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IMPLEMENTATION OF PREISACH-KRASNOSELSKII HYSTERESIS

MODEL WITH THE USE OF ARTIFICIAL NEURAL NETWORKS

ABSTRACT

Accurate modeling of hysteresis is essential for both the design and 

performance evaluation of electromagnetic devices. This project proposes 

the use of feedforward neural networks to implement an accurate magnetic 

hysteresis model based on the mathematical definition provided by the 

Preisach-Krasnoselskii (P-K) model. Feedforward neural networks are a 

linear association networks that relate the output patterns to input patterns. 

By introducing the multi-layer feedforward neural networks to Hysteresis 

modeling, the proposed multi-layer perceptron neural network and radial 

basis function neural network both are capable of modeling hysteresis 

accurately. The feedforward neural networks make the hysteresis modeling 

accurate without estimation of double integrals. Simulation results provide 

the detailed illustrations. The comparisons with the experiments show that 

the proposed approach is able to satisfactorily reproduce many features of 

observed hysteresis phenomena and in turn can be used for many 

applications of interest.
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Chapter 1 

INTRODUCTION

1. Introduction

1.1. Motivation

The accurate and effective modeling of hysteresis is crucial to the prediction o f 

the performance o f electromagnetic devices. Ferro-magnets, such as iron, 

nickel, and cobalt etc, will tend to stay magnetized to some extent after being 

subjected to an external magnetic field; this tendency to “remember their 

magnetic history” is called hysteresis.

Magnetic materials are usually described in terms of a single valued B-H curve 

(magnetic flux density -  magnetic field) in finite element analysis.

The industrial applications range from modeling of recording heads, to 

modeling the behavior o f magnetic cores, a single-valued B-H curve may 

adequately characterize the magnetic material. In many instances, it is 

important to have a good model o f hysteresis in order for the core loss to be 

accurately predicted since hysteresis loss can be a significant component o f  the 

total loss.

In many electronic devices, such as motors and generators, the behavior o f the 

device is strongly influenced by the behavior o f the magnetic components (e.g. 

inductors, transformers). Hysteresis then can have a powerful influence on both



devices performance and losses. The use o f phenomenological mathematical 

models o f hysteresis is a well-established approach for describing 

magnetization phenomena. [1] A typical example o f such models is the 

classical Preisach model that is a scalar model o f magnetic hysteresis based on 

the physical mechanisms of magnetization. [2] Attempts to separate the 

physical meaning of magnetism from the Preisach model have resulted in the 

Preisach-Krasnoselskii model. [3] The P-K model is a mathematical tool that 

can be used for the mathematical description o f hysteresis o f any physical 

nature. This purely mathematical model takes a macroscopic point o f view to 

hysteresis phenomena and provides no insights into the physical causes o f 

hysteresis. Owing to this characteristic, the P-K model becomes a very 

powerful and effective tool for designing devices with hysteresis features.

Recently, artificial neural networks have been widely used to model a wide 

range o f systems for which mathematical models either cannot be defined, or 

are ill defined. It has been successfully used in those applications involving 

pattern matching [4] and systems modeling [5]. This success was the main 

motivation behind some attempts to utilize ANNs in the area o f magnetic 

hysteresis. Innovative techniques for the accurate modeling of hysteresis 

phenomena will have very important practical significance.

1.2. Feasibility

This project proposes the use o f artificial neural networks as functional 

approximation tools with local memory capabilities that will be suitable for the 

construction o f a P-K model. The exploration o f the working hypothesis in this 

poqect is that both P-K model and the ANN model have local memory, and



both exhibit fault tolerance capabilities. Furthermore, they both are 

mathematical tools, which take a macroscopic approach to the problem.

Specifically, this paper considers the applications o f multi-layer perceptron 

(MLP) and radial basis function (RBF) networks that are already proven to be 

universal approximators, and will show that there is a natural correlation 

between; (i) the coefficients of the P-K model and the connection weights in 

ANN model and, (ii) the Preisach operators and ANN’s activation functions. In 

this respect, this project treats the magnetic hysteresis system as a black box 

and the mathematical tools as means for the identification o f the unknown 

input/output relation governing the system.

1.3. Summary

In summary, P-K model research can bring up alternative mathematical tools to 

ensure the accurate and effective modeling of hysteresis.

In this research paper, a review of P-K model and neural networks in Chapter 2 

and Chapter 3 will uncover that multi-layer perceptron and radial basis function 

networks as universal approximators can be used to reconstruct the P-K model. 

Next, my new MLP and RBF neural network implementations using Square 

Permalloy 80 at different frequencies including DC, 1 kHz, 3 kHz, and 6 kHz 

will be described in detail followed by modeling and analysis o f  the 

implementations in Chapter 4. The simulation experiments are also provided for 

illustration purposes. Finally, the conclusion section will show the research 

contributions o f  this work by presenting a new methodology for accurate and 

effective modeling o f hysteresis.



Chapter 2

HYSTERESIS & PREISACH-KRASNOSELSKII MODEL

2 Hysteresis & Preisach-Krasnoselskii Model

2.1. Hysteresis

The process o f magnetic hysteresis is basically a sequence o f Barkhausen jump. 

The Barkhausen effect consists o f discontinuous changes in flux density during 

smoothly changing magnetic field. They are known as Barkhausen jum ps and 

are caused by the sudden irreversible motion o f magnetic domain walls as they 

break away from pinning sites.

W hen we detect a jump, the system is leaving a metastable state in favor o f 

some other state o f lower energy. Two energy terms are involved in the event, 

the free energy change AF from the initial state to the final state and the amount 

o f energy AE dissipated as heat during the jump. If we can keep track o f the 

energy changes while the jump sequence proceeds, we would have at hand 

quite a general description of hysteresis. The main difficulty behind this picture 

is that we do not know the general principles controlling the statistics of 

Barkhausen jump and those determining in what proportion the work performed 

by external sources is subdivided into stored and dissipated energy in the jum p 

sequence. This brought to us F. Preisach; the German physicist gave the idea of 

describing a generic hysteresis system as the superposition o f many bistable 

units and gave this idea an elegant and illuminating graphical representation.



In the 1970 s, the Russian mathematician Krasnoselskii came across Preisach*s 

model and understood that it contained a new general mathematical idea. As a 

result, a new mathematical model was revealed which can be used for the 

mathematical description of hysteresis o f any physical nature.

2.2. The Preisach Approach

We shall first discuss how the Preisach approach fits in with the general 

interpretation o f the magnetization process as a sequence o f Barkhausen 

instabilities, and on this basis we shall introduce the Preisach-Krasnoselskii 

Model.

2.2.1. Preisach Units 

The simplest energy profile giving a clear representation of a Barkhausen 

instability is shown in Fig 2.1. The term preisach unit is. refers to a system 

characterized by an energy profile of this kind. The state variable m represents 

some characteristic magnetic moment involved in the problem, to be identified 

case by case. The system is confined to the interval -  Am < m < -I-Am 

(Am > 0 ). The free energy of the unit, F^(m) is determined by its values at the

points -  Am,0,4-Am . It is convenient to express these values in the form 

-//oA^Am,//oA^Am,/^oA^Am, where and are appropriate fields. The three 

points are connected by straight segments, which give the two characteristic 

energy gradients, Â  — Â  for m > 0, and Â  -i- Â for m < 0 . At last, we assume 

that the unit is coupled linearly to the magnetic field H , in the sense that the 

stability o f the unit is controlled by the Gibbs energy

Gp(m;H) = F’p(w)-/^oH^« (2-1)



•TT- > ’i ' - f -?-»,.■ •■ <T.I ,• , i i » ’.: ,  ••>-»>.’r ^

 ̂ * 'k t
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Fig 2.1. Representation of A Barkhausen Instability 

Top: Energy Profile (m) Characterizing a Preisach Unit.

Bottom: Corresponding Gibbs Energy W ;H ), as defined by Equation

(2 .1)



The presence o f the field gives rise to a Gp profile o f  the same form as the Fp

one, with — H )  in the place o f (see Fig 2.1). Other more realistic energy

profiles might be considered, the distinctive features o f the description are 

provided as:

i. The position, ± Atn , o f the two energy minima is independent of

the field H ;

ii. The height o f the energy barriers separating the two minima 

depends linearly on H.

Depend on the relative values of A„,A^,and H, G p{m-,H) may  exhibit one or

two local minima. When H  >h^ + , only one minima exists, at m = +Am .

Analogously, when H  < h ^ - h ^  , only m = -A m  is a minima. In the

intermediate case, -h ^  < H  <h^ + , two minima, one stable and one

metastable, exist if  Â > 0. We will not consider the case Â  < 0 , because the

potential then has one minimum under any arbitrary field, and the unit exhibits 

a reversible response to the field, which can be separately treated with no 

difficulty. The stability condition just listed can be expressed in graphical form 

with axes Â  and A„. A given Preisach unit is identified by the representative

point o f coordinates (A^,AJ in this plane; Let us subdivide the half-plane

Â  > 0 into the three regions show in Fig 2.2. The boundary o f region II is the

bifurcation set where Barkhausen jumps may occur.



H

t  ,  ,  /  l r * i  t ,  .  f

 ̂ t «**- ' , ÿ" ÿ '
C ., ,  . y

«wasfsaf.̂ !*

Fig 2.2. Preisach Plane with indication o f regions where the energy 

Gp (m; H )  has one or two minima.

Region \\ > H  + h^. I f  the representative point lies in this region, the unit is

certainly in the state m = -A m , which we call the ( - )  state.

Region II: H  - h ^  <h^ < H  + h^. If  the representative point lies in this region, 

both the states m = -Am and m = +Am are locally stable. Which state the unit 

occupies will depend on the past history.

Region III: < H  - h ^ . l f  the representative point lies in this region, the unit is

certainly in the state m = +Am, which we call the (+) state.



The metastability region, region II, has the form of a core whose vertex is at the 

point = 0, = H .  When the field changes in time, this metastability cone

moves up and down in the plane and a given representative point may pass 

from one region to another. The boundary of cone represents the set o f points 

where Barkhausen jumps may take place.

Let us consider a certain point o f the Preisach plane, o f coordinates

The point will certainly belong to region I when H  -oo. With increasing H, 

the point will first enter region II and then it will pass from region II to region 

III at the moment w h e n // = . At  this point, a jump occurs and the unit

suddenly passes from m -  -A m  to m = +Am . A  decreasing field will cause the 

same thing except that the jump from m = +Am to m = -A m  takes place 

aXH = -  h^. The unit describes the square hysteresis loop is shown in Fig

2.3.

Units associated with different points o f the Preisach Plane will describe loops 

differing in their width as well as in their shift along the H axis. Also, the loop 

height, A m ( h ^ , h j ,  may be, in principle, different from unit to unit.

PRQPERT'CF 
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Fig 2.3 the Square Hysteresis Loop

The energy representation given in Fig 2.1 shows that, when a Barkhausen 

jum p occurs, the energy G^(m;H) suddenly decreases by If^Jn^b^n. This is the

amount o f energy dissipated as heat in the jump. At the same time the free 

energy F^{m)  changes by the amount at the jump. We see that

and are appropriate coordinates to keep track of dissipated and stored 

energy. In subsequent sections, we sometimes use the square loop switching 

fields,

a  = K + K  

P  = K  ~ K
(2 .2)

10



instead o f and , as alternative coordinates in the Preisach plane.

In the next section, the starting point o f the Preisach model is usually the idea 

that a system should be described by a collection o f elementary square loops o f 

the kind shown in Fig 2.3. This is mathematically appropriate because the 

elementary loops are actually a pictorial representation o f elementary hysteresis 

operators that can be superposed, to build up hysteresis nonlinearities with a 

m ore complex structure. The basic physical aspect o f the approach is to 

introduce the two variables, and , describing stored energy versus 

dissipated energy.

2.3. The Preisach-Krasnoselskii Model

The phenomenon of hysteresis is encountered in many areas o f science. But the 

interpretation o f hysteresis differs from one area to another and from paper to 

paper. This led us to rigorous mathematical definitions o f hysteresis in order to 

avoid confusion and ambiguity. The definition provided in [3] is o f particular 

interest. According to this definition, a function is called a static hysteresis 

function if  its input-output relationship is a multi-branch non-linearity for 

which a branch-to-branch transition occurs after each input reaches a minimum 

or maximum (Fig 2.4). The term “static” implies that branches o f hysteresis are 

determined by the past extremum values o f the inputs, while the speed of input 

variation between extremum values have no influence on branching. This 

definition highlights two key attributes of the hysteresis phenomenon. One is 

that hysteresis behaves sequentially and can be specified by following a 

predetermined sequence of states which the output is a function o f input and 

internal states. Another is that hysteresis is inevitably associated with memory.

II



► H

Fig 2.4. A hysteresis multi-branch non-linearity

The P-K model can be used as a mathematical tool to represent description of 

magnetic hysteresis [1]. This model can be represented by using a finite set o f  

hysteresis binary operators, f^p (with a  and (3 corresponding to up and down

switching values o f the inputs), serves as a local memory (Fig 2.5).

12
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1
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k

Fig 2.5. An elementary hysteresis operator y .

The P-K model (2.3) expresses that given the output F{t ) and the 

input , then the output F(t)  can be uniquely determined for all / < .

This captures the essence of the hysteresis phenomenon that is the past history 

o f  the input/output influences the present instantaneous output;

F ( / ) =  \ \ n { a , f i ) r a p H { t ) d a d p (2.3)

W here is a set o f an arbitrary weight function with respect to

hysteresis operator , and the hysteresis operator can only assume the values

13



+1 or -1. In (2.3), function represents the only model unknown and has

to be determined from some experimental data.

The geometric interpretation of model (2.3) is based on the fact that there is 

one-to-one relationship between operator y^p and points (cr,/7) o f  the half

plane a  > P . Using this fact, it can be concluded that at any time the triangle 

T  is subdivided into two sets (Figure 2.6). {t) consists o f  points (a ,/7 )fo r

which y^pH(t) = \ and S~{t) consists of points { a ,p )  for which 

y^pH(t) = - \  . It can be shown that the interface L{t) between S* {t) and

S~{t) is a staircase line whose vertices have a  and p  coordinates coinciding 

w ith local maxima and minima of input at a previous time. The final link o f 

L{t) is attached to the line a  = P  and moves when the input changes. When the 

inputs increase, this link is a horizontal one and moves up, and it is a vertical 

one, and moves from right to left when the input decreases.

Using this interpretation, the model (2.3) can be presented as:

^ ( 0  = P)H{t)dadp  -  P ) H { t ) d a d p , (2.4)

From the expression (2.4), it follows that an instantaneous value o f output 

depends on the shapes o f the interface T (t), which is determined by the extreme 

values o f input at previous instants of time. As a result, the past extremum 

value o f  inputs shape the interface Z,(t), and with which they leave their mark

upon the future.

14
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Fig 2.6 A geometric Interpretation of P-K model
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Fig 2.7 First Order Reversal Curves
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The unknowns o f this model may be systematically found using f-o reversal 

curves (Fig 2.7). This can only lead to good prediction results. This can be done 

by first bringing the input value to states such that the outputs o f all operators 

7ap equal to -1. If we now gradually increase the input value, it will follow

along a limiting ascending branch (Fig 2.7). The notation will be used for

the output value on this branch corresponding to the input H  = a . The first- 

order reversal curves are attached to the limiting ascending branch. Each o f 

these curves is formed when the above monotonie increase o f the input is 

followed by a subsequent monotonie decrease. The notation F^p will be used

for the output value on the transition curve attached to the limiting ascending 

branch at the point F^ . This output value corresponds to the in p u t//  = (3 . Now

we can define the functionF ( a , / î )  :

F ( a , P )  = ( F ^ - F ^ „ ) l l  (2.5)

Using the geometric interpretation of the model (2.3), it is easy to prove that:

F  {a, P)  = H{x,  y)dxdy = (2.6)

where T { a ,p )  is the triangle formed by the intersection o f the lines 

X = P , y  = a  and y  = x .  (Fig 2.8)

16



Fig 2.8 Graphical Representation of expression (2.8)

From (2.6), we find:

fu{a,/3) = -
d^F{a,P)

dpda
(2 7)

To avoid numerical evaluation o f double integrals, It is shown in [4] that the 

determination o f the coefficients o f the hysteresis operator can be simplified by 

approximating (2 .3 ) using a finite superposition of hysteresis operators

N  N

(=1 j= \

(z — 1)
a,- = A  = « i

(2 .8)

(2.9)

17



Where N  is the total number o f hysteresis operators involved while <x̂

represents the input at which the positive saturation of the actual magnetization 

curve is achieved.

The Preisach- Krasnoselskii model, as given by (2.8), can be illustrated as 

shown in Fig 2.9. According to this figure, the model identification can be 

simplified to finding out the different branch of weights. It then becomes a 

typical ANN problem which is to find different weights using arbitrary 

input/output training data. This means if the P-K model can be explicitly 

realized by  an ANN, then the model unknowns may be determined using any 

arbitrary experimental data.

KcCi^Pj)

Fig 2.9 Block Representation of the Classical Preisach-Krasnoselskii Model

18



It turns out that model (2.9) m aybe able to be realized by the ANN’s shown in 

Fig 2.10 if  the hysteresis operators are represented by elementary rectangular 

loops.

H{t)

Hysteresis
Operator

Hysteresis
Operator

m m #

Hysteresis
Operator

F(t) Î « 1 .J

Fig 2.10 Operator ANN Realization of the P-K model

2.4. Summary

The P-K model above is shown to satisfy the formal definition of hysteresis 

provided. First, the P-K model uses the binary units to form the local memory 

capability. Secondly, it is shown, that this model stores information not in 

particular separate units, but some groups o f the units which together keep each 

piece o f information related to hysteresis. As a result, if some o f the units are 

destroyed, the stored information still might be preserved [1]. This, so called,

19



fault tolerance property is similar to that o f the memories in biological systems, 

and to the memory capability o f an ANN,

20



Chapter 3 

NEURAL NETWORKS

3 Neural Networks

3.1. Neural Networks Structure

Artificial Neural networks, commonly known as “neural networks”, can be 

defined as a model o f reasoning inspired by biological neural interaction in the 

natural world. The human brain consists of a densely interconnected set o f 

nerve cells, neurons. Similarly, a neural network is a computer system made up 

o f a number o f very simple and highly interconnected processors, also called 

neurons, that process information in parallel by that dynamic state response to 

external inputs [5].

A neuron is the basic information-processing unit o f a neural network. A 

neuron k  , from input to output can be described using the following two 

equations:

r 

1=1

and

yk = q>{v,) (3-2)

21



where x^,X 2 ,...,x^ axe the inputs; w^,,w^2>— are the synaptic weights o f 

neuron k  ; is the neuron internal activity index; çj(*) is the activation 

function and is the output of the neuron k .

A  neuron model can be illustrated as Fig 3.1. The threshold 9^ o f  neuron k  

here is represented by a synaptic link with an input. This signifies the scenario 

where a neuron generates an output if its input is beyond a threshold.

*
X2

«

wkO

f
‘■'f

Fig 3.1 Neuron Model
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This model is a simple, yet useful, approximation o f a biological neuron and 

can be used to develop different neural structures including feedforward 

networks.

A typical network consists o f an input layer, one or more hidden layer and an 

output layer o f neurons. A multilayer perceptron with one hidden layer is 

shown in Fig 3.2.

OutputHiddenInput
Layer Layer Layer

Fig 3.2 Multi-Layer Perceptron with One Hidden Layer

The neurons o f one or more hidden layers o f MLPs are not part o f  the 

input/output o f the networks. These hidden neurons provide the learning 

capability for the networks. It enables the network to learn complex tasks by 

extracting more meaningful features from the input vectors. The procedure o f 

this method is referred as the error-correction learning law.

23



3.2. Error-correction Learning Law

To derive the error-correction learning law, let us consider the three-layer 

network shown in Fig 3.3. The indices i, j and k refer to neurons in the input, 

hidden and output layers, respectively.

Input signals, are propagated through the network from the left to

right, and error signals, e ,,e 2 ,...,e,,from right to left. The symbol Wy denotes 

the weight for the connection between neuron i in the input layer and neuron j  

in the hidden layer, and the symbol Wĵ . the weight between neuron j  in the 

hidden layer and neuron k  in the output layer.

LAYER LAYER

Input siginals

1

X;

OUTPUTHIDDENINPUT

T2

T*

T/

LAYER

Fig 3.3 T h r e e - l a y e r  back-propagation neural n e t w o r k
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Suppose the learning procedure o f the neural network selects (3.2.1) as the cost 
function to minimize.

(3 .2 . 1)
2  ,

To propagate error signals, we start at the output layer and work backward to 

the hidden layer. The error signal at the output o f neuron k  is defined as:

^ k = d k - y k  (3 .2 .2)

where denotes desired output for neuron k , denotes the actual output o f 

neuron k  when the input vector x is presented.

The purpose o f error-correction learning is to minimize the cost function with 

respect to the synaptic weights W of the network so as to make the network 

closer to the desired output.

This can be achieved by employing the method of gradient descent, also known 

as the steepest descent method. We can adjust the weight values as following :

= W ° ‘‘‘ + r / D  (3 .2 .3)

where 77 is a positive constant known as rate o f learning, which determines the 

length o f step; D is a search guiding direction, determined by the gradient o f

cost function ^  evaluated at the weight value W° :

25



£> = —
dJV old (3.2.4)

According to the steepest descent method, the adjustment to the weight Aw 

should be along the negative gradient so we have:

Aw = -77 Ë I
dw

The relationship is shown in Fig 3.4.

(3.2.5)

A w  =  - 7]

Wo w(« + l)
' -V , :■»- r)»;-

Fig 3.4 Weight Adjustments Using Steepest Descent Method
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To calculate ^  for (3.2.5), let us consider a sample neuron relation between 

hidden layer and output layer as Fig 3.5.

X ;

Fig 3.5 A Sample Neuron’s Relation Between Hidden Layer And Output
Layer

Based on (3.2.5), we set

(3.2.6)

The chain rule can be used to calculate the partial derivative and the above 

partial derivative can be written in the equivalent form:

^  dvj  ̂ ^  dyi, dv^ 
dw ĵ dv  ̂ dŵ j dv  ̂ dŷ  dŵ j

(3.2.7)
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According to (3.1), we have

aw,, P . 2 .8)

According to (3.2), we have

(P\^k) = ^  (3.2.9)

where (p\v^ ) is the derivative o f the activation function ^ (# ) .

To calculate —̂ , two cases have to be considered.

1 . A: is an output neuron in the output layer o f the network:

- ^  =  - ( ^ k  -  y k )  (3 .2 . 10)

then (3.2.6) can be solved as:

= -rj(p\v^){d^ - y k ) ^ j  (3.2.II)

2 . A: is not an output neuron in the output layer o f the network:

This is the case where the output error cannot be used directly in calculating

the error signal. The total output error is:

= = =^*(3,2.12)
dy  ̂ I ‘ , dv, dy  ̂ i dv, dy,̂  , i dv,

where 1 is the corresponding output layer that neuron k  is not in. 

then (3.2.6) will be
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Aw^j = -7](p '(y , (3 .2 .1 3 )

and (3.2.7) can be expressed as:

A w,j =-710,Xj (3.2.14)

According to (3.2.11), when the output layer is /th  layer, we can calculate Ô, 

as:

=-<P'(y , ) (d , -y , )  (3.2.15)

otherwise, calculating the (5̂  recursively as (3.2.12).

The back-propagation learning algorithm for error-correction learning 

explained above is applicable to any network with a differentiable activation 

function <p(»). According to (3.2.12) and (3.2.15), we can back-propagate the 

errors layer by layer; according to (3.2.14), we can update the weight values.

Now we can derive the back-propagation training algorithm.

3.3. Error Back-propagation Training

The best known supervised learning algorithm. The learning algorithm was first 

developed by Werbos [5] and latter rediscovered by Rumelhart et al. [8 ]. The 

learning is done on the basis o f direct comparison of the output o f the network 

with known correct answers. The back propagation algorithm is an efficient
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method o f computing the change in each connection weight in a multi-layer 

network so as to reduce the error in the outputs. The training algorithm consists 

o f  the following steps:

Step 1 : Initialization

Set all the weights and thereshold levels o f the network to random 

numbers uniformly distributed inside a small range [5 ]:

^ 2.4 2.4^

I y

where is the total number o f inputs o f neuron i in the network. The 

weight initialization is done on a neuron-by-neuron basis.

Step 2: Activation

Activate the back-propagation neural network by applying inputs 

Xj,X2 ,...,x„and desired outputs .

a) Calculate the actual outputs o f the neurons in the hidden 

layer:

y j  = sigmoid
/=]

where n is the number o f inputs o f neuron j  in the hidden 

layer, and sigmoid is the sigmoid activation function.

b) Calculate the actual outputs o f the neurons in the output 

layer:

= sigmoid - 9 ,
y=i
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where m is the number o f inputs o f neuron k  in the output 

layer.

Step 3; W eight Training

Update the weights in the back-propagation network propagating 

backward the errors associated with output neurons.

a) Calculate the error gradient for the neurons in the output 

layer using (3.2.11) or (3.2.12):

Calculate the weight corrections using (3.2.14):

Update the weights at the output neurons:

^kj = ^kj + ^^kj

b) Calculate the error gradient for the neurons in the hidden layer:
I

Sj  = y j  x ( l - y ; ) x ^ < 9 *  X w,j 

Calculate the weight corrections:

A W ; j  =  - 7 /  X  X i  X  S j

Update the weights at the hidden neurons:

W y  =  W y  +  A W y

Step 4: Iteration

Increase the iteration by one, go back to Step 2 and repeat the process 

until the selected error criterion is satisfied (Fig 3.6)
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Fig 3.6 Basic Flowchart Presentation of Back-propagation Training

Algorithm
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3.4. Multi-Layer Perceptron Neural Networks

A multi-layer perceptron network (ML?) represents a class o f feedforword 

neural networks that contain one input layer with one output layer, together 

representing the system inputs and outputs, respectively, and one or more 

hidden layers providing the learning capability for the network [7](Fig 3.7). The 

basic element o f a ML? network is an artificial neuron whose activation 

function, for the hidden layer, is a smooth, differentiable function (usually 

sigmoid). The neurons in the output layer have a linear activation function. The 

back-propagation algorithms based on error-correction learning rule can be 

considered as an extension of the “mean least square” algorithms [10]. This 

learning algorithm works by continuously presenting batches o f input vectors 

and their associated desired outputs and then iteratively changing the values of 

the network weights and biases in the direction of the steepest decent with 

respect to the relative error. One way of determining when to stop is the 

average error over the entire training set reaches a defined error or any other 

convergence criterion. A MLP network function can be formulated as:

f  n ^
f{Xi,...,x„) = Y,cù--g J^yvyXj-Oi

\y=i(=1
(3.2.16)

l  + e'
(3.2.17)
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Where / ( • )  is the network output; g(») is the activation function; Wy and 0̂

represent weights and biases in the hidden layer; m denotes the number o f 

hidden neurons; and n). represents the output layer connection weights which, 

in effect, serve as coefficients to the linear output function.

1,1

X.n
COmw.

-ip>UT

LAYER

HIDDEN

LAYER

OUTPUT
LAYER

Fig 3.7 Block Representation of the Multi-Layer Perceptron Network

3.5. Radial Basis Function Neural networks

In general, Radial basis function (RBF) network exhibits similar properties as 

M LP networks, such as generalization ability, fault tolerance and robustness. It 

therefore can be treated as an alternative tool for learning in neural networks.
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RBF networks also have a fast learning capability comparing with other 

feedforward neural networks [9], The architecture o f the RBF network is 

similar to a MLP network and consists of a fully connected two-layer network; 

the hidden layer and the output layer. The hidden layer is a collection of 

neurons with radial basis activation functions, typically one of “Thin Plate 

Spline”, Gaussian, Multi-Quadratic or Inverse Multi-Quadratic functions [9]. 

There are two parameters, the center c and the width, r , work with RBF 

neurons. They are similar to the weights and biases o f the hidden layer in a 

MLP network. The output layer is just an “adder” that sums a weighted inputs 

using the output connection weight, w , that represent the strength o f these 

connections (Fig 3.8) A RBF network function can be formulated as:

J (3.2.18)
1=1

{ X - C Ÿ

^ ( x  — c) = e^ '' (3.2.19)

where ^(») is the activation function; w, represents the weights in the output 

layer.
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Fig 3.8 Block Representation of the Radial Basis Function Network

3.6. Summary

According to the review, a neural network is massively parallel & distributed 

processor that works in a fashion similar to the human brain. It resembles a 

biological brain in two respects; first, the knowledge is acquired through a 

learning process, & second, inter-neuron connection strengths known as 

weights are used to store the knowledge. The learning process involves 

modification o f the connection weights to obtain a desired objective. Two kinds
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o f neural networks that we specifically mentioned are MLP and RBF networks. 

They are all feedforward neural networks. Feedforward networks can be 

considered as linear association networks that relate output patterns to input 

patterns. Among the advantage of feedforward neural networks, the following 

features are especially important to the proposed implementation of Hysteresis 

phenomenon:

1) function approximation (I/O mapping): ability to approximate any 

nonlinear function to the desired degree

2) Learning and generalization: ability to learn I/O patterns, extract the hidden 

relationship among presented data, & provide acceptable response to new 

data that the network has not yet experienced.

3) Fault tolerance: due to their highly parallel/distributed structure, failure o f a 

number o f neurons to generate the correct response does not necessarily 

lead to failure o f the overall performance of the system.
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Chapter 4

RECONSTRUCTION OF P-K HYSTERESIS MODEL

4 Reconstruction of P-K Hysteresis Model

In this paper, two major kinds o f neural network architectures, namely multi- 

Layer Perceptron (MLP) and the Radial Basis Function (RBF) networks, are 

proposed to model the Electric Arc Furnace (EAF). The reconstruction o f the P- 

K  Model is achieved using the normalized data representing the hysteresis 

loops for Square Permalloy 80 at different frequency including DC, 1 kHz, 3 

kHz, and 6 kHz. Square Permalloy 80 is materials consists of 80/20 alloy of 

nickel and iron that can be easily magnetized and demagnetized. The 

performance criteria by which neural network-based models can usually be 

measured including the training time, number of epochs, size of the network 

and accuracy. The first three criteria measurements are straightforward except 

the accuracy. In order to investigate the accuracy of implemented neural 

networks, comparisons between experimental data and the output o f the 

networks are made. The error index used for the comparison is non-dimensional 

index error (NDIE) that is the mean square error (MSB) of hysteresis modeling 

normalized by the standard deviation of the experimental data.

4.1. Simulation and Experimental Results of MLP Neural Networks

4.1.1. Simulation set up
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The EAF sample used for simulation experiments is illustrated as Fig 4.1.

Inputs

Outputs
“1

Fig 4.1 Hysteresis Loop Sample for Simulation Experiments

The dimension of the input vector and output vector is 1. The numbers of 

hidden layer neurons will vary. The corresponding simulation software program 

is coded in Matlab 6.5. The computer system used for the implementation is 

Pentium® 4 CPU 2.4 GHz, 512 MB of RAM.

The configuration of the hysteresis MLP is controlled by a script file. The 

configuration script file controls the parameters such as the dimension o f the 

input and output vectors, the dimension of the hidden layer, the learning stop 

condition and learning rate etc. The activation function is a sigmoid function. 

The training algorithm is the Levenberg-Marquardt algorithm that was designed 

to approach second-order training speed without having to compute the Hessian 

matrix [17]. The weight and bias are all set to an identical initial value before
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training. At the same time the inputs are normalized to between 0 and 1 so that 

the neural network will be sensitive to the input pattern.

The MLP network implementation is the matter o f finding the following 

matching factors that attributed to failure in learning: 1) adequate numbers o f 

training cases; 2) sufficient numbers o f hidden neurons; 3) non-deterministic 

relationships between inputs and outputs. The second one is o f  particular 

interest in the simulation.

4.1.2. Simulation Experiments o f MLP networks

Simulation experiments are carried out to show the effect o f different numbers 

o f hidden neurons to the speed of learning and accuracy.

The configuration parameters for the rest o f the experiments in this section are 

listed as Table 4.1.

Table 4.1 Configuration Parameters for the MLP Experiments

Weight

Initial

Value

Dimension 

o f Input 

Vector

Dimension 

of Output 

Vector

Learning

Rate

Learning

Stop

Condition

Maximum 

No. o f 

Epochs

1 1 1 0.05 .0001 300

The first experiment is to try to use a set of data in single frequency with 51 

training cases and 51 validation data at the fi"equency o f 3 kHz. Numbers o f 

MLP networks with different numbers o f hidden neurons have been
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implemented and their NDBE, MSB, training time, and No o f Epochs have been 

recorded m the table 4.2. The experiment shows that the error indices (NDIE) 

vary from as low as 0.33% to as high as 0.64% with an average NDIE of 

0.2327%, and the computational results compared well with existing 

measurements. Based on the simulation results, we can see that the optimum 

num ber o f neurons in this experiment is 20. Fig 4.2(b) depicts the hysteresis 

loops at frequency o f 3 kHz generated by the modified MLP networks.

Table 4.2. MLP Network Results Using Square Permalloy 80 at Frequency

of 3 kHz

Size of 

Networks

Training

Time

(Second)

No of 

Epochs

NDIE

(%)

MSB

(10"*)

10 2.1560 75 0.34 0.998305

15 0.8750 66 0.33 0.92339

20 0.4380 14 0.32 0.86197

21 0.5780 27 0.28 0.669531

22 0.5470 23 0.34 0.999437

23 0.4690 16 0.25 0.563349

24 0.5000 17 0.31 0.815577

25 0.5630 21 0.31 0.860202

26 0.7350 23 0.33 0.930848

30 0.7030 17 0.28 0.788511

35 0.5620 12 0.19 0.322733

40 0.7500 12 0.32 0.693552
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45 0.7180 10 0.24 0.480072
50 0.9370 11 0.24 0.469641
55 0.9840 11 0.55 0.297932

60 1.0150 8 0.33 0.97101

65 1.0470 7 0.16 0.23044

70 1.0320 7 0.27 0.647826

75 0.8120 6 0.16 0.231463

80 1.2500 7 0.29 0.746818

85 0.9220 5 0.092153 0.0736879

90 1.4060 6 0.065053 0.0367206

95 0.9850 5 0.074806 0.048557

100 0.9220 4 0.095903 0.0098066

105 1.0000 5 0.018202 0.00287469

110 1.0930 6 0.057863 0.0290517

115 1.3440 5 0.037592 0.0122623
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Hysteresis loop for 2 mil Square Permaloy 60 • 3 KHz

H(/Vm)

Fig 4.2(a) Experimental data illustrating normalized hysteresis loops for 

Square Permalloy 80 at frequency o f 3 kHz
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Hysteresis Modeling Based on Experimantal data - 3 KHz

m

H(AAn)

Fig 4.2(b) Results from MLP Neural network-based hysteresis model built

based on P-K Model

The Second experiment is to try to use the data of different frequency with 204 

training cases and 204 validation data at different frequency specifically DC, 1 

kHz, 3 kHz, and 6 kHz. Numbers of MLP networks with different numbers o f 

hidden neurons have been implemented and their NDIE, MSB, training time, 

and No o f Epochs have been recorded in the Table 4.3. The experiment results 

shows that the error indices (NDIE) vary from as low as 0.29% to as high as 

0.34% with an average NDIE of 0.3615%, and the computational results 

compared well with existing measurements. Based on the simulation results, we 

can see that the optimum number of neurons in this experiment is 49. Fig 4.3(b)
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depicts the hysteresis loops at different frequency (DC, 1 kHz, 3 kHz, 6 kHz) 

generated by the modified MLP networks.

Table 4.3. MLP Network Results Using Square Permalloy 80 at Different

Frequency (DC, 1 kHz, 3 kHz, 6 kHz)

No. o f 

Hidden 

Neurons

Training

Time

(s)

No. of 

Epochs

NDEI

(%)

MSE

(10-^)

40 15.8280 300 0.64 3.50616

45 19.3130 300 0.35 1.00509

46 12.4680 184 0.33 0.926991

47 11.125 158 0.34 0.988855

48 9.5310 132 0.33 0.944316

49 9.0310 122 0.34 0.962414

50 12.9840 167 0.34 0.988385

55 16.7970 166 0.34 0.872004

60 20.8750 172 0.34 0.990783

70 35.0470 211 0.34 0.966097

80 38.7810 180 0.33 0.930218

90 34.9370 127 0.34 0.956249

100 61.9220 180 0.34 0.998783
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Hysteresis loop for 2 mil Square Permalloy 80 - DC. I KHz, 3 KHz, 6 KHz
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Fig 4.3(a) Experimental data illustrating normalized hysteresis loops for 
Square Permalloy 80 at different frequency
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Hysteresis Modeing Based on Experimantal data - DC. 1 KHz. 3 KHz, 6 KHz
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-1 0 1 

H(Artn)

Fig 4.3(b) Results from MLP Neural network-based hysteresis model 

built based on P-K Model

4.2.Simulation and Experimental Results of RBF Neural Networks

4.2.1. Simulation Set up

The EAF sample used for simulation experiments is illustrated as Figure 4.1.

The dimension of the input vector and output vector is 1. The configuration of 

the hysteresis RBF is controlled by a script file. The configuration script file 

controls the parameters such as the dimension of the input and output vectors.

47



maximum number o f neurons, the learning stop condition and spread constant 

etc. The weight and bias are all set to an identical initial value before training. 

At the same time the inputs are normalized to between 0 and 1 so that the 

neural network will be sensitive to the input pattern.

The RBF network implementation is a matter of finding the proper radial basis 

function and the appropriate learning algorithm. It has been shown theoretically 

and practically, that the performance of the RBF network does not depend on 

the choice o f the function [8] and hence, Gaussian functions are usually chosen. 

Therefore, the learning problem is to select adequate number o f RBF neurons, 

funetion centres and widths. In this paper, the learning was implemented using 

the orthogonal least squares algorithm that provides a systematic approach to 

the selection of RBF centres while using forward regression procedure [10].

4.2.2. Simulation Experiments of RBF networks

Simulation experiments are carried out to show the effect o f different spread 

constants to the speed of learning and accuracy. The configuration parameters 

for the rest o f experiments in this section are listed as Table 4.4.
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Table 4.4 Configuration Parameters for the RBF experiments

Weight Dimension Dimension Learning Maximum
Initial ofInput of Output Stop No. of
Value Vector Vector Condition Neurons
0.5 1 1 .0001 300

The first experiment is to try to use a set of data in single frequency with 51 

training cases and 51 validation data at the frequency of 3 kHz. A Number of 

RBF networks have been implemented and their NDEI have been recorded in 

Table 4.5. The error indices vary from as low as 1.9048x10''*’ to as high as 

4 .4714XlO'"* with an average NDIE of 1.5592x 10"'* and the computational 

results compared well with existing measurements. Based on the simulation 

results, we can see that the optimum number o f neurons in this experiment is 

49. Fig 4.4(b) depicts the hysteresis loops at frequency of 3 kHz generated by 

the modified RBF networks.

Table 4.5. RBF Network Results Using Square Permalloy 80 at Frequency

of 3 kHz

Spread

Constant

No of 

Neurons

Training 

Time (s)

NDIE

(10-^)

MSE

(10-'*)

0.1 49 1.2810 2.6724x10"^ 3.1446x10"':

0.5 50 1.0940 1.9048x10"': 1.59758x10"”

0.8 49 1.0780 0.5070 0.0113751

1 48 0.9370 3.9509 0.69077
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1.2 48 1.0620 2.8253 0.35325

1.5 48 1.0150 4.4714 0.884753

2 49 1.0780 2.2781 0.229666

2.5 50 1.0150 5.3465x10"® 1.265x10"'^

3 50 1 3.4471x10"' 5.25825x10"'*

Hysteresis Modeling Based on Experimantal data - 3 KHz

-1 0 1 
H(AAn)

Fig 4.4(a) Experimental data illustrating normalized hysteresis loops for 

Square Permalloy 80 at frequency o f 3 kHz
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Hysteresis loop for 2 mil Square Permalloy 80 - 3 KHz

-1 0  1 
H(AAn)

Fig 4.4(b) Results from RBF Neural network-based hysteresis model built

based on P-K Model

The Second experiment is try to use the data in different frequency with 204 

training cases and 204 validation data at different frequency specifically DC, 1 

kHz, 3 kHz, and 6 kHz. Numbers of RBF networks have been implemented and 

their NDIE, MSE, training time, and No of Epochs have been recorded in the 

table 4.6, The experiment shows that the error indices (NDIE) vary from as 

low as 0.00019686 to as high as 0.00022638 with an average NDIE o f 

0.00020456, and the computational results compared well with existing
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measurements. Based on the simulation results, we can see that the optimum 

number o f  neurons m this experiment is 154. Fig 4.5(b) depicts the hysteresis 

loops at different frequency (DC, 1 kHz, 3 kHz, 6 kHz) generated by the 

modified RBF networks.

Table 4.6. RBF Network Results Using Square Permalloy 80 at Different 

Frequency (DC, 1 kHz, 3 kHz, 6 kHz)

Spread

Constant

No of 

Neurons

Training 

Time (s)

NDIE

(lO-^*)

MSE

( io -“)

0.05 154 9.1720 1.9686 0.666667

0.1 154 9.4380 1.9686 0.666667

0.15 154 9.7810 2.1164 0.770521

0.2 157 9.3120 2.1458 0.79207

0.3 159 9.0310 2.2595 0.878263

0.4 161 10.3910 2.2638 0.881554

0.5 160 10.3290 1.9820 0.675763

1 161 10.5470 1.9686 0.666667

1.5 161 10.8130 1.9686 0.666667

2 163 10.6720 1.9686 0.666667

2.5 162 10.6570 1.9686 0.666667

3 162 10.9060 1.9686 0.666835
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Hysteresis loop for 2 mil Square Peimaloy 60 - DC, 1 KHz. 3 KHz, GKHz

-1 0 1
H { N m )

Fig 4.5(a). Experimental data illustrating normalized hysteresis loops for 

Square Permalloy 80 at different frequency
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Hysteresis Modeing Based on Experimantal data - DC, 1 KHz, 3 KHz, 6 KHz

Em

H(AAn)

Fig 4.5(b) Results from RBF Neural network-based hysteresis model built

based on P-K Model

4.3. Summary

The simulation experiments provide illustration to verify the potential 

possibility to apply neural networks for reconstruction of P-K based hysteresis 

phenomena. The project contributes to the reconstruction of P-K models based 

on both MLP networks and RBF networks. The results of simulations show that 

both MLP and RBF neural networks capable of modeling P-K based hysteresis 

phenomena. Based on a qualitative comparisons o f the RBF-based and MLP
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based results and experimental data. It was observed that the computational 

results compared well with existing measurements. The numbers o f neurons in 

hidden layers helps to guarantee the training time and accuracy o f modeling 

procedure so that design of devices with hysteresis features can be obtained 

accurately without numerical evaluations.
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Chapter 5

CONCLUSION

In the project, the source of the problem is to consider the potential possibility 

o f applying neural networks for the reconstruction of P-K based hysteresis 

phenomena. The review of both P-K based hysteresis and neural networks 

demonstrates the feasibility o f modeling P-K based hysteresis using neural 

networks. The contribution of this project is to provide an interpretation of 

the Preisch-Krasnoselskii model that can be readily implemented by means of 

neural network methodology. The analysis of the simulation shows that the 

number o f hidden layer neurons plays an important role in the design. It directly 

effects the training time and accuracy of the modeling. The results o f the 

simulation show that MLP and RBF neural networks are both capable o f 

modeling P-K based hysteresis phenomena.

In summary, based on the formal definition of the P-K based hysteresis 

provided, the P-K based hysteresis model has several similarities shared with 

artificial neural network characteristics for reconstruction of P-K model. First 

o f  all, the proposed MLP and RBF neural networks both have ability to 

approximate any nonlinear function to the desired degree, to learn I/O patterns, 

extract the hidden relationship among presented data, and provide acceptable 

response to new data that the network has not yet experienced. This enables 

neural networks to provide models based on imprecise information. Secondly, 

they both have local memory, and due to their highly parallel/distributed
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structure, failure o f a number of neurons to generate the correct response does 

not lead to failure of the overall performance of the system. In fact there are 

m any magnetic field applications that will consider the proposed neural 

network practical. Every time the design of electronic devices is applied, the 

proposed neural networks could be helpful.

Further research work about applying different type of artificial neural networks 

in the magnetic related fields will provide more valuable information for the 

design o f electronic devices with hysteresis features. Furthermore, we can 

consider the following approach;

1) Add noise to the validation data set as the training set remains unchanged.

2) Use Leave-one-out (Jack-Knife) method in the training and validation.
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