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Abstract

In wireless communication, speech is an essential service for which low rate
speech coding is a key technique. Therefore, reducing the transmission
bandwidth and achieving higher speech quality are primary concerns in
developing new speech coding algorithms. The goal of this report is to develop
joint channel and source controlled adaptive variable bit-rate algorithm to
achieve a high speech quality and maintain an efficient spectrum usage. To
realize channel controlled bit rate variability, a new method of smooth variable
frame length instead of the adaptive multi-rate speech coder (AMR) is
introduced. In addition, the smooth bit rate switch concept is proposed. To
realize source controlled bit rate variability, voice activity detection, novel
voice/unvoiced segment detection and adaptive Forward-Backward quantizer
algorithms are discussed. At last, the joint channel and source controlled bit rate
variability algorithm has been evaluated in a CELP (FS1016) speech coder and
the measurement result are presented.

Keywords: variable rate speech coding, source controlled coding, channel
controlled coding, CELP, linear predictive coding, wireless communications
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Chapter 1

Introduction

As we know, if speech is to travel the information highways of the future,
efficient transmission and storage will be an important consideration. With the
advent of the digital age, the analog speech signals can be represented digitally.
There is an inherent flexibility associated with digital representations of speech.
However, there are drawbacks such as a high data rate when no compression is
used. Thus, speech coders are necessary to reduce the required transmission
bandwidth while maintaining high quality. There is ongoing research in speech
coding technology aimed at improving the performance of various aspects of
speech coders.

From the primitive speech coders developed early in the twentieth century, the
study of speech compression has expanded rapidly to meet current demands.
Recent advancements in coding algorithms have found applications in cellular
communications, computer systems, automation, military communications and
biomedical systems. Although high capacity optical fibers have emerged as an
inexpensive solution for wire-line communications, conservation of bandwidth
is still an issue in wireless cellular and satellite communications. However, the
bandwidth must be minimized while meeting other requirements discussed in
the next section.



1.1 Attributes of Speech Coders

Given the extensive research done in the area of speech coding, there are a
variety of existing speech coding algorithms. In selecting a speech coding
system, the following attributes are typically considered:

» Complexity: This includes the memory requirements and computational
complexity of the algorithm. In virtually all applications, real-time coding and
decoding of speech is required. To reduce costs and minimize power
consumption, speech coding algorithms are usually implemented on DSP chips.
However, implementations in software and embedded systems are not
uncommon. Thus, the performance of the hardware used can ultimately select
among potential speech coding algorithms based on their complexity.A

* Delay: The total one-way delay of a speech coding system is the time between
a sound is emitted by the talker and when it is first heard by the listener. This
delay comprises of the algorithmic delay, the computational delay, the
multiplexing delay and the transmission delay. The algorithmic delay is the total
amount of buffering or look-ahead used in the speech coding algorithm. The
computational delay is associated with the time required for processing the
speech. The delay incurred by the system for channel coding purposes is termed
the multiplexing delay. Finally, the transmission delay is a result of the finite
speed of electro-magnetic waves in any given medium.

In most modern systems, echo-cancellers are present. Under these circumstances,
a one-way delay of 150 ms is perceivable during highly interactive
conversations, but up to 500 ms of delay can be tolerated in typical dialogues [1].
When echo-cancellers are not present in the system, even smaller delays result
in annoying echoes [2]. Thus, the speech coder must be chosen accordingly,
with low-delay coders being employed in environments where echoes may be
present.

e Transmission bit rate: The bandwidth available in a system determines the
upper limit for the bit rate of the speech coder. However, a system designer can
select from fixed-rate or variable-rate coders. In mobile telephony systems
(particularly CDMA based ones), the bit rate of individual users can be varied,;
thus, these systems are well suited to variable bit-rate coders. In applications
where users are allocated dedicated channels, a fixed-rate coder operating at the
highest feasible bit rate is more suitable.

* Quality: The quality of a speech coder can be evaluated using extensive testing
with human subjects. This is a tedious process and thus objective distortion
measures are frequently used to estimate the subjective quality .The following



categories are commonly used to compare the quality of speech coders: (1)
commentary or broadcast quality describes wide-bandwidth speech with no
perceptible degradations; (2) toll or wireline quality speech refers to the type of
speech obtained over the public switched telephone network; (2)
communications quality speech is completely intelligible but with noticeable
distortion; and, (4) synthetic quality speech is characterized by its

‘machine-like’ nature, lacking speaker identifiableness and being slightly
unintelligible. In general, there is a trade-off between high quality and low bit
rate.

* Robustness: In certain applications, robustness to background noise and/or
channel errors is essential. Typically, the speech being coded is distorted by
various kinds of acoustic noise * in urban environments, this noise can be
quite excessive for cellular communications. The speech coder should still
maintain its performance under these circumstances. Random or burst errors are
frequently encountered in wireless systems with limited bandwidth. Different
strategies must be employed in the coding algorithm to withstand such channel
impairments without unduly affecting the quality of the reconstructed speech.

* Signal bandwidth: Speech signals in the public switched telephone network are
bandlimited to 300 Hz * 3400 Hz. Most speech coders use a sampling rate of
8 kHz, providing a maximum signal bandwidth of 4 kHz. However, to achieve
higher quality for video conferencing applications, larger signal bandwidths
must be used.

Other attributes may be important in some applications. These include the ability
to transmit non-speech signals and to support speech recognition.

1.2 Classes of Speech Coders

Speech coding algorithms can be divided into two distinct classes: waveform
coders and parametric coders. Waveform coders-are not highly influenced by
speech production models; as a result, they are simpler to implement. The
objective with this class of coders is to yield a reconstructed signal that matches
the original signal as accurately as possible. The reconstructed signal converges
towards the original signal with increasing bit rate. However, parametric coders
rely on speech production models. They extract the model parameters from the
speech signal and code them. The quality of these speech coders is limited due
to the synthetic reconstructed signal. However, as seen in Fig. 1.1, they provide
superior performance for lower bit rates. Many waveform-approximating coders
employ speech production models to improve the coding efficiency. These
coders overlap into both categories and are thus termed hybrid coders.



1.2.1 Waveform Coders

Since the ultimate goal of waveform coders is to match the original signal
sample for sample, this class of coders is more robust to different types of input.
Pulse code modulation (PCM) is the simplest type of coder, using a fixed
quantizer for each sample of the speech signal. Given the non-uniform
distribution of speech sample amplitudes

Excellent
- A
Good Hybrid coder
Waveform coder
Quality
Far — /[ Parametric coder
Bit Rate (kbps)
Poor .
I | | ]
1 2 4 8 16 32 64

Fig. 1.1 Subjective performance of waveform and parametric coders. Redrawn from [1].

and the logarithmic sensitivity of the human auditory system, a non-uniform
quantizer yields better quality than a uniform quantizer with the same bit rate.
Thus, the CCIT standardized G.711 in 1972, a 64 kbs logarithmic PCM toll
quality speech coder for telephone bandwidth speech. '

In exchange for higher complexity, toll quality speech can be obtained at much
lower bit rates. With adaptive different pulse code modulation (ADPCM), the
current speech sample is predicted from previous speech samples; the error in
the prediction is then quantized. Both the predictor and the quantizer can be
adapted to improve performance. G.727, standardized in 1990, is an example of
a toll quality ADPCM system which operates at 32 kbs. Another possibility is to
convert the speech signal into another domain by a discrete cosine transform
(DCT) or another suitable transform. The transformation compacts the energy
into a few coefficients which can be quantized efficiently. In adaptive transform
coding (ATC), the quantizer is adapted according to the characteristics of the



signal [3].
1.2.2 Parametric Coders

The performance of parametric coders, also known as source coders or vocoders,
is highly dependent on accurate speech production models. These coders are
typically designed for low bit rate applications (such as military or satellite
communications) and are primarily intended to maintain the intelligibility of the
speech. Most efficient parametric coders are based on linear predictive coding
(LPC), which is the focus of this thesis. With LPC, each frame of speech is
modeled as the output of a linear system representing the vocal tract, to an
excitation signal. Parameters for this system and its excitation are then coded
and transmitted. Pitch and intensity parameters are typically used to code the
excitation and various filter representations are used for the linear system.
Communications quality speech can currently be achieved at rates below 2 kbps
with vocoders based on LPC [4].

1.2.3 Hybrid Coders

The speech quality of waveform coders drops rapidly for bit rates below 16 kbps,
whereas there is a negligible improvement in the quality of vocoders at rates over
4 kbps. Hybrid coders are thus used to bridge this gap, providing good quality
speech at medium bit rates. However, these coders tend to be more
computationally demanding. Virtually all hybrid coders rely on LPC analysis to
obtain synthesis model parameters. Waveform coding techniques are then used to
code the excitation signal and pitch production models may be incorporated to
improve the performance.

Code-excited linear prediction (CELP) coders have received a lot of attention
recently and are the basis for most speech coding algorithms currently used in
wireless telephony. In CELP coders, standard LPC analysis is used to obtain the
excitation signal. Pitch modeling is used to efficiently code the excitation signal.
Standardized in 1996, G.729 is a CELP based speech coder which produces toll
quality speech at a rate of 8 kbps [5].

1.3 Wireless Channel Properties

Wireless communication applications and services have undergone enormous
development recently due to the continuing growth of wireless communication,
especially the emergence of 3G wireless network. However, wireless
communication poses many challenges. It is known that the mobile wireless
channel has limited bandwidth and is usually impaired due to multi-path fading,
shadowing, inter-symbol interference and noise disturbances. So, compared to
the wired links, the wireless channels are typically much more noisy and have a



higher bit error rate [6]. As a result, random and burst errors can have
devastating effect on speech quality. Typically, the channel error rate varies with
the time varying channel environment. '

Large-scale path loss

Large-scale path loss describes the variation in mean received signal strength as
a function of distance from the transmitter. The Friis transmission equation gives
the received power in a free space environment as follows:

A
P, =PG,G,(; =) (L1)

where Pris the received power, Ptis the transmitted power, Gris the gain of the
transmitting antenna, and Gris the gain of the receiving antenna. The remaining
term is the inverse of the path loss, and accounts for spherical spreading loss of
the transmitted wave due to propagation over the transmit-receive distance R. So,
the strengths of the waves as the distance between the transmitter and receiver
increases.

Shadowing

At a given distance from the transmitter, variations about the mean path loss will
occur due to obstruction by objects in the environment. This can be modeled
using a lognormal distribution about the mean value of large-scale path loss that
is predicted by a distance-dependent model like the one in (1.2).

4rd, Y\ RY
PL:( 7 )(7) -2

where the first term is the free-space path loss at reference distance dy and the

exponent Y (sometimes n is used) is determined empirically by a curve fit to
measured data.

Multipath effects: fading, intersymbol interference, and Doppler spread

One of the distinctive features of a mobile radio channel is multipath
propagation, in which the received signal consists of multiple reflected,
diffracted, and scattered components, as well as (possibly) a direct line-of-sight
component. Because all these components travel different distances and
encounter different reflections, their phases are different. The relative phases of
the received signals change as the mobile moves. Depending on the relative
phases of the signals, they can reinforce each other or cancel each other. In the
latter case a fade results. As the receiver is moved the received signal power
undergoes variations, resulting in a fading envelope that can be measured.



Diversity systems that use signals received by two or more antennas can combat
this effect.

The difference in path length between multipath components causes them to
arrive with different delays. This causes intersymbol interference in digital
systems, if the difference is significant in relation to the symbol period. The
amplitudes of the multipath components also differ because they undergo
different path losses. The received signal can be represented as a superposition
of all the received components as follows (1.3)

x(t)= Y a, e slt - 7, 0] (13)

where x(z) is the received signal, @,(f) is s the time-varying attenuation

coefficient of the n path, e’ is time varying phase shift associated with the nth

path, s(2) is the original transmitted signal, and 7 ,(?) is the time-varying delay
of the nth path

1.4 Report Contribution

This report focuses on improving the performance of variable bit rate speech
coders for achieving very high capacity while maintaining an acceptable level of
speech quality in wireless communication network. Due to the wireless channel
property which we discussed before, the new Adaptive Multi rate speech coding
(AMR) allows almost wire-line speech quality even for poor channel conditions
by dynamically splitting the gross bit rate between source and channel coding
according to the channel quality. In 1999, 3GPP released a speech coding
standard for the WCDMA-Adaptive Multi-Rate (AMR) vocoder. The standard
consists of a multi-mode variable rate coder and a source controlled rate scheme
including a voice activity detector, a comfort noise generation system. However,
multi-mode variable rate coder consists of many different mode of encoding for
each bit rate option. This method increases the complexity of encoding and
limited multi-mode can not exactly track channel condition.

In this report, we introduce a novel approach to yield the multi-rate performance
without increasing complexity and also to achieve smooth and gradual switch
between different bit rate. Our method is based on varying frame length in order
to change bit rate while keeping the same bit number per frame. Large frame
length means more average, less bit rate; Small frame length means less average,
more accurate tracking of voice characteristic and more bit rate. In effect, this
method can easily realize variable bit rate by simply varying frame length; also,
with our new smooth switch algorithm, it can completely remove any artifact



due to sharp variation in bit switch and accurately characterize channel
condition.

For source controlled variable rate, besides the voice activity detection (VAD),
we introduce different bit allocation for voice and unvoiced segment based on
the algorithm in which more bits are allocated for voice segment and less bits
for unvoiced segment. To enhance voice/unvoiced segment detection against
noise, we propose a novel spectral correlation algorithm in frequency domain
with adaptive threshold to decide voiced and unvoiced segment. With this
improved scheme, it is more robust against noise even under high noise
condition. Secondly, we modify an adaptive forward-backward quantizer
algorithm by using mean variance to detect the similarity of the current and
previous LPC coefficient instead of calculating LSD to reduce the computation
complexity and this further reduce the bit rate. With the above source
controlled variable rate algorithms, the bit rate can be significantly reduce with
little degradation of speech quality. Finally, we implement our scheme with
standard CELP (FS1016) speech coder and investigate the performance.

1.5 Report Organization

The report is organized as follows: The fundamentals of Code excitation linear
predictive (CELP) speech coders are reviewed in Chapter 2. Conventional
methods of short-term linear prediction, long-term linear prediction and
stochastic codebook search by analysis and synthesis approach are presented.
Some basic speech quality measures used to evaluate the performance of speech
coders are overviewed. Chapter 3 introduces the idea of using a variable frame
length to achieve channel controlled variable bit rate with a smooth switch
algorithm and it compare with the current adaptive multi-rate speech coder
(AMR). The source controlled variable bit rate speech coding based on speech
characteristic is presented and analyzed in Chapter 4 including two novel
schemes of robust voice/unvoiced segment detection algorithm and modified
adaptive forward-backward quantizer. These algorithms can significantly reduce
bit rate with little degradation of speech quality. The integrated algorithms
comprising of channel and source controlled variable bit coding is then
implemented in a CELP speech coder (FS1016) and the simulation results are
presented in Chapter 5. Also, the report is concluded with a summary of work
and some suggestions for future work.



Chapter 2

Code Excitation Linear Predictive
Speech Coding

Most current speech coders are based on LPC analysis due to its simplicity and
high performance [2]. This chapter provides an overview of LPC analysis for
speech application. Among many LPC speech coders, code excited linear
predictive (CELP) coder is one of popular speech coders in wireless
communication [1]. Therefore, standard LPC analysis, long term adaptive code
book and stochastic codebook search in CELP coders are introduced in this
chapter. Also, quality measures used to measure the performance of speech
coding algorithms are examined.

2.1 Speech Production Model

Due to the inherent limitations of the human vocal tract, adjacent samples of
the speech signals are highly redundant. These redundancies allow speech
coding algorithms to compress the signal by removing the irrelevant
information contained in the waveform. Knowledge of the vocal system and the
properties of the resulting speech waveform is essential in designing efficient
coders. The properties of the human auditory system, although not as important,



can also be exploited to improve the perceptual quality of the coded speech.
Speech consists of pressure waves created by the flow of air through the vocal
tract. These sound pressure waves originate in the lungs as the speaker exhales.
The vocal folds in the larynx can open and close quasi-periodically to interrupt
this air-flow. This results in voiced speech (e.g., vowels) which is characterized
by its periodic and energetic nature. Consonants are an example of unvoiced
speech — aperiodic and weaker; these sounds have a noisy nature due to
turbulence created by the flow of air through a narrow constriction in the vocal
tract. The positioning of the vocal tract articulators acts as a filter, amplifying
certain sound frequencies while attenuating others

A time-domain segment of voiced and unvoiced speech is shown in Fig. 2.1(a).

A general linear discrete-time system to model this speech production process,
known as the terminal-analog model [4], is shown in Fig. 2.2. In this system, a
vocal tract filter ~ V(z) and radiation model R(z) (to account for the radiation

effects of the lips) are excited by the discrete-time excitation signal #g/n]. The
lips behave as a first order high-pass filter and thus R(z) grows at 6 dB/octave.
Local resonance and anti-resonances are present in the vocal tract filter, but V' (z)
has an overall flat spectral trend. The glottal excitation signal Us/n] is given by
the output of a glottal pulse filter G(z) to an impulse train for voiced segments;
G(z) is usually represented by a 2nd order low-pass filter, falling off at 12
dB/octave. For unvoiced speech, a random number generator with a flat
spectrum is typically used. The z-transform of the speech signal produced is
then given by:

s(z) = 0,U; (2)V (2)R(2) @2.1)

where U(z) = 60E(z) is the gain adjusted excitation signal. Fig. 2.1(b) shows the
estimated excitation signals for voiced and unvoiced speech segments using a
10th order all-pole filter for H(z); the autocorrelation method was used with a 25
ms Hamming window (see Section 2.3). Note that the excitation signal for the
unvoiced speech segment seems like white noise and that for the voiced speech
closely resembles an impulse train. The power spectra for voiced and unvoiced
speech are shown in Fig. 2.1(c) with the corresponding frequency responses of
the vocal tract filter H(z). The periodicity of voiced speech gives rise to a
spectrum containing harmonics of the fundamental frequency of the vocal fold
vibration. A truly periodic sequence, observed over an infinite interval, will have
a discrete-line spectrum but voiced sounds are only locally quasi-periodic.

10
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The resonance evident in the spectral envelope of voiced speech, known as
formants in speech processing, are a product of the shape of the vocal tract. The
-12 dB/octave for E(z) gives rise to the general -6 dB/octave spectral trend when
the radiation losses from R(z) are considered. The spectrum for unvoiced speech
ranges from flat spectra to those lacking low frequency components. The
variability is due to place of constriction in the vocal tract for different unvoiced

sounds *° the excitation energy is concentrated in different spectral regions.

Pitch period P

v

e |y ol
Voiced Gain
generator Glz) .
- Vocal ip
i}é—} tract | ) radiation | _SPgech
Voiced/unvoiced filter filter sfn ]'
— z) R(2)
White switch
Unvoiced noise
generator

Fig. 2.2 The terminal-analog model for speech production [4]

Due to the continuous evolution of the shape of the vocal tract, speech signals
are non-stationary. However, the gradual movement of vocal tract articulators
results in speech that is quasi-stationary over short segments of 5 to 20 ms. This
slow change in the speech waveform and spectrum is evident in the
unvoiced-voiced transition shown in Fig. 2.1. However, a class of sounds called
stops or plosives (e.g., /p/, /b/, etc.) result in highly transient waveforms and
spectra. An obstruction in the vocal tract allows for the buildup of air pressure;
the release of this vocal tract occlusion then creates a brief explosion of noise
before a transition to the ensuing phoneme. The resulting transient waveform,
such as the one shown in Fig. 2.3, generally poses difficulty to speech coders
which operate under the assumption of stationarity over frames of typically 10 to
40 ms. Another class of sounds that typically impedes the performance of
speech coders is voiced fricatives. The excitation for these sounds consists of a
mixture of voiced and unvoiced elements, and thus the vocal tract model of Fig.
2.2 does not provide an accurate fit to the actual speech production process.
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Fig. 2.3 The time-domain waveform of the word ‘top’ showing the transient
nature of the plosives /t/ and /p/.

2.2 Linear prediction speech coding

LPC starts with the assumption that a dynamic speech signal can be viewed as a
stationary waveform for short period of time, in other words, the biological
speech forming mechanisms remain constant during this short period of time.
This mechanism is modeled as a buzzer at the end of a tube. The space between
the vocal cords, glottis, produces the buzz, which is characterized by its intensity
and frequency (pitch). The vocal tract (the throat and the mouth) forms the tube,
which is characterized by its resonance, which are called formants.

The most general predictor form in linear prediction is the autoregressive
moving average (ARl)(IA) model where a speech sample s/n/ is predicted from p

past predicted speech samples s/n - I],..., s/n - p] with the addition of an

excitation signal u/n] according to:
p q
s[n]=> (a,)sln-k1+GY.(b)uln-1] , bo=l (2.2)
’ k=1 1=0

where G is a gain factor for the input speech and @, and b, are sets of filter

coefficients.

Equivalently, in the frequency domain, the transfer function of the linear
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prediction speech model is

p
1+ b,.z7"
B(z) _ Z :

H(z) = a0 Zp: o

2.3)

H(z) is referred to as a pole-zero model in which the polynomial roots of the
denominator and the numerator are, respectively, the poles and zeros of the

system. When a, = 0 for 1<k < p, H(z) becomes an all-zero or moving

average (MA) model since the output is a weighted average of the q prior inputs.
Conversely, when b, = 0 for1<I/<gq, H(z) reduces to an all-pole or

autoregressive (AR) model in which case the prediction operation is written as:

p
s[n]=>"(a,).sln-k] (2.4)
k=1
and its frequency domain transfer function simply as:
H(z) =— G - 2.5)

p
1- Zak z™* )
k=1
The spectral pattern can be modeled by 1/4(z).
p
Prediction erroris: E=Y_(S[n+r]-) a,.z™* (2.6)
n k=1

The following figure illustrates the block diagram of prediction

S[n] S[n+r] - Error
VA
Predicted Output
p
> > (a,)sln-k] >
k=1

Fig.2.4 Block diagram of prediction

If r = 0 the predictor attempts to match the present value, If r > 0 it tries to predict a future value of x [n].
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LPC analyzes the speech signal by estimating the formants, removing their
effects from the speech signal, and estimating the intensity and frequency of the
remaining buzz. The process of formants is called inverse filtering, and the
remaining signal is called the residue. The number that describes the formants
and the residue can be stored or transmitted somewhere else. LPC synthesizes
the speech signal by reversing the process: use the residue to create a source
signal, use the formants to create an all-pole filter (which represents the tube),
and run the source through the filter, resulting in speech.

2.3 CELP speech coder

The most widely documented scheme for speech coding operating at under 8
kbps is Code Excited Linear Prediction (CELP) technique, which compresses
sampled speech by analysis by-synthesis of incoming speech. Opposed to
waveform encoding, the goal of CELP algorithm is to code and transmit the
minimal amount of information necessary to synthesize speech which is audibly
perceived to be accurate. In 1991, the US General Services Administration
published the Federal Standard 1016 (FS1016) [7], which specifies the
conversion of analog voice to digital data by a method of 4.8 Kbps CELP. In
this section, we will introduce the CELP algorithm based on FS1016 which is
made up of three major parts: short-term linear prediction, long-term adaptive
codebook search and stochastic codebook search.

The input voice stream to FS1016 is segmented into frames of duration 30ms.
Each frame is in turn divided into four subframes of length 7.5ms. Accordingly,
with the sampling rate of 8 kHz, there are 240 voice samples per frame, and 60
samples per subframe. When speech is being analyzed, short-term linear
prediction is first performed over the entire speech frame to extract the 10 linear
prediction coefficients. Afterwards, long-term adaptive codebook search and
stochastic codebook search are applied in sequence to each of the four subframes.
The procedure for speech synthesizing is simply a reverse of the speech
analyzing. (Fig. 2.5)

2.3.1 Short-Term Linear Prediction

In the short-term linear prediction, the speech signal is reasonably assumed
stationary within a small observation window [8]. An infinite impulse response
(IIR) filter of order ten, named Linear Predictive Coding (LPC), is used to track

the spectrum envelope of the original speech signal (Fig. 2.5), which emulates
the filtering effect of the vocal tract. The formula of the LPC filter is

Fppe(2) = ;1%5 (2.7)

15



Original
speech s/n]

G, LPC
q analysis ¢

...................... > \—bé‘ l
A
LPC Synthesized speech §
synthesis
Adaptive codebook filter H(z)

......................... >
Stochastic codebook G, ¢
A Perceptually Perceptual
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minimization Weighted error e(n) filter W(z)

Fig2.5 CELP analyzer.

where

A(2) =1-iajz’f
(2.8)

In time domain, the synthesized output speech signal s®(n) (i.e., synthesizing
the true speech from the lips) due to the excitation input (n) (i.e., signals from
the glottal excitation) via the filter can be expressed by

59 (n) = r(n) + ia SO (n - j) (2.9)

Notably, at this stage, the functional blocks for adaptive codebook search and
stochastic codebook search in Fig. 2.1(b) are both disabled; hence, r(n) simply
emulates an impulse excitation input to the Linear Predictor filter. The objective
of the linear prediction is to make the best estimate of the 10 linear coefficients
@ aj ... aj such that the true speech s(n) can be well-approximated by
the synthesized speech s®"™(n) under an impulse glottal excitation input r(n).



| Fig 2.6 Spectral envelop of the original speech signal

To cope with the human-ear perpetual effect on speech, an “adjustment” on the
synthetic speech, as well as the true speech, is performed before the optimization
of the 10 linear coefficients, which is named the Perpetual Weighted Filter.
Hence, the residual signal e(n) is equal to w(rn)*[s(n)*s™(n)], where w(n) is the
impulse response of the perpetual weighted filter, and “*” denotes the
convolution operation. As a result of the adjustment of the perpetual weighted
filter, the best estimation of @, @, . . ., @0 is defined based on the
minimization of e(n).

> et (n) = . [wm) * (s(m) = s ()

’ ' 0 2.10)

= > [wim) *(s(n) - D ;s (= )]
n Jj=1

Since the 10 LPC coefficients are computed on a frame basis by an open-loop
estimation, its computational complexity, when being compared to the adaptive
and stochastic codebook searches, is quite low. The challenge for this step is the
quantization loss. As only limited number of bits is reserved for each coefficient,
additional quantization errors are unavoidably introduced to the residual signal.
In addition, the quantized LPC coefficients by no means guarantee the stability
of the resultant IR filter.
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In order to amend the above problems, FS1016 chooses to quantize the Line
Spectral Frequency (LSF) coefficients, which are conceptually one-to-one
mappings of the LPC coefficients [9]. The LSFs are roots of a system function,
and are located on the unit circle in the z-domain. Thus, they have the same
amplitude, and are only different in their phases. The quantization applied to the
LSFs therefore only affects the resultant phases. As a result, the stability of the
system (filter) is less vulnerable through quantization.

Although for most of the time, the speech is short-term or frame-wisely
stationary in its nature, it is still possible that the coefficients obtained from two
consecutive frames are quite different. In order to generate a smooth speech at
the decoding phase, FS1016 specifies a weighted interpolation to make a gentle
migration in LSF coefficients between two consecutive frames. As illustrated in
Fig. 2.7, the computed LPC coefficients for the proceeding frame (frame i) and
the next frame (frame i + 1) are transformed to their equivalent LSF coefficients,
fii, foi, ..., fioiand fiit, foir, ..., fioi, for transmission. Then at the decoding
phase, the respective LSF coefficients of the subframes of the current frame (Fig
2.5) are derived from:

The LSFs of subframe 1 = (7/8)fji + (1/8)fji+1 forj=1,....10. (2.11)
The LSFs of subframe 2 = (5/8)fji + (3/8)fji+1 forj=1,...,10. (2.12)
The LSFs of subframe 3 = (3/8)fji + (5/8)fji+1 forj=1,..., 10. (2.13)
The LSFs of subframe 4 = (1/8)fj+ (7/8)f forj=1,...,10 (2.14)

The speech of each subframe is thereafter synthesized based on the
corresponding interpolated LSF coefficients.

current frame

Subframel | Subframe2 | Subframe3 | Subframe4

! !

preceding frame next frame

fii, foi, ..., fioi Siis, foin, ..., fioid

Figure 2.7 Interpolation of LSF coefficients.
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Among the 10 LSF coefficients, 4 LSF coefficients are more perceptually
sensitive to human ears. Accordingly, FS1016 reserves 4 bits for each of these 4
sensitive LSF coefficients, and puts 3 bits for each of the remaining 6 LSF

coefficients. This sums to 34 bits for the 10 LSF coefficients, which consumes a
bandwidth of 34 bits/30 ms = 1.133 kbps.

2.3.2 Long-Term Adaptive Codebook Search

After finding the best LSF coefficients, the adaptive codebook search will then
be activated for further minimization of the residual signal. In principle, if the
vocal tract filter can be accurately modeled by the linear predictor filter, then the
residual signal presents exactly the glottal excitation signal. The glottal
excitation signal is periodic in nature. Its period is named the pitch period or
pitch delay, and the estimator of the pitch period is called the Long-Term
Predictor (LTP) or simply the Pitch Predictor

In FS1016, the synthetic glottal excitation signal that corresponds to optimal
pitch period for each subframe is selected from an adaptive codebook through a
closed-loop scheme.

- - -

X m Y Linear r
—(sym) g #\U » Predictor |}————p
g

T

. !
Stochastic Codebook a 10 LSF coefficients

B

I update Delay by 1 |g——
Subframe

Adaptive Codebook

Fig 2.8 The detailed functional block of the CELP synthesizer
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The procedure is adaptive to the previous r(n), that is, the combined output of
the stochastic codebook search and the adaptive code book search due to the
previous subframe (Fig. 2.5). The relation between the previous r(n) and the
current pitch predictor output (1) can be in concept characterized by the LTP
filter:

1
1-B8.z7

where T is the pitch period and & is the pitch gain. The time-domain

Fip(2) = (2.15)

expression due to input rinitial(n) is therefore: ‘
r(n) = ¥ (n) + Pr(n—T) (2.16)

FS1016 then searches the best estimates of pitch period 7, among those
pre-specified 256 candidates, and its corresponding pitch gain B such that the
minimum mean square of

> et(n) =3 [wln) * (s(m) - s ()

10 2.17)
= Z[w(n) *(s(n)=B-r(n-T)- Zajs(‘y") (n- j)]

J=1

is achieved.

All 256 adaptive codewords for selecting to minimize (2.11) are pre-made
according to a 147 dimensional vector that is subframe-wisely updated
according to the previous r(n). Specifically, the update procedure is to remove
the oldest 60 components of the 147-dimensional vector, followed by shifting in
the 60 components of the previous #(n),

Additional 128 non-integer-valued-delay codewords are obtained by
interpolating the two nearest integer-valued-delay codewords. The pitch gain
ranges from -1 to 2.0, is quantized discordantly with equal number of bits
assigned for each subframe.

In FS1016, the approaches to search the optimal pitch delays for odd numbered
subframes and even-numbered subframes are different. Based on the maximum
match score criterion, the optimal pitch delay (and the corresponding optimal
gain) for each odd-numbered subframe is first selected from the 128
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integer-valued delays. Denote the resultant optimal integer-valued pitch delay
and the corresponding match score by T” and m", respectively. Then, FS1016
tests whether the largest match score corresponding to the sub-multiple pitch
delays (1/2)°, (1/3)T" and (1/4)T"is within 1 dB of m". If so, update T and m. by
the respective sub-multiple pitch delay and match scores. In the end, FS1016
examines the match scores of those non-integer-valued-delay codewords whose
pitch delays are within -3 and I" + 3, where /. is the corresponding codeword
index of T", and update the optimal pitch delay once a larger match score than
the previous optimal match score is located. The above procedure is specified in
FS1016 as nonfull search mode. As anticipated, if full-search mode is adopted,
all the 256 candidate codewords are truly examined.

As for the even-numbered subframes, efforts are redirected to locate the optimal
pitch delay offset relative to the optimal pitch delay of the previous subframe.
Specifically, if the optimal codeword for the previous odd numbered subframe is
indexed by i, then FS1016 searches only the codewords whose indices range
from j = min[max(i.31, 1), 193], j+1, . . ., j+63 for the current even-numbered
subframe. Again, in the non-full search mode, only the integer-valued pitch
delays (belonging to the 64 candidates) are tested, which yields the optimal
integer-valued pitch delay 7. with maximum match score m'. Afterward, the
match scores corresponding to those non-integer valued delays within / " 3 and
I" + 3 are examined, where I is the corresponding codeword index of T . and the
codeword with the largest match score, among those examined ones, is
outputted. Notably, no sub-multiple pitch delays are examined for
even-numbered subframes. Since taking the non-full search mode reduces the
computational complexity with negligible loss of speech quality, it is taken as
default mode except otherwise stated throughout the thesis. In total, FS10/6
distributes 48 bits for the pitch delays and pitch gains of the four subframes in a
frame, in which 8 bits and 6 bits are reserved for pitch delays in odd frame and
in even frame, respectively. There resultant transmission rate is thus 48 bits/30
msec = 1.6 kbps.

2.3.3 Stochastic Codebook Search

After the LPC analysis and the pitch prediction, the residual signal become
periodic, which is often referred to as the innovation signal. The noise-like
innovation signal, although lack of speech information, can not be neglected. In
its absence, the speech will sound artificial. In FS1016, a stochastic codebook is
employed to approximate the innovation signal. Each codeword in the stochastic
codebook has its own index. There are totally 512 codewords in the codebook.
To speed up the search process, reduced-size codebooks of 256, 128 and 64
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codewords are also specified in FS1016. Nevertheless, better speech quality is
achieved by using the codebook with more codewords. Analogous to the
adaptive codebook search, the stochastic codebook search is performed per
subframe by a closed-loop operation. Also adopted is the minimum squared
error criterion. To facilitate the codebook search, the 512 codewords in the
stochastic codebook are drawn from a one-dimensional array of (+1, 0, -1) value
with approximately 77% zeros. The consecutive codewords overlap except at
the first and the last two components. Such a codebook design has several
advantages:

® Only two bits are required to represent the ternary values, +1, -1 and 0.

® Multiplying with +1 and -1 can be replaced by sign changes, which greatly
reduces the computational complexity.

® Adding the product of a term and zero is equivalent to remain unchanged in
the original quantity, and the chance of meeting a zero is as high as 77%.

® When convolution operations are performed for two consecutive codewords,
the convolution for the second codeword can retain those convolved results
obtained from its overlapped part with the previous codeword, and reduce
the computational complexity.

In total, FS1016 distributes 56 bits for the stochastic codebook search. The
index for the best codeword in the stochastic codebook requires 9 bits for each
subframe. The stochastic gain lies between -1330 and 1330 discordantly, and
each of the four gains consumes 5 bits. Therefore to the transmission rate is 56
bits/30 msec = 1.866 kbps.

2.4 Distortion and Performance Measures

A useful distortion and performance measure corresponds well with the
subjective quality of the speech: low and high subjective quality speech yields
small and large distortions, respectively. Distortion and performance measures
are used extensively in speech processing for a variety of purposes [10]. In
speech coding, they are typically used to compare the performance of different
systems or configurations. The numerous distortion and performance measures
can all be divided into two main categories: subjective measures and objective
measures.

2.4.1 Subjective Distortion Measures

This class of distortion measures is based on the opinion of a listener or a group
of listeners as to the quality or intelligibility of the speech. These measures are
time-consuming and costly to obtain, requiring a set of discriminating listeners.
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In addition, a consistent listening environment is required since the perceived
distortion can vary with such factors as the playback volume and type of
listening instrument used (e.g., headphones versus telephone handsets) [11].
However, subjective distortion measures provide the most accurate assessment
of the performance of speech coders since the degree of perceptual quality and
intelligibility is ultimately determined by the human auditory system. Subjective
distortion measures are used to measure the quality or intelligibility of speech.
Quality tests strive to determine the naturalness of the speech. The mean opinion
score (MOS) and diagnostic acceptability measure (DAM) are the most
commonly used subjective quality tests. On the other hand, the prime concern of
intelligibility tests is the percentage of words, phonemes or other speech units
that is correctly heard. The standard intelligibility test is the diagnostic rhyme
test (DRT) [12]. For this project, subjective measures based on MOS is
primarily used to evaluate the quality.

2.4.2 Objective Distortion Measures

This category of measures can be evaluated automatically from the speech
signal, its spectrum or some parameters obtained thereof. Since they do not
require listenirig tests, these measures can give an immediate estimate of the
perceptual quality of a speech coding algorithm. In addition, they can serve as a
mathematically tractable criterion to minimize during the quantization stages of
a speech coder. The two main factors in selecting an objective distortion
measure are its performance and complexity. The performance of an objective
distortion measure can be established by its correlation with a subjective
distortion measure of the same features (quality or intelligibility). An extensive
performance analysis of a multitude of objective distortion measures is given in
[12]. Objective distortion measures can be broadly classified into three
categories: time-domain, frequency-domain and perceptual-domain measures.

Time-domain distortion measures are most useful for waveform coders which
attempt to reproduce the original speech waveform. The most frequently
encountered measures of this type are the signal-to-noise ratio (SNR) and the
segmental signal-to-noise ratio (SNRseg). Most medium to low bit-rate coders
are hybrid or parametric coders. Since the auditory system is relatively phase
insensitive, these coders tend to focus on the magnitude spectrum. As a result,
the time-domain measures cannot adequately gauge the perceptual quality of
these systems. Frequency-domain measures are thus used to determine the
performance of these types of speech coders since they are less sensitive to time
misalignments and phase shifts between the original and coded signals. They are
also useful for the quantization of spectral coefficients the codebook vector
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which is most perceptually similar, as determined by the distortion measure, to
the original spectral envelope would be selected.

2.4.2.1 Signal-to-Noise Ratio

The SNR is the ratio of signal energy to noise energy expressed in decibels dB
and is given by:

3 s(n)?

SNR =10log,, ——"==— dB (2.18)
D (s(n) = s(n))?

n=—

where s [n] is the original signal and /[n] is the ‘noisy’ signal. The SNR is
characterized by its mathematical simplicity. The drawback is that it is a poor
estimator of the subjective quality of speech. The SNR of a speech signal is
dominated by the high energy sections consisting of voiced speech. However,
noise has a greater perceptual effect in the weaker energy segments [13]. A high
SNR value can thus be misleading as to the perceptual quality of the speech.

2.4.2.2 Segmental Signal-to-Noise Ratio

The\SNRseg in dB is the average SNR (also in dB) computed over short frames
of the speech signal. The SNRseg over M frames of length N is formulated as:

iN+N-1

|y Z;«S (n)
R,., =-A72 0logyy| ™ dB (2.19)
= Y. (s(m)- s(m)?
n=iN
where the SNRseg is determined for s/n] over the interval n = 0, . . . ,NM-1.

This distortion measure weights soft and loud segments of speech equally and
thus models perception better than the SNR. The length of frames is typically
10-40 ms corresponding to values of N between 120 and 200 samples, assuming
a sampling rate of 8 kHz. For this project, SNRseg is used for objective measure
of speech quality.

Silent portions of the speech can bias the results by yielding a large negative
SNR for the corresponding frames. This problem can be alleviated by removing
frames corresponding to silence from the calculations. Another method is to
establish a lower threshold (typically 0 dB) and replace all frames with an SNR
below the threshold.

Similarly, a deceptively high SNRseg can result when frames have a very high
SNR, even though perception can barely distinguish among frames with an SNR
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greater than 35 dB [23]. Therefore, an upper threshold around 35 dB can be used
to prevent a bias in the positive direction.

2.5 Chapter Summary

This chapter overviewed the fundamentals of CELP speech coders, then
presented Short-term Linear Prediction, Long-term Linear Prediction, Stochastic
Codebook search and distortion, performance measures. In this project, the
CELP analysis is done primarily based on FS1016 algorithm. The bit allocation
for short-term linear prediction, adaptive codebook and stochastic codebook
search are presented. The subjective measures (MOS) and objective measure
(SNR, segment SNR) are the chief distortion and performance measures used for
speech quality.
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Chapter 3

Channel Controlled Bit-rate Variability

Maximum capacity while maintaining an acceptable level of voice quality under
traffic and radio propagation conditions is a main objective in the design of a
cellular network for mobile or personal communication. Due to the wireless
communication channel characteristic, channel coding is necessary to remove
most transmission errors as long as the system operates within a reasonable C/I
(carrier to interference ratio) range. However, the drawback of this solution is a
lower speech quality than achievable for good channel conditions, since a large
amount of the gross bit rate is consumed on the channel coding.

The variable bit-rate speech coder solves the problem in an effective manner.
The ratio between net bit rate and error protecting redundance is adaptively
chosen according to the current channel conditions. When the channel condition
is bad, the speech coder operates at low bit rate thus allowing powerful forward
error control. In turn, for good channel the speech encoder may use its highest
net rate implying high speech quality, as a weak error protection capacity is
sufficient. Here we call this type of speech coder the channel controlled variable
bit-rate speech coder. It can be divided into two main categories: embedded and
multi-mode variable rate coders.
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3.1 Embedded Multi-rate Speech Coder

Embedded coding is a technique which allows simple bit dropping in a given
bit-stream. In the other words this means that a single coding algorithm
generates a fixed-rate data stream from which one of several reduced rate signals
can be extracted by a simple bit dropping procedure. This also means that bits
can be discarded or dropped between the encoder and decoder. The
corresponding decoders fill in the missing bits with zeros and then decodes the
resulting (modified) full-rate data signal with a fixed decoder algorithm. Thus,
each lower rate data signal is embedded in the higher full rate bit stream.

Embedded coding offers a more elegant approach to external rate control. Since
the coder itself generates a fixed rate stream, rate switching is simply achieved
by suitable bit-dropping to achieve bit rate variability. Embedded coders can
have multiple rates in a hierarchical fashion with each sub-rate signal embedded
in the next higher rate signal. Clearly, embedded coding is a special case of
multi-mode coders.

3.2 Multi-mode AMR

Comparing with embedded multi-rate coder, we can achieve variable bit rate via
an adaptation algorithm whereby the network select one of a number of
available speech coders, called codec modes, each with a predetermined
source/channel bit allocation. This concept is called adaptive multi-rate (AMR)
coding and is a form of channel controlled multi-modal coding of speech [22].

The AMR concept is the centerpiece of ETSI’s GSM AMR standardization activity, which
aims to define a new European cellular communication system designed to
support an AMR mechanism in both the half rate and full rate channels. For
each channel mode, the codec mode, i.e. bit partitioning between speech and
channel bit-rates, can be varied rapidly to track the channel error rates or the
channel’s C/I. This variation is represented to the right in Figure3.1. By
decreasing this coding bit-rate, i.e. switching from codec model 3 to 2 or from
codec 2 to 1, the robustness is increased under poor conditions. The changes
must occur quite immediately (several times a second), with no perceptible
speech degradation. This process is equivalent to Link Adaptation [14].

3.2.1 Multi-mode AMR Speech Coding

Multi-mode AMR vocoder is based on the code-excited linear predictive (CELP)
coding model and analysis-by-synthesis method is employed to quantize the
excitation, where the encoding is usually based on some simplified algorithm
rather than global optimization strategy. For AMR vocoder, the commonly used
algorithms are as follows: (1) The structured stochastic codebook is the part of
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the coder where the main bit-rate

A

Speech quality
Model 3
Model 2

Mode 1

p CI1
Fig.3.1 Adaptive multi-modes

variation between different code modes; (2) both open-loop and close-loop pitch
detection were employed, where open-loop pitch analysis is performed to
confine the close-loop pitch search to a small number of lags. Besides pitch of
even sub-frame is adjusted based on that of odd sub-frame; (3) sequential search
of the pulse position and position is confined in some pre-defined tracks.

AMR coder in GSM is capable of operating at 8 different bit-rate denoted coder
modes. Linear prediction (LP) analysis is performed once 20 ms frame. The
speech frame is divide into four subframes of 5 ms each. The bit allocation for
coder is shown for each mode in Table 3.1 (LSF-- Line Spectral Frequency
coefficients; Adapt CB—adaptive code book index; Adapt gain—adaptive gain;
Stoch CB—stochastic code book index; Stoch CB gain-- stochastic gain). The
Table 3.1 shows that the set of LP coefficients is converted to LSF and vector
quantized with 38, 27, 26, 23 bits are used at rates 12.2, 7.95, 10.2, 7.4, 6.7, 5.9,
5.1, 4.75 kbps. The adaptive codebook index is encoded with 9, 8, 4 bits in odd
subframes and relatively encoded with 6, 5, 4 bits in even subframes for
different rate mode. 35, 31, 17, 14, 11, 9 bits is for the stochastic codebook
index on different rate mode respectively. Only 12.2 bps mode use 4 bits for
each adaptive gain in each subrame. Stochastic gain in each subframe is encoded
with 5, 6, 7, 8 bits for 12.2 and 7.95, 5.95 and 5.1, 10.2, 7.40 and 6.70, 4.75 bps
rate mode respectively. So, by different bit allocation for each bit rate mode, a
bit rate rang from 12.2 kbps to 4.75 kbps can be achieved.
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Subframe

Mod

ode Parameter 1 2 | 3 | 2 Total

LSF 38

Adapt CB 9 6 9 6 30

12.20 kbps Adapt gain 4 4 4 4 16
Stoch CB 35 | 35 | 35 | 35 140

Stoch CB gain 5 5 5 5 20

LSF 26

Adapt CB 8 5 8 5 26
10.20 kbps Stoch CB 31 | 31 | 31 | 31 124

Gain 7 7 7 7 28

LSF 27

Adapt CB 8 6 8 6 28

7.95 kbps Adapt gain 4 4 4 4 16

Stoch CB 17 | 17 | 17 | 17 68

Stoch CB gain 5 5 5 20

LSF 26

Adapt CB 8 5 8 5 26

7.40 kbps Stoch CB 17 | 17 | 17 | 17 68

Gain 7 7 7 7 28

LSF 26

Adapt CB 8 4 8 4 24

6.70 kbps Stoch CB 14 | 14 | 14 | 14 56

Gain 7 7 7 7 28

LSF 26

Adapt CB 8 2 8 2 24

3-90 kbps Stoch CB 11 11 11 11 44

Gain 6 6 6 6 24

LSF 23

Adapt CB 8 2 2 4 20

3-10 kbps Stoch CB 9 9 9 9 36

Gain 6 6 6 6 24

LSF 23

Adapt CB 8 2 4 2 20

4.75 kbps Stoch CB 9 9 9 9 36

Gain 16

3.2.2 Overview of the AMR Coding System

In general, adaptation depends on the current state of the communication
channel. Since channel estimation is done at the decoder, the receiver needs to
signal to the encoder through the reverse link some information needed for mode
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selection. The rate control mechanism varies depending on the direction of
transmission, due to a constraint that the code mode control mechanism must be
located in the base station.

We know that for uplink transmission, the base station monitors the channel
condition and decides which mode the mobile station should use. The base
station communicates this information in the form of a codec mode command,
transmitted in the downlink. Upon reception, the mobile station encoder switch
to the indicated mode; for downlink transmission, based on the received bits and
possibly other information that may be available, the mobile station computes a
downlink channel measurement which is representative of the state of the
channel. The mobile station cannot autonomously decide which mode to use.
Hence, this measurement is quantized and transmitted back on the uplink to the
base station. The base station then decodes which mode it will use for the
downlink transmission of the next frame.

3.3 Variable Frame Length AMR

Recent research [15,16] has shown that variable rate techniques can augment
fixed rate speech coding systems, producing similar or higher quality speech at
lower average bit rate and achieve high network capacity. However, these
variable bit rate coding techniques still preserve the fixed frame length structure.

In multi-mode AMR, multi-rate is achieved by using different bit rate mode
which has different bit allocation at fixed frame length. Is there any other
scheme to realize variable bit rate? The answer is “YES”. Contrary to the
multi-mode AMR, We can also to achieve variable bite rate by changing frame
length with the same bit allocation for each frame. For Parametric Coders, the
speech is recovered with many parameters by tracking the speech characteristic.
The idea behind Variable frame length AMR scheme is that large frame means
more average, less accurate; small frame size means less average, more accurate.
In terms of bit rate, large frame length use low bit rate, small frame length use
high bit rate. Here we introduce a novel variable frame length AMR coder and
related other schemes to realize bit rate variability according to the channel
condition, then bit rate variations will simply be a function of frame length
variation.

3.3.1 Stationary Frames of Speech Signal

To apply the Linear Prediction (LP) method to a signal, it is necessary that the
signal be stationary. In fact the speech signal is not stationary in its whole
duration, but it consist of almost stationary small intervals. To apply the LP
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filtering to speech signal, the first step is to decompose the signal to stationary
frames. In obtaining the frame duration two factors are considerable.

(1) In data compression scheme using LPC filters, one must transmit the LPC
parameters for each frame. Therefore it is desirable to have frames as long
as possible, such that the total number of frames be minimized, as a
consequence the total number of filter coefficients be minimized. In the
other hand, computation of autocorrelation function, which is the basis of
filter design, is more accurate for longer durations.

(2) The signal is not stationary in very long and very short frames. In the case
of variable frame length, minimum and maximum frame length in which
signal is stationary is 10 ms and 40 ms [2].

Considering the above factors there must be a frame length selection range
between the smallest frame length (10ms) and the longest frame length (40ms)
for stationary speech signal.

Stationary speech condition was determined by three parameters: pitch variation,
voicing cut-off frequency variation and the change in energy every time a new
set of samples. The pitch deviation of less than two samples, a cut-off frequency
variation of less than three times the pitch frequency and less than 40% energy
were found to be tolerable changes for frame change.

3.3.2 Variable Bit Rate Function

In this project, the sampling rate is 8000 samples/second and 144 bits per frame
for FS1016 CELP is used. By using variable frame length scheme, we can
change bit rate according channel condition. Typically, the frame length used in
this project is from 10 ms to 30 ms. There are some examples as follows:

Frame length Bit rate
40 ms 3600 bits/sec
30 ms 4800 bits/sec
20 ms 7200 bits/sec
10ms 14400 bits/sec
Variable bit rate function is B=[1000/L] *b 3.1

In the above equation, B is current bit rate; b is bit quantity per frame (FS1016
CELP 144bits/frame); L is frame length(ms).
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Figure 3.2 Variable bit rate function
3.3.3 Performance Analysis

To compare speech quality of different bit rate by variable length bit rate
scheme, we apply FS1016 (CELP) as simulation platform. The result of
simulation from 15ms to 30 ms frame length is as follows:

SNR.; (dB) Bit rate (kbps) Frame Size (ms)

5.82 4800 30
6.27 5760 25
7.27 7200 20
8.65 9600 15

Table 3.2 Segment SNRs of different frame length

Table 3.3 shows the segmental signal to noise ratios (SNRgg) obtained while
testing the coder under different frame length: 30, 25, 20, 15 ms, respectively.
Test material consists of 4 sentences (2 mail, 2 female). Simulation results
indicate small frame length correspond high bit rate and high speech quality. It
proves that different bit rate corresponding different level of speech quality can
be simply achieved by changing frame length.

The effects of joint channel and source controlled coding are explained in
Chapter 5. Simulation results in Table 5.1, compares bit rate for different frame
length when the proposed source controlled variable bit rate algorithms in
Chapter 4 are implemented with variable frame length AMR. It shows that more
bit rate can be reduced due to less frame length. The bit rate reduce in 15 ms
frame length is 30% which is 2 times better than 30 ms frame length when
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source controlled variable bit rate algorithms is used. It can contribute the joint
channel and source controlled variable bi rate speech coder because this feature
can compensate the bit rate increase while frame length is reduced to achieve
high quality. Details are in Chapter 5.

However, two problems will be encountered when the proposed variable frame
length is applied for the speech coder. One problem is that different frame length
has different processing time delay. It will cause synchronization problem in the
decoder. The other one is artifact due to sudden bit rate switch from low to high
bit rate mode. To solve these problems, a smooth switch algorithm for variable
frame length AMR will be presented in the next section.

3.3.4 Smooth Switch Different Bit Rate

Compared to the wired links, the wireless channels are typically much more
noisy and have a higher bit error rate. Meanwhile, multi-path and shadow fading,
time dispersion occurs frequently in wireless channel. As a result, random and
burst errors can have devastating effect on speech streaming quality So, the
channel condition in wireless communication cannot be predicted accurately. It
might change rapidly or change smoothly or will remain stable for a certain time
duration. Based on the above wireless channel Property, for AMR speech coder,
when we select the bit rate in terms of certain channel condition, the smooth
switch must be considered, especially when we do switch from the very high bit
rate to very low bit rate or from the very low bit rate to very high bit rate.
Otherwise, there will be an artifact and significant speech quality “jump”. In our
variable frame length AMR, we introduce a simple smooth bit rate switch
scheme. The idea behind it is as follows:

There are ten bit rate modes: Bi; B2; B3; B4; Bs; Bs; B7; Bs; Bo; Bio. Assuming we
want to switch from Bito Bio

Hard switch: B! ety B10

Smooth switch: B1 —p B2 —p Bs............. —» Bs—p Bos—p Bio

For our variable frame length AMR, it is simple to apply the above smooth
switch scheme (figure 3.4). When we switch Bi to Bx(k>i), the only thing we
will do is decrease frame length step by step till we get 4. For FS1016 CELP one
step is 1ms. Based on the simulation test result, our simple smooth switch
scheme can completely remove any speech quality “jump”, and also there is no
any artifact due to bit rate switch. The details are in chapter 5.
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For synchronization issue, smooth switch scheme can lower the bit rate
transform to avoid big processing time delay « Jjump” since 1 step size of 1 ms is
little time duration which human may not notice. Therefore, there are totally 30
bit rate selection modes in the proposed variable frame length AMR.

3.4 Benefits of Variable Frame Length AMR

In fact, variable frame length coding technology has been applied in image and
video coding. Through the above analysis, we know we can achieve bit rate
variability by using variable frame length. Compared with multi-mode AMR,
there are some notable advantages for the proposed variable frame length AMR:

(1) Basically, multi-mode AMR use a family of fixed rate coder to adapt the
channel condition. It can be said that the multi-mode AMR consist of several
speech coders which has complicated structure and requires large hardware
memory to storage codec information. The proposed variable length AMR
has advantage regarding its simplicity because the variable bit rate is
achieved by changing the frame length. And also there is no need for extra
hardware memory for storing codec information

(2) In current GSM AMR standard, Multi-mode AMR only has limited 8
different bit rate modes for half-rate channel and 9 different bit rate mode
for full-rate channel. It cannot adapt accurately according to the channel
condition. However, the variable length AMR has more bit rate selection
range (30 bit rate modes) and also it can track the channel condition better.

(3) Multi-mode AMR cannot apply bit rate switch directly which need other
algorithm to deal with smooth switch problem since the bit rate mode is
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discrete. In the proposed technique, the rate switch gradually. Such a gradual
switch will provide better human perception.

3.5 Chapter Summary

This chapter presented some of the ideas and method for channel controlled
variable bit rate speech coding including embedded and adaptive multi-rate
(AMR) speech coding. After overview of AMR speech coding scheme which
apply multi-mode method in current GSM systems, this Chapter introduced
another method to achieve bit rate variability by variable frame length. In
addition, a smooth bit rate switch scheme is applied with the variable frame
length method. The advantage and benefit of new method to achieve channel
controlled bit rate variability is presented in the last section.
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Chapter 4

Source Controlled Bit-rate Variability

Maximizing capacity while maintaining an acceptable level of speech quality is
a central objective in the design of a mobile network. To achieve this goal, many
researchers have developed a number of techniques. Among them, variable bit
rate coding has been proved is a high efficient way to increase the network
capacity.

Variable bit rate coding clearly allows the long-term average bit-rate Ra for a
given level of quality to be substantially less than the peak bit rate R, that would
be required by an equivalent quality fixed rate coder. Suppose that the maximum
total data rate from all mobiles in a sectors is Rs based on bandwidth,
modulation bandwidth efficiency and interference constraints. If each mobile is
sending at a variable bit rate with average rate Ra and the system can somehow
pool their data signals into one composite data signal. The number of users
would be given by N=Ry/Ra. This assumes an efficiently designed scheme that
can fully exploit variable rate coding. As long as we can have equal speech
quality with a fixed bit rate coder, the ideal the capacity gain is G= Rp/Ra. which
can lead to significant increase system capacity when we can reduce average
rate Ra.
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In the source-controlled coding, the coder in some dynamically allocates bits in
respond to the local behavior of speech source. Such coders are generally
designed with the intent of maintaining a desired level of quality for each short
segment of speech with fewest bits needed.

4.1 Voice Activity Controlled Variable Rate Coding
4.1.1 Overview of VAD

Monitoring the presence or absence of speech is the most natural and simplest
way to employ source-controlled variable rate coding. A constant bit rate coder
is readily converted into a source-controlled variable rate coder by adding a
detector that switches off the coder during periods when no active voice is
present. This produces a data signal whose rate switches between the full rate
and zero rate in a random manner somewhat like the classical random telegraph
signal.

In a classic study of voice activity patterns, Brady observed that one side of two
way telephone conversations consists of interminent talk spurts separated by
pause or silence. The process of identifying when talk spurs occur is called voice
activity detection (VAD). Based on a simple speech detector. Brady found that
on an average, a speaker is talking about 44% of the time. Subsequent studies
based on more accurate detectors of voice activity have found a lower percent of
talking time.

The quality of the VAD algorithm is a very important consideration in the
design of systems that enhance capacity by exploiting voice activity. The
increase in capacity is determined by the voice activity factor (VAF) which is
the fraction (or percent) of the time the detector identifies the presence of active
speech. Reliably measuring the VAF of a detector requires averaging the
conversation in many calls with many different speakers. If silence is detected as
speech, the capacity is reduced; on the other hand, when speech is detected as
silence, degradations in the recovered speech quality are introduced.

In GSM, the VAD decisions are usually based on multiple features extracted
from the signal including time varying energy, zero-crossing counts, sign bit
sequences, and features generated from within the speech coding algorithm. In
GSM, the VAD decision is used by the discontinuous transmission (DTX)
mechanism [34], which allows the radio transmitter to be switched off most of
the time during speech pause.

Hangover time

During speech pause, the acoustic signal is not really “silence” in nature.
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Background noise and possible echoes of the far-end speech are always present.
The task of VAD algorithm is complicated because certain speech sounds have a
very low energy level and are random in character and thereby are readily
confused with background noise. Difficult phonetic (phonetic units of speech)
for a detector including weak fricative sound such /f/ in fat /th/ in thing, there are
often extremely shorts pauses during active speech, notably with certain
phonetic segment called plosives where a detector could prematurely declare the
start of silent interval. To avoid this, some hangover time is needed during
which the VAD delays its decision of silence and continues to observe the
waveform before it declares that a transition has occurred from active speech to
silence.

Conservative consideration

For mobile environment, the design of a VAD is complicated by high level of
acoustic noise coming to the microphone. The acoustic noise may include such
sources as vehicle engine noise, car radios, restaurant background noise, city
street sounds, etc. To avoid degrading the speech quality, the VAD algorithm
can be designed fairly conservatively so that a lot of the background noise will
be classified as active speech rather than silence.

Comfort noise

During the speech pause, synthetic noise similar to the transmit side background
noise is generated on the receive side. This synthetic comfort noise is produced
by transmitting parameters describing background noise at a regular rate during
pause. It can be coded at a very low bit rate or only its power level can be
transmitted and random noise regenerated at the receiver. This reproduction of
background noise is often called comfort noise.

4.1.2 VAD Algorithm

The block diagram of the VAD algorithm is depicted in Figure 4.1 [17]. The
VAD algorithm uses parameters of the speech encoder to compute the Boolean
VAD flag (VAD flag). This input frame for VAD is sampled at the 6.4 kHz
frequency and thus it contains 256 samples. Samples of the input frame (s(i)) are
divided into sub-bands and level of the signal (level[n]) in each band is
calculated. Input for the tone detection function are the normalized open-loop
pitch gains which are calculated by open-loop pitch analysis of the speech
encoder. The tone detection function computes a flag (tone flag) which indicates
presence of a signaling tone, voiced speech, or other strongly periodic signal.
Background noise level (bckr_est[n]) is estimated in each band based on the
VAD decision, signal stationarity and the tone-flag. Intermediate VAD decision
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is calculated by comparing input SNR (level[n]/bckr est[n]) to an adaptive
threshold. The threshold is adapted based on noise and long term speech
estimates. Finally, the VAD flag is calculated by adding hangover to the
- intermediate VAD decision. The block diagram of the VAD decision algorithm
is shown in Figure 4.1.

level[n]
tone flag
SNR bekr_est/n] | Background Speech
Computation [€¢————— Noise Estimation  [€
Estimation
[ A
snr_sum noise_lev speech_lev
) vad_thr
Comparison - Threshold
< @— Adaptation
t vadreg ®
Hangover
Addition <
VAD flag l

Fig 4.1. Simplified block diagram of the VAD decision algorithm
4.2 Voiced and Unvoiced Segment Detection

Through voice activity patterns offer an important and essential component for
source-controlled variable rate coding even during active talk spurs the speech
signal has a time varying short-term entropy. In other words, variable rate
coding of active speech segment is a natural way to achieve further reductions in
average bit-rate for a given reproduction quality. In this section, we discuss
voiced and unvoiced segment variable rate algorithm for coding of speech
segment that has been declared as active by a VAD algorithm.
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4.2.1 Speech Characteristic

In Chapter 2, we have introduced some property of voiced and unvoiced speech
segment. Here we will discuss more about it. The two types of speech sounds,
voiced and unvoiced, produce different sounds and spectra due to their
differences in sound formation. With voiced speech, air pressure from the lungs
forces normally closed vocal cords to open and vibrate. The vibrational
frequencies (pitch) vary from 50 to 400 Hz (depending on the person’s age and
sex) and forms resonance in the vocal tract at odd harmonics. These resonance -

peaks are called formants and can be seen in the voiced speech Figures 4.2 and
4.3 below.
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Fig. 4.3 Power spectral density of voiced Speech

Unvoiced sounds, called fricatives (e.g., s, f, sh) are formed by forcing air
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through an opening (hence the term, derived from the word “friction”).
Fricatives do not vibrate the vocal cords and therefore do not produce as much
periodicity as seen in the formant structure in voiced speech; unvoiced sounds
appear more noise-like (see Figures 4. 4 and 4.5). Time domain samples lose
periodicity and the power spectral density does not display the clear resonant
peaks that are found in voiced sounds. In addition, the energy of voiced segment
is generally higher than the energy of unvoiced segments.
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Fig 4.5: Power spectral density of unvoiced speech

The spectrum for speech (combined voiced and unvoiced sounds) has a total
bandwidth of approximately 7000 Hz with an average energy at about 3000 Hz.
The auditory canal optimizes speech detection by acting as a resonant cavity at
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this average frequency. Note that the power of speech spectra and the periodic
nature of formants drastically diminish above 3500 Hz. Speech encoding
algorithms can be less complex than general encoding by concentrating (through
filters) on this region. Furthermore, since line quality telecommunications
employ filters that pass frequencies up to only 3000-4000 Hz, high frequencies
produced by fricatives are removed. A caller will often have to spell or
otherwise distinguish these sounds to be understood (e.g., “F as in Frank”).

4.2.2 Conventional Voiced/Unvoiced Segment Detection Algorithm

The need for deciding whether a given segment of a speech waveform should be
classified as voiced speech or unvoiced speech, arises in many speech analysis
systems. A variety of approaches have been described in the literature for
making this decision. In this section, firstly, we introduce a number of
conventional approach for classifying a given speech segment, which is
described in [2]. Also, the joint approach provides an effective method of
combining the contributions of a number of approach which individually may
not be sufficient to discriminate the voiced speech or unvoiced speech.

The following five measurements have been used in the implementation
described as follows:

Energy of the signal

e Zero—crossing rate of the signal

¢ Autocorrelation coefficient at unit sample delay
 First predictor coefficient

o Energy of the prediction error

The choice of these particular parameters is based on the experimental evidence
that the parameters vary consistently from one class to another, which we will
discuss later in this part.

Speech Measurements

A block diagram of the analysis and decision algorithm is shown in the
following figure. Prior to analysis, the speech signal is high pass filtered to
remove any dc, low frequency hum, or noise components which might be
presented. The formula of the high pass filter is given below.
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Then the five parameters mentioned in the previous section are computed for
each block of samples. Following we state in detail the definitions of them.

1. Zero-crossing count N,, the number of zero crossing in the block

The zero crossing count is an indicator of the frequency at which the energy is
concentrated in the signal spectrum. Voiced speech is produced as a result of
excitation of the vocal tract by the periodic flow of air at the glottis and
usually shows a low zero crossing count. Unvoiced speech is produced due to
excitation of the vocal tract by the noise-like source at a point of constriction
in the interior of the vocal t ract and shows a high zero crossing count. The
zero crossing count of silence is expected to be lower than for unvoiced
speech, but quite comparable to that for voiced speech.

S(n)
l —> ZERO CROSSING
SCALE
l —»  LOG ENGERY
HIGH PASS JOINT VOICE
FILTER —»| AUTOCORRELATION | MEASURE —» UNVOICE
i SILENCE
P
BLOCK OF LpC
SAMPLES
—P LPC ERROR

Fig 4.6 Block diagram of voiced/unvoiced detection algorithm

2. Log energy E; -- defined as

N

E, =10log(e +—11\72 S%(n)) 4.2)
n=|

Where e is a small positive constant added to prevent the computing of log of

zero. Generally speaking, Es for voiced data is much higher than the energy of
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silence. The energy of unvoiced data is usually lower than for voiced sounds but
higher than for silence.

3. Normalized autocorrelation coefficient at unit sample delay, C; which is
defined as

is(n)s(n -1)
\/(ZsZ(n»(Z'sz(n))

C, = (4.3)

This parameter is the correlation between adjacent speech samples. Due to the
concentration of low frequency energy of voiced sounds, adjacent samples of
voiced speech waveform are highly correlated and thus this parameter is close
to 1. On the other hand, the correlation is close to zero for unvoiced speech.

4. First predictor coefficient, a; of a 12-pole linear predictive coding analysis
using the covariance method. It can be shown that this parameter is the
negative of the Fourier component of the log spectrum at unit sample delay.
Since the spectra of the three classes -- voiced, unvoiced, silence -- differ
considerably, so does the first LPC coefficient.

5. Normalized prediction error, E,, expressed in dB, which is defined as

E,=E, -1010g(10™° +| i(akqs(o,k) +$(0,0))| (4.4)
o@,k) = %is(n —i)s(n—k) (4.5)

n=1

Where E; is defined above and & (i, k) is the term of the covariance matrix of
the speech samples, and a;’s are the predictor coefficients. This parameter is a
measure of the non-uniformity of the spectrum.

The five parameters discussed above are correlated with each other. These
correlations vary between the parameters and between classes. The decision
algorithm discussed in the next section will make use of it to differentiating
between the classes.

Decision Algorithm



As mentioned before, the five measurements are used to classify the block of the
signal as either silence, unvoiced, or voiced speech. To make this decision, a
classical minimum probability~of—error decision is used in which it is assumed
that the joint probability density function of the possible values of the
measurements for the ith class is a multidimensional Gaussian distribution with
known mean m; and covariance matrix W,. i=1,2,3 corresponds to class 1
(silence), class 2 (unvoiced), and class 3 (voiced), respectively.

For the decision rule, the distribution of the measurement does not need to be
necessarily exactly normal. In the case of unimodal distributions, it is sufficient
that the distribution be normal in the center of its range, which is often true for
physical measurements.

Let X be an L dimensional column vector (in our case L=5) representing the
measurements, that is the kth component is the kth measurement. The
L-dimensional Gaussian density function for x with mean vector m; and
covariance matrix W; is given by

g:(X) = Qm) ™| exp(—%(X - M)W (X - M) (4.6)

The decision which minimizes the probability error states that the measurement
vector X should be assigned to class i if

pig;(X) 2 pig;(X) 4.7)

where Pi is the a priori probability that X belongs to the ith class. This decision
rule, by throwing away some insignificant parts and manipulations, can be

further simplified: the quantity distance d; defined as
di=(X-M)"W'(X-M,) 4.8)

is computed and the index i is chosen such that d; is minimized.

In order to use the above decision algorithm, a training set of data is required to
obtain the mean vector and the covariance matrix for each class. This training
set is created by manually segmenting natural speech into regions of silence,
unvoiced speech and voiced speech. The measurements mentioned above are
made on each block of data. Let x; denote the measurement vector for nth block
for class (=1, 2, 3 ) and Ni denotes the number of blocks manually classified as
class i in the training set, then
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Figure 4.7. Comparison between actual data and V/U/S determination results
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An example of the speech waveform showing the various voiced, unvoiced, and
silence regions as determined by the algorithm is shown in Fig. 4.6.

A fairly general framework based on a pattern recognition approach has been
described in which a set of measurements are made on the interval being
classified, and a minimum non-Euclidean distance measure is used to select the
appropriate class. Almost any set of measurements can be used as long as there
is some physical basis for assuming that the measurements are capable of
reliably distinguishing between these three classes.

The major limitation of the method is the necessity for training the algorithm on
the specific set of measurements chosen. Strictly speaking, the training data is
particular to one set of recording conditions. Thus, whenever the transmission
system varies or the background noise level varies, a new set of training data is
required. If the recording conditions differ considerably from one occasion to
another, it may be possible to adapt the algorithm by continuously updating the
training data based on some measure of the relative distances to each of the
classes. It is necessary to develop a new reliable voiced/unvoiced segment
detection algorithm which is robust against noise environment.
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4.2.3 Spectral Correlation Voiced/Unvoiced Segment Detection Algorithm

In the above section, voiced/unvoiced/silence segment detection algorithm
including 5 measurement parameters was performed in the time domain on
every frame. Although the detection result was adequate in clean speech frames,
its performance reduced significantly under background noisy conditions. In
order to solve this problem, we propose a frequency-domain voiced/unvoiced
segment determination algorithm based on the spectral correlation and adaptive
reference signal, threshold.

Spectral correlation in frequency domain

We consider the case where a single speech source is present is available. We
use a window of length N, and assume that each N-sample frame of any signal
we consider has been convolved with that window. The frame length N denote
the amount of sample within a frame. Time domain input signals are denoted by
small letters, e.g., x,. We denote a frame as x = (xy, ..., x,). The corresponding
frequency domain signals are denoted by capital letters, e.g., Xi, k=1, ...,N. The
two are related by the Fast Fourier Transform (FFT). Also, a voiced reference
signal a,(r=1,...,N) is required for this algorithm. The corresponding frequency
domain signals are 4, k=1,...,.N

Then, we calculate the cross-correlation between the input signal and voiced
reference signal in frequency domain.

0 20 40 60 80 100 120 140 160 180

Fig. 4.8 voiced reference signal

N
R=>X*4, i=1,...,2N-1 4.11)

k=r=1
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We set H as the maximum of absolute value of R;
H= max(Ri) (4.12)

When H is bigger than the predefined threshold Ts, the segment of input signals
are defined as voiced segment, otherwise, unvoiced segment.

Adaptive voiced reference signal

Let x, be the windowed clean speech signal emitted at time », and let y, be the
windowed noisy speech signal received at the microphone at the same time. Let
u, denote the windowed noise signal. Assuming additive noise, we have

Vo =Xn+ U, (4.13)

In the frequency domain, (4.11) becomes Y; = X;+ Uy. Denote the frame signals
collectively by X, Y, U as in (4.13).

The cross-correlation function:
N
R =Z(Xk+Uk)Ak 4.14)
k=1

According to the above cross-correlation function (4.14), we can see the
background noise will affect the R;, then performance quality will be reduced.
To solve this problem, we introduce an adaptive reference signal. In the section
4.2.1, we know usually the energy of voiced segment is bigger than unvoiced
segment, so we can use this speech property which the highest energy segment
should be voiced segment (we assume the background is less than speech signal,
SNR>0). Based on this idea, we will choose the segment with the highest signal
energy as the voiced reference signal by comparing the signal energy of each
frame.

2

N
The energy of frame: S= Z

n=1

Y,

n=1,..N (4.15)

N denotes the total number of sample each input frame. S denotes the signal
energy of frame.

When the system detect that the background noise is less than a threshold Te, the
clean voiced reference signals will be employed again. However, when the
background noise is bigger than a threshold T, the segment with the highest
energy will become the voiced reference signals. So, this concept is called
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Adaptive voiced reference signal. 1t is one of the key parts of the proposed
algorithm.

Algorithm structure

The above three parts (Spectral correlation in frequency domain, Adaptive
voiced reference signal) of spectral correlation voiced/unvoiced/ segment
detection algorithm can be integrated for our voiced/unvoiced segment detection.
The structure of algorithm is shown in Fig 4.9

According to the input speech signal and background noise, firstly, the
background noise level (SNR) is measured to decide that what kind of voiced
reference signal will be used based on the threshold 7;. Then, Fast Fourier
Transform (FFT) is applied for input speech signal. The next step is to do
spectral correlation calculation in frequency domain.

Input speech

l

FFT Background Noise estimated

Adaptive voiced reference signal/clear voiced reference signal

\ 4
Spectral correlation

\ 4
Voiced/Unvoiced segment decision

Fig. 4.9 Block diagram of spectral correlation voiced/unvoiced detection
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Compared with the adaptive threshold T, the input speech can be classified into
voiced or unvoiced segment.

4.2.4 Robust Performance Measurement

During the test of this spectral correlation followed by voiced/unvoiced segment,
it was found that the algorithm is more robust against background noise than the
conventional algorithm, even the heavy noise environment. The robustness is
useful in wireless communication and a critical component in the
implementation of variable bit rate speech coders.
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Fig 4.10(a) Performance comparison (clean background)
2---unvoiced 1---voiced 0---silence

In Fig 4.10(a), the top panel is the input clear speech, the second panel is the
conventional detection algorithm, the bottom one is the proposed spectral
correlation algorithm. From this diagram, it is so obvious that the proposed
algorithm is more accurate for voiced or unvoiced segment detection.

The Fig 4.10 (b) shows that the conventional detection algorithm does not work
in heavy background noise (10dB). However, our proposed spectral correlation
detection in frequency domain algorithm can still detect voiced and unvoiced
segment. It proves that our detection algorithm is more robust against noise.
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Fig. 4.10 (b) Performance comparison (noise background)
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4.2.5 Variable Rate Coding of Voiced and Unvoiced Segment

Based on the speech characteristic, each coding frame can be classified into
voiced, unvoiced and silence segment. Tests conducted on large speech files
show that after silence suppression approximately 62% of the speech frames
correspond to voiced speech, around 30% are unvoiced and 5% can be classified
as onsets, transitions from unvoiced to voiced speech. '

The required bit rate variability is realized by exchanging the adaptive
codebooks and their corresponding gain codebooks while leaving the CELP
coding scheme for all the other codec parameters invariant. The theory behind
this technique is that for unvoiced segment, the adaptive codebook will not
affect the quality of the synthesized speech. So, when we encode the unvoiced
speech segment, we simply skip adaptive codebooks search and allocate 0 bit for
adaptive codebook and corresponding gain. Furthermore, seamless bit rate
switching can be realized by simply switching on or off their adaptive excitation
codebooks search. The bit allocation for FS1016 CELP is shown in Table 4.1.
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Subframe
1 2 3 4
Parameter
A\ ov |V |UV| V (UV]| V |UV

LSF 34
ACB 8 0 6 0 8 0 6 0
Gacs 5 0 5 0 5 0 5 0
SCB 9 9 9 9
Gscs 5 5 5 5
other 6
Total 144

Table 4.1. Overall Bit allocation( v: voiced; uv: unvoiced)

ACB= Adaptive codebook; Gacp= Gain of adaptive codebook; SCB= Stochastic codebook;
Gscp= Gain of stochastic codebook ;

4.3 Adaptive Forward-Backward Quantizer

Linear prediction plays a central role in various low and intermediate bit rate
speech coding algorithms [18]. Usually, a new set of linear predictive coding
(LPC) coefficients is determined every 20 to 30 ms and, after quantization,
transmitted to the decoder as side information. To reduce the degradation of the
speech quality caused by a direct quantization of LPC coefficients, Line Spectral
Frequency (LSF) parameters are used for an indirect quantization and
interpolation of predictor coefficients. Traditionally, scalar quantization of LSF
coefficients was used. In FS1016 Federal Standard CELP [19] a total of ten LSF
coefficients are scalar quantized to 34 bits-per-frame (bpf). Since the predictor
coefficients are updated every 30 ms, the side information required for
transmitting LSF parameters needs 1133.3 bps. The overall bit rate of FS1016
coder is 4.8 kbps, so more than 23% of the required bandwidth is spent on
transmission of LSF coefficients.

It is well known that the speech signal is often slowly time-varying and
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non-stationary. The statistics between the current block and some temporally
close previous blocks may often be similar leading to close sets of predictor
coefficients. By allowing previous blocks to be over-lapped, the chance for
statistical matching between the current block, and one of the so constructed
temporally close previous block, will surely increase. By adapting the quantizer
design to this new strategy, the “global" statistical correlation of speech signals
will be more thoroughly exploited and a significant bit rate decrease is expected.
To exploit the advantages of both forward and backward linear prediction, we
introduce the following adaptive forward-backward coding scheme: A
previously decoded and temporally close speech signal is segmented into
overlapping blocks. If, and only if, the LPC coefficients calculated from one of
those synthetic blocks is sufficiently “close" in some sense to the unquantized
LPC coefficients calculated from the current speech block, the backward LPC
scheme shall be applied, i.e., the LPC coefficients based on the previously
decoded optimal speech block are used to encode the current block and only the
time delay shall be transmitted to the decoder.

4.3.1 Adaptive Forward-Backward Quantization Analysis

As usual, the input speech is divided into non-overlapping blocks of L samples.
For each block, the LPC coefficients are determined by using, e.g., the
Levinson-Durbin algorithm. These LPC coefficients are optimal for the current
speech block in the sense that the energy of the prediction residual signal is
minimized .In traditional CELP coders, the LPC coefficients based solely on the
current block are quantized by using either scalar or vector quantization scheme.
In the following, we describe the adaptive forward-backward quantizer [20].

Conventional forward-backward quantization algorithm

The algorithm starts with defining the adaptive forward-backward LPC
codebook, which consists of S code vectors each having p entries, where p
represents the order of linear predictor. The ith code vector is determined by
calculating the LPC coefficients, i.e., d;%", dp("), based upon the previously
decoded (synthetic) speech block [yp.ik.L, Vn-ik-L+1» ---Vn-ik-L ] that is available at
both the encoder and decoder (see Fig. 1), where L is the length of the LPC
block and K is the time delay unit chosen to be equal to the length of the
sub-block, i.e., K = N. Then logarithmical spectral distortion (LSD) measure is
used to evaluate the similarity between the previous and current set of LPC
coefficients defined above. The LSD introduced by the ith code vector of the

adaptive forward-backward LPC codebook is given by
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denote the LPC coefficients based solely on the current speech block.

As seen, the LSD measure is determined for every candidate code vector. Then
the one that has the smallest spectral distortion, i.e., LSD™ with index = arg
min; LSD? | is selected from the adaptive LPC codebook. If LSD™®) > T 4
predefined threshold, then the current LPC coefficients, i.e., a, ..., ap, are used
in speech coding and, after quantization, transmitted to the decoder. If LSD

< T, then the corresponding LPC coefficients, i.e., 8™, , ... gl

p » are
used in speech coding and only the index to the adaptive LPC codebook needs to
be transmitted to the decoder. An additional flag bit is required to notify the

decoder whether forward or backward linear prediction is applied at the encoder.

The application of this algorithm slightly increases the computational
complexity at both the encoder and decoder. At the encoder, the increase in
computational complexity is two-fold. First, for every new block, the code
vectors in the adaptive LPC codebook need to be updated by the use of the
newly decoded (synthetic) speech samples. However, each time, only L=K = 4
code vectors which involve the most recently determined synthetic speech
samples need to be calculated and added to the adaptive LPC codebook to
replace the oldest code vectors. Second, the optimal code vector, which has the
smallest LSD, needs to be selected from the adaptive LPC codebook. However,
the computational complexity raised by the proposed algorithm at the encoder is
negligible compared to the closed-loop excitation sequence generation of the
CELP algorithm. This is because (1) each time only the four newest LPC code
vectors are calculated to replace the four oldest ones and (2) instead of the LSD
measure we have used the computationally less expensive COSH measure [],
which is an upper bound of the LSD measure. At the decoder, if backward linear
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prediction is applied, the LPC coefficients are determined based on the
previously decoded speech samples [Vnik-L,  Yn-ik-L+1 s «oYneit-L ]

The adaptive forward-backward LSF quantization scheme has been integrated
into the FS1016 Federal Standard CELP coder. Extensive computer experiments
showed that the bandwidth required for transmission of predictor coefficients
was reduced by a factor of 2.7 with less then 1 dB drop in the segmental SNR
and virtually no degradation in the perceived speech quality [21]. Although this
scheme can be effective to reduce bit rate, the LSD measurement is quite
complex. It is essential to develop new scheme to achieve adaptive
forward-backward LSF quantization.

4.3.2 Improved Adaptive Forward-Backward Quantization Algorithm
Instead of using the LSD to make the decision for the coefficient similarity, here,
we proposed a novel mean variance spectral coefficient similarity algorithm.
The quantized LSF coefficient of the previous frame is X1,Xz,...,x». The vector
quantizaed LSF coefficient of the current frame is y1,;,..., Yy .

Then use mean variance measure to evaluate the similarity between the previous
and current set of LSF coefficients defined above. The mean variance introduced

by the ith code vector of the adaptive forward-backward LPC codebook is given
by

M
Mean Variance =10log,,( }Z(yi—x,.)z) i=1...M M=10 (18)
i=1

The threshold T' = 18 dB was defined after performing 50 times. If mean
variance > T, a predefined threshold, then the current quantized LSF coefficients,

ie., Y1,ys...,.Yu are used in speech coding and, transmitted to the decoder. If
mean variance< T, then the corresponding previous LPC coefficients, i.e.,
Xu,Xz,...,Xp , are used in speech coding and only the flag bit needs to be

transmitted to the decoder to notify the decoder whether forward or backward
linear prediction is applied at the encoder. The adaptive forward-backward
quantization of the LPC coefficients is summarized as follows:

At encoder:
Step 1. Calculate the LPC coefficients on the current speech block.

Step 2. Quantize the LPC coefficient to LSF coefficient. Compare the LSF of
previous frame to calculate the mean variance.

Step 3. If Mean Variance<7, a predefined threshold, then the LSF coefficients of
previous frame are used for coding the current speech block and the
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index is encoded and transmitted to the decoder. Set the flag bit to 1 to
inform the decoder that backward linear prediction is applied at the
encoder. Go to Step 5.

Step 4. If Mean Variance > T, then the LPC coefficients based on the current
block (determined in Step 1) are used for coding the current speech
block and, after scalar or vector quantization, transmitted to the decoder.
The flag bit is set to 0 to inform the decoder that forward linear
prediction is applied at the decoder.

Step 5 Encode the speech by using the LPC coefficients calculated for the
current speech block in either Step 1 or Step 4.

At the decoder:

Step 1. If backward linear prediction is applied at the encoder (the received flag
bit is 1), determine the LPC coefficients based on the previously decoded
speech samples Go to Step 3.

Step 2. If the flag bit shows that forward linear prediction is applied at the
encoder, receive the current LPC coefficients.

Step 3. Decode the speech by using the LPC coefficients determined in either
Step 1 or Step 2.

Comparing the original Adaptive Forward-Backward Quantization algorithm,
the proposed adaptive forward-backward quantization algorithms has the
following advantages : (1) we use the quantized LPC coefficient LSP to make
the adaptive forward -backward decision instead of unquantized LPC
coefficients. (2) we employ mean variance instead of LSD to determine use the
current or the previous frame coefficient.(3) The computation complexity of the
proposed technique is significantly less than the original adaptive forward
—backward quantization technique

We integrated this adaptive forward-backward quantization scheme into FS1016
CELP coder. The frame lengths of both 30 ms and 20 ms are used, which
correspond to L = 240 and L = 160 samples, respectively, when the sampling
rate is fs = 8 kHz. As is well known, the performance of the CELP coding
technique depends on the block length. As a matter of fact, both the segSNR and
the decoded speech quality improve as the coder parameters are updated more
frequently. The results shown there are more backward quantization when the
block length is reduced from 30 ms to 20 ms. It shows when we reduce the
frame length, more bit rate can be saved because of more backward quantization
in CELP coder.
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4.4 Chapter Summary

In this chapter we have described the source controlled variable bit rate speech
coder which is being implemented by detecting voice activity to switch on or off
for speech signal transmission, splitting bit allocation for voiced and unvoiced
subframes and calculate mean variance of LSP coefficient to adaptively apply
forward/backward quantizer is discussed. Firstly the method for voice activity
detection (VAD) of input signals. In order to make our coder very scalable, we
employ a GSM wideband VAD algorithm. Next we gave the details of our
proposed novel voiced and unvoiced segment detection algorithm we employed,
as well as the comparison of the conventional corresponding algorithm. We
discussed one of the main contributions of this novel algorithm is the robustness
feature which is very important for our source controlled variable bit rate speech
coder in real application; In third section of this Chapter we introduced the
adaptive forward —backward quantizer scheme. In order to apply this algorithm,
we modified the algorithm by using mean variance instead of LSD coefficient to
detect the similarity of LPC coefficient between the previous and current frame.
This approach also reduces the computation complexity significantly. Finally,
we integrated the above three algorithm with the FS1016 CELP to realize the
source controlled variable rate speech coding.
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Chapter 5

Joint Channel and Source controlled
Coding

The integration of the channel controlled and source controlled algorithm into a
speech coder, and the simulation results are presented in this chapter. The
popular speech codec in wireless communication, CELP was chosen as a
platform for the simulation experiments. In the section 5.1, the structure of
channel and source controlled AMR speech coding algorithm is briefly
explained along with the fundamentals of CELP coders. The experimental setup
used for evaluation of the performance for the proposed variable bit rate speech
coding is described in section 5.2. The objective and subjective tests used to
measure the speech coding quality are also presented in the section 5.3. In the
section 5.4, results from the variable bit-rate AMR speech coder are presented.

5.1 The structure of Proposed Variable Bit Rate Speech Coder

Comparing with the original CELP coder, the characteristics of the proposed
integrated channel and source controlled variable bit rate speech coder are as
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follows:

1. The length of a frame is adjusted according to the channel condition (C/I),
and variable bit rate is achieved by allocating fixed number of bits to the
variable length frames.

2. By using a voice activity detection method (VAD), the speech coder separates
voice and silence speech frames. This produces a data signal whose rate
switches between the full rate and severa.

3. For unvoiced speech subframe, CELP coding method is different from that
of a voiced speech subframe. There is no adaptive code book search and the
corresponding gains for the unvoiced subframe, and this results in significant
bits saving.

4. For the LPC coefficients of CELP, the adaptive forward-backward quantizer
is employed to decide if the speech decoder can reuse the previous frame
coefficient or not. This technique also allows to achieve saving bit saving in
bit allocation.

5.2 Simulation Experiment

For the channel controlled scheme, the variable frame length scheme was
implemented in the FS1016 CELP (4800 kbps) speech coder using the same
framework presented in Section 3.3. Compared to the FS1016 in which 30ms
frame used, our variable frame length AMR speech coder uses 4 kinds of frame
length: 15ms, 20ms, 20ms and 30ms according to the 4 channel condition model.
In addition, the smooth switch algorithm is applied to eliminate the artifact
caused as a result of bit rate switch and different time delay because of the
variable frame length. The speech signals used in the simulation are sampled at
8 kbps, quantized at a 16 bits/sample resolution, and is pulse code modulation
encoded.

For source controlled scheme, the proposed spectral correlation algorithm is
implemented to classified the input speech into voiced and unvoiced segments.
When the segment is unvoiced, we only do the stochastic code book search ,
then the bits for adaptive code book index and adaptive gain can be saved. By
LP analysis, LPC coefficients were obtained for a frame. Two quantizer types:
forward and backward were used to obtain the LSFs for the frames, and a
threshold of 18 dB was used for this method. For less computation complexity,
the mean square variance LPC parameters computed by the current and previous
frame were implemented. If the mean variance
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Fig 5.1 The structure of variable bit speech coder

of LSFs is less than the threshold, the backward quantizer will be applied, then
the 34 bits for LSFs can be saved instead of 1 flag bit.

Steps for the simulation are as follows:

(1) Source controlled algorithms including variable length AMR and smooth
switch algorithm are implemented based on channel condition (4 channel
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condition level corresponding 4 kinds of frame length)

(2) Voicing activity detection (VAD) is used to detect if the speech signals are
voicing or silence. For silence frame, only several control bits are
transmitted in step 6. For voicing frame, the speech coder will go to the next
step.

(3) Adaptive forward/backward quantizer is applied for obtaining LSFs
coefficients.

(4) Based on the speech character of frame, we use the proposed spectra
correlation algorithm which is key part of this project to detect either voiced
or unvoiced frames. If the whole frame is detected as unvoiced frame, all of
four sunframes will be labeled as unvoiced, then go to step 5.

(5) For voiced frame, the proposed spectra correlation algorithm is employed
again to decide either voiced or unvoiced segment for each Subframe. For
voiced Subframe, the speech coder will do both adaptive and stochastic code
book search. However, for the unvoiced subframe, speech coder only do the
stochastic code book search. Then 8 bit for odd subframe or 6 bits for even
subframe-and 5 bits for adaptive code book gain can be saved.

(6) Decode the speech by using the above parameters.

The simulation is programmed in Matlab. The demo will be shown in my
presentation. So far, the primary goal of our project has been accomplished, that
the coder described in figure 5.1 has been implemented to realize the bit rate
variability. The average bit rate can be reduced significantly. The subjective and
objective measures of the proposed joint channel and source controlled speech
coder will be presented in the next section.

5.3 Results

In this section, we show the simulation results. For this simulation, 4 speech
samples (2 male voice and 2 female voice) are tested by the proposed joint
channel and source controlled variable bit rate speech coder (VBR). We
compared the performance of our variable bit rate speech coding with that of
FS1016 CELP coding. For source controlled algorithm, the minimum number of
bits coding one frame is 1 (for LSF); 56 (for unvoiced frame), 6 additional bits
In the FS1016 CELP 4800kbps coding, the number of bits per frame is 144. So,
we can say that the minimum total bit rate of our variable speech coding is
smaller than that of FS1016 CELP by 72 bits which is half of the fixed bit rate
FS1016 CELP coding.

As the performance measure, the subjective measure segment SNR is used in
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this simulation. In the table 5.1 (a), average bit rate and segment SNR are shown.
Frome the table 5.1 (a), we can see that (1) the proposed vocoder can
significantly reduce average bit rate while maintaining the speech quality with
little or not degradation since the maximum segment SNR variance is 0.17 dB.
(2) The bits for adaptive forward-backward quantizer could be further reduced
by the decreasing the frame length while we employ the channel control variable
AMR. The main reason is that for the small frame length, the coefficients of the
current and previous frame are almost identical.

Bit rate
Bit Rat s
it Rate SNRgn Reduce(%)
CELP 9600 8.65
15ms
VBR 6670 8.5 30
CELP 7200 7.27
20ms 21
VBR 5663 7.11
: CELP 5760 6.27
25ms 16
VBR 4829 6.13
CELP 4800 5.82
30ms 14
VBR 4143 5.65

(a) Objective Measure

Bit rate MOS
CELP 4800 3.7
VBR 4143 3.5

(b) Subjective Measure (5 listeners)
Table 5.1 Simulation result

The subjective (MOS) measure in Table 5.1 (b) is also used to evaluate the
simulation result. The MOS test was completed with 5 listeners. The listening
quality and listening effort score is based upon a five point category judgement
scale as follows:
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Score | Listening Quality Listening Effort
5 Excellent Complete relaxation possible; no effort required
4 Good Attention necessary; no appreciable effort required
3 Fair Moderate effort required
2 Poor Considerable effort required
1 Bad No meaning understood with any feasible effort
Table 5.2 MOS category

We compared the performance of the proposed source controlled variable bit
rate speech coding with frame length 30 ms to the fixed bit rate FS1016 CELP.
The results show that our variable speech coding can significantly reduce
average bit rate while maintaining the speech quality with little degradation
since MOS scale for the proposed speech coder is only 0.2 lower than the
FS1016 fixed rate coder.

The other advantages of the proposed coder include: (1) Bit-rate variability as a
result of variable frame lengths, and this results in less memory requirements as
compared to memory requirements of the multi-mode AMR used in GSM
systems. why our coder has significant contribution. (2) We simply apply
variable frame length scheme to achieve bit rate variability instead of
multi-mode AMR scheme which is applying in GSM system. The smooth switch
scheme eliminates the artifact due to the sudden bit rate switch between high
and low bit rate model. (3) The proposed frequency domain spectra correlation
method to detect voiced/unvoiced segment is more robust than the conventional
approach based on =zero crossing, signal energy. (4) The adaptive
forward-backward quantizer algorithm has been modified to reduce the
computational complexity.

5.4 Chapter Summary

In this Chapter we discussed the degree of success we obtained in integration
with channel and source controlled variable bit rate speech coding to realize bit
rate scalability. We show the whole structure of the our speech coding scheme
and the simulation result We were satisfied by the performance of our bit rate
~ scalability speech coding, in terms of the bit rate can be significantly reduced
with little degradation of speech quality.

63



Chapter 6

Summary

This project introduced joint channel and source controlled variable bit rate
speech coding methods to reduce the average bit rate in CELP-based speech
coders. By applying the variable frame length and smooth switch scheme, the
channel controlled bit rate variability could be obtained according to the channel
condition. By employing the bit splitting allocation for voice and unvoiced
segment and adaptive forward —backward quantizer algorithm, the source
controlled bit rate variability according to the speech characteristic can be
achieved.

6.1 Summary of The Work

After presenting the basic properties and types of speech coders, Chapter 1
outlines the objectives of the work. Chapter 2 provided an introduction to CELP,
based on speech, and also gives an overview of different aspects of speech
~ coders. The three aspects CELP: Short-term Linear Prediction, Long-term
Linear Prediction, Stochastic Codebook search Distortion and performance
measures to evaluate speech coder performance were described Chapter 2.

Chapter 3 builds a framework for the channel controlled variable bit rate
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algorithm. The overview of the multi-mode AMR was first investigated. Section
3.1 discussed the algorithm for multi-mode AMR by using different bit rate
speech coding mode to change bit rate. In Section 3.2, new methods to achieve
bit rate variability were examined. These included variable frame length,
variable bit rate function and smooth switching technique. Chapter 4 describes
how the source controlled variable bit rate coder was implemented. As a first
step voicing activity detection (VAD) algorithm is implemented. Even though
the conventional scheme accurately detect the voiced and unvoiced segment, but
it did not work in a heavy background noise. For this reason, we proposed a
spectral correlation voiced/unvoiced segment detection algorithm by calculating
the correlation between the input signal and adaptive reference voiced signal in
frequency domain then comparing it with a preset threshold. Simulation results
suggested the robustness of the technique under heavy background noise
conditions. Also the original algorithm of adaptive forward backward
quantization was modified by using the mean variance instead of LSD to detect
the similarity of LPC coefficient between the current and the previous frame

Chapter 5 presented the simulation results of joint channel and source controlled
technique. The quality of the coded speech was assessed both by using
subjective and objective measures. The most important thing is that the proposed
speech coding algorithm can significantly reduce bit rate with little or no quality
degradation, and the algorithm is simple and less complex than the current
algorithms.

6.2 Future Work

The real-time utility of the algorithm was not evaluated in this project, and
would be worthwhile step to implement the algorithm on a DSP platform. The
computation time delay should be evaluated in the future due to the proposed
algorithms. The proposed method for both voiced/unvoiced segment detection
algorithm and adaptive forward-backward algorithm has to be improved for
worse SNR conditions of below 10 dB. Also, the simulation experiments need to
be further tested under noise background. Subjective tests based on distributed
listening protocols (based on world wide web) would allow us to accurately
assess the quality of the coder with a wider population.
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