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Flight Stability Analysis of a Flexible Rocket using Finite Elements and 
Reduced Order Modeling

Master of Applied Science, Mechanical Engineering, 2005 
Kyie Davidson 
Ryerson Univeristy

The coupling of advanced structural and aerodynamic methods is a complex 

and computationally demanding task. In many cases, simplifications must be 

made. For the flight simulation of flexible aerospace vehicles, it is common to 

reduce the overall structure down to a series of linked degenerate structures 

such as Euier-Bernoulii beams in order to expedite the structural portion of the 

solution process.

The current study employs the sophistication and generality of flnite-element 

based modeling with the concepts of reduced-order modeling to create a general 

flexible-body flight simulation program. The program was created for use with 

the MATLAB-Simulink programming package. A parametric analysis on the 

stability of flexible rockets is performed and results are presented for a variety of 

rocket configurations based on the SPHADS-1 vehicle under development at 

Ryerson University. The primary instability mode under study is that associated 

with the flapping and twist motions of the taiiflns under aerodynamic loading. By 

varying the average fin thickness, both stable and unstable behaviour is recorded 

for a variety of flight conditions.
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Nomenclature

Convention
A , B , c, d

a,b,c,d

A"‘

A,a
A,a

à, à

Description
Matrix or vector (line or column)
Scalar or element of matrix/vector 
Matrix transpose 
Matrix inverse
Skew symmetric matrix of a 3 element array. Where,

0 - « 3 «2

a** = «3 0 - « I

- « 2 ûf, 0

Subscripts indicate properties relative to certain frame or component 
reference (e.g. the body frame)
Overbar indicates a reduced order quantity (unless othenvise specified) 
Vector-space notation

Rate of change with respect to time, à = —
dt

Variable Description
A Fourier coefficient
b fin span

cc, load distribution
Cl ,Cj local fin chord

c, local lift coefficient
root chord

c, tip chord
c first moment of inertia (rigid)

C/o, total first moment of inertia

Cfof reduced total first moment of inertia
first moment of inertia (flexible)

c . axial force coefficient
c .. nominal axial force coefficient

Cx, axial force coefficient for /-th fin

axial force coefficient with respect to a ,

b̂ajm rotation matrix from (^bn) to (%a)
b̂n,B rotation matrix from (^b) to {'pbn)

c coyba rotation matrix from ( ^ )  to {‘pco)

5Ç,
da

x v i i



Cy; rotation matrix from (^e) to ( ^ )
rotation matrix for angular orientation of /-th fin 

Cyĝ  rotation matrix for flexible deformation of /-th fin
pitch moment coefficient 

Cjjfo nominal pitch moment coefficient
/

^Ma pitch moment coefficient with respect to a ,

Cff normal force coefficient
normal force coefficient for /-th fin

Cff̂  normal force coefficient with respect to a ,

C
da

C
\

C„ normal force coefficient with respect to a  for /-th fin

normal force coefficient with respect to à ,

Cj. deformed thrust rotation matrix
E complete elliptic integral of the second kind
^  inertial reference frame

body aerodynamics frame 
body key-node reference frame 
body reference frame 

^  /-th fin reference frame
/y^ fin nodal force corresponding to node y

fin load distribution correction factor 
jf nodal force vector
f  reduced nodal force vector

internal nodal force vector
f  reduced internal nodal force vector
p external force vector
Fy. fin aerodynamic force vector for /-th fin
Fj. thrust force vector
g inertial gravitational acceleration vector
G external torque vector
Gj. thrust torque/moment vector
I, angular momentum vector

flexible component of angular momentum 
^ rate of change of angular momentum vector

total angular momentum matrix



H, reduced total angular momentum matrix
' ' t o t

H„ flexible angular momentum component
H', flexible angular momentum coefficient

rotational Coriolis matrix (rigid component)
rotational Coriolis matrix (flexible component)
total rotational Coriolis matrix
reduced total rotational Coriolis matrix

J second moment of inertia (rigid component)
J „  second moment of inertia (rigid-flexible component)
3,̂ , total second moment of inertia

reduced total second moment of inertia 
second moment of inertia (flexible-flexible component) 

J'„,, rigid-flexible second moment coefficient
 ̂ approximate rigid-flexible second moment coefficient

j '  reduced rigid-flexible second moment coefficient
r u , t n  ^

flexible-flexible second moment coefficient 
.. approximate flexible-flexible second moment coefficient

J" reduced flexible-flexible second moment coefficient
uUftnp

fin nodal spanwise load factor
fin nodal chordwise load factor

K, total nodal fin load factor
K  finite element stiffness matrix
m total mass

Mach number
M finite element mass matrix

My mass nodal block
flexible Coriolis matrix 
reduced flexible Coriolis matrix 
number of fins 

N  Normal force
AF pressure distribution over upper and lower fin surfaces
p translational momentum vector

flexible component of translational momentum 
p rate of change of translational momentum vector
P translational momentum coefficient matrix
P reduced translational momentum coefficient matrix
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translational Coriolis matrix term 
p reduced translational Coriolis matrix term ̂Û)
q flexible coordinate deformation vector
q flexible coordinate velocity vector
q flexible coordinate acceleration vector

dynamic pressure 
r rigid location of a material point in (^b)

location of body key-node in (% )
Fy; location of /-th fin key-node in (^e)
Tj. location of thrust key-point in (% )
R position vector in inertial frame {'p)
Rg position of body frame (Pb) origin in inertial frame {p)

scalar component of m-th shape vector for /-th row
S body aerodynamic reference area
Sy. fin aerodynamic reference area
S matrix of coordinate mode vectors
/ time
T thrust magnitude
u flexible displacement of a material point
^ deformation velocity in body frame (% )

deformation velocity of body key-node 
ùy. deformation velocity of fin key-node

u deformation acceleration in body frame {Pb)

V velocity vector in inertial frame {p)
Vj„ velocity vector in body key-node frame {Pbn)
Vg velocity of body frame {Pb) origin

wind velocity vector
V acceleration vector in inertial frame (P)

• . acceleration of body frame (Pb) origin
» > Vg

jĉ  non-dimensional fin node chordwise position
ĉjiE location of local chord leading edge
Xj chordwise position of node j

non-dimensional fin node spanwise position 
y„ spanwise location of the root chord from x-axis
yy spanwise location of node j

a  vehicle angle of attack
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body key-node angle of attack 
aj., /-th fin key-node angle of attack
à  rate of change of angle of attack

angular rnisalignments of thrust vector (fixed)
P sideslip angle
p  rate of change of sideslip angle
8̂  angular location of /-th fin about body frame x-axis
dj. translational misalignment of thrust vector (fixed)
(|) roll angle
r  circulation
n reduced order flexible displacement vector
fi reduced order flexible velocity vector
O matrix of reduced order shape function
p, Mach angle
V radial angle used in supersonic wing theory
\(/ shape function
T  shape vector matrix
0 pitch angle

angular deformation of body key-node (variable)
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0y angular deformation of thrust vector (variable)
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air density
angular velocity of body key-node
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Chapter 1: Introduction

The problem of simulating the flight of a flexible aerial vehicle Is a complex one. 

It Involves the coupling of the fields of advanced aerodynamics and structural 

analysis. The addition of flexibility to a given structural model can significantly 

Increase the number of system degrees of freedom, depending on the level of 

complexity and sophistication Involved.^’̂  Consequently, this may often become 

a stumbling block for the simulation of complicated structures due to the 

increased computational time required to establish the system response. 

However, obtaining a realistic flexible flight model Is of great benefit to the 

designers of any flight vehicle whether It be rocket, aircraft, spacecraft, or 

seacraft.

The ability to predict vehicle performance under certain loadings or flight 

conditions Is critical for Identifying and eliminating any aeroelastic or dynamic 

instabilities, which may threaten the overall Integrity of the vehicle. These 

instabilities may yield undesirable performance characteristics that may hamper 

the vehicle’s ability to achieve Its mission goals, or In more extreme 

circumstances, may result In structural failure.

With the aid of an accurate flexible flight model, design engineers can optimize 

the structure by strengthening critical components so as to limit any undeslred 

characteristics, while reducing and trimming other less critical regions to Improve 
overall performance. The knowledge of the vehicle response envelope Is also 

critical for vehicles with autonomous navigation systems. The navigation control 

systems must be carefully designed to ensure the vehicle remains stable and, 

ideally, within Its optimal flight envelope.

Individually, the disciplines of aerodynamics and structures are both highly 

developed. Computational fluid dynamics (CFD) represents the state of the art of 

aerodynamics work. It Is essentially the numerical solution of the equations that 

describe fluid flow, the Navler Stokes equatlons.^’̂ ’® Commercial CFD packages 

such as FLUENT” , CFD-ACE™, TASCFlow™ and FASTRAN™ are commonly



employed in Industry and academia for determining solutions to flows around or 

within complex structures.

On the structural side, finite element analysis (FEA) has similarly become the 

Industry standard. A complicated structure may be represented as a grid of 

points and the material behavior under various loading conditions can be 

determined using a variety of advanced techniques.'*’® ® ’  ̂ Commercially available 

software such as ANSYS™ and IDEAS™ are some examples of commonly 

employed FEA software packages that are utilized worldwide.®

Addressing the problem of a flexible flight vehicle In Its most complete and 

complex formulation would Include state-of-the-art methods from both CFD and 

FEA, In combination with a flight dynamics engine for tracking gross motion 

relative to a specified location. There lies the heart of the problem. The full 

solution of complicated aeroelastic configurations may take weeks to solve on a 

high-speed computer. In attempting to solve the model behavior over a small 

fraction of simulated flight time.

In response to this complication, a series of simplifications are often made to 

the problem to expedite the large motion flexible structure analysis. A common 

technique used In the simulation of flexible structures Is to reduce the structural 

components down to a series of simplified Interconnected blocks. One often 

employed modeling procedure Is to represent the main components of a body as 

a series of Euler Bernoullll beams. Beams are commonly chosen due to the fact 

that their shape functions are known and are readily available.

The aerodynamic modeling procedure may be as simple or as complicated as 

desired, and as Is deemed computationally acceptable. An aircraft (generally a 

very complex-shaped structure) would then be reduced to a series of four or five 

Interconnected flexible beams to represent the fuselage, wings and empennage 

structures. While this model reduction may allow for tracking of flexible motions 

as the vehicle encounters different flight stimuli (such as wind gusts) the overall 

accuracy of the method may be questioned. The simple fact Is that aircraft are 

not beams, so It should not be expected for them to behave entirely so.



This project undertakes a different analysis route. Instead of reducing the 

structure down to a series of degenerate elements, the flight vehicle will be 

modeled using a finite element (FE) grid. The FE grid will allow for more 

accurate deflection shapes of the structure under various loading conditions. 

However, an obvious drawback to employing a finite element model (FEM) is the 

drastic increase in the number of nodes and corresponding degrees of freedom. 

Therefore, to aid the solution process, the model will undergo a transformation to 

convert it into a reduced order model (ROM). The ROM effectively selects key 

deformation shapes that will combine to create the range of flexible motion for 

the vehicle.^^’^̂ ’ '̂* These selected deformation shapes become the new degrees 

of freedom of the model. As a result, the size of the system being analyzed may 

be drastically reduced to something much more manageable. For example, a 

model comprised of 200 nodes, and 1200 degrees of freedom could be 

condensed to a ROM with 10-15 degrees of freedom.

The scope of this project is predominantly limited to the flexible flight of a rocket 

vehicle, using a reduced order FE derived structural model for various flight 

conditions. A parametric study is to be performed for determining stability 

boundaries for rocket models of varying configurations. With respect to the 

aerodynamic modeling, the level of complexity employed is generally allowed to 

be as simple or complex as desired and as is computationally feasible. However, 

the aim of this project is not to focus on the utilization of the latest state-of-the-art 

CFD techniques, as the development (and computation) time is prohibitory under 

the time frame of this study. As a result, with regard to the aerodynamic 

modeling, simpler relations are employed in combination with empirical relations 

(when available) for obtaining relevant aerodynamic details.

The current study will integrate the previously discussed reduced order FE 
rocket model, with a rocket flight dynamics simulation program. The program 

computes all the pertinent gross (rigid-body) motions and structural deformations 

for the vehicle in response to the net forces and torques acting upon the vehicle 

(thrust, gravity, aerodynamic, etc.).̂ ® This program has been developed in the 

MATLAB/Simulink programming environment.



The rigid body motions are relative to a predefined body reference frame.

When referring to flexible bodies, the body reference frame generally conforms to 

one of two classifications. The first category is to select the body reference 

frame as fixed relative to some point on the undeformed vehicle. The second is 

to select the reference axes so as to eliminate the contributions to the linear and 

angular momentum vectors due to the flexible motions. This type of reference is 

commonly referred to as the selection of ‘mean’ axes. Mean axes have the 

benefit of having inertially decoupled translations, rotations and deformations. 

However, the drawback to choosing such a method is that the constraints for 

evoking it are difficult to establish.^ Thus, for this study the reference frame is 

chosen to coincide with a location on the undeformed vehicle structure.

The parametric rocket study will be presented from two perspectives. The more 

comprehensive detailed evaluation requires the full flight simulation of the flexible 

reduced order rocket model through various flight conditions to directly simulate 

and capture unstable flight behaviour. A second, less-detailed approach will 

employ a simplified planar representation of the flexible rocket problem, which 

will be formatted so as to provide a state space eigen-analysis stability 

description. It is not expected that the two methods of evaluation should 

perfectly coincide given the difference in model complexity; however, the state- 

space stability analysis will serve to qualitatively validate the integrity of the 

simulation results.



Chapter 2: Theory and Background

The following sections provide some basic derivations used for establishing the 

general framework for the flexible and rigid body dynamics employed within this 

project. The equations of motion are established and all relevant coefficients are 

defined.

2.1 Derivation of the Flexible Body Equations of Motion
A vehicle structural model is typically considered to be a continuous system, 

defined as a collection of infinitesimal differential mass particles (dm). Each of 

these mass elements has a position that is defined with respect to a given 

reference frame. In the current context, the frame will either be the body frame 

(% ) defined with respect to a given point within the body or some arbitrarily 

defined inertial frame The position of a given point in the inertial frame for 

a flexible structure is defined by the following equation and shown in Figure 2.1.

R = R j j+ r  + u (2.1.1)

where R is the location of a given material point (dm) in the inertial frame, ^  is 

the location of the body frame {9b) origin in the inertial frame, r  is the rigid 

location of the material point in the body frame (%), and u is the flexible 

displacement of the given material point.

dm

Figure 2.1: Position o f a Material PointPointMaterialo f a



The velocity of this same point with respect to the body frame can then be 

defined as

V = Vb + u + ̂ x (t + u) (2.1.2)

where is the velocity vector of the body frame origin, u is the deformation 

velocity of any given material point, and w^ is the angular velocity vector.

Note that the overcircle “o” corresponds to a rate of change with respect to ( ^ ) .  

Similarly the inertial acceleration can be found via the expression

V = V b +iQj x ^  + u)+Og + + + (2.1.3 a)

which can be expanded into

V = Va+WgxVg +u + 2w^ x u + ^ x ( r  + u)+cOjxcogx(r + u) (2.1.3 b)

Note that the rate of change of the rigid body position vector is known to be

equivalent to r  = 0 by definition. If applicable, simplifications to the above

equations may be made to accommodate situations that may be subject to small 

deformations or deformation rates.

2.2 Newton’s 2"*' Law of Motion

Newton originally stated the second law of motion in his treatise “The Principia” 

as follows:

“Change of motion is proportional to the moving force impressed, and takes 

place in the direction o f the straight line in which such force is impressed.”

More directly it defines the force acting on an object to be equivalent to the 

differential change in momentum per unit of t ime.Note  that in the sections that 

follow, terms are now expressed in matrix form, with all rate of change terms



being denoted by solid 'overdols'. The rale of change of transiational momentum 

is then,

dp . .  (2.2.1)

where f  is the resultant force vector. The translational momentum (p ) is given 

by the following definition 

p = fV d m

where the flexible velocity of a given mass element ( V ) was defined previously.

Similarly, Newton’s law is again used to define the rate of change of angular 

momentum and its relation to the moments acting upon a body.

dh .  (2.2.3)
—  = h = g 
at

The angular momentum (h ) is given by 

h=|(r+u)Vd»i

Substituting in the veiocities into Equations (2.2.2) and (2.2.4) and simplifying

gives the following equations for the respective momenta;
. ^ (2.2.5)

P =/nVj,+Pi

(2.2.6)

The variables presented in Equations (2.2.5) and (2.2.6) are discussed and 

presented below. The total first moment of inertia (c,^,) is given as

U U  (2.2.7)

Equation (2.2.7) may be alternately expressed in terms of its rigid and flexible 

components. Thus,
(2.2.8)

Cfo»=C + C«

where the rigid component is



c = ^rdm (2.2.9)

and the flexible component is

c„=JuûTm (2.2.10)

The second moment comprised of several sub-matrices dependent upon the rigid 

and flexible positions of each mass element, that is,

J,o/ = + J n / (2.2.11)

where the rigid component is

J = - J r W m ,  (2.2.12)

the rigid-flexible component is

j^ = -J rV c f> n , (2.2.13)

the flexible-rigid component is

(2.2.14)

and the flexible-flexible component is

J»=-Ju"uV/M (2.2.15)

The flexible momentum coefficient terms are given by

= Jucfw (2.2.16)

and

h ,= h ^ + h ^  (2.2.17)

where the rigid-flexible component is

h^ = Jr’‘ùc/w (2.2.18)

and the flexible-flexible component is

= ju'udm (2.2.19)



These components will be discussed and presented in further detail with respect 

to the finite element context in the sections that are to follow.

2.3 Assumed-Modes Method

The deformation of a flexible structural model may be represented by a series of 

linearly independent shape functions \j/. These shape functions may be selected 

judiciously at the discretion of the user. Ideally, the shape functions (\|/) chosen 

will include the exact elemental deformation shape vectors; however, these are 

not always readily available for complex structures. The selected shape 

functions may be relative to the full structural model or specific components and 

may be a combination of free vibration modes, finite element shape functions, 

forced deformation shapes, or any other conceivable and justifiable profile.

In terms of the assumed-modes method, the flexible deformations take on the 
following form.

(2.3.1)

where u is the vector containing the flexible deformations of the structure, 

corresponds to the /-th flexible coordinate, and v , is the i-ih shape vector

The shape vector matrix given as the set of deformation shape vectors is of the 
form,

T  = [v, \|#2 ••• Vw]

2.4 Newton-Euler Equations of Motion

The general equations of motion are defined using a Newton-Euler approach. 

Recalling Equations (2.2.1) and (2.2.3), the equations of motion in their simplest 

form can be presented as:

P + < P  = F

h + < h  + v;;p = G



Substituting the expressions for translational and angular momentum into the 

above expressions and following some simplifications yield the full flexible-body 

equations of motion, which are presented and explained in detail below. For 

additional derivation details the reader may refer to dynamics texts or papers by 

McTavish^^

2.5 Full Flexible-Body Equations o f Motion

Substituting the definitions for the translational and angular momenta into 

Equations (2.4.1) and (2.4.2), and following some considerable algebraic 

manipulation generates a simplified matrix based set of equations of motion in 

terms of the model degrees of freedom. The nomenclature for the various 

coefficients presented below is that used by McTavish.^^ Thus, the full flexible- 

body equations of motion for the system becomes.

ml -c L p ' Vj, F 0 2P. "Vg"
<o, = G — 0 —

h L M q f f . _ - P l - K m (^ b) - 2 M ,K ) _ . 4  _

(2.5.1)

There are several variables within Equation (2.5.1) that must be defined and 

explained. The term M  corresponds to the distributed mass matrix. In terms of 

the cases examined within this project, M  corresponds to the finite element 

mass matrix. This finite element mass matrix M  is cropped to allocate a single 

body node with the total rigid body properties (i.e. the selected node is the origin 

location of the body frame). More explicitly, the mass matrix is divided into a 

series of ‘nodal blocks’, as seen below.

fMoo Mo, Mo: - M oat

M.o M „ M,: - M„v
^full - M,o M j, M 22 ••• M:Ar

^NO M;v. M̂ rz Mjw

(2.5.2)
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The terms with zero (‘0’) subscripts correspond to blocks associated with the 

body frame origin. The node blocks are generally of the form (M y ) and

©ffectively represent the effect of node-k on node-1. These mass nodal blocks 

are typically 6 x 6  matrices, assuming full order 3D motion for all nodes. The 

blocks may be further broken down into a collection of four 3x3 sub-blocks, which 

relate the translational and rotational coupling between the individual nodes.

—

M . . .. M „ ^
(2.5.3)

Here, the subscripts u and 8 correspond to the translational and rotational 

degrees of freedom of node-k or node-1 respectively. These nodal blocks will be 

used as the basis to define the majority of terms and coefficients in Equation
(2.5.1).

The total mass is a scalar quantity, and is obtained through the summation of all 

the differential masses within the model, i.e.

m = jdm (2.5.4)

The total first moment of mass includes consideration for both rigid and flexible 

inertia values that may alter the characteristics of the model as it deforms. Recall 

from Equation (2.2.8),

=c+c„(q) (2.5.5)

Where the rigid part of the first moment c is

c = r̂dm (2.5.6)

This may also be derived from node blocks using the expression

(2-5.7)
A=0 /=0

The flexible part of the first moment, denoted as c„ is calculated via

c„ = Juf/m = Pq (2.5.8)

11



where P is a 3 x N translational momentum coefficient matrix, where each /-th 

coiumn corresponds to the transiational momentum for the /-th node.

P = |p, P2 ... P;v]

A similar matrix is defined for the angular momentum.

U — jhj I12 ... hjy]

The second moment ( J,„,) is now dealt with in more detail, specifically with 

focus upon the case of a model derived from finite elements.

Recall from Equation (2.2.11) that the total second moment of inertia is given by

^ t o t = ^ r r + ^ r u + ^ u r + ^ u u

Note aiso that due to symmetry .

The flexible components of the second moment of inertia are dependent upon 

the individual flexible coordinates and as yet to be determined flexibie second 

moment coefficients. The inertia components are given by the rigid-flexible part 

of the second moment

J„ = -  fr '̂uVm = (2.5.9)
;=i

and the flexible-flexible part of the second moment

(2.5.10)
1=1 M

The second moment coefficients ( J '„^) and ) given in Equations (2.5.9)

and (2.5.10) are constant and are defined with respect to the deformation shape 

functions. That is, the rigid-flexible second moment coefficients (J% ,) are given

by

J'ru, = - \ r y ; d m  (2.5.11)

The riexlble-flexlble second moment coefficients ( ) are given by

(2-5.12)

12



However, it is often the case that these shape functions are not readily available 
for a general finite element model. Therefore, it becomes necessary to utilize 

some approximate expressions for these coefficient terms. The approximations 

presented below are derived from the components of the finite-element mass 
matrix.

2.5.1 New Coefficient Methodology

The preceding equations represent a set of generally accepted coefficient terms 

and equations. This section presents a new theory for developing further 

equation of motion coefficient approximations.^^'̂ ^ Before presenting these 

approximations it is important to re-examine the nodal block structure. Each of 

the four (3x3) sub-blocks of M ,̂ may be further discretized into a set of three

(3x1) vectors. These components serve to isolate the effect of each

degree of freedom from node-1 on the translational and rotation degrees of 

freedom of node-k. For node-k, the translational degrees of freedom are given 

as û ,v̂ ,ŵ  with the rotational degrees of freedom being defined by

That is.

M k\

The approximation for the rigid-flexible second moment coefficient is

(2.5.13)

(2.5.14)
7=0

The process for determining the flexible-flexible second moment coefficients 

) is a bit more involved. It is important to introduce a few terms before

proceeding. Prior to being used in the J"„„ ,y computation, the M „ nodal block

sub-components in Equation (2.5.3) are averaged using the following 

expressions. Translation-translation mass sub-blocks are defined by

13



=^/race(M„^„^)l (2.5.15)

Translation-rotation mass sub-blocks are defined by

(2.5.16)

Rotation-translation mass sub-blocks are defined by

(2.5.17)

Rotation-rotation mass sub-blocks are defined by

(2.5.18)

Additional pertinent quantities are as follows:

Q« = (2.5.19)

■•"“ M L a -M ,.*  (2.5.20)

Note that the overbar “—" is used to denote an average value. The body frame

unit vectors are given as

x = [l 0 of 

y = [0 1 of

z = [0 0 if  (2.5.21)

The J"„„ ÿ approximations are now presented in the following four tables:

Node-k (translation) + node-1 (translation)

J 'U - V; w,

W* -rMu_,.u,z'^

V* -rM u _ ,.u r -y^Mu,.u_,r

-rMu_,.u_,y^ - z"M h».h,z"

Table 2.1: y Translation-Translation Approximations
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Node-k (translation) + node-! (rotation)

T"«u,ij a, A r,

(x^M„,.g,x)l-MH..g,5i^ (x^M„„g,y)l-M„..g,yx^ (x^M«„g,z)l -MH„g,zx^

(y^MH„g,x)l-M,„axy^ (ÿ^M„,.g,ÿ)l-M„,.g,ÿy^ (y^MH„g,z)l-M,,.g,zy^

(z^M„,g,x)l-MH..g,xz^ (z^M„,.g,y)l-MH».g,yz^ (z^M„„g,z)l -  M„..g,zz^

Table 2.2: y Translation-Rotation Approximations

Node-k (rotation) + Node-1 (translation)

J"uu,ij

A

7k

u,

(y^Mg„„,x)l -xy^Mg„H;

(z^Mg„„,y)l -  yz^Mg,

w,

(x^Mg,.H,z)l -  zx^Mgt.„,

(y^Mg„H,z)l -zy^Mg^H,

(z^Mg„H,z)t -  zz^Mg„H,

Table 2.3: Rotation-Translation Approximations

Node-k (rotation) + Node-1 (rotation)

piUU,iJ a, Pi Yi

(x^Mg„g,x)l-x’‘Qox’‘ (x^M g„g,y)l-y’'Q „x’‘ (x^Mg„g,z)l-z’‘Q „x’‘

JS, (y^M & .g ,x)l-rQ „y ’‘ (ÿ^Mg.,g,ÿ)l-ÿ"Qüÿ" ^^M g,.g,z)l-z’‘Q „y’‘

n (z^M g,.g ,x)i-rQ w r (z^Mg..g,y)l-rQ«2’‘ (z^Mg„g,z)l-z’‘Q„z’'

Table 2.4: y Rotation-Rotation Approximations

The development and approximation of these second moment of inertia terms is 
discussed and presented in greater detail in the papers by McTavish et ai/2.i3js

The total angular momentum coefficient is comprised of a rigid and flexible part, 

3s seen by the equation,

15



(2.5.22)

The rigid translational and angular momentum coefficients (as mentioned 

previously) can be calculated utilizing the full order mass matrix and the mass 

nodal blocks by performing the following operation:

P*
LH*J

= (2.5.23)
/=0

where R* is a matrix which relates the position of node-k. R* is defined as,

—

1 - r r  
0 1

(2.5.24)

The rigid-body mass properties may also be extracted directly from the finite 

element mass matrix via the following relation.

N N
(2.5.25)

/**0

Note that Equation (2.5.25) only calculates the fixed (constant) inertia mass 

matrix, and does not include the determination of flexible inertia terms. This 

computation may be useful as a reference check to verify the accuracy of the 

finite element model versus any manual calculations or previously known mass 

properties.

The flexible angular momentum component is defined via

(2.5.26)
1=1

where H', is the flexible angular momentum coefficient and is of the form,

H', = K  HV, I -  I H ',^J

A H', coefficient will exist for each degree of freedom in the model (i = 1,2...N).

The coefficients are separated into translational and rotational components of 

node-k, as seen in the following tables.

16



Node-k (translation) — Node-1

/

Z M mj.U;

Table 2.5: H', Translation Approximations

I

(x^h«)l+Qjux’‘

A — (Mgj.üiÿ)' (y^h«>+Q «r

/k — (Mfl,,u,z]r (z^h«)l+Q«î’‘

Table 2.6: H', Rotation Approximations

Next, the Coriolis terms from the equations of motion are discussed and 

presented. The translational Coriolis matrix term (P^ ) is found by

(2.5.27)

The total rotational Coriolis matrix ( H „ „ )  is comprised of a rigid and flexible 

component, and is given via
X  ̂ (2.5.28)

The rigid component is defined with the following format.

...

The respective elements of are
(2.5.29)
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The flexible component is defined as

^cni,2 j

with the respective elements being

(2.5.30)

The final Coriolis term is the flexible Coriolis matrix (M ^ ), and is defined by

M ,= (2.5.31)

The force vector in Equation (2.5.1) is given by [f  G f f  where F and G are 

the net external force and torques acting upon the body.

The term f  corresponds to the extemal forces acting upon the flexible 

coordinates through body and surface loadings. The term corresponds to the

internal forces developed by the structural model. For simple cases, it may be 

assumed that the model exhibit linear elastic behaviour. The internal force vector 

is then strictly a function of elemental stiffness and flexible deformation. Thus,

=Kq (2.5.32)

where K  is the stiffness matrix associated with the model.

Other behavioral models are acceptable, including the cases that consider the 

effects of viscous damping.

18



Chapter 3: Reduced-Order Model (ROM)

The focus of this chapter Is to elaborate on the nature of reduced-order 

modeling. The following sections address the concepts required to adequately 

model a sophisticated structure while maintaining a manageable number of 

degrees of freedom.^^

3.1 Reduced-Order Model Basics

As mentioned previously, the reduced order model decreases the numerical 

order of the original structure by considering a series of user selected shape 

functions to represent the overall flexibility modes of the system. The shape 

functions can be taken as the deflections of the structure as a whole and/or with 

consideration as to the flexibility of individual components. The displacement 

vector corresponding to the reduced set is presented in a form similar to that of 

Equation (2.3.1), with full order quantities q and v being replaced with the 

reduced order quantities rj, and (p.

im=l

or expressed in matrix form,

u(r, f)= <&(r)q(r) -2)

where r[ is the vector of generalized reduced order coordinates, and O  is the 

matrix of reduced order shape functions, that is,

o  = [<&j O 2 •••

The reduced order shape function set 0  is related to the full order shape 

function set T  via the following relation:

0>(r) = Y(r)S^ (3-1-3)

where S is an (N x M) matrix of M (N x 1) coordinate vectors, which define the 

reduced order mode shapes from the full order set that is.
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S = [s, Sa/]

3.2 Reduced Order Property Adjustm ent

Having established the chosen set of shape functions that will adequately 

capture the flexibility of a structure under study, the structural model parameters 

must be similarly reduced. This reduction is a relatively simple transformation 

involving the matrix of coordinate mode vectors S as defined in the previous 

section. An overbar '—‘ will now be employed to signify a reduced property 

within the nomenclature.

ml p ' V/r F 0 nnog 2P. ^B

K . K , — G - 0 — <ÙB
p^ K , M n f C -2M^(cOg)_ _ n _

Thus, the mass and momentum coefficients may be reduced as follows, 

flexible mass matrix,

M  = S’’MS

For the translational momentum coefficient 

P = PS

For the ‘total’ angular momentum coefficient 

ïî,o /=H +H „ 

where the rigid component is 

H = HS

and the flexible component is given as

h . = | ; 7 . h '„
m=I

The reduced angular momentum coefficient (H ’„  ) is defined as

(3.2.1) 

For the

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

(3.2.6)
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= (3-2'7)
1=1

The reduced model inertias are now given by their reduced components

Cto/=c + c« (3.2.8)

3,0. = J + J™ + jL  + J«« (3.2.9)

The respective reduced components of these two equations are summarized 

below. The flexible component of the first moment is

c„=Pn (3.2.10)

The rigid/flexible component of the second moment is

/n=l

The flexible/flexible component of the second moment is

W=1 JP=1

Equations (3.2.11) and (3.2.12) have constant components and 

that are named and defined below. The constB nt sBCond m o m o n t coofficiont 

(rigid-flexible component) is

/=!

The co n stan t s e c o n d  m o m e n t coeffic ien t (flexible-flexible component) is

J" s  J" (3.2.14)
* *  u u ,m p~2iê2L l ’«,t̂ P>J

/=1 J -l

The Coriolis terms are reduced as follows. The translational Coriolis matrix is 

given by

P ^ = < P  (3.2.15)

The rotational Coriolis m atrix  is given by
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Ho/of — H<!> + Haw (3.2.1S)

The rigid part of the rotational Coriolis matrix is of the form

H® = [hffl,i ••• h<»,A/]

The individual components then become

h<t),ir( = cOg (3.2.17)

The flexible rotational Coriolis component is of the form

H a w  =  [haw,I ••• haw,A/]

M
where haw,w = (3.2.18)

p̂ \

The nodal forces must undergo a similar transformation, namely,

f  = S''f (3.2.19)

For the case of simple linear elasticity, the stiffness matrix K  is adjusted via

K  = S^KS (3.2.20)

Lastly the centripetal force term H^((»g) is transformed by reducing the 

individual components of H[(wg). That is,

(3.2.21)

where

(3.2.22)
i

where s,’s are the scalar components of a shape vector s for the /-th degree of 

freedom.

3.3 Mode Fixity Adjustment

In the current context, the location of the body frame is fixed with respect to the 

structural model, and thus some adjustments need to be made for any
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deformation shape that does not Implicitly constrain the flexible deformation of 

the zeroth node to zero. An example of such a shape might be an unconstrained 

free-free' vibration mode for a given model, where the node corresponding to the 

body frame origin is arbitrarily deformed. The deformation shape must then be 

translated and rotated such that the location and orientation of the zeroth node 

are reset to zero. This adjusted shape may now be used since the deformation 

at the zeroth node is always zero.

Recall that a shape vector is given in the form

s =

%

%

where

Note that the “underbar” is used here to indicate the unadjusted shape vector.

Figure 3.1 breaks down the shape adjustment process to two key steps.

Figure 3.1 a) depicts an unadjusted rocket body bending deformation shape.

For the current figure the body frame origin is assumed to be located at the tip of 

the fuselage nosecone. Figure 3.1 b) shows the translation of the rocket 

structure to re-position the nose for zero deformation. Figure 3.1 c) illustrates 

the rotation required to eliminate any rotational deformation of the body frame 
origin.

0 ’ 0 2 0 3  04  0 5  oe  07

Figure 3.1 : Rocket Mode Adjustment

The resulting adjustment to each node may be summarized by the following 

equation.
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■(i-r„) 0 Mt 1
A . J*. 0

1 - r : Mo
Oo

(3.3.1)

Ignoring the small angle effect in the above equation, one can create a single 

matrix multiplication to accommodate the entire transformation. That is,

s =

-R , 1 0  0
-R , 0 1 0

-R ^ 0 0 •• 1

(3.3.2)

where Equation (2.5.24) previously defined the position matrix

—

1 - r ;  
0 1

The transformed deformation shape will not affect the overall functionality of the 

reduced order set. The transformed shapes will have the same frequencies of 

vibration as the original unadjusted shapes and thus effectively capture the 

structural deformation mode.
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Chapter 4: 3D Flexible Flight Simulator

The current chapter addresses Issues related to the flexible flight simulation 

program. The program simulates the gross vehicle motions, as well as the 

flexible response due to the dynamic loadings acting upon the structure. The 

flight conditions are customizable Inputs that may be tailored to suit a variety of 

configurations. The program was developed for use In the Matlab programming 

package.The simulation engine also employs the SIMULINK™ suite for the 

processing and Integration of flight dynamic parameters.

4.1 Test Vehicle -  SPHADS Rocket
The primary test vehicle for this thesis Is the SPHADS-1 rocket, which Is 

currently In development at Ryerson University. The objective of the SPHADS 

(Small-Payload, High-Altltude Delivery System) program Is to provide a relatively 

low cost delivery system capable of Inserting scientific payloads Into the upper 

atmosphere for meteorological, environmental, Ionospheric and micro gravity 

studies. Some additional low-atmospheric test applications are under 

consideration, Including high-g loading tests for payload packages, as well as the 

investigation of aerodynamic heating effects upon exposed materials. The Initial 

focus of the SPHADS program Is to concentrate upon the design of potential 

prototype variants that would operate In lower segments of the atmosphere 

(< 100 km). It Is within this range that a low-cost delivery system would be of 

benefit to a variety of researchers.^®

At present. In the Propulsion Research Facility (PRF) at Ryerson University, 

another prototype flight vehicle, the RTD-1 (Rocket Technology Demonstrator) Is 

being prepared for flight testing. Sample tests to be performed Include the 

utilization of flight data and other Instrumentation packages to measure actual 

launch acceleration and atmospheric loadings. The RTD-1 Is the first In the line 

of prototype vehicles to be evaluated leading up to the SPHADS vehicle. The six 

degree of freedom simulations presented here also serve to provide realistic

25



predictions of expected flight performance and structurai deformations for both 

the SPHADS and RTD-1 flight vehicles.

The SPHADS-1 rocket will employ solid-rocket motor (SRM) technology as its 

primary means of propulsion. Several SRM variants are under consideration to 

best meet the desired flight trajectory. Two such examples of a tri-fin SPHADS 

vehicle are given below in Figure 4.1.

Two variations on solid rocket propellant 

grains are depicted, with configuration 1A 

employing five cylindrical propellant segments 

with core and end face burning. Configuration 

1B employs a twin propellant boost-sustain 

provided by the combination of star and end 

burner grain segments.

Figure 4.2 depicts a model representation of 

quad-fin SPHADS-1 vehicle. In the model 

representation, the fins are treated as flat 

plates of constant thickness.

\ V

1

!

1 © 1 ®
I1  1

Figure 4.1 SPHADS 1A and 

IB  prototype vehicles

Figure 4.2: SPHADS-1 cruciform variant model
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The SPHADS-1 cruciform model is taken as the basis vehicle for all of the 

simulations contained within this report. Some general dimensional information 

and characteristics are provided in Table 4.1.

Vehicle Length 2.75 m

Fuselage outer diameter (d) 0.127 m

Fin span (b) 0.12723 m

Root chord (Cr) 0.32468 m

Tip chord (ct) 0.12267 m

Material aluminum

Young’s Modulus 70 xIO*

Material density 2710 kg/m^

Poisson’s ratio 0.346

Table 4.1 SPHADS-1 General Properties

4.2 Simulation Capability

At present, the flight simulation engine is configured specifically for the 

simulation of flexible rocket vehicles. It is constructed in a modular fashion, such 

that the loads and dynamics are separated into individual blocks, which may be 

altered, updated or reconfigured as desired. As a result of the modular design, 

and the generality of the equations of motion presented earlier, this program may 

conceivably be used to simulate the motions of more complex aerodynamic 

Vehicles such as aircraft or spacecraft. A block diagram summarizing the primary 

components of the Matlab/SIMULINK derived flexible body simulation model is 

presented in Figure 4.3.
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Figure 4.3: Simulation Engine S im plified Block Diagram

In Chapter 2 the equations for defining the system dynamics were defined In 

the equations of motion. These equations determine the accelerations acting 

upon the vehicle In relation to the rigid and flexible degrees of freedom. These 

accelerations are then Integrated to reveal the updated model rates. Referring to 

Figure 4.3, the vehicle rates of change are computed within the subsystem 

“Equations of Motion”. This subsystem then outputs the rigid body translational 

and rotational velocities (v and co), as well as the flexible-body degree of freedom 

rates and displacements (q and q ). The external forces and torques due to 

gravity, thrust and aerodynamic loadings are all computed within the "Forces and 

Moments” subsystem. Additional key subsystems depicted pertain to orientation 

determination, computation of system energy and momenta, and the conversion 

between full and reduced order deformations and rates. In all simulations, the 

SIMULINK™ default Integrator was employed for determining all the rigid body 

and flexible motions.
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4.3 Rocket Deformation Shapes

The reduced order modeling method allows for the use of any number of vehicle 

deformation shapes. The selection of these shapes is left to the judgment of the 

user. It is imperative to capture the dominant deformation modes and those of 

particular interest to the study. For the current rocket stability study, the primary 

deformation shapes considered are those that act to contribute to the overall 

motion of the rocket fin key-nodes. These rocket key-'nodes are used to 

represent the overall motion of a given structural component by assuming 

average conditions at a user-selected location. The deformation shapes are 

derived from the unconstrained natural vibration mode shapes. The first body 

bending modes are included, as well as the first fin flap and twist modes, as they 

are seen to have considerable influence on the motion of the fin key nodes. • -

Samples of these deformation shapes are depicted in Figures 4 4 to 4.6 below. 

Figure 4.4 shows the body deformation of rocket, and Figures 4.5 and 4.6 show 

the deformation shapes for a single fin. Identical deformation shapes are also 

used for each of the remaining fins.

Figure 4.4: First Body Bending Shape

Figure 4.5: Fin Flap Deformation
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Figure 4.6: Fin Twist Deformation 

4.4 Vehicle Orientation

The orientation of the body frame (^ b) is generally defined with respect to an

Earth-fixed inertia! reference frame commonly located at some point of

interest, such as a tracking station on the ground. Note that for long or high 

altitude rocket flights, the Earth-fixed reference frame is insufficient. For such 

cases, one might consider a rotating spherical Earth reference frame. The 

relationship between the inertial and body frames is depicted in Figure 4.7.

For the current context, the inertial reference frame is taken with the z-axis 

directed down towards the centre of the Earth. This is presented in Figure 4.7. 

The inertial position of the rocket is defined by the position vector r . The 

orientation of the body frame (^ b) with respect to the inertial frame is 

commonly defined as a set of three angles, known as the Euler angles.

Figure 4.7: Body Frame (^b) and Inertial Reference Frame (50
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4.4.1 Euler Angles
The body frame can be related to the inertial frame by a series of three rotations 

about the x, y and z-axes. These orientation angles are commonly referred to as 

roll (({)), pitch (0) and yaw (\|/) angles respectively, and are a standard convention 

for aircraft and rockets alike.

The rotation matrices corresponding to the roll, pitch and yaw angles are 

defined as follows.^®

For a rotation about the x-axis, (i.e., for a roll angle of (|))

’ 1 0  0

C,(^)= 0 cosf) -s in ^
0  sin^ cos^

For a rotation about the y-axis, (i.e., for a pitch angle of 0) 

COSÛ 0  -s in 0

C j(^)= 0  1 0

sin^ 0  cos^

For a rotation about the z-axis, (i.e., for a yaw angle of y ) 

cosy sin y  0

(4.4.1)

(4.4.2)

C3W  = -s in y  cosy 0  

0 0 1
(4.4.3)

A general Euler rotation can be expressed as a combination of these angles, 
such that,

C(fi,û,^)=C,(fi)C,(û)C,(^) (4.4.4)

This can be expressed explicitly as,

cos ̂  cos y  cos ̂  sin y  —sin^
C(çJ,0 ,y )=  sin ̂  sin ̂  cos y - cos ̂  sin y  sinçJsin^siny+ cos^cosy sin cos ̂  

cos ̂  sin ̂  cos y +sin ̂  sin y  cos ̂  sin ̂  sin y —sin ̂  cos y  cos ̂  cos ̂

(4.4.5)

Despite Euler angles being a standard convention, they are not without 

limitation. A singularity exists such that the exact orientation may not always be 

uniquely determined for flight at pitch angles of 90°. Euler angles are also
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computationally demanding, being defined by a series of sine and cosine angles. 

Thus for the sake of computational efficiency and accuracy, it is often better to 

use a set of four orientation parameters known as ‘Euler parameters’ or 

‘quaternions’, that remove the Euler angle singularity issue, and are much less 

computationally intensive.

4.4.2 Euler Parameters
Euler’s theorem states that a general rotational displacement can be 

represented by a single rotation (commonly denoted (|)), about an axis (a ). It is 

from here that the Euler parameters are derived.̂ ®

A set of four parameters (e, r\) will define the orientation of an object or 

reference frame. Euler parameters utilize Euler’s theorem in a manner that is 

summarized as follows. The first three Euler parameters are given by e :

E = (g, S2 ^3 )  ̂=asin(i^) (4.4.6)

The fourth parameter is,

Tj = cos(|^) (4.4.7)

The magnitude of these parameters is equivalent to unity,

Ê E+1]̂  = el + eI+  el = l (4.4.8)

These parameters are often referred to as quaternions. The rotation matrix 

relating the orientation in Euler parameters is given as

C(e, t j )  =  ( 7 ^  -  e^e)i+ 2eê  -  2te’‘ (4.4.9)

or more explicitly,

\ - l ( e l + e l )  lie^e  ̂+ ê Tj) lie^e^-e^ij)
C(e,7 )=  2 (% -f3 7 ) \-2 [e l + el) 2{e2e2+ê Tj) (4.4.10)

_2 (f,£■3 +^2 7 ) 2(£2^3-£,7) l - 2 (£,^+£^)

This matrix can then be compared to that of Equation (4.4.5) to extract the 

desired roll, pitch and yaw angles, which are much more suitable and easier to 

visualize for a human observer than quaternions.
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4.4.3 Euler Parameter Rates

Differentiating the relations for determining e and t|, gives the following Euler 
parameter rate terms

£=i-(£’'+ 7 l)y  (4.4.11)

77 = - ^ £ ' ’<0 (4.4.12)

4.5 Additional Simulation Parameters
Having established the equations of motion and introduced the general 

framework of the flexible rocket simulator, some additional parameters deserve 
some consideration. These parameters are critical to the simulation response 
and are presented in the following sections.

4.5.1 Atmosphere
For the current application, the atmospheric properties are assumed to coincide 

with the 1976 standard atmosphere convention. However, it is noted that for 

some situations, it may be desirable to use non-standard conditions. At present, 

the current simulation model does not explicitly allow for user input of customized 

atmospheric properties. The atmospheric model is described within a small 

independent script that may be easily altered and adjusted as desired by the user 

to meet the requirements of any scenario.

For flight in the troposphere (i.e., for altitudes of less than 11 km), the 

atmospheric properties are approximated by the following formulae.^® The 

absolute temperature ratio is

<9 = 1-0.0226(V1000) (4.5.1)

where h is given in metres and

(4.5.2)
&

where is the temperature at a given altitude, and is the standard 

atmospheric temperature at sea level ( r^  = 288.16 K).

The pressure ratio is given by the equation
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ô = (4.5.3)

where

(4.5.4)
PSL

where is the atmospheric pressure at a given altitude, and Psi is the 

standard atmospheric pressure at sea level (^^^ = 101.3 kPa)

The density ratio is given by

= (4.5.5)

where

0- = - ^  (4.5.6)
PsL

where /?„ is the atmospheric density at a given altitude, and is the standard

atmospheric density at sea level {p^i = 1.225 kg/m^)

For altitudes above 11 km, the atmosphere may be subdivided into several 

distinct regions. In the upper regions of the troposphere up to an altitude of 23 

km, lies a region known as the tropopause, where the atmospheric temperature 

remains nearly constant.
In this region an approximation for the pressure ratio is defined as.

g (h -h ,) (4.5.7)
RT,

where the subscript “c” is used to denote the conditions at an altitude of 11 km. 

The density ratio is found via the following relation:

<r = | -  (4.5.8)

The approximate conditions at 11 km are summarized as follows:

<5; = 0.225

<9, =0.752

7 ;  = 216.66 K
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For higher altitudes, the simulation utilizes tabulated 1976 standard atmosphere 

data, In conjunction with an Interpolation technique to determine the atmospheric 

conditions. The model may be further altered to use any available approximate 

equations, or any customized configuration that may be chosen by the user.

4.5.2 Stimulus Generation
The focus of this study Is to use the flight dynamics simulator to establish the 

flight characteristics of flexible vehicles. For determining stability, a stimulus 

generator may be used to excite the structure Into oscillation. For the purpose of 

this study, the primary method for exciting the structure Is by means of a gust 

generator. The gust generator may be customized to act as a random or 

predetermined vehicle wind velocity change that acts to alter the aerodynamic 

forces and move the system away from equilibrium. The gust may act for a 

predetermined fraction of time, or may follow a more continuous and elaborate 

profile, such as a sinusoid. For stable configurations, the vehicle will flex and 

Induce a short-term oscillation that will persist until the disturbance effects have 

been dampened out. For unstable configurations, a disturbance will tend to grow 

until the vehicle experiences either a loss of aerodynamic control or excessively 

large deformations that result In structural failure.

4.5.3 Energy and Momentum

Energy

To test the overall dynamical Integrity of the simulation program. It Is necessary 

to perform certain analyses using defined scenarios for which the outcome may 

be predicted and expected. Analyzing the energies and momenta for a given 

model are good Indicators as to the overall health of the simulation engine and 

model description.
For a flexible model that Is not subjected to any external forces (such as gravity, 

thrust, aerodynamics, etc.). It Is known that the total energy of the system will 

remain constant, due to the law of conservation of energy. This Is Illustrated
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below. The kinetic energy of the flexible system is given by the following 

equation,

T = (4.5.9)

where v is the total velocity vector which is comprised of both the rigid and 

flexible velocity components

v =

and is the mass matrix of the system, containing both the rigid properties,

as well as the finite element distributed mass matrix and the corresponding 

momentum coefficients.

In general, includes the effects of flexible deformation in all of its

constituent elements. This mass description was presented in Equation (2.5.1), 
that is.

ml - c p

c
h L M

The kinetic energy in general is not expected to be constant. The kinetic energy 

is continuously being transferred into the structure as deformation potential 

energy (a.k.a strain energy). The strain energy is given by (assuming simple 

linear elastic behavior)

F^=iq^Kq (4.5.10)

where q is the vector of flexible coordinate deformations, and K  is the stiffness 

matrix corresponding to the flexible degrees of freedom

Gravity may also contribute to the total potential energy. Obviously, for the case 

in which the rocket is free from all external forces, this component will be ignored.

The gravitational potential energy is given by

Fg=m,g/i-gBC-ggPq (4.5.11)

where g is the magnitude of gravitational acceleration, and h is the altitude
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Therefore, the total potential energy Is simply,
Vj. = V^+V^ (4.5.12)

The potential energy is similarly in a state of flux as energy is continually 

transferred between kinetic and potential forms. Thus for a system free from 

external forces, the total energy will remain constant. That is,

E = T + V = c o n s t

Momentum

The momentum of the model can also be used as a test for verifying the 

effectiveness of the overall dynamics. The momentum problem is divided into 

two parts: translational and angular. The test case of a model free from external 

forces is again employed here.

Translational Momentum
In the general case, the translational momentum also is dependent on the 

deformation of the structure. The equation for the total (general) translational 

momentum in the body frame {‘pe) is given below:

Pg (4.5.13)

In the body frame, for the case with no external forces or torques acting on the

vehicle, the translational momentum vector is not constant due to the fact that the

frame may be rotating. The magnitude of this vector in (Çb) does remain 

constant, however.
The translational momentum may similarly be evaluated in the inertial frame 

(?). The conversion is accomplished via the orientation rotation matrix (C)

(where Cyg = Cg;). Thus,

P = C/gPg (4.5.14)
In the inertial frame context, again assuming no external forces or torques, both 

the translational momentum vector and magnitude will be constant.
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Angular Momentum
Again considering the situation with no external forces, the angular momentum 

magnitude in the body frame (^b) is not generally constant. It is constant,

however, if the body frame is located at the vehicle mass center. The mass 

center of the vehicle may be determined from the following equation, which is an 

adaptation to the standard parallel axis theorem.

(4.5.15)
l̂ol

where 1̂ , is the inertia about the vehicle mass center, and is the inertia 

about the body frame origin.
The body frame first and second mass moments both include their flexible 

components, which depend on the flexible coordinates q . These terms were 

defined previously in Section 2.5.

The angular momentum in a frame that is parallel to the body frame but situated 

at the mass center can then be found via

(4.5.16)

The angular momentum vector in this frame is generally not constant.

However, the magnitude at the center of mass does remain constant, provided 

the vehicle is free from all external forces and torques.

The angular momentum in the inertial frame can be found via the orientation 

rotation matrix, that is,

ĉmj (4.5.15)

In this context, both the angular momentum vector and magnitude should 

remain constant if the vehicle is unaffected by any external aerodynamic, 
gravitational, or thrust loads.

All of these known configurations may serve as validity checks to verify the 

correctness of the underlying system equations of motion.
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4.6 Procedure fo r Obtaining Flexible Flight Simulation Data

The steps outlined below indicate the procedure for obtaining simulation results 

for a generic rocket vehicle model.

1. Generate a finite element model using the desired rocket dimensions, 

configurations and matenal properties. This may be accomplished with a 

custom FE generation program or through the use of a commercial 

software package. For this project, ANSYS™ is used to create the finite 

element rocket models.

2. Extract the model properties from the FE generation software. The 

software package must provide the full order absolute mass and stiffness 

matrices, a listing of the location of each node in the global reference, an 

element list outlining the interconnected nodes defining each element, and 

any deformation shapes selected to be reduced order degrees of freedom. 

ANSYS provides the node and element lists and deformation shapes 

through the Graphical User Interface (GUI). The mass and stiffness 

matrices may be extracted from the model .fu ll file using the 

'userprog.exe’ utility.

3. Create simulation initialization script. Update a script entitled “initialize 

variables" by inputting the file addresses for the data collected in step 2. 

The script automatically processes in the input data and forms all of the 

required coefficients and matrices required in the flexible flight simulation 

engine. This script additionally reduces the order of the model in 

accordance with the number of input deformation shapes to be used with 

the reduced order model. Initial conditions, such as the flight velocity, 

orientation and flexible excitation are also included within this script. The 

node numbers corresponding to the aerodynamic or thrust key-node 

locations are also input in this file.
4. Run initialization script, set simulation parameters, and begin simulation. 

The SIMULINK™ simulation environment allows for the selection of 

integration type, simulation length, error tolerances, etc. Simulation is 

then initiated, important structural and flight data are recorded to output
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files that are recorded in the MATLAB workspace. Data such as vehicle 

velocities, flexible deformations and deformation rates, atmospheric 

properties, aerodynamic angles, forces, moments, orientation, position, 

energy, momentum are all recorded for a user selected sample time.

5. Postprocessing: Simulation Plots. Run automated plot generating script, 

which automatically presents important simulation data in a series of 

figures for quick analysis, and validation.

6. Postprocessing: Animation. Run structural animation script, which uses 

the full order “unreduced” deformation vector to effectively recreate the 

various deformation shapes experienced by the rocket vehicle model for 

the duration of the simulation.

7. Posprocessing: Save File. Save all important simulation data to file for 

later use.

8. Postprocessing: Update Records. Upon completion of simulation analysis 

and saving of data to file, a file log is updated, recording the name of the 

simulation save file, with any important characteristics of flight including 

initial conditions, flight time, disturbances, etc.
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Chapter 5: Forces and Moments
A flexible flight vehicle is subject to a variety of loads. These arise from gravity, 

aerodynamics, thrust, or a variety of other sources. These forces are discussed 

and presented in the following sections.

5.1 Gravitational Forces and Moments

The effects of gravitational acceleration on the vehicle motion and deformation 
are presented below.

5.1.1 Net Gravitational Forces and Moments

The gravity vector is defined to be positive in the inertial z direction. Therefore 
the gravity acceleration vector in the inertial frame is quantified by,

g = [0 0 9.806f (5.1.1)

However, the magnitude of the acceleration of gravity is known to decrease with 
increasing altitude. Thus, a small correction factor can adjust the magnitude of 
the gravity vector accordingly, and is given as follows below.

sW =

where corresponds to the radius of Earth (~ 6378 km), and h corresponds to 

the altitude of the vehicle above sea level.

The gravity vector is then converted into the body reference frame by the 
transformation,

gg=Cg;g (5.1.3)

Where C ĵ is the rotation matrix for converting elements from the inertial frame to 

the body frame, as was defined previously.

The total forces resulting from gravity (weight) in the body frame are therefore 
given by.
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=^,8g (5.1.4)

where m, is the total vehicle mass at a given Instant.

If the body reference frame Is located arbitrarily (I.e., the frame’s origin does not 

necessarily coincide with the location of the center of gravity of the vehicle) a 

gravity moment will exist.

The gravity moment will then be of the form,

(5.1.5)

5.1.2 Nodal Gravity Forces and Moments

If the system contains distributed mass with flexibility (as the finite element 

models to be employed herein will), each node will possess a load due to gravity. 

These nodal loads can directly affect the flexible motions of the vehicle.

The forces are related through the translational momentum coefficient P and Is 

given as follows,

f  = P %  (5.1.6)

5.2 Thrust Forces and Moments

In many simulations, thrust force Is a predetermined quantity that Is often 

derived from motor performance tables, experiment or theoretical estimates. 

Therefore, the thrust magnitude Is made available to the simulation at any given 

time (stored versus time In an Input array). Ideally, for more complex 

simulations, the thrust force would be determined from the computation of 

Internal flows. If the vehicle Is assumed rigid and the thrust vector Is aligned with 

the vehicle body x-axIs, no thrust moments will develop. For the case where the 

thrust force Is perfectly Inline with the vehicle body x-axIs, the thrust force vector 

Is given by
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Fr = (5.2.1)

where T is the thrust magnitude at a given instant.

In general, the thrust vector is not perfectly inline with the body vehicle axis. 

Misalignments may arise from a variety of sources, deliberate and unintended. 

For rocket vehicles, deliberate thrust misalignments are usually the result of 

active thrust vector control methods that are typically employed to maintain a 

desired attitude or trajectory. This is accomplished by the redirection of the 

effective thrust vector from its nominal position. This can be accomplished with 

gimbaled nozzles or a variety of other methods including jet vanes and cold gas 

injection, which can vary greatly in cost, complexity and effectiveness.^^

Unintended thrust misalignments are often the result of motor asymmetries and 

irregularities. Minor manufacturing defects in the nozzle, exhaust flow or vehicle 

mass asymmetries all can adversely affect the accuracy of the thrust vector in 

relation to its desired nominal orientation. These unintended thrust 

misalignments also generate moments which can negatively reflect upon overall 

vehicle performance. Thus for larger, more complex and costly missions, the 

thrust misalignment characteristics are typically known parameters and are 

actively counteracted.

For the current model, the thrust force is assumed to be a point force applied to 

a node that is pre-selected to represent the effective location of the engine 

nozzle. It is assumed that the nozzle will be embedded within the rocket casing. 

Focus is being primarily applied to the deformation of the body as a whole 

without specific concern at this point in time for the internal nozzle behavior.

Any resulting deformation of the nozzle key-node results in a corresponding 

deformation in the thrust vector. The thrust vector is permitted to acquire initial 

deviations from the nominal ideal thrust vector to capture the effects of 

manufacturing errors and such. These initial deflections of the thrust vector are
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represented as a set of translations and rotations, denoted by ôj. and 

respectively.

The nominally deflected thrust vector is now determined via

T ^ = (l + a ; )r  (5.2.2)

The thrust forces and torques at a user selected node can then be found with

fr(r) = (5-2.3)

where the flexible thrust rotation matrix is given by

C ^ = l_ 8 ;(r )  (5.2.4)

This rotation matrix relates the variable flexible rotations acting upon the thrust 

vector at the nozzle/thrust key-node location. The variable 8  ̂ represents the 

vector of flexible rotations at a specified time t.

Net body force and torques are given via

F X < )= C ; (#  (5.2.5)

G rW =[r;C Î(<)+C Î(/)5 î]r,. (5.2.6)

where is the fixed nominal location of the nozzle in the body frame.

5.3 Aerodynamics
The aerodynamic modeling is now addressed in detail. As mentioned 

previously many techniques are available that vary in accuracy and complexity. 

State of the art techniques such as CFD analysis, while desirable, are unrealistic 

for the current study due to prohibitory computational requirements and limited 

development time. Thus, for the sake of the current rocket application, simpler 

aerodynamic relations are employed to represent the dynamic loadings acting on 

the vehicle.^^'̂ ^
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5.3.1 Fuselage-Body Alone Aerodynamics

The body aerodynamics methodology employed in the following sections is a 

standard coefficient formulation. In the computation of rocket body aerodynamic 

loads, it is common to employ a system in which the aerodynamic forces are 

represented by normal and axial forces with respect to the body axes. This is 

opposed to the lift and drag convention, more commonly seen with other aerial 

vehicles such as aircraft, which defines the loads relative to local wind velocity 

vector. The direction of side force is determined via the right hand rule.

The force conventions are depicted in Figure 5.1 for the flight of a rocket 

vehicle in a vertical plane. The normal and axial forces are defined with respect 

to the body axes regardless of the orientation of the rocket vehicle velocity 

vector. In contrast, the lift and drag forces are dependent on the body velocity 

vector and need to be related into the body frame (^b) for use in the equations of 

motion.

V

Figure 5.1 : Normal Force, Axial Force, Lift and Drag Conventions
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The aerodynamic loadings are actually determined via a series of non- 

dlmenslonal coefficients that are either determined from theoretical or 

experimental means. The non-dlmenslonallzed aerodynamic coefficients are 

converted Into physical forces and moments via the following equations;

N = C^q^S (5.3.1)

A^C^q^S (5.3.2)

My = Cf̂ q̂ Sbi, (5.3:3)

where q„ Is the dynamic pressure, which Is given by

(5.3.4)

noting /?„ Is the density of air for the given altitude, S Is the reference area 

(commonly given as the fuselage cross sectional area for rocket bodies), and 6 *

Is the reference length (commonly given as the fuselage diameter).

Variable My Is the pitch moment about the lateral y-axIs. Similar coefficient

expressions exist for side force, and roll and yaw moments. If a more general 

flight problem Is under consideration.

These aerodynamic coefficients correspond to the rocket body fuselage alone 

(I.e., not Including fins), and may be further broken down Into components to 

express the Individual effects of various factors such as angle of attack {a),  and 

other rates such as à  and The rate of sideslip ( ^ )  can Influence these

vertical-plane coefficients, while sideslip angle (p) Is assumed to act only on out- 

of-plane forces and moments. Other factors may also be considered such as 

body rotation rates (œe) or any other term that may have an appreciable effect on 

aerodynamics. These additional effects are not Included In the equations below.

(5.3.5)

’ .........(5.3.6)
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~ ^Mo *** ̂ (5.3.7)

with Cf̂ , and being the normal force, axial force and pitch moment 

coefficients respectively for the rocket body.

Note: The coefficients that correspond to any angular rate terms (e.g., à,  fi or 

body rates cog, etc.), are non-dlmenslonallzed by the term

For a body of revolution, symmetry Implies similar conditions that may be used 

to reduce the complexity of the model, that Is, and . Thus,

the Equations (5.3.5) and (5.3.6) may be reduced to

Cff = C f f ^ c c - \ - C f i ^ { à - \ - (5.3.8)

(5.3.9)

These aerodynamic coefficients may be obtained from a variety of methods 

ranging in complexity, and accuracy. They may be generated with potential flow 

theories or more advanced methods such as similarity power laws, the cross flow 

drag analogy, and/or experimental tables.^^

5.3.2 The Aerodynamics Reference Frame

In the computation of aerodynamic loads, several frames of reference will be 

utilized to express quantities. The body frame Is attached to the tip of the rocket 

nose with Its x-axIs pointing forward through the nose and the z-axIs pointing 

nominally downward. This frame (% ) Is used primarily for the computation of the

rigid body properties. The subscript 'B' will be used to Indicate the vehicle body 
frame.

A key-node or series of key-nodes may be judiciously chosen at locations on 

the vehicle components to represent the average motions of the structures 

themselves. Since the body is flexible, the orientation of the nodal frame will be 

affected by the local deflections at the key-node location at any given time. For
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an undeflected node, the nodal frame Ĉ bn ) will be aligned with the body frame 

{"Pb)- The resulting nominal rotation matrix for relating these frames is then,

Note that the subscript ‘bn’ corresponds to the body key-node. The b' is used 

to differentiate from other frames defined at other key-nodes, which may pertain 

to the fin(s) or other components of the model.

Figure 5,2 depicts the relationship between the two reference frames just 

discussed: the body frame (% ) and the body key-node frame {Çtn )■ The 

location of the body key-node in Figure 5.2 is placed arbitrarily on the rocket.

o v ,

Figure 5.2: The Body Reference Frame and the Nodal Reference Frame

This project will utilize the orientation of the effective velocity vector at the key- 

node to define the average conditions acting on the relevant structure. These 

conditions will then be used to determine the effective aerodynamic orientations, 

which will later define the actual loadings acting upon the vehicle.

Taking into consideration the local angular deformations at the node of concern, 

and assuming small deformation angles, the rotation matrix becomes
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b̂n.B ~^bne
fx L l "  1 ^bnz - ^ b n y

yL ~ ^ b t a 1 ^bnx

_zL_ _  ^bny ~ ^ b n x 1

(5.3.10)

or

b̂n,B = 1 - 0 ^ (5.3.11)

where is the vector of rotational deformations at the key-node. The velocity 

of the key-node can be found to be

V ,„=V ^+cû> ,„+ù ,„ (5.3.12)

where is the vector relating the distance of the key-node in frame (% ), and 

is the vector of flexible translational displacement rates at the key-node 

location.

If wind is present, then the velocity vector is further adjusted via,

V , „= V ^ + < r , „+ ù , „ -V „  (5.3.13)

where V,, is the wind velocity vector

The total angular velocity of the key-node is taken to be the combination of the 

body rates and local angular rates:

(5.3.14)

Next one can define another frame of reference, the aerodynamics frame (^a ). 

This frame aligns itself with the velocity vector in such a manner so as to 

eliminate the sideslip angle (p). This is possible due to the fact that the body has 

an axisymmetric profile and is being considered separately from the fins. Thus, 

instead of allowing the velocity vector to be defined with respect to the body by 

two angles of inclination (i.e., angle of attack (a) and sideslip angle (P)), it can be 

defined by a single angle by rotating the reference frame such that the velocity 

vector is contained within the x-z plane. Additionally, since the orientation is 

defined by a single angle, fewer theoretical or experimental coefficients are
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required. Refer to Figure 5.3 for clarity. The origin of the body aerodynamics 

frame is collocated with the origin of the body key-node frame.

Xbn,

►v,

Zbn

Figure 5.3: Body Key-Node and Aerodynamics Reference Frames

The aerodynamic frame (‘̂ ba) x-axis is collinear with the x-axis from the nodal 

frame (^bn). That is,

(5 .3 .15)

The y-axis is then defined to be perpendicular to the plane that contains both the 

aerodynamic frame x-axis ( ) and the velocity vector V* = V* / | v j . Therefore,

ÿ  ba —
|v ; î ,J

or ÿ,,, = V;x hn (5.3.16)

Lastly, the z-axis is found via the cross product of the x and y-axes:

Ha = ^U ba  (5.3.17)
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Therefore the rotation matrix relating the aerodynamic frame (^ba) to the 

nodal frame (^bn) is given as,

Tyba (5.3.18)

Within this frame, the aerodynamic inclination angles are to be determined.

The angle of attack is given via the following equation:

s i n a , = ^ ^  (5.3.19)

or, assuming small angles of attack.

(5.3.20)

Since the body aerodynamics frame has been rotated to align the velocity 

vector with the x-z piane, the angle of attack will be strictly positive.

By definition, the sideslip angle is also effectively negated, so that

J3^=0 (5.3.21)

The rate of change of the angle of attack (a* ) and sideslip (y% ) may be

approximated by the following relations through the assumption that the key- 

node deformation rates and the body angular rates are the primary contributors. 

Further assuming the persistence of small angles gives,

(5.3.22)

where corresponds to the 3"̂  column vector within the skew symmetric matrix 

of nodal deformation rates (0j„), that is, more explicitly
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b̂a - - 0,bx
0

(5.3.23)

The rate of change of sideslip (A )  's similarly computed via

Pb ~ xr (5.3.24)

where corresponds to the 2 "'* column vector within the skew symmetric 

matrix of nodal deformation rates (0j„ ). More definitively it is given by,

y ha —

-e ,bz
0

e,bx
(5.3.25)

It is now noted that one additional reference frame is required, which pertains to 

the computation of the body forces and moments. This frame will be denoted the 

coefficient frame (^co), and is reiated to a frame in which the aerodynamic

coefficients to be used within the simulation are defined. If the coefficients are 

extracted from experimental tables, or from software packages, the values will 

typically be in reference to some fixed location. Figure 5.4 depicts this scenario, 

whereby the aerodynamic coefficients are defined with respect to the vehicle 

centre of gravity.

The coefficient frame is generally set up such that both angle of attack (a) and 

sideslip (P) angles may be present. However, as was previously stated, the 

aerodynamic frame is assumed to be inline with the incoming velocity vector, 

thus reorienting itself to eliminate p. As such, the orientation of the coefficient 

frame will be closely aligned to the aerodynamics frame so as to take advantage 

of the same zero sideslip formulation.

Figure 5.4 displays the current orientation of the coefficient frame as used 

within the simulator. The z-axis of the coefficient frame is parallel to that of the 

aerodynamic frame, and the x-axis oriented opposite to that of ( ^ ) .
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Note that the location of the aerodynamics frame and coefficient frame are 

selected arbitrarily.

CO

CG
CO

► V,

CO

Figure 5.4 Body Aerodynamics and Aerodynamic Coefficient Frames

The rotation matrix is then,

cos^ sin^ 0  

-s in ^  cos^ 0 

0 0 1

(5.3.26)

The relationship between (“Ĵ ba) and (^co) for the present rocket application is 

defined as a fixed rotation of ^=180° about the z-axis. Therefore,

-1 0 0
0 -1 0
0 0 1

(5.3.27)

Once in this frame, the appropriate aerodynamic forces and moments can be 

finally determined using the available aerodynamic coefficients.

PROFrRPt'OF 
RYER2GN LHÎRARY
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In summary, the general algorithm for computing the aerodynamic loads at any 

given time, and relating them back to the body frame is presented below.

1. Utilize the angular deformation rates of the key-node to define the local 

nodal reference frame (^bn).

2. Use velocity vector and nodal reference frame (^bn) to define the axes of 

the aerodynamic frame (^ba)-

3. Transfer velocity and aerodynamic angles into the coefficient frame (9co).

4. Compute aerodynamic forces and moments in the coefficient frame (‘pco) 

at the predefined reference location.

5. Transfer forces and moments to the aerodynamic frame at the 

aerodynamic key-node location from moment center. This is 

accomplished via the following transformations.

(5.3.28)

and

-  (r„  - 1- , > F „ (5.3.29)

where - r ^ J  is the skew symmetric matrix relating the moment arm

between the center of gravity and the location of the key-node.

Note that if the aerodynamic key-node is coincident with the center of 

pressure, then the aerodynamic moments at the key-node will be zero.

6. Convert loads back to nodal frame (^n ). Note that since both the

aerodynamics frame and the nodal frame are situated at the key-node 

location, there is no moment arm involved in the conversion between 

frames. The transformation is performed as follows,

(5.3.30)

and

(5.3.31)
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7. Lastly, convert the aerodynamic forces and moment back to the body 

frame (% ) for use In the equations of motion and for determining the 

gross body motion. This Is accomplished via,

(5.3.32)

and

(5.3.33)

5.4 Fin Aerodynamics

Some additional consideration must be paid to the determination of the fin 

aerodynamic properties. The stability of the rocket model Is closely related to the 

flexible deformation motions of the fins under various conditions. Thus, In 

addition to the computation of rigid body loadings defined with respect to key- 

node conditions, a nodal distribution method must be established for directly 

exciting the flexible motions. The reference case for the fin aerodynamics 

presented below Is the SPHADS-1 rocket vehicle with nominally fixed tallflns for 

ballistic flight.

5.4.1 Fin Aerodynamic Gross Loading

Each fin Is considered to be aerodynamlcally Independent from each other, and 

from the rocket body. That Is, each fin Is defined by It’s own reference frame, 

whose origin Is placed at a user selected key node located on the fin surface.

In the nominal undeformed state, the rocket fins are typically distributed equally 

about the circumference of the fuselage. The fin spacing Is then determined by 

the number of fins being used.

The orientation of each fin reference frame is defined such that the x-axIs points 

nominally fonvard towards the nose of the rocket. The local fin y-axis Is aligned 

such that It extends along the fin span perpendicular to the x-axIs. The direction 

of the z-axis Is then defined via the right hand rule. These orientations are 

summarized In Figures 5.5 and 5.6.
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Figure 5.5: Fin Reference Frames (Left and Top view)

Zb

VIEWED FROM 
NOSE

Figure 5.6: Fin Reference Frames (Front View)

The following rotation matrix relates these nominal undeformed fin frames to the 

body frame, and is defined with respect to a rotation about the body frame x-axis, 

that is.
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1 0  G
G cos «S’, sin «S}
G -sin(S', cos^

(5.4.1)

where 0 , is the nominal angular location of the i-ih fin. For evenly spaced fins, 

the ^ 's  are given by

^  where 1 = 1 , 2 ,..., (5.4.2)

The rocket model under consideration allows for flexible deformations of both 

the fuselage and fins. The main focus of this project is to consider the flexibility 

of the fins and to determine the resulting relationship with respect to flight 
stability.

Ideally, each fin would determine the instantaneous pressure distribution over 

the deflected fin surface for every conceivable deformation shape. However, to 

allow for this capability, advanced CFD modeling would likely be required to 

capture all of the aerodynamic interference effects induced by the scope of 

conceivable twisting and bending motions. While CFD techniques are desirable 

in terms of accuracy, they are unfortunately impractical for this study and thus 

simplifications must be applied.

To account for the deformation of each fin, an average deflection is assumed 

Gsing the flexible deformation of the key-node. Therefore, although the fins are 

allowed to structurally deform to any level of complexity as provided through the 

degrees of freedom inherent to the model, the flexibility as seen through the 

aerodynamics is reduced down to a set of three flexible rotations (Gy, ). That is,

aerodynamlcally speaking, the rocket fin is represented by a rigid undeformed 

structure oriented with regard to its nominal state by (G y, ).

The rotation matrix corresponding to the flexible rotations of the key-node is 
Qiven by,
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Therefore, the rotation matrix relating the body frame ( ^ b) to the iocal fin 

reference frame (^,i) is

Cyj (5.4.4)

The fin aerodynamics are simplified in such a manner so as to consider the 

normal force as the primary component for driving the flexibility. The normal 

force for the Mh fin is given by

(5.4.5)

where the normal force coefficient is

(5.4.6)

where is the normal force slope of the /-th fin, and is the angle of 

attack of the /-th fin.

The relative velocity as seen by the /-th fin key-node must be determined for the 

computation of the nodal forces.

The effective rotational velocity of the /-th key-node is given by,

«>/, (5.4.7)

The effective translational velocity of the /-th key-node in a frame parallel to the 

body frame is

'̂ Bf, ~^B (5.4.8)

The effective translational velocity in the deformed fin reference frame is given by 

^ /i ~ (5.4.9)

where = '' fy

L ^J

The angle of attack of the fin is then.
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Uf =tan‘
J l

(5.4.10)

The sideslip angle may also be determined via

-1
2
fi, J

(5.4.11)

However, this approach does not consider side force in the analysis of the fins, 

since the focus of the aerodynamic loading is with respect to the normal force. It 

is generally assumed that the side force will be small in relation to the normal and 

axial forces for conventional fin configurations.

Thus, it is now possible to determine the aerodynamic forces acting upon each 
of the fins.

The fin forces are given as

F/,=

Where the axial force (i^^ ) is given by

Pfic, (5.4.12)

The side force ) is considered to be of secondary importance and is 

consequentially negated, i.e..

(5.4.13)

The normal force (F^^ ) is then

Pfe, = ~{̂ Na )/, (5.4.14)

With respect to the rigid motion of the vehicle, these loads now need to be 

converted into forces and moments with respect to the body frame. This is 

accomplished with the following procedure.
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The forces are converted back Into the body frame by using the previously 

defined rotation matrix (C^j ):

= %  (5.4.15)

Note that . The moments are then

^ B f,= r}F s f,= r}C ^ f,F f, (5.4.16)

5.4.2 Fin Aerodynamic Distribution

The fin aerodynamic loads not only contribute to the gross body motion of the 

vehicle, but they also must be considered as local 'nodal' loads, which act to 

drive the flexible excitation of the structure.

A method for distributing the loads over the fins must be established. In the 

preceding section, fin loads were defined with respect to the fin key-node 

orientations. The chosen method of load distribution is accomplished through the 

use of spanwise and chordwise load factors, given as Kb and Kc respectively.

These factors are dependent upon the load distributions profiles that develop 

over the fins through various flight regimes. The profiles represent the general 

shape of the load allocation for combinations of various flight parameters such as 

angle of attack (a), Mach number (M»), altitude (h), and so on.

The fin dimensions are non-dimensionalized such that the spanwise and 

chordwise positions of each node within a given fin is represented by a number 

between zero and one.

= 0 - ^ 1  and = 0  —> 1

More specifically, the spanwise position is given by

n , (5,4,17)
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where is the non-dimensionalized spanwise position of node-j, yj is the

spanwise location of node-j from the body frame x-axis, y„ is the spanwise

location of the root chord from the body frame x-axis, and b is the total span of 

the fin.

Note that in this scenario, = 0  and = 1  correspond to the root and tip chord 

locations respectively. Similarly, the chordwise position is found via

(5.4.18)

where is the non-dimensionalized chordwise position of node-j, Xj is the

chordwise location of node-j along the body frame x-axis, is the location of 

the local chord leading edge on the body frame x-axis, and Cj is the local chord 

of the fin.

Note that for this reference = 0  and x̂  = 1 correspond to the leading and 

trailing edges of the local chord respectively.

The distribution profiles are also non-dimensionaiized such that the magnitudes 

of Kb and Kc range between zero and one. That is,

Ülj = 0  —> 1 and = 0  —> 1

The spanwise and chordwise factors are then combined to generate a fractional 

percentage of the total load. The nodal load for they-th node is then determined 
via,

F.K,
4 = - ^  - (5-4-19)

Where is the fin force to be distributed, is the total load factor of node-j, 

where (5.4.20)

These nodal loads must be placed into a full order load vector and subsequently 

transformed to generate the reduced order load vector:
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f .  = s % (5.4.21)

The procedure for generating the load distribution profiles is dependent upon 

several factors including the Mach number, angle of attack, normal force slope 

and fin geometry. Subsonic spanwise profiles are handled via a Fourier series 

expansion.^^’̂ ® The fin distributions for supersonic flow were computed through 

the use of supersonic wing theory.^® The methodology for determining these 

load distribution profiles are presented in Appendix A.

5.4.3 Load Distribution Methodology

A sample spanwise load distribution is included below in Figure 4.7.

0.9
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Figure 5.7: Sample Spanwise Load Distribution

The profile above shows that the maximum loading is given at the root of the fin. 

The load at the tip chord (yb = 1) is zero. The curved profile shows a computed 

load distribution for an arbitrarily chosen flight condition. The fin structure is 

discretized into a finite number of nodes, and as a result, the load is segmented 

into several nodal loads. For configurations with a coarse spanwise mesh, the 

resulting effective nodal load representation shown in Figure 5.7 will not
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adequately capture the center of pressure location given by the continuous 

profile. Thus, a method for adjusting the computation of the load factor is 

required and is presented.

To retain center of pressure location consistency, the loads must be adjusted 

using a nodal weighting methodology. For a given spanwise or chordwise 

section, each node is assumed to carry the loading across a half element edge 

length (yte) on either side of the node. Thus, all the loading across this segment 

will be collapsed upon the given node. For nodes at the root or tip in the case of 

spanwise profiles (or equivalently, leading edge and trailing edge nodes for 

chordwise profiles), the fin surface exists only on one side and therefore the 

loading region is (ybe/2). Figure 5.8 displays the region of influence for each 

spanwise node.

The new method for determining the spanwise and chordwise load factors is 

now found by computing the load at the center of the region of influence and is 

subsequently weighted by the length of the region of influence, that is,

(5.4.22)

(5.4.23)

Where and are the loads at the center of the area of influence, and 7̂ ,̂ 

and are the lengths of the areas of influence for the given node.

Note that for meshes with equal element sizing, will be equivalent to the

element edge length for central nodes, and ^ for end nodes. For meshes

with variable sized element mapping, the size of each element should be known 

to determine the appropriate nodal region of influence.

The total load factor (7T,) for each node is then found in the same manner as 

that described by Equation (5.4.20) above.
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Figure 5.8: Sample Spanwise Load Distribution (Adjusted)

The resulting profile provides much greater consistency with the originally 

computed center of pressure location, particularly for a coarse fin mesh. For the 

spanwise case, the tip nodes will carry a small nonzero loading, and the root 

nodes will have their total load diminished somewhat in relation to the central 

nodes with larger areas of influence.

The accurate capture of the center of pressure location is critical for the 

prediction of flexible fin motions. The fin bending motions are strongly influenced 

by the moment between the fin normal force and the spanwise center of 

pressure.

A sample load distribution for a fin at an arbitrary flight condition is shown in 

Figure 5.9
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Figure 5.9: Sample Fin Loading

Figure 5.10 shows the resulting adjusted nodal profile, with the resulting nodal 

loads represented as a series of red dots. Note that for the current profile, all 

nodes on the fin surface carry a load. This is in contrast to Figure 5.9, where the 

leading edge, trailing edge and tip nodes carried zero loads.

Figure 5.10: Sample Fin Loading (Adjusted)

5.4.4 Leeward Reduction due to Flow Blockage
As the vehicle is rolled, the orientation of the fins changes with respect to the 

velocity vector. For flight with zero angle of attack, and zero sideslip, the wind 

velocity experienced by each fin may be assumed to be equivalent. However, at
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non-zero angles of attack and sideslip, distinct aerodynamic environments 

develop upon the various fins. The fins in the windward plane are assumed 

toexperience the full relative vehicle wind velocity. The fins in the leeward plane 

are assumed to suffer some effects of wind blockage and interference due to the 

windward fins, the body or both.
At any given instant, it is possible to determine which fins lie in the windward 

and leeward planes by analyzing the rocket orientation. The situation is 

illustrated in Figure 5.11 below.

5. = 270

180

5x — 0

VIEWED FROM 
NOSE

Z b

Figure 5.11: Orientation for Determining Windward and Leeward Fins

The angle between the y and z components of the velocity vector ( 6 |  ̂) and 

static angular position ( ^ )  of each fin are the important factors in determining

the whether a fin is in the windward or leeward plane. The net orientation of the 

/-th fin can be determined by

(5.4.24)
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where

(5.4.25)

If the net orientation ( â,̂ , ) of the /-th fin is within the range of 0 ° < < 180° ( 0

^ < 71 rad), then the fin is in the windward plane. If the /-th fin falls within the

range of 180° < < 360° (jt < < 27t rad), then the fin is in the leeward plane.

Reference 31 assumes a linear increase in the percentage of load attributed to 

the windward fins for increasing angle of attack. The following formula is used to 

distribute the total fin loads between the windward and leeward planes for a 

cruciform-tail rocket at a roll angle of (|) = 45° (i.e., the “x” configuration). A 

maximum leeward loading of 90% is acquired at an angle of attack equivalent to 

or greater than 65°.

For a ^  65°,

(pn)mr 0.5+ 0.4 (5.4.26)

Where a is in degrees. Similarly, the percentage of the total load attributed to the 

leeward fins is linearly decreased. For a ^ 65°,

0.5-0.4 a
.65.

(5.4.27)

Above a = 65°, the ratio remains constant.

The above relation may be extrapolated to include the relative loads carried by 

fins at any orientation. The method for determining the fin loads in Reference 31 

is different from the one employed here. Reference 31 computes the total load 

acting upon the fins, and then attributes a percentage of the total fin load to the 

windward and leeward fins. However, for this case, the load of each fin is 

determined separately as outlined in Section 5.4.2. Thus, a load reduction 

factor, hereby introduced as ‘/ i^  \  must be determined to represent the effects of 

flow blockage and interference upon the leeward fins.
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It is assumed that the windward fins will receive 100% of their normally 

calculated load for any flight condition. The minimum condition exists at a 

relative fin position of ô,̂ , =270°, where the fin is exactly 180° away from the 

body velocity wind vector.

Thus, it is known that at =180°, /^^  = 1. The leeward load reduction factor 

is also known for the case of =45° (i.e. =225° in the leeward plane), using

Equations (5.4.26) and (5.4.27). Thus,

(5.4.28)
\pn)mr

It is assumed that the variation in between =180° and =270° will be 

exponential. Thus,

(5.4.29)

where xxg is the function time-constant, and

%̂ = 1- cos(^,, -180°) (5.4.30)

The term V  may be extracted from the analysis of the equation at = 225°. For 

example,

r (a )  =  -ln[/ig.(225°,a)xg(225°)] (5.4.31)

The profile is given to be symmetric about S,̂  = 270°. The resulting leeward 

reduction profiles for an arbitrarily oriented fin are presented in Figure 5.12. 

Profiles are shown for up to a = 40°.

The method outlined above is an approximation. In reality, there are many 

complex interactions, particularly at high velocities, that induce interference 

effects on the tailfins. For example, for larger Mach numbers, and non zero 

sideslip angles, asymmetric body vortices will be shed which can drastically 

affect the relative loadings of certain fins.^^ The flow properties from arbitrarily 

deformed fins can additionally impose flow variations that are difficult to 

characterize and predict in general. To achieve such a level of accuracy.
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advanced CFD techniques would likely need to be employed to detail the 

complete interactions between all structures.
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Figure 5.12: Leeward Load Reduction Factor

5.5 Aerodynamic Coefficients

The aerodynamic coefficients used within the flight simulation aerodynamics 

subsystem have been tabulated from the results given from the program Missile 

DATCOM.^ The resulting outputs are specific to a rocket of SPHADS 

dimensions, with coefficients collected for both the fuselage and fins. The 

coefficients are defined in the coefficient frame (5̂ co) as was defined in Figure

5.4 Results were tabulated for speeds up to Mach 5, and angles of attack up to 

20°, for a variety of altitudes. Some sample results are presented in the following 

figures. The profiles are given for a fixed altitude of 5 km.

Figure 5.13 depicts the axial force coefficient ) corresponding to the 

fuselage versus Mach number. A sharp rise is evident when approaching
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transonic conditions, as is expected. Profiles are shown for three separate 

angles of attack.

0 5
  a  = 0 deg
  a  = 5 deg
  g  = 10 deg0 45

§0 35o
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Figure 5.13: Body axial coefficient ) vs. Mach at h = 5 km

Figure 5.14 shows the fin normal force coefficient with a change in angle of 

attack ( ). For supersonic speeds the coefficients decrease rapidly for each

of the three orientations presented.
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Figure 5.14: Fin normal force slope coefficient ( ) vs. Mach at h = 5 km
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Some sample results of the location of the fuselage center of pressure are 

presented In Figure 5.15. The values shown are in terms of number of fuselage 

reference lengths, where the reference length is typically given to be the fuselage 

diameter (12.7 cm, for this case). The measurement is defined with respect to a 

DATCOM reference center (i.e., the nominal e.g. position), with positive numbers 

indicating the center of pressure being forward of the reference point (i.e., 

towards the rocket nose). The current DATCOM reference point is defined at a 

point 1.59 meters aft of the rocket nose, noting the total vehicle length is 2.75 m.

  a  = 0 deg
  a  = 5 deg
—  g  = 10 deg

3 50 5
Mach Number

Figure 5.15: Fuselage center of pressure location vs. Mach at h = 5 km in 
terms of fuselage reference lengths

5.6 Stress Approximation
One facet of the flexural deformation dynamics not modeled explicitly within the 

simulation engine are the structural limitations of the vehicle material properties. 

That is, if the loads become large enough, the material strength may be 

exceeded. The structural component may then deform plastically, and may 

indeed fail destructively.
In the current project, the primary factor driving the system instability is the fin 

deformation. An engineering approximation may be made by assuming the fin
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structure to be represented by a cantilevered Euler Bernoulli beam. The stress 

due to bending in the fin may be found with the flexure formula of Euler Bernoulli 

theory.^® That is,

a = ̂  (5.6.1)
I

where M  is the bending moment acting on the fin. In this case, the moment 

would be derived from the Normal force acting at the center of pressure.

Variable is the distance from the centroidal axis (i.e., the centerline of a 

symmetric tail fin section). Variable /  is the area moment of inertia for the given 

cross section 

where

and c is the average chord.

The term may alternately be expressed as the distance from the centroidal

axis to the maximum point of compression or tension. For the cantilevered 

beam-fin case, the tensile and compressive maxima are situated on the upper 

and lower surfaces of the fin root dependent upon the direction of fin 

deformation.

Table 5.1 gives the yield and ultimate stresses for some aluminum alloys.^®

Material (MPa) (MPa)
Aluminum alloy 2014-T6 410 480
Aluminum alloy 6061-T6 275 310

Table 5.1: Aluminum Alloy Properties ................

The bending moment acting on the fin is assumed to be simply dependent on 

the fin normal force and the spanwise location of the center of pressure. Thus,

Assuming the center of pressure is located at the mid-span, the following 

equation yields the critical value of normal force to reach the yield strength of the 

given material:
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This current chapter has defined and detailed ali of the forces that are deemed 

most pertinent to the gross and flexible motions of a flexible rocket vehicle. In 

the next chapter these forces are combined with the equations of motion and the 

simulator framework as described in Chapter 4 to present various simulation 

results.
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Chapter 6 : Results and Discussion

In the sections to follow, results will be presented for a variety of test scenarios. 

First, simple representations of the rocket stability problem will be evaluated. 

Later results from the three dimensional flexible flight simulator will be presented 

and discussed.

6.1 Planar Pinned Model
Perhaps the simplest stability validation model available considers a rocket 

pinned at the mass center within a wind-tunnel. The rocket is free to rotate in the 

pitch plane, and the fin flexibility is represented by a spring as shown in Figure 

6.1. The fin deformation (6) represents the scope of flexible deformation 

permitted in this model and corresponds to the movement of the fin center of 

pressure in response to the vehicle loading. The fin is free to deform in a 

direction perpendicular to the fuselage. The distances from the rocket mass 

center to the body and fin centers of pressure are denoted by ‘a ’ and ‘d’ 

respectively.^® The rocket is assumed to lie in the x-y plane.

N b

As

Figure 6.1: Pinned Planar Stability Model

For longitudinal stability to exist the vehicle composite aerodynamic center must 

lie aft of the vehicle center of gravity.
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The equation of motion for this two degree of freedom system is then

J -m ^ d je ^B~P'xf^-Fyfd
-m ^d m, \[s_

The vehicles loads are summarized by

x̂f — ~- f̂ —

where

Uj = 0-\-

(6.1)

(6.2)

(6.3)

(6.4)

^ B  ~  Nag ̂  ^  ^ ^ ^ ^ N à g  ^  (6-5)

The equations of motion reveal that the pitch motion of the pinned vehicle is 

intrinsically linked to the fin structural deformation through the fin angle of attack 

term. Substituting Equations (6.2)>(6.5) into Equation (6.1) and rearranging, 

gives the equations of motion in the standard mass, damping, and stiffness 

format:

Mx + C i+ K x  = 0 (6.6)

' e ~
with X  =

where the mass, damping and stiffness matrices are 

J
M  =

-nifd
-n tfd m' /  J

(6.7)

c = qS Ncf

- c N cf

'N (rf

'N c f

(6.8)

K  = gS
-^Nag -̂^^N<4 d —

' N ( r f
5 (6.9)
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For the purposes of this test, the fin stiffness is assumed to be equivalent to that 

of a cantilevered beam with a load at a specified location along the span, as seen 

in Figure 6.2. The aerodynamic load is assumed to be located at the midspan 

location. Thus, from Euler Bernoulli theory, the resulting stiffness becomes

2AEI
k = -

The bending inertia is then defined as

7 = ̂ c / /

(6.10)

(6.11)

Figure 6.2 Fin Stiffness Load Approximation

The system is then transformed into state space to perform an eigenvalue 

stability analysis. The general state space form is given by X = AX. Thus, for 

the present pinned analysis, the following is generated:

where

X =

(6.12)
X M o" -I - c - K T x-
X 0 1 1 0

A =
M 0 
0 1

-1 —C —K 
1 0 (6.13)
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6 .1 . 1  Pinned Rocket Stability Analysis

The rocket model used for the above pinned wind-tunnel analysis, is based 

upon the SPHADS rocket vehicle as was previously discussed in Chapter 4. As 

the fins decrease in thickness, the stiffness decreases by the third power as seen 

in Equation (6.11). As the fins decrease in stiffness, they are subject to greater 

deformations, which in turn reduce the overall effectiveness of the fin. When the 

fin is no longer able to provide the required restorative forces to return the 

system to equilibrium the system is unstable.

For a model pinned in a wind tunnel, the system is automatically in equilibrium, 

provided there are no initial deformations, or deformation rates. The model may 

be tested for any configuration of fin thickness, velocity and atmospheric density. 

The atmospheric properties may be altered to simulate the flight at any desired 

altitude. The aerodynamic coefficients used in the analysis, were generated from 

a series of Missile DATCOM derived tables.^'* Refer to Section 5.5 for additional 

information regarding coefficients.

Figures 6.3 to 6.5 depict the stability boundary plots for the pinned planar 

rocket model for a variety of altitudes. The contours shown in these plot 

represent the maximum real eigenvalue component (cr  ̂= max(Re{>?.,}) ). This

component (cr  ̂) must be negative for stability to exist. The zero contour

represents the stability boundary. In this section and in the sections to follow, the 

term divergence will be used to describe unstable non-oscillating behaviour. The 

term flutter will be employed to describe any oscillating sinusoidal unstable 

growth trends. The nature of the instability in the following plots is flutter.
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Figure 6.3: Stability Boundary for Pinned Rocket Model (h = 0 km)
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Figure 6.4: Stability Boundary for Pinned Rocket Model (h = 10 km)
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Figure 6.5: Stability Boundary for Pinned Rocket Model (h = 20 km)

Referring to the above figures, it can be seen that increased aititude has the 

effect of lowering the stability boundary. This result illustrates the decreasing 

atmospheric density at higher altitudes, which in turn decrease the aerodynamic 

forces acting on the vehicle. In terms of stability, this effectively means that the 

configurations are more stable at higher altitudes. Thus, the fin thickness must 

be decreased to obtain unstable behaviour in comparison to a similar vehicle 

traveling at the same velocity at a lower altitude.

6.2 Planar Unpinned Model
Another simplified rocket flight model is now considered, with the rocket being 

removed from the wind-tunnel and free to translate in the x and y-directions. An 

equilibrium condition must be established to perform the desired perturbation 

analysis. The simplest free flight equilibrium scenario is the case for which the 

rocket is directed straight down, traveling at terminal velocity, with axial drag 

force balancing vehicle weight. For a given model configuration and flight 

condition the equilibrium may be established through the adjustment of the
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atmospheric properties. Equivalently, the altitude may be adjusted (assuming 

the use of a fixed atmospheric model) until the atmospheric density has 

sufficiently increased or decreased so as to yield the desired balance of forces.

The scenario is depicted in Figure 6 .6 . As with the pinned model the distances 

‘a’ and ‘d’ correspond to the distances from the mass center to the body and fin 

center of pressures respectively. Additionally, the rocket as shown in Figure 6 . 6  

is situated in the x-y plane. Gravity and weight are now added, along with 

disturbances ‘u’ and V  which represent velocity disturbances in the body frame x 

and y directions.

C

Figure 6.6: Unpinned Planar
Stability Model

The conditions required for this equilibrium 

state to exist are as follows.

fg = 0  a  a = 0 «/o = 0

where is the net upward force acting on the 

fin. The initial pitch angle must also be 

defined as -90°. All equations presented from 

this point onward refer to the rocket’s body 

frame ( ^ b)-

The velocities at the body frame origin are 
given as;

U  - F g  COS Û +  U

F  - - F g S i n û  +  v
(6.14)

The velocities at the body center of pressure 

are then given by (assuming small angles)

U , = U  =  F g + U

Fg =  F  +  a û  =  -F g û  +  v +  a à
(6.15)
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Similarly, the local velocities at the fin center of pressure are found to be,

U y = U  ^

Vf = v-dè+ôf=-v^e+v-dè+ô j.
(6.16)

Referring to Figure 6.6, the total net forces and torques acting on the vehicle are,

= —{Ag +Af)+W COSÛ
Y ,F y = {N s + N j- ) -W s in 0  (6.17)
Y ,M  = M s+Nsa-Nfd  + Â S

Now relating the net forces to perturbation forces and considering the fin spring 

loading yields the following:

SFy = [s^s+SNj)-W0
SM = SNbO -  SNfd + SMs + SA^S

^s=ÔNf-kô

(6.18)

m 0 0 0 Ù ' sf;
0 m c . V

0 I - r t ï jd 0 ÔM
0 nif -r t ifd nif _ Ô J s .

Small angles are assumed in the above set of equations and throughout the 

remainder of this section. The resulting perturbation equations of motion for this 

four degree of freedom system are

(6.19)

The perturbation forces in Equation (6.18) are now expanded below.

The normal forces are primarily affected by the local angle of attack.

The axial force components may be expanded to consider the perturbation 

effects of changing dynamic pressure and Mach number as well as angle of

(6 .2 0 )
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attack. Note that within this section the Mach number is denoted with an overbar 

' ’ to distinguish it and avoid confusion with the moment term. That is,

\pAyt ̂  Âf-̂  ̂  Âof ]
The term 6q can be extracted from the expansion of the dynamic pressure term 

as follows

e = 2 + 2 FoM+M^)w^p(F(f + 2 Fo«)=gr„+<^

Thus,

S q ^p V ,u =^u  (6 .2 2 )

The Mach number can similarly be expanded, yielding

Thus,

M  = MjLlflZ = = M +âM

The angles of attack can be determined with the expression

Y
a  = (assuming small a) (6.24)

Recalling Equations (6.15) and (6.16) relating the velocities at the body and fin 

center of pressures, the respective angles of attack then become,

a , = e - ^ ^

a ^ = 0 -
K
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Combining Equations (6.18)-(6.25) and following some rearranging, the mass, 

stiffness and damping matrices can be extracted. The equations of motion are

then again of the form,

Mx + Cx+Kx = 0 (6.26)

where

x = [x y 0 S j

The mass, stiffness and damping matrices for the unpinned planar rocket stability 

problem are given as follows.

M  =

m 0 0 0

0 m c. m/

0 Cx I -rtJfd

0 ntf -n tfd m, _

(6.27)

K  = g,S

0  0
S )

w

- c Nat

0

0

k

qoS

VoCau

0

0

0

Âa, Âaf
IL  

' \

s )

N̂of — C;Nat

(6.28)

-'Nat

-C ,

S

(6.29)
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6.2.1 Unpinned Rocket Stability Analysis

As was done for the pinned case, an elgen-analysis as outlined in Equation 

(6.13) was performed for the unpinned case. The stability boundary plot for the 

unpinned case is showcased in Figure 6.7.

1.2 1.4 1.6
Mach Number

Figure 6.7: Stability Boundary for Unpinned Rocket Model

Referring to Figure 6.7, the zeroth contour represents the stability boundary, 

with the stable region marked by the shaded region. The unshaded regions 

correspond to configurations that have at least one positive real eigenvalue 

component, and are therefore unstable. Above Mach 2, there is a sharp rise in 

the stability boundary contour. This sharp rising trend could be characterized as 

a wall of instability. Upon analyzing the outputs, the stability study reveal that the 

instability behaviour in this region is distinct from that of lower Mach numbers.

For M <2, the instabililty type is flutter, characterized by an exponential increase 

in the magnitude of oscillation with time. For configurations, which cross this wall 

of instability, the unstable behaviour is no longer oscillatory, but is characterized 
by a divergent exponential growth.

As mentioned previously, the equilibrium condition for the unpinned case 

involves the flight of a rocket in freefall at terminal velocity. To accommodate
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this, the nominal flight altitude has been adjusted for each veloclty-thlckness 

pairing, such that the vehicle weight Is equivalent to the axial drag force. 

Consequently, the results presented In this section are not directly comparable 

with those of the previous section due to the fact that the pinned rocket stability 

plots (Figures 6.3-6.S) assumes constant atmospheric density. For a more 

direct comparison, the equilibrium altitudes generated for each fin thlckness- 

veloclty pair In the unpinned case may be used In the pinned model. The results 

of this analysis are presented In Figure 6 .8 .

Mach Number

Figure 6 .8 : Stabiiity Boundary Comparison Pinned Model

The profiles depicted In Figures 6.7 and 6 . 8  corresponding to the unpinned and 

pinned cases respectively share some common trends. The figure show similar 

stability boundary profiles up to about Mach 1.2, with a peak near Mach 0.8 and 

a dip just above the sonic line. The stability boundary results for the pinned case 

are, however, skewed upwards by approximately 0 . 1  mm with respect to the 

unpinned model. Above Mach 1.3, the unpinned stability contour begins 

decreasing, whereas the pinned case continues to Increase. Additionally, there 

Is no sharp rise In the stability boundary to Indicate a wall of Instability for the 

pinned case as was seen In Figure 6.7. Due to the differences In the modeling 

approaches for these two cases, It Is to be expected that the analyses would
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generate distinct results. From the examination of these models, It Is known that 

small differences In configuration can greatly affect the overall stability of the 

rocket, and thus the results presented here are preliminary simplified cases to be 

used primarily as verification tools for the validation of the full three-dimensional 

(3D) flight simulator.

6.3 Comparison with Fuii 3D Fiight Simulation Data

The preceding simplified models are to be used as a means of comparison and 

validation for the full 3D flight computer program. Several test cases were run 

using the full six-degree of freedom flexible-body flight simulator to contrast with 

the planar results obtained thus far. The simulation results are presented In the 

stability boundary diagrams Figure 6.9 and 6.10. As before, the zero contour Is 

the calculated stability boundary, with the shaded region Indicating stable 

configurations.

Four simulation test points are highlighted In both Figure 6.9 and Figure 6.10. 

The rocket model Is allowed to reach a terminal velocity equilibrium condition 

through freefall within the simulator, similar to the method employed for the 

unpinned planar case. The model Is then excited with a small finite gust load, 

which stimulates the model away from equilibrium point. The resulting decay or 

growth of the disturbance exhibits the stability of the model configuration. For 

consistency, the 3D rocket model Is limited to body bending and fin flapping 

motions. No twist deformation modes are Included as no twist capability was 

provided for the planar cases. Each test point Is Indicated with equivalent 

second order system response behaviour parameters (cr  ̂ and <ŷ ). Inset on

Figure 6.10 are angle-of-attack plots, which characterize the relative stability of 

the system resulting from a finite disturbance. The resulting profile Is generally 

that of an underdamped system.^® The underdamped response for a second 
order system Is defined as

c( 0  = cos(û) r̂ -  (6.30)
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where is the real component of the system pole, and % Is the damped 

natural frequency.

Referring to the diagrams, the 3D simulation data Indicates that for a Mach 

number of approximately 0.62, fin thicknesses of 0.3-0.4 mm yield visibly 

unstable results. For the case where the fin thickness Is 0.5 millimeters, the 

system also produces a positive real component of a complex root, which 

renders the system unstable. However, In this Instance, <r̂  Is close to zero, that

Is, near the stability boundary, and as a result the system exhibits marginally 

stable behaviour. The slow growth of the angle of attack for this case may be 

seen In Figure 6.10.

The uppermost test case, for a rocket model with fins 0 . 6  mm thick yields only 

roots with negative real components. Thus, the system Is stable and will return 

to the equilibrium point after a period of time following the disturbance.

Each of the three methods presented here display similar Instability behaviour, 

for low Mach numbers. The nature of the Instability across this speed range Is 

sinusoidal (flutter). It Is the flexible deformations of the fins that render them 

Ineffective In maintaining the steady loads required to stabilize the flight vehicle. 

The results of the three stability analyses do not perfectly coincide, as one 

would expect from the vast differences In modeling assumptions and complexity. 

The simplified models do serve as a reality check In terms of verifying the 

behaviour of the 3D simulation. The planar models are highly sensitive to small 

changes In stiffness, and so serve as ballpark estimates for the more complex, 

and consistent 3D flexible-body flight simulation. The 3D simulation results 

involve much more complicated and precise loadings over the fin surfaces that 

vary with time and velocity.
One additional consideration Is that, for the planar cases, stability Is determined 

via a state space eigenvalue analysis, which assumes that the aerodynamic 

coefficients remain strictly constant. For the three-dimensional simulation runs, 

all of the aerodynamic coefficients become variable. Some coefficients. In 

particular those pertaining to body and fin normal forces, are strongly Influenced 

by the angle of attack.
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In comparing the results, It appears that the critical fin thickness values obtained 

from the unpinned study are approximately half of those of the 3D simulation.

The pinned case similarly underestimates the critical fin thickness by 

approximately 30% .

0 .6
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Figure 6.9: 3D Simulation Pinned Stability Boundary Comparison 
(2D contours of Od with 3D simulation test points results superimposed)
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Figure 6.10: 3D Simulation Unpinned Stability Boundary Comparison 
(a  profiles inset)

Figures 6.9 and 6.10 compared the results of the two simplified planar studies 

with several flight simulator test cases. The 3D simulation cases were forced into 

equilibrium by setting them into a freefall in which weight and drag were 

effectively balanced. Figure 6.11 shows a stability boundary contour diagram for
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some additional simulation cases. For the current plot, fin twist modes were 

included in the vehicle’s deformation capability, for greater accuracy.

x10
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Figure 6.11: 3D Stability Boundary (Equilibrium)

As can be seen in the figure, the actual stability boundary is estimated to be 

close to 0.55 millimeters. The inciusion of the twist deformation capability 

effectively makes each configuration slightly more unstable, due to the increased 
movement of the fin center of pressure caused by twist.

6.4 3D Simulation Verification

For the purpose of validating the integrity of the six-degree-of-freedom flexible- 

body flight engine, the system energies and momenta provide some useful 

insight. As outlined in Section 4.3.3, for a model released into flight arbitrarily 

with no external forces, several known results are expected from the laws of 
conservation of energy and momentum. That is,

1 . Total energy is constant (E)

2. Translational momentum magnitude in body frame (% ) is constant
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3. Translational momentum vector and magnitude in inertial frame are 

both constant

4. Angular momentum magnitude in frame paraiiel to (% ) iocated at mass 

center is constant

5. Anguiar momentum vector and magnitude in inertiai frame are both 

constant

A simulation was performed with ali external gravitational, aerodynamic and 

thrust forces and moments removed. The vehicie was given a rather arbitrary 

initial velocity as outiined below:

v̂ o = [20 10 2;r] = [2;r In  27v\

The model was then allowed to tumble for 1 0  seconds. The results of this 

simuiation are summarized in Figures 6.12-14.

Figure 6.12 shows the kinetic, potential and total energy profiles for the given 

simulation. There are variations in both the kinetic and potentiai energies as 

rotational energy Is converted into eiastic potential energy and vice versa. The 

third piot within the figure shows the totai energy to be constant throughout the 

duration of the simulation.

Figure 6.13 depicts the translational momentum profile in the body frame (%). 

The first subpiot shows the translational momentum vector (pg ). The 

corresponding components are continuaiiy changing as the vehicle rotates. The 

translational momentum magnitude (|pg|) shown in the lower graph does 

maintain a constant vaiue, as was expected.

Figure 6.14 simiiarly shows the translationai momentum vector (p ) and 

magnitude in the inertial frame (50- Also as expected, the vector components 

and magnitude are both shown to remain constant for the entire duration of the 

simulation.
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Figure 6.12: Simulation Energy Profiles

  X component
  y component
  z component

300

^  200

I  100

 ̂ -100

-200

205 098

205 098

time (sec)

Figure 6.13: Simulation Body Frame (^b) Translational Momentum Profiles
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Figure 6.14: Simulation Inertiai Frame Translational Momentum Profiles

Figure 6.15 and 6.16 show the angular momentum profiles for the current 

simulation.
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Figure 6.15: Simulation Body Frame (% ) Angular Momentum Profiles
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Figure 6.15 depicts the angular momentum vector and magnitude in a frame 

that is parallel to (^b) and situated at the vehicle mass center. The vector

components are seen to be non constant and oscillatory in nature. The 

magnitude for this configuration remains constant across the duration of the 

simulation.

Figure 6.16 displays the angular momentum vector and magnitude in the 

inertial frame. As is expected, the profiles are non changing for a system free 

from external forces and torques.
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Figure 6.16: Simulation inertial Frame ("p) Angular Momentum Profiles

Thus, the above figures confirm that the equations of motion are correctly 

formulated and are integrating the rigid and flexible coordinates properly. This 

verification is critical to ensure that the dynamics are properly modeled before 

completing any unconstrained three-dimensional flexible-body flight simulations. 

This assumes a linearly elastic system with no structural damping. With the 

vehicle dynamics in place, the simulation engine becomes capable of handling 

any variety of model variations. The resulting accuracy of any simulation then 

becomes dependent on the relevant description and application of external 

loadings experienced by the vehicle.
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6.5 Three Dimensional Flexibie Rocket Fiight Simuiations

Results are now presented for a series of rocket flexible flight simulations. The 

vehicle FE model has been reduced to allow for deformations with respect to 

body bending (in two planes), and fin flap and fin twist motions (for each of the 

four tailfins). Thus, the system has 6  rigid degrees of freedom relating the gross 

motion of the vehicle and 1 0  flexible degrees of freedom, which describe the 

structural deformations of the reduced order model in response to the external 

loadings.

8.5.1 Simulation Comparison

The flexible-body flight simulator developed by the author has been developed 

with the intent of being generally applicable to a wide variety of model 

configurations and conditions. The current version has been developed to 

simulate the flight of a flexible rocket vehicle across a wide spectrum of speeds 

and altitudes.

To exhibit these capabilities, it Is intended to examine several rocket 

configurations at distinct flight conditions. In the sections to follow, results are 

presented from these simulations, for the purpose of showcasing both stable and 

unstable behaviour at subsonic and supersonic speeds.

In each case, the rocket is given an initial velocity, and is permitted to 

decelerate in accordance with the axial drag force acting upon the vehicle. No 

thrust forces are applied. An on the fly stability analysis is performed by 

subjecting the vehicle to a series of sudden gust loads. The intent is to display 

both divergent and oscillatory (flutter) flight instabilities, for both subsonic and 

supersonic flight.

6.5.2 Subsonic Divergence Instabiiity

As the fin thickness is continually decreased, a point will be reached where the 

fins become so flimsy that they are subject to large deformations in response to 

relatively minute loadings. For such a model, the large deformations will most

95



certainly exceed the material's strength and yield or fail. The resulting behaviour 

may be summarized as a destructive fin divergence instability.

To exhibit this, a rocket model was developed with a fin thickness value of 0.3 

mm. The initial flight conditions are given as follows.

Vb<, = [ 2 0 0  0  of m/s = [o 0  of rad/s

[<̂ ^ (/f = [o 0 of h = 5 km

The rocket is subjected to two 0.1 second duration gusts of 5 m/s at both one 

and five seconds into the simulation in the body frame z direction. The 

simulation results are presented in Figures 6.17 -  6.26.

The angle of attack contour is shown in Figure 6.17. A clear runaway trend is 

noticeable up to about a = 25°. The simulation was halted shortly after 1.2 

seconds due to some aerodynamic parameters exceeding the model design 

limits. The profile shows that the configuration is inherently unstable, as 

evidenced by the fact that the runaway trend is clearly defined before the 

interaction with the gust load one second into the simulation. Thus, even in the 

absence of any gust disturbances, the unstable rocket behaviour quickly 

develops.

0.2 0.4 0.6 
time (sec)

0.8

Figure 6.17: Angle of Attack Profile for Subsonic Divergence
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The reduced order fin flapping deformation coordinates are presented next. It 

can be seen from the following figure, which depicts the deformations of each of 

the four rocket fins, that a clear divergence trend is discernable. At a 1.2 

seconds into the simulation, the deformation of these fins has grown to be quite 

considerable. The fin flap deformation magnitudes shown in Figure 6.18 are in 

relation to the user selected deformation shapes that were employed as reduced 

order model degrees of freedom. The profile magnitudes are unitless, being 

scale factors with respect to the original deformation shape vectors.
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Figure 6.18: Fin Flap Deformation Profiles for Subsonic Divergence

The vehicle body frame velocities are included in Figures 6.19-6.20. The 

translational velocities show the deceleration of the vehicle in the x-direction as a 

result of the axial drag forces as well as the rapid increase angle of attack, which 

transfers some of the vehicle velocity into the z-direction. This trend is visible 

within the z-velocity component as well.

The body frame angular velocities show a large unbalanced increase in the 

pitch rate (%). By the end of the simulation, the instability begins to creep into 

the other rates, as the remaining windward fin (plot number two in Figure 6.18)
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begins to deflect. This deformation also explains the translational y-velocity 

contour in Figure 6.19.
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Figure 6.19: Translational Velocity Profiles for Subsonic Divergence
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Figure 6.20: Translational Velocity Profiles for Subsonic Divergence
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Figure 6.22: ( ^ b) Aerodynamic Force Profiles for Subsonic Divergence
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Figure 6.23: {Çb) Aerodynamic Moment Profiles for Subsonic Divergence
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Figure 6.24: Roll, Pitch and Yaw Profiles for Subsonic Divergence

The divergent behaviour of the rocket model with 0.3 mm thick fins, is perhaps 

most effectively displayed with some animation still frames. Below in Figure 

6.25, the rocket deformation is presented in three images at 0.4, 0.8 and 1.2 

seconds. The rocket is viewed from the front, that is, looking towards the nose.

t = 1.20 sec 
a=  25.4 deg

t = 0.80 sec 
a=  5.86 deg

t = 0.40 sec 
a=  1.42 deg

Figure 6.25: Rocket Deformation (Front) for Subsonic Divergence

The fins are seen to deflect rapidly and to a considerable degree. The yield 

strength would surely be exceeded within the fins for any realistic material 

(aluminum being used here) undergoing such large deformations. The last frame 

shows the upper fin beginning to deflect. This deflection would then initiate the 

roll and yawing motions seen previously. An alternate view of the rocket is 

presented for these three animation frames in Figure 6.26.
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t = 0.80 sec 
a= 5.86 deg

t = 0.40 sec 
a=  1.42 deg

l = 1.20 sec 
a = 25.4 deg

Figure 6.26: Rocket Deformation (3D) for Subsonic Divergence

A three dimensional view of the rocket is now presented. The velocity vector is 

additionally represented by the arrow in Figure 6.26. The fins again are shown 

to deflect considerably under the loads applied to them. Note that the 3D images 

shown in Figure 6.26 are not precisely to scale as the rocket body frame y and z- 

axis scales have been enhanced to aid visibility.

Thus, it can be concluded that the rocket model, derived from the SPHADS-1 

vehicle, with fins of 0.3 mm nominal thickness is inherently unstable at subsonic 

speeds above Mach 0.55. The nature of this instability is divergence.

6.5.3 Subsonic Oscillatory Instability

The simulation was again run with initial conditions for a rocket model whose 

fins have a constant thickness of 0.4 mm. That is, the initial conditions are 

identical to those presented for the previous case.

The rocket is once again subjected to two gusts of 5 m/s each lasting a duration 

of 0.1 seconds at t = 1 and t = 5 seconds in the body frame z direction.

The angle of attack profile is shown in Figure 6.27 . The profile can be divided 

up into three distinct regions. The first region pertains to the flight prior to any 

disturbance (gust) loads acting upon the vehicle. There are small order 

oscillations in a present as a result of the acceleration due to gravity, which is 

initially perpendicular to the direction of flight. At t = 1 second, the first gust
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drives the vehicle into a sinusoidal oscillation. This oscillation is increasing in 

amplitude and is therefore unstable. The vehicle interacts with another gust five 

seconds into the simulation. The unstable growth trend continues indefinitely. 

Figure 6.28 shows the displacements of the rocket fin flap reduced order 

coordinates (i.e., the fin flap degrees of freedom). The unstable trend is clearly 

visible. The fins continue to deform to a greater extent with each oscillation. 

This vibration is undesirable and may lead to an undesireable trajectory or a 

more severe structural failure as the fins are torn away from the fuselage.
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Figure 6.27: Angle o f Attack Profile fo r Subsonic Flutter Instability
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Figure 6.28: Fin Flap Deformation Profiles for Subsonic Flutter Instability
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The body frame velocity profiles are depicted in Figures 6.29-6.30. The 

translational velocities (Fig 6.29), shows the vehicle velocity in the x-direction 

decreasing due to the axial drag force acting on the body. The body frame z- 

direction velocity profile shows the growing unstable sinusoidal trend. The same 

unstable behaviour is captured by the pitch rate (coy) velocity component in 

Figure 6.30.
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Figure 6.29: Translational Velocity Profiles for Subsonic Flutter Instability
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Figure 6.30: Angular Velocity Profiles for Subsonic Flutter Instability
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The Mach number profile Is shown In Figure 6.31. It Is Important to note that 

the exponential growth trends showcased above In the angle of attack and 

flexible coordinate deformations are being continuously moderated by the effect 

of the decrease In vehicle speed with time. That Is, as the vehicle slows down, 

and the Mach number decreases, the aerodynamic loadings are steadily 

decreasing due to decreasing dynamic pressure. It Is conceivable then, that If 

the vehicle Is permitted to decelerate further, a point may be reached where the 

system reverts to a stable configuration. If this should occur, the vehicle will 

have effectively traversed the stability boundary for the given flight condition. As 

seen by Figures 6.27, 6.28 and 6.31, the current configuration remains unstable 

throughout the duration of the simulation run, and through the speed range of 

Mach 0.46 through 0.62.
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Figure 6.31 : Mach Number Profile for Subsonic Flutter Instability

The body frame total aerodynamic forces and moments are depicted In Figures

6.32 and 6.33. The total aerodynamic loads are divided Into both body and fin 

components. The forces In the x-dlrectlon (axial) are decreasing due to the 

overall deceleration of the vehicle. The z-dlrectlon forces again depict the growth 

behaviour resulting from the two disturbances. This may also be seen In Figure

6.33 In the second subplot corresponding to the pitch moment.
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Figure 6.32: (/^b) Aero Force Profiles for Subsonic Flutter Instability
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Figure 6.33: CPb) Aero Moment Profiles for Subsonic Flutter Instability

Figure 6.34 shows the orientation data for the current simulation. The roll, pitch 

and yaw angles are presented in the following subplots. While the roll {̂ ) and 

yaw (v|/) angles remain approximately zero, the pitch (0 ) angle oscillates under 

the combined effects of the Earth’s gravitational acceleration, which initiates a 

“gravity turn”, and the gust load disturbances. The oscillations within the profile
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are a result df the increasingly unstable flight of the rocket, which is driven by the 
deformation of the fins.
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Figure 6.34: Roll, Pitch and Yaw Profiles for Subsonic Flutter Instability

The results presented above provide numerical representations of the flight 

instability for a rocket vehicle flying supersonically with fins 0.4 mm thick. The 

figures below depict the unbounded growth of deformation with some flight 

animation still frames. Figure 6.35 shows the front view of the rocket (looking 

down at the nose), and Figure 6.36 depicts a 3D representation of the rocket. 

The orientation of the velocity vector is also shown. Actual deformations have 

been magnified by a factor of two for clarity.

The first frame in both animation sets corresponds to the maximum deformation 

just prior to the initiation of the second gust load. Frame two depicts the first 

maximum deformation following the first gust load. Frames three and four 

represent further samples of oscillating deformation maxima, up to the simulation 

stop time of 10 seconds. Examining these images, a growth trend may be 

observed. Fin twist motions may also be observed in Figure 6.35, as evidenced 

by the apparent thickening of the fin cross section. The fuselage does exhibit
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some deformation behaviour as well; however, it is of a smaller magnitude than 

that of the fins, and is not discernable in the structural animation stills below.

t = 5.68 sec 
a=  3.49 deg

I = 4.50 sec 
a = -1.81 deg

t = 9.60 sec 
a=  4.12 deg

I = 7.62 sec 
a = -3.70 deg

Figure 6.35: Rocket Deformation (Front) for Subsonic Flutter Instability

I = 5.68 sec 
a=  3.49 deg

I = 4.50 sec 
a = -1.81 deg

I = 7.62 sec 
a = -3.70 deg

t = 9.60 sec 
a= 4.12 deg

Figure 6.36: Rocket Deformation (3D) for Subsonic Flutter Instability

6.5.4 Subsonic Stability

The simulation was again run with initial conditions for a rocket model whose 

fins have a constant thickness of 0.6 mm. The initial conditions are identical to
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those of the previous two cases. As before, the rocket is also subjected to two 

0.1 second duration gusts of 5 m/s at both t = 1 and t = 5 seconds in the body 

frame z direction.

The angle of attack profile for this configuration is showcased in Figure 6.37. 

An initial a oscillation is present simply due to the effect of the gravitational 

acceleration vector being perpendicular to the initial velocity vector. The 

disturbance gusts quickly induce higher magnitude oscillations, which appear to 

decrease exponentially. This decay pattern indicates that the longitudinal flight 

stability is maintained for the duration of the test scenario.
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Figure 6.37: Angle of Attack Profile for Subsonic Stability

Figures 6.38-6.39 show the various reduced order coordinate displacements 

for both the fins. Figure 6.38 represents the deformations of the fin flapping 

coordinates. Fins one and three lie in the body frame x-y plane and provide the 

required restorative forces. All four fins show similar decay patterns, although 

the deformations experienced by fins two and four are of a lesser magnitude. 

Figure 6.39 shows the fins twist motions, where fins one and three show a
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similar decreasing sinusoidal profile. Fins two and four are essentially inactive 

with respect to the twist deformation. For the current simulation, there is no 

significant body bending motion, and thus the coordinates corresponding to these 

motions are not presented.
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Figure 6.38: Fin Flap Deformation 
Profiles fo r Subsonic Stability

Figure 6.39: Fin Twist Deformation 
Profiles for Subsonic Stability

The decreasing sinusoidal trend is similarly observed in the vehicle rigid body 

velocities. Figure 6.40 displays the rocket translational velocities and Figure 

6.41 presents the angular velocity trends with respect to the body frame axes. 

Figure 6.40 shows the rapid decrease of the velocity in the x-direction. The 

value begins to level off towards the end of the simulation as the vehicle is 

approaching the terminal velocity condition, where the vehicle weight is 

effectively balanced by drag. This fact may also be observed by referring to the 

Mach number profile given in Figure 6.42. Examination of the z component of 

translational velocity (Vz), and the pitch velocity (coy) reveals stable bounded 

behaviour for the bounded disturbances applied to the vehicle.
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Figure 6.40: Translational Velocity Profiles for Subsonic Stability
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Figure 6.41 : Angular Velocity Profiles for Subsonic Stability
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Figure 6.42: Mach Number Profile for Subsonic Stability

Figures 6.43 and 6.44 depict the aerodynamic loads acting on both the 

fuselage and fins throughout the simulation. Unlike the previous cases, it can be 

seen from the pitching moment plot (My) in Figure 6.44, the fin moment always 

exceeds that of the fuselage. This in itself does not always guarantee stability, 

since the location of the body frame may be arbitrarily located, and these 

aerodynamic moments are defined with respect to (%). However, in the present 

context with the body frame affixed at the rocket nose, it has been shown in 

previous plots (angle of attack, pitch rate, Vz, etc.) that the forces acting on the 

fins, and the resulting moments, are sufficient to ensure longitudinal stability.

The diminishing sinusoidal profile is replicated both in normal force (Fz) and pitch 

moment (My), which both drive the vehicle recovery following the onset of the 

gust load disturbances.

The vehicle orientation history is summarized in Figure 6.45. The pitch contour 

shows a gradual pitch downward, as a result of the effect of gravity. In response 

to the sudden gust loads, oscillations develop within the pitch profile. However, 

these oscillations begin to quickly dampen out as the magnitude of the angle of 
attack oscillations is rapidly reduced.
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Figure 6.43: (%) Aerodynamic Force Profiles for Subsonic Stability
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Figure 6.44: ( ^ )  Aerodynamic Moment Profiles for Subsonic Stability
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Figure 6.45: Roll, Pitch and Yaw Profiles for Subsonic Stability

The final step is to analyze the actual physical deflections of the rocket vehicle 

with respect to time. Figures 6.46 and 6.47 illustrate the deformation of the 

rocket at four distinct instances within the simulation test. The first frame in each 

figure corresponds to the maximum deformation resulting from the first gust load. 

Frame two depicts the new local maximum deformation at a time just prior to the 

initiation of the second gust load. That is, this frame represents the extent to 

which the fin deformation magnitude has decreased following the first flight 

disturbance. The third frame shows the maximum deformation immediately after 

the completion of the second gust load. The fourth and final frame again depicts 

the last local maximum deflection just prior to the completion of the simulation.

All deformations have been enhanced by a factor of two for illustrative 

purposes. It can be clearly seen that the fin deformation is decreasing with 

respect to time. Figure 6.47 presents a three dimensional view of the rocket and 

additionally relates the orientation of the velocity vector which in turn illustrates a 
visual reference of the instantaneous of angle of attack.
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t = 1.17 sec 
a = -2.03 deg

l = 5.00 sec 
a= 0.97 deg

t = 5.20 sec 
a = -2.71 deg

t = 9.68 sec 
a= 0.69 deg

Figure 6.46: Rocket Deformation (Front) for Subsonic Stability

t = 1.17 sec 
a = -2.03 deg

t = 5.00 sec 
a= 0.97 deg

t = 9.68 sec 
a = 0.69 deg

l » 5.20 sec 
a « -2.71 deg

Figure 6.47: Rocket Deformation (3D) for Subsonic Stability 

6.5.5 Supersonic Divergence Instability

The focus is now shifted to examining the behaviour of various rocket models at 

supersonic speeds. The increased velocities correspond to higher dynamic 

pressures, which typically lead to higher loadings on the various aerodynamic 

bodies. Thus, it is presumable that a rocket operating in the supersonic regime 

will require thicker fins to maintain stability than that established for subsonic 

speeds.
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A flight simulation was performed for a rocket model whose fins have a constant 

thickness of 0.6 mm. The initial conditions for this scenario are

Vs<,=[700 0 of m/s o>Bo=[o 0 of rad/s

6 y/J = [ 0  0  of A = 1 0  km

The results of this simulation are presented in Figures 6.48-6.58

The angle of attack (a) profile is shown below. Similar to the subsonic 

divergence case, a clear exponential growth is evident. However, for this case, 

the growth is considerably quicker given that the simulation reaches the modeling 

limits before the first gust load is be initiated at t = 1 second.
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Figure 6.48: Angle of Attack Profile for Supersonic Divergence

Figures 6.49-6.50 show the fin flap and body bending reduced order coordinate 

deformations. The fin displacements show the divergence trend in fins one and 

three. Fins two and four are initially in plane with the velocity vector, with fin two 

being in the windward plane and fin four in the leeward plane.
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Figure 6.49: Fin Flap Deformation Profiles for Supersonic Divergence

The body deformation coordinates are additionally shown in Figure 6.50 due to 

the fact that some body (bending) deformation becomes evident as the flight 

instability develops. The profiles are identical due to the fact that the shape 

vectors used to define the body bending degrees of freedom were defined at 

angles to the body frame x-y and x-z planes. Therefore, the identical 

deformation values indicate motion in the body frame x-z plane (pitch plane).

Several of the following figures present contours that closely mirror the trends 

presented for the subsonic divergence case. Translational and angular velocities 

in the body frame are given in Figures 6.51 and 6.52. Divergence trends are 

predominantly evident in the translational z-velocity component and the angular 

(pitch) y-velocity component. The vehicle is also decelerating across the short 

duration of the simulation. This is illustrated somewhat by the x-velocity profile in 

Figure 6.51, and more definitively by the Mach number contour displayed in 

Figure 6.53.
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Figure 6.50: Body Deformation Profiles for Supersonic Divergence
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Figure 6.51: Translational Velocity Profiles for Supersonic Divergence
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Figure 6.52: Angular Velocity Profiles for Supersonic Divergence
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Figure 6.53: Mach Number Profile for Supersonic Divergence

The total aerodynamic loads for both the fuselage and fins are presented in 

Figures 6.54 and 6.55. Similar to the subsonic case, exponential growth trends 

are present for the normal forces (force z-component), and the pitch moment 

(moment y-component). The fins are incapable of providing the needed forces to 

establish longitudinal stability. As a result, the rocket motion is dominated by the 

aerodynamic effects of the fuselage and is subsequently unstable. As the 

instability progresses, other rigid body motions begin to develop as seen by the
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growth of the roll and yaw rates in Figure 6.55, and the side force (y-component) 

in Figure 6.54. The roll and yaw motion progression is also evidenced in Figure 

6.56, which presents the orientation data for the current simulation.
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Figure 6.54: (% ) Aerodynamic Force Profiles for Supersonic Divergence
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Figure 6.55: {‘Pb) Aerodynamic Moment Profiles for Supersonic Divergence
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Figure 6.56: Roll, Pitch and Yaw Profiles for Supersonic Divergence

The progression of the divergence instability is summarized in the following 

animation frames. The rocket is depicted 0.15, 0.3 and 0.467 seconds into the 

simulation. The rapid and large-scale deformation of the fins is evidenced in 

Figures 6.57 and 6.58. Figure 6.57, shows the front view (looking down at the 

rocket nose). Some body bending motion is visible in the third and final 

animation frame. Figure 6.58 displays a three-dimensional view of these same 

simulation images along with the current orientation of the velocity vector. The 

large deformation of the fins would again most likely exceed the yield strength of 

the rocket fin material (aluminum), resulting in destructive fin failure.

t = 0.15 sec 
a = 0.21 deg

t = 0.30 sec 
a=  1.45 deg

t = 0.467 sec
a=  19.27 deg

Figure 6.57: Rocket Deformation (Front) for Supersonic Divergence
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t = 0.30 sec 
as 1.45 deg

l = 0.15 sec 
a = 0.21 deg

t = 0.467 sec 
as  19.27 deg

Figure 6.58: Rocket Deformation (3D) for Supersonic Divergence

6.5.6 Supersonic Oscillatory instability

A flight simulation was performed for a rocket model whose fins have a constant 

thickness of 0.7 mm. The initiai flight conditions are identical to those of the 

previous supersonic case. The simulation resuits are presented in Figures 6.59- 

6.70.

The angle of attack contour for the present simulation is shown in Figure 6.59. 

Several distinct trends are discernable from this graph. Initially, there is a slight 

oscillation, driven by the gravitational acceleration as was evident in the previous 

cases. This continues until t = 1 second when the rocket is disturbed by the first 

5 m/s gust. This gust initiates an increasing oscillatory trend indicating that the 

current rocket configuration is unstabie.

As in all the previous simulation cases, the rocket is given an initial velocity and 

permitted to follow the trajectory that is dictated by the forces acting upon it. As a 

result, the vehicle decelerates across a wide spectrum of velocities throughout 

the simulation. This fact is illustrated in Figure 6.60, which depicts the Mach 

number variation experienced by the rocket. The Mach number decreases 

significantly from an initial value of approximately 2 . 3  to subsonic speeds at the 

simulation end time.

122



s. 0

lime (sec)

Figure 6.59: Angle of Attaék Profile for Supersonic Flutter instability

Referring back to Figure 6.59, the sinusoidal instability trend is reversed shortly 

following the second gust load. This trend nicely illustrates the vehicle crossing 

the stability boundary in transitioning from unstable to stable flight. This 

boundary crossing is effected by the rapid deceleration of the vehicle. Referring 

to the Mach number plot, it can be seen that at the time of maximum a 

magnitude, the rocket is traveling at a speed of roughly Mach 1.3. Thus, it may 

be inferred that the current rocket configuration with fins that are 0.7 mm thick, at 

an altitude of about 10 kilometers will be stable if the freestream Mach number is 

less than about 1.3. Speeds in excess of that value will tend to quickly develop 

unstable flight behaviour.

Figures 6.61 and 6.62 showcase the fin deformation coordinates for the current 

test case. Figure 6.61 shows the fin flap coordinates for each of the four fins, 

and Figure 6.62 depicts the fin twist motion coordinates. The fin flap coordinates 

show a clearly unstable, sinusoidal growth trend across the first half of the 

simulation. The return to stability is also indicated following the completion of the 

second gust load. Twist motions are rather small across the first half of the
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simulation, but quickly increase as the vehicle decelerates from roughly Mach 1.5 

to Mach 1.1.
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Figure 6.60: Mach Number Profile fo r Supersonic Flutter Instability
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Figure 6.61 : Fin Flap Deformation 
Profiles for Subsonic Flutter

Figure 6.62: Fin Twist Deformation 
Profiles fo r Subsonic Flutter

Coincidentally, the body bending deformations are active across the same Mach 

spectrum as the fin twist motions. The profiles are displayed in Figure 6.63. This is 

due to the fact that for the current model, the natural frequencies for both the body 

bending and fin twist motions are approximately equal (-90 Hz). This Is also
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evidenced by the higher frequency osciilations observable across this Mach range in 

the angle of attack profile. The combination of body bending and fin twist motions alter 

the previously smooth sinusoid contour.
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Figure 6.63: Body Deformation Profiles for Supersonic Flutter instability

The body frame translational and angular velocity profiles are shown in Figures 

6 .6 4  and 6 .6 5  respectively. The sinusoidal growth and recovery trend is 

captured again in the translational z-velocity component and the angular y- 

velocity component (pitch rate). Higher frequency effects may be observed in the 

jagged Vz profile across the range where the body bending and fin twist motions 

are most active. The pitch rates are also seen to be of quite large in magnitude 

for this duration.

The total aerodynamic forces and moments for both the fuselage and fins are 

presented in Figures 6 .6 6  and 6 .6 7 . As expected, the normal force (Fz) and 

pitch moment (M y) components both exhibit the unstable oscillating magnitude 

growth across the first half of the simulation followed by a stable oscillatory 

recovery. Higher order effects induced by the body motions show a rough jittery 

profile beginning around 4 seconds and extending through the next four seconds 

of simulation time.
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Figure 6.64: Translational Velocity Profiles for Supersonic Flutter
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Figure 6.65: Angular Velocity Profiles for Supersonic Flutter
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Figure 6.66: ( ^ )  Aerodynamic Force Profiles for Supersonic Flutter
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Figure 6.67: (“P b) Aerodynamic Moment Profiles for Supersonic Flutter

Next, the orientation data are presented through plots of the rocket roll, pitch 

and yaw angles against time. The pitch angle (0 ) begins its standard gradual 

pitchover due to the effects of gravity. The gust loads then initiate some 

oscillations into what would otherwise be a smooth profile. The oscillations
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Initially grow then suddenly begin to decrease as the vehicle decelerates and 

crosses the stability boundary, which results in a sudden dampening of the 

disturbance effects.
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Figure 6 .6 8 : Roll, Pitch and Yaw Profiles for Supersonic Flutter

It has already been established that the rocket model employing fins with a 

thickness of 0.7 mm, shows a mix of stable and unstable behaviour as the rocket 

traverses the supersonic flight regime. The information is now presented with 

several animation frames depicting the rocket deformations with respect to time. 

Figures 6.69 and 6.70 show four distinct instances of time from two different 

perspectives. All deformations have been enhanced by a factor of two to aid and 

highlight the flexible motions. Figure 6.69 shows a front view of the rocket, with 

Figure 6.70 illustrating a three-dimensional view.

The first frame shows a local maximum of deformation approximately one 

quarter into the simulation. At this point, the dominant motion is the flapping 

deformation of the fins. This frame is in the unstable, exponentially increasing 

segment of flight. The second frame shows the instance of maximum body 

deflection. The image in Figure 6.67 is somewhat misleading as the deformation 

is still rather small. It is important to recall that the rocket body is 2.75 meters (9

128



feet) in length, and thus the deformation appears significant from the front 

perspective. Figure 6.70 gives a clearer perspective regarding the extent of 

body deformation. The fins in this frame are also seen to have a considerable 

amount of twist. This is to be expected given that the fin twist and body 

deformation shapes have approximately the same natural frequencies. Frame 

three shows the point of maximum a, which follows closely after the maximum 

body deformation. The fourth and final frame shows how the rocket has 

recovered from unstable growth and has returned to smaller deformations 

dominated by the fin flapping motion.
I = 2.60 sec 
a = -0.89 deg

I = 5.52 sec 
a= 1.62 deg

i = 5.85 sec 
a=  3.20 deg

t = 9.68 sec
a = -0.83 deg

Figure 6.69: Rocket Deformation (Front) for Supersonic Flutter

I = 5.52 sec 
a s 1.62 deg

I = 2.60 sec 
a = -0.89 deg

I = 9.68 sec 
a = -0.83 deg

I = 5.85 sec 
a = 3.20 deg

Figure 6.70: Rocket Deformation (3D) for Supersonic Flutter
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6.5.7 Supersonic Stability

A final simulation was performed utilizing a rocket model that has fins of a 

constant thickness of 1 mm. The initial flight conditions are identical to that of the 

previous two supersonic cases. Additionally, the gust loads are identical to those 

explained in the previous cases. The simulation results are presented in Figures 

6.71-6.80.

The angle of attack profile is depicted in Figure 6.71. The contour shows a 

definite decreasing sinusoidal trend in response to the gust loads at one and five 

seconds. This indicates that the current configuration is indeed stable across the 

entire velocity range.

1.5

0.5

I
d

•1.5

time (sec)

Figure 6.71 : Angle o f Attack Profile fo r Supersonic Stability

The Mach number profile for this case is virtually identical to that of the 

previous, supersonic flutter instability case. The Mach number decreases from 

roughly 2.3 to 0.95 in 10 seconds. The profile was shown in Figure 6.60.

The deformation profiles for the fins and body are shown in Figures 6.72-6.74. 

The deformations that develop following the gust loads rapidly decrease as seen 

with respect to the fin deformation coordinates. As was the case with the flutter 

instability simulation, the body deformation is excited across the same time and
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Mach range. This is due to the fact that the only thing changing from model 

variations is the fin thickness. The natural frequencies for the body bending 

motions remain fixed at ~90 Hz.
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Figure 6.72: Fin Flap Deformation 
Profiles fo r Subsonic Stability

Figure 6.73: Fin Twist Deformation 
Profiles for Subsonic Stability
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Figure 6.74: Body Deformation Profiles fo r Supersonic Stability

The rigid body translational and angular velocities are displayed in Figures 6.75 

and 6.76 respectively. As is expected, the stable exponential decrease is evident 

in the z-velocity (Vz) and the y-angular velocities ( © y ) .
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Figure 6.75: Translational Velocity Profiles fo r Supersonic Stability
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Figure 6.76: Angular Velocity Profiles fo r Supersonic Stability

The total body frame aerodynamic loads are shown in Figures 6.76 and 6.77. 

The results once again confirm that the current model configuration is stable for 

the entire velocity range experienced by the rocket.
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Figure 6.77: (^ b) Aerodynamic Force Profiles for Supersonic Stability
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Figure 6.78: (% ) Aerodynamic Moment Profiles for Supersonic Stability

The roll, pitch and yaw profiles for the current stable simulation are presented in 

Figure 6.79. The dominant motion is with respect to the pitch angle, which 

experiences a gentle gravity turn effect. This profile is disturbed by the gust 

loads which initiate an oscillatory pitch response as detailed in the figure.
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Figure 6.79: Roll, Pitch and Yaw Profiles fo r Supersonic Flutter

Lastly, the physical deformation of the rocket vehicle is shown in Figure 6.80. 

The deformation is viewed from the front, that is, looking down at the nosecone 

section. Deformations have been enhanced by a factor of four to aid in visibility. 

The first frame shown below corresponds to the instance of maximum angle of 

attack experienced by the vehicle shortly after the removal of the second gust 

load. Frames two and three then correspond to the deformation of the rocket 

one and two seconds later. In the third frame at approximately 7.2 seconds, the 

fin deformation has nearly ceased entirely. A slight bending effect is noticeable 

in the second image. The three-dimensional view of the rocket is not depicted 

since even at 4X magnification the results are not easily discernable.

t = 6.20 sec 
a = -0.64 deg

t = 5.22 sec 
a=  1.47 deg

I = 7,19 sec 
a= 0.23 deg

Figure 6.80: Rocket Deformation (Front) for Supersonic Stability
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6.5.8 Results Summary

The preceding sections presented the detailed simulation data from a variety of 

rocket model configurations for both subsonic and supersonic flows. The results 

from these 3D flexible body flight simulations are summarized in the two tables 

below. The equivalent 2"'* order system response parameters are given in the 

columns corresponding to the behaviour immediately following the two gust 

loads. The aa term corresponds to the eigenvalue (i.e., the dominant system 

pole), which describes the resulting growth or decay of the flight parameters.

The frequency of oscillation is also shown by the term Od. In each case, the 

vehicle is decelerating, which explains the changing system response 

characteristics following the gust loads at t = 1 and t = 5 seconds.

The first rows in Tables 6.1 and 6.2 show the divergence cases, where no 

oscillatory motion can be observed. The second row of data presents the case 

which shows oscillatory exponential growth trend. Table 6.2 also shows the 

rocket reverting into stability following the second gust load as illustrated by the 

negative era term. The final row in both tables correspond to two completely 

stable configurations. The degree of stability can also be seen to increase 

towards the end of the simulation as the vehicle continues to decelerate. This is 

again evidenced by the eigenvalue becoming more negative for the second gust 

case. Another trend that becomes evident is that thicker fins result in higher 

frequencies of osciilation.

SUBSONIC GÜST1 GUST 2

Vo (m/s) tf (mm) Od (Dd (Hz) Od tOd (Hz)

200 0.3 4.2594 — — —

200 0.4 0.1233 1.2658 0.0481 1.2658

200 0.6 -0.1908 2.2472 -0.3273 2.1505

Table 6.1: Subsonic Simulation Summary
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SUPERSONIC GUST1 GUST 2

Vo (m/s) tf (mm) Od tOd (Hz) CTd ©d (Hz)

700 0.6 13.5013 — — —

700 0.7 0.4547 2.1277 -0.2483 3.4188

700 1.0 -0.2921 4.4444 -0.8964 4.6512

Table 6.2: Supersonic Simulation Summary
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Chapter 7: Conclusions

This thesis project has been developed with several goals in mind. The first 

was to develop a versatile flight simulation engine that is capable of accurately 

capturing the dynamic system responses for a wide array of sophisticated, non

simplified structural models. Special attention has been paid to the validation of 

the underlying equations of motion, so as to ensure that all relevant motions are 

being accounted for and considered.

Finite element modeling is an advanced technique that is employed for 

accurately modeling the dynamics of complex structures worldwide. By utilizing 

this FE capability, the resulting structural models maintain their applicability and 

realistic scope of behaviour. This is contrasted with an oft-used technique of 

using simple reduced structural elements to represent more complex models. 

The reduced order modeling techniques showcased within this report provide a 

means for balancing the desire for a large-scale sophisticated structural model 

with the constraints of computational efficiency. By selecting appropriate modes 

of deformation to represent the realm of vehicle flexibility, accurate responses 

may be acquired for a fraction of the processing power that would otherwise be 

necessary.

The software has been developed in a modular fashion, such that all 

components are standalone functional blocks that are easily customizable to 

meet the needs of any test scenario. For the purposes of this thesis report, the 

flexible vehicle simulator has been configured to simulate the flight of a flexible 

rocket.

The second principal goal of this project is to demonstrate the capabilities of the 

flight simulation engine by performing a parametric study with respect to a 

prototype rocket vehicle being developed at Ryerson University, the SPHADS-1 

rocket. The simulator was used to evaluate the flight stability of a rocket model 

matching the SPHADS-1 dimensions for various flight conditions and model 

variations.
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The simulation dynamics were verified for the case of an arbitrary velocity 

rocket tumbling in the absence of any external forces, by tracking the system 

energies and momenta. The three-dimensional flight simulator was additionally 

compared to some simplified planar flight models. It was shown that the planar 

tests tend to underestimate the values of critical fin thickness for a given flight 

configuration.

Results from the flight simulation program demonstrate the various flight 

instabilities that can develop in response to sudden gust loadings. The flexible 

motions of the aluminum fins were determined to be the critical factors in 

establishing and maintaining the rocket flight stability. Therefore to exploit this 

notion, several model variations were produced that maintained identical 

dimensions, with the exception of the rocket fin thickness. With the fin thickness 

as a variable, several flight tests were performed at both subsonic and 

supersonic speeds.

For both of these flight regimes, results were obtained that spanned the 
boundary between unstable and stable behaviour. For fin thicknesses as small 

as 0.3 mm, unstable divergent responses were exhibited for speeds as low as 

Mach 0.5, although it is believed that the instability for this configuration would be 

present for even lower velocities. The divergent behaviour is evidenced by large 

fin deformations, which in a physical setting would most likely result in the 

destructive failure the fins. As the fin thickness is increased, a sinusoidal 

unstable growth trend becomes evident in the simulation parameters. Certain 

vehicle velocities, fin deformations, forces, and moments all exhibit the 

characteristic growth, as deformations become increasing large in magnitude as 

time progresses. Finally, by increasing the fin thickness to a larger, more 

reasonable value, flight stability is retained across wide velocity ranges due to 

the increased rigidity of the fin structure.

The SPHADS-1 vehicle is expected to experience high Mach numbers in 

excess of Mach 2 during the launch phase.^® As a result, it would be 

recommended that the vehicle maintain a minimum of 1 mm thick fins to ensure
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adequate stability across the entire flight envelope. However it is noted that in 

reality, the fins would likely have a thickness in excess of 1 mm, as determined 

by the material strength and the dynamic stress profile seen at the fin root.

7.1 Recommendations for Future Work

Several recommendations can be made for future studies. While the modeling 

capability and the flexible body equations of motion are adequately sophisticated, 

the modeling and distribution of the external forces can be improved rather 

extensively.

In terms of aerodynamics, lower level CFD techniques such as strip or panel 

theory can be applied to the aerodynamic surfaces to establish a more 

comprehensive distribution of dynamic pressure (and corresponding loadings) 

with time. In particular, a model that could reasonably predict the flow distortion 

and interference effects for the scope of bent and twisted fins could greatly 

enhance the accuracy of the aerodynamic loadings. This could be accomplished 

via an on-the-fly computation, which may or may not be completely viable with 

respect to simulation efficiency constraints for the application. Alternatively, this 

data could be precompiled into a series of tables or functions that are relative to 

the instantaneous flight condition parameters and relative degree of deformation.

The current model does not permit variable mass applications, which would 

Include the burning of propellant. This is of particular interest for aerial vehicles, 

with rockets in particular. While the current model is capable of looking at 

relative instantaneous (quasi-steady mass) flight instabilities, it would be 

beneficial to emulate the entire flight envelope of a rocket from launch to apogee.

Another interesting proposition would be to consider the flight of other vehicles 

such as aircraft, or spacecraft. While some modifications would surely be 

required with respect to the application of the external forces and moments, the 

underlying dynamics should be quite capable of processing such FE-derived 

models.
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Appendix A: Fin Load Distributions

The load distribution techniques used to allocate nodal loads over the fin 

structure may be customized to match any level of desired complexity as is 

deemed reasonable or available. In the current context, the direct computation of 

the pressure distribution over the fin is avoided for the sake of simplicity across 

the range of allowable Mach numbers and non-linear aerodynamics. In contrast, 

simpler equations are employed, or tabulated experimental results may 

additionally be used if available.

As discussed in Section 5.3, the aerodynamic loads are determined through 

the use of tabulated aerodynamic coefficients for a wide range of Mach numbers, 

angles-of-attack and altitude.

A.1 Subsonic Aerodynamic Load Distribution

Many factors influence the load distribution over an aerodynamic surface such 

as a fin. Interference from adjacent bodies, disturbances from geometric 

protuberances, orientation of the velocity vector, normal or oblique shocks, all 

may serve to affect the loading.^°‘^̂  For low velocity applications, the distribution 

profiles may be approximated with some simple relations. Complex shock 

interference interactions may be present for high velocity subsonic (i.e., 

transonic) cases as regions of supersonic flow may arise over the fin surfaces for 

a given cross sectional profile. These interactions are highly dependent on the 

vehicle configuration and thus it might be beneficial to use more accurate 

experimental or theoretical profiles for improved accuracy within this transonic 

region.

A.1.1 Fourier Sine Series Fin D istribution Method

Spanwise Distribution
A simple method for acquiring a load distribution over an arbitrary finite wing or 

fin is to represent the loading with a Fourier sine series expansion.^ '̂̂ ®
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Thus, Prandtl’s integral equation for the circulation (T) at any section along the 

span using a Fourier expansion in terms of airfoil parameters is given by

T = AsV^Y.^„s\nne (A1.1)

where s is the span of a single fin (semispan)

Examples of the first four Fourier expansion terms are presented in Figure A1 

below. Once the Fourier coefficients (An’s) have been determined the terms are 

summed to reveal the load distribution.

0.5

-0.5 71/2

Figure A1: Fourier Coefficient Expansion

The first Fourier coefficient can be extracted from the flight characteristics 

including the normal force slope (C^^ ) and angle of attack (a), as follows,

' miR tiAR 

Define the Fourier series as

//(or -/%(,) = sin M - ^ 1

Rearranging and given = 0, yields 

/ la  sin ̂  ^  A„ sin w0(sin 0 + /m)

(A1.2)

(A1.3)

(A1.4)
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where

0̂̂ 00 _ ê̂ Na (A1.5)
8s 8s

where Cg is the local chord at the span location 0, and

Cg = c ^ (l-  ̂ )cos ̂

and 1 Is the taper ratio

The spanwise location (0) can be related to fin parameters via

z = —scos6 (A1.6)

Referring to Equation (A1.1), It Is evident that all the terms are known except 

for the Fourier coefficients (An’s). Typically four coefficients are used to provide 

an adequate spanwise distribution. Odd numbered coefficients are used If a 

symmetric profile Is desired (e.g., A i, A3 , As, A?), whereas a sequential 

numbering Is used If an unsymmetric profile Is preferred (e.g., Ai, Ag, As, A4 ). 

Spanwise loads are assumed to have a symmetric profile for subsonic flows. 

Thus, the Fourier expansion would appear as follows

//a  sin 6  =  sin ̂ (sin ̂ + / / ) + sin 3^(sin 6 + 3 //)+  sin 5^(sin ̂ + 5 //)+  . ^ 7  sin 7^(sin 6 + l f i )

(A1.7)

Equation (A1.7) Is a single equation with four unknowns. The coefficients may 

be determined by evaluating this equation at four distinct spanwise locations.

The angular spanwise locations that are commonly used are

The system can be solved by placing It In standard form

[a ]{x}= [b ] (A1.8)

or more explicitly,
sin (sin + //) sin 3 ,̂ (sin +3 //) sin5^,(sin^, +5 //) sin 7^ (sin ̂  + 1 / j )  

sin 6  ̂(sin 6 (2 + //) sin 3^ (sin ̂ + 3 / / )  sin 5^ (sin ̂ + 5 / / )  sin 7^ (sin ̂ + 7 / / )  
sin 6  ̂(sin ̂ 3 +//)  sin 3^ (sin ̂ + 3 / / )  sin 5 ^ 3  (sin ̂ 3 +5//) sin 7 ^ 3  (sin ̂ 3 + 7//)

(A1.9)

'{AC fias\n6^
4 //a sin ̂ 2
4 //asin^3

. k //arsing
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The coefficients are obtained by performing the following operation

{x}= [a ]-'[b ] (A1.10)

Examples of symmetric and unsymmetric Fourier coefficient load distributions are 

given in Figures A2 and A3 respectively.

71/2

Figure A2: Symmetric Profile

1.5

0.5

Figure A3: Asymmetric Profile

Chordwise distribution
The chordwise distribution is determined using a Fourier coefficient expansion 

method as was described in the previous section. The chordwise distribution is 

assumed to be asymmetric and thus the even Fourier coefficients (harmonics) 

are included. The actual profile used in the simulation is an adjusted Fourier 

coefficient distribution that maintains the center of pressure about the quarter 

chord line.

A.2 Supersonic Aerodynamic Load D istribution

For supersonic flows, shock waves inherently develop over the vehicle surface. 

The interactions of these shocks as they impinge on aerodynamic components 

can significantly alter the load distribution profiles. To capture precise 

distributions, CFD methods would likely need to be employed, particularly for 

cases with complicated structures experiencing high-speed flows. An 

approximate method is presented below that does include consideration for 

shock interaction over the fin surface.
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A.2.1 Supersonic Aerodynamic Distribution from Supersonic Wing Theory

The following method Is used to compute the span-wise load distribution profiles 

for a rocket fin in supersonic flow. Methods are presented for span loading 

distributions for both triangular and rectangular airfoils. The two cases are then 

combined to present results for a general wing with leading edge sweep (A) and 

taper ratio (A,) for a variety of relevant Mach number regions.^®

In supersonic flow, any disturbances can only propagate downstream. At any 

point in a specified supersonic velocity flow field, the region subject to 

disturbances or flow irregularities emanating from that point will be bounded by 

an imaginary conical contour. This boundary line is known as a Mach line, and is 

defined with a Mach angle (p) that is inclined with respect to the flow. The Mach 

angle is related to the Mach number and is determined via the following equation.

ju = sm

where

= tan“* (A2.1)

= (A2.2)

The section lift coefficient is given by the integration of the pressure distribution 

AP over the upper and lower surfaces of the airfoil, that is,

c . = - t A P d x  (A2.3)
c •'«

The span-wise load distribution is given by the product of the section lift 

coefficient and the local chord {cc, ). This will form the basis for determining the 

distribution profiles at a variety of supersonic speeds.

A.2.2 Triangular Wings in Supersonic Flow
The flow over a triangular wing in supersonic flow can be divided into two 

categories. For lower supersonic Mach numbers, the Mach angle will be greater 

than the semiapex (©) angle of the triangular wing. Therefore, the Mach line will 

lie forward of the wing surface leading edge as seen in Figure A4 (a). Thus, the 

fin will have subsonic leading edges. For larger Mach numbers, the Mach angle
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will become smaller than the wing semiapex angle, and the leading edges of will 

then become supersonic. This can be seen In Figure A4 (b).

X V xV

Figure A4: Flow Regimes over a Triangular Wing

Note that In Figure A4 corresponds to the root chord of the triangular fin.

A.2.3 Triangular Wing with Subsonic Leading Edges

For this case, the pressure distribution Is constant along radial lines emanating 

from the fin apex. The pressure distribution Is then,

4«tanû)
AP =  ■ (A2.4)

V tan CO

where a Is the angle of attack, co Is the semiapex angle, v Is the radial angle 

given by x = , and E Is the complete elliptic Integral of the second kind.

Elliptic Integral
There are several forms of elliptic Integral;^^’̂ ® however, only the second kind Is 

used and presented here. The second kind of elliptic Integral Is generally
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dependent on two factors, the amplitude (<j>) and modulus (m). The amplitude is 

typically within the range 0 ^ (j) f  :

E{m, I  ̂ \-msm^0d9 (A2.5)

The integral E is considered to be complete when <|) = f . Note that the modulus

is sometimes represented as the variable 'k' instead of ‘m’, where = m.

The flow over a triangular wing with subsonic leading edges generates an 

elliptical load distribution. Combining Equation (A2.3) and (A2.4), the load 

distribution can then be found. The resulting span load profile is,

cc, = (c c ,X J l-
tan  ̂V 
tan  ̂Û)

where (cc,\ is the span loading at the root chord, and is found via 

4ac, tanû)
k ) o = - E

(A2.6)

(A2.7)

A.2.4 Triangular Wing with Supersonic Leading Edges

For the case where the leading edges experience supersonic flow, the loading 

is no longer elliptical due to the effect of local supersonic regions over the wing. 

The load distribution for this case can be divided into two segments. The 

innermost region extends from the root chord to the point at which the Mach line 

intersects the trailing edge. The load distribution for this region is given by

/■ «2. 2 ' \  (b + y) . f  yj9̂  tan̂  CO+ b^
 —sin ^ — rz-------^  \ {̂b + yptanco

(A2.8)

cc, = 4a

ta n ^  CO — 1 ;r
yj9̂  tan̂  q}~b 
(b-y)jStanco

This equation is relevant for the regions on the fin bounded by 0^ y

The remaining outermost region lies forward of the Mach line and thus the flow 

over this section of the wing is completely supersonic. The variation here is 

linear, and is given by

cc, =
4a(b—y)cotco

- C O t ^  CO

(A2.9)
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over the region corresponding to ~ ^ <y <b .

A.2.5 Rectangular Wings

For rectangular wings the dominant characteristic that affects the profile is the 

interaction between the Mach lines emanating from the wing tips. Several flow 

configurations are possible for a given fin geometry at various Mach numbers. 

These are summarized in Figure AS below.

II
III

Figure AS: Flow Regimes over a Rectangular Wing

Note that in Figure AS, a rectangular half wing is shown, and that the x-axis 

may be seen as a plane of symmetry. Case (a) depicts the situation when the 

wing tip Mach line does not intersect any other Mach line on the surface of the 

wing. That is, the velocity is large enough such that the Mach lines emanating 

from the two tips do not cross anywhere over the wing. Case (b) illustrates the 

situation where the two Mach lines do intersect on the wing surface. For the half 

wing shown here, the intersected Mach line may be equivalently expressed as a 
reflection from an unseen solid surface.

Three distinct regions are depicted in Figure A5. Area I, corresponds to the 

portion of the wing that does not receive any influence of the disturbed flow from 

the tip chord. For this region the pressure distribution is given simply by.

(A2.10)
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The span load distribution is then

4ac,
cc, =■ (A2.11)

Within area II, the Mach lines streaming from the tip chord affect the flow over 

the fin surface. The resulting change in pressure within this region can be 

calculated and subtracted from the otherwise nominal pressure distribution àPj. 

That is, the pressure distribution within area II is given by

or

AP„=APj-AP„^

The resulting span-wise load distribution is given via 

4ac,
cc, =• Ic o s - 'f i -M È z d L l Mb-y) ^ b - y f  

Tc L c J n \  c ĉ

(A2.12)

(A2.13)

(A2.14)

Lastly, for area III, the Mach lines intersect and produce a region where the flow 

and resulting pressure distribution is affected from two sources. Conceptually 

this may also be represented as the nominal distribution being influenced by two 

separate disturbances.

AaAPj„ = {l -  [l -  i  cos"' (l -  2^ tan ̂ , ) ] -  [l -  i  cos"' (l -  2p  tan ̂  )J

or

— Afy t̂ip2

The resulting load distribution is given by

(A2.15)

(A2.16)

CC, = -Aaĉ
P

(A2.17)
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A.2.6 A rbitrary Fin w ith Leading Edge Sweep and Taper Ratio

The preceding equations for both triangular and rectangular fins in supersonic 

flow will serve as the basic building blocks for developing a method for 

determining the load distributions over a conventional tailfin.

Figures A6 and A7 show the construction of a generic tailfin with leading edge 

sweep (A ) and taper ratio (X). The fin presented here has no trailing edge sweep 

for simplicity.

Triangular
Wing

Rocket Fin

Rectangular
Wing

Figure A6: Rocket Fin Construction Figure A7: Fin Geometry

Next the loading conditions for a tapered fin will be constructed from the basic 

building blocks of the rectangular and triangular wings.

Figure A8 presents four loading scenarios for the given fin configuration, which 

will be used to derive the span load distribution data for any supersonic Mach 

number.
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XV XV

III XTXV

Figure A8: Flow Regimes over a Swept, Tapered Rocket Fin 
(a) Subsonic leading edges with body reflection (b) subsonic leading edges with 
no reflection (c) supersonic leading edges with Mach line intersection (d) 
supersonic leading edges with no intersection

Figure A8 (a) depicts the scenario In which the leading edge of the fin Is 

subsonic, and the Mach number Is sufficiently small to allow for the Mach line to
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become incident upon the root chord. It is assumed here that the fuselage is 

represented by a solid wall oriented perpendicular to the root chord. Thus, a 

region of doubly mixed flow will exist aft of the reflected tip Mach line. The 

reflected Mach line is conceptually equivalent to the Mach line that would 

originate from the tip of an identical fin reflected in the y-z plane in the absence of 

the fuselage. The innermost region bordered from the root to the point at which 

the reflected Mach line touches the trailing edge is affected by two disturbances.

An important observation to make before jumping to any load distribution 

conclusions is that unlike the case for the rectangular wing, the local chord c at 

any given spanwise location is not constant. For a rectangular wing, the 

percentage of chord affected by the tips decreases linearly since the chord is 

constant across the span. However, for a standard linearly tapered fin (A, < 1), 

the local chord increases in size towards the root, and therefore the overall 

percentage of local chord affected by the disturbed flow imparted by the tips 

decreases nonlinearly.

Therefore, a correction factor must be applied to pressure and load distributions 

that were presented in Section A2.3 for the rectangular wings. The correction 

factor utilizes the percentage of local chord affected by the tips in relation to that 

of a rectangular wing, that is,

/ . > = r : V  (A2.18)
\ tip )

where = - ^  is the ratio of chord affected by the tips to the local chord, and 

is the ratio of chord affected by the tips for a rectangular fin of

c = c,.

This correction factor allows for the same interference pressure change 

equations presented for the rectangular wing to be used for a tapered wing. 

Thus, the total spanwise loading is dependent upon the relative percentage of 
the chord being affected by Mach line effects.

156



For Figure A8 (a), the following load distributions equations are applicable over 

the indicated segments of the fin.

For the Mach range from M = 1 to the point at which the Mach line from the tip 

strikes the trailing edge of the root chord the region III will exist.

The Mach angle corresponding to this condition is given by

ûA = tan-1

/

The upper Mach limit for this scenario is then determined via 

1

(A2.19)

(A2.20)
sin//^

where the subscript 'u' is used to indicate the properties defining the upper Mach 

limit.
For area I, the section is dominated by the triangular wing with subsonic leading 

edges formulae. The region is defined for 0 < y < b :

m  tri-su b lip 1 —-cos"'
7T

I 2/8(»-y) I I  2 M i - } ’)
n

(A2.21)

where corresponds to the load distribution for a triangular wing with

subsonic leading edges. This was given previously by Equation (A2.6).

The span load distribution of the entire fin may be solved using this single 

equation. The reflected Mach line deflecting off the body may be accounted for 

by adjusting the relative area of influence for the overlapping segment through 

the fin area correction factor . That is, for the region that is affected by both

the incident and reflected Mach lines, the total disturbance can be summed to 

give an effective affected region, which may be handled directly by the term.

For case (b), as seen in Figure A8, the Mach number has increased such that 

the Mach line now intersects with the trailing edge, eliminating any reflections 

from the body. Two distinct regions for calculation are present for this scenario.
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The Mach range corresponding to case b) is bounded from the upper limit of 

case A up to the point at which the Mach line from the fin apex becomes collinear 

with the leading edge. That is, when the Mach angle (p) equals the semiapex 

angle (w),

which will occur at a freestream Mach number 

1
^uB =•

Thus,

For 0 < j  <

s m  M ub

P )

tan^ V
tan (o

where was stated previously.

(A2.22)

For the region,

cc, =

P
the spanwise loading is given by.

1—-cos"' 
n

(A2.23)

In Figure A8 (c), the Mach number has now increased to the point at which the 

leading edges have become supersonic. The Mach lines from the tip and the 

apex intersect on the body surface, creating a region of flow affected from two 

sources.
The upper bound for this case is found when the two Mach lines intersect on the 

trailing edge of the fin. This occurs when

1/i„c=tan -1 and

If the Mach line originating from the fin apex intersects with the tip chord, then 

there will be two analysis regions for the case: a region affected only by flow of a 

triangular wing with supersonic edges and a region that is disturbed due to tip

158



effects. If the apex Mach line intersects with the trailing edge, there will be three 

distinct analysis regions. The two innermost regions will be identical to those just 

described with a third region consisting of the linearized component of 

supersonic flow also affected by tip disturbances as mentioned in Section A2.3.

The innermost region, affected only by supersonic flow over a triangular wing is 

given by Equation (A2.8).

For 0^ y<  

cc, ={cc,)^  =
Aa

, the loading is thus restated,

Xxixp œ -hb + f t l A s i a - '
n

(ô + >>) . yP  tan <n+Z> -— — sm 7̂7-— 7---------
7t y [p  + y)pxma) ^

If the apex Mach line intersects the tip chord, the next region will be bounded by

the limit 6 - ^
I P.

^y-^b . Should the apex Mach line intersect the trailing edge.

then the second of three analysis regions will be bound by 

The load distribution will then be,

cc, =  (cc/X-f_sup ' ftip , 1 -, 1--- COS , 2 jp lb - r )  P"(b-yY
7t J c, cj J

(A2.24)

The third computation region (if in existence) will then be bounded by ~ ^ < y < b . 

The load distribution is determined via,

t  -I 2 '^ P ^ -y T  j 2  j p ( b - y )  p ^ {p -y Y
cc.Y = (m )isup-/m up 1—-cos^

7t C, )  c,

(A2.25)

where {cc,\^_,,„ is the outermost linearized portion of supersonic flow over a 

triangular wing, as was stated previously in Equation (A2.9):
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(r,r.\ -  4g(Z>-j)cOtfi?
\y^ lJ su p -lin  -  --------------------

cot^ a)

Lastly, Figure A8 (d) depicts the situation where the Mach number has 

increased to the point at which the Mach lines propagating from the fin apex and 

tip no longer intersect over the fin surface. Thus, there is no region of doubly 

affected flow for a given fin geometry.

There is no upper bound for this region as further increases in Mach number will 

only cause the Mach angle to decrease in size, and no further Mach line 

interactions will take place over the surface of the fin.

The fin surface may be divided into three distinct analysis regions. The first and 

innermost region is governed by the supersonic flow over a triangular wing. Thus

for 0 ^ y ^ ^ , i h e  loading is given by

cc, =  {cc,)i^_^

The next region is characterized by the linear component of supersonic flow 

over triangular wings.

That is, for ~ ^ ^ y - , the loading is determined via

cc, -  {cc,\^_„^

The third and final region includes the linearized component of supersonic flow 

over triangular wings diminished in accordance with the disturbance propagating

from the tip leading edge. This region is bounded by 

The loading is stated as.

cc, =  {cc,)̂ p_„„̂ 1 -  /t ip 1 — -c o s " ' , 2
7t < J > r\ c, cf J

(A2.26)
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Supersonic Chordwise Distribution
The chordwise distribution is determined by integrating the spanwise 

distributions just outiined over the iocai chord for a given fin geometry. The 

resulting effect is a sloping effect over the tapered sections of the local chord, 

with a constant loading for the untapered regions.

A 3 Aerodynamic Load Distribution Notes
The method presented in this Appendix provides the methods necessary to 

determine a general span-load distribution profile for any range of Mach number 

for a specified fin geometry. It is understood and admitted freely that the 

preceding method is not without limitations and obvious simplifications. To 

accurately capture and determine the flow characteristics over the fins at high 

speed, a much more sophisticated method should be employed, such as a 

computational fluid dynamics (CFD) technique.

The goal of this section is not to accurately determine the actual loadings for the 

fin at each given flight condition, but to capture the normalized load profiles. As 

outlined elsewhere in this report, the actual aerodynamic loads are determined 

via a series of interpolated aerodynamic coefficients. The profiles generated 

here are used to distribute these loads over a finite element mesh representation 

of a fin for a given flight condition. One particular shortcoming of this method is 

that the present context does not allow for any interference effects imparted on 

the flow over the fin by the fuselage. For increased accuracy, any number of 

techniques may be employed to improve the aerodynamic load profile. However, 

for the current context, the above method will suffice.
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