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Flight Stability Analysis of a Flexible Rocket using Finite Elements and
Reduced Order Modeling

Master of Applied Science, Mechanical Engineering, 2005
Kyle Davidson
Ryerson Univeristy

The coupling of advanced structural and aerodynamic methods is a complex
and computationally demanding task. In many cases, simplifications must be
made. For the flight simulation of flexible aerospace vehicles, it is common to
reduce the overall structure down to a series of linked degenerate structures
such as Euler-Bernoulli beams in order to expedite the structural portion of the
solution process.

The current study employs the sophistication and generality of finite-element
based modeling with the concepts of reduced-order modeling to create a general
flexible-body flight simulation program. The program was created for use with
the MATLAB-Simulink programming packége. A parametric analysis on the
stability of flexible rockets is performed and results are presented for a variety of
rocket configurations based on the SPHADS-1 vehicle under development at
Ryerson University. The primary instability mode under study is that associated
with the flapping and twist motions of the tailfins under aerodynamic loading. By
varying the average fin thickness, both stable and unstable behaviour is recorded

for a variety of flight conditions.
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Chapter 1: Introduction

The problem of simulating the flight of a flexible aerial vehicle is a complex one.
It involves the coupling of the fields of advanced aerodynamics and structural
analysis. The addition of flexibility to a given structural model can significantly
increase the number of system degrees of freedom, depending on the level of
complexity and sophistication involved."? Consequently, this may often become
a stumbling block for the simulation of complicated structures due to the
increased computational time required to establish the system response.
However, obtaining a realistic flexible flight model is of great benefit to the
designers of any flight vehicle whether it be rocket, aircraft, spacecraft, or
Seacraft.

The ability to predict vehicle performance under certain loadings or flight
conditions is critical for identifyirié and eliminating any aeroelastic or dynamic
instabilities, which may threaten the overall integrity of the vehicle. These
instabilities may yield undesirable performance characteristics that may hamper
the vehicle’s ability to achieve its mission goals, or in more extreme
circumstances, may result in structural failure.

With the aid of an accurate flexible flight model, design engineers can optimize
the structure by strengthening critical components so as to limit any undesired
characteristics, while reducing and trimming other less critical regions to improve
overall performance. The knowledge of the vehicle response envelope is also
critical for vehicles with autonomous navigation systems. The navigation control
Systems must be carefully designed to ensure the vehicle remains stable and,
ideally, within its optimal flight envelope.

Individually, the disciplines of aerodynamics and structures are both highly
developed. Computational fluid dynamics (CFD) represents the state of the art of
aerodynamics work. It is essentially the numerical solution of the equations that
describe fluid flow, the Navier Stokes equations."® Commercial CFD packages
such as FLUENT™, CFD-ACE™, TASCFlow™ and FASTRAN™ are commonly



employed in industry and academia for determining solutions to flows around or
within complex structures.

On the structural side, finite element analysis (FEA) has similarly become the
industry standard. A complicated structure may be represented as a grid of
points and the material behavior under various loading conditions can be
determined using a variety of advanced techniques.**%7 Commercially available
software such as ANSYS™ and IDEAS™ are some examples of commonly
employed FEA software packages that are utilized worldwide.®

Addressing the problem of a flexible flight vehicle in its most complete and
complex formulation would include state-of-the-art methods from both CFD and
FEA, in combination with a flight dynamics engine for tracking gross motion
relative to a specified location. There lies the heart of the problem. The full
solution of complicated aeroelastic configurations may take weeks to solve on a
high-speed computer, in attempting to solve the model behavior over a small
fraction of simulated flight time.

In response to this complication, a series of simplifications are often made to
the problem to expedite the large motion flexible structure analysis. A common
technique used in the simulation of flexible structures is to reduce the structural
components down to a series of simplified interconnected blocks. One often
employed modeling procedure is to represent the main components of a body as
a series of Euler Bernouilli beams. Beams are commonly chosen due to the fact

that their shape functions are known and are readily available. *°"!

The aerodynamic modeling procedure may be as simple or as complicated as
desired, and as is deemed computationally acceptable. An aircraft (generally a
very complex-shaped structure) would then be reduced to a series of four or five
interconnected flexible beams to represent the fuselage, wings and empennage
structures. While this model reduction may allow for tracking of flexible motions
as the vehicle encounters different flight stimuli (such as wind gusts) the overall
accuracy of the method may be questioned. The simple fact is that aircraft are
not beams, so it should not be expected for them to behave entirely so.



This project undertakes a different analysis route. Instead of reducing the
structure down to a series of degenerate elements, the flight vehicle will be
modeled using a finite element (FE) grid. The FE grid will allow for more
accurate deflection shapes of the structure under various loading conditions.
However, an obvious drawback to employing a finite element model (FEM) is the
drastic increase in the number of nodes and corresponding degrees of freedom.
Therefore, to aid the solution process, the model will undergo a transformation to
convert it into a reduced order model (ROM). The ROM effectively selects key
deformation shapes that will combine to create the range of flexible motion for
the vehicle.2'314 These selected deformation shapes become the new degrees
of freedom of the model. As a result, the size of the system being analyzed may
be drastically reduced to something much more manageable. For example, a
model comprised of 200 nodes, and 1200 degrees of freedom could be
condensed to a ROM with 10-15 degrees of freedom.

The scope of this project is predominantly limited to the flexible flight of a rocket
vehicle, using a reduced order FE derived structural model for various flight
conditions. A parametric study is to be performed for determining stability
boundaries for rocket models of varying configurations. With respect to the
aerodynamic modeling, the level of complexity employed is generally allowed to
be as simple or complex as desired and as is computationally feasible. However,
the aim of this project is not to focus on the utilization of the latest state-of-the-art
CFD techniques, as the development (and computation) time is prohibitory under
the time frame of this study. As a result, with regard to the aerodynamic
modeling, simpler relations are employed in combination with empirical relations
(when available) for obtaining relevant aerodynamic details.

The current study will integrate the previously discussed reduced order FE
rocket model, with a rocket flight dynamics simulation program. The program
computes all the pertinent gross (rigid-body) motions and structural deformations
for the vehicle in response to the net forces and torques acting upon the vehicle
(thrust, gravity, aerodynamic, etc.)."’ This program has been developed in the

MATLAB/Simulink programming environment.



The rigid body motions are relative to a predefined body reference frame.
When referring to flexible bodies, the body reference frame generally conforms to
one of two classifications. The first category is to select the body reference
frame as fixed relative to some point on the undeformed vehicle. The second is
to select the reference axes so as to eliminate the contributions to the linear and
angular momentum vectors due to the flexible motions. This type of reference is
commonly referred to as the selection of ‘mean’ axes. Mean axes have the
benefit of having inertially decoupled translations, rotations and deformations.
However, the drawback to choosing such a method is that the constraints for
evoking it are difficult to establish.® Thus, for this study the reference frame is
chosen to coincide with a location on the undeformed vehicle structure.

The parametric rocket study will be presented from two perspectives. The more
comprehensive detailed evaluation requires the full flight simulation of the flexible
reduced order rocket model through various flight conditions to directly simulate
and capture unstable flight behaviour. A second, less-detailed approach will
employ a simplified planar representation of the flexible rocket problem, which
will be formatted so as to provide a state space eigen-analysis stability
description. It is not expected that the two methods of evaluation should
perfectly coincide given the difference in model complexity; however, the state-
space stability analysis will serve to qualitatively validate the integrity of the
simulation results.



Chapter 2: Theory and Background

The following sections provide some basic derivations used for establishing the
general framework for the flexible and rigid body dynamics employed within this
project. The equations of motion are established and all relevant coefficients are
defined.

2.1 Derivation of the Flexible Body Equations of Motion

A vehicle structural model is typically considered to be a continuous system,
defined as a collection of infinitesimal differential mass particles (dm). Each of
these mass elements has a position that is defined with respect to a given
reference frame. In the current context, the frame will either be the body frame

(7s) defined with respect to a given point within the body or some arbitrarily
defined inertial frame (7)."> The position of a given point in the inertial frame for

a flexible structure is defined by the following equation and shown in Figure 2.1.

R=R, +r+u (2.1.1)
where R is the location of a given material point (dm) in the inertial frame, R, is
the location of the body frame (%) origin in the inertial frame, r is the rigid

location of the material point in the body frame (7s), and u is the flexible

displacement of the given material point.

Figure 2.1: Position of a Material Point



The velocity of this same point with respect to the body frame can then be

defined as

V=V +1_°;+me@+1_1,) (2.1.2)

L£"="_£

where V, is the velocity vector of the body frame origin, g is the deformation

velocity of any given material point, and w, is the angular velocity vector.

Note that the overcircle “0” corresponds to a rate of change with respect to (7s).

Similarly the inertial acceleration can be found via the expression

V=Vst+tasx(r+u)+o, x(i+é)+§+m3x(vg +o, x(!_‘+g)+é) (2.1.3 a)
which can be expanded into
_Y:_\:’_B.-FO)BXVB +§+2mB xé+(ﬁ'x(§+g)+m5xm3x(§+g) (2.1.3 b)

Note that the rate of change of the rigid body position vector is known to be

equivalent to i‘E 0 by definition. If applicable, simplifications to the above

equations may be made to accommodate situations that may be subject to small
deformations or deformation rates.

2.2 Newton’s 2™ Law of Motion

Newton originally stated the second law of motion in his treatise “The Principia”

as follows:

“Change of motion is proportional to the moving force impressed, and takes
place in the direction of the straight line in which such force is impressed.”

More directly it defines the force acting on an object to be equivalent to the
differential change in momentum per unit of time.'® Note that in the sections that
follow, terms are now expressed in matrix form, with all rate of change terms



being denoted by solid ‘overdots'. The rate of change of translational momentum
is then,

|3

=p=f (2.2.1)

where f is the resultant force vector. The translational momentum (p) is given

by the following definition
p= IVdm (2.2.2)

where the flexible velocity of a given mass element (V) was defined previously.

Similarly, Newton's law is again used to define the rate of change of angular

momentum and its relation to the moments acting upon a body:

dh g (2.2.3)

at

The angular momentum (h) is given by
h= j(r-l—u)Vdm (2.2.4)

Substituting in the velocities into Equations (2.2.2) and (2.2.4) and simplifying
gives the following equations for the respective momenta:

pP=mvy—Cp®5+P; (2.2.5)
h=c,v;+J,0;+h; (2.2.6)

The variables presented in Equations (2.2.5) and (2.2.6) are discussed and

presented below. The total first moment of inertia (c,, ) is given as

Cpe = [(r+u)dm (2.2.7)

Equation (2.2.7) may be alternately expressed in terms of its rigid and flexible
components. Thus,

(2.2.8)

Cpy =C+C,

where the rigid component is



c= Irdm
and the flexible component is

c, = Iudm

(2.2.9)

(2.2.10)

The second moment comprised of several sub-matrices dependent upon the rigid

and flexible positions of each mass element, that is,
Jo,=J,+J, +J,+J,
where the rigid component is
J= —Ir"r"dm ,
the rigid-flexible component is
3, =-[rudn,
the flexible-rigid component is
J,= —Iu"r"dm .
and the flexible-flexible component is
J.= —Iu"u"a’m
The flexible momentum coefficient terms are given by
p,= Iﬁdm
and
h,=h_+h,
where the rigid-flexible component is
h,, = [ridm
and the flexible-flexible component is

h,; = [w*idm

(2.2.11)

(2.2.12)

(2.2.13)
(2.2.14)
(2.2.15)

(2.2.16)
(2.2.17)

(2.2.18)

(2.2.19)



These components will be discussed and presented in further detail with respect
to the finite element context in the sections that are to follow.

2.3 Assumed-Modes Method

The deformation of a flexible structural model may be represented by a series of
linearly independent shape functions y. These shape functions may be selected
judiciously at the discretion of the user. Ideally, the shape functions (y) chosen
will include the exact elemental deformation shape vectors; however, these are
not always readily available for complex structures. The selected shape
functions may be relative to the full structural model or specific components and
may be a combination of free vibration modes, finite element shape functions,
forced deformation shapes, or any other conceivable and justifiable profile.

In terms of the assumed-modes method, the flexible deformations take on the

following form.
u(r,t)=>" q,(w,(r) (2.3.1)

Where u is the vector containing the flexible deformations of the structure, g,

Corresponds to the i-th flexible coordinate, and v, is the i-th shape vector

The shape vector matrix given as the set of deformation shape vectors is of the
form,

T"—'[‘l’n Yy, ‘I’N]

2.4 Newton-Euler Equations of Motion

The general equations of motion are defined using a Newton-Euler approach.
Recalling Equations (2.2.1) and (2.2.3), the equations of motion in their simplest

form can be presented as:
btoip=F (2.4.1)

h +ozh+vip=G (2.4.2)



Substituting the expressions for translational and angular momentum into the
above expressions and following some simplifications yield the full flexible-body
equations of motion, which are presented and explained in detail below. For
additional derivation details the reader may refer to dynamics texts or papers by
McTavish™. |

2.5 Full Flexible-Body Equations of Motion

Substituting the definitions for the translational and angular momenta into
Equations (2.4.1) and (2.4.2), and following some considerable algebraic
manipulation generates a simplified matrix based set of equations of motion in
terms of the model degrees of freedom. The nomenclature for the various
coefficients presented below is that used by McTavish.'® Thus, the full flexible-
body equations of motion for the system becomes,

ml —-c;, P [V, F 0 mey - 05Cy, 2P, Vg
c:ot Jrol Htot d)B = G - 0 - c:(otm; m;Jtot 2Hm,fot (mB) mB
P’ H:ﬂx M q f fa —P: —H:,,:o;(ms) —ZMm(mB) q
(2.5.1)

There are several variables within Equation (2.5.1) that must be defined and
explained. The term M corresponds to the distributed mass matrix. In terms of
the cases examined within this project, M corresponds to the finite element
mass matrix. This finite element mass matrix M is cropped to allocate a single
body node with the total rigid body properties (i.e. the selected node is the origin
location of the body frame). More explicitly, the mass matrix is divided into a
series of ‘nodal blocks’, as seen below.

FMOO MOI M02 MON
MIO Mll Ml2 MIN
M, =M, |M, M, M (2.5.2)

2N
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The terms with zero ('0’) subscripts correspond to blocks associated with the
body frame origin. The node blocks are generally of the form (M,,) and
effectively represent the effect of node-k on node-l. These mass nodal blocks
are typically 6 x 6 matrices, assuming full order 3D motion for all nodes. The
blocks may be further broken down into a collection of four 3x3 sub-blocks, which
relate the translational and rotational coupling between the individual nodes.

Mu u Mu
Nh1=L“““ “QJ 2.5.3)

Oy MQ:QI

Here, the subscripts u and 6 correspond to the translational and rotational
degrees of freedom of node-k or node-l respectively. These nodal blocks will be
used as the basis to define the majority of terms and coefficients in Equation
(2.5.1).

The total mass is a scalar quantity, and is obtained through the summation of all

the differential masses within the model. i.e.
m= [dm (2.5.4)

The total first moment of mass includes consideration for both rigid and flexible
inertia values that may alter the characteristics of the model as it deforms. Recall

from Equation (2.2.8),

¢, =c+c,(q) (2.5.5)
Where the rigid part of the first moment ¢ is
c= [rdm . (2.5.6)
This may also be derived from node blocks using the expression
N N
c" = ZZ(r:Mu‘,u, +M6,.u,) (2.5.7)
k=0 I=0
The flexible part of the first moment, denoted as c, is calculated via
c,= Iudm =Pq . (2.5.8)

11



where P is a 3 x N translational momentum coefficient matrix, where each i-th
column corresponds to the translational momentum for the i-th node.

P=[p, p, ... pul
A similar matrix is defined for the angular momentum.

H=[h, h, ... h,]
The second moment (J,, ) is now dealt with in more detail, specifically with
focus upon the case of a model derived from finite elements.
Recall from Equation (2.2.11) that the total second moment of inertia is given by
J

=J +J, +J,+J,.

tot

Note also that due to symmetry J_=J".

The flexible components of the second moment of inertia are dependent upon
the individual flexible coordinates and as yet to be determined flexible second
moment coefficients. The inertia components are given by the rigid-flexible part
of the second moment

3, =-[rudn=3qJ, (2.5.9)

i=1

and the flexible-flexible part of the second moment

3, = [wwdn=3"gq3"., : (2.5.10)

=1 j=1
The second moment coefficients (J',,;) and (J",, ;) given in Equations (2.5.9)

and (2.5.10) are constant and are defined with respect to the deformation shape

functions. That is, the rigid-flexible second moment coefficients (J',,,) are given
by
Iu== [y dm (2.5.11)

The flexible-flexible second moment coefficients (J",, ;) are given by

Iy =—[wiw;dm (2.5.12)

12



However, it is often the case that these shape functions are not readily available
for a general finite element model. Therefore, it becomes necessary to utilize
Some approximate expressions for these coefficient terms. The approximations
Presented below are derived from the components of the finite-element mass
Matrix.

2.5.1 New Coefficient Methodology

The preceding equations represent a set of generally accepted coefficient terms
and equations. This section presents a new theory for developing further
equation of motion coefficient approximations.'?'®* Before presenting these
approximations it is important to re-examine the nodal block structure. Each of

the four (3x3) sub-blocks of M » may be further discretized into a set of three
(3x1) m,, vectors. These m,,components serve to isolate the effect of each

degree of freedom from node-I on the translational and rotation degrees of
freedom of node-k. For node-k, the translational degrees of freedom are given

as u,,v,,w, with the rotational degrees of freedom being defined by «,, 3,,7, .

That is,

M _[Mﬂhﬂl M!xv.@: - m’.‘n-“: mﬁ&"’l m!v”’l lm'_‘nar m!h-ﬂl m!n"l
kK~ -
M

ooy, Mg | |Mow Mo Mo |Moq Mg, My,
(2.5.13)
The approximation for the rigid-flexible second moment coefficient is
N
I =¥ ==)rm, (2.5.14)
1=0

The process for determining the flexible-flexible second moment coefficients
(J"u.,,.-,) is a bit more involved. It is important to introduce a few terms before

Proceeding. Prior to being used in the J",, ; computation, the M,, nodal block

sub~components in Equation (2.5.3) are averaged using the following
€Xpressions. Translation-translation mass sub-blocks are defined by

13



_ﬁg, oy = -:"—trace(M

Uty

Translation-rotation mass sub-blocks are defined by

M, 0 =1(M, , -M ,)

U6, uy,0;

Rotation-translation mass sub-blocks are defined by

ﬁf_’g oy = ';_ (M - MZ’; o )

Oy

Rotation-rotation mass sub-blocks are defined by
Mg, 0, =M

6.9

Additional pertinent quantities are as follows:
Qu =4trace(M, 4 J1-M,,,

-
=MT  _
hu =M , M, ,

(2.5.15)

(2.5.16)

(2.5.17)

(2.5.18)

(2.5.19)

(2.5.20)

Note that the overbar “—* is used to denote an average value. The body frame

unit vectors are given as

=1 0 of

y=[o 1 of
z=[0 o 1f (2.5.21)
The J",,, approximations are now presented in the following four tables:
Node-k (translation) + node-I (translation)
'j’"w,,.j U Vi Wi
u, — My, %" — %My, 5" — %My, 0, 2"
Vi — P My, 0 X" —* My ¥ —§9*Mu, 2
Wy — 5 My, 4 X" — 2 My, 5" — My, 0, 2"

Table 2.1: 3",,,,,,, Translation-Translation Approximations

14




Node-k (translation) + node-I (rotation)

——
J ".,,,,;j 0!, ﬂl Y Il
| Maof)-Ma o8 | R Mug I -Man 93" | § Mo 02)l-My, 0557
Y (5,1’1\—{[!‘ ,Q,i)l "MHA 'glin (S,Tﬁ!n .2,9)1 -M!t -Q/WT (9TM!!U.Q12)[ _ﬁ!n -Qliyr
W | M0 i -Mu o557 | (Mo 3 ) -Ma 035" | (7Mu02)l M., 0227
——

Table 2.2: J",,, Translation-Rotation Approximations

Node-k (rotation) + Node-I (translation)

uif

Y,

V;

w;

a;

AT R A A AAT—
(x Mg, ,u_,x)l —Xx" My, 4,

(ir MQ; .yls’)l - ﬁirﬁﬁt &0

AT R A A AAT R A
(x Mg,,g,z)l —2% Mo, 4,

By

(5’ Tﬁek A i)l - Xy TMQR ot

()A’TK’I_Q‘ oy f’)l - yyrﬁgn oMy

(91.1—\7-[-.@: -Eli)l - ij\’rﬁ& ol

7k

ATRA A AATRA
(z Mgl )!Ix)l —XzZ MQR R-7]

AT_ A I\AT—
(z M.Ql »!Iy)l - yz Mgk Uy

(2" Mg, 21— 357

Gty

Table 2.3: J"

uu,if

Node-k (rotation) + Node-I (rotation)

Rotation-Translation Approximations

Vi

AT— A AXgy A
(Z Mg,,Q,X)l—X”QuZ”

(}"Tﬁ&,&i)l—i"Qu)"“
Q

(iTMQthi)l -z

Table 2.4: J",,,

Rotation-Rotation Approximations

The development and approximation of these second moment of inertia terms is

discussed and presented in greater detail in the papers by McTavish et a

| 12,13,156

The total angular momentum coefficient is comprised of a rigid and flexible part,

as seen by the equation,

15




H,, =H+H,(q) (2.5.22)

The rigid translational and angular momentum coefficients (as mentioned
previously) can be calculated utilizing the full order mass matrix and the mass
nodal blocks by performing the following operation:

P N
[ ' ]:ZR,TMM (2.5.23)
Hk 1=0
where R, is a matrix which relates the position of node-k. R, is defined as,
1 -rf '
R, = * 2.5.24
! [0 1 ] ( )

The rigid-body mass properties may also be extracted directly from the finite
element mass matrix via the following relation.

X N N
["’1 ; ]:ZZRIMHR, (2.5.25)

x
c k=0 I=0

Note that Equation (2.5.25) only calculates the fixed (constant) inertia mass
matrix, and does not include the determination of flexible inertia terms. This
computation may be useful as a reference check to verify the accuracy of the
finite element model versus any manual calculations or previously known mass

properties.

The flexible angular momentum component is defined via

H, = Z")q,H'f (2.5.26)

i=1
where H', is the flexible angular momentum coefficient and is of the form,

H" = I,H'i,g, H'irel | H.I'!I H"'Qz I o I H"".‘.N H'i'QNJ

A H', coefficient will exist for each degree of freedom in the model (i = 1,2...N).

The coefficients are separated into translational and rotational components of
node-k, as seen in the following tables.

16



Node-k (translation) — Node-/

i H',, H',,

u, ixl—\{[—y,,u_, ix-ﬁﬁn 6
Vi §’xﬁyhy: Yy ﬁ"* &
Wy ix—ﬁy,,u_, ixﬁ!& &

Table 2.5: H', Translation Approximations

Node-k (rotation) — Node-!

i ", H,,
a, — (Mowi) (&7hu J1+ Q"
JiA _(ﬁ;,&y)‘ (57 s J+ Qu”
7 _(Mo,2) (271w )+ Quz”

Table 2.6: H', Rotation Approximations

Next, the Coriolis terms from the equations of motion are discussed and

presented. The translational Coriolis matrix term (P, ) is found by

P, = o.P (2.5.27)

The total rotational Coriolis matrix (H,,,) is comprised of a rigid and flexible

component, and is given via

H,,, =H,(@;)+H,(@59) (2.5.28)
The rigid component is defined with the following format:
Ha)(ms)" l.hm,a h,, - hm,NJ
The respective elements of H,, are
(2.5.29)

—_— )
h, =J,,0;
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The flexible component is defined as
Ham((oB’q)= I.ham.l ham,z b ha.m,NJ

with the respective elements being
h, = qu‘]"uu,jl Oy (2.5.30)
Jj=l
The final Coriolis term is the flexible Coriolis matrix (M ), and is defined by

o H,

Ty
M. = ‘°B:Hz (2.5.31)

o H',
The force vector in Equation (2.5.1) is given by [F G f]r where F and G are
the net external force and torques acting upon the body.

The term f corresponds to the external forces acting upon the flexible

coordinates through body and surface loadings. The term f_ corresponds to the

internal forces developed by the structural model. For simple cases, it may be
assumed that the model exhibit linear elastic behaviour. The internal force vector
is then strictly a function of elemental stiffness and flexible deformation. Thus,

f =Kq (2.5.32)

where K is the stiffness matrix associated with the model.

Other behavioral models are acceptable, including the cases that consider the
effects of viscous damping.
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Chapter 3: Reduced-Order Model (ROM)

The focus of this chapter is to elaborate on the nature of reduced-order
modeling. The following sections address the concepts required to adequately
Model a sophisticated structure while maintaining a manageable number of

degrees of freedom.™

3.1 Reduced-Order Model Basics

As mentioned previously, the reduced order model decreases the numerical
order of the original structure by considering a series of user selected shape
functions to represent the overall flexibility modes of the system. The shape
functions can be taken as the deflections of the structure as a whole and/or with
Cconsideration as to the flexibility of individual components. The displacement
vector corresponding to the reduced set is presented in a form similar to that of
Equation (2.3.1), with full order quantities g and y being replaced with the

reduced order quantities 77, and ¢.

u(r,7)= i,, O, () (3.1.1)

Or expressed in matrix form,

(e, )=@(nl) (3.1.2)
Where 1) is the vector of generalized reduced order coordinates, and ® is the
Matrix of reduced order shape functions, that is,

o=[o, @, - ®,] n=, n, - [

The reduced order shape function set @ is related to the full order shape

function set ¥ via the following relation:
CI)(r) =¥(r)s” (3.1.3)

Where S is an (N x M) matrix of M (N x 1) coordinate vectors, which define the

reduced order mode shapes from the full order set that is,
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S=[s, Sy o sM]

3.2 Reduced Order Property Adjustment

Having established the chosen set of shape functions that will adequately
capture the flexibility of a structure under study, the structural model parameters
must be similarly reduced. This reduction is a relatively simple transformation
involving the matrix of coordinate mode vectors S as defined in the previous
section. An overbar ‘—' will now be employed to signify a reduced property
within the nomenclature.

m -5, P [vy]| [F] [0] | mo} -a}c, 2P, \
-c_::)t jxot 1;12, d)B = ? - _0 - Et’:ni’); _‘?ZJ tot 2Hm,ror ((’)B ) 0y
—I-;T Hz: M " f ft.r --P‘:' _Hz,tot ((OB) —2Mm (mB) 11

(3.2.1)

Thus, the mass and momentum coefficients may be reduced as follows. For the
flexible mass matrix,

M=S"MS ' (3.2.2)
For the translational momentum coefficient

P=PS (3.2.3)
For the ‘total’ angular momentum coefficient

Hu = H+H, (3.2.4)
where the rigid component is

H=HS | (3.2.5)

and the flexible component is given as

_ M
H.=)7,H, (3.2.6)

m=1

The reduced angular momentum coefficient (H',, ) is defined as
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w,=%s, (H,S) (3.2.7)

The reduced model inertias are now given by their reduced components
Emt = c+Eu (328)

jlot = J+jm +3fu +—J-uu (3.2.9)
The respective reduced components of these two equations are summarized
below. The flexible component of the first moment is

c. =Py (3.2.10)

The rigidfflexible component of the second moment is

— M -
In=>03 0 (3.2.11)

m=1

The flexible/flexible component of the second moment is

— M M —_ .
AP R L. (3.2.12)

m=1 p=1

Equations (3.2.11) and (3.2.12) have constant components 3',,,’,,, and _j"w'mp
that are named and defined below. The constant second moment coefficient
(rigid-flexible component) is

I = ist i (3.2.13)
i=1 .
The constant second moment coefficient (flexible-flexible component) is
3"wu,mp = Zzsm,lsp,jJ"uu,ij (3-2. 14)
i=1 j=1
The Coriolis terms are reduced as follows. The translational Coriolis matrix is
given by

Po =P (3.2.15)

The rotational Coriolis matrix is given by
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Howor =Ho + How (3.2.16)
The rigid part of the rotational Coriolis matrix is of the form

Ho=[fos - Tou]
The individual components then become

bom =T, 0, (3.2.17)

The flexible rotational Coriolis component is of the form

Hou =[E.,,.,,1 EW,M]
—_ M —
where haoun =Y 7,3, pu®s (3.2.18)
p=l

The nodal forces must undergo a similar transformation, namely,
f=S"f ‘ (3.2.19)
For the case of simple linear elasticity, the stiffness matrix K is adjusted via
K =S"KS (3.2.20)
Lastly the centripetal force term HZ (o) is transformed by reducing the

individual components of H(,). Thatis,
h,, ~Jo, (3.2.21)
where

T =353, (3.2.22)

where s,’s are the scalar components of a shape vector s for the i-th degree of

freedom.

3.3 Mode Fixity Adjustment

In the current context, the location of the body frame is fixed with respect to the
structural model, and thus some adjustments need to be made for any
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deformation shape that does not Implicitly constrain the flexible deformation of
the zeroth node to zero. An example of such a shape might be an unconstrained
free-free’ vibration mode for a given model, where the node corresponding to the
body frame origin is arbitrarily deformed. The deformation shape must then be
translated and rotated such that the location and orientation of the zeroth node

are reset to zero. This adjusted shape may now be used since the deformation

at the zeroth node is always zero.

Recall that a shape vector is given in the form

%

s= where

%
Note that the “underbar” is used here to indicate the unadjusted shape vector.
Figure 3.1 breaks down the shape adjustment process to two key steps.
Figure 3.1 a) depicts an unadjusted rocket body bending deformation shape.
For the current figure the body frame origin is assumed to be located at the tip of
the fuselage nosecone. Figure 3.1 b) shows the translation of the rocket
structure to re-position the nose for zero deformation. Figure 3.1 c) illustrates

the rotation required to eliminate any rotational deformation of the body frame

origin.

Figure 3.1: Rocket Mode Adjustment

The resulting adjustment to each node may be summarized by the following

equation.



[gjz[(l-(::) <1f’e;j][32}-[3 _;:]BZ] o ea

Ignoring the small angle effect in the above equation, one can create a single
matrix multiplication to accommodate the entire transformation. That is, |

-R, !1 0 - 0
¢

-R, !0 1 - 0

s= - S ' (3.3.2)

!
i
i
1
[

-R, 10 0 - 1

where Equation (2.5.24) previously defined the position matrix
The transformed deformation shape will not affect the overall functionality of the
reduced order set. The transformed shapes will have the same frequencies of .

vibration as the original unadjusted shapes and thus effectively capture the
structural deformation mode.
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Chapter 4: 3D Flexible Flight Simulator

The current chapter addresses issues related to the flexible flight simulation
Program. The program simulates the gross vehicle motions, as well as the
flexible response due to the dynamic loadings acting upon the structure. The
flight conditions are customizable inputs that may be tailored to suit a variety of
configurations. The program was developed for use in the Matlab programming
package.'” The simulation engine also employs the SIMULINK™ suite for the
Processing and integration of flight dynamic parameters.

4.1 Test Vehicle ~ SPHADS Rocket

The primary test vehicle for this thesis is the SPHADS-1 rocket, which is
Currently in development at Ryerson University. The objective of the SPHADS
(Small-Payload, High-Altitude Delivery System) program is to provide a relatively
low cost delivery system capable of inserting scientific payloads into the upper
atmosphere for meteorological, environmental, ionospheric and micro gravity = -
studies. Some additional low-atmospheric test applications are under
Consideration, including high-g loading tests for payload packages, as well as the
investigation of aerodynamic heating effects upon exposed materials. The initial
focus of the SPHADS program is to concentrate upon the design of potential
Prototype variants that would operate in lower segments of the atmosphere
(< 100 km). it is within this range that a low-cost delivery system would be of
benefit to a variety of researchers.

At present, in the Propulsion Research Facility (PRF) at Ryerson University,
another prototype flight vehicle, the RTD-1 (Rocket Technology Demonstrator) is
being prepared for flight testing. Sample tests to be performed include the
utilization of flight data and other instrumentation packages to measure actual
launch acceleration and atmospheric loadings. The RTD-1 is the first in the line
of prototype vehicles to be evaluated leading up to the SPHADS vehicle. The six
degree of freedom simulations presented here also serve to provide realistic
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predictions of expected flight performance and structural deformations for both
the SPHADS and RTD-1 flight vehicles.

The SPHADS-1 rocket will employ solid-rocket motor (SRM) technology as its
primary means of propulsion. Several SRM variants are under consideration to
best meet the desired flight trajectory. Two such examples of a tri-fin SPHADS
vehicle are given below in Figure 4.1.

Two variations on solid rocket propellant
A [\ grains are depicted, with configuration 1A

§ Figure 4.2 depicts a model representation of

g quad-fin SPHADS-1 vehicle. In the model

Figure 4.1 SPHADS 1A and representation, the fins are treated as flat
1B prototype vehicles plates of constant thickness.

employing five cylindrical propellant segments

with core and end face burning. Configuration

¥

1B employs a twin propellant boost-sustain

provided by the combination of star and end
| burner grain segments.

T

e §

(===

rigure 4.2: SPHADS-1 cruciform variant model
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The SPHADS-1 cruciform model is taken as the basis vehicle for all of the
simulations contained within this report. Some general dimensional information
and characteristics are provided in Table 4.1.

Vehicle Length 2.75m
Fuselage outer diameter (d) 0.127 m
Fin span (b) 0.12723 m
Root chord (c;) 0.32468 m
Tip chord (cy) 0.12267 m
Material aluminum
Young’s Modulus 70 x10°
Material density 2710 kg/m®
Poisson’s ratio 0.346

Table 4.1 SPHADS-1 General Properties

4.2 Simulation Capability

At present, the flight simulation engine is configured specifically for the
simulation of flexible rocket vehicles. It is constructed in a modular fashion, such
that the loads and dynamics are separated into individual blocks, which may be
altered, updated or reconfigured as desired. As a result of the modular design,
and the generality of the equations of motion presented earlier, this program may
conceivably be used to simulate the motions of more complex aerodynamic
vehicles such as aircraft or spacecraft. A block diagram summarizing the primary
components of the Matlab/SIMULINK derived flexible body simulation model is
Presented in Figure 4.3.
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Figure 4.3: Simulation Engine Simplified Block Diagram

In Chapter 2 the equations for defining the system dynamics were defined in
the equations of motion. These equations determine the accelerations acting
upon the vehicle in relation to the rigid and flexible degrees of freedom. These
accelerations are then integrated to reveal the updated model rates. Referring to
Figure 4.3, the vehicle rates of change are computed within the subsystem
“Equations of Motion”. This subsystem then outputs the rigid body translational
and rotational velocities (v and o), as well as the flexible-body degree of freedom
rates and displacements (¢ and g ). The external forces and torques due to

gravity, thrust and aerodynamic loadings are all computed within the “Forces and
Moments” subsystem. Additional key subsystems depicted pertain to orientation
determination, computation of system energy and momenta, and the conversion
between full and reduced order deformations and rates. In all simulations, the
SIMULINK™ default integrator was employed for determining all the rigid body
and flexible motions.
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4.3 Rocket Deformation Shapes

The reduced order modeling method allows for the use of any number of vehicle
deformation shapes. The selection of these shapes is left to the judgment of the
user. It is imperative to capture the dominant deformation modes and those of
particular interest to the study. For the current rocket stability study, the primary
deformation shapes consudered are those that act to contnbute to the overall
motion of the rocket fin key—nodes These rocket key-nodes are used to
represent the overall motion of a given structural component by assumlng e
average ‘conditions at a user-selected location. The deformation shapes are
derived from the unconstrained natural vibration mode shapes. The first body
bending modes are included, as well as the first fin flap and twist modes, as they:
are seen to have considerable influence on the motion of the fin-key nodes.

Samples of these deformation shapes are depicted in Figures 4.4 to 4.6 below. -
Figure 4.4 shows the body deformation of rocket, and Figures 4.5 and 4.6 show -
the deformation shapes for a single fin. Identical deformation shapes are also -

used for each of the remaining fins.

-

Figure 4.5: Fin Flap Deformation

vt e Yo . T e et
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Figure 4.6: Fin Twist Deformation
4.4 Vehicle Orientation

The orientation of the body frame (7s) is generally defined with respect to an

Earth-fixed inertial reference frame (%) commonly located at some point of

interest, such as a tracking station on the ground. Note that for long or high
altitude rocket flights, the Earth-fixed reference frame is insufficient. For such
cases, one might consider a rotating spherical Earth reference frame. The
relationship between the inertial and body frames is depicted in Figure 4.7.
For the current context, the inertial reference frame is taken with the z-axis-
directed down towards the centre of the Earth. This is presented in Figure 4.7.
The inertial position of the rocket is defined by the position vector r. The
orientation of the body frame (7s) with respect to the inertial (7) frame is

commonly defined as a set of three angles, known as the Euler angles.

Figure 4.7: Body Frame (7:) and Inertial Reference Frame (7)
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4.4.1 Euler Angles

The body frame can be related to the inertial frame by a series of three rotations
about the x, y and z-axes. These orientation angles are commonly referred to as
roll (¢), pitch (6) and yaw (y) angles respectively, and are a standard convention
for aircraft and rockets alike.

The rotation matrices corresponding to the roll, pitch and yaw angles are
defined as follows."®
For a rotation about the x-axis, (i.e., for a roll angle of ¢)

1 0 0
C,(#)=|0 cosg -sing (4.4.1)
0 sing cos¢g

For a rotation about the y-axis, (i.e., for a pitch angle of 6)

cosf 0 —sinf|
c,6)=| o 1 o (4.4.2)
sin@ 0 cosé

For a rotation about the z-axis, (i.e., for a yaw angle of )
cosy siny O
C,(w)=|-siny cosy 0 (4.4.3)
0 0 1
A general Euler rotation can be expressed as a combination of these angles,
such that,

C(¢.6,¥)=C,(¢)C,(6)C, () | (4.4.4)
This can be expressed explicitly as,
cos@cosy ) cos@siny —siné
C(g,6, l//) =| sin #sin @cosy —cosgsiny singsinfsiny +cosgcosy  singcosf
cosg@sin Ocosy +singsiny  cosgsinfsiny —singcosy cosgcosd
(4.4.5)
Despite Euler angles being a standard convention, they are not without
limitation. A singularity exists such that the exact orientation may not always be

uniquely determined for flight at pitch angles of 90°. Euler angles are also
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computationally demanding, being defined by a series of sine and cosine angles.
Thus for the sake of computational efficiency and accuracy, it is often better to
use a set of four orientation parameters known as ‘Euler parameters’ or
‘quaternions’, that remove the Euler angle singularity issue, and are much less

computationally intensive.

4.4.2 Euler Parameters

Euler’s theorem states that a general rotational displacement can be
represented by a single rotation (commonly denoted ¢), about an axis (a). Itis
from here that the Euler parameters are derived.'®

A set of four parameters (g, 1) will define the orientation of an object or
reference frame. Euler parameters utilize Euler's theorem in a manner that is

summarized as follows. The first three Euler parameters are given by e:

t=(e & &) =asin(tg) 4.4.6)
The fourth parameter is,
7 =cos(Lg) (4.4.7)

The magnitude of these parameters is equivalent to unity,

ge+ni=gl+el+el+nt =1 (4.4.8)
These parameters are often referred to as quaternions. The rotation matrix
relating the orientation in Euler parameters is given as

C(e,7)=(7* - € )t + 288" — 27" (4.4.9)
or more explicitly,

1- 2(.922 + 332) e, +&m) 2(e8—£m)
Cle,7)=| 2(¢,5, - &7) 1—2(‘5‘,2 +&'32) 2(e,6,+&7) (4.4.10)

2e,6,+6,7m) 2e,e,—n) 1- 2(6,2 + 822)

This matrix can then be compared to that of Equation (4.4.5) to extract the
desired roll, pitch and yaw angles, which are much more suitable and easier to

visualize for a human observer than quaternions.
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4.4.3 Euler Parameter Rates
Differentiating the relations for determining ¢ and 7, gives the following Euler

parameter rate terms
£=1 (ex + nl)m (4.4.11)
=1 o (4.4.12)

4.5 Additional Simulation Parameters

Having established the equations of motion and introduced the general
framework of the flexible rocket simulator, some additional parameters deserve
Some consideration. These parameters are critical to the simulation response

and are presented in the following sections.

4.5.1 Atmosphere _

For the current application, the atmospheric properties are assumed to coincide
with the 1976 standard atmosphere convention. However, it is noted that for
some situations, it may be desirable to use non-standard conditions. At present,
the current simulation model does not explicitly allow for user input of customized
atmospheric properties. The atmospheric model is described within a small
independent script that may be easily altered and adjusted as desired by the user
to meet the requirements of any scenario.

For flight in the troposphere (i.e., for altitudes of less than 11 km), the
atmospheric properties are approximated by the following formulae.?’ The

absolute temperature ratio is

6 =1-0.0226(h/1000) (4.5.1)
Where h is given in metres and
T
O=—= 4.5.2
T, (4.5.2)

Where T, is the temperature at a given altitude, and T, is the standard

atmospheric temperature at sea level (T, =288.16 K).

The pressure ratio is given by the equation
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5 = 6% (4.5.3)

5=L= | (4.5.4)
Pst

where p,_ is the atmospheric pressure at a given altitude, and p;, is the
standard atmospheric pressure at sea level ( p;, =101.3 kPa)

The density ratio is given by

o =6** ' (4.5.5)
where
o= L;z. (4.5.6)
SL

where p_ is the atmospheric density at a given altitude, and p, is the standard
atmospheric density at sea level ( pg, = 1.225 kg/m®)

For altitudes above 11 km, the atmosphere may be subdivided into several
distinct regions. In the upper regions of the troposphere up to an altitude of 23
km, lies a region known as the tropopause, where the atmospheric temperature
remains nearly constant. |

In this region an approximation for the pressure ratio is defined as,

5=5¢[- Rch (h—-hc)] (4.5.7)

where the subscript “c” is used to denote the conditions at an altitude of 11 km.
The density ratio is found via the following relation:

0'=£ | 45.8
; (4.5.8)

The approximate conditions at 11 km are summarized as follows:
S, =0.225

6, =0.752
T, =216.66 K
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For higher altitudes, the simulation utilizes tabulated 1976 standard atmosphere
data, in conjunction with an interpolation technique to determine the atmospheric
conditions. The model may be further altered to use any available approximate

equations, or any customized configuration that may be chosen by the user.

4.5.2 Stimulus Generation

The focus of this study is to use the flight dynamics simulator to establish the
flight characteristics of flexible vehicles. For determining stability, a stimulus
generator may be used to excite the structure into oscillation. For the purpose of
this study, the primary method for exciting the structure is by means of a gust
generator. The gust generator may be customized to act as a random or
predetermined vehicle wind velocity change that acts to alter the aerodynamic
forces and move the system away from equilibrium. The gust may act for a
predetermined fraction of time, of‘may follow a more continuous and elaborate
profile, such as a sinusoid. For stable configurations, the vehicle will flex and
induce a short-term oscillation that will persist until the disturbance effects have
been dampened out. For unstable configurations, a disturbance will tend to grow
until the vehicle experiences either a loss of aerodynamic control or excessively

large deformations that result in structural failure.

4.5.3 Energy and Momentum
Energy

To test the overall dynamical integrity of the simulation program, it is necessary
to perform certain analyses using defined scenarios for which the outcome may
be predicted and expected. Analyzing the energies and momenta for a given
model are good indicators as to the overall health of the simulation engine and
model description.

For a flexible model that is not subjected to any external forces (such as gravity,
thrust, aerodynamics, etc.), it is known that the total energy of the system will
remain constant, due to the law of conservation of energy. This is illustrated
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below. The kinetic energy of the flexible system is given by the following
equation,

T=1v'M,,v 4 (4.5.9)

tot

where v is the total velocity vector which is comprised of both the rigid and
flexible velocity components

Vg

v={@,

q
and M,, is the mass matrix of the system, containing both the rigid properties,
as well as the finite element distributed mass matrix and the corresponding
momentum coefficients.

In general, M,,, includes the effects of flexible deformation in all of its

constituent elements. This mass description was presented in Equation (2.5.1),
that is,

ml -c,, P

Mtot = c:‘ol Jtot Htot
P" H, M
The kinetic energy in general is not expected to be constant. The kinetic energy

is continuously being transferred into the structure as deformation potential
energy (a.k.a strain energy). The strain energy is given by (assuming simple

linear elastic behavior)

v, =1q"Kq (4.5.10)
where q is the vector of flexible coordinate deformations, and K is the stiffness
matrix corresponding to the flexible degrees of freedom
Gravity may also contribute to the total potential energy. Obviously, for the case
in which the rocket is free from all external forces, this component will be ignored.
The gravitational potential energy is given by

V, =mgh-gic—g;Pq (4.5.11)

where g is the magnitude of gravitational acceleration, and # is the altitude
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Therefore, the total potential energy is simply,
Ve =V, +V, (4.5.12)
The potential energy is similarly in a state of flux as energy is continually
transferred between kinetic and potential forms. Thus for a system free from
external forces, the total energy will remain constant. That is,
E=T+V =const

Momentum

The momentum of the model can also be used as a test for verifying the
effectiveness of the overall dynamics. The momentum problem is divided into
two parts: translational and angular. The test case of a model free from external

forces is again employed here.

Translational Momentum
In the general case, the translational momentum also is dependent on the
deformation of the structure. The equation for the total (general) translational

Momentum in the body frame (7s) is given below:
pp=mvy—c, 0, +Pq (4.5.13)
In the body frame, for the case with no external forces or torques acting on the
Vvehicle, the translational momentum vector is not constant due to the fact that the
frame may be rotating. The magnitude of this vector in (?7s) does remain

Constant, however.
The translational momentum may similarly be evaluated in the inertial frame

(7). The conversion is accomplished via the orientation rotation matrix (C)
(Where C,, =C7,). Thus, 4
pP= Clypg : (4514)

In the inertial frame context, again assuming no external forces or torques, both
the translational momentum vector and magnitude will be constant.
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Angular Momentum
Again considering the situation with no external forces, the angular momentum

magnitude in the body frame (77s) is not generally constant. It is constant,

however, if the body frame is located at the vehicle mass center. The mass
center of the vehicle may be determined from the following equation, which is an
adaptation to the standard parallel axis theorem.

x X

c, ,C

e (4.5.15)

tot

I,=J

tot —

where I, is the inertia about the vehicle mass center, and J,, is the inertia

about the body frame origin.
The body frame first and second mass moments both include their flexible
components, which depend on the flexible coordinates q. These terms were

defined previously in Section 2.5.
The angular momentum in a frame that is parallel to the body frame but situated
at the mass center can then be found via
h., s =195 (4.5.16)

The angular momentum vector in this frame is generally not constant.
However, the magnitude at the center of mass does remain constant, provided
the vehicle is free from all external forces and torques.

The angular momentum in the inertial frame can be found via the orientation
rotation matrix, that is,

h,; =Cphe,p (4.5.15)

In this context, both the angular momentum vector and magnitude should
remain constant if the vehicle is unaffected by any external aerodynamic,
gravitational, or thrust loads.

All of these known configurations may serve as validity checks to verify the
correctness of the underlying system equations of motion.
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4.6 Procedure for Obtaining Flexible Flight Simulation Data
The steps outlined below indicate the procedure for obtaining simulation results
for a generic rocket vehicle model.

1. Generate a finite element model using the desired rocket dimensions,
configurations and material properties. This may be accomplished with a
custom FE generation program or through the use of a commercial
software package. For this project, ANSYS™ is used to create the finite
element rocket models.

2. Extract the model properties from the FE generation software. The
software package must provide the full order absolute mass and stiffness
matrices, a listing of the location of each node in the global reference, an
element list outlining the interconnected nodes defining each element, and
any deformation shapes selected to be reduced order degrees of freedom.
ANSYS provides the node and element lists and deformation shapes
through the Graphical User Interface (GUI). The mass and stiffness
matrices may be extracted from the model .full file using the
‘userprog.exe’ utility.

3. Create simulation initialization script. Update a script entitled “initialize
variables” by inputting the file addresses for the data collected in step 2.
The script automatically processes in the input data and forms all of the
required coefficients and matrices required in the flexible flight simulation
engine. This script additionally reduces the order of the model in
accordance with the number of input deformation shapes to be used with
the reduced order model. Initial conditions, such as the flight velocity,
orientation and flexible excitation are also included within this script. The
node numbers corresponding to the aerodynamic or thrust key-node
locations are also input in this file.

4. Run initialization script, set simulation parameters, and begin simulation.
The SIMULINK™ simulation environment allows for the selection of
integration type, simulation length, error tolerances, etc. Simulation is
then initiated, important structural and flight data are recorded to output
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files that are recorded in the MATLAB workspace. Data such as vehicle
velocities, flexible deformations and deformation rates, atmospheric
properties, aerodynamic angles, forces, moments, orientation, position,
energy, momentum are all recorded for a user selected sample time.

. Postprocessing: Simulation Plots. Run automated plot generating script,
which automatically presents important simulation data in a series of
figures for quick analysis, and validation.

. Postprocessing: Animation. Run structural animation script, which uses
the full order “unreduced” deformation vector to effectively recreate the
various deformation shapes experienced by the rocket vehicle model for
the duration of the simulation.

. Posprocessing: Save File. Save all important simulation data to file for
later use.

. Postprocessing: Update Records. Upon completion of simulation analysis
and saving of data to file, a file log is updated, recording the name of the
simulation save file, with any important characteristics of flight including
initial conditions, flight time, disturbances, etc.
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Chapter 5: Forces and Moments

A flexible flight vehicle is subject to a variety of loads. These arise from gravity,
aerodynamics, thrust, or a variety of other sources. These forces are discussed
and presented in the following sections.

5.1 Gravitational Forces and Moments

The effects of gravitational acceleration on the vehicle motion and deformation

are presented below.

5.1.1 Net Gravitational Forces and Moments
The gravity vector is defined to be positive in the inertial z direction. Therefore

the gravity acceleration vector in the inertial frame is quantified by,

g=[0 0 9.806] (5.1.1)

However, the magnitude of the acceleration of gravity is known to decrease with
increasing altitude. Thus, a small correction factor can adjust the magnitude of

the gravity vector accordingly, and is given as follows below,

g(n)= ( Rfi hJ g, (5.1.2)

Where R, corresponds to the radius of Earth (~ 6378 km), and 4 corresponds to

the altitude of the vehicle above sea level.

The gravity vector is then converted into the body reference frame by the

transformation,

8;=Cpyg (5.1.3)

Where C,, is the rotation matrix for converting elements from the inertial frame to
the body frame, as was defined previously.

The total forces resulting from gravity (weight) in the body frame are therefore

given by,
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FG, =mgg (5.1 .4)
where m, is the total vehicle mass at a given instant.

If the body reference frame is located arbitrarily (i.e., the frame’s origin does not
necessarily coincide with the location of the center of gravity of the vehicle) a
gravity moment will exist.

The gravity moment will then be of the form,

M, =g, (5.1.5)

5.1.2 Nodal Gravity Forces and Moments

If the system contains distributed mass with flexibility (as the finite element
models to be employed herein will), each node will possess a load due to gravity.
These nodal loads can directly affect the flexible motions of the vehicle.

The forces are related through the translational momentum coefficient P and is

given as follows,

f=P'g, (5.1.6)

5.2 Thrust Forces and Moments

In many simulations, thrust force is a predetermined quantity that is often
derived from motor performance tables, experiment or theoretical estimates.
Therefore, the thrust magnitude is made available to the simulation at any given
time (stored versus time in an input array). Ideally, for more complex
simulations, the thrust force would be determined from the computation of
internal flows. If the vehicle is assumed rigid and the thrust vector is aligned with
the vehicle body x-axis, no thrust moments will develop. For the case where the
thrust force is perfectly inline with the vehicle body x-axis, the thrust force vector

is given by
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F,=|o|T (5.2.1)

Where T is the thrust magnitude at a given instant.

In general, the thrust vector is not perfectly inline with the body vehicle axis.
Misalignments may arise from a variety of sources, deliberate and unintended.
For rocket vehicles, deliberate thrust misalignments are usually the result of
active thrust vector control methods that are typically employed to maintain a
desired attitude or trajectory. This is accomplished by the redirection of the
effective thrust vector from its nominal position. This can be accomplished with
gimbaled nozzles or a variety of other methods including jet vanes and cold gas

injection, which can vary greatly in cost, complexity and effectiveness.?"??

Unintended thrust misalignments are often the result of motor asymmetries and
irregularities. Minor manufacturing defects in the nozzle, exhaust flow or vehicle
Mass asymmetries all can adversely affect the accuracy of the thrust vector in
relation to its desired nominal orientation. These unintended thrust
Misalignments also generate moments which can negatively reflect upon overall
vehicle performance. Thus for larger, more complex and costly missions, the
thrust misalignment characteristics are typically known parameters and are

actively counteracted.

For the current model, the thrust force is assumed to be a point force applied to
a node that is pre-selected to represent the effective location of the engine
nozzle. Itis assumed that the nozzle will be embedded within the rocket casing.
Focus is being primarily applied to the deformation of the body as a whole
Wwithout specific concern at this point in time for the internal nozzle behavior.

Any resulting deformation of the nozzle key-node results in a corresponding
deformation in the thrust vector. The thrust vector is permitted to acquire initial
deviations from the nominal ideal thrust vector to capture the effects of
Manufacturing errors and such. These initial deflections of the thrust vector are

43



represented as a set of translations and rotations, denoted by 8, and a,
respectively.

The nominally deflected thrust vector is now determined via
T, =(+a)T (5.2.2)
The thrust forces and torques at a user selected node can then be found with
CI(t
f()= [c;Zz()a);r ,‘}a] (5.2.3)
where the flexible thrust rotation matrix is given by
C, =1-03(r) (5.2.4)

This rotation matrix relates the variable flexible rotations acting upon the thrust

vector at the nozzle/thrust key-node location. The variable 8, represents the

vector of flexible rotations at a specified time t.

Net body force and torques are given via |
F,(£)= C1()T; (5.2.5)
GT(t)': [r;C;(t)+C;(t)8’}]TT (5.2.6)

where r; is the fixed nominal location of the nozzle in the body frame.

5.3 Aerodynamics

The aerodynamic modeling is now addressed in detail. As mentioned
previously many techniques are available that vary in accuracy and complexity.
State of the art techniques such as CFD analysis, while desirable, are unrealistic
for the current study due to prohibitory computational requirements and limited
development time. Thus, for the sake of the current rocket application, simpler
aerodynamic relations are employed to represent the dynamic loadings acting on

the vehicle.?*33
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5.3.1 Fuselage-Body Alone Aerodynamics

The body aerodynamics methodology employed in the following sections is a
standard coefficient formulation. In the computation of rocket body aerodynamic
loads, it is common to employ a system in which the aerodynamic forces are
represented by normal and axial forces with respect to the body axes. This is
opposed to the lift and drag convention, more commonly seen with other aerial
vehicles such as aircraft, which defines the loads relative to local wind velocity

vector. The direction of side force is determined via the right hand rule.

The force conventions are depicted in Figure 5.1 for the flight of a rocket
vehicle in a vertical plane. The normal and axial forces are defined with respect
to the body axes regardless of the orientation of the rocket vehicle velocity

vector. In contrast, the lift and drag forces are dependent on the body velocity

vector and need to be related into the body frame (*b) for use in the equations of

motion.

Figure 5.1: Normal Force, Axial Force, Lift and Drag Conventions



The aerodynamic loadings are actually determined via a series of non-
dimensional coefficients that are either determined from theoretical.or
experimental means. The non-dimensionalized aerodynamic coefficients are
converted into physical forces and moments via the following equations:

N=Cyq.S - | (5.3.1)
A=Cq.S | | | (5.3.2)
M, =C,,q.5b, - (5.3:3)

where g, is the dynamic pressure, which is given by
qco =%paoV2 .o (5'3'4)

noting p, is the density of air for the given altitude, S is the reference area
(commonly given as the fuselage cross sectional area for rocket bodies), and 5,

is the reference length (commonly given as the fuselage diameter).

Variable M, is the pitch moment about the lateral y-axis. Similar coefficient

expressions exist for side force, and roll and yaw moments, if a more general
flight problem is under consideration.

These aerodynamic coefficients correspond to the rocket body fuselage alone
(i.e., not including fins), and may be further broken down into components to
express the individual effects of various factors such as angle of attack (« ), and
other rates such as & and 4. The rate of sideslip (#) can influence these
vertical-plane coefficients, while sideslip angle (B) is assumed to act only on out-
of-plane forces and moments. Other factors may also be considered such as
body rotation rates (ws) or any other term that may have an appreciable effect on
aerodynamics. These additional effects are not included in the equations below.

Cy=Crea+Cya+ CN;)B (5.3.5)

C,=Cp+Cpa+Cpa+C,p - . - - ..(5.3.6)
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Cy=Ch, +Cpa+Cyy@+C,, 8~ - (6.3.7)

with C,, C, and C;, being the normal force, axial force and pitch moment

coefficients respectively for the rocket body.

Note: The coefficients that correspond to any angular rate terms (e.g., ¢, 8 or

body rates w,, etc.), are non-dimensionalized by the term %

For a body of revolution, symmetry implies similar conditions that may be used
to reduce the complexity of the model, that is, C,,, =C vy and C,; =C ;. Thus;

the Equations (5.3.5) and (5.3.6) may be reduced to
Cy = Cpoa+Cy,la+ B) (5.3.8)
C,=C,, +Coa+C,ylc+ ) (5.3.9)

These aerodynafnic coefficients may be obtained from a variety of methods
ranging in complexity, and accuracy. They may be generated with potential flow
theories or more advanced methods such as similarity power laws, the cross flow

drag analogy, and/or experimental tables.?’

5.3.2 The Aerodynamics Reference Frame

In the computation of aerodynamic loads, several frames of reference will be
utilized to express quantities. The body frame is attached to the tip of the rocket
nose W|th its x-axis pomtmg forward through the nose and the z-axis pomtlng
nommally downward This frame (7s) is used pnmanly for the computatlon of the
rigid body propertles The subscript ‘B’ will be used to lndlcate the vehicle body
frame.

A key-node or series of key-nodes may be judiciously chosen at locations on
the vehicle components to represent the average motions of the structures
themselves. Since the body is flexible, the orientation of the nodal frame will be
affected by the local deflections at the key-node location at any given time. For
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an undeflected node, the nodal frame C'on ) will be aligned with the body frame

{'"PB)}- The resulting nominal rotation matrix for relating these frames is then,

Note that the subscript ‘bn’ corresponds to the body key-node. The b'is used
to differentiate from other frames defined at other key-nodes, which may pertain

to the fin(s) or other components of the model.
Figure 5,2 depicts the relationship between the two reference frames just
discussed: the body frame (% ) and the body key-node frame {Ctn m The

location of the body key-node in Figure 5.2 is placed arbitrarily on the rocket.

Figure 5.2: The Body Reference Frame and the Nodal Reference Frame

This project will utilize the orientation of the effective velocity vector at the key-
node to define the average conditions acting on the relevant structure. These
conditions will then be used to determine the effective aerodynamic orientations,

which will later define the actual loadings acting upon the vehicle.

Taking into consideration the local angular deformations at the node of concern,

and assuming small deformation angles, the rotation matrix becomes



i:n ‘ 1 ebnz - abny
Cbn,B =Cyg = y,f,. =|=6,, 1 6, ' (5.3.10)
ZZ-” abny abnx 1
or
Cinp =Cpp =1-6;, (5.3.11)

where 0,, is the vector of rotational deformations at the key-node. The velocity

of the key-node can be found to be
V,, =V +agr,, +u,, (6.3.12)

where r,, is the vector relating the distance of the key-node in frame (Zg), and
u,, is the vector of flexible translational displacement rates at the key-node
location. |

If wind is present, then the velocity vector-is further adjusted via,
V,, =V +ayr,, +u,, -V, (5.3.13)
where V, is the wind velocity vector

The total angular velocity of the key-node is taken to be the combination of the
body rates and local angular rates:

©,, =0, +0,, (5.3.14)

Next one can define another frame of reference, the aerodynamics frame (Zoa).

This frame aligns itself with the velocity vector in such a manner so as to
eliminate the sideslip angle (). This is possible due to the fact that the body has
an axisymmetric profile and is being considered separately from the fins. Thus,
instead of allowing the velocity vector to be defined with respect to the body by
two angles of inclination (i.e., angle of attack (o) and sideslip angle (B)), it can be
defined by a single angle by rotating the reference frame such that the velocity
vector is contained within the x-z plane. Additionally, since the orientation is

defined by a single angle, fewer theoretical or experimental coefficients are
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required. Refer to Figure 5.3 for clarity. The origin of the body aerodynamics
frame is collocated with the origin of the body key-node frame.

PV,

Zbn

Figure 5.3: Body Key-Node and Aerodynamics Reference Frames

The aerodynamic frame (*ba) x-axis is collinear with the x-axis from the nodal

frame ("bn). That is,

(5.3.15)

The y-axis is then defined to be perpendicular to the plane that contains both the

aerodynamic frame x-axis () and the velocity vector V* =V*/|v j. Therefore,

y ba — Vil or Vo, = VX, (5.3.16)

Lastly, the z-axis is found via the cross product of the x and y-axes:

Ha = "Uba (5.3.17)

50



Therefore the rotation matrix C,,,, relating the aerodynamic frame (7.) to the
nodal frame (7n) is given as,
i,
Chopn =| Yia (5.3.18)
Zp,
Within this frame, the aerodynamic inclination angles are to be determined.

The angle of attack is given via the following equation:

AT
Z,,V,

si - 5.3.19
ma, v, ( )
or, assuming small angles of attack,
AT
AL (5.3.20)
Vs

Since the body aerodynamics frame has been rotated to align the velocity
vector with the x-z plane, the angle of attack will be strictly positive.

By definition, the sideslip angle is also effectively negated, so that

- B,=0 (5.3.21)

The rate of change of the angle of attack (4, ) and sideslip (3,) may be

approximated by the following relations through the assumption that the key-
node deformation rates and the body angular rates are the primary contributors.

Further assuming the persistence of small angles gives,

g = ZYs— i, (©3V.) (5.3.22)
Vs

where % » COMresponds to the 3™ column vector within the skew symmetric matrix

of nodal deformation rates (9}, ), that is, more explicitly
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éby
=|-é, (5.3.23)
0

ba

The rate of change of sideslip (3, ) is similarly computed via

B,= VioVa~ “L A, (5.3.24)

where §,. corresponds to the 2™ column vector within the skew symmetric

matrix of nodal deformation rates (0,). More definitively it is given by,
¥.=| O (5.3.25)

It is now noted that one additional reference frame is required, which pertains to
the computation of the body forces and moments. This frame will be denoted the
coefficient frame (7), and is related to a frame in which the aerodynamic
coefficients to be used within the simulation are defined. If the coefficients are
extracted from experimental tables, or from software packages, the values will
typically be in reference to some fixed location. Figure 5.4 depicts this scenario,
whereby the aerodynamic coefficients are defined with respect to the vehicle
centre of gravity.

The coefficient frame is generally set up such that both angle of attack (o) and
sideslip (B) angles may be present. However, as was previously stated, the
aerodynamic frame is assumed to be inline with the incoming velocity vector,
thus reorienting itself to eliminate B. As such, the orientation of the coefficient
frame will be closely aligned to the aerodynamics frame so as to take advantage
of the same zero sideslip formulation.

Figure 5.4 displays the current orientation of the coefficient frame as used
within the simulator. The z-axis of the coefficient frame is parallel to that of the

aerodynamic frame, and the x-axis oriented opposite to that of (Fa).
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Note that the location of the aerodynamics frame and coefficient frame are

selected arbitrarily.

CG

>V,

Figure 5.4 Body Aerodynamics and Aerodynamic Coefficient Frames

The rotation matrix is then,
cos™ sin® o
-sin® cos® 0 (5.3.26)
0 0 1

The relationship between (JY%a) and (*co) for the present rocket application is

defined as a fixed rotation of #~=180° about the z-axis. Therefore,

-1 0 0
0 -1 0 (5.3.27)
0 0 1

Once in this frame, the appropriate aerodynamic forces and moments can be

finally determined using the available aerodynamic coefficients.

PROFIRPtOF
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In summary, the general algorithm for computing the aerodynamic loads at any

given time, and relating them back to the body frame is presented below.

1.

Utilize the angular deformation rates of the key-node to define the local

nodal reference frame (Zon).

‘Use velocity vector and nodal reference frame (7o) to define the axes of

the aerodynamic frame (Zba).
Transfer velocity and aerodynamic angles into the coefficient frame (7).

Compute aerodynamic forces and moments in the coefficient frame (7o)
at the predefined reference location.
Transfer forces and moments to the aerodynamic frame at the

aerodynamic key-node location from moment center. This is
accomplished via the following transformations.
=CL,F, | (5.3.28)
and
M, =C%, M, —(r,, -1, JF., ~ (5.3.29)
where (rb,, —rcg)‘ is the skew symmetric matrix relating the moment arm

between the center of gravity and the location of the key-node.

Note that if the aerodynamic key-node is coincident with the center of
pressure, then the aerodynamic moments at the key-node will be zero.
Convert loads back to nodal frame (7). Note that since both the

aerodynamics frame and the nodal frame are situated at the key-node
location, there is no moment arm involved in the conversion between
frames. The transformation is performed as follows,

F,, = CpopFs (5.3.30)
and , .
Mbn = C:a,bana : - . (5.3.31 )
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7. Lastly, convert the aerodynamic forces and moment back to the body

frame () for use in the equations of motion and for determining the
gross body motion. This is accomplished via,
F; = Cy, 5 Fy, (5.3.32)

and
M, =C;, M, +1,.F,, (5.3.33)

5.4 Fin Aerodynamics

Some additional consideration must be paid to the determination of the fin
aerodynamic properties. The stability of the rocket model is closely related to the
flexible deformation motions of the fins under various conditions. Thus, in
addition to the computation of rigid body loadings defined with respect to key-
node conditions, a nodal distribution method must be established for directly
exciting the flexible motions. The reference case for the fin aerodynamics
Presented below is the SPHADS-1 rocket vehicle with nominally fixed tailfins for

ballistic flight.

5.4.1 Fin Aerodynamic Gross Loading

Each fin is considered to be aerodynamically independent from each other, and
from the rocket body. That is, each fin is defined by it's own reference frame,
Whose origin is placed at a user selected key node located on the fin surface.

In the nominal undeformed state, the rocket fins are typically distributed equally
about the circumference of the fuselage. The fin spacing is then determined by
the number of fins being used.

The orientation of each fin reference frame is defined such that the x-axis points
nominally forward towards the nose of the rocket. The local fin y-axis is aligned

such that it extends along the fin span perpendicular to the x-axis. The direction
of the z-axis is then defined via the right hand rule. These orientations are

Summarized in Figures 5.5 and 5.6.
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Figure 5.6: Fin Reference Frames (Front View)
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The following rotation matrix relates these nominal undeformed fin frames to the
body frame, and is defined with respect to a rotation about the body frame x-axis,




1 0 0
Cs; =|0 cosd, sind, (5.4.1)
0 -—sind, cosd,

Where &, is the nominal angular location of the i-th fin. For evenly spaced fins,

the §,'s are given by

5= 27=1) wherei=1,2, ..., n, (5.4.2)
M e

The rocket model under consideration allows for flexible deformations of both
the fuselage and fins. The main focus of this project is to consider the flexibility
of the fins and to determine the resulting relationship with respect to flight
stability.

Ideally, each fin would determine the instantaneous pressure distribution over
the deflected fin surface for every conceivable deformation shape. However, to
allow for this capability, advanced CFD modeling would likely be required to
Capture all of the aerodynamic interference effects induced by the scope of
Conceivable twisting and bending motions. While CFD techniques are desirable
in terms of accuracy, they are unfortunately impractical for this study and thus
Simplifications must be applied.

To account for the deformation of each fin, an average deflection is assumed
using the flexible deformation of the key-node. Therefore, although the fins are
allowed to structurally deform to any level of complexity as provided through the
degrees of freedom inherent to the model, the flexibility as seen through the
aerodynamics is reduced down to a set of three flexible rotations (0,). That s,

aerodynamically speaking, the rocket fin is represented by a rigid undeformed

Structure oriented with regard to its nominal state by (0 )

The rotation matrix corresponding to the flexible rotations of the key-node is
given by,

x 4.3
Cp, =1-0% '(5 )
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Therefore, the rotation matrix relating the body frame (7s) to the local fin
reference frame (7;) is
C,=Cs;Cp : (5.4.4)

The fin aerodynamics are simplified in such a manner so as to consider the
normal force as the primary component for driving the flexibility. The normal
force for the i-th fin is given by

N;=Cy,4:5, (5.4.5)
where the normal force coefficient is

Cy, =Cra,®s (5.4.6)
where Cy,, is the normal force slope of the i-th fin, and « is the angle of

attack of the i-th fin.

The relative velocity as seen by the /-th fin key-node must be determined for the
computation of the nodal forces.

The effective rotational velocity of the i-th key-node is given by,
o,=a;+0, (5.4.7)

The effective translational velocity of the i-th key-node in a frame parallel to the
body frame is

Vi, = Vp+@ir, +i, (5.4.8)

The effective translational velocity in the deformed fin reference frame is given by

V;:=CsVy, (5.4.9)
Vi
where V, =V,
Vﬁ ;

The angle of attack of the fin is then,
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a, = tan-'(i] (5.4.10)
' Vﬁr.

The sideslip angle may also be determined via

V
ﬂj} = tan—l —2—&__2—} (5.4.1 1)
,/ Vﬁ,, + Vﬁ,

However, this approach does not consider side force in the analysis of the fins,
since the focus of the aerodynamic loading is with respect to the normal force. It
is generally assumed that the side force will be small in relation to the normal and

axial forces for conventional fin configurations.

Thus, it is now possible to determine the aerodynamic forces acting upon each

of the fins.
The fin forces are given as
Fy
F,=|Fy
F %

Where the axial force (F,, ) is given by
F, ==C,4,S, (5.4.12)

The side force (F3, ) is considered to be of secondary importance and is

consequentially negated, i.e.,

F, =0 : (5.4.13)

The normal force (F,, ) is then

Fy =—(Cya), @,9,5, (5.4.14)

With respect to the rigid motion of the vehicle, these loads now need to be
converted into forces and moments with respect to the body frame. This is

accomplished with the following procedure.
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The forces are converted back into the body frame by using the previously

defined rotation matrix (C ):
Fy, =C}F, (5.4.15)
Note that C},‘ = Cz. The moments are then

M,, =1;Fy, =1,C;F, (5.4.16)

5.4.2 Fin Aerodynamic Distribution

The fin aerodynamic loads not only contribute to the gross body motion of the
vehicle, but they also must be considered as local ‘nodal’ loads, which act to
drive the flexible excitation of the structure.

A method for distributing the loads over the fins must be established. In the
preceding section, fin loads were defined with respect to the fin key-node |
orientations. The chosen method of load distribution is accomplished through the
use of spanwise and chordwise load factors, given as K, and K. respectively.

These factors are dependent upon the load distributions profiles that develop
over the fins through various flight regimes. The profiles represent the general
shape of the load allocation for combinations of various flight parameters such as
angle of attack (a), Mach number (M), altitude (h), and so on.

The fin dimensions are non-dimensionalized such that the spanwise and
chordwise positions of each node within a given fin is represented by a number
between zero and one.

¥y, =01 and x,=0->1

More specifically, the spanwise position is given by

()’j _ycr)

Ve, = (5.4.17)
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where ¥y, isthe non-dimensionalized spanwise position of node-j, y, is the

spanwise location of node-j from the body frame x-axis, y,, is the spanwise

location of the root chord from the body frame x-axis, and 5 is the total span of
the fin.

Note that in this scenario, y, =0 and y, =1 correspond to the root and tip chord

locations respectively. Similarly, the chordwise position is found via

_ ey = %.e) | (5.4.18)

e ;,
~Wwhere x, is the non-dimensionalized chordwiee positioh of hode-j, x, is the
chordwise location of node-j along the body frame x-axis, x, JLE is the location of
the local chord leading edge on the body frame x-axis, and c, is the local chord
of the fin.

Note that for this reference x, =0 and x, =1 correspond to the leading and
trailing edges of the local chord respectively.

The distribution profiles are also non-dimensionalized such that the magnitudes
of Ky and K, range between zero and one. That is,

K,=0-1 and K,=0-1

The spanwise and chordwise factors are then combined to generate a fractional
percentage of the total load. The nodal load for the j-th node is then determined
via,

FK, |
h . | . (5.4.19)

ZK

where Ff is the fin force to be drstrrbuted K, is the total load factor of node-j,

Where K, =K, K ' (5.4.20)

b, ey

These nodal Ioads must be placed rnto a full order load vector and subsequently._
transformed to generate the reduced order load vector:
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f

Jrom =S'f, (5.4.21)

The procedure for generating the load distribution profiles is dependent upon
several factors including the Mach number, angle of attack, normal force slope
and fin geometry. Subsonic spanwise profiles are handled via a Fourier series
expansion.?**® The fin distributions for supersonic flow were computed through
the use of supersonic wing theory.?®. The methodology for determining these
load distribution profiles are presented in Appendix A.

5.4.3 Load Distribution Methodology

A sample spanwise load distribution is included below in Figure 4.7.

. ‘ ‘
A

os} ]

o8} .

0.7}

06} 4

Kb

o5} , .
04} X 1
03} \ ]
02} 1
o1} \

Figure 5.7: Sample Spanwise Load Distribution

The profile above shows that the maximum loading is given at the root of the fin.
The load at the tip chord (y, = 1) is zero. The curved profile shows a computed
load distribution for an arbitrarily chosen flight condition. The fin structure is
discretized into a finite number of nodes, and as a result, the load is segmented
into several nodal loads. For configurations with a coarse spanwise mesh, the
resulting effective nodal load representation shown in Figure 5.7 will not
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adequately capture the center of pressure location given by the continuous
profile. Thus, a method for adjusting the computation of the load factor is
required and is p’reéented.

To retain center of pressure location consistency, the loads must be adjusted
using a nodal weighting methodology. For a given spanwise or chordwise
section, each node is assumed to carry the loading across a half element edge
length (ype) On either side of the node. Thus, all the loading across this segment
will be collapsed upon the given node. For nodes at the root or tip in the case of
spanwise profiles (or equivalently, leading edge and trailing edge nodes for
chordwise profiles), the fin surface exists only on one side and therefore the
loading region is (yhe/2). Figure 5.8 displays the region of influence for each
spanwise node.‘ |

The new method for determin'ilhg the spanwise and chordwise load factors is
now found by 'co'mputing the load at the center of the région of influence and is
subsequently weighted by the length of the region of influence, that is,

K, =KoL, | | C (5.4.22)

K. =K., (5.4.23)

where K,, and K;a, are the loads at the center of the area of influence, and J,,,

and I, are the lengths of the areas of influence for the given node.

Note that for meshes with equ.al element sizing, /,, will be equivalent to the
element edge Iéngth y,, for central nodes, and 3, forend nodes. For meshes

with variable sized element mapping, the size of each element should be known

to determine the appropriate nodal region of influence.
The total load factor (X, ) for each node is then found in the same manner as

that described by Equation (5.4.20) above.

63



Kbi

Kb2

06

0 333 0 667

Figure 5.8: Sample Spanwise Load Distribution (Adjusted)

The resulting profile provides much greater consistency with the originally
computed center of pressure location, particularly for a coarse fin mesh. For the
spanwise case, the tip nodes will carry a small nonzero loading, and the root
nodes will have their total load diminished somewhat in relation to the central
nodes with larger areas of influence.

The accurate capture of the center of pressure location is critical for the
prediction of flexible fin motions. The fin bending motions are strongly influenced
by the moment between the fin normal force and the spanwise center of
pressure.

A sample load distribution for a fin at an arbitrary flight condition is shown in
Figure 5.9



Figure 5.9: Sample Fin Loading

Figure 5.10 shows the resulting adjusted nodal profile, with the resulting nodal
loads represented as a series of red dots. Note that for the current profile, all
nodes on the fin surface carry a load. This is in contrast to Figure 5.9, where the
leading edge, trailing edge and tip nodes carried zero loads.

Figure 5.10: Sample Fin Loading (Adjusted)

5.4.4 Leeward Reduction due to Flow Blockage
As the vehicle is rolled, the orientation of the fins changes with respect to the
velocity vector. For flight with zero angle of attack, and zero sideslip, the wind

velocity experienced by each fin may be assumed to be equivalent. However, at



non-zero angles of attack and sideslip, distinct aerodynamic environments
develop upon the various fins. The fins in the windward plane are assumed
toexperience the full relative vehicle wind velocity. The fins in the leeward plane
are assumed to suffer some effects of wind blockage and interference due to the
windward fins, the body or both.

At any given instant, it is possible to determine which fins lie in the windward
and leeward planes by analyzing the rocket orientation. The situation is
illustrated in Figure 5.11 below.

\ 8=180"

VIEWED FROM

§.=90° = nest

Zs

Figure 5.11: Orientation for Determining Windward and Leeward Fins

The angle between the y and z components of the velocity vector (6,, ) and

static angular position (&, ) of each fin are the.important factors in determining

the whether a fin is in the windward or leeward plane. The net orientation of the
i-th fin can be determined by

510!, = é‘x, + Hyz ) : . (5424)
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where

6, = tan"(yﬂ—’) (5.4.25)

Bz

If the net orientation (&, ) of the i-th fin is within the range of 0° < &,,, < 180° (0

ot

<4,

tot

< rn rad), then the fin is in the windward plane. [f the /-th fin falls within the

range of 180° < §,, < 360° (n < J,, <2 rad), then the fin is in the leeward plane.

tot tot

Reference 31 assumes a linear increase in the percentage of load attributed to
the windward fins for increasing angle of attack. The following formula is used to
distribute the total fin loads between the windward and leeward planes for a
Cruciform-tail rocket at a roll angle of ¢ = 45° (i.e., the “X” configuration). A
maximum leeward loading of 90% is acquired at an angle of attack equivalent to
or greater than 65°.

For a < 65°,

€ =c,,[0.5+0.4[—6“§)] (5.4.26)

Where « is in degrees. Similarly, the percentage of the total load attributed to the

leeward fins is linearly decreased. For a < 65°,

() = c"[0.5—0.4(-:—5):l (5.4.27)

Above o = 65°, the ratio remains constant.

The above relation may be extrapolated to include the relative loads carried by
fins at any orientation. The method for determining the fin loads in Reference 31
is different from the one employed here. Reference 31 computes the total load
acting upon the fins, and then attributes a percentage of the total fin load to the
Windward and leeward fins. However, for this case, the load of each fin is
determined separately as outlined in Section 5.4.2. Thus, a load reduction
factor, hereby introduced as * f;,,’, must be determined to represent the effects of

flow blockage and interference upon the leeward fins.
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It is assumed that the windward fins will receive 100% of their normally
calculated load for any flight condition. The minimum condition exists at a

relative fin position of §,, =270°, where the fin is exactly 180° away from the
body velocity wind vector.

Thus, it is known that at §,, =180°, f,, =1. The leeward load reduction factor
is also known for the case of g, =45 (i.e. §,, =225 in the leeward plane), using
Equations (5.4.26) and (5.4.27). Thus,

fun(225°,a)= Ezg;: = lzc(,,c)",,,),,,w (5.4.28)

It is assumed that the variation in f,, between §,, =180° and &,, =270" will be

exponential. Thus,

SiwBor)=€™ (5.4.29).
where 1x; is the function time-constant, and
x5 =1-cos(d,, —180°) (5.4.30)

The term ‘" may be extracted from the analysis of the equation at &,, =225°. For
example, ,

o(a)=-1In[f,, (225", a)x, (225°)] (5.4.31)
The profile is given to be symmetric about §,, =270°. The resulting leeward

reduction profiles for an arbitrarily oriented fin are presented in Figure 5.12.

Profiles are shown for up to a = 40°.

The method outlined above is an approximation. In reality, there are many
complex interactions, particularly at high velocities, that induce interference
effects on the tailfins. For example, for larger Mach numbers, and non zero
sideslip angles, asymmetric body vortices will be shed which can drastically
affect the relative loadings of certain fins.®® The flow properties from arbitrarily
deformed fins can additionally impose flow variations that are difficult to
characterize and predict in general. To achieve such a level of accuracy,
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advanced CFD techniques would likely need to be employed to detail the

complete interactions between all structures.
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Figure 5.12: Leeward Load Reduction Factor

5.5 Aerodynamic Coefficients

The aerodynamic coefficients used within the flight simulation aerodynamics
subsystem have been tabulated from the results given from the program Missile
DATCOM.” The resulting outputs are specific to a rocket of SPHADS
dimensions, with coefficients collected for both the fuselage and fins. The
coefficients are defined in the coefficient frame (5\o0) as was defined in Figure
5.4 Results were tabulated for speeds up to Mach 5, and angles of attack up to
20°, for a variety of altitudes. Some sample results are presented in the following

figures. The profiles are given for a fixed altitude of 5 km.
Figure 5.13 depicts the axial force coefficient ) corresponding to the

fuselage versus Mach number. A sharp rise is evident when approaching
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transonic conditions, as is expected. Profiles are shown for three separate

angles of attack.

05
a =0 deg
a =5 deg
045 g = 10 deg

@0 35

3.5
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Figure 5.13: Body axial coefficient )vs. Mach at h =5 km

Figure 5.14 shows the fin normal force coefficient with a change in angle of

attack ( ). For supersonic speeds the coefficients decrease rapidly for each

of the three orientations presented.

a =0 deg
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Figure 5.14: Fin normal force slope coefficient ( ) vs. Mach at h=5 km
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Some sample results of the location of the fuselage center of pressure are
presented In Figure 5.15. The values shown are in terms of number of fuselage
reference lengths, where the reference length is typically given to be the fuselage
diameter (12.7 cm, for this case). The measurement is defined with respect to a
DATCOM reference center (i.e., the nominal e.g. position), with positive numbers
indicating the center of pressure being forward of the reference point (i.e.,
towards the rocket nose). The current DATCOM reference point is defined at a

point 1.59 meters aft of the rocket nose, noting the total vehicle length is 2.75 m.

a =0 deg
a =5 deg
— g = 10 deg

05 35

Mach Number

Figure 5.15: Fuselage center of pressure location vs. Mach at h=5 km in
terms of fuselage reference lengths

5.6 Stress Approximation
One facet of the flexural deformation dynamics not modeled explicitly within the

simulation engine are the structural limitations of the vehicle material properties.
That is, if the loads become large enough, the material strength may be
exceeded. The structural component may then deform plastically, and may
indeed fail destructively.

In the current project, the primary factor driving the system instability is the fin

deformation. An engineering approximation may be made by assuming the fin
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structure to be represented by a cantilevered Euler Bernoulli beam. The stress
due to bending in the fin may be found with the flexure formula of Euler Bernoulli
theory.3® That s, ‘

_Mz, (561
o== | | (5.6.1)

where M is the bending moment acting on the fin. In this case, the moment
would be derived from the Normal force acting at the center of pressure.:
Variable z, is the distance from the centroidal axis (i.e., the centerline of a
symmetric tail fin section). Variable I is the area moment of inertia for the given
cross section
where

I=%cf
and ¢ is the average chord.

The term z, may alternately be expressed as the distance from the centroidal
axis to the maximum point of compression or tension. For the dantilevered
beam-fin case, the tensile and compressive maxima are situated on the upper
and lower surfaces of the fin root dependent upon the direction of fin
deformation.

Table 5.1 gives the yield and ultimate stresses for some aluminum alloys.*®

Material o, (MPa) o, (MPa)
Aluminum alloy 2014-T6 410 480
Aluminum alloy 6061-T6 275 310

Table 5.1: Aluminum Alloy Properties
The bending moment acting on the fin is assumed to be simply dependent on
the fin normal force and the spanwise location of the center of pressure. Thus,
M=N Ve

Assuming the center of pressure is located at the mid-span, the following
equation yields the critical value of normal force to reach the yield strength of the
given material:
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(Nf)c,. _ ol 20l

Sz =% (5.6.2)
e c

This current chapter has defined and detailed all of the forces that are deemed
most pertinent to the gross and flexible motions of a flexible rocket vehicle. In
the next chapter these forces are combined with the equations of motion and the
simulator framework as described in Chapter 4 to present various simulation

results.
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Chapter s : Results and Discussion

In the sections to follow, results will be presented for a variety of test scenarios.
First, simple representations of the rocket stability problem will be evaluated.
Later results from the three dimensional flexible flight simulator will be presented

and discussed.

6.1 Planar Pinned Model

Perhaps the simplest stability validation model available considers a rocket
pinned at the mass center within a wind-tunnel. The rocket is free to rotate in the
pitch plane, and the fin flexibility is represented by a spring as shown in Figure
6.1. The fin deformation (6) represents the scope of flexible deformation
permitted in this model and corresponds to the movement of the fin center of
pressure in response to the vehicle loading. The fin is free to deform in a
direction perpendicular to the fuselage. The distances from the rocket mass
center to the body and fin centers of pressure are denoted by ‘a’ and ‘d’

respectively.*® The rocket is assumed to lie in the x-y plane.

NB

As

Figure 6.1: Pinned Planar Stability Model

For longitudinal stability to exist the vehicle composite aerodynamic center must

lie aft of the vehicle center of gravity.
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The equation of motion for this two degree of freedom system is then

J —mfd P2 _ My-F,6-F,d 6.1)
-md m, S F,—ks -

The vehicles loads are summarized by

F,=-4,=-¢8,C, (6.2)
F,=N,=4S,Cy, @, (6.3)
where
dY. (1)-
=0+|— 90— =16 6.4
% (VJ (V) (6.4)
M, =qSaCy, 6+ qScCy, 6+qSaCy, & (6.5)

The equations of motion reveal that the pitch motion of the pinned vehicle is
intrinsically linked to the fin structural deformation through the fin angle of attack
term. Substituting Equations (6.2)-(6.5) into Equation (6.1) and rearranging,
gives the equations of motion in the standard mass, damping, and stiffness
format:

Mx+Cx+Kx=0 (6.6)

with x= I:e]
o

where the mass, damping and stiffness matrices are

J -m.d
M = " (6.7)
-md m,
S s
e ~(Cuia, ¢+ Crvs, )+ Crvor (?}12 ~Crr (—S{—Jd
2 S, S,
(6.8)
S
—Cpq,a+ CW(—‘-S'L d -C,
K=g$
Sf
cw(_g_) i
(6.9)
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For the purposes of this test, the fin stiffness is assumed to be equivalent to that
of a cantilevered beam with a load at a specified location along the span, as seen
in Figure 6.2. The aerodynamic load is assumed to be located at the midspan
location. Thus, from Euler Bernoulli theory, the resulting stiffness becomes

24E1
k= IE (6.10)
The bending inertia is then defined as
I=Fct) (6.11)

— ]

Figure 6.2 Fin Stiffness Load Approximation

The system is then transformed into state space to perform an eigenvalue

stability analysis. The general state space form is given by X=AX. Thus, for
the present pinned analysis, the following is generated:

£] M o]'[-Cc -KTx
Lk Lo 1|1 O]I:x] (6.12)
where
[
x=[1]
| X

™ 0]'[-C -K
A<lo 1|1 o (6.13)
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6.1.1 Pinned Rocket Stability Analysis

The rocket model used for the above pinned wind-tunnel analysis, is based
upon the SPHADS rocket vehicle as was previously discussed in Chapter 4. As
the fins decrease in thickness, the stiffness decreases by the third power as seen
in Equation (6.11). As the fins decrease in stiffness, they are subject to greater
deformations, which in turn reduce the overall effectiveness of the fin. When the
fin is no longer able to provide the required restorative forces to return the

system to equilibrium the system is unstable.

For a model pinned in a wind tunnel, the system is automatically in equilibrium,
provided there are no initial deformations, or deformation rates. The model may
be tested for any configuration of fin thickness, velocity and atmospheric density.
The atmospheric properties may be altered to simulate the flight at any desired
altitude. The aerodynamic coefficients used in the analysis, were generated from
a series of Missile DATCOM derived tables.** Refer to Section 5.5 for additional

information regarding coefficients.

Figures 6.3 to 6.5 depict the stability boundary plots for the pinned planar
rocket model for a variety of altitudes. The contours shown in these plot
represent the maximum real eigenvalue component (o, = max(Re{4,}) ). This
component (o, ) must be negative for stability to exist. The zero contour
represents the stability boundary. In this section and in the sections to follow, the
term divergence will be used to describe unstable non-oscillating behaviour. The

term flutter will be employed to describe any oscillating sinusoidal unstable
growth trends. The nature of the instability in the following plots is flutter.
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Figure 6.3: Stability Boundary for Pinned Rocket Model (h = 0 km)

Fin thickness (m)
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Figure 6.4: Stability Boundary for Pinned Rocket Model (h = 10 km)
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Figure 6.5: Stability Boundary for Pinned Rocket Model (h = 20 km)

Referring to the above figures, it can be seen that increased altitude has the
effect of Iowering the stability boundary. This result illustrates the decreasing
atmospheric density at higher altitudes, which in turn decrease the aerodynamic
forces acting on the vehicle. In terms of stability, this effectively means that the
configurations are more stable at higher altitudes. Thus, the fin thickness must
be decreased to obtain unstable behaviour in comparison to a similar vehicle

traveling at the same velocity at a lower altitude.

6.2 Planar Unpinned Model
Another simplified rocket flight model is now considered, with the rocket being

removed from the wind-tunnel and free to translate in the x and )Ldirections. An
equilibrium condition must be established to perform the desired perturbation
analysis. The simplest free flight equilibrium scenario is the case for which the
rocket is directed straight down, traveling at terminal velocity, with axial drag
force balancing vehicle weight. For a given model configuration and flight
condition the equilibrium may be established through the adjustment of the
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atmospheric properties. Equivalently, the altitude may be adjusted (assuming

the use of a fixed atmospheric model) until the atmospheric density has

sufficiently increased or decreased so as to yield the desired balance of forces.

The scenario is depicted in Figure ¢ .6 . As with the pinned model the distances

‘a’ and ‘d’ correspond to the distances from the mass center to the body and fin

center of pressures respectively. Additionally, the rocket as shown in Figure 6.6

is situated in the x-y plane. Gravity and weight are now added, along with

disturbances ‘v’ and V which represent velocity disturbances in the body frame x

and vy directions.

C

Figure 6.6: Unpinned Planar
Stability Model

The conditions required for this equilibrium

state to exist are as follows.

fg =0 aa=0 «o = o

where is the net upward force acting on the

fin. The initial pitch angle must also be
defined as -90°. All equations presented from
this point onward refer to the rocket’s body

frame (" B)

The velocities at the body frame origin are
given as;

U-FgcosU+U

14
F --FgSina +v (6 )

The velocities at the body center of pressure

are then given by (assuming small angles)

U,=U = Fg+U
(6.15)

Fg=F+ad=-Fgi+v+aa
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Similarly, the local velocities at the fin center of pressure are found to be,

U,=U=V,+u

. .. (6.16)
V,=V-do+6,=-V,0+v-dbf+5,

Referring to Figure 6.6, the total net forces and torques acting on the vehicle are,

S F. =—(d, +4,)+ W cos
S F,=(N,+N,)-Wsing (6.17)
> M=My+Nya~N,d+A4,6

Now relating the net forces to perturbation forces and considering the fin spring

loading yields the following:

oF, =—(o4, "‘Mf)
&F, = (oN, +N,)-w8

M =N ,a—8N ,d + M, + 84,6
&y =N, k5

(6.18)

Small angles are assumed in the above set of equations and throughout the
remainder of this section. The resulting perturbation equations of motion for this

four degree of freedom system are

m 0 0 0 ] OF,
0 m e mp VO, (6.19)

The perturbation forces in Equation (6.1 8) are now expanded below.
The normal forces are primarily affected by the local angle of attack.

SNy =q,SCy,, 5
éNf = qOSfCM,Iaf

(6.:20)

The axial force components may be expanded to consider the perturbation
effects of changing dynamic pressure and Mach number as well as angle of

81



attack. Note that within this section the Mach number is denoted with an overbar

‘" to distinguish it and avoid confusion with the moment term. That s,

&, =g,8|C,, . 81+C, oM +C,, )

— (6.21)
oA, = qoSf[CA“é‘q+CAW&\4+CMIaf]

The term & can be extracted from the expansion of the dynamic pressure term

as follows
q =—12'p(K) +u)2 =—;'p(V02 +2K,u+u2)z -;—p(VO2 +2Vou)= o +&]

Thus,

& = pV =g§‘lu (6.22)

0
The Mach number can similarly be expanded, yielding

goloru)_ Vo, u

“ T Jwrwr M
Thus,
. W
oM == (6.23)

The angles of attack can be determined with the expression

a= —-g- (assuming small a) (6.24)

Recalling Equations (6.15) and (6.16) relating the velocities at the body and fin
center of pressures, the respective angles of attack then become,

_v+aé
Vo

o, =p-Y290+8
2

a; =0
(6.25)
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Combining Equations (6.18)-(6.25) and following some rearranging, the mass,
stiffness and damping matrices can be extracted. The equations of motion are

then again of the form,
Mx+Cx+Kx=0

where

x=[x y @ sf

(6.26)

The mass, stiffness and damping matrices for the unpinned planar rocket stability

problem are given as follows.

m 0 0 0
0 m
M= m c, 5
0 c I -md
0 m, -m d mp
_ s, .
00 CA% + CAa, —‘-S;" 0
S
0 0 —Cyg—Cra (_S{-}rﬂs_ 0
K=gq,S o 9o
0 0 Cy, (—Si)d ~Cita,¢—Crey@ 0
(S k
00 ~Cha, —-f—) —
i \ S 96 |
r \
S S
VOCAu - (CAa, + CAa_, (-:S'LJ) —(CA"J + CA“I (-Ef—]]a
S, Sy
co .S 0 CNa, +CM,/(-§— CNa,a—CNa,('E—

|

0

CN&'J(

S

4

S

Sy

0 Cra,C+ Cra,@— CNa, (—Jd Cya,ac+ C,,,a”a2 + C'Na!

S

S
- CNa, ('?f-

e
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6.2.1 Unpinned Rocket Stability Analysis

As was done for the pinned case, an eigen-analysis as outlined in Equation
(6.13) was performed for the unpinned case. The stability boundary plot for the
unpinned case is showcased in Figure 6.7.

x10*

Fin thickness (m)

) - S
06 08 1 1.2 1.4 16 1.8 2 22
Mach Number

Figure 6.7: Stability Boundary for Unpinned Rocket Model

Referring to Figure 6.7, the zeroth contour represents the stability boundary,
with the stable region marked by the shaded region. The unshaded regions
correspond to configurations that have at least one positive real eigenvalue
component, and are therefore unstable. Above Mach 2, there is a sharp rise in
the stability boundary contour. This sharp rising trend could be characterized as
a wall of instability. Upon analyzing the outputs, the stability study reveal that the
instability behaviour in this region is distinct from that of lower Mach numbers.
For M <2, the instabililty type is flutter, characterized by an exponential increase
in the magnitude of oscillation with time. For configurations, which cross this wall
of instability, the unstable behaviour is no longer oscillatory, but is characterized
by a divergent exponential growth.

As mentioned previously, the equilibrium condition for the unpinned case
involves the flight of a rocket in freefall at terminal velocity. To accommodate
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this, the nominal flight altitude has been adjusted for each velocity-thickness
pairing, such that the vehicle weight is equivalent to the axial drag force.
Consequently, the results presented in this section are not directly comparable
with those of the previous section due to the fact that the pinned rocket stability
plots (Figures 6.3-6.5) assumes constant atmospheric density. For a more
direct comparison, the equilibrium altitudes generated for each fin thickness-
velocity pair in the unpinned case may be used in the pinned model. The results

of this analysis are presented in Figure 6.8.

x 10"

Fin thickness (m)

06 08 1 1.2 1.4 16 18 2 22
Mach Number

Figure 6.8: Stability Boundary Comparison Pinned Model

The profiles depicted in Figures 6.7 and 6.8 corresponding to the unpinned and
Pinned cases respectively share some common trends. The figure show similar
stability boundary profiles up to about Mach 1.2, with a peak near Mach 0.8 and
a dip just above the sonic line. The stability boundary results for the pinned case
are, however, skewed upwards by approximately 0.1 mm with respect to the
unpinned model. Above Mach 1.3, the unpinned stability contour begins
decreasing, whereas the pinned case continues to increase. Additionally, there
is no sharp rise in the stability boundary to indicate a wall of instability for the
pinned case as was seen in Figure 6.7. Due to the differences in the modeling
approaches for these two cases, it is to be expected that the analyses would
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generate distinct results. From the examination of these models, it is known that
small differences in configuration can greatly affect the overall stability of the
rocket, and thus the results presented here are preliminary simplified cases to be
used primarily as verification tools for the validation of the full three-dimensional
(3D) flight simulator.

6.3 Comparison with Full 3D Flight Simulation Data

The preceding simplified models are to be used as a means of comparison and
validation for the full 3D flight computer program. Several test cases were run
using the full six-degree of freedom flexible-body flight simulator to contrast with
the planar results obtained thus far. The simulation results are presented in the
stability boundary diagrams Figure 6.9 and 6.10. As before, the zero contour is
the calculated stability boundary, with the shaded region indicating stable
configurations.

Four simulation test points are highlighted in both Figure 6.9 and Figure 6.10.
The rocket model is allowed to reach a terminal velocity equilibrium condition
through freefall within the simulator, similar to the method employed for the
unpinned planar case. The model is then excited with a small finite gust load,
which stimulates the model away from equilibrium point. The resulting decay or
growth of the disturbance exhibits the stability of the model configuration. For
consistency, the 3D rocket model is limited to body bending and fin flapping
motions. No twist deformation modes are included as no twist capability was
provided for the planar cases. Each test point is indicated with equivalent

second order system response behaviour parameters (o, and w,). Inset on

Figure 6.10 are angle-of-attack plots, which characterize the relative stability of
the system resulting from a finite disturbance. The resulting profile is generally
that of an underdamped system.*® The underdamped response for a second
order system is defined as

c(t) = Ae’ cos(w,t — @) (6.30)
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where o, is the real component of the system pole, and o, is the damped

natural frequency.

Referring to the diagrams, the 3D simulation data indicates that for a Mach
number of approximately 0.62, fin thicknesses of 0.3-0.4 mm yield visibly
unstable results. For the case where the fin thickness is 0.5 millimeters, the
system also produces a positive real component of a complex root, which

renders the system unstable. However, in this instance, o, is close to zero, that

is, near the stability boundary, and as a result the system exhibits marginally
stable behaviour. The slow growth of the angle of attack for this case may be
seen in Figure 6.10.

The uppermost test case, for a rocket model with fins 0.6 mm thick yields only
roots with negative real components. Thus, the system is stable and will return
to the equilibrium point after a beriod of time following the disturbance.

Each of the three methods presented here display similar instability behaviour,
for low Mach numbers. The nature of thé instability across this speed range is
sinusoidal (flutter). It is the flexible deformations of the fins that render them
ineffective in maintaining the steady loads required to stabilize the flight vehicle.

The results of the three stability analyses do not perfectly coincide, as one
would expect from the vast differences in modeling assumptions and complexity.
The simplified models do serve as a reality check in terms of verifying the
behaviour of the 3D simulation. The planar models are highly sensitive to small
changes in stiffness, and so serve as ballpark estimates for the more complex,
and consistent 3D flexible-body flight simulation. The 3D simu!ation results
involve much more complicated and precise loadings over the fin surfaces that
vary with time and velocity.

One additional consideration is that, for the planar cases, stability is determined
via a state space eigenvalue analysis, which assumes that the aerodynamic
coefficients remain strictly constant. For the three-dimensional simulation runs,
all of the aerodynamic coefficients become variable. Some coefficients, in
particular those pertaining to body and fin normal forces, are strongly influenced

by the angle of attack.
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In comparing the results, It appears that the critical fin thickness values obtained
from the unpinned study are approximately half of those of the 3D simulation.
The pinned case similarly underestimates the critical fin thickness by

approximately 30%.

xIO Stability Boundary

-0.23
(@d* 2.5 Hz

ad % +0.033
0)d % 1.9 Hz

£
0
0
Z Ga  +0.145
c (Od % 1.41 Hz
u—
ad % +0.13
(Od % 0.45 Hz
3 Y/ —
0.6 0.65 0.7 0.75 0.8
Mach Nurmber

Figure 6.9: 3D Simulation Pinned Stability Boundary Comparison
(2D contours of Odwith 3D simulation test points results superimposed)
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Figure 6.10: 3D Simulation Unpinned Stability Boundary Comparison
(a profiles inset)

Figures 6.9 and 6.10 compared the results of the two simplified planar studies
with several flight simulator test cases. The 3D simulation cases were forced into
equilibrium by setting them into a freefall in which weight and drag were

effectively balanced. Figure 6.11 shows a stability boundary contour diagram for
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some additional simulation cases. For the current plot, fin twist modes were
included in the vehicle’s deformation capability, for greater accuracy.

Fin thickness (m)

0.65 07 0.75 08 0.85 09 095
Mach .Number

Figure 6.11: 3D Stability Boundary (Equilibrium)

As can be seen in the figure, the actual stability boundary is estimated to be
close to 0.55 millimeters. The inclusion of the twist deformation capability

effectively makes each configuration slightly more unstable, due to the increased
movement of the fin center of pressure caused by twist.

6.4 3D Simulation Verification

For the purpose of validating the integrity of the six-degree-of-freedom flexible-
body flight engine, the system energies and momenta provide some useful
insight. As outlined in Section 4.3.3, for a model released into flight arbitrarily
with no external forces, several known results are expected from the laws of
conservation of energy and momentum. That is,

1. Total energy is constant (E)

2. Translational momentum magnitude in body frame (%) is constant
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3. Translational momentum vector and magnitude in inertial frame (%) are

both constant

4. Angular momentum magnitude in frame parallel to (7s) located at mass

center is constant

5. Angular momentum vector and magnitude in inertial frame (%) are both
constant

A simulation was performed with all external gravitational, aerodynamic and
thrust forces and moments removed. The vehicle was given a rather arbitrary

initial velocity as outlined below:

Vo =[20 10 27] wg =27 27 2]
The model was then allowed to tumble for 10 seconds. The results of this
simulation are summarized in Figures 6.12-14.

Figure 6.12 shows the kinetic, potentialvand total energy profiles for the given
simulation. There are variations in both the kinetic and potential energies as
rotational energy is converted into elastic potential energy and vice versa. The
third plot within the figure shows the total energy to be constant throughout the
duration of the simulation.

Figure 6.13 depicts the translational momentum profile in the body frame (7g).
The first subplot shows the translational momentum vector (p, ). The
corresponding components are continually changing as the vehicle rotates. The
translational momentum magnitude ( |p Bl) shown in the lower graph does
maintain a constant value, as was expected.

Figure 6.14 similarly shows the translational momentum vector (p ) and
magnitude in the inertial frame (7). Also as expected, the vector components
and magnitude are both shown to remain constant for the entire duration of the

simulation.
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Figure 6.12: Simulation Energy Profiles
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Figure 6.13: Simulation Body Frame (*B) Translational Momentum Profiles
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Figure 6.14: Simulation Inertiai Frame Translational Momentum Profiles

Figure 6.15 and 6.16 show the angular momentum profiles for the current

simulation.
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Figure 6.15: Simulation Body Frame (%) Angular Momentum Profiles
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Figure 6.15 depicts the angular momentum vector and magnitude in a frame

that is parallel to (*b) and situated at the vehicle mass center. The vector

components are seen to be non constant and oscillatory in nature. The
magnitude for this configuration remains constant across the duration of the

simulation.

Figure 6.16 displays the angular momentum vector and magnitude in the
inertial frame. As is expected, the profiles are non changing for a system free

from external forces and torques.
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Figure 6.16: Simulation inertial Frame ("p) Angular Momentum Profiles

Thus, the above figures confirm that the equations of motion are correctly
formulated and are integrating the rigid and flexible coordinates properly. This
verification is critical to ensure that the dynamics are properly modeled before
completing any unconstrained three-dimensional flexible-body flight simulations.
This assumes a linearly elastic system with no structural damping. With the
vehicle dynamics in place, the simulation engine becomes capable of handling
any variety of model variations. The resulting accuracy of any simulation then
becomes dependent on the relevant description and application of external

loadings experienced by the vehicle.
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6.5 Three Dimensional Flexible Rocket Flight Simulations

Results are now presented for a series of rocket flexible flight simulations. The
vehicle FE model has been reduced to allow for deformations with respect to
body bending (in two planes), and fin flap and fin twist motions (for each of the
four tailfins). Thus, the system has 6 rigid degrees of freedom relating the gross
motion of the vehicle and 10 flexible degrees of freedom, which describe the
structural deformations of the reduced order model in response to the external

loadings.
6.5.1 Simulation Comparison

The flexible-body flight simulator developed by the author has been developed
with the intent of being generally applicable to a wide variety of model
configurations and conditions. The current version has been developed to
simulate the flight of a flexible rocket vehicle across a wide spectrum of speeds

and altitudes.

To exhibit these capabilities, it is intended to examine several rocket
configurations at distinct flight conditions. In the sections to follow, results are
presented from these simulations, for the purpose of showcasing both stable and
unstable behaviour at subsonic and supersonic speeds.

In each case, the rocket is given an initial velocity, and is permitted to
decelerate in accordance with the axial drag force acting upon the vehicle. No
thrust forces are applied. An on the fly stability analysis is performed by
subjecting the vehicle to a series of sudden gust loads. The intent is to display
both divergeht and oscillatory (flutter) flight instabilities, for both subsonic and

supersonic flight.
6.5.2 Subsonic Divergence Instability

As the fin thickness is continually decreased, a point will be reached where the
fins become so flimsy that they are subject to large deformations in response to
relatively minute loadings. For such a model, the large deformations will most
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certainly exceed the material’s strength and yield or fail. The resulting behaviour
may be summarized as a destructive fin divergence instability.

To exhibit this, a rocket model was developed with a fin thickness value of 0.3
mm. The initial flight conditions are given as follows.

V,,=[200 0 o] mi/s o, =[0 0 0] radls

[¢ 6 vI=[0 o of h=5km

The rocket is subjected to two 0.1 second duration gusts of 5 m/s at both one
and five seconds into the simulation in the body frame z direction. The
simulation results are presented in Figures 6.17 — 6.26.

The angle of attack contour is shown in Figure 6.17. A clear runaway trend is
noticeable up to about o = 25°. The simulation was halted shortly after 1.2
seconds due to some aerodynamic parameters exceeding the model design
limits. The profile shows that the configuration is inherently unstable, as
evidenced by the fact that the runaway trend is clearly defined before the
interaction with the gust load one second into the simulation. Thus, even in the
absence of any gust disturbances, the unstable rocket behaviour quickly

develops.

0 0.2 0.4 06 08 1 1.2
time (sec)

Figure 6.17: Angle of Attack Profile for Subsonic Divergence
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The reduced order fin flapping deformation coordinates are presented next. It
can be seen from the following figure, which depicts the deformations of each of
the four rocket fins, that a clear divergence trend is discernable. Ata 1.2
seconds into the simulation, the deformation of these fins has grown to be quite
considerable. The fin flap deformation magnitudes shown in Figure 6.18 are in
relation to the user selected deformation shapes that were employed as reduced
order model degrees of freedom. The profile magnitudes are unitless, being
scale factors with respect to the original deformation shape vectors.
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Figure 6.18: Fin Flap Deformation Profiles for Subsonic Divergence

The vehicle body frame velocities are included in Figures 6.19-6.20. The
translational velocities show the deceleration of the vehicle in the x-direction as a
result of the axial drag forces as well as the rapid increase angle of attack, which
transfers some of the vehicle velocity into the z-direction. This trend is visible

within the z-velocity component as well.

The body frame angular velocities show a large unbalanced increase in the
pitch rate (ay). By the end of the simulation, the instability begins to creep into
the other rates, as the remaining windward fin (plot number two in Figure 6.18)
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Figure 6.22: (*B) Aerodynamic Force Profiles for Subsonic Divergence
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Figure 6.23: {CB) Aerodynamic Moment Profiles for Subsonic Divergence
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Figure 6.24: Roll, Pitch and Yaw Profiles for Subsonic Divergence

The divergent behaviour of the rocket model with 0.3 mm thick fins, is perhaps
most effectively displayed with some animation still frames. Below in Figure
6.25, the rocket deformation is presented in three images at 0.4, 0.8 and 1.2
seconds. The rocket is viewed from the front, that is, looking towards the nose.

t = 1.20 sec

t = 0.80 sec
a= 25.4 deg

a= 5.86deg

0.40 sec
1.42 deg

—®— | 0~

Figure 6.25: Rocket Deformation (Front) for Subsonic Divergence

t =
a=

The fins are seen to deflect rapidly and to a considerable degree. The yield
strength would surely be exceeded within the fins for any realistic material
(aluminum being used here) undergoing such large deformations. The last frame
shows the upper fin beginning to deflect. This deflection would then initiate the
roll and yawing motions seen previously. An alternate view of the rocket is
presented for these three animation frames in Figure 6.26.
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t = 040 sec t = 0.80 sec
a= 1.42deg _ a= 5.86 deg

t = 1.20 sec
a= 25.4 deg

\")

Figure 6.26: Rocket Deformation (3D) for Subsonic Divergence

A three dimensional view of the rocket is now presented. The velocity vector is
additionally represented by the arrow in Figure 6.26. The fins again are shown
to deflect considerably under the loads applied to them. Note that the 3D images'
shown in Figure 6.26 are not precisely to scale as the rocket body frame y and z-
axis scales have been enhanced to aid visibility.

Thus, it can be concluded that the rocket model, derived from the SPHADS-1
vehicle, with fins of 0.3 mm nominal thickness is inherently unstable at subsonic
speeds above Mach 0.55. The nature of this instability is divergence.

6.5.3 Subsonic Oscillatory Instability

The simulation was again run with initial conditions for a rocket model whose
fins have a constant thickness of 0.4 mm. That is, the initial conditions are
identical to those presented for the previous case.

The rocket is once again subjected to two gusts of 5 m/s each lasting a duration
of 0.1 seconds att =1 and t = 5 seconds in the body frame z direction.

The angle of attack profile is shown in Figure 6.27 . The profile can be divided
up into three distinct regions. The f rst region pertains to the flight prior to any
disturbance (gust) loads acting upon the vehicle. There are small order
oscillations in o present as a result of the acceleration due to gravity, which is
initially perpendicular to the direction of flight. Att =1 second, the first gust
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drives the vehicle into a sinusoidal oscillation. This oscillation is increasing in
amplitude and is therefore unstable. The vehicle interacts with another gust five
seconds into the simulation. The unstable growth trend continues indefinitely.
Figure 6.28 shows the displacements of the rocket fin flap reduced order
coordinates (i.e., the fin flap degrees of freedom). The unstable trend is clearly
visible. The fins continue to deform to a greater extent with each oscillation.
This vibration is undesirable and may lead to an undesireable trajectory or a
more severe structural failure as the fins are torn away from the fuselage.

time (sec)

Figure 6.27: Angle of Attack Profile for Subsonic Flutter Instability
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Figure 6.28: Fin Flap Deformation Profiles for Subsonic Flutter Instability

103



The body frame velocity profiles are depicted in Figures 6.29-6.30. The
translational velocities (Fig 6.29), shows the vehicle velocity in the x-direction
decreasing due to the axial drag force acting on the body. The body frame z-
direction velocity profile shows the growing unstable sinusoidal trend. The same
unstable behaviour is captured by the pitch rate (o) velocity component in
Figure 6.30.
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Figure 6.29: Translational Velocity Profiles for Subsonic Flutter Instability

- 005 T T LI T T T T
2 A A
s R S N N
= 0 ' I
E P
L
> 005
= 50 T
s :
\.g; ; :
>0 ki : : H
] : : d : :
S 5 ] i i i i i i i 1
6 1t 2 3 4 5 B 7 8 9 10
~ 005 T T T T v T Y T Y
Q A A A A A
® : : N H : A
3 S A A R
z O Rt
E A T
> H : . H H H H ' :
2 1 i 1 1 i i i i i
S 3 + 5 5 7 ©® 9 1o

time (sec)

Figure 6.30: Angular Velocity Profiles for Subsonic Flutter Instability
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The Mach number profile is shown in Figure 6.31. It is important to note that
the exponential growth trends showcased above in the angle of attack and
flexible coordinate deformations are being continuously moderated by the effect
of the decrease in vehicle speed with time. That is, as the vehicle slows down,
and the Mach number decreases, the aerodynamic loadings are steadily
decreasing due to decreasing dynamic pressure. It is conceivable then, that if
the vehicle is permitted to decelerate further, a point may be reached where the
system reverts to a stable configuration. If this should occur, the vehicle will
have effectively traversed the stability boundary for the given flight condition. As
seen by Figures 6.27, 6.28 and 6.31, the current configuration remains unstable
throughout the duration of the simulation run, and through the speed range of
Mach 0.46 through 0.62.

e I e A I

0.62

- time (sec)

Figure 6.31: Mach Number Profile for Subsonic Flutter Instability

The body frame total aerodynamic forces and moments are depicted in Figures
6.32 and 6.33. The total aerodynamic loads are divided into both body and fin
components. The forces in the x-direction (axial) are decreasing due to the
overall deceleration of the vehicle. The z-direction forces again depict the growth
behaviour resulting from the two disturbances. This may also be seen in Figure
6.33 in the second subplot corresponding to the pitch moment.
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Figure 6.32: (7s) Aero Force Profiles for Subsonic Flutter Instability
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Figure 6.33: (7s) Aero Moment Profiles for Subsonic Flutter Instability

Figure 6.34 shows the orientation data for the current simulation. The roll, pitch
and yaw angles are presented in the following subplots. While the roll ($) and
yaw (y) angles remain approximately zero, the pitch () angle oscillates under
the combined effects of the Earth’s gravitational acceleration, which initiates a
“gravity turn”, and the gust load disturbances. The oscillations within the profile
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are a result of the increasingly unstable flight of the rocket, which is driven by the

deformation of the fins.
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Figure 6.34: Roll, Pitch and Yaw Profiles for Subsonic Flutter Instability

The results presented above provide numerical representations of the flight
instability for a rocket vehicle flying supersonically with fins 0.4 mm thick. The
figures below depict the unbounded growth of deformation with some flight
animation still frames. Figure 6.35 shows the front view of the rocket (looking
down at the nose), and Figure 6.36 depicts a 3D representation of the rocket.
The orientation of the velocity vector is also shown. Actual deformations have
been magnified by a factor of two for clarity. ’

The first frame in both animation sets corresponds to the maximum deformation
just prior to the initiation of the second gust load. Frame two depicts the first
maximum deformation following the first gust load. Frames three and four
represent further samples of oscillating deformation maxima, up to the simulation
stop time of 10 seconds. Examining these images, a growth trend may be
observed. Fin twist motions may also be observed in Figure 6.35, as evidenced
by the apparent thickening of the fin cross section. The fuselage does exhibit
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some deformation behaviour as well; however, it is of a smaller magnitude than
that of the fins, and is not discernable in the structural animation stills below.

t = 5.68 sec
a= 3.49deg

;

t = 7.62 sec t
a =-3.70 deg «

|

Figure 6.35: Rocket Deformation (Front) for Subsonic Flutter Instability

t = 4.50 sec t = 568 sec
a=-1.81deg a= 3.49 deg

t = 7.62sec t = 9.60 sec
a =-3.70 deg

Figure 6.36: Rocket Deformation (3D) for Subsonic Flutter Instability

6.5.4 Subsonic Stability

The simulation was again run with initial conditions for a rocket model whose
fins have a constant thickness of 0.6 mm. The initial conditions are identical to
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those of the previous two cases. As before, the rocket is also subjected to two
0.1 second duration gusts of 5 m/s at both t = 1 and t = 5 seconds in the body

frame z direction.

The angle of attack profile for this configuration is showcased in Figure 6.37.
An initial o oscillation is present simply due to the effect of the gravitational
acceleration vector being perpendicular to the initial velocity vector. The
disturbance gusts quickly induce higher magnitude oscillations, which appear to
decrease exponentially. This decay pattern indicates that the longitudinal flight
stability is maintained for the duration of the test scenario.
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Figure 6.37: Angle of Attack Profile for Subsonic Stability

Figures 6.38-6.39 show the various reduced order coordinate displaceménts
for both the fins. Figure 6.38 represents the deformations of the fin flapping
coordinates. Fins one and three lie in the body frame x-y plane and provide the
required restorative forces. All four fins show similar decay patterns, although
the deformations experienced by fins two and four are of a lesser magnitude.
Figure 6.39 shows the fins twist motions, where fins one and three show a
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similar decreasing sinusoidal profile. Fins two and four are essentially inactive
with respect to the twist deformation. For the current simulation, there is no
significant body bending motion, and thus the coordinates corresponding to these
motions are not presented.
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Figure 6.38: Fin Flap Deformation Figure 6.39: Fin Twist Deformation
Profiles for Subsonic Stability Profiles for Subsonic Stability

The decreasing sinusoidal trend is similarly observed in the vehicle rigid body
velocities. Figure 6.40 displays the rocket translational velocities and Figure
6.41 presents the angular velocity trends with respect to the body frame axes.
Figure 6.40 shows the rapid decrease of the velocity in the x-direction. The
value begins to level off towards the end of the simulation as the vehicle is
approaching the terminal velocity condition, where the vehicle weight is
effectively balanced by drag. This fact may also be observed by referring to the
Mach number profile giveri in Figure 6.42. Examination of the z component of
translational velocity (Vz), and the pitch velocity (wv) reveals stable bounded
behaviour for the bounded disturbances applied to the vehicle.
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Figure 6.42: Mach Number Profile for Subsonic Stability

Figures 6.43 and 6.44 depict the aerodynamic loads acting on both the
fuselage and fins throughout the simulation. Unlike the previous cases, it can be
seen from the pitching moment plot (My) in Figure 6.44, the fin moment always
exceeds that of the fuselage. This in itself does not always guarantee stability,
since the location of the body frame may be arbitrarily located, and these
aerodynamic moments are defined with respect to (7s). However, in the present

context with the body frame affixed at the rocket nose, it has been shown in
previous plots (angle of attack, pitch rate, Vz, etc.) that the forces acting on the
fins, and the resulting moments, are sufficient to ensure longitudinal stability.
The diminishing sinusoidal profile is replicated both in normal force (Fz) and pitch
moment (My), which both drive the vehicle recovery following the onset of the
gust load disturbances.

The vehicle orientation history is summarized in Figure 6.45. The pitch contour
shows a gradual pitch downward, as a result of the effect of gravity. In response
to the sudden gust loads, oscillations develop within the pitch profile. However,
these oscillations begin to quickly dampen out as the magnitude of the angle of
attack oscillations is rapidly reduced.
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Figure 6.45: Roll, Pitch and Yaw Profiles for Subsonic Stability

The final step is to analyze the actual physical deflections of the rocket vehicle
with respect to time. Figures 6.46 and 6.47 illustrate the deformation of the
rocket at four distinct instances within the simulation test. The first frame in each
figure corresponds to the maximum deformation resuiting from the first gust load.
Frame two depicts the new local maximum deformation at a time just prior to the
initiation of the second gust load. That is, this frame represents the extent to
which the fin deformation magnitude has decreased following the first flight
disturbance. The third frame shows the maximum deformation immediately after
the completion of the second gust load. The fourth and final frame again depicts
the last local maximum deflection just prior to the completion of the simulation.

All deformations have been enhanced by a factor of two for illustrative
purposes. It can be clearly seen that the fin deformation is decreasing with
respect to time. Figure 6.47 presents a three dimensional view of the rocket and
additionally relates the orientation of the velocity vector which in turn illustrates a
visual reference of the instantaneous of angle of attack.
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t = 1.17 sec t = 5.00 sec

[ a =-2.03 deg a= 0.97 deg
t = 5.20 sec t = 9.68 sec
a=-2.71 deg a = 0.69 deg

Figure 6.46: Rocket Deformation (Front) for Subsonic Stability

t=117sec t = 5.00 sec
a =-2.03 deg a= 0.97 deg

t = 5.20 sec t = 9.68 sec
a=-2.71deg a = 0.69deg

Figure 6.47: Rocket Deformation (3D) for Subsonic Stability

6.5.5 Supersonic Divergence Instability

The focus is now shifted to examining the behaviour of various rocket models at
supersonic speeds. The increased velocities correspond to higher dynamic
pressures, which typically lead to higher loadings on the various aerodynamic
bodies. Thus, it is presumable that a rocket operating in the supersonic regime
will require thicker fins to maintain stability than that established for subsonic

speeds.
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A flight simulation was performed for a rocket model whose fins have a constant
thickness of 0.6 mm. The initial conditions for this scenario are

V,, =[700 0 o] mis @, =[0 0 O] rad/s

[¢ 6 wI=[0 0 of h=10 km
The results of this simulation are presented in Figures 6.48-6.58

The angle of attack (o) profile is shown below. Similar to the subsonic
divergence case, a clear exponential growth is evident. However, for this case,
the growth is considerably quicker given that the simulation reaches the modeling
limits before the first gust load is be initiated at t = 1 second.
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Figure 6.48: Angle of Attack Profile for Supersonic Divergence

Figures 6.49-6.50 show the fin flap and body bending reduced order coordinate
deformations. The fin displacements show the divergence trend in fins one and
three. Fins two and four are initially in plane with the velocity vector, with fin two
being in the windward plane and fin four in the leeward plane.
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Figure 6.49: Fin Flap Deformation Profiles for Supersonic Divergence

The body deformation coordinates are additionally shown in Figure 6.50 due to
the fact that some body (bending) deformation becomes evident as the flight
instability develops. The profiles are identical due to the fact that the shape
vectors used to define the body bending degrees of freedom were defined at
angles to the body frame x-y and x-z planes. Therefore, the identical
deformation values indicate motion in the body frame x-z plane (pitch plane).

Several of the following figures present contours that closely mirror the trends
presented for the subsonic divergence case. Translational and angular velocities
in the body frame are given in Figures 6.51 and 6.52. Divergence trends are
predominantly evident in the translational z-velocity component and the angular
(pitch) y-velocity component. The vehicle is also decelerating across the short
duration of the simulation. This is illustrated somewhat by the x-velocity profile in
Figure 6.51, and more definitively by the Mach number contour displayed in

Figure 6.53.
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Figure 6.52: Angular Velocity Profiles for Supersonic Divergence
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Figure 6.53: Mach Number Profile for Supersonic Divergence

The total aerodynamic loads for both the fuselage and fins are presented in
Figures 6.54 and 6.55. Similar to the subsonic case, exponential growth trends
are present for the normal forces (force z-component), and the pitch moment
(moment y-component). The fins are incapable of providing the needed forces to
establish longitudinal stability. As a result, the rocket motion is dominated by the
aerodynamic effects of the fuselage and is subsequently unstable. As the
instability progresses, other rigid body motions begin to develop as seen by the
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growth of the roll and yaw rates in Figure 6.55, and the side force (y-component)
in Figure 6.54. The roll and yaw motion progression is also evidenced in Figure

6.56, which presents the orientation data for the current simulation.
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Figure 6.56: Roll, Pitch and Yaw Profiles for Supersonic Divergence

The progression of the divergence instability is summarized in the following
animation frames. The rocket is depicted 0.15, 0.3 and 0.467 seconds into the
simulation. The rapid and large-scale deformation of the fins is evidenced in
Figures 6.57 and 6.58. Figure 6.57, shows the front view (looking down at the
rocket nose). Some body bending motion is visible in the third and final '
animation frame. Figure 6.58 displays a three-dimensional view of these same
simulation images along with the current orientation of the velocity vector. The
large deformation of the fins would again most likely exceed the yield strength of
the rocket fin material (aluminum), resulting in destructive fin failure.

= 0.30 sec t =0.467 sec
= 1.45deg a = 19.27 deg

Figure 6.57: Rocket Deformation (Front) for Supersonic Divergence
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t = 0.15sec
a= 0.21deg

t =0.467 sec
a = 19.27 deg

Figure 6.58: Rocket Deformation (3D) for Supersonic Divergence

6.5.6 Supersonic Oscillatory Instability

A flight simulation was performed for a rocket model whose fins have a constant
thickness of 0.7 mm. The initial flight conditions are identical to those of the
previous supersonic case. The simulation results are presented in Figures 6.59-
6.70.

The angle of attack contour for the presént simulation is shown in Figure 6.59.
Several distinct trends are discernable from this graph. Initially, there is a slight
oscillation, driven by the gravitational acceleration as was evident in the previous
cases. This continues until t = 1 second when the rocket is disturbed by the first
5 m/s gust. This gust initiates an increasing oscillatory trend indicating that the
current rocket configuration is unstable.

As in all the previous simulation cases, the rocket is given an initial velocity and
permitted to follow the trajectory that is dictated by the forces acting uponit. As a
result, the vehicle decelerates across a wide spectrum of velocities throughout
the simulation. This fact is illustrated in Figure 6.60, which depicts the Mach
number variation experienced by the rocket. The Mach number decreases
significantly from an initial value of approximately 2.3 to subsonic speeds at the
simulation end time.
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Figure 6.59: Angle of Attack Profile for Supersonic Flutter Instability

Referring back to Figure 6.59, the sinusoidal instability trend is reversed shortly
following the second gust load. This trend nicely illustrates the vehicle crossing
the stability boundary in transitioning from unstable to stable flight. This
boundary crossing is effected by the rapid deceleration of the vehicle. Referring
to the Mach number plot, it can be seen that at the time of maximum «
maghnitude, fhe rocket is traveling at a speed of roughly Mach 1.3. Thus, it may
be inferred that the current rocket configuration with fins that are 0.7 mm thick, at
an altitude of about 10 kilometers will be stable if the freestream Mach number is
less than about 1.3. Speeds in excess of that value will tend to quickly develop |

unstable flight behaviour.

Figures 6.61 and 6.62 showcase the fin deformation coordinates for the current
test case. Figure 6.61 showé the fin flap coordinates for each of the four fins,
and Figure 6.62 depicts the fin twist motion coordinates. The fin flap coordinates
show a clearly unstable, sinusoidal growth trend across the first half of the
simulation. The return to stability is also indicated following the completion of the
second gust load. Twist motions are rather small across the first half of the
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simulation, but quickly increase as the vehicle decelerates from roughly Mach 1.5
to Mach 1.1.
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Figure 6.60: Mach Number Profile for Supersonic Flutter Instability
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Figure 6.61: Fin Flap Deformation Figure 6.62: Fin Twist Deformation
Profiles for Subsonic Flutter Profiles for Subsonic Flutter

Coincidentally, the body bending deformations are active across the same Mach
spectrum as the fin twist motions. The profiles are displayed in Figure 6.63. This is
due to the fact that for the current model, the natural frequencies for both the body
bending and fin twist motions are approximately equal (~90 Hz). This is also
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evidenced by the higher frequency oscillations observable across this Mach range in
the angle of attack profile. The combination of body bending and fin twist motions alter
the previously smooth sinusoid contour.
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Figure 6.63: Body Deformation Profiles for Supersonic Flutter Instability

The body frame translational and angular velocity profiles are shown in Figures
6.64 and 6.65 respectively. The sinusoidal growth and recovery trend is
captured again in the translational z-velocity component and the angular y-
velocity component (pitch rate). Higher frequency effects may be observed in the
jagged Vz profile across the range where the body bending and fin twist motions
are most active. The pitch rates are also seen to be of quite large in magnitude

for this duration.

The total aerodynamic forces and moments for both the fuselage and fins are
presented in Figures 6.66 and 6.67. As expected, the normal force (Fz) and
pitch moment (My) components both exhibit the unstable oscillating magnitude
growth across the first half of the simulation followed by a stable oscillatory
recovery. Higher order effects induced by the body motions show a rough jittery
profile beginning around 4 seconds and extending through the next four seconds

of simulation time.
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Figure 6.66: (7s) Aerodynamic Force Profiles for Supersonic Flutter
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Figure 6.67: (7s) Aerodynamic Moment Profiles for Supersonic Flutter

Next, the orientation data are presented through plots of the rocket roll, pitch
and yaw angles against time. The pitch angle () begins its standard gradual
pitchover due to the effects of gravity. The gust loads then initiate some
oscillations into what would otherwise be a smooth profile. The oscillations
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initially grow then suddenly begin to decrease as the vehicle decelerates and
crosses the stability boundary, which results in a sudden dampening of the
disturbance effects.
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Figure 6.68: Roll, Pitch and Yaw Profiles for Supersonic Flutter

It has already been established that the rocket model employing fins with a
thickness of 0.7 mm, shows a mix of stable and unstable behaviour as the rocket
traverses the supersonic flight regime. The information is now presented with
several animation frames depicting the rocket deformations with respect to time.
Figures 6.69 and 6.70 show four distinct instances of time from two different
perspectives. All deformations have been enhanced by a factor of two to aid and
highlight the flexible motions. Figure 6.69 shows a front view of the rocket, with
Figure 6.70 illustrating a three-dimensional view.

The first frame shows a local maximum of deformation approximately one
quarter into the simulation. At this point, the dominant motion is the flapping
deformation of the fins. This frame is in the unstable, exponentially increasing
segment of flight. The second frame shows the instance of maximum body
deflection. The image in Figure 6.67 is somewhat misleading as the deformation
is still rather small. It is important to recall that the rocket body is 2.75 meters (9
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feet) in length, and thus the deformation appears significant from the front
perspective. Figure 6.70 gives a clearer perspective regarding the extent of
body deformation. The fins in this frame are also seen to have a considerable
amount of twist. This is to be expected given that the fin twist and body
deformation shapes have approximately the same natural frequencies. Frame
three shows the point of maximum o, which follows closely after the maximum
body deformation. The fourth and final frame shows how the rocket has
recovered from unstable growth and has returned to smaller deformations

dominated by the fin flapping motion.

t = 2.60 sec t
| | a=-0.89deg a

|

t = 5.85sec
a= 3.20 deg

t = 9.68 sec
a =-0.83 deg

Figure 6.69: Rocket Deformation (Front) for Supersonic Flutter

t = 2.60 sec
a =-0.89 deg

t = 552sec
a= 1.62deg

t = 585sec
a = 3.20 deg

- 1= 9.68sec

a =-0.83 deg
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Figure 6.70: Rocket Deformation (3D) for Supersonic Flutter




6.5.7 Supersonic Stability

A final simulation was performed utilizing a rocket model that has fins of a
constant thickness of 1 mm. The initial flight conditions are identical to that of the
previous two supersonic cases. Additionally, the gust loads are identical to those
explained in the previous cases. The simulation results are presented in Figures
6.71-6.80.

The angle of attack profile is depicted in Figure 6.71. The contour shows a
definite decreasing sinusoidal trend in response to the gust loads at one and five
seconds. This indicates that the current configuration is indeed stable across the

entire velocity range.

a. (deg)
o

) SR I :

time (sec)

Figure 6.71: Angle of Attack Profile for Supersonic Stability

The Mach number profile for this case is virtually identical to that of the
previous, supersonic flutter instability case. The Mach number decreases from
roughly 2.3 to 0.95 in 10 seconds. The profile was shown in Figure 6.60.

The deformation profiles for the fins and body are shown in Figures 6.72-6.74.
The deformations that develop following the gust loads rapidly decrease as seen
with respect to the fin deformation coordinates. As was the case with the flutter
instability simulation, the body deformation is excited across the same time and

130



Mach range. This is due to the fact that the only thing changing from model
variations is the fin thickness. The natural frequencies for the body bending

motions remain fixed at ~90 Hz.
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Figure 6.72: Fin Flap Deformation Figure 6.73: Fin Twist Deformation
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Figure 6.74: Body Deformation Profiles for Supersonic Stability

The rigid body translational and angular velocities are displayed in Figures 6.75
and 6.76 respectively. As is expected, the stable exponential decrease is evident

in the z-velocity (Vz) and the y-angular velocities (wvy).
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Figure 6.75: Translational Velocity Profiles for Supersonic Stability
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Figure 6.76: Angular Velocity Profiles for Supersonic Stability

The total body frame aerodynamic loads are shown in Figures 6.76 and 6.77.
The results once again confirm that the current model configuration is stable for
the entire velocity range experienced by the rocket.
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Figure 6.77: (7s) Aerodynamic Force Profiles for Supersonic Stability
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Figure 6.78: (7s) Aerodynamic Moment Profiles for Supersonic Stability

The roll, pitch and yaw profiles for the current stable simulation are presented in
Figure 6.79. The dominant motion is with respect to the pitch angle, which
experiences a gentle gravity turn effect. This profile is disturbed by the gust
loads which initiate an oscillatory pitch response as detailed in the figure.
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Figure 6.79: Roll, Pitch and Yaw Profiles for Supersonic Flutter

Lastly, the physical deformation of the rocket vehicle is shown in Figure 6.80.
The deformation is viewed from the front, that is, looking down at the nosecone
section. Deformations have been enhanced by a factor of four to aid in visibility.
The first frame shown below corresponds to the instance of maximum angle of
attack experienced by the vehicle shdrtly after the removal of the second gust
load. Frames two and three then correspond to the deformation of the rocket
one and two seconds later. In the third frame at approximately 7.2 seconds, the
fin deformation has nearly ceased entirely. A slight bending effect is noticeable

in the second image. The three-dimensional view of the rocket is not depicted

since even at 4X magnification the results are not easily discernable.

t = 6.20 sec t = 7.19 sec
a =-0.64 deg a= 0.23 deg

Figure 6.80: Rocket Deformation (Front) for Supersonic Stability
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6.5.8 Results Summary

The preceding sections presented the detailed simulation data from a variety of
rocket model configurations for both subsonic and supersonic flows. The results
from these 3D flexible body flight simulations are summarized in the two tables
below. The equivalent 2™ order system response parameters are given in the
columns corresponding to the behaviour immediately following the two gust
loads. The o4 term corresponds to the eigenvalue (i.e., the dominant system
pole), which describes the resulting growth or decay of the flight parameters.
The frequency of oscillation is also shown by the term w4. In each case, the
vehicle is decelerating, which explains the changing system response
characteristics following the gust loads att = 1 and t = 5 seconds.

The first rows in Tables 6.1 and 6.2 show the divergence cases, where no
oscillatory motion can be observed. The second row of data presents the case
which shows oscillatory exponential growth trend. Table 6.2 also shows the
rocket reverting into stability following the second gust load as illustrated by the
negative o4 term. The final row in both tables correspond to two completely
stable configurations. The degree of stability can also be seen to increase
towards the end of the simulation as the vehicle continues to decelerate. This is
again evidenced by the eigenvalue becoming more negative for the second gust
case. Another trend that becomes evident is that thicker fins result in higher

frequencies of oscillation.

SUBSONIC GUST 1 GUST 2

Vo (m/s) t (mm) o4 o4 (Hz) o4 o4 (H2)
200 0.3 4.2594 - — _

200 0.4 0.1233 1.2658 0.0481 1.2658

200 0.6 -0.1908 2.2472 -0.3273 2.1505

Table 6.1: Subsonic Simulation Summary
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SUPERSONIC GUST 1 GUST 2
Vo (m/s) tr (mm) od wq (Hz) o4 g (Hz)
700 0.6 13.5013 - - -
700 0.7 0.4547 2.1277 -0.2483 3.4188
700 1.0 -0.2921 4.4444 -0.8964 4.6512

Table 6.2: Supersonic Simulation Summary
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Chapter 7: Conclusions

This thesis project has been developed with several goals in mind. The first
was to develop a versatile flight simulation engine that is capable of accurately
capturing the dynamic system responses for a wide array of sophisticated, non-
simplified structural models. Special attention has been paid to the validation of
the underlying equations of motion, so as to ensure that all relevant motions are

being accounted for and considered.

Finite element modeling is an advanced technique that is employed for
accurately modeling the dynamics of complex structures worldwide. By utilizing
this FE capability, the resulting structural models maintain their applicability and
realistic scope of behaviour. This is contrasted with an oft-used technique of
using simple reduced structural elements to represent more complex models.
The reduced order modeling techniques showcased within this report provide a
means for balancing the desire for a large-scale sophisticated structural model
with the constraints of computational efficiency. By selecting appropriate modes
of deformation to represent the realm of vehicle flexibility, accurate responses
may be acquired for a fraction of the processing power that would otherwise be

necessary.

The software has been developed in a modular fashion, such that all
components are standalone functional blocks that are easily customizable to
meet the needs of any test scenario. For the purposes of this thesis report, the
flexible vehicle simulator has been configured to simulate the flight of a flexible

rocket. ~

The second principal goal of this project is to demonstrate the capabilities of the
flight simulation engine by performing a parametric study with respect to a
prototype rocket vehicle béing developed at Ryerson University, the SPHADS-1
rocket. The simulator was used to evaluate the flight stability of a rocket model
matching the SPHADS-1 dimensions for various flight conditions and model

variations.
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The simulation dynamics were verified for the case of an arbitrary velocity
rocket tumbling in the absence of any external forces, by tracking the system
energies and momenta. The three-dimensional flight simulator was additionally
compared to some simplified planar flight models. It was shown that the planar
tests tend to underestimate the values of critical fin thickness for a given flight

configuration.

Results from the flight simulation program demonstrate the various flight
instabilities that can develop in 'reéponse to sudden gust loadings. The flexible
motions of the aluminum fins were determined to be the critical factors in
establishing and maintaining the rocket flight stability. Therefore to exploit this
notion, several model variations were produced that maintained identical
dimensions, with the exception of the rocket fin thickness. With the fin thickness
as a variable, several flight tests were performed at both subsonic and
supersonic speeds.

For both of these flight regimes, results were obtained that spanned the
boundary between unstable and stable behaviour. For fin thicknesses as small
as 0.3 mm, unstable divergent responses were exhibited for speeds as low as
Mach 0.5, although it is believed that the instability for this configuration would be
present for even lower velocities. The divergent behaviour is evidenced by large
fin deformations, which in a physical setting would most likely result in the
destructive failure the fins. As the fin thickness is increased, a sinusoidal
unstable growth trend becomes evident in the simulation parameters. Certain
vehicle velocities, fin deformations, forces, and moments all exhibit the
characteristic growth, as deformations become increasing large in magnitude as
time progresses. Finally, by increasing the fin thickness to a larger, more
reasonable value, flight stability is retained across wide velocity ranges due to
the increased rigidity of the fin structure.

The SPHADS-1 vehicle is expected to experience high Mach numbers in
excess of Mach 2 during the launch phase.18 As a result, it would be
recommended that the vehicle maintain a minimum of 1 mm thick fins to ensure
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adequate stability across the entire flight envelope. However it is noted that in
reality, the fins woujd likely have a thickness in excess of 1 mm, as determined
by the material strength and the dynamic stress profile seen at the fin root.

7.1 Recommendations for Future Work

Several recommendations can be made for future studies. While the modeling
capability and the flexible body equations of motion are adequately sophisticated,
the modeling and distribution of the external forces can be improved rather

extensively.

In terms of aerodynamics, lower level CFD techniques such as strip or panel
theory can be applied to the aerodynamic surfaces to establish a more
comprehensive distribution of dynamic pressure (and corresponding loadings)
with time. In particular, a model that could reasonably predict the flow distortion
and interference effects for the scope of bent and twisted fins could greatly
enhance the accuracy of the aerodynamic loadings. This could be accomplished
via an on-the-fly computation, which may or may not be completely viable with
respect to simulation efficiency constraints for the application. Alternatively, this
data could be precompiled into a series of tables or functions that are relative to
the instantaneous flight condition parameters and relative degree of deformation.

The current model does not permit variable mass applications, which would
include the burning of propellant. This is of particular interest for aerial vehicles,
with rockets in particular. While the current model is capable of looking at
relative instantaneous (quasi-steady mass) flight instabilities, it would be
beneficial to emulate the entire flight envelope of a rocket from launch to apogee.

Another interesting proposition would be to consider the flight of other vehicles
such as aircraft, or spacecraft. While some modifications would surely be
required with respect to the application of the external forces and moments, the
underlying dynamics should be quite capable of processing such FE-derived

models.
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Appendix A: Fin Load Distributions

The load distribution techniques used to allocate nodal loads over the fin
structure may be customized to match any level of desired complexity as is
deemed reasonable or available. In the current context, the direct computation of
the pressure distribution over the fin is avoided for the sake of simplicity across
the range of allowable Mach numbers and non-linear aerodynamics. In contrast,
simpler equations are employed, or tabulated experimental results may
additionally be used if available.

As discussed in Section 5.3, the aerodynamic loads are determined through
the use of tabulated aerodynamic coefficients for a wide range of Mach numbers,

angles-of-attack and altitude.

A.1 Subsonic Aerodynamic Load Distribution

Many factors influence the load distribution over an aerodynamic surface such
as a fin. Interference from adjacent bodies, disturbances from geometric
protuberances, orientation of the velocity vector, normal or oblique shocks, all
may serve to affect the loading.3>*® For low velocity applications, the distribution
profiles may be approximated with some simple relations. Complex shock
interference interactions may be present for high velocity subsonic (i.e.,
transonic) cases as regions of supersonic flow may arise over the fin surfaces for
a given cross sectional profile. These interactions are highly dependent on the
vehicle configuration and thus it might be beneficial to use more accurate
experimental or theoretical profiles fo; improved accuracy within this transonic

region.

A.1.1 Fourier Sine Series Fin Distribution Method

Spanwise Distribution

A simple method for acquiring a load distribution over an arbitrary finite wing or

fin is to represent the loading with a Fourier sine series expansion.?*%°
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Thus, Prandtl’'s integral equation for the circulation (I') at any section along the

span using a Fourier expansion in terms of airfoil parameters is given by
= 4stZA” sinn@ _ (A1.1)

where s is the span of a single fin (semispan)
Examples of the first four Fourier expansion terms are presented in Figure A1
below. Once the Fourier coefficients (A,’s) have been determined the terms are

summed to reveal the load distribution.

— Asin(®)
— Aysin(20)
— - Aysin(36)
---- A,sin(46)

0.5

Figure A1: Fourier Coefficient Expansion
The first Fourier coefficient can be extracted from the flight characteristics

including the normal force slope (C,, ) and angle of attack (a), as follows,

- Gt A1.2
' mdR AR (A1.2)
Define the Fourier series as
. un
a—-a,)=) A sinnf|1+
pla-a,)= 4,sinn ( sine) (A1.3)
Rearranging and given ¢, = 0, yields
pasin® =y 4, sinnb(sin 0+ un) (A1.4)
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where

=% _ 6Cre
=gy T 8s (A1.5)

where ¢, is the local chord at the span location 6, and
¢, =c,(1-A)cosB+c,

and A is the taper ratio

_c
A

The spanwise location (6) can be related to fin parameters via
z=-scosf (A1.6)
Referring to Equation (A1.1), it is evident that all the terms are known except
for the Fourier coefficients (An’'s). Typically four coefficients are used to provide
an adequate spanwise distribution. Odd numbered coefficients are used if a
symmetric profile is desired (e.g., A1, As, As, A7), whereas a sequential
numbering is used if an unsymmetric profile is preferred (e.g., A1, Az, Az, Asg).
Spanwise loads are assumed to have a symmetric profile for subsonic flows.
Thus, the Fourier expansion would appear as follows
Hasin@ = 4, sin O(Sin 0+ )+ A4y sin 36(sin6+3 1)+ A, sin 50(sin 0+5u)+ A,sin76(sin8+7 u)
| (A1.7)
Equation (A1 .7) is a single equation with four unknowns. The coefficients may
be determined by evaluating this equation at four distinct spanwise locations.
The angular spanwise locations that are commonly used are
0=
The system can be solved by placing it in standard form
[A]x}=[B]  (A1.8)
or more explicitly,
sinf,(sin@,+4) sin36,(sin6, +34) sin56(sin6, +5u) sin76,(sin6, +7u)](4) [pasing,
sin 6, (s'in 6, +u) sin36, (sin@, +34) sins6, (sin@, +5u) sin76,(sin6, +7 )| 4, _|pasin6,
sin,(sin, + 1) sin36,(sin6, +34) sin56,(sin6, +5u) sin76,(sin6, +7p) || 4| | pasing,
sin6,(sin6, +u) sin36, (sing, +3u) sinsé, (sin@, +5u) sin76,(sin6, +7 )|\ 4, pasiné,
(A1.9)
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28

ool

z .4
4 2"

E

147



The coefficients are obtained by performing the following operation
{x}=[A]"[B] (A1.10)
Examples of symmetric and unsymmetric Fourier coefficient load distributions are

given in Figures A2 and A3 respectively.

1 : 15
— Ajsin(§)
— AsinR6)
~ - Aysin39)
1+ ---- Aysin{46) 1
— E(Asin(8))
0 05} /—-—-\\
g N -
/S N e - R
— Asin(6) ~ — 4 o “\ ‘o ‘\ e “-.‘_‘ ~
— AysinG9) el N S 7
— - Agsin(58) .- N //
aeee Asin(6)
— :&sin(ne)) o5k ~ ~
b £ 7 0 w7 =
Figure A2: Symmetric Profile Figure A3: Asymmetric Profile

Chordwise distribution

The chordwise distribution is determined using a Fourier coefficient expansion
method as was described in the previous section. The chordwise distribution is
assumed to be asymmetric and thus the even Fourier coefficients (harmonics)
are included. The actual profile used in the simulation is an adjusted Fourier
coefficient distribution that maintains the center of pressure about the quarter

chord line.
A.2 Supersonic Aerodynamic Load Distribution

For supersonic flows, shock waves inherently develop over the vehicle surface.
The interactions of these shocks as they impinge on aerodynamic components
can significantly alter the load distribution profiles. To capture precise
distributions, CFD methods would likely need to be employed, particularly for
cases with complicated structures experiencing high-speed flows. An
approximate method is presented below that does include consideration for
shock interaction over the fin surface.
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A.2.1 Supersonic Aerodynamic Distribution from Supersonic Wing Theory

The following method is used to compute the span-wise load distribution profiles
for a rocket fin in supersonic flow. Methods are presented for span loading
distributions for both triangular and rectangular airfoils. The two cases are then
combined to present results for a general wing with leading edge sweep (A) and
taper ratio (A) for a variety of relevant Mach number regions.?®

In supersonic flow, any disturbances can only propagate downstream. At any
point in a specified supersonic velocity flow field, the region subject to
disturbances or flow irregularities emanating from that point will be bounded by
an imaginary conical contour. This boundary line is known as a Mach line, and is
defined with a Mach angle (p) that is inclined with respect to the flow. The Mach
angle is related to the Mach numper and is determined via the following equation.

p=sin™ (I}_J =tan™ (%) (A2.1)

where
L= ,/Mf, -1 (A2.2)
The section lift coefficient is given by the integration of the pressure distribution

AP over the upper and lower surfaces of the airfoil, that is,
¢, =~ [ APd (A2.3)
c e

The span-wise load distribution is given by the product of the section lift

coefficient and the local chord (cc, ). This will form the basis for determining the

distribution profiles at a variety of supersbnic speeds.

A.2.2 Triangular Wings in Supersonic Flow

The flow over a triangular wing in supersonic flow can be divided into two
categories. For lower supersonic Mach numbers, the Mach angle will be greater
than the semiapex (o) angle of the triangular wing. Therefore, the Mach line will
lie forward of the wing surface leading edge as seen in Figure A4 (a). Thus, the
fin will have subsonic leading edges. For larger Mach numbers, the Mach angle
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will become smaller than the wing semiapex angle, and the leading edges of will
then become supersonic. This can be seen in Figure A4 (b).

b) =4
\
\
0) \
e\
oo
\
\
\
\
\
———————»
C, \\
>4 4 'S 4 Ji] \

Figure A4: Flow Regimes over a Triangular Wing
Note that c, in Figure A4 corresponds to the root chord of the triangular fin.

A.2.3 Triangular Wing with Subsonic Leading Edges
For this case, the pressure distribution is constant along radial lines emanating
from the fin apex. The pressure distribution is then,
4atanw
AP = ——————e (A2.4)
tan” v . ,
l-——F
tan‘ @

where a is the angle of attack, @ is the semiapex angle, v is the radial angle

givenby v= tan"(% ), and E is the complete elliptic integral of the second kind.

Elliptic Integral
There are several forms of elliptic integral;'"?® however, only the second kind is
used and presented here. The second kind of elliptic integral is generally
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dependent on two factors, the amplitude (¢) and modulus (m). The amplitude is

typically within the range 0 < ¢ < %

E(m,g)= [[\1-msin® 6d6 (A2.5)

The integral E is considered to be complete when ¢ = Z. Note that the modulus

is sometimes represented as the variable 'k’ instead of ‘m’, where k? = m.
The flow over a triangular wing with subsonic leading edges generates an

elliptical load distribution. Combining Equation (A2.3) and (A2.4), the load

distribution can then be found. The resulting span load profile is,

f tan? v
ce, =(cc, )0 1- P—. (A2.6)

where (cc;), is the span loading at the root chord, and is found via

4ac, tanw
(ccl )O = _LE_'—— (A27)

A.2.4 Triangular Wing with Supersonic Leading Edges

For the case where the leading edges experience supersonic flow, the loading
is no longer elliptical due to the effect of local supersonic regions over the wing.
The load distribution for this case can be divided into two segments. The
innermost region extends from the root chord to the point at which the Mach line
intersects the trailing edge. The load distribution for this region is given by

4o b-y) .. -x(yﬂz tanzm—bJ B+y) . _.(yﬂz tan2w+b]]
= b —
“ NV tanzm—l[ e (b-y)Btanw z " (6+y)Btanw

(A2.8)

This equation is relevant for the regions on the fin bounded by 0<y sgﬂ'—.

The remaining outermost region lies forward of the Ma;:h line and thus the flow
over this section of the wing is completely supersonic. The variation here is
linear, and is given by

= 4a(b- y)cotw (A2.9)

cc, = =
T JBP-cot’w
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over the region correspondingto =< y<b.

L3
yii
A.2.5 Rectangular Wings

For rectangular wings the dominant characteristic that affects the profile is the
interaction between the Mach lines emanating from the wing tips. Several flow
configurations are possible for a given fin geometry at various Mach numbers.
These are summarized in Figure A5 below.

a) b Y b) b Ly
3 I S o =7 TN
11 ~ ~ II
- b-< 7 1 ST~ s -~
xY ﬂ / xVY -~

Figure A5: Flow Regimes over a Rectangular Wing

Note that in Figure A5, a rectangular half wing is shown, and that the x-axis
may be seen as a plane of symmetry. Case (a) depicts the situation when the
wing tip Mach line does not intersect any other Mach line on the surface of the
wing. That is, the velocity is large enough such that the Mach lines emanating
from the two tips do not cross anywhere over the wing. Case (b) illustrates the
situation where the two Mach lines do intersect on the wing surface. For the half
wing shown here, the intersected Mach line may be equivalently expressed as a
reflection from an unseen solid surface.

Three distinct regions are depicted in Figure A5. Area |, corresponds to the
portion of the wing that does not receive any influence of the disturbed flow from
the tip chord. For this region the pressure distribution is given simply by,

4a

API -
5 (A2.10)
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The span load distribution is then

4ac
’ A2.11
F; ( )

Within area I, the Mach lines streaming from the tip chord affect the flow over

cc =

the fin surface. The resulting change in pressure within this region can be
calculated and subtracted from the otherwise nominal pressure distribution AP,.

That is, the pressure distribution within area Il is given by

AP, =i‘5£{1-[1-;;-cos-’(1-2ptane)]} (A2.12)

or
AP, = AP, - AP, (A2.13)

tips

The resulting span-wise load distribution is given via

—ii“f'—{lcos”(l— 2ﬂ(b—y))+_2_‘/ﬂ(b—y)_ﬂz(bz—y)z} (A2.14)
ﬂ c T c

cc, =
z c

Lastly, for area lll, the Mach lines intersect and produce a region where the flow
and resulting pressure distribution is affected from two sources. Conceptually
this may also be represented as the nominal distribution being influenced by two

separate disturbances.

AP, =47a{l—[l—;';cos"(l—2ﬂtan 9,)]- [1—-};cos"(l—2,3tan 6?2)]} (A2.15)
or

APy =AF, AR, —AF,, (A2.16)

The resulting load distribution is given by

dac, {1005-.(,,2ﬂ(t;-y))+ 2 |pb-y) Bb—y) +_1_c°s-.(1 Zﬂ(b+y))+£ [86+y)_£0+s) _,}

4 (4 C w c V2 c [+

cc =
.4

(A2.17)
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A.2.6 Arbitrary Fin with Leading Edge Sweep and Taper Ratio

The preceding equations for both triangular and rectangular fins in supersonic
flow will serve as the basic building blocks for developing a method for
determining the load distributions over a conventional tailfin.

Figures A6 and A7 show the construction of a generic tailfin with leading edge
sweep (A) and taper ratio (A). The fin presented here has no trailing edge sweep
for simplicity.

Triangular
Wing

o

+ Rocket Fin

Ct
Rectangular

Wing

Xy

Figure A6: Rocket Fin Construction Figure A7: Fin Geometry

Next the loading conditions for a tapered fin will be constructed from the basic
building blocks of the rectangular and triangular wings.

Figure A8 presents four loading scenarios for the given fin configuration, which

will be used to derive the span load distribution data for any supersonic Mach
number.
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Figure A8: Flow Regimes over a Swept, Tapered Rocket Fin

(a) Subsonic leading edges with body reflection (b) subsonic leading edges with

no reflection (c) supersonic leading edges with Mach line intersection (d)

supersonic leading edges with no intersection

Figure A8 (a) depicts the scenario in which the leading edge of the fin is
subsonic, and the Mach number is sufficiently small to allow for the Mach line to
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become incident upon the root chord. It is assumed here that the fuselage is
represented by a solid wall oriented perpendicular to the root chord. Thus, a
region of doubly mixed flow will exist aft of the reflected tip Mach line. The
reflected Mach line is conceptually equivalent to the Mach line that would
originate from the tip of an identical fin reflected in the y-z plane in the absence of
the fuselage. The innermost region bordered from the root to the point at which
the reflected Mach line touches the trailing edge is affected by two disturbances.

An important observation to make before jumping to any load distribution
conclusions is that unlike the case for the rectangular wing, the local chord c at
any given spanwise location is not constant. For a rectangular wing, the
percentage of chord affected by the tips decreases linearly since the chord is
constant across the span. However, for a standard linearly tapered fin (A < 1),
the local chord increases in size towards the root, and therefore the overall
percentage of local chord affected by the disturbed flow imparted by the tips
decreases nonlinearly.

Therefore, a correction factor must be applied to pressure and load distributions
that were presented in Section A2.3 for the rectangular wings. The correction
factor utilizes the percentage of local chord ‘affected by the tips in relation to that
of a rectangular wing, that is,

r A
Jip= (r—)p—— (A2.18)
tip Jrect

where 7,, =%ﬂ’- is the ratio of chord affected by the tips to the local chord, and
i

(r,,p)’m =x—‘c:""’— is the ratio of chord affected by the tips for a rectangular fin of
'
c=¢,.
This correction factor allows for the same interference pressure change
equations presented for the rectangular wing to be used for a tapered wing.
Thus, the total spanwise loading is dependent upon the relative percentage of
the chord being affected by Mach line effects.
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For Figure A8 (a), the following load distributions equations are applicable over

the indicated segments of the fin.
For the Mach range from M = 1 to the point at which the Mach line from the tip

strikes the trailing edge of the root chord the region Ill will exist.
The Mach angle corresponding to this condition is given by

M, =tan™ [—b—-) (A2.19)
ct
The upper Mach limit for this scenario is then determined via
1
M, = ' y
“ T sinp,, (A2.20)

where the subscript ‘U’ is used to indicate the properties defining the upper Mach
limit.
For area I, the section is dominated by the triangular wing with subsonic leading

edges formulae. The region is defined for 0< y <b:

=<cc,>,,..-,,,,,{1-ﬁm[l_%cos-n(l_@}% [ re]

! t t

(A2.21)

where (cc,),,.., corresponds to the load distribution for a triangular wing with
subsonic leading edges. This was given previously by Equation (A2.6).

The span load distribution of the entire fin may be solved using this single
equation. The reflected .Mach line deflecting off the body may be accounted for
by adjusting the relative area of influence for the overlapping segment through

the fin area correction factor f,,. That s, for the region that is affected by both

the incident and reflected Mach lines, the total disturbance can be summed to

give an effective affected region, which may be handled directly by the f,, term.

For case (b), as seen in Figure A8, the Mach number has increased such that
the Mach line now intersects with the trailing edge, eliminating any reflections
from the body. Two distinct regions for calculation are present for this scenario.
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The Mach range corresponding to case b) is bounded from the upper limit of
case A up to the point at which the Mach line from the fin apex becomes collinear
with the leading edge. That is, when the Mach angle (i) equals the semiapex
angle (o),

Hp =0
which will occur at a freestream Mach number
1

M, =
“ sinp,

Thus,

For OSys(b—f‘-),
B

’ tan® v
ch = (CCI )tri-.mb = (CCI )0 1_ tanz P (A2.22)

where (cc,),,.,,, Was stated previously.

For the region, (b—%)s y < b, the spanwise loading is given by,

ce; = (CCz)m.,,,b{l—f,,-,,[l—;lz-cos“[l_MJ+%\[ﬂ(b—y) _ ,Bz(bz—y)2 }}

G G ¢

(A2.23)
In Figure A8 (c), the Mach number has now increased to the point at which the
leading edges have become supersonic. The Mach lines from the tip and the
apex intersect on the body surface, creating a region of flow affected from two
sources.
The upper bound for this case is found when the two Mach lines intersect on the
trailing edge of the fin. This occurs when

,u,,c=tan"( b J and My=—?

c,+c, * " sin Hoc
If the Mach line originating from the fin apex intersects with the tip chord, then

there will be two analysis regions for the case: a region affected only by flow of a
triangular wing with supersonic edges and a region that is disturbed due to tip
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effects. If the apex Mach line intersects with the trailing edge, there will be three
distinct analysis regions. The two innermost regions will be identical to those just
described with a third region consisting of the linearized component of
supersonic flow also affected by tip disturbances as mentioned in Section A2.3.
The innermost region, affected only by supersonic flow over a triangular wing is

given by Equation (A2.8).

For0<y< (b -—%J , the loading is thus restated,

— — 4o (b"J’) .o yBtan’ w—-b _(b+J’) .o ypitan’ 0 +b
cq—(ccz),,i.su,,- r——ﬂztan’w—l[b+ o sin ((b—y)ﬂtanco] - sin [(b-!—y),Btaan

If the apex Mach line intersects the tip chord, the next region will be bounded by

the limit (b—%) < y<b . Should the apex Mach line intersect the trailing edge,

C

r

E-

then the second of three analysis regions will be bound by (b—%)s y<

The load distribution will then be,

o6, = (ccl)m-sup{l—ﬁ¢[l—i—cos"(l—w)+ 2 Jﬂ(b—y)_ Fl=s) J}

c T c c

(A2.24)

The third computation region (if in existence) will then be bounded by - <y<b.

>0

The load distribution is determined via,

cc; = (€1 )p-tm {1 —f,,.p[l ——:;cos" (1 _E!L(b_i)) W2 \/ﬂ(b ~y)_£0-y) J}

c, b4 c, c
(A2.25)

where (cc;),, »iin 1S the outermost linearized portion of supersonic flow over a

triangular wing, as was stated previously in Equation (A2.9):
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(ce - 4a(b - y)cotw
1 Jsup~lin Jm

Lastly, Figure A8 (d) depicts the situation where the Mach number has

increased to the point at which the Mach lines propagating from the fin apex and
tip no longer intersect over the fin surface. Thus, there is no region of doubly
affected flow for a given fin geometry.

There is no upper bound for this region as further increases in Mach number will
only cause the Mach angle to decrease in size, and no further Mach line
interactions will take place over the surface of the fin.

The fin surface may be divided into three distinct analysis regions. The first and
innermost region is governed by the supersonic flow over a triangular wing. Thus

for 0<y sc—ﬂ', the loading is given by
cG = (CCI )m’—sup

The next region is characterized by the linear component of supersonic flow

over triangular wings.
That is, for % <y< (b —%J , the loading is determined via
cG = (CCI )sup-lln

The third and final region includes the linearized component of supersonié flow
over triangular wings diminished in accordance with the disturbance propagating

from the tip leading edge. This region is bounded by (b—%)s y<b.

The loading is stated as,

c, V4 c, c;

(A2.26)

160



Supersonic Chordwise Distribution

The chordwise distribution is determined by integrating the spanwise
distributions just outlined over the local chord for a given fin geometry. The
resulting effect is a sloping effect over the tapered sections of the local chord,

with a constant loading for the untapered regions.

A.3 Aerodynamic Load Distribution Notes

The method presented in this Appendix provides the methods necessary to
determine a general span-load distribution profile for any range of Mach number
for a specified fin geometry. It is understood and admitted freely that the
preceding method is not without limitations and obvious simplifications. To
accurately capture and determine the flow characteristics over the fins at high
speed, a much more sophisticated method should be employed, such as a
computational fluid dynamics (CFD) technique.

The goal of this section is not to accurately determine the actual loadings for the
fin at each given flight condition, but to capture the normalized load profiles. As
outlined elsewhere in this report, the actual aerodynamic loads are determined
via a series of interpolated aerodynamic coefficients. The profiles generated
here are used to distribute these loads over a finite element mesh representation
of a fin for a given flight condition. One particular shortcoming of this method is
that the present context does not allow for any interference effects imparted on
the flow over the fin by the fuselage. For increased accuracy, any number of
techniques may be employed to improve the aerodynamic load profile. However,
for the current context, the above method will suffice.
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