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Stochastic modeling of biochemical systems has been the subject of intense research in recent years due to the large number of
important applications of these systems. A critical stochastic model of well-stirred biochemical systems in the regime of relatively
large molecular numbers, far from the thermodynamic limit, is the chemical Langevin equation. This model is represented
as a system of stochastic differential equations, with multiplicative and noncommutative noise. Often biochemical systems in
applications evolve on multiple time-scales; examples include slow transcription and fast dimerization reactions. The existence
of multiple time-scales leads to mathematical stiffness, which is a major challenge for the numerical simulation. Consequently,
there is a demand for efficient and accurate numerical methods to approximate the solution of these models. In this paper, we
design an adaptive time-stepping method, based on control theory, for the numerical solution of the chemical Langevin equation.
The underlying approximation method is the Milstein scheme. The adaptive strategy is tested on several models of interest and is
shown to have improved efficiency and accuracy compared with the existing variable and constant-step methods.

1. Introduction

Stochastic modelling is essential for studying key biological
processes, such as signaling chemical pathways in a cell, when
some molecular species are in low numbers. The random
fluctuations due to low amounts of certain biochemically
reacting species have been observed experimentally [1–3].
Mathematically, the behaviour of such biochemical systems is
accurately described in terms of Markov processes. For sys-
tems which may be assumed to be well-stirred, the dynamics
of the system is governed by the chemicalmaster equation [4].
While exact simulation algorithms for the chemical master
equation exist in the literature [5, 6] they are typically quite
intensive computationally, and therefore approximate sim-
ulation strategies were proposed [7–10]. However, the level
of detail provided by the chemical master equation is often
not necessary. In particular, when all reacting species are
present in relatively large numbers, an approximate model,
the chemical Langevin equation [11], is more computationally
attractive to simulate that the chemical master equation.

The chemical Langevin equation (CLE) is a stochastic
differential equation (SDE) of dimension equal to the number
of reacting biochemical species in the system. It has non-
commutativemultiplicative noise.Moreover, the biochemical
systems arising in applications usually evolve on several
time scales, meaning their models are mathematically stiff.
Stiffness is a serious challenge for the numerical solution
of deterministic models, and even more so of stochastic
ones. Indeed, in the regions where the problem is stiff,
the explicit numerical integrators are forced to drastically
reduce the time-step to satisfy the accuracy criteria. This
leads to a highly inefficient simulation when fixed step
size algorithms are employed. By contrast, adaptive time-
stepping strategies reduce the step size in the regions where
stiffness is present such that the error is maintained below
the required tolerance, but relax the time-step as soon as
the integration exists these regions.This significantly reduces
the computational cost of the simulation, while preserving
the desired accuracy of the numerical solution. In the
literature, the numerical solution of the chemical Langevin
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equation is generally computed using the Milstein scheme
[12, 13]. The Milstein scheme is a strong order one numerical
method [14]. Gaines and Lyons [15] proved that numerical
techniques of at least strong order of accuracy one are
required to guarantee that the numerical solution computed
with adaptive time-stepping strategies converges to the exact
solution for noncommutative SDE and in particular for the
CLE.

Techniques for adapting the time-step for the weak
solution of stochastic differential equations were proposed
by Szepessy et al. [16]. For the strong numerical solution
of stochastic differential equations with multidimensional
Wiener processes,most of the existing adaptive time-stepping
strategies were designed for systems with commutative noise
(see [17–19]). Gaines and Lyons [15] developed an adaptive
scheme for the strong solution of SDE, but the scheme is
quite restrictive. It is based on a Brownian tree structure
and the only variations in the step size allowed are doubling
or halving. We note that the chemical Langevin equation
belongs to the class of noncommutative SDEs, which are
more challenging to solve numerically. A variable time-
stepping method for the chemical Langevin equation using
the Brownian tree structure of Gaines and Lyons [15] was
introduced by Sotiropoulos and Kaznessis [20] and showed
to be expensive. Ilie and Teslya [21] developed an adaptive
technique for the mean-square numerical solution of the
chemical Langevin equation with small noise.

This paper proposes a variable time-stepping strategy for
the strong numerical solution of the chemical Langevin equa-
tion, based on proportional integral- (PI-) control. Similar to
the existing adaptive methods [13, 20, 21], we employ theMil-
stein scheme to advance the integration. The technique uses
estimates of the local error, based on thework by Sotiropoulos
and Kaznessis [20]. This variable time-stepping method may
be applied to any biochemical system which can be modelled
with the chemical Langevin equation, having an arbitrary
magnitude of the random fluctuations. To the best of our
knowledge, this is the first PI-controller for noncommutative
stochastic differential equations. This approach extends to
a class of noncommutative Itô SDE, the chemical Langevin
equation model, and the work on PI-controllers for ODE by
Söderlind [22, 23] and for commutative Stratonovich SDE
by Burrage et al. [17]. In addition, the PI-control of the step
size outperforms the integral- (I-) control considered by the
previous works for the chemical Langevin equation [13, 21].
Finally, our strategy allows rejection of the time-step when
the error is above the tolerance, while guaranteeing that the
statistics of the numerical solution is not biased.

An outline of the paper is given below. Section 2 presents
a stochastic continuous model of well-stirred biochemical
kinetics, the chemical Langevin equation. Section 3 gives
a brief description of the strong numerical solution of Itô
stochastic differential equations. In Section 4, we design
an adaptive numerical technique for the chemical Langevin
equation. The advantages of the proposed variable step size
method over the existing methods are illustrated on several
models of biochemical systems of interest in applications, in
Section 5. The conclusions are given in Section 6.

2. Chemical Langevin Equation

Assume 𝑁 biochemical species 𝑆
1
, . . . , 𝑆

𝑁
participate in 𝑀

reaction channels 𝑅
1
, . . . , 𝑅

𝑀
. The biochemical system, held

at constant temperature, is homogeneous.The system state at
time 𝑡 ≥ 0 is denoted by X(𝑡) = [𝑋

1
(𝑡), . . . , 𝑋

𝑁
(𝑡)]
𝑇, where

𝑋
𝑖
(𝑡) represents the number of 𝑆

𝑖
molecules at time 𝑡, for any

𝑖 = 1, . . . , 𝑁. Mathematically, the system state is modelled as
aMarkov process. When one reaction 𝑅

𝑗
fires, the state of the

system is updated using a vector ^
𝑗
called the state-change

vector corresponding to the reaction 𝑅
𝑗
. This is an 𝑁-

dimensional vector with entries ]
𝑖𝑗
, denoting the variation in

the 𝑆
𝑖
molecular species caused by one reaction𝑅

𝑗
.Then,𝑉 =

{]
𝑖𝑗
}
1≤𝑖≤𝑁,1≤𝑗≤𝑀

is the stoichiometric matrix of the biochem-
ical system. To each reaction 𝑅

𝑗
it corresponds a propensity

𝑎
𝑗
(x) defined as follows: for an infinitesimal time increment

𝑑𝑡, 𝑎
𝑗
(x)𝑑𝑡 is the probability that, given the state x at

time 𝑡, one reaction 𝑅
𝑗
happens during [𝑡, 𝑡 + 𝑑𝑡).

For a unimolecular reaction

𝑆
𝑘

𝑐𝑗

󳨀→ ⋅ ⋅ ⋅ (1)

the propensity function is 𝑎
𝑗
(X) = 𝑐

𝑗
𝑋
𝑘
, while for a

bimolecular reaction

𝑆
𝑖
+ 𝑆
𝑘

𝑐𝑗

󳨀→ ⋅ ⋅ ⋅ (2)

the propensity is of the form 𝑎
𝑗
(X) = 𝑐

𝑗
𝑋
𝑖
𝑋
𝑘
when 𝑖 ̸= 𝑘 and

𝑎
𝑗
(X) = 𝑐

𝑗
𝑋
𝑖
(𝑋
𝑖
− 1)/2 when 𝑖 = 𝑘.

The system state may be represented as

X (𝑡) = X (0) +

𝑀

∑

𝑗=1

^
𝑗
𝑃
𝑗
(∫

𝑡

0

𝑎
𝑗
(X (𝑠)) 𝑑𝑠) , (3)

where 𝑃
𝑗
are independent unit rate Poisson processes [24].

Assume that the leap condition is satisfied: there exists a
time step ℎ small enough such that

𝑎
𝑗
(X (𝑠)) ≈ constant in the interval [𝑡, 𝑡 + ℎ] , (4)

for each 1 ≤ 𝑗 ≤ 𝑀. Under this assumption, the repre-
sentation (3) may be approximated by

X (𝑡 + ℎ) = X (𝑡) +

𝑀

∑

𝑗=1

^
𝑗
𝑃
𝑗
(𝑎
𝑗
(X (𝑡)) ⋅ ℎ) . (5)

Equation (5), due toGillespie, is known as the tau-leaping for-
mula [8]. A further reduction is possible if, in addition, ℎmay
be chosen large enough such that each reaction 𝑅

𝑗
fires many

times in the interval [𝑡, 𝑡 + ℎ]. More precisely, ℎ exists such
that

𝑎
𝑗
(X (𝑡)) ℎ ≫ 1 (6)

for any 1 ≤ 𝑗 ≤ 𝑀.
A step size ℎ exists for which conditions (4) and (6) are

simultaneously satisfied when all molecular species are
present in large amounts in the biochemical system. In this
case, the Poisson variables in (5) may be approximated by
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normal random variables with the same mean and variance,
since (6) holds. Consequently, the tau-leaping formula (5)
yields

X (𝑡 + ℎ)

= X (𝑡) +

𝑀

∑

𝑗=1

^
𝑗
[𝑎
𝑗
(X (𝑡)) ℎ + √𝑎

𝑗
(X (𝑡)) ℎ𝑁

𝑗
(0, 1)] ,

(7)

where𝑁
𝑗
(0, 1) are normal random variables withmean 0 and

variance 1. Regarding the step-size ℎ as an infinitesimal 𝑑𝑡 in
(7) leads to the following equation:

𝑑X (𝑡) =

𝑀

∑

𝑗=1

^
𝑗
𝑎
𝑗
(X (𝑡)) 𝑑𝑡 +

𝑀

∑

𝑗=1

^
𝑗
√𝑎
𝑗
(X (𝑡))𝑑𝑊

𝑗
(𝑡) , (8)

where (𝑊
𝑗
)
1≤𝑗≤𝑀

are independent Wiener processes. Equa-
tion (8) is called the chemical Langevin equation (CLE) [11]. It
is a noncommutative Itô SDE with multiplicative noise. Note
that the dynamical state of the system X(𝑡) is represented in
(8) as a continuous Markov process.

3. Numerical Methods for SDE

Consider a general system of Itô stochastic differential equa-
tions driven by an𝑀-dimensionalWiener process,𝑊 = (𝑊

1
,

𝑊
2
, . . . ,𝑊

𝑀
), in the form

𝑑X (𝑡) = 𝑓 (𝑡,X (𝑡)) 𝑑𝑡 +

𝑀

∑

𝑗=1

𝑔
𝑗
(𝑡,X (𝑡)) 𝑑𝑊

𝑗
(𝑡) . (9)

In the differential equation (9), X denotes an𝑁-dimensional
stochastic process and 𝑓(𝑡,X(𝑡)) and 𝑔

𝑖
(𝑡,X(𝑡)) are 𝑁-

dimensional drift and diffusion coefficients, respectively. The
initial condition is

X (0) = x
0 (10)

for 𝑡 = 0.
The SDE is assumed to have noncommutative noise, as

is the case of the chemical Langevin equation model. If the
differential operator 𝐿

𝑗
is defined as

𝐿
𝑗
=

𝑁

∑

𝑘=1

𝑔
𝑘,𝑗

𝜕

𝜕𝑋
𝑘

, 𝑗 = 1, . . . ,𝑀 (11)

then the SDE is called noncommutative if for some 𝑗
1
, 𝑗
2
=

1, . . . ,𝑀, with 𝑗
1

̸= 𝑗
2
,

𝐿
𝑗1𝑔
𝑗2 ̸= 𝐿

𝑗2𝑔
𝑗1 . (12)

It is called a commutative SDE otherwise (see [14, p. 348]).
Below, we discuss briefly the strong numerical solution

of SDE, with a focus on a numerical method of strong
order of accuracy one. The strong numerical solution of an
SDE is computed when approximations of the exact solution
of individual paths are of interest. By contrast, when the

approximation of the moments of the exact solution are
desired, weak numerical approximations are employed.

The numerical approximation on [0, 𝑇] of the exact
solution X(𝑡) of (9), after 𝐿 steps with step-size ℎ = 𝑇/𝐿,
is denoted by X

𝐿
. This approximation is said to have strong

order of convergence 𝛾 > 0 if there exists a constant 𝐶 > 0,
independent of ℎ and 𝛿 > 0, such that the following inequality
holds for any ℎ ∈ (0, 𝛿):

𝐸 (
󵄩󵄩󵄩󵄩X (𝑡
𝐿
) − X
𝐿

󵄩󵄩󵄩󵄩) ≤ 𝐶ℎ
𝛾
, (13)

where ‖ ⋅ ‖ is some norm of a vector of dimension𝑁 and 𝐸(⋅)

is the expectation of a random variable.
Numerical methods of strong order of accuracy 1 for a

noncommutative SDE require, on each subinterval on each
interval [𝑡, 𝑡 + ℎ], the simulation of the Wiener increments

Δ𝑊
𝑗
= 𝑊
𝑗
(𝑡 + ℎ) − 𝑊

𝑗
(𝑡) , 1 ≤ 𝑗 ≤ 𝑀 (14)

and of either the double Itô integrals 𝐼
𝑖𝑗
[19],

𝐼
𝑖𝑗
= ∫

𝑡+ℎ

𝑡

∫

𝑡+𝑠

𝑡

𝑑𝑊
𝑖
(𝑠) 𝑑𝑊

𝑗
(𝑟) , 1 ≤ 𝑖, 𝑗 ≤ 𝑀, (15)

or the Levy areas.
Approximations of the double Itô integrals 𝐼

𝑖,𝑗
for 1 ≤ 𝑖,

𝑗 ≤ 𝑀, using the truncation after 𝑝 terms of their Karhunen-
Loève or Fourier series expansion [14, p. 198–203] (see also
[19]), are computed as

𝐼
𝑝

𝑖,𝑗
=

1

2
ℎ𝜉
𝑖
𝜉
𝑗
−

1

2

√ℎ (𝑎
𝑗,𝑜
𝜉
𝑖
− 𝑎
𝑖,𝑜
𝜉
𝑗
) + ℎ𝐴

𝑝

𝑖,𝑗
. (16)

For 1 ≤ 𝑖, 𝑗 ≤ 𝑀, and 1 ≤ 𝑟 ≤ 𝑝,

𝜉
𝑗
=

Δ𝑊
𝑗

√ℎ

, 𝜁
𝑗,𝑟
, 𝜂
𝑗,𝑟

∼ 𝑁 (0, 1) (17)

are independent normally distributed random variables with
mean 0 and variance 1. Here the following notation is used:

𝐴
𝑝

𝑖,𝑗
=

1

2𝜋

𝑝

∑

𝑟=1

1

𝑟
(𝜁
𝑖,𝑟
𝜂
𝑗,𝑟

− 𝜂
𝑖,𝑟
𝜁
𝑗,𝑟
) ,

𝑎
𝑗,0

= −
1

𝜋

√2ℎ

𝑝

∑

𝑟=1

1

𝑟
𝜁
𝑗,𝑟

− 2√ℎ𝜌
𝑝
𝜇
𝑗,𝑝

,

𝜌
𝑝
=

1

12
−

1

2𝜋2

𝑝

∑

𝑟=1

1

𝑟2
.

(18)

An accurate simulation of the double Itô integrals requires a
minimum value 𝑝 = 5 (see also [19]).

Now, let us introduce a numerical method of strong order
of accuracy 1, typically used in the literature to simulate the
CLE, namely, the Milstein scheme [14]. The Milstein method
on the time interval [𝑡

𝑛
, 𝑡
𝑛
+ ℎ] computes

X
𝑛+1

= X
𝑛
+ 𝑓 (𝑡

𝑛
,X
𝑛
) ℎ +

𝑀

∑

𝑗=1

𝑔
𝑗
(𝑡
𝑛
,X
𝑛
) Δ𝑊
𝑛

𝑗

+

𝑀

∑

𝑗1,𝑗2=1

𝐿
𝑗1
𝑔
𝑗2
(𝑡
𝑛
,X
𝑛
) 𝐼
𝑝

(𝑗1 ,𝑗2)
,

(19)
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where 𝐿
𝑗
is defined in (11) and the Wiener increments are

Δ𝑊
𝑛

𝑗
= Δ𝑊

𝑗
(𝑡
𝑛
+ ℎ) − Δ𝑊

𝑗
(𝑡
𝑛
).

4. Variable Step-Size Control in the Simulation
of the Chemical Langevin Equation

An adaptive time-stepping technique for the strong (path-
wise) numerical solution of the chemical Langevin equation
is proposed below.The underlying numerical technique is the
Milstein scheme. Since theMilsteinmethod is of strong order
of accuracy one, numerical solutions employing it on variable
time-step meshes converge to the exact solution of the
chemical Langevin equation, as the step size converges to zero
[15]. Recall that the CLE is a noncommutative SDE; hence the
adaptive schemes developed in [17, 19] for commutative SDE
do not apply. While the Brownian tree approach to adaptivity
due to Gaines and Lyons [15] may be utilized, it has been
shown to be quite expensive by Sotiropoulos and Kaznessis
[20].

For the proposed method, the sequence of time steps
depends on the particular trajectory and is obtained using
proportional-integral- (PI-) control [22]. Step rejections are
allowed when the error is above the prescribed tolerance.
When a step is rejected, we apply a strategy that guarantees
that the correct Brownian path is followed [13, 19]. This
strategy ensures that the numerical solution is not biased.

4.1. Milstein Scheme for the Chemical Langevin Equation. We
will apply below anumerical technique, due toMilstein, to the
stochastic model of well-stirred biochemical kinetics consid-
ered above. Remark that the chemical Langevin equation (8)
is an Itô SDE of the form (9), with the drift coefficient of the
form

𝑓 (X) =

𝑀

∑

𝑗=1

𝑎
𝑗
(X) ^
𝑗 (20)

and the diffusion coefficients
𝑔
𝑗
(X) = √𝑎

𝑗
(X)^
𝑗

(21)

for 1 ≤ 𝑗 ≤ 𝑀.
Substituting the drift (20) and diffusion coefficients (21)

in the numerical scheme (19) for a generic SDE leads to the
Milsteinmethod for the stochastic continuousmodel (8).The
Milstein strategy employed to the CLE (8), on a time-interval
[𝑡
𝑛
, 𝑡
𝑛+1

], becomes

𝑋
𝑛+1

𝑘
= 𝑋
𝑛

𝑘
+

𝑀

∑

𝑗=1

]
𝑘,𝑗
𝑎
𝑗
(X𝑛) ℎ

𝑛

+

𝑀

∑

𝑗=1

]
𝑘,𝑗
√𝑎
𝑗
(X𝑛)Δ𝑊𝑛

𝑗

+
1

2

𝑀

∑

𝑗1=1

𝑀

∑

𝑗2=1

[

𝑁

∑

ℓ=1

]
ℓ,𝑗1

]
𝑘,𝑗2

𝜕𝑎
𝑗2

𝜕𝑋
ℓ

(X𝑛)]√
𝑎
𝑗1
(X𝑛)

𝑎
𝑗2
(X𝑛)

𝐼
(𝑗1 ,𝑗2)

,

(22)
for any 𝑘 = 1, . . . , 𝑁.

In this paperwe adhere to the usual practice of controlling
the local error. The accuracy criterion is the local error
on each Brownian path that, over each step, should be
below the user-prescribed tolerance. Hence, the numerical
integration may generate different time-step sequences on
different paths. To apply the above error criterion, accurate
estimates of the (pathwise) local error need to be computed.
Let 𝑒(X𝑛, ℎ

𝑛
, Δ𝑊
𝑛
) be the estimation of the local error for

the time interval [𝑡
𝑛
, 𝑡
𝑛+1

], on some Brownian trajectory. The
local errormay be approximated by the sumof a drift part and
a diffusion part. The drift term of the local error is estimated
by

𝑒drift (X
𝑛
, ℎ
𝑛
) =

1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝑑𝑓

𝑑𝑥
𝑓) (X𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

⋅ ℎ
2

𝑛
(23)

for a drift 𝑓(X) given by (20). According to Sotiropoulos
and Kaznessis [20], one can estimate the diffusion part of the
pathwise local error produced by the Milstein scheme as

𝑒diffusion (X
𝑛
, ℎ
𝑛
, Δ𝑊
𝑛
) =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ𝑊
𝑛,(3)

6

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐺 (X𝑛)󵄩󵄩󵄩󵄩∞

×
󵄩󵄩󵄩󵄩(𝐽𝐺𝐺) (X

𝑛
)
󵄩󵄩󵄩󵄩∞

(24)

with

𝐺 (X) =

𝑀

∑

𝑗=1

√𝑎
𝑗
(X)^
𝑗 (25)

and 𝐽
𝐺
𝐺 being the Jacobian of 𝐺. Here Δ𝑊

𝑛,(3) denotes a
column vector with the 𝑗th entry being (Δ𝑊

𝑛

𝑗
)
3.

4.2. Adaptive PI-Control for CLE. The local error committed
by the discretization method, the Milstein scheme (22), for
the CLE is required to be smaller than a prescribed tolerance,
𝜀, at each step and on each Brownian path; that is,

𝑒 (X𝑛, ℎ
𝑛
, Δ𝑊
𝑛
) ≤ 𝜀. (26)

Before describing the proposed adaptive time-stepping
strategy, let us discuss the important problemof step rejection
in the numerical integration of an SDE, when the desired
accuracy is not achieved. For SDE, a step rejection must be
performed such that the statistics of the approximate solution
is not biased. More precisely, when the numerical solution is
advanced on a particular Brownian path and a step is rejected
as it failed to satisfy the accuracy requirement, the subsequent
steps must be chosen such that the same Brownian path is
maintained. In this work, this is achieved using a Brownian
bridge [18]. If the step ℎ is tried and rejected on the current
interval, [𝑡, 𝑡 + ℎ], its corresponding Wiener increments,

Δ𝑊
ℎ
= 𝑊(𝑡 + ℎ) −𝑊 (𝑡) ∼ √ℎ ⋅ 𝑁 (0, 1) , (27)

were sampled. Denote the sampled value Δ𝑊
ℎ
= 𝑤
ℎ
. Then,

a smaller time-step is tried, 𝜏 < ℎ, and the corresponding
Wiener increments on the subintervals [𝑡, 𝑡+𝜏] and [𝑡+𝜏, 𝑡+ℎ]
are created

Δ𝑊
𝜏
= 𝑊(𝑡 + 𝜏) − 𝑊 (𝑡) ,

Δ𝑊
ℎ−𝜏

= 𝑊(𝑡 + ℎ) −𝑊 (𝑡 + 𝜏) .

(28)
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To ensure that the integration preserves the already created
Brownian path, a Brownian bridge is employed:

Δ𝑊
𝜏
=

𝜏

ℎ
𝑤
ℎ
+ √

𝜏 (ℎ − 𝜏)

ℎ
⋅ 𝜂,

Δ𝑊
ℎ−𝜏

=
ℎ − 𝜏

ℎ
𝑤
ℎ
− √

𝜏 (ℎ − 𝜏)

ℎ
⋅ 𝜂.

(29)

Here 𝜂 denotes a new normally distributed random variable
with mean 0 and variance 1.

One step-size change method is the integral- (I-) con-
troller for predicting the future step, ℎ

𝑛+1
, based on the

current step ℎ
𝑛
and the current local error 𝑒(X𝑛, ℎ

𝑛
, Δ𝑊
𝑛
).

The I-controller is

ℎ
𝑛+1

= ℎ
𝑛
(

𝜃 ⋅ 𝜀

𝑒 (X𝑛, ℎ
𝑛
, Δ𝑊𝑛)

)

1/K

, (30)

for some constantK. The safety factor 𝜃 ≤ 1 is introduced to
reduce the number of rejected steps.The values considered in
our simulations are 𝜃 = 0.8 and K = 2. Nonetheless, some
step rejects may occur since the local error depends on the
particular Brownian path; hence the principal error function
has random values.

To reduce the number of step rejections, we propose
a proportional integral- (PI-) controller for varying the
step size in the numerical CLE solving. Based on control
theory, these PI-controllers present several advantages over
the classical I-controllers, including improved efficiency and
computational stability of the numerical solution. For more
details on the control theory approach to adaptive time-
stepping, we refer the reader to [22].

The PI-controller is given by

ℎ
𝑛+1

= ℎ
𝑛
(

𝜃 ⋅ 𝜀

𝑒 (𝑋
𝑛
, ℎ
𝑛
, Δ𝑊𝑛)

)

𝑘𝐼

× (

𝑒 (𝑋
𝑛−1

, ℎ
𝑛−1

, Δ𝑊
𝑛−1

)

𝑒 (𝑋
𝑛
, ℎ
𝑛
, Δ𝑊𝑛)

)

𝑘𝑃

.

(31)

For a further reduction of number of step rejections, the
adaptive algorithm employs a more conservative approach to
controlling the time-step:

ℎ
𝑛+1

= ℎ
𝑛
min(𝑓max,

max(𝑓min, ( 𝜃 ⋅ 𝜀

𝑒 (𝑋
𝑛
, ℎ
𝑛
, Δ𝑊𝑛)

)

𝑘𝐼

×(

𝑒 (𝑋
𝑛−1

, ℎ
𝑛−1

, Δ𝑊
𝑛−1

)

𝑒 (𝑋
𝑛
, ℎ
𝑛
, Δ𝑊𝑛)

)

𝑘𝑃

)) ,

(32)

which is similar to an adaptive procedure for the numerical
solution of ODE [25]. Note that the factors 𝑓max > 1 and
𝑓min < 1 ensure that the next step does not increase or
decrease too much, so that fewer steps are rejected. A similar
conservative technique is applied to the I-controller (30).

The characteristic equation of the PI-controller (31) is

𝑞
2
− (1 − 𝑘𝑘

𝐼
− 𝑘𝑘
𝑝
) 𝑞 − 𝑘𝑘

𝑝
= 0. (33)

Here 𝑘 is the order of the local error, 𝑒(𝑋
𝑛
, ℎ
𝑛
, Δ𝑊
𝑛
) = 𝜙
𝑛
ℎ
𝑘

𝑛
,

where 𝜙
𝑛
is the principal error function. For the PI-controller

to be stable, the roots of its characteristic polynomial should
be located inside the unit circle [22]. The parameters 𝑘

𝐼
,

referred to as the integral gain, and 𝑘
𝑃
, known as the

proportional gain, are chosen to obtain the desired properties
of the controller.

Numerical testing on many problems showed that the
following parameter values of the PI-controller give excel-
lent results for mildly stiff models of biochemical systems:
(𝑘𝑘
𝐼
, 𝑘𝑘
𝑃
) = (0.1, 0.2). Remark that the controller is stable,

since its roots are within the unit circle.The PI-controllers for
ODE, which were designed to produce smooth sequences of
time-steps, do not perform well on SDE, where the goals are
to increase the accuracy and reduce the number of rejected
steps.

5. Numerical Experiments

We test the adaptive time-stepping technique, based on
control theory, developed above for solving numerically the
CLE on three interesting models of biochemical systems.
The performance of the PI-controllers is compared to that of
the I-controller and of the existing constant-step methods.
The comparison is done as follows: for each of the PI- or
I-controller the algorithm is run with a certain tolerance
and the number of attempted (i.e., of accepted and rejected)
steps is stored. Then the fixed step size method is applied
with the largest number of attempted steps, between the I-
and PI-adaptive schemes, and its local error is measured.
In our experiments, we choose the following values for the
parameters: 𝑓min = 0.5 and 𝑓max = 2.

In order to validate the accuracy of our variable step size
strategy for the numerical solution of the CLE, we compare
the histogram generated with our scheme for the CLE with
that computed with the exact algorithm for the chemical
master equation due to Gillespie [5, 6]. Although chemical
Langevin equation approximates the chemical master equa-
tion (CME) model, and thus some error in modelling exists,
we obtain a very good agreement between the histograms
using Gillespie’s algorithm for the CME and our adaptive
strategy for the CLE.This shows the excellent accuracy of the
proposed method.
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Table 1:The stiffmodel: the number of steps taken by the I-adaptive,
PI-adaptive, and fixed step-size methods on the time-interval [0, 2
× 10−2].

𝜀 Method Tried
steps

Accepted
steps

Failed
steps Error/𝜀

1
I-adapt. 1943 1357 585 0.9985
PI-adapt. 1800 1652 148 0.9971
Fixed 1943 — — 56.7290

10−1
I-adapt. 5298 3910 1388 0.9995
PI-adapt. 4926 4587 339 0.9990
Fixed 5298 — — 76.2772

10−2
I-adapt. 14590 11543 3046 0.9998
PI-adapt. 13816 13061 755 0.9997
Fixed 14590 — — 100.6531

5.1. Stiff Biochemical Reaction Model. Consider the following
stiff and nonlinear biochemical reaction system

𝑆
1
+ 𝑆
2

𝑐1

󳨀→ 𝑆
3
, 𝑆

3

𝑐2

󳨀→ 𝑆
1
+ 𝑆
2
,

𝑆
1
+ 𝑆
3

𝑐3

󳨀→ 𝑆
2
, 𝑆

2

𝑐4

󳨀→ 𝑆
1
+ 𝑆
3
,

𝑆
3
+ 𝑆
2

𝑐5

󳨀→ 𝑆
1
, 𝑆

1

𝑐6

󳨀→ 𝑆
3
+ 𝑆
2
.

(34)

The propensities characterizing these reactions are

𝑎
1
(X) = 𝑐

1
𝑋
1
𝑋
2
, 𝑎

2
(X) = 𝑐

2
𝑋
3
,

𝑎
3
(X) = 𝑐

3
𝑋
1
𝑋
3
, 𝑎

4
(X) = 𝑐

4
𝑋
2
,

𝑎
5
(X) = 𝑐

5
𝑋
2
𝑋
3
, 𝑎

6
(X) = 𝑐

6
𝑋
1
.

(35)

The stoichiometric matrix

𝑉 =

[
[
[
[
[

[

−1 1 −1 1 1 −1

−1 1 1 −1 −1 1

1 −1 −1 1 −1 1

]
]
]
]
]

]

(36)

has as columns the state-change vectors of the reactions
above. The system parameters are as follows: 𝑐

1
= 100, 𝑐

2
=

10
4, 𝑐
3

= 10
−4, 𝑐
4

= 10
−2, 𝑐
5

= 10, and 𝑐
6

= 10
3 for the

reaction rate constants, and 𝑋(0) = [100, 1000, 100]
󸀠 for the

initial conditions. The interval of integration is [0, 2 × 10
−2
].

We simulated 10, 000 trajectories with the integral (I), the
proposed proportional integral- (PI-) adaptive and the fixed
step size algorithms of the CLE for the sequence of tolerances
1, 10
−1, and 10

−2. The total number of attempted, accepted,
and rejected steps as well as the corresponding errors is stored
in Table 1. Also, we present the error generated with the fixed
time-step method with the same total number of steps as
the most expensive between I- and the PI-strategies, for the
same tolerance. Remark that the PI-controller takes fewer
attempted steps compared with the I-controller, for the same
𝜀, being thus more efficient.The ratio of rejected to attempted
steps for the PI- adaptive scheme ranges from 5% to 8% and

it decreases as the tolerance decreases. For the I-adaptive
technique the same ratio of rejected to attempted steps is
much larger, between 20% and 30% for the tolerances tried.
The fixed step size method produces a local error of up to
100 times larger than the adaptive methods, for the same
computational cost.

To verify the accuracy of the proposed PI-controller for
adapting the time-stepwhen simulating theCLE, we compare
the histograms at time 𝑡 = 2×10

−2 obtained with theMilstein
PI-adaptive scheme and the Gillespie algorithms, respec-
tively. The histograms, plotted in Figure 1, show an excellent
agreement between our method and the exact algorithm;
consequently our scheme is very accurate.

5.2. Schlögl Model. The Schlögl model [26] is well-known
for its bistable behavior. While for the reaction rate equation
model the trajectories converge to one of the two stable
states, for the chemical Langevin equation, the trajectories
may switch between the two stable states due to the noise in
the system.

The Schlögl model consists of the following reactions:

𝐴 + 2𝑋
𝑐1

󳨀→ 3𝑋, 3𝑋
𝑐2

󳨀→ 𝐴 + 2𝑋,

𝐵
𝑐3

󳨀→ 𝑋, 𝑋
𝑐4

󳨀→ 𝐵.

(37)

The reaction rate constants take the values 𝑐
1

= 3 × 10
−7,

𝑐
2
= 10
−4, 𝑐
3
= 10
−3, and 𝑐

4
= 3.5. The state change vectors

of the reactions in the Schlögl model are the corresponding
columns of the stoichiometric matrix:

𝑉 =

[
[
[
[
[

[

1 −1 1 −1

−1 1 0 0

0 0 −1 1

]
]
]
]
]

]

. (38)

The reaction propensities may be computed as

𝑎
1
(X) =

𝑐
1
𝐴𝑋 (𝑋 − 1)

2
,

𝑎
2
(X) =

𝑐
2
𝑋 (𝑋 − 1) (𝑋 − 2)

6
,

𝑎
3
(X) = 𝑐

3
𝐵, 𝑎

4
(X) = 𝑐

4
𝑋.

(39)

The numbers of molecules of the species 𝐴 and 𝐵 have
constant values,𝐴 = 10

5 and𝐵 = 2×10
5.The initial condition

for the molecular number of the species𝑋 is𝑋(0) = 250.
The system is integrated on the time-interval [0, 40].

The simulations of our PI-adaptive, the existing I-adaptive,
and the constant-step schemes used for the CLE and of the
SSA are done for 10,000 trajectories. The total number of
attempted, accepted, and rejected steps and the measured
error for the proposed PI-adaptive and the I-adaptive algo-
rithms, as well as the error committed by the constant-step
scheme, are depicted in Table 2. The simulations are per-
formed for the tolerances 𝜀 = 10

−1, 𝜀 = 10
−2, and 𝜀 = 10

−3.
The proposed variable time-stepping algorithm produces an
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Figure 1: The stiff model: the histograms at 𝑇 = 2 × 10
−2 for the species 𝑆

1
, 𝑆
2
, and 𝑆

3
obtained with the SSA (green) and the PI-adaptive

method for the CLE with tolerances 𝜀 = 10
−1 (blue) and 𝜀 = 10

−2 (red). The simulation uses 10,000 paths.

error of up to 19 smaller than that of the fixed-step-size
method. Furthermore, the ratio of the number of rejected
steps to the total number of steps tried for our PI-controlled
time-step method is very small, between 3% and 5%, while
for the I-adaptive scheme ranges from 11% to 23%.

In Figure 2 we show the evolution in time of the error
scaled by the tolerance, on a sample path, for the tolerance
10
−3 for both our variable time-step and the existing fixed-

step schemes. Moreover, we examined the accuracy of the
numerical solution obtained with our adaptive method in
Figure 3. We compared the probability distribution at time
𝑡 = 40 for the species 𝑋 computed with the PI-adaptive
method for the CLE with 𝜀 = 10

−2 and 𝜀 = 10
−3 and with

the SSA. The histograms agree very accurately.

5.3. Decay-Dimerization Model. The final system used to
investigate the behaviour of our variable step-size algorithm

is the decay-dimerization model [8]. This model consists of
three molecular species involved in four reactions:

𝑆
1

𝑐1

󳨀→ 0, 𝑆
1
+ 𝑆
1

𝑐2

󳨀→ 𝑆
2
,

𝑆
2

𝑐3

󳨀→ 𝑆
1
+ 𝑆
1
, 𝑆

2

𝑐4

󳨀→ 𝑆
3
.

(40)

The propensity functions corresponding to these reactions
are

𝑎
1
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1
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(41)

with the reaction rate parameter values 𝑐
1
= 1, 𝑐
2
= 0.002, 𝑐

3
=

0.5, and 𝑐
4
= 0.04. The solution of this biochemical reaction

model is subject to the initial conditions𝑋
1
(0) = 𝑋

2
(0) = 10

4
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Table 2: The Schlögl model: the number of steps taken by the
I-adaptive, PI-adaptive, and fixed stepsize methods on the time-
interval [0, 40].

𝜀 Method Tried
steps

Accepted
steps

Failed
steps Error/𝜀

10−1
I-adapt. 1235 950 285 0.9976
PI-adapt. 1198 1123 75 0.9942
Fixed 1235 — — 10.7990

10−2
I-adapt. 3472 2869 603 0.9992
PI-adapt. 3334 3179 155 0.9981
Fixed 3472 — — 14.6088

10−3
I-adapt. 9724 8617 1107 0.9997
PI-adapt. 9587 9275 312 0.9993
Fixed 9724 — — 18.7245
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Figure 2: The Schlögl model: the local error/tol versus time for the
adaptive and fixed step-size algorithms on a sample trajectory, with
tol = 10

−3 on [0, 40].

and 𝑋
3
(0) = 100. The integration is performed on the time-

interval [0, 5]. In addition, the stoichiometric matrix for this
system is

𝑉 =

[
[
[
[
[

[

−1 −2 2 0

0 1 −1 −1

0 0 0 1

]
]
]
]
]

]

. (42)

To analyze the efficiency of the proposed method, we
simulated our PI-adaptive, the I-adaptive, and the existing
constant-step algorithms on 10,000 paths. Table 3 reports the
numerical results: the number of attempted, accepted, and
rejected steps of each of the variable step-size strategies, for
tolerances 𝜀 = 10

−1
, 10
−2, and 10

−3, respectively. In addition,
Table 3 records the local errors for each of the above schemes,

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

Number of X molecules

Pr
ob

ab
ili

ty
 d

ist
rib

ut
io

n

SSA
CLE PI-adapt: tol = 10

−2

CLE PI-adapt: tol = 10
−3

Figure 3: The Schlögl model: the histogram at time 𝑇 = 40 of the
species𝑋 obtainedwith the SSA (green) and the PI-adaptivemethod
for the CLE with tolerances 𝜀 = 10

−2 (blue) and 𝜀 = 10
−3 (red). The

simulation uses 10,000 paths.

Table 3: The decay-dimerization model: the number of steps taken
by the I-adaptive, PI-adaptive, and fixed stepsize methods on the
time-interval [0, 5].

𝜀 Method Tried
steps

Accepted
steps

Failed
steps Error/𝜀

10−1
I-adapt. 1344 1150 194 0.9980
PI-adapt. 1321 1275 46 0.9952
Fixed 1344 — — 573.9135

10−2
I-adapt. 3888 3505 383 0.9992
PI-adapt. 3852 3752 100 0.9984
Fixed 3888 — — 685.7963

10−3
I-adapt. 11509 10831 678 0.9996
PI-adapt. 11496 11298 198 0.9994
Fixed 11509 — — 782.6674

for a given tolerance. Moreover, it shows the local error
obtained using the fixed time-step method with the same
total number of attempted time-steps as the most expensive
technique, the integral- (I-) controller one (being thus of
similar computational cost with it). Observe that the I-
controller attempts more steps than our PI-controller, for the
same tolerance; therefore it is more expensive. Likewise, the
I-adaptive technique has a ratio of rejected to attempted steps
between 6% and 14%, while the same step rejection ratio for
our PI-adaptive scheme is below 3% and is decreasing with
the decrease of tolerance. It is important to remark that the
existing fixed step-sizemethod yields a local error which is up
to 780 times larger than the proposed variable time-stepping
method. Consequently, our variable step-size algorithm is
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Figure 4: The decay-dimerization model: the histograms at 𝑇 = 5 for the species 𝑆
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much more accurate than the constant time-step method, for
a similar computational cost.

To assess the accuracy of the proposed variable step size
method, we perform simulations for 10,000 trajectories with
the PI-adaptive Milstein method for the CLE with tolerances
10
−2 and 10

−3 and with Gillespie’s algorithm.The histograms
generated with these algorithms at time 𝑡 = 5 for each of
the species are plotted in Figure 4. Again, the accuracy of our
variable step size strategy is excellent.

6. Conclusion

Variable step size control is critical for efficient approximation
of the solution of stochastic differential equations and in
particular for models which exhibit stiffness. The objective
is to minimize the computational effort of the simulation,

while maintaining the desired accuracy of the numerical
solution. When the numerical integration enters a region of
stiffness, an adaptive algorithm lowers the step size to satisfy
the accuracy requirement. However, outside these regions of
stiffness the algorithm relaxes the step size, thus gaining in
efficiency.

This paper developed a variable time-stepping strategy,
based on control theory, for the strong numerical solution of
a stochastic continuous model of biochemical kinetics. More
precisely, we designed the first PI-controller for adapting the
step size for a class of stochastic differential equations with
noncommutativemultiplicative noise, known as the chemical
Langevin equation. The underlying numerical technique is
a higher order of accuracy method due to Milstein. The
controller, which uses low cost estimates of the local error
generated by Milstein scheme, is recommended for models
of biochemical systems which are mildly stiff. Unlike other
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variable time-stepping strategies [20] which alter the step
only by halving or doubling, our technique allows for a
flexible variation of the time-step. Furthermore, when a step
is rejected as it does not satisfy the error criteria, the method
guarantees that the statistics of the numerical solution are not
biased.

Numerical experiments show that the proposed PI-
controller for adapting the step size is significantly more
accurate than the existing constant-step algorithms, for the
same computational cost. Additionally, it has improved
computational stability. Compared to the variable time-
stepping method using integral control, our PI-adaptive
strategy reduces greatly the number of step rejections, having
a reduced computational effort for the same prescribed
tolerance.

Our future work will investigate how to efficiently control
the time-step in the weak numerical solution of the chemical
Langevin equation.
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[23] G. Söderlind, “Digital filters in adaptive time-stepping,” ACM
Transactions on Mathematical Software, vol. 29, no. 1, pp. 1–26,
2003.

[24] T. G. Kurtz, “Strong approximation theorems for density depen-
dent Markov chains,” Stochastic Processes and Their Applica-
tions, vol. 6, no. 3, pp. 223–240, 1978.

[25] E. Hairer, G. Wanner, and S. P. Nørsett, Solving Ordinary
Differential Equations I, Springer, Berlin, Germany, 2nd edition,
2009.

[26] Y. Cao, L. R. Petzold, M. Rathinam, and D. T. Gillespie, “The
numerical stability of leapingmethods for stochastic simulation
of chemically reacting systems,” Journal of Chemical Physics, vol.
121, no. 24, pp. 12169–12178,2004.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


