beside a current word is more significant than its prior neighboring words. Similar to CNN, 

all 3 RNN models contain a fully connected layer with 30 neurons for the sentiment classification 

section of the network. Again, a decaying dropout with an initial rate of 0.2 is applied after the 
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fully connected layer. Lastly since each term in the input is represented as a 205-dimensional 

vector, the size of each RNN model is 205 neurons.  

D. TCN 
 

Since the varying factors that influence TCN differently from the other neural network architecture 

(FFNN, RNN, and CNN) are the filter size and the total depth of the network, only a single TCN 

model is evaluated. Similar to the other models, we configure the TCN with a drop rate of 0.2 and 

modify the vanilla TCN slightly by replacing the standard ReLu activation function with a leaky 

ReLu (also configured with an alpha of 0.1, similar to the other evaluated models).  

As per the filter size, a size of 3 was chosen due to of the characteristics of tweets being short 

sentences. With a filter size of 3, the TCN would require a total depth of 4 in order for the field of 

view to span across a whole input tweet. Since the dilation at a given layer can be calculated as 

𝑑𝑖 =  2𝑖, we would have dilation  values of (1, 2, 4, 8) for each layer respectively. We can then 

calculate the effective history or the input scope of a layer to its preceding layer by calculating 

𝑒ℎ𝑖 =  (𝑘 − 1)𝑑𝑖, where k is the filter size, d is the dilation, 𝑖 is the layer, and 𝑒ℎ is the effective 

history [37]. As such, we get an effective history of (2, 4, 8, 16) at each subsequent layer. Finally, 

the field of view at a given layer can then be calculated as ∑ 𝑒ℎ𝑗𝑖
𝑗=0 , resulting in values of (2, 6, 

14, 30) at each depth. Therefore, since the max input tweet is 24 terms, TCN with a depth of 4 is 

required, in order for the scope of the output to see the whole input data. 
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3.4 Transfer Learning 
 

In this body of work, the approach to transfer learning within deep classification neural network 

deviate from conventional sense. It is very common in the research domain of deep neural network 

to apply state-of-the-art pre-trained deep neural network classification, such as Oxford’s VGG, 

Goggle’s Inception v3, or Microsoft’s ResNet, to the specific domain problem. However, this 

approach, poses a few limitations and challenges within this body of work. First, publicly available 

state-of-the art pre-trained deep neural network models for sentiment analysis, is very scarce, since 

majority were developed for image processing. Secondly, the use of these state-of-the-art model 

often require a preprocessing that conforms the data to a specific form required by the pre-trained 

model. However, this negates the different embedding information captured by combining 

different embedding techniques and methods, since the pre-trained models where trained with only 

a single specific embedding.  

Therefore, transfer learning approach is done by utilizing external datasets from a different domain 

problem, but with similar characteristics as that of the concussion dataset. Instead of leveraging 

the state-of-the-art pre-trained models, the five following models: LSTM, bidirectional LSTM, 

multi-layer CNN, single-layer CNN with filter sizes [1,2], and single-layer CNN with filter sizes 

[1,2,3], as stated in section 3.3, is pre-trained with the SemEval-2016 and Kaggle weather datasets 

prior to training with the concussion data. Since SemEval-2016 and Kaggle weather consist of 

tweeter data that have been labelled with the document-level sentiment of the tweet, only those 2 

among the 6 external datasets are considered for pre-training. While, each dataset is focused on 

solving a different problem, they are all twitter data that illustrate a sentiment of a specific topic 

from the author. Thus each dataset has similar technical challenges, as per the length and informal 
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structure of the data. While nether the SemEval-2016 nor the Kaggle weather ranks the sentiment 

of two different topics, the hypothesis to this pre-training approach, is to allow the system to first 

learn the general understanding of a sentiment. Once the network learns the sentiment of a general 

tweet, we transfer that learned model on to the concussion dataset, such that the model now 

attempts to learn the ranking between the sentiments of different topics (i.e., concussion vs sports). 

3.5 Ensemble 
 

The last component of the automated sentiment analysis system, is the ensemble system that 

combines the classification of the neural network models to generate a consolidated classification. 

Again, the motivation towards the ensemble approach stems from the informal structure of tweets 

that allows varying writing styles. The idea, is to leverage the difference between the neural 

network architectures that cause the networks to focus on slightly different components during 

training. For example, by considering CNN architecture, the model is taking a more n-gram 

approach to training, whereas an LSTM is attempting to learn the sequential pattern via memory 

retention, or in the case of TCN that attempts to learn based on focusing on specific sections within 

a tweet. The principle towards this approach, while all models attempt to learn the pattern that 

maps the input to a sentiment, their different approach will capture information that may otherwise 

be missed by another model. However, too much varying representation can also be detrimental. 

Therefore, while multiple neural network models were evaluated, the classification votes of only 

the top performing neural networks are considered in the ensemble. Table 3.4 illustrates which of 

the evaluated neural network models were included in the ensemble.   
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Traditional ensemble approaches focus on applying a ‘hard’ or ‘soft’ voting system to consolidate 

the output of different models to produce a majority vote. In the case of ‘hard’ voting, the concrete 

classification (i.e., ‘positive’, ‘negative’, or ‘neutral’) is taken into considered, whereas ‘soft’ 

voting considered the probability distribution of each class (i.e., how confident the model perceives 

the tweet as being ‘positive’, ‘negative’, or ‘neutral’). However, in either cases, each model has 

equal influence towards the final decision. Intuitively, one can argue that in cases where experience 

and knowledge influences the correct the decision, the weight of each vote should be treated 

differently. For example, in the case of a model, when voting class, A is 80% correct but when 

voting class B is only 5% correct of the time. Therefore, in a situation such as this, the model has 

high precision for class A but low precision with class B. Therefore, when consider the vote from 

the model, the model’s vote would be considered more its vote is A but its influence will be much 

lower when its vote is B. Based on the principle that the votes should be weighted depending on 

the situation, this body of work deviates from the standard ensemble approach. 

Instead, the ensemble system is implemented by a FFNN that learns the influential pattern that 

each model has towards the final decision. Since varying influence from the varying votes from 

the model can lead to the ideal decision, the complexity of the pattern could present a non-linear 

problem, therefore a FFNN is implemented for the ensemble system. Since the input of the FFNN 

Table 3.4: List indicating neural network models added to ensemble 

Models No Pre-training 
Pre-training w/ 

SemEval-2016 

Pre-training w/ 

Kaggle Weather 

LSTM    

Multi-layer CNN    

Single layer CNN w/ 

Filter [1,2] 
   

Single layer CNN w/ 

Filter [1,2,3] 
   

 



 

60 

are simply the votes from the 4 models, a shallow network with 2 layers with a bottleneck structure 

is implemented. Again, the principle to the bottleneck approach, is for each layer to learn the non-

linear projection of the subsequent layer to a down sampled size until finally projecting onto the 3 

level classification. Specifically, two FFNN models were evaluated in this body of work. The first 

network contained 21 and 7 neurons for the first and second layer, respectively. Lastly, the second 

larger network, contained 30 and 18 neurons. 

 

3.6 Summary 

To summarize, the proposed system contains 3 main components: the preprocessing pipeline, 

neural network models, and the ensemble. 

The preprocessing pipeline, contains 3 blocks which cleans, normalize and generates a vector 

representation per word. The initial cleaning block performance standard natural language 

preprocessing algorithms that encodes related terms, identifies and segments hashtags, and shorten 

elongated words. The data is then normalized to mitigate the sparsity within the data. This is 

conducted via tokenization, lemmatization, and NER. Lastly, all highly frequent terms are 

discarded prior to vectorization. An important component to the preprocessing pipeline is the 

vectorization block. This block allows different embedding algorithms (word vectorization, part-

of-speech embedding, lexicon embedding, and polarity shift embedding) to be combined such that 

different linguistic features are extracted and concatenated.  

The second component are the neural network models, which learns the relational pattern between 

the sample twitter data with its sentiment. Since varying neural network architecture are available 

and have demonstrated to be effective in natural language processing (NLP) in recent years, this 
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thesis exams a variety of neural network models to be selected for the ensemble system. 

Specifically, a total of 13 different models are evaluated (four FFNNs, five CNNs, three RNNs, 

and one TCN).  

Through examination, a total of seven models are selected for the ensemble system:  

• Non pre-trained LSTM 

• Non pre-trained multi-layer CNN 

• Non pre-trained single layer CNN with filter sizes [1, 2] 

• Non pre-trained single layer CNN with filter sizes [1, 2, 3] 

• LSTM pre-trained on the SemEval-2016 dataset 

• Multi-layer CNN pre-trained on SemEval-2016 dataset 

• Single layer CNN with filter sizes [1, 2, 3] pre-trained on the SemEval-2016 dataset. 
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 Experiments & Results 
 

This chapter presents an empirical evaluation of the various neural network models and the 

proposed ensemble SA system. The first section provides an overview of the metrics used. The 

second section presents and discussed the evaluation of the individual neural network models. 

Lastly, the third section presents and discussed the evolution of the pre-training and the final 

ensemble system. 

4.1 Metrics 
 

The problem of predicting the sentiment of a tweet lies in the subset of classification problems 

within machine learning. This body of work’s evaluation is primarily based on the true positive, 

false positive, true negative, and false negative metrics. It should, however, be clarified that the 

use of the terms ‘positive’ and ‘negative’ in this discussion of metrics, is not in reference to positive 

and negative sentiments of tweets, rather it is related to the classification of data. The terms positive 

and negative, in this section, shall thus refer to a data point belonging or not belonging to a specific 

class.  

Fig. 4.1 illustrates how true positives represent predictions that were correctly predicted as 

belonging to the specific class (i.e., class ‘A’ in the diagram). Similarly, true negatives are 

predictions that were correctly predicted as not-belonging to the specific class. On the other hand, 

false positive and false negative indicate predictions that were incorrectly predicted as belonging 

or not-belonging to the class, respectively. Any other use of the term throughout this section shall 

be explicitly stated.   
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Precision is used to evaluate the rate at which a model correctly selected tweets that actually belong 

to a given sentiment. The precision of a given sentiment can be formally written as 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 =
𝑇𝑃𝑠

𝑇𝑃𝑠 + 𝐹𝑃𝑠
 (4.1) 

 

where: 

• 𝑠 is given the sentiment (positive, negative, and 

neutral). 

• TP is the true positive of the sentiment. 

• FP is the false positive of the sentiment. 

 

 

 

Figure 4.1: Diagram illustrating the metrics of true/false positive and true/false negative for a specific label 'A'. 

The circular region indicates data points classified as ‘A’ (Selected Predictions). The non-selected predictions 

(regain within the box but not in the circle) are data points not predicted as ‘A’. Circular data points, represent 

ground-truth labels of ‘A’ and the X points represent ground-truth labels of non ‘A’. 
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Since precision is calculated based on true positive with false positive, a low precision score would 

indicate that the model is overly predicting a class to belong to a specific sentiment. Thus 

producing a model with a high ratio of false positives. From (4.1), the precision of each sentiment 

can be averaged and written as followed to provide the overall precision of a model: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ (
𝑛𝑠

𝑁
)  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠

𝑠

 (4.2) 

where:   

 

• s is given the sentiment (positive, negative, and 

neutral). 

• 𝑛𝑠 is the total number of 𝑠 labelled tweets. 

• N is the total number of tweets. 

 

As mentioned earlier, the concussion dataset contains an unequal distribution of sampled 

sentiments, which causes misrepresentation for the sentiments. While this is accounted in the 

implementation of each neural network via the weighted loss function, the misrepresentation is 

only addressed during training and not during evaluation. As such, the overall precision of a model 

is averaged based on the weighted representation of the sentiment rather can a macro average. 

Another important metric that is considered in this body of work is recall. While precision 

illustrates how accepting a model is at predicting data as positive, recall on the other hand can be 

viewed as how restrictive a model is at accepting a data as being positive. Therefore, a model with 

low recall can be considered restrictive, resulting in a high ratio of false negatives. Similar to 

precision, the overall recall score of a model can be formulated as 
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𝑅𝑒𝑐𝑎𝑙𝑙𝑠 =

𝑇𝑃𝑠

𝑇𝑃𝑠 + 𝐹𝑁𝑠
 

(4.3) 

 𝑅𝑒𝑐𝑎𝑙𝑙 = ∑ (
𝑛𝑠

𝑁
)  𝑅𝑒𝑐𝑎𝑙𝑙𝑠

𝑠

 (4.4) 

where:   

 

• 𝑠 is given the sentiment (positive, negative and neutral). 

• 𝑇𝑃𝑠 is the true positive of the sentiment. 

• 𝐹𝑁𝑠  is the false positive of the sentiment. 

• 𝑛𝑠 is the total number of 𝑠 labelled tweets. 

• N is the total number of tweets. 

While both recall and precision provide important information on the predictive behaviour of a 

model, the final comparison conducted on the performance of each model is measured with an F1-

score. In determining the models that are used within the ensemble system, the F1-score is used in 

the evaluation. The F1-score is measured based on the recall and precision, providing the harmonic 

average between the two and be calculated as 

 𝐹1 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4.5) 

where:   

 

• Precision is the weighted precision score for the three sentiments 

(positive, negative, and neutral) from (4.2) 

• Recall is the weighted recall score for the three sentiments (positive, 

negative, and neutral) from (4.4) 
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Since both precision and recall provide a value between zero to one, we can adjust the F1-score to 

maintain the same range by multiplying it by 2, as shown in the (4.5). This allows us to interpret a 

high F1-score, towards one, as a model containing a high average between precision and recall. 

Vise-versa, a low F1-score, towards zero, would indicate a lower performing model with low 

precision and recall average. 

Since different external datasets are used to evaluate the different neural network models, and each 

of the external dataset contain their own common metrics for evaluation, an additional metric is 

used primarily as a comparison with other state-of-the-art models. In this body of work, accuracy 

is used as a secondary metric to evaluate the varying models with that of other state-of-the-art 

models. Accuracy is a metric traditionally used to simply get the ratio of correctly classified 

predictions and can be calculated as 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑁
 ∑ {

1, 𝑖𝑓 (𝑦𝑖
′ = 𝑦𝑖) 

0, 𝑖𝑓 (𝑦𝑖
′ ≠ 𝑦𝑖)

𝑁

𝑖

 (4.5) 

where:   

 

• N is the total number of samples. 

• 𝑦𝑖
′ is the prediction for the 𝑖𝑡ℎsample.  

• 𝑦𝑖 is the ground-truth of the 𝑖𝑡ℎsample. 
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4.2 Neural Network Results 
 

The discussion here is presented in three different sections, presenting different analysis conducted 

on the individual neural network models with the varying datasets. The first analysis, presents the 

comparative results of the varying neural network models evaluated in this body of work with that 

of other state-of-the-art models used in the same dataset. The second analysis, presents the 

comparison of the varying neural network models among themselves and illustrates the subset of 

optimal neural network architectures for sentiment analysis of SRC. Lastly, an analysis conducted 

on the unbalance sampling of sentiment within the concussion dataset is presented.  

The standard 80/20 percent split for training and testing data was performed on all the experiments 

in the following section. Since the initial weights of a neural network contribute to the final 

performance of the model, each experiment was conducted 30 times with a newly randomized 

initial weight, with the highest performing iteration being recorded. A large iteration size of 30, 

allows for a good sample of different initial weights to be tested. In addition, larger sampling of 

different initial weights larger than 30 did not yield significant improvement. Lastly, among all the 

experiments, the optimization of all the models used the F1-score as its primary metrics. 

4.2.1 Analysis 1 
 

In this analysis, the accuracy of each model is compared with other systems proposed in related 

works that have been evaluated on the same dataset. Specifically, a comparison is conducted on 

the semeval-2016 and senti-target datasets, since both naturally consist of 3-level sentiments and 

were both evaluated with the common accuracy metric. While other datasets were included in the 

current body of work, they were excluded in the comparison for the following reasons: 
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• Kaggle Weather: The performance of other external models is measured based on the root 

mean square error (RMSE) due to the original nature of the competition. In addition to 

sentiment classification, the Kaggle weather contains other classification tags that are 

measured in the performance. Since the focus of our work is SA, evaluating external 

models that also predict the additional classification labels with only models that predict 

the sentiment classification cannot be justified. 

• Rotten Tomato: Similar to Kaggle weather, the original dataset is composed of 5-level SA 

and the body of work is focus on the classification of sentiments in only 3-levels. A 

comparison between the models presented in this body of work and the external models 

would favour the simplified problem domain. In this case, the models presented in the 

current work would demonstrate higher performance due to the reduced level in the 

sentiments. 

• UCI: The dataset size for UCI is very small and typically deep neural networks benefit 

from, and require a large training sample to produce state-of-the-art performance. Thus, 

the limiting dataset size would favour more traditional machine learning approaches, such 

as regression based, instead of other more complex models that produce state-of-the-art 

performance on the same problem domain but with larger sample size. In addition, no other 

body of work is evaluated on the UCI dataset, aside from the original source [59], which 

conducts an evaluation on each individual review site, reducing the sample size even 

further. 

• UMich650: Similar to UCI, UMich650 is also a very small dataset, which could again lead 

to favouring more traditional machine learning approaches. In addition, the UMich650 is 
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retrieved via the private Kaggle competition hosted by the University of Michigan that 

does not support further evaluation for comparison.  

Table 4.1, illustrates that five neural networks presented in the current body of work rank in the 

top 10 in accuracy among other state-of-the-art systems. Interestingly, the models that appear to 

be comparable with other state-of-the-art systems use the same neural network architectures (i.e., 

single layer CNN, multi-layer CNN, LSTM, and bidirectional LSTM) that commonly have been 

used in recent years for SA and natural language processing within different domain problems. 

Another observation one may gather from the result, is the filter size of the single layer CNN’s 

which demonstrated better performance. Both single layer CNN models, consist of small window 

sizes of [1, 2] and [1, 2, 3], correlating to feature extraction of low n-gram representation of 1, 2, 

and 3. This small n-gram/filter size dependency may be explained by the small document size of 

tweets. Large n-gram representation could be introducing additional noise in the problem domain 

of short documents. 

Table 4.2, illustrates that the presented models do not show comparable performance on the senti-

target dataset as it did with the semeval-2016. This lack of performance may stem from nature of 

the dataset geared towards target-level SA. Since the additional target-topic input is excluded in 

this body of work, the vector embedding produced by the preprocessing pipeline contains no 

information on the target. This missing embedding of the target-topic can explain the performance 

produced by the varying neural network model. Since the networks are not provided with the 

specific target of interest, they are also tasked to implicitly learn the target of interest pertaining to 

the tweet and sentiment. In conclusion, while the specific configuration of the preprocessing 

pipeline may yield comparable results to state-of-the-art systems for document-level SA, 

additional tuning or extension is required for target-level SA. 
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Table 4.1: Accuracy results semeval-2016 dataset. Results of the external systems from the Semeval-2016: Task 

A competition are compared with the results of the neural network models presented in the current body of work. 

While a total of 34 systems contributed to the competition, only the top 15 rank systems are illustrated in 

descending order of accuracy. [48] 

MODEL LAYER/FILTER SIZE ACCURACY 

FFNN 

[400, 400] 0.595 

[400, 400, 400] 0.590 

[775, 225, 75, 25] 0.588 

SINGLE LAYER CNN 

[1, 2] 0.617 

[1, 2, 3] 0.611 

[3, 4, 5] 0.602 

[1, 2, 3, 4, 5] 0.606 

MULTI-LAYER CNN [1, 2] 0.622 

GRU [205] 0.606 

LSTM [205] 0.612 

BI-DIR LSTM [205] 0.622 

TCN [3] 0.596 

EXTERNAL SYSTEM ACCURACY 

SWISSCHESSE 0.646 

NTNUSENTEVAL 0.643 

UNIPI 0.639 

CUFE 0.637 

INSIGHT-1 0.635 

AUEB.TWITTER.SENTIMENT 0.629 

SENSEI-LIF 0.617 

UNIMELB 0.616 

SENTI-SYS 0.609 

INESC-ID 0.600 

THUIR 0.596 

I2RNTU 0.593 

LYS 0.585 

PUT 0.584 

UOFL 0.572 

BASELINE 0.342 
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4.2.2 Analysis 2  

 

A total of 12 models were evaluated on each of the 6 external datasets and the primary sports 

related concussion dataset, resulting in 72 experiments. The models were also evaluated on the 6 

external datasets, to further analyse the adaptability of each of the models to different datasets with 

various domain problems. Among the proposed models in this thesis, this analysis determines the 

top models, which still perform well regardless of the problem domain. Table 4.3 illustrates the F1 

Table 4.2: Accuracy results of senti-target. Results from other state-of-the-art systems illustrated in the works of  

[58] are compared with the results of the neural network models presented in the current body of work. 

MODEL LAYER/FILTER SIZE ACCURACY 

FFNN 

[400, 400] 0.595 

[400, 400, 400] 0.590 

[775, 225, 75, 25] 0.588 

SINGLE LAYER CNN 

[1, 2] 0.617 

[1, 2, 3] 0.611 

[3, 4, 5] 0.602 

[1, 2, 3, 4, 5] 0.606 

MULTI-LAYER CNN [1, 2] 0.622 

GRU [205] 0.606 

LSTM [205] 0.612 

BI-DIR LSTM [205] 0.622 

TCN [3] 0.596 

APPROACH ACCURACY 

ADARNN-COMB 0.663 

ADARNN-W/E 0.658 

ADARNN-W/OE 0.649 

SVM-DEP 0.634 

RNN 0.630 

SVM-INDEP 0.627 

SVM-CONN 0.600 
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results for each of the experiments, with top 5 models for each dataset highlighted. Additional 

material on the analysis results of these models can also be located in Appendix C. 

 

Based on the results of each individual model, the single layer CNN with filter sizes [1, 2] shows 

consistently high performance across all dataset. In addition, to the filter sizes of [1, 2], the 

combination of filter sizes [1, 2, 3] and [1, 2, 3, 4, 5] for a single layer CNN also show high 

performance among some of the datasets. However, the single layer CNN with filter sizes [3, 4, 

5], does not appear to rank among the top performing models. This would suggest that the 

Table 4.3: Results of F1-score on all datasets: Sports related concussion (SRC), semeval-2016 (SEMEVAL), 

Kaggle weather (KG), rotten tomato (RT), senti-target, uci, umich650. 

MODE

L 

LAYER/ 

FILTER 

SIZES 

SRC 
SEM-

EVAL 
KG RT 

SENTI-

TARGET 
UCI 

UMIC

H 650 

FFNN 

[400, 400] 0.5529 0.5886 0.9043 0.8312 0.5744 0.7894 0.8693 

[400, 400, 

400] 
0.5557 0.5877 0.9053 0.8300 0.5736 0.7887 0.8696 

[775, 225, 

75, 25] 
0.5500 0.5737 0.9069 0.8238 0.5662 - - 

[400, 200, 

100, 50] 
- - - - - 0.8021 0.8692 

SINGLE 

LAYER 

CNN 

[1, 2] 0.6201 0.6230 0.9324 0.8734 0.6131 0.8504 0.8937 

[1, 2, 3] 0.6135 0.6159 0.9346 0.8772 0.6214 0.8445 0.8887 

[3, 4, 5] 0.5983 0.6082 0.9281 0.8709 0.6196 0.8367 0.8933 

[1, 2, 3, 4, 

5] 
0.6122 0.6099 0.9322 0.8751 0.6213 0.8487 0.9032 

MULTI-

LAYER 

CNN 

[1, 2] 0.6121 0.6224 0.9319 0.8739 0.6086 0.8498 0.8933 

GRU [205] 0.6087 0.6082 0.9325 0.8665 0.5889 0.8470 0.8938 

LSTM [205] 0.6138 0.6137 0.9325 0.8718 0.6040 0.8502 0.8889 

BI-DIR 

LSTM 
[205] 0.6078 0.6208 0.9328 0.8730 0.6140 0.8410 0.8790 

TCN [3] 0.5615 0.5962 0.9290 0.8558 0.5909 0.8396 0.8984 
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information gathered from higher order filter sizes provide less to no additional information than 

smaller filter sizes. As such, it can be concluded that the performance of the single layer CNN with 

filter sizes [1, 2, 3, 4, 5] can be primarily contributed by the first 3 smaller sizes [1, 2, 3]. The lack 

of benefit from larger filter sizes may be explained by the small document size of a tweet. Since a 

tweet only contains a small number of terms, smaller n-gram representation would provide more 

information than larger n-gram. A smaller n-gram or smaller filter size would provide a smaller 

window scope, thus extracting finer-details. In contrast, the larger filter size, would contain a larger 

window scope, causing a broader representation of more terms. Therefore, we can treat the single 

layer CNN with filters [1, 2, 3, 4, 5] as redundant and only maintain the single layer CNN models 

with filter sizes [1, 2] and [1, 2, 3]. 

In addition to the single layer CNN, the multi-layer CNN also ranks in the top 5 among 5 of the 7 

datasets. As illustrated in Table 4.3, one can see that the performance of the multi-layer CNN does 

not deviate from its single layer counter-part. This would suggest that the n-gram approach of 

feature extraction yields promising performance in SA. Specifically, a small n-gram is more 

beneficial than higher n-gram values in the analysis of social media messages like twitter, which 

are characteristically very brief sentences. This would suggest that a small window scope that 

focus on immediate neighbouring words is an important feature in the SA of brief sentences. 

Therefore, the multi-layer CNN model is also considered for further evaluation. 

Interestingly, in all datasets, all feed-forward neural network models significantly underperform 

with respect to the other models.  This could be explained by the sequential characteristic of our 

problem. Since FFNN does not consider the order or position of the input, we may conclude that 

the correlation of a term to other terms is significant in the interoperation of a tweet’s sentiment. 

This intuitively makes sense. If we take a sentence and scramble the words, it becomes very 
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difficult for one to determine the sentiment of the sentence due to the grammatical structure of the 

sentence being destroyed. While it may be possible to guess the sentiment of sentences with only 

a single topic primarily based just on the appearance of positive and negative terms. This task 

becomes significantly difficult once multiple subjects are discussed within the sentence. When 

multiple subjects are introduced, identifying the association between sentimental terms and the 

subject they are referencing become much more important. However, removing the sequential 

order in which the terms appear in the sentence, increases the complexity of the task. Therefore, 

all feed-forward models are excluded from further evaluations. 

As per the neural network models with a sequential depend approach, which primarily focus on 

the sequential order of the inputs. Both LSTM and bidirectional LSTM perform equally well for 

the varying datasets. On the other hand, both TCN and GRU show less desirable performance 

compared to LSTM models. Since GRU showed good performance in the UCI and UMich650, it 

can be argued that GRU may be more suitable for problems with a smaller data sample compared 

to LSTM. The added complexity of maintaining the memory cell in LSTM as opposed to the 

simplified gating mechanics in GRU, could account for this discrepancy. A more interesting 

observation from Table 4.3 is the underperformance of TCN model, aside from the UMich650 

dataset. This observation can lead to the conclusion that the regional attention is a less important 

feature in the domain of SA than what we considered in our original hypothesis. Another possible 

explanation for the lack of performance is a potential limitation in the fixed history scope of TCN. 

Unlike RNN type networks, that try to learn the amount of information to retain forcing the 

network to understand the short-term vs long-term history dependency of the input. However, TCN 

contains a fixed history scope via the hyper parameters: filter size and network depth. Therefore, 

the length of the history is pre-determined prior to training. 
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In summary based on the performance evaluation conducted of each dataset, the neural network 

models considered for ensemble are reduced to the following subset:  

• Single layer CNN with filter sizes [1, 2] 

• Single layer CNN with filter sizes [1, 2, 3] 

• Multi-layer CNN with filter sizes [1, 2] 

• LSTM 

• Bidirectional LSTM 

4.2.3 Analysis 3 
 

The next set of experiments were conducted to analyse and evaluate the performance of the models 

given the imbalance sampling of the sentiments. Traditionally, a dataset with a balance proportion 

of classes is the ideal situation for training. The proportional dataset will allow the model to see 

an equal number of samples from each classes. This prevents the model from over compensating 

for classes that are over sampled or undercompensating for classes that are under sampled. As 

discussed in section 3.1, the distribution of the sentiments in the concussion datasets is imbalanced. 

Since increasing the dataset to establish a balance distribution of sentiment was not feasible due to 

time and human resource burden associated to manual labelling. Two methods of discarding tweets 

were utilized in this analysis to generate two proportional distributions between the sentiments 

(‘positive’, ‘negative’, and ‘neutral’). In the first approach, a set of randomly selected ‘positive’ 

tweets were discarded such that the total number of ‘positive’ tweets equaled in the total number 

of ‘negative’ tweets. This resulted in discarding 4,726 random ‘positive’ tweets, producing a semi-

proportional concussion dataset with 11,074 tweets. In the second approach, in addition to 

discarding ‘positive’ tweets. A set of randomly selected ‘neutral’ tweets where also discarded such 
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that the total number of tweets for each sentiment (‘positive’, ‘negative’, and ‘neutral’) were equal. 

This second approach, generated a fully-proportional concussion dataset with 8,190 tweets by 

discarding an additional 2,884 tweets. 

Fig. 4.2 compares the performance of the original non-proportional concussion data with the two 

generated semi- and fully- proportional dataset. While the performance of the adjusted dataset 

underperformed the non-proportional data. One can observe the relation between the distribution 

of the concussion dataset and the increase of sample size. The observation suggest that maintaining 

a proportional distribution between ‘positive’ and ‘negative’ sentiments as the sample size increase 

is important to provide significant increase in performance by the increase in data. Additional 

analysis graphs are also available in Appendix D. 

Interestingly, the removal of 4,726 ‘positive’ tweets that resulted in the number of ‘positive’ and 

‘negative’ sentiments to be proportional, only exhibited a small degradation in performance. In 

contrast, the remove of 2,884 ‘neutral’ tweets exhibited larger degradation from the semi-

proportional dataset. This observation may lead to the conclusion that the increase of ‘positive’ 

sentiments while not maintaining a proportional balance with ‘negative’ sentiments yield little 

increase in performance. In contrast, the maintenance of ‘neutral’ sentiments with the other two 

sentiments is less vital when increasing the sample size of the dataset. Therefore, the scaling of 

training samples should maintain a balance sample between ‘positive’ and ‘negative’ tweets to 

yield significance improvement in performance. 

However, since the semi-proportional and fully-proportional distributions yielded worst 

performance, the utilization of all samples is a more important factor than the distribution of the 

sentiments in our case. As such in the case of the concussion dataset, one can conclude that the 
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benefit of a proportional distribution does not outweigh the repercussions of a reduced sample size. 

Therefore, in this thesis, the non-proportional concussion dataset is kept in order to maintain the 

largest sample size. 

 

4.3 Pre-training & Ensemble Results 
 

In this section, the results and evaluation of pre-training the presented neural network models from 

the previous section is first presented followed by the final performance of the ensemble system. 

 

 

Figure 4.2: Line graph illustrating the F1-score for each model on the 3 proportional (non-, semi-, 

fully-)  concussion dataset. 
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In this thesis, pre-training is conducted on the subset of five neural network architectures selected 

based on the analysis conducted in section 4.2.2. The models pre-trained on the semeval-2016 and 

Kaggle weather are further trained with the original non-proportional concussion dataset.  

 

An ensemble system is used due to the correlation of the models’ prediction, as illustrated in Fig. 

4.3. While the models produce similar performance score as outline in Table 4.4, the correlation 

between each model are not high (below 95% standard), which would indicate that the models are 

generating different predictions for some of the datasets. Therefore, it can be concluded that the 

models are capturing different information during training. This can potentially be explained by 

 

Figure 4.3: Heat map illustrating the correlation of the models’ predictions. 
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the various architectures and parameters used in this thesis. This intuitively, motivated us to stack 

models so that the various predictions from the different models can be combined. 

Based on the results illustrated in Table 4.4, it can be concluded that pre-training the model with 

the Kaggle weather provides a decrease in performance across the varying neural network models. 

This could be explained by the difference in the domain problem. The Kaggle weather primarily 

consists of sentiments related to the weather. Therefore, the similarly in the domain may be too 

little to produce any increase in performance. This illustrates that pre-training models on datasets 

with similar technical characteristic (i.e., unstructured, short character length) may not necessarily 

yield better performance. Therefore, experiment and evaluation should be conducted to determine 

the optimal models. As for semeval-2016, there are indication of similar or marginal improvement. 

This could be caused by some of the similar characters between the datasets. Both datasets contain 

an non proportional distribution of sentiments. In addition, preprocessing initially conducted on 

the SemEval-2016 by the authors of the dataset is very minimal, producing similar text as the raw 

tweets gather in this body of work. Also based on included perfromance of the single layer cnn 

with filter size (1, 2, 3) and LSTM models pre-trained on the semeval-2016 dataset, one can 

concluded that the bidirectional LSTM no longer compares with the other models. Therefore, the 

models can be further reduced by eliminating the bidirectional LSTM from the ensemble system. 
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In order to determine the models to be selected for the ensemble system, models were selected 

based on a threshold. This threshold is calculated based on the average performance of the non 

pre-trained models was 0.613 ± 0.004. Therefore, a threshold of 0.609 was used to evaluate 

models for the ensemble system. In conclusion, with the exclusion of models pre-trained with the 

Kaggle weather dataset, bidirectional LSTM models, and other models pre-trained on the 

SemEval-2016 dataset, the following top performing models are selected for the ensemble system: 

• Single layer CNN with filter sizes [1, 2], that was not pre-trained 

• Single layer CNN with filter sizes [1, 2, 3], that was not pre-trained 

• Multi-layer CNN that was not pre-trained 

• LSTM that was not pre-trained 

• Single layer CNN with filter sizes [1, 2, 3] that was pre-trained on the SemEval-

2016 dataset 

• Multi-layer CNN that was pre-trained on SemEval-2016 dataset 

• LSTM that was pre-trained on the SemEval-2016 dataset 

Table 4.4: F1 results of models pre-trained on semeval-2016 and Kaggle weather (KG) trained on the 

concussion dataset. The original performance of the not pre-trained model is also illustrated for easy 

comparison. In addition, the top performing models are bolded. 

MODEL 
LAYER/FILTE

R SIZES 

NON 

PRE-TRAINED 

PRE-TRAINED 

SEMEVAL-2016 

PRE-TRAINED 

KG 

SINGLE LAYER 

CNN 

[1, 2] 0.6201 0.6076 0.6082 

[1, 2, 3] 0.6135 0.6139 0.6072 

MULTI-LAYER 

CNN 
[1, 2] 0.6121 0.6093 0.5994 

LSTM [205] 0.6138 0.6117 0.6084 

BI-DIR LSTM [205] 0.6078 0.6066 0.6087 
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Lastly, the ensemble system was trained and tested with the above selected neural network models. 

In this body of work, ‘hard’ voting approach was used over ‘soft’ voting, in the aim of reducing 

noisy input for the FFNN ensemble system. For example, rather than introducing additional noise 

from less probably sentiments in a vote, the FFNN ensemble system shall only consider the highest 

probably sentiment in a vote and ignore all other probability distribution. Table 4.5 illustrates a 

slight increase in performance with the ensemble system as opposed to the prediction of an 

individual neural network model, in our case a F1-score of 0.6271. 

4.4 Summary 

To recap a total of five experiments were conducted for this thesis. The first experiments evaluated 

the proposed models presented in this thesis with other proposed models from other related works. 

The results indicated that five of the proposed neural network models on their own demonstrated 

results that compared well to other related works on the SemEval-2016 and Senti-Target dataset, 

only deviating 2.5% accuracy from the other systems. Afterwards, an experiment was conducted 

to evaluate the performance of each proposed model to one another. Each model was trained and 

evaluated on each of the six external datasets. The results of the experiment correlated with results 

illustrated in the first experiment. The top performing models among the six external datasets were 

also the same set that demonstrated high performance during the first evaluation. The results 

conclude that the following models are the optimal subset: 

Table 4.5: Results of the ensemble system. 

SYSTEM F1-SCORE PRECISION RECALL ACCURACY 

ENSEMBLE 0.6271 0.6271 0.6272 0.6272 
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• Single layer CNN with filter sizes [1, 2] 

• Single layer CNN with filter sizes [1, 2, 3] 

• Multi-layer CNN with filter sizes [1, 2] 

• LSTM 

• Bidirectional LSTM 

The third experiment was conducted to analyze the relationship with the distribution of the training 

sample and its effect on performance. Two balancing methods were evaluated in this experiment: 

semi-proportional (proportional distribution between ‘positive’ and ‘negative’ tweets) and fully-

proportional (proportional distribution among all three sentiments). The results indicate that 

maintaining a semi-proportional distribution is important when scaling training samples. When 

increasing training data to increase performance, it is important to maintain an equal distribution 

between ‘positive’ and ‘negative’ tweets. The experiment shows that an increase in only ‘positive’ 

tweets does not necessary increase the overall performance of the model. 

The forth experiment was conducted to analyze the effect of pre-training the models with dataset 

that contained similar characteristics but of a different subject. Models were first pre-trained on 

the twitter data from SemEval-2016 and Senti-Target prior to being training on the concussion 

dataset. While some models illustrated better performance on the SemEval-2016 dataset, the 

experiment indicated that datasets with similar characteristics (short informal unstructured posts) 

may not necessary yield better performance. This would indicate that evaluation should still be 

conducted when pre-training on datasets with similar characteristics but with different subject 

matters. 
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Lastly, an evaluation on the ensemble system using the subset of the seven optimal models was 

evaluated. The FFNN ensemble system generated an F1-score of 0.6271. 
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 Conclusion 
 

This thesis presents a body of work related to the development of an automated system to analyze 

twitter data for the purpose of understanding the general public’s opinion of sports related 

concussion. This was conducted to aid in the improvement of sports related policy and regulations 

to mitigate the health risk brought on by the dangers of concussion. In the development of an 

automated sentiment analysis system, the performance of varying neural network models 

including: FFNN, CNN, RNN, GRU, LSTM, and TSN, was evaluated. The evaluation was 

performed to investigate the optimal set of neural network models that can be used in an ensemble 

arrangement to predict the superior sentiment between the risk of concussion and the winning 

culture mentality within sports. The evaluation yielded the following optimal models for a fully 

connect neural network ensemble system:  

• non-pre-trained single layer CNN with filter sizes [1, 2], 

• non-pre-trained single layer CNN with filter sizes [1, 2, 3],  

• non-pre-trained multi-layer CNN, 

• non-pre-trained LSTM, 

• single layer CNN pre-trained on SemEval-2016 with filter sizes [1, 2, 3], 

• multi-layer CNN pre-trained on SemEval-2016, and 

• LSTM pre-trained on SemEval-2016. 

Lastly, the ensemble system was further trained and yielded a final F1 performance score of 

62.71%. 
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5.1 Contribution 
 

This thesis has made an incremental contribution to the ongoing research and investigation of 

ensemble based neural network systems for social medial analysis. In summary, the main 

contributions of this work which relates to the objects stated in section 1.5 are as follows: 

1. Sentiment Pre-processing Pipeline: The main contribution of this work is the 

preprocessing pipeline that allows interchangeability between pre-trained word 

embedding. While the components included in the pre-processing pipeline are standard to 

sentiment analysis and NLP, the combination of various embedding and the stacking of 

various components are unique to this body of work. The combination of concatenating 

pre-trained word vectors and word padding/truncation in the final block of the 

preprocessing pipeline, provides a method with two main benefits. The concatenation 

allows varying linguistic and sentiment features to be combined, while the inclusion of 

word padding/truncation allows a unified document (i.e., tweet) vectorization which can 

be feed into varying neural network architecture.  

2. Automated Sentiment Analysis System (ASAS) for Sport Related Concussion (SRC) 

text: The second contribution is the empirical evaluation of deep neural network in the 

application of SA of sports related concussion data. The results indicate that various neural 

network architecture can be employed in the domain of sports related concussion data. 

While prior works have demonstrated the SA of twitter data, this is the first body of work 

that attempts to label the sentiment within the domain of sports related concussion. The 

application to this specific domain introduces a novelty within the SA that has not yet be 

explored. Prior SA, focus on the SA of a target entity, which attempts to determine the 
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sentiment of a specific subject within a document. However, the problem presented with 

SRC, contains two main entities (concussion and sports) which are being ranked among 

each other. This introduces some additional technical challenges not present in the standard 

target-level sentiment analysis. Since two entities are ranked, the magnitude of their 

sentiments must be learned, such that they may be compared. Specifically, in the case of 

this thesis, the sentiment of concussion is compared to the winning culture of sports. 

3. A methodology for adaptive development of a sentiment analysis system: The 

evaluation of the various deep neural network models with the preprocessing pipeline on 

varying external datasets, indicates that similar methodology can be implemented in the 

automated analysis system. While no model outperformed the best state-of-the-art model 

(SemEval-2016 and Senti-Target dataset systems), the results of the models only deviate 

2.5% from other comparable state-of-the-art systems. As such, this indicates that the 

methodology can be applied to other automated analysis system and generate comparable 

results. However, the potential of the methodology lies within the interchangeability of 

leveraging different pre-trained embedding’s and the flexibility of evaluating various 

neural network model with minor to no preprocessing changes. 

5.2 Direction of Future Works 
 

Based on the work presented in this thesis, the following future work is recommended: 

• The understanding of the opinion of the general public with regard to sports related 

concussion can aid in pushing more emphasis on the need for better policy and regulation 

to mitigate the risk. However, more information can be gathered to aid in policy and 
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regulation, if the specific opinions of general public can be also categorized into fine-

grained categories. For example, it would be more beneficial to understand how the general 

public opinion differentiate between the medical treatment conducted to sports related 

concussion vs the level of education towards concussion in sports. Extracting this 

understanding could lead the development of policy and regulation towards the specific 

category requiring attention. As such, a potential direction for future work, is the 

application of the proposed methodology within this work in the classification of the SRC 

tweets into fine-grained categories.  The work presented in [53] presents the following five 

important themes in classifying SRC tweets: Medical, Instances of Injury, Education, 

Policy and Rules, and Subjective Opinion. A challenge portion of this work, is the limited 

dataset available for analysis of all five categories. The additional levels of classification 

would require a larger sample size than this body of work. In addition, the growth of the 

dataset would need to be performed in a way that the sampling among the five categories 

are balanced, insuring equal representation of each category. 

•  While the current body of work is conducted on 3-levels of sentiment analysis. An 

empirical analysis on the methodology of the preprocessing pipeline and the varying neural 

network architectures can be performed on a finer-grain of SA, evaluating the applicability 

of the methodology towards 5-levels of SA. The expansion of 5-levels, allows additional 

sentiments that fall within the gray area between positive, neutral, and negative. This could 

remove the ambiguity of documents which are not clearly ‘positive’, ‘neutral’ or ‘negative’ 

For instance, ‘somewhat positive’ can be utilized to categorize documents which are 

between ‘positive’ and ‘neutral’. Rather than determining, which is more prominent 
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(‘positive’ or ‘neutral’), the document can be labelled as ‘somewhat positive’. Similarly, 

‘somewhat negative’ can be used in a similar way. 

• Extension to the preprocessing pipeline could be explored to incorporate target-topic 

features for target-level sentiment analysis.  
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Appendices 

 
Appendix A 

This appendix provides a central location for all environment parameter’s used in the 

implementation of this thesis’s current body of works. It outlines, the programing environment, 

dependent packages and toolkits that were used within the development of the system. The 

following summaries the implementation configuration: 

• Language:  

o Python: v2.7 (environment for neural network system) 

o Python: v3.5 (environment for preprocessing pipeline) 

 

• Python 2.7 Packages: 

o jumpy: v1.12 (used as main data structure to manipulate vector and matrix data) 

o pandas: v0.22 (used in primarily to quick load file data and convert to jumpy) 

o matplotlib: v2.2 (used to graph evaluation and results during experiment) 

o scikit-learn: v0.19 (used to calculate evaluation metrics) 

o keras: v2.1 (used as high-level api build neural networks) 

o tensorflow: v1.1 (used as primary network library below keras)  

 

• Python 3.5 Packages: 

o nltk: v3.3 (natural language tool kit to preprocess tweets) 

o genism: v3.4 (used to load pre-trained word vectorization models within 

preprocessing pipeline) 

o stanfordnlp: v3.8 (used as a wrapper to connect with Stanford core nlp system) 

o ekphrasis: v0.4 (additional text processing tool to perform word segmentation [51]) 

o cython: v0.26 (used as an additional package to speed-up ekpharsis libraries) 

o numpy: v1.14 

 

• External Toolkits: 

o numpy: v1.14 

o Stanford’s CoreNLP: v3.9 [68] 
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Appendix B 

This appendix provides a list of part-of-speech tags in the Penn Treebank that is utilized in this 

current body of works. 

 

INDEX PART-OF-SPEECH TAG DESCRIPTION 

01 CC Coordinating conjunction 

02 CD Cardinal number 

03 DT Determiner 

04 EX Existential there 

05 FW Foreign word 

06 IN Preposition or subordinating conjunction 

07 JJ Adjective 

08 JJR Adjective, comparative 

09 JJS Adjective, superlative 

10 LS List item marker 

11 MD Modal 

12 NN Noun, singular or mass 

13 NNS Noun, plural 

14 NNP Proper noun, singular 

15 NNPS Proper noun, plural 

16 PDT Pre-determiner 

17 POS Possessive ending 

18 PRP Personal pronoun 

19 PRP$ Possessive pronoun 

20 RB Adverb 

21 RBR Adverb, comparative 

22 RBS Adverb, superlative 

23 RP Particle 

24 SYM Symbol 
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25 TO To 

26 UH Interjection 

27 VB Verb, base form 

28 VBD Verb, past tense 

29 VBG Verb, gerund or present participle 

30 VBN Verb, past participle 

31 VBP Verb, non-3rd person singular present 

32 VBZ Verb, 3rd person singular present 

33 WDT Wh-determiner 

34 WP Wh-pronoun 

35 WP$ Possessive wh-pronoun 

36 WRB Wh-adverb 
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Appendix C 

This appendix provides additional results for the neural network models and the different datasets. 

Precision 

MODEL 
LAYER/FIL

TER SIZES 
SRC 

SEM-

EVAL 
KG RT 

SENTI-

TARGET 
UCI 

UMICH 

650 

FFNN 

[400, 400] 0.5508 0.5931 0.9044 0.8278 0.5762 0.7932 0.8707 

[400, 400, 

400] 
0.5545 0.5891 0.9054 0.8286 0.5755 0.7898 0.8772 

[775, 225, 

75, 25] 
0.5499 0.5705 0.9089 0.8270 0.5680 - - 

[400, 200, 

100, 50] 
- - - - - 0.8029 0.8698 

SINGLE 

LAYER 

CNN 

[1, 2] 0.6234 0.6329 0.9325 0.8722 0.6145 0.8508 0.8984 

[1, 2, 3] 0.6213 0.6271 0.9351 0.8786 0.6264 0.8496 0.8901 

[3, 4, 5] 0.5973 0.6256 0.9281 0.8693 0.6252 0.8368 0.8937 

[1, 2, 3, 4, 

5] 
0.6137 0.6159 0.9323 0.8736 0.6214 0.8489 0.9041 

MULTI-

LAYER 

CNN 

[1, 2] 0.6200 0.6230 0.9320 0.8730 0.6086 0.8546 0.8937 

GRU [205] 0.6187 0.6119 0.9329 0.8677 0.5973 0.8473 0.9004 

LSTM [205] 0.6166 0.6166 0.9325 0.8717 0.6059 0.8520 0.8966 

BI-DIR 

LSTM 
[205] 0.6084 0.6201 0.9328 0.8726 0.6156 0.8467 0.8804 

TCN [3] 0.5595 0.5965 0.9294 0.8587 0.5935 0.8431 0.8997 
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Recall 

MODEL 
LAYER/FIL

TER SIZES 
SRC 

SEM-

EVAL 
KG RT 

SENTI-

TARGET 
UCI 

UMICH 

650 

FFNN 

[400, 400] 0.5649 0.5950 0.9045 0.8373 0.5788 0.7904 0.8689 

[400, 400, 

400] 
0.5649 0.5899 0.9054 0.8338 0.5772 0.7887 0.8689 

[775, 225, 

75, 25] 
0.5582 0.5884 0.9066 0.8210 0.5699 - - 

[400, 200, 

100, 50] 
- - - - - 0.8024 0.8689 

SINGLE 

LAYER 

CNN 

[1, 2] 0.6184 0.6174 0.9324 0.8761 0.6168 0.8505 0.8932 

[1, 2, 3] 0.6101 0.6108 0.9344 0.8760 0.6265 0.8454 0.8883 

[3, 4, 5] 0.6057 0.6021 0.9282 
0.8736 0.6257 0.8368 0.8932 

[1, 2, 3, 4, 

5] 
0.6117 0.6062 0.9324 0.8761 0.6233 0.8488 0.9029 

MULTI-

LAYER 

CNN 

[1, 2] 0.6123 0.6220 0.9319 0.8753 0.6103 0.8505 0.8932 

GRU [205] 0.6035 0.6057 0.9324 0.8655 0.5974 0.8471 0.8932 

LSTM [205] 0.6117 0.6118 0.9326 0.8721 0.6063 0.8505 0.8883 

BI-DIR 

LSTM 
[205] 0.6073 0.6215 0.9328 0.8734 0.6176 0.8419 0.8786 

TCN [3] 0.5595 0.5960 0.9289 0.8536 0.5950 0.8402 0.8981 
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Accuracy 

MODEL 
LAYER/FIL

TER SIZES 
SRC 

SEM-

EVAL 
KG RT 

SENTI-

TARGET 
UCI 

UMICH 

650 

FFNN 

[400, 400] 0.5649 0.5950 0.9045 0.8373 0.5788 0.7904 0.8689 

[400, 400, 

400] 
0.5652 0.5899 0.9054 0.8338 0.5772 0.7887 0.8689 

[775, 225, 

75, 25] 
0.5582 0.5884 0.9066 0.8210 0.5699 - - 

[400, 200, 

100, 50] 
- - - - - 0.8024 0.8689 

SINGLE 

LAYER 

CNN 

[1, 2] 0.6184 0.6174 0.9324 0.8761 0.6168 0.8505 0.8932 

[1, 2, 3] 0.6101 0.6108 0.9344 0.8760 0.6265 0.8454 0.8883 

[3, 4, 5] 0.6057 0.6021 0.9282 0.8736 0.6257 0.8368 0.8932 

[1, 2, 3, 4, 

5] 
0.6117 0.6062 0.9324 0.8772 0.6233 0.8488 0.9029 

MULTI-

LAYER 

CNN 

[1, 2] 0.6123 0.6220 0.9319 0.6103 0.6103 0.8505 0.8932 

GRU [205] 0.6035 0.6057 0.9324 0.8655 0.5974 0.8471 0.8932 

LSTM [205] 0.6117 0.6118 0.9326 0.8721 0.6063 0.8505 0.8883 

BI-DIR 

LSTM 
[205] 0.6073 0.6215 0.9328 0.8734 0.6176 0.8419 0.8786 

TCN [3] 0.5595 0.5960 0.9289 0.8536 0.5950 0.8402 0.8981 
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Appendix D 

This appendix provides additional graphs illustrating the performance of the different proportional 

concussion datasets using the other evaluation metrics. 
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