

MACHINE-LEARNING AND STATISTICAL METHODS

FOR

DDOS ATTACK DETECTION AND DEFENSE SYSTEM IN

SOFTWARE DEFINED NETWORKS

 by

Merlin James Rukshan Dennis

Master of Engineering, Anna University, India, 2006

Bachelor of Engineering, Manonmaniam Sundaranar University, India, 2003

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Computer Networks

Toronto, Ontario, Canada, 2018

© Merlin James Rukshan Dennis 2018

 ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose

of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means,

in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

I understand that my thesis may be made electronically available to the public.

 iii

Machine-Learning and Statistical Methods

For

DDoS Attack Detection and Defense System in

Software Defined Networks

by

 Merlin James Rukshan Dennis

Master of Applied Science

Computer Networks

Ryerson University, 2018

Abstract

Distributed Denial of Service (DDoS) attack is a serious threat on today’s Internet. As the traffic

across the Internet increases day by day, it is a challenge to distinguish between legitimate and

malicious traffic. This thesis proposes two different approaches to build an efficient DDoS attack

detection system in the Software Defined Networking environment. SDN is the latest networking

approach which implements centralized controller, which is programmable. The central control

and the programming capability of the controller are used in this thesis to implement the detection

and mitigation mechanisms.

In this thesis, two designed approaches, statistical approach and machine-learning approach, are

proposed for the DDoS detection. The statistical approach implements entropy computation and

flow statistics analysis. It uses the mean and standard deviation of destination entropy, new flow

arrival rate, packets per flow and flow duration to compute various thresholds. These thresholds

are then used to distinguish normal and attack traffic. The machine learning approach uses Random

Forest classifier to detect the DDoS attack. We fine-tune the Random Forest algorithm to make it

more accurate in DDoS detection. In particular, we introduce the weighted voting instead of the

standard majority voting to improve the accuracy. Our result shows that the proposed machine-

learning approach outperforms the statistical approach. Furthermore, it also outperforms other

machine-learning approach found in the literature.

 iv

Acknowledgements

I wish to express my sincere gratitude to my supervisor Dr. Ngok-Wah Ma for his continuous

support in the MASc program. Without him, the completion of this study would not have been

possible.

I would like to thank my co-supervisor Dr. Xiaoli Li, who gave lots of ideas to improve my results

despite her busy schedule.

Special thanks to the Computer Networks Department and Yeates School of Graduate Studies at

Ryerson University, for giving me this great opportunity and their financial support throughout

my studies.

Last, but not the least, I would like to thank my parents, husband and my cute little daughter for

their love and encouragement. Without their patience and sacrifice, I could not have completed

this thesis.

 v

Table of Contents

List of Figures .. viii

List of Tables ... ix

List of Abbreviations .. x

Chapter 1 ... 1

1 Introduction .. 1

1.1 Problem Statement .. 1

1.2 Research Objective and Contribution ... 2

1.3 Thesis Organization... 3

Chapter 2 ... 4

2 Background and Related Work .. 4

2.1 Introduction to Software Defined Networking.. 4

2.2 Benefits of SDN .. 5

2.3 OpenFlow Protocol ... 6

2.4 SDN controller .. 7

2.5 DDoS Attacks .. 8

2.5.1 Types of DDoS attack .. 9

2.6 Introduction to Machine Learning... 10

2.6.1 Types of Machine learning algorithms .. 10

2.7 Supervised Machine learning .. 10

2.7.1 Random Forest algorithm .. 11

2.7.2 Feature Selection .. 15

2.7.3 Classifier Accuracy Estimation .. 15

2.7.4 Advantages of Random Forest ... 16

2.7.5 Disadvantages of Random Forest .. 16

 vi

2.8 Related Work in SDN based DDoS attack detection .. 17

2.8.1 DDoS attack Detection using Statistical Approach ... 17

2.8.2 DDoS attack Detection using Machine Learning Approach 18

2.9 Description of the Original Approach ... 19

2.9.1 Stage I: Detection based on Entropy Variation.. 19

2.9.2 Detection based on the number of Flows ... 20

2.9.3 Stage II: Detection based on Analysis of Flow statistics: .. 21

2.9.4 Mitigation Module ... 21

Chapter 3 ... 22

3 Proposed Methods .. 22

3.1 Proposed Method - Statistical Approach ... 22

3.1.1 Computation of Threshold values .. 22

3.1.2 Mitigation Module ... 23

3.2 Machine Learning Approach ... 24

3.2.1 Building the Machine Learning Model .. 24

3.2.2 Random Forest classifier .. 25

3.2.3 UCLA Dataset .. 26

3.2.4 Training Phase ... 28

3.2.5 Testing Phase ... 30

3.2.6 Preparation of Training Data ... 31

3.2.7 Training the classifier .. 31

3.2.8 Implementation of RF Classifier in the Controller .. 32

Chapter 4 ... 33

4 Performances and Analyses ... 33

4.1 Mininet .. 33

 vii

4.2 POX Controller ... 33

4.3 Traffic generator .. 33

4.4 Performance Metrics of Machine Learning Approach .. 35

4.4.1 Confusion Matrix ... 35

4.5 Simulation Scenario and Results of Our Proposed Method .. 36

4.6 Performance of the Statistical Approach ... 38

4.6.1 Comparison of the Basic Approach with Our modified approach 38

4.7 Mitigation Results ... 39

4.7.1 Performance Analysis of Mitigation Module .. 40

4.8 Performance of the Machine Learning approach .. 41

4.8.1 Feature Selection .. 41

4.8.2 ROC Plot .. 43

4.9 Comparison of Our Statistical and Machine Learning Approach 44

4.10 Comparison of Machine Learning Approach with Existing ML Approach...................... 45

Chapter 5 ... 47

5 Conclusion and Future Work ... 47

5.1 Conclusion ... 47

5.2 Future work ... 47

Appendix ... 48

Bibliography ... 64

 viii

List of Figures

Fig 2.1: SDN Architecture [2] .. 5

Fig 2.2: OpenFlow switch [3] ... 6

Fig 2.3: Flow Table Entries [4] ... 7

Fig 2.4: Types of SDN controller [5] .. 8

Fig 2.5: DDoS Attack on SDN controller [7] ... 9

Fig 2.6: Supervised Learning classifier .. 11

Fig 2.7: Random Forest Algorithm [8] ... 13

Fig 2.8: Example Dataset of people who buys computer [39] .. 13

Fig 2.9: Dataset divided into 3 Subsets [39] ... 14

Fig 2.10: Single Decision Tree [39] .. 14

Fig 2.11: 10-fold cross-validation [46] ... 16

Fig 3.1: Machine Learning Methodology ... 25

Fig 3.2: Sample UCLA Dataset .. 27

Fig 3.3: Flowchart for Training Phase .. 29

Fig 3.4: Flowchart for Testing Phase .. 30

Fig 4.1: Traffic Generation using Scapy ... 34

Fig 4.2: Network Setup ... 37

Fig 4.3: Comparison of Performance of Statistical Approaches... 39

Fig 4.4: Execution of Mitigation Module ... 39

Fig 4.5: Wireshark Output: Attack Traffic Mitigated ... 40

Fig 4.6: Feature Importance Plot .. 42

Fig 4.7: Exemplary ROC Plot [8] ... 43

Fig 4.8: ROC Plot of Proposed Method .. 44

Fig 4.9: Performance Comparison of Statistical & ML Approaches .. 45

Fig 4.10: Performance Comparison of our ML Approach with other ML Approaches 46

 ix

List of Tables

Table 3.1: Features in UCLA Dataset ... 27

Table 4.1: Normal Traffic Pattern ... 34

Table 4.2: Attack Traffic Pattern .. 34

Table 4.3: Confusion Matrix ... 35

Table 4.4: False Positive and False Negative Values ... 38

Table 4.5: Performance Analysis of Mitigation Module .. 41

Table 4.6: Performance Metrics .. 42

 x

List of Abbreviations

API Application Programming Interface

CPU Central Processing Unit

DDoS Distributed Denial of Service

FN False Negative

FP False Positive

FPR False Positive Rate

IP Internet Protocol

ML Machine Learning

OF OpenFlow

OS Operating Systems

RF Random Forest

ROC Receiver Operating Characteristics

SDN Software Defined Networking

TN True Negative

TP True Positive

TPR True Positive Rate

UDP User Datagram Protocol

 1

Chapter 1

1 Introduction

1.1 Problem Statement

Software Defined Networking is an emerging technology, which enables the network to be

programmable, centralized and flexible. The SDN architecture has a separate control plane and

data plane. System administrators can control the entire network through the centralized control

plane (controller). These features of SDN can be used in the construction of intelligent and

automated networks. Also, the operational costs in large data centers have been greatly reduced

with the implementation of SDN.

However, this centralized feature of the SDN controller makes it an ideal target for the attackers.

On the other hand, the same feature can also provide a new and efficient way to detect network

attacks. One of the major network attacks is a Denial of Distribution of Service (DDoS) attack.

With the immense internet growth, a large number of hosts are vulnerable to the attacks. Most of

the DDoS attacks are generated by attacking software which is installed on the vulnerable hosts

unknowingly.

This thesis proposes two approaches for the detection of the DDoS attack. The first approach, the

statistical approach, uses destination Entropy and Flow statistics measurements to distinguish the

normal and attack traffic. The second approach uses a machine-learning algorithm based on

Random Forest (RF) classifier to classify the normal and attack traffic.

We will compare the two approaches based on three performance parameters: detection accuracy,

false negative and false positive. In addition, we will also compare our Machine Learning approach

with other Machine learning approaches in the literature.

 2

1.2 Research Objective and Contribution

The main goal of this research is to develop a detection system to identify Distributed Denial of

Service (DDoS) attacks in the SDN environment. In this thesis, we use the traffic parameters of

normal traffic, such as payload size and packet per flow, to identify the attack. In the statistic

approach, the means and standard deviations of these parameters are measured to compute various

thresholds. These thresholds are used to distinguish the normal and attack traffic. Whereas in the

machine learning approach, an RF classifier with appropriate modifications is implemented and

used to classify the traffic.

Furthermore, a mitigation method is also proposed to mitigate the effect of the attack.

Our contributions in this thesis are,

1 Design and implementation of a DDoS attack detection system based on the statistical

approach proposed by Kia [1]. We have modified and improved the approach of [1] by

computing the threshold values based on the mean and standard deviations of the normal traffic

parameters.

2 Propose an efficient mitigation method based on pushing a drop flow to block the attack traffic,

thus, protect the controller and switch.

3 Design and implementation of a DDoS attack detection system based on the machine learning

model using the Random Forest algorithm. The RF algorithm is modified in such a way that it

uses weighted voting instead of standard majority voting for attack prediction as used by

Alphna et al [14], Malik et al [15], Farnaaz et al [16].

4 Compare, analyze and evaluate the proposed detection and mitigation techniques with the

approaches found in the literature.

 3

1.3 Thesis Organization

The report consists of 5 chapters. The rest of the thesis is organized as follows.

Chapter 2 introduces SDN architecture and the OpenFlow protocol. It also gives a brief

description of different types of DDoS attacks and a survey on DDoS detection methods found in

the literature. It also covers the machine learning fundamentals and the RF algorithm in particular.

The chapter ends with a summary of the DDoS detection system proposed in [1].

Chapter 3 describes the details of the two proposed approaches.

Chapter 4 discusses the experimental setup for both statistical approach and machine learning

approach. It also provides the detailed results, including the detection rate, False Positive (FP) and

False Negative (FN) values of the two approaches. The performances of the proposed approaches

are compared with each other. We also compare the performance of our approach with other

methods found in the literature.

 Chapter 5 concludes this thesis and provides a brief description of the further research to make

the detection system more efficient.

 4

Chapter 2

2 Background and Related Work

2.1 Introduction to Software Defined Networking

SDN is an emerging network architecture which is dynamic, manageable and cost-effective. It is

based on the abstraction of forwarding plane from the control plane. This abstraction makes the

network directly programmable and flexible, which is ideal for configuring, managing, securing

and optimizing the network resources dynamically and automatically.

In a traditional network, switch’s proprietary protocol tells the switch where to forward the

network packet. The switch treats all the packets belonging to the same destination equally. This

has been changed with the introduction of SDN technology.

SDN can make decisions about how packets should flow through the network in the forwarding

plane. Packet handling rules are sent to the switches from a controller. The controller is a software

application running on a server located remotely. The switches seek guidance from the controller

for packet handling.

Switches and controller communicate via the controller’s south-bound interface. This

communication is achieved by the OpenFlow protocol. Similarly, applications can talk to the

controller via the controller’s north-bound interface. The SDN architecture is shown in Fig-2.1.

 5

Fig 2.1: SDN Architecture [2]

Fig-2.1 shows the concept of decoupling data plane and control plane in SDN. The function of the

control plane is to make decisions on where the traffic should be sent. The control plane consists

of one or more SDN controllers. The controller is nothing but a software program. The controller

is centralized, and it maintains a global view of the network in the control plane. A single control

plane can control a number of forwarding devices such as OpenFlow switches. It defines the

forwarding rules of the devices in the data plane and can remotely configure all the devices in the

data plane. The network devices in the data plane forward traffic, according to these rules.

2.2 Benefits of SDN

The decoupled nature of the control plane and data plane makes SDN technology programmable.

The controller is a logical entity which gives the global view of the network. It can communicate

with both the SDN applications and the hardware network devices about the statistics and events

happening.

SDN facilitates automated load balancing and it has the ability to scale network resources

dynamically. The open standard implementation simplifies the network design and operations. It

is ideal for today’s high-bandwidth applications.

 6

Today it’s easier to unify cloud resources with SDN. Large data center platforms can be easily

managed from SDN controller. It’s also used to implement centralized security.

2.3 OpenFlow Protocol

The communication between the controller and the data plane devices needs a suitable standard.

OpenFlow is the communication interface defined between the control and forwarding layers of

an SDN architecture [3]. OpenFlow manages the switches in the network and allows the controller

to manipulate the flow of packets through the network.

Fig 2.2: OpenFlow switch [3]

Fig-2.2 shows the structure of an OpenFlow switch. An OpenFlow switch consists of one or more

flow tables, a group table and a secure channel to an external controller. The switch communicates

with the controller, and the controller manages the switch via OpenFlow protocol. Each flow table

in the switch contains a set of flow entries. Using the OpenFlow protocol, the controller can add,

delete and update flow entries in the flow table.

 7

Fig 2.3: Flow Table Entries [4]

When a new packet arrives at an OpenFlow switch, it will look into the flow table to find a match.

If a match is found, the action assigned to that entry is applied and the counter for the entry will

be updated. If there is no match in the table, it is called table miss and the switch sends a Packet_IN

message to the controller through the secure channel. The controller processes the packet and sends

Packet_OUT and or Flow_MOD message back to the switch. The Packet_OUT message is an

instruction to the switch on what to do with the packet. Whereas Flow_MOD message instructs

the switch to install a new flow entry in the flow table. Hence, the packet is forwarded according

to this new rule.

2.4 SDN controller

The controller is considered as the core of an SDN network. The controller uses protocols like

OpenFlow to communicate with networking devices. There are different types of controllers like

POX, Ryu, Open Day Light, Beacon, etc. The Fig-2.4 shows the different SDN controllers. In this

research, POX controller is used.

 8

Fig 2.4: Types of SDN controller [5]

POX

POX is inherited from NOX controller [5]. It is an open source development platform, used to

create an SDN controller using python programming language. POX controller provides an

efficient way to handle the OpenFlow devices. Using POX controller, you can run different

applications like a hub, switch, load balancer, and firewall. It is a great tool for SDN research

works. The proposed algorithm in this research is implemented in the pox controller.

2.5 DDoS Attacks

Ensuring security in SDN is very important to provide secure communication. This research

concentrates on Distributed Denial of Service Attack (DDoS) on the data plane. The DDoS attack

makes a machine or network resources unavailable to its users [6]. This is achieved by consuming

the entire network bandwidth or the resources of the network nodes (such as memory and CPU).

Fig-2.5 shows the DDoS attack on an SDN controller.

 9

Fig 2.5: DDoS Attack on SDN controller [7]

2.5.1 Types of DDoS attack

UDP Flood [6] is a type of attacks which aims at bringing down the server by sending a large

number of UDP packets to random ports on the targeted host. The attackers usually utilize the

UDP’s connectionless feature to submit a stream of UDP data packet to the victim machine. The

victim machine’s queue becomes filled and it will not be able to respond legitimate user’s request.

Usually, in these types of attacks, the attacker spoofs the source IP address of the UDP packets to

hide the locations of the attack machines.

SYN Flood is an attack using TCP connection initiation to target the victim's machine. A large

number of SYN packets are sent to the victim but no ACK is returned to the victim, causing a large

number of resources at the victim’s machine and making the machine unavailable to the legitimate

users.

The DNS Reflection attack sends DNS request to victim source IP address which causes

responses which are much larger than the requests to direct to the victim.

HTTP Flood sends a huge number of requests to a web server and overwhelms it to the point

where it cannot respond to legitimate requests.

ICMP Flood is another type of attack that exhausts the resources of the victim by sending a very

large number of ICMP pings (echo request), which keeps the server busy in sending responses

(echo replies).

 10

2.6 Introduction to Machine Learning

Machine learning is an Artificial Intelligence application which provides the computer program

the ability to learn from input data [8]. It allows us to use historical data as the input for the

prediction of future data. Thus, the accuracy of the output is solely based on the quality of the

historical data.

Nowadays, machine learning techniques are used in various fields to solve different problems. For

example, they are used in Email spam filtering, pattern and image recognition, search engines

filtering, healthcare applications, etc.

2.6.1 Types of Machine learning algorithms

Machine learning algorithms can be broadly classified as Supervised learning algorithms and

Unsupervised learning algorithms.

Supervised Learning algorithms

A Supervised learning algorithm is mainly used to solve classification and regression problems as

it makes the detection or decision-making process easier. It uses the past learned data to predict

the future events. The input data used to train the learning algorithm is a labeled one. That is, the

input data have one or more labels, e.g. in our thesis attack and no attack are the labels used to

classify the traffic data. After appropriate training, the system can classify unknown data. This

research uses supervised learning algorithms.

Unsupervised learning algorithms

Unsupervised learning algorithm uses unlabeled input data to train the system. That is, the input

data are not tagged with labels. It finds the hidden structure from the unlabeled input, and groups

them as clusters showing the similarities. The initial performance of this type of learning algorithm

is poor, but the system can tune itself to improve the performance.

2.7 Supervised Machine learning

This is the most commonly used technique in machine learning. Our research problem implements

a Supervised machine learning algorithm to classify the network traffic as legitimate traffic and

malicious traffic. Here the classifier gets the input which is a set of feature values also called input

 11

vector and outputs the predicted value called class. Fig-2.6 shows the supervised learning

classifier.

Fig 2.6: Supervised Learning classifier

Here the training data are given as an input to the learning algorithm which results in a classifier

model. The performance of the classifier can be evaluated using unseen data.

2.7.1 Random Forest algorithm

Random forest is one of the most powerful algorithms used for predictive modeling [8]. The

underlying principle is the construction of multiple decision trees by randomizing the combination

of variables. That is, multiple decision trees are constructed from the given data set and the results

are combined to make predictions. To construct multiple decision trees, the data set is divided

repeatedly into subtrees by changing the combination of variables. The challenge here is to find

the best combination of variables which gives the highest accuracy in prediction.

The accuracy of the Random Forest algorithm can be tuned by increasing the number of trees

generated. Each individual decision tree generated makes its own prediction. Some may be right

and some wrong. The individual trees that produced correct predictions reinforce each other, while

wrong predictions get canceled. For this to happen, the individual trees generated must be

 12

uncorrelated. Here comes the Bagging technique which helps in generating the decision trees with

minimal correlation.

Random Forest is an ensemble classifier which can implement Bootstrap aggregation (Bagging)

to improve the accuracy. That is, normally the learning algorithm can choose the split point from

all the available features. But the Random Forest algorithm which implements bagging technique,

while constructing the individual trees, randomly chooses a node to split on. Here every node is a

condition on a single feature to split the dataset. The randomly selected features x is calculated by

the following formula:

𝑥 = √𝑝 (2.1)

where p is the total no. of input features.

For example, if a dataset had 16 input variables for a classification problem, then the randomly

selected features x is given by,

x = √16

x = 4

Thus, the individual decision trees are constructed based on the randomly selected 4 features.

Fig-2.7 shows the process involved in RF algorithm to create decision trees and, to derive the

predictions out of them. Here the training dataset D has d1, d2, ...dN variables. Using Bootstrap

process, it creates m decision trees. The average value of the results obtained in each decision tree

is calculated and the result is predicted.

 13

Fig 2.7: Random Forest Algorithm [8]

The process of creating a single decision tree can be explained with an example [39]. Fig-2.8 shows

a dataset of people who buy a computer.

Fig 2.8: Example Dataset of people who buys computer [39]

In Fig-2.9 the dataset is divided into 3 subsets based on the attribute “age”.

 14

Fig 2.9: Dataset divided into 3 Subsets [39]

The attribute age has three different values: <=30, 31...40, >40. From the table, we can learn that

all students with age <=30 buys a computer. The people with age = 31...40 buys a computer. Also,

people with age >40 and fair credit rating buy a computer. Based on these analyses the decision

tree is generated.

Fig 2.10: Single Decision Tree [39]

 15

Extracting Classification Rules

Each attribute-value pair along a path from the root to leaf forms a rule. The leaf node holds the

class prediction. For e.g.

If age = “<=30” and student = “no” then buys_computer = “no”

If age = “<=30” and student = “yes” then buys_computer = “yes”

Consider a new data: (<=30, yes, excellent, ?). To find the class value of new data, the tree is

analyzed, and the class value is computed as a yes.

2.7.2 Feature Selection

Though there may be numerous features available in the given dataset, only features relevant to

the problem to be solved are selected. This is called feature selection. To select the relevant

features, we need to find the importance of each feature in predicting the results. This is done by

calculating how much the error rate drops for a feature at each split point. Those features with

small error rate are considered as more important for the classification problem. This is called a

Gini score. The Gini score of a feature can be calculated by the following formula,

𝐺(𝐷) = 1 − ∑ 𝑝𝑗
2𝑛

𝑗=1 (2.2)

where D is the dataset of n classes and pj is the relative frequency of a feature with class value j.

The average of all the Gini score of a feature across all the decision trees gives the importance of

that feature. Based on the importance of features, we can select the most relevant features from the

given dataset, which gives the accurate prediction result.

2.7.3 Classifier Accuracy Estimation

Estimation of the predictive accuracy of a classifier is done to know how good the prediction will

be. Common methods used for accuracy estimation are [40]: Validation set approach and k-fold

cross-validation.

In validation set approach, to measure the classifier accuracy, the dataset is divided into a training

dataset (50%) and testing dataset (50%). Once the classifier model is built using the training

dataset, the accuracy is estimated using the unused testing dataset.

 16

Whereas, k-fold cross-validation [40] can be performed by dividing the entire dataset into k-folds.

For each k-folds in the dataset build the model using k-1 folds of the dataset. Then test the model

using the kth fold. Repeat this procedure until all the k folds have served as a test data. Fig-2.11

shows the k-fold cross-validation for k =10.

Fig 2.11: 10-fold cross-validation [46]

The value of k should be chosen carefully because lower k value produces more error and higher

value of k takes large computation time. In our thesis, we have used k-fold cross-validation method

with k =10.

2.7.4 Advantages of Random Forest

• The Random Forest algorithm can handle large datasets.

• The accuracy is high compared to other machine learning algorithms.

• The implementation is easier and its faster than any other algorithm.

• It overcomes the problem of overfitting (model error due to noise in the training data) if

many trees are grown.

2.7.5 Disadvantages of Random Forest

• Utilizes more memory for building a forest.

• Random forest models are black boxes which are hard to interpret.

• Random forest overfits when the number of trees generated is less.

 17

2.8 Related Work in SDN based DDoS attack detection

We discuss the related work based on two groups of detection methods. One group uses statistical

approach while the other group uses machine learning approach.

2.8.1 DDoS attack Detection using Statistical Approach

Researchers can find many studies on DDoS attack detection methodologies. The method proposed

by Seyed et al. [6] is based on the entropy comparison of consecutive packet samples to identify

changes in their randomness. A window of 50 packets is collected, and the entropy is calculated

from their destination IP addresses. If the entropy is less than the threshold, an attack is reported.

Surender Singh et al. [9] proposed a distributed framework, which analyzes the behavior of the

packet flows. The proposed method uses entropy and a traceback algorithm to distinguish the

malicious flows from the legitimate flow.

Jisa David et al. [10] proposed a DDoS attack detection system which is based on fast entropy

using flow-based analysis. Their proposed method shows better detection accuracy. They analyze

network traffic and compute the fast entropy of request per flow.

SPHINX [11] is a framework proposed to detect attacks in SDN in real-time with low performance

overheads. It can detect both known and potentially unknown attacks on network topology. It is

mainly based on an approximation of real network into a flow graph. It uses these Flow graphs to

detect security threats in the network topology.

Lei et al. [12] proposed a system called FloodGuard. It concentrates on an SDN-specific attack

called data-to-control plane saturation attack. It implements two modules proactive flow rule

analyzer which preserves network policy enforcement and packet migration protects the controller

being overloaded.

Qin et al. [13] proposed a method for intrusion detection with a time window of 0.1 seconds and

three levels of threshold. This method tries to reduce false positive and false negative values. It is

found that the time and resource consumption of the method is high.

Proposed method extends the recent work done by Kia [1] on Early Detection and Mitigation of

DDoS Attacks in Software Defined Networks, which is based on an Entropy variation of the

destination IP address, Flow Initiation Rate and Study of Flow Specification. The proposed method

 18

is a lightweight DDoS attack detection at its early stage. In our modified method we have

implemented moving mean and standard deviation for the computation of adaptive thresholds and

a better mitigation module has been introduced.

2.8.2 DDoS attack Detection using Machine Learning Approach

DDoS Attack Detection and Prevention based on Ensemble Classifier (RF) proposed by Alpna et

al. [14] uses a combination of classifiers to improve the performance of their model. Experimental

results were conducted on UCLA dataset. The results show high accuracy with minimum error.

In [15] [16], the authors have proposed network IDS using Random Forest algorithm. They have

classified DDoS attack under network intrusion attacks. They have not considered the enormous

volume of attack packets that DDoS detection system has to handle in comparison with intrusion

attacks. The method is only suitable to fight against the intrusion attacks. Moreover, their approach

cannot be used to mitigate the attacks. Whereas in our thesis, we have classified the attack based

on the features like payload size, packet count per flow and the flow duration that are responsible

for the breakdown of the server. Our approach can also successfully mitigate the attacks.

Keisuke Kato et al. [17] proposed an intelligent DDoS attack detection system using packet

analysis and Support Vector Machine. The detection system used SVM with a Radio Basis

Function (RBF) neural networks. Experiments were done using CAIDA DDoS attack 2007 dataset.

Sivatha Sindhu et al. [18] proposed a neural decision tree for feature selection and classification.

The proposed method uses six decision tree classifiers namely Decision Stump, C4.5, Naive

Baye’s Tree, Random Forest, Random Tree and Representative Tree model to detect the

anomalous network pattern. They used sensitivity and specificity for the performance evaluation.

Saurav Nanda et al. [19] studied the attack patterns in the network using ML approach. The

methodology uses 4 different ML algorithms like C4.5, Naive Bayes, Bayes net & Decision table.

The prediction accuracy of the algorithms was compared, and they conclude that Bayesian network

has the highest prediction rate.

Zhong et al. [20] proposed a DDoS attack detection method using a fuzzy c-means (FCM)

clustering algorithm. To extract the features in network traffic they used Apriori association

algorithm.

 19

IDS using RF and SVM proposed by MD Al Mehedi Hasan et al. [21] developed 2 models for IDS

using SVM and RF. The performance of these two models was compared based on their detection

rate and precision and false negative rate.

The practical drawback in the above-mentioned approaches is that the authors have implemented

the RF algorithm using the default prediction method which is the majority voting. Majority voting

does not give accurate results out of random predictions. This drawback is eliminated in our

approach by replacing majority voting by weighted voting, which gives more accurate results. We

have discussed the implementation of weighted voting in detail in chapter 3.

In this thesis, both statistical and a supervised machine learning based DDoS attack detection

classifier is proposed for the SDN environment.

2.9 Description of the Original Approach

The proposed statistical approach is based on the work done by Kia [1]. Here we call her work as

the original approach. In this section, we will briefly describe the original approach. The approach

is designed based on three main concepts: Entropy variation of destination IP address, Flow

Initiation Rate and Study of Flow Specifications.

2.9.1 Stage I: Detection based on Entropy Variation

Entropy is a measure of uncertainty or randomness associated with a random variable [1]. This

research implements the computation of entropy to detect DDoS attacks in the first stage with less

computation time. Here, the entropy is computed based on the measure of traffic randomness with

respect to the destinations in a network. The entropy drops considerably when there is a single-

victim attack, as all the packets are destined to the same destination address, whereas, in the non-

attack scenario the entropy value tends to be larger for the traffic is normally spread out to many

destinations.

Entropy computation is done by collecting the incoming packets in a packet window of fixed size

n. That is, each window can hold n number of packets. For each window, the incoming traffic is

analyzed and classified according to the frequencies of occurrences of the destination IP addresses.

The frequency of occurrence (Fi) of destination IP address IPi is calculated by,

Fi = ni / n (2.3)

 20

where ni is the number of packets with destination address IPi.

And the entropy is calculated by

𝐻 = − ∑ 𝐹𝑖 log2 𝐹𝑖
𝑛
𝑖=1 (2.4)

since 0≤ Fi ≤1 => H ≥ 0, maximum entropy occurs when each packet is destined to exactly one

host and minimum entropy occurs when all the packets in a window are destined for a single host.

A small entropy is a good indication of a DDoS attack on a single victim. The detection stage here

derives an entropy threshold, Eth, based on the average entropy of the normal traffic. If H < Eth, an

attack is suspected, and a warning is issued.

2.9.2 Detection based on the number of Flows

Entropy-based DDoS attack detection described in the previous section is best suited for single

victim attack detection. For the multiple victim attacks, we cannot rely only on the entropy as the

attack is targeted at multiple destinations. Hence, along with entropy variation, the system

incorporates another method of DDoS detection based on the flow rate.

Many DDoS attacks, send a large number of packets with spoofed source IP addresses to the

switch. The switch, in turn, sends many packet-in messages to the controller to set up flows. This

process increases the CPU usage of the controller and depletes switch memory and network

bandwidth. The consequences can bring down the controller and/or crash the switch.

To detect such attack, the new flow rate is computed in each window by,

flow_rate = n / t (2.5)

where t is the time taken to collect 𝑛 packet-in messages, where 𝑛 is the window size. The

calculated flow rate is compared against the chosen threshold value, which is derived from the

average flow rate of the normal traffic. If the current flow rate exceeds the threshold value, an

attack is suspected, and the algorithm enters the stage II for the confirmation of the attack. If the

flow rate is below the threshold limit, the network is considered as attack free.

 21

2.9.3 Stage II: Detection based on Analysis of Flow statistics:

In stage II, the system analyzes the following characteristics: number of packets per flow (𝑃𝑓),

amount of received bytes (𝐵𝑓) and flow duration (𝐷𝑓). The controller collects these flow statistics

every 10 seconds from the switches.

𝑃𝑓, 𝐵𝑓 and 𝐷𝑓 are checked against the packet count thresholds, Pth, the payload size threshold, Bth

and the flow duration threshold, 𝐷𝑡ℎ respectively. The threshold values Pth, Bth and 𝐷𝑡ℎ, on the

other hand, are derived based on the averages of 𝑃𝑓, 𝐵𝑓 and 𝐷𝑓, respectively.

The packet count, byte count, and duration for each flow are obtained from the default counters of

the switch’s flow table and checked against the following conditions:

1. Is the packet count of a flow is less than the threshold value, Pth

(Pf < Pth)

2. Is the payload size is less than the threshold value Bth

(Bf<Bth)

3. Is the flow duration is less than the threshold value Dth

(Df<Dth)

If any two conditions are true, the counter (fcount) is increased by one. After all the flows have

been examined the attack rate is calculated by dividing the counter (fcount) value by the number

of flows. If the calculated attack rate exceeds the flow rate threshold value, an alarm is raised

confirming the attack.

2.9.4 Mitigation Module

The next goal is to protect the switches and controller under attack. Usually, the controller will not

crash easily as they are designed with high capacities. But the switches are not very robust against

attacks due to their limited resources. During the attacks, the flow tables of the switches get filled

with a large number of short flows which eventually breaks the switch.

Once the attack is detected, to prevent the breakdown of the switch, the default value of flow

idle_timer is changed to the mitigating value. The mitigated value which is smaller than the default

value makes the short flows timeout quickly and the flows are deleted from the switch flow tables.

 22

Chapter 3

3 Proposed Methods

The focus of our research is on the security challenges in DDoS attack detection in SDN

environment. Two DDoS attack detection methods, Statistical Approach and Machine Learning

Approach, are proposed.

3.1 Proposed Method - Statistical Approach

Our proposed method is based on the original approach from Kia [1]. Here, we call our approach

as the modified approach. Our modified approach differs from [1] in the computation of adaptive

threshold values and the implementation of mitigation module.

3.1.1 Computation of Threshold values

In [1], the thresholds are derived from the average traffic parameters only, whereas, in our thesis,

the proposed algorithm uses exponential moving mean and standard deviation to calculate the

dynamic threshold values. The use of mean and standard deviation provide more accurate

measurements of the traffic parameters and thus lead to more appropriate thresholds.

Our proposed statistical detection method requires four threshold values to detect the attack:

Entropy threshold Eth, Flow rate threshold Fth, Packet count threshold Pth and Payload threshold

Bth. The threshold values are computed based on the normal traffic. That is the detection system

analyzes the normal behaviour of the network without any attack.

The threshold values used in our thesis are dynamic and are updated based on the current traffic

load. Let 𝑥𝑛 be the traffic parameter measured in the 𝑛𝑡ℎ window, then the moving mean, �̅�𝑛, and

standard deviation, 𝜎𝑛, calculated at the end of the 𝑛𝑡ℎ window is given by equation 3.1 and 3.2

respectively.

�̅�𝑛 = 𝛼 ∗ 𝑥𝑛 + (1 − 𝛼) ∗ �̅�𝑛−1 3.1

𝜎𝑛 = √𝛼 ∗ (𝑥𝑛 − �̅�𝑛−1)2 + (1 − 𝛼) ∗ (𝜎𝑛−1)2 3.2

where 𝛼 is a constant whose value can be between 0 and 1.

 23

The adaptive threshold, 𝑡ℎ𝑛, calculated in the 𝑛𝑡ℎ window is given by equation 3.3:

 𝑡ℎ𝑛 = �̅�𝑛 + 𝑘𝜎𝑛 3.3

where 𝑘 is a constant.

In our thesis, the value of k is set to 1 to derive the threshold values used in the first stage of attack

detection and the value of k is set to 2 to derive the threshold values in the second stage of attack

detection.

By choosing the value of k to be one in the first stage, the system will detect the attack earlier. The

false positives that are caused by the use of small 𝑘 may be eliminated by the second stage of

detection. In the second stage, 𝑘 is set to 2 to prevent the final false positive rate from getting too

large.

3.1.2 Mitigation Module

In the previous section, we described the statistical approaches in DDoS attack detection. The next

goal of our research is to protect the switches and controller under attack. According to the method

proposed in [1], the mitigation module is implemented by replacing the default value of the flow

idle timer with a small mitigated value causes the malicious flow timeout quickly and are deleted

from the switch flow table. This mechanism is good when the rate of attack is small. But when it

is a large attack, the switch breaks down and loses the communication with the controller. Hence,

changing the flow idle timer won’t be beneficial.

There are different mitigation methods implemented by various authors. Brainard et al [43]

mention random early dropping as one of the earliest solutions to handling attacks, but this method

has the highest risk of dropping legitimate traffic. Buragohain et al [44] introduce a mitigation

method based on how many times a suspicious source address, attempts to attack. That is if the

source address attempts to send flows more than a random legitimate counter value then it is

blocked. Xu et al [45] propose IP traceback to filter packets during the attack.

In our proposed method, the defense system of the controller is activated once it receives the attack

confirmation from the detection system. The mitigation process can be explained as follows.

• For every 3 second window, the number of new flows coming into the controller is counted

and checked against the flow rate threshold Fth which is calculated using equation 2.5.

 24

• If the count of new flows exceeds the threshold, the packets are dropped until the end of

the time window.

• The count will be reset at the beginning of the new window.

• The controller pushes new flows into the flow table of the switch to block the similar

malicious flows.

By limiting the number of flows per 3-sec window, the system can defend a large DDoS attack as

shown by the results in Chapter 4.

3.2 Machine Learning Approach

There are many machine learning techniques available for DDoS detection. In our research, we

have used classification technique using Random Forest (RF) classifier.

3.2.1 Building the Machine Learning Model

Nowadays there are many software tools which can be used to identify the DDoS attack. But

malicious traffic can be in any form. The attackers change their attack patterns regularly. So, there

is a need to learn from experience. This can be achieved by machine learning. The Machine

Learning algorithm can be used to analyze traffic to recognize an attack pattern.

The basic steps of Machine Learning approach can be summarized as follows.

1. Collect the raw data. (UCLA Dataset)

2. Preprocess the dataset to insert missing values and feature extractions, etc.

3. Identify the most important features.

4. Create a sub-dataset with the most relevant features.

5. Train the Random Forest classifier.

6. Calculate the accuracy of the model.

7. Test with unseen data.

 25

8. Evaluate the results.

The above process can be represented by Fig-3.1.

Fig 3.1: Machine Learning Methodology

3.2.2 Random Forest classifier

The random forest (RF) classifier is constructed by combining the unpruned random decision trees.

It uses the power of many decision trees to generate predictive models. In this phase, we have built

the random forest classifier using python machine learning library, scikit-learn and the data

analysis library, pandas.

How Random Forest Works

Random Forest Creation Algorithm

1. Let the number of training cases in the dataset be N.

2. Select randomly m features from total M features, such that m is much less than M.

3. Among m features calculate the node d, using the best split point.

4. Split the d node into daughter nodes.

 26

5. Repeat 2 to 4 until a leaf node has been reached.

6. Build the forest by repeating steps 2 to 5 for i number of times. The value of i is equal to

the number of trees to be created.

Random Forest Prediction Algorithm

After the creation of forest using the training dataset, we can perform prediction for the unknown

test data using Majority voting.

1. Select the test features and use the rules of each randomly created decision tree to predict

the result. Save the result as the target.

2. Calculate the votes for each predicted target.

3. High voted target is declared as final prediction

Internally random forest creates many independent decision trees and sets the rules for each

decision tree based on the values of the input variables. There is no need to set the classification

rules manually. So the dataset plays an important role here. To get accurate results, our datasets

should be error free.

3.2.3 UCLA Dataset

Building the training data is the most important step in the implementation of machine learning

approach. We need to select adequate dataset for training our machine learning model. In this

research, we have used UCLA dataset [22] to build the training data. The UCLA dataset contains

real-time UDP flood attack traces. As our thesis is based on SDN architecture, we chose to modify

the UCLA dataset by adding traffic flow entries of the simulated traffic in addition to the real

traces. The data from the dataset is downloaded and preprocessed for any missing values and then

converted to a comma separated file (.csv) format which can be read by the machine learning

module developed in python. The features in UCLA dataset include Packet_TIME, IP_from, IP_to,

PORT_from, PORT_to, LENGTH.

 27

Features in UCLA Dataset

Packet_TIME Time when the packet was sent

IP_from Number masking the IP address of packet source

IP_to Number masking the IP address of the packet destination

PORT_from Original source port

PORT_to Original destination port

U UDP Packet

LENGTH Length of packet (without header) in Bytes

Table 3.1: Features in UCLA Dataset

The traces of attack data in the UCLA dataset were generated by Tribe Flood Network attack tool.

The features used in our training data were altered to match our simulated network setup. Fig-3.2

shows part of the training dataset used in our research.

Fig 3.2: Sample UCLA Dataset

 28

3.2.4 Training Phase

With a training dataset and features selected, we can now train the machine learning models. The

training phase is shown in Fig-3.3.

The first step is to get the input dataset (UCLA), then process it. That is, the features or columns

that have zero values needs to be edited or removed depending on the importance of the data. Also,

the values containing characters must be converted into numeric in order for the data to be

processed by the algorithms. The next step is to select the features which are relevant to the attack

detection. We then train the models using random forest algorithm from python scikit-learn

libraries, and finally, we save the trained model and record the results of cross-validation and use

them for future predictions.

 29

Fig 3.3: Flowchart for Training Phase

 30

3.2.5 Testing Phase

Fig-3.4 shows the testing phase in the machine learning model of our proposed system. Get the

input from the controller every 10 seconds and pass it as the input to the random forest classifier

model built in training phase. Check if attacked is detected. If the attack is detected raise the alarm

and record the attack to a log file. Otherwise, continue the process of getting the input.

Fig 3.4: Flowchart for Testing Phase

 31

3.2.6 Preparation of Trainingata

The first step in our proposed detection method is the preparation of training data. The dataset

downloaded from UCLA website is converted to a .csv file and the duplicate values are removed,

and the missing parameters are added. After processing the dataset manually, it is loaded by the

detection script by using the read_csv(“filename”) function. The .csv file is converted to pandas

DataFrame to perform the classification process.

The DataFrame consists of two types of data: feature data labeled as X and target data labeled as

Y. Every row in the X is a datapoint (i.e. a network traffic flow) and every column in X are a feature

(e.g. byte length, packet count). For a classification problem, Y contains the class value (attack or

no attack) of every datapoint.

The Y column of our DataFrame is removed and saved as a separate numpy array (python data

structure) labeled as the Result. Now the remaining DataFrame has only the feature data labeled

X. The feature information from the DataFrame is saved as a numpy array (matrix X) using the

pandas function as_matrix.

The Result array with class value: attack or no attack is replaced with binary values 1 and 0. The

1 represents attack and 0 represents no attack.

3.2.7 Training the classifier

Once the training data is ready, we build an RF classifier and apply the classifier to the training

data and use 10-fold cross-validation to compute the accuracy of the classifier. The RF classifier

in our proposed method is built using scikit-learn python library. Next step is to generate decision

trees. The number of decision trees generated can affect your accuracy. With the increase in the

number of decision trees the accuracy also increases. The number of decision trees generated can

be specified. In our thesis, we have generated 100 decision trees to provide better detection

accuracy without introducing significant processing overhead.

By default, random forest decision trees are generated out of random samples from the training

data. Also, splitting on a feature in the decision tree is done by considering a random subset of

variables to split on. This randomness may affect the prediction accuracy.

In our research, we have made the following changes to improve the prediction accuracy. First, we

have implemented Bootstrap technique. So instead of selecting a random number of features, we

 32

select m number of features based on equation 2.1. Secondly, to compute the best split, we

calculated variable importance based on the Gini Index.

Finally, the RF classifier is applied to the training data and the accuracy is calculated using a 10-

fold cross-validation. Our goal is to classify the incoming network traffic as an attack or no attack

traffic.

3.2.8 Implementation of RF Classifier in the Controller

Every 10 seconds, the pox controller sends the flow statistics collected from the switches to the

RF classifier. The model accepts these as unseen inputs and tries to predict if there is an attack.

In the random forest method, the prediction is done by calling the predict_proba method. Once

the method is called, it returns the prediction probabilities. For example: at a given point X there

is a 60% probability that it belongs to class 1 and 40% probability that it belongs to class 0. The

classifier’s probabilities are converted to predictions. We can visualize the predicted probabilities

using the predict_proba method.

However, when the classes in the training data are unbalanced (e.g. when the number of attack

class is more compared to the no attack class), the predictions calculated by the classifier become

inaccurate. This happens because our RF classifier learns the pattern of the training data to predict

the unseen output. When the training data itself is unbalanced, the results turn out to be inaccurate.

The default behavior of random forest can be changed by choosing an appropriate threshold value.

The analysis of precision rate can be helpful in choosing the appropriate threshold probability.

In our thesis, the value of output probability threshold is tuned so that we get the higher precision

rate. More specifically, we have changed this default threshold α to 0.25 based on the analysis of

the precision rate of the training set. The precision rate is calculated based on True Positive rate

(TP) and False Positive rate (FP):

Precision = TP/(TP+FP) (3.4)

The definitions of TP and FP are defined in the subsequent chapter. The implementation of

weighted voting instead of majority voting improves the precision rate.

 33

Chapter 4

4 Performances and Analyses

In this chapter, we implement and evaluate the statistical and machine learning DDoS detection

approaches presented in chapter 3. The results of the detection system based on statistical approach

are compared with the results from the original method [1]. Similarly, the results of the machine

learning DDoS detection approach are compared with the results from another existing machine

learning approach in literature.

To test the performances of our proposed methods, a virtual network is simulated, using the

following technologies:

4.1 Mininet

Mininet is the well-known network emulator for SDN research problems. It uses process-based

virtualization to run many hosts and switches on a single OS kernel [23]. Virtual hosts, switches,

controllers, and links of Mininet can be used to create any type of network topology. Its hosts run

Linux network software. Moreover, its switches support OpenFlow which helps in developing

OpenFlow based applications used in SDN environment. It also provides an extensible python API

for the creation of the network.

4.2 POX Controller

POX controller comes pre-installed with the Mininet virtual machine. Using POX controller, you

can turn dumb OpenFlow devices into the hub, switch, load balancer, firewall devices. The POX

controller allows an easy way to implement OpenFlow/SDN experiments. Different parameters

can be passed to POX according to real or experimental topologies, thus allowing you to run

experiments on real hardware, testbeds or in Mininet emulator.

4.3 Traffic generator

Our thesis is based on UDP flood attack and we use the traffic generator Scapy [24] to generate

UDP packets and spoof the source IP address of the packets. Scapy is a powerful interactive packet

manipulation program written in python. It can forge packets of different protocols. It can perform

tasks like scanning, tracerouting, probing, unit tests, attacks, and network discovery. It is used as

a replacement of Hping, Arpspoof, Arping, TCPDUMP, etc.

 34

In the Appendix, we presented the code for generating both the normal and attack traffic. Fig-4.1

shows the traffic generated using Scapy script.

Fig 4.1: Traffic Generation using Scapy

The traffic patterns used in the project are given below:

Normal Traffic Pattern

Packet Type UDP

Packet Payload 60 bytes

No. of Packet Sent per

Flow

Random between 1 and 8

Packet Inter-Arrival

Interval

0.1 Sec

Traffic Rate 10 Packets/Sec

Table 4.1: Normal Traffic Pattern

Attack Traffic Pattern

Packet Type UDP

Packet Payload 0

No. of Packet Sent per

Flow

1

Packet Inter-Arrival

Interval

0.05 Sec

Traffic Rate 20 Packets/Sec

Table 4.2: Attack Traffic Pattern

 35

4.4 Performance Metrics of Machine Learning Approach

The performance of our proposed detection system using the ML approach is evaluated using the

parameters, accuracy, error, and precision. We use confusion matrix to calculate these performance

metrics.

4.4.1 Confusion Matrix

A confusion matrix is an N × N matrix where N is the number of classes. In this thesis, we have 2

classes (attack and normal). The columns of the matrix represent actual classes and the rows

represent the predicted classes. The confusion matrix gives the no. of correctly and incorrectly

predicted results by the model. Table 4.3 shows the confusion matrix of our proposed approach.

Predicted Class

Attack Normal

Actual Class

Attack

TP

FN

Normal

FP

TN

Table 4.3: Confusion Matrix

where,

TP = True Positive is the number of times the attack traffic was correctly classified.

FN = False Negative is the number of times attack traffic was classified as normal traffic.

TN = True Negative is the number of predictions that were correctly classified

 36

FP = False Positive is the number of times the normal traffic was classified as attack traffic.

From the confusion matrix, we can define the following performance metrics:

Accuracy Rate

Accuracy rate = No. of correct Predictions / Total No. of Predictions.

That is,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 (4.1)

Error Rate

Error rate = No. of wrong Predictions / Total No. of Predictions.

That is,

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 (4.2)

Precision

Precision = No. of relevant items selected.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4.3)

In the subsequent sections, we will present the results of different methods based on FP, FN,

Accuracy Rate.

4.5 Simulation Scenario and Results of Our Proposed Method

The experiment was done on a DELL Inspiron 5558 laptop with Intel (R) Core (TM) i5-5250U

CPU @1. 60GHz, 1601 MHz, 2 Core(s), 4 Logical Processor(s). Using Mininet, a tree-type

network is created. Its depth is two with five switches and 20 hosts. Fig-4.2 shows the network.

Open Virtual Switch (OVS) was used for network switches. OVS is a software switch that runs

both on hardware and software. In Fig-4.2, all switches refer to OpenFlow enabled switches. The

L2_multi.py module of POX was used for the controller.

 37

To implement the modified statistical approach, we have added four modules to the controller

program: entropy computation module, flow rate computation module, flow statistics collection

module and a mitigation module.

The machine learning approach uses the same network set up, however, the controller program is

modified by including two machine learning modules: a classifier module which has access to the

training dataset and a prediction module which classify the incoming network traffic as an attack

or no attack traffic.

Fig 4.2: Network Setup

The experiment mainly concentrates on multiple victim attacks as the single victim attack can be

easily detected. During the simulation, we are running two Scapy programs. The one that is

generating the attack sends the packets faster than the one which generates normal traffic. The

traffic pattern shown in Table 4.1 and Table 4.2 is used for this purpose. We run attack traffic from

randomly chosen 4 hosts to attack four different destinations, consequently remaining 16 hosts

generate the legitimate traffic. The IP address in Mininet for all hosts are assigned from 10.0.0.1

to 10.0.0.20.

 38

4.6 Performance of the Statistical Approach

Based on the calculated threshold values, the performance of our detection system is analyzed by

running the simulation 50 times. For each run, attack traffic of pattern B is generated on four hosts.

Each simulation lasts about 30 minutes. The results were recorded, and the False Positive and False

Negative values are summarized in Table 4.4:

FP & FN Values of Multiple Victim Attack

No. of Attacks 50

FP (Avg.count) 3

FN (Avg.count) 1

Accuracy Rate 92%

Table 4.4: False Positive and False Negative Values

Based on the values in Table 4.4, we can say that there is a possibility for an attack traffic to pass

through the detection system as normal traffic, which is harmful to the system.

4.6.1 Comparison of the Basic Approach with Our modified approach

The main difference between the basic approach and our approach is the way of deriving the

thresholds. Fig-4.3 shows the comparison of the accuracy rate achieved by the basic approach and

our modified approach.

 39

Fig 4.3: Comparison of Performance of Statistical Approaches

From the result, we can say that the accuracy of the detection system has improved by using the

thresholds derived based on the mean and standard deviation method.

4.7 Mitigation Results

After the attack has been confirmed by Stage II of our detection system, the mitigation module is

called, and the attack traffic is dropped to prevent the breakdown of the switches in the network.

Fig-4.4 shows the output of the execution of the mitigation module of the POX controller to drop

the attack traffic.

Fig 4.4: Execution of Mitigation Module

87%

92%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

Original Approach Kia[1] Our Modified Approach

P
er

ce
n

ta
ge

Statistical Approaches

Performance Comparison

Accuracy

 40

Fig-4.5 shows the entire process of attack detection and mitigation of the proposed statistical

approach.

Fig 4.5: Wireshark Output: Attack Traffic Mitigated

4.7.1 Performance Analysis of Mitigation Module

To demonstrate the performance of the defense system in defeating DDoS attacks, we compare

results in two cases. In the first case, we start the attack on our simulation network without enabling

any DDoS defense mechanisms. The switch at the victim end breaks down due to the large attack

traffic. In the second case, we deploy the mitigation technique in the POX controller. After

receiving the attack alert, the controller drops the attack traffic in order to protect the switch.

The simulation is run 10 times for each case with different attack rate. Table 4.5 shows the result

obtained in each case:

 41

Packets/Sec With Defense

Window

No Defense

Window

10 Operational Operational

20 Operational Operational

50 Operational Operational

100 Operational Crash

200 Operational Crash

300 Operational Crash

400 Operational Crash

500 Operational Crash

1000 Operational Crash

Table 4.5: Performance Analysis of Mitigation Module

Comparing the proposed method with the original method, the obvious difference is that the

detection system succeeds in lowering the attack traffic. This demonstrates that our proposed

DDoS defense system is able to differentiate between attack and legitimate traffic with high

accuracy.

4.8 Performance of the Machine Learning approach

The UCLA dataset is fairly balanced and contains a total of 1200 instances, with 60% (720) attack

and 40% (380) no attack instances. A Python script was used for training and testing the classifier.

10-fold cross-validation is used to evaluate the classifier. The accuracy of the resulting classifier

is compared with Kato et al [17].

4.8.1 Feature Selection

We need to decide on which features to train on. The UCLA dataset has a variety of features as

summarized in Table 3.1. However, all these features are not used in our approach to classify the

traffic flow. Hence, we have selected three features: Payload, Packet count and Flow duration from

 42

the UCLA dataset and calculated the feature importance based on Gini score. The code to compute

a Gini score can be found in the Appendix

Fig-4.6 shows the calculated feature importance. Based on the obtained result, we selected the

following features: No. of Packets, Byte length (payload) and Flow Duration, to build our model:

Fig 4.6: Feature Importance Plot

We evaluated the performance of our proposed detection system using parameters such as accuracy

rate, error rate, precision and ROC plot. We use confusion matrix to calculate accuracy, error, and

precision. Table 4.6 shows the calculated performance measures of our proposed system.

Performance Metrics

Accuracy 97.70%

Error Rate 2.3%

Precision 95.74%

Table 4.6: Performance Metrics

 43

4.8.2 ROC Plot

Receiver Operating Characteristic (ROC) plot is the graphical way of inspecting the performance

of our random forest classifier. It shows the rate at which our classifier is making correct

predictions. It is applicable only to binary classification model. It is plotted between the False

Positive Rate (FPR) on the x axis and the true positive rate (TPR) on the y axis. Fig-4.7 shows the

exemplary ROC plot:

Fig 4.7: Exemplary ROC Plot [8]

AUC or Area Under the Curve is the space underneath the ROC curve. The perfect classifier has

the AUC value of 1. AUC value is used to compare different models. It also determines the

performance of the classifier.

 44

The ROC Plot of our proposed method is given in Fig-4.8.

Fig 4.8: ROC Plot of Proposed Method

The AUC value of our classifier is 0.93.

4.9 Comparison of Our Statistical and Machine Learning Approach

In this section, we compare the accuracy of our Machine Learning approach to the solution

obtained from the statistical approach.

 45

Fig 4.9: Performance Comparison of Statistical & ML Approaches

From the above analysis, we can conclude that the proposed detection system implemented using

a Machine Learning approach could successfully detect DDoS attack with higher accuracy.

4.10 Comparison of Machine Learning Approach with Existing ML Approach

In this section, we will compare the proposed machine learning based DDoS Detection method

with the approach of Kato et al [17].

In [17] the authors proposed a DDoS detection system using a Support Vector Machine algorithm.

The algorithm used CAIDA dataset to analyze the attack pattern. The main idea behind their

approach is to perform network packet analysis and to study the patterns of the DDoS attack using

the machine learning algorithm. They prepared three different types of the dataset and tested their

model. The detection system is 85% accurate with three features.

To compare the performance based on detection accuracy, we implemented the SVM algorithm

using the UCLA training dataset prepared in section 3.2.6. The experimental result shows that the

detection system could successfully detect the attack traffic with the detection accuracy of 88%.

Fig-4.10 shows the comparison of the performance of our ML approach using the RF classifier

with the ML approach using the SVM classifier.

92%

97.7%

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

100.0%

Statistical ML

Performance Comparison of Statistical & ML Approach

Accuracy

 46

Fig 4.10: Performance Comparison of our ML Approach with other ML Approaches

From the results of the comparison, it can be seen that the proposed ML approach gives the best

performance in comparison with other approaches considered in this thesis. It surpasses the other

approaches in practical implementation due to the following reasons:

• Random forest classifier which has fast computing times and robustness against noisy

data.

• Implementation of the Weighted voting method instead of standard majority voting.

97%

88%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Our RF Approach SVM Approach Kato et al[17]

A
cc

u
ra

cy
 %

ML Approaches

Comparison of Detection Accuracy

 Accuracy

 47

Chapter 5

5 Conclusion and Future Work

5.1 Conclusion

Detecting and defending against DDoS attack is a complex task. Initially, we started the research

aiming to improve the DDoS detection system proposed by Kia [1]. We used the mean and

standard deviation to compute various thresholds. We also introduced a better mitigation method

to protect the controller and the switches. Even though we managed to improve the detection rate

performance, we found that it is still not entirely satisfactory. Hence, to improve the detection rate

further, we proposed an ML approach. Our proposed approach is based on RF algorithm with

weighted voting. Our results show that the proposed approach has the best performance among all

the approaches considered in this thesis.

5.2 Future work

As a future work, we recommend developing a controller that can detect any type of network attack

and employ deep packet inspection so that the detection accuracy is even higher. Moreover, SDN

has also a concept of distributed network security enforcement by making each network element

potentially an enforcement node and smart. This can be easily achieved by Machine Learning

approach.

 48

Appendix

Entropy Computation Module

class Entropy(object):

#Set Counter for Window size = 100

count = 0

Dictionary to Store Destination IP occurrence

 ipDic = {}

 # List to Store IP addresses

 ipList = []

 # List to store Entropies

 lstEnt = []

 value = 1

 #Function to collect Destination IP

 def colectIP(self, element):

 l = 0

 self.count +=1

 self.ipList.append(element)

 # Check whether window size is reached

 if self.count == 100:

 for i in self.ipList:

 l +=1

 if i not in self.ipDic:

 49

 self.ipDic[i] =0

 self.ipDic[i] +=1

 # Entropy Function to calculate Entropy

 self.entropy(self.ipDic)

 log.info(self.ipDic)

 self.ipDic = {}

 self.ipList = []

 l = 0

 self.count = 0

 #Entropy computation

 def entropy (self, lists):

 #print "Entropy called"

 l = 50

 elist = []

 for k,p in lists.items():

 #Probability Of each IP

 c = p/float(l)

 c = abs(c)

 #List of Entropies

 elist.append(-c * math.log(c, 2))

 log.info('Entropy = ')

 log.info(sum(elist))

 self.lstEnt.append(sum(elist))

 50

 if(len(self.lstEnt)) == 80:

 #Print to display Entropy

 print self.lstEnt

 self.lstEnt = []

 return(sum(elist))

 def __init__(self):

 pass

Flow Statistics Collection

#Flow statistics Module

standard includes

from pox.core import core

from pox.lib.util import dpidToStr

import pox.openflow.libopenflow_01 as of

from pox.lib.revent import *

include as part of the betta branch

from pox.openflow.of_json import *

log = core.getLogger()

handler for timer function that sends the requests to all the

switches connected to the controller.

def _timer_func ():

 for connection in core.openflow._connections.values():

 connection.send(of.ofp_stats_request(body=of.ofp_flow_stats_request()))

 log.debug("Sent %i flow/port stats request(s)", len(core.openflow._connections))

 51

handler to display flow statistics received in JSON format

structure of event.stats is defined by ofp_flow_stats()

def _handle_flowstats_received (event):

 stats = flow_stats_to_list(event.stats)

 log.info("flow statistics received from %s",dpidToStr(event.connection.dpid))

 #Dictionary to store the flow details

 flowlist = {}

 #Counter to count the no. of flows

 flow_count = 0

 #Counter for packets

 p_count = 0

 #Counter for bytes

 b_count = 0

 for flow in event.stats: #for each flow

 if flow.match.dl_type==0x0800: #Only UDP Packets

 #Collect the Flow statistics

 flowlist = {"flow_Duration": flow.duration_sec, "packet_count": flow.packet_count,

"byte_count": flow.byte_count}

#Increment the counters

 p_count += flow.packet_count

 b_count += flow.byte_count

 if flow.packet_count <> 0:

 52

 flow_count = flow_count+1

 print "Traffic from %s: %s bytes,%s packets and flows",dpidToStr(event.connection.dpid),

p_count, b_count, flow_count

 #print flow_count

 def flow_stat():

 self._timer_func()

main functiont to launch the module

 def launch ():

 from pox.lib.recoco import Timer

 # attach handsers to listners

 core.openflow.addListenerByName("FlowStatsReceived", _handle_flowstats_received)

 # timer set to execute every five seconds

 Timer(5, _timer_func, recurring=True)

Mitigation Module:

#Check if Ethernet packet

 if packet.type == ethernet.IP_TYPE:

 #Start the Timer

 self.start = time.time()

 #Set the window interval

 time_interval = 3

 #Increment the Flow Counter

 self.flow_list+=1

 if self.flow_list == 1:

 53

 self.end = self.start + time_interval

 # #print 'end', self.end

 #Check if flow counter exceeds the threshold and if timer expired

 if self.flow_list > fth and self.start<self.end:

 # Attack is confirmed , Turn ON mitigation

 cprint(' Mitigation ON ', 'blue', 'on_cyan')

 #Drop the attack packets

 drop()

 self.flow_list = 0

 elif self.start>=self.end:

 # If timer expires, reset the flow counter

 self.flow_list = 0

 else:

 pass

 54

Traffic Generation Code:

Normal Traffic

import sys

import getopt

import time

from os import popen

import logging

logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

from scapy.all import sendp, IP, UDP, Ether, TCP

from random import randrange

import random

import threading

#this function generates random IP addresses

these values are not valid for first octet of IP address

def sourceIPgen():

 not_valid = [10,127,254,1,2,169,172,192]

 first = randrange(1,256)

 while first in not_valid:

 first = randrange(1,256)

 ip = ".".join([str(first),str(randrange(1,256)),str(randrange(1,256)),str(randrange(1,256))])

 return ip

#send the generated IPs

def gendest():

 55

 first = 10

 second =0; third =0;

 start = 2

 end = 60

 ip = ".".join([str(first),str(second),str(third),str(randrange(start,end))])

 return ip

def genTraffic():

 m =0

 #a = random.uniform(0.1,0.4)

 # open interface eth0 to send packets

 interface = popen('ifconfig | awk \'/eth0/ {print $1}\'').read()

 for i in xrange(1000):

 # form the packet

 packets = Ether()/IP(dst=gendest(), src=sourceIPgen())/UDP(dport=80,sport=2)

 print(repr(packets))

 while m<=4:

 # send packet with the defined interval (seconds)

 sendp(packets,iface=interface.rstrip(),inter=0.1)

 m+=1

def main():

 #run_event = threading.Event()

 #run_event.set()

 #d1 = 0.1

 56

 timeout = time.time() + 60*1

 #threading.Timer(0.1,genTraffic).start()

 while True:

 genTraffic()

 if time.time()>timeout:

 break

#main

if __name__=="__main__":

 main()

Attack Traffic

import sys

import time

from os import popen

import logging

logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

from scapy.all import sendp, IP, UDP, Ether, TCP

from random import randrange

import time

def sourceIPgen():

#this function generates random IP addresses

these values are not valid for first octet of IP address

 not_valid = [10,127,254,255,1,2,169,172,192]

 first = randrange(1,256)

 57

 while first in not_valid:

 first = randrange(1,256)

 print first

 ip = ".".join([str(first),str(randrange(1,256)), str(randrange(1,256)),str(randrange(1,256))])

 print ip

 return ip

def main():

 timeout = time.time() + 30*1

 while True:

 mymain()

 if time.time()>timeout:

 break

 #send the generated IPs

 def mymain():

 #getting the ip address to send attack packets

 dstIP1 = sys.argv[1:]

 dstIP2 = sys.argv[1:]

 dstIP3 = sys.argv[1:]

 dstIP4 = sys.argv[1:]

 #print dstIP

 src_port = 80

 dst_port = 1

 # open interface eth0 to send packets

 58

 interface = popen('ifconfig | awk \'/eth0/ {print $1}\'').read()

 print (repr(interface))

 #for i in xrange(0,2000):

 # form the packet

 packets = Ether()/IP(dst=dstIP1,src=sourceIPgen())/UDP(dport=dst_port,sport=src_port)

 print(repr(packets))

 packets = Ether()/IP(dst=dstIP2,src=sourceIPgen())/UDP(dport=dst_port,sport=src_port)

 print(repr(packets))

 packets = Ether()/IP(dst=dstIP3,src=sourceIPgen())/UDP(dport=dst_port,sport=src_port)

 print(repr(packets))

 packets = Ether()/IP(dst=dstIP4,src=sourceIPgen())/UDP(dport=dst_port,sport=src_port)

 print(repr(packets))

send packet with the defined interval (seconds)

 sendp(packets,iface=interface.rstrip(),inter=0.03)

#main

if __name__=="__main__":

 main()

 59

Machine Learning code

Classifier Module

#Standard Includes

import numpy as np

import pandas as pd

from pandas import read_csv

#The Machine learning alogorithm

from sklearn.ensemble import RandomForestClassifier

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

Test train split

#from sklearn.cross_validation import train_test_split

from sklearn.model_selection import train_test_split

Just to switch off pandas warning

pd.options.mode.chained_assignment = None

Used to write our model to a file

from sklearn.externals import joblib

#Open the data set

data = read_csv("tableset.csv")

print data.head()

print data.columns

#Select the Features

 60

data_inputs = data ["Duration", "No. of packets", "Byte length"]

print data_inputs.head()

ex_outputs = data[["result"]]

print ex_outputs.head()

#Create the Classifier to create 100 trees

rf = RandomForestClassifier (n_estimators=100)

rf.fit(data_inputs, ex_outputs)

#Accuracy Calculation

accuracy = rf.score(data_inputs, ex_outputs)

print "Accuracy = {}%".format(accuracy * 100)

#Save the ML model

joblib.dump(rf, "test_model1", compress=9)

#Calculate Feature Importance

importances = rf.feature_importances_

indices = np.argsort(importances)

 plt.figure(1)

 plt.title('Feature Importances')

 plt.barh(range(len(indices)), importances[indices], color='b', align='center')

 plt.yticks(range(len(indices)), data_inputs[indices])

 plt.xlabel('Relative Importance')

 plt.show()

 61

Prediction Module

#Standard Includes

import numpy as np

import pandas as pd

from pandas_ml import ConfusionMatrix

import matplotlib.pyplot as plt

from pandas import read_csv

#The Machine learning alogorithm

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

from sklearn.metrics import roc_curve, auc

Test train split

#from sklearn.cross_validation import train_test_split

from sklearn.model_selection import train_test_split

Just to switch off pandas warning

pd.options.mode.chained_assignment = None

Used to write our model to a file

from sklearn.externals import joblib

#Open Test Data

data = read_csv("data.csv")

test_input = data[["Duration", "packet", "byte length"]]

test_output = data[["result"]]

 62

#Open the Saved Model

rf = joblib.load("test_model1")

#Predict the Attack

pred = rf.predict_proba(test_input)

print pred

#Calculate the Accuracy

accuracy = rf.score(test_input, test_output)

print "Accuracy = {}%".format(accuracy * 100)

#Calculate Confusion Matrix

results = confusion_matrix(pred, test_output)

print "----Confusion Matrix-----"

print results

plt.matshow(results)

plt.title('Confusion Matrix')

plt.colorbar()

plt.ylabel('Actual')

plt.xlabel('Predicted')

#plt.show()

#calculate True Positive Rate, False Positive Rate

fpr,tpr, _ = roc_curve(test_output, rf.predict_proba(test_input)[:,1])

roc_auc = auc(fpr, tpr)

print 'ROC AUC: %0.2f' % roc_auc

 63

Plot of a ROC curve for a specific class

plt.figure()

plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)

plt.plot([0, 1], [0, 1], 'k--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('ROC Curve')

plt.legend(loc="lower right")

plt.show()

 64

Bibliography

[1]. Maryam Kia, “Early Detection and Mitigation of DDoS Attacks in Software Defined

Networks”, Master’s thesis, Ryerson University, Canada 2015.

[2]. Javed Ashraf and Seemab Latif, “Handling Intrusion and DDoS Attacks in Software Defined

Networks Using Machine Learning Techniques”, National Software Engineering

Conference, 2014.

[3]. opennetworking.org, “OpenFlow”, [Online]. Available: https://www.opennetworking.org.

[Accessed February 2016].

[4]. slideshare.net, “OpenFlow Tutorial”, [Online] Available: https://slideshare.net/openflow/.

[Accessed September 2016].

[5]. Sukhveer Kaur, Japinder Singh and Navtej Singh Ghumman, “Network Programmability

Using POX Controller”, International Conference on Communication, Computing &

Systems, pp. 134-138, 2014.

[6]. Seyed Mohammad Mousavi and Marc St. Hilaire, “Early Detection of DDoS Attacks against

SDN Controllers”, International Conference on Computing, Networking and

Communications, Communications and Information Security Symposium, 2015.

[7]. Duohe Ma1, Zhen Xu, and Dongdai Lin, “Defending Blind DDoS Attack on SDN Based on

Moving Target Defense”, researchgate, November 2015.

[8]. Meiling Liu, Xiangnan Liu, Jin Li and Jiale Jiang, “Evaluating total inorganic nitrogen in

coastal waters through the fusion of multi-temporal RADARSAT-2 and optical imagery

using random forest algorithm”, International Journal of Applied Earth Observation and

Geoinformation 33(1), pp. 192-202, December 2014.

[9]. Surender Singh and Sandeep Jain, “A Review of Detection of DDoS Attack Using Entropy-

Based Approach”, IJCST Vol 4, Issue 2, April 2013.

[10]. Jisa David and Ciza Thomas, “DDoS Attack Detection using Fast Entropy Approach on

Flow-Based Network Traffic”, Procedia Computer Science, pp. 30 – 36, 2015.

 65

[11]. Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan and Vijay Mann, “SPHINX: Detecting

Security Attacks in Software-Defined Networks”, IBM Research, 2009.

[12]. Haopei Wang, Lei Xu, Guofei Gu, "FloodGuard: A DoS Attack Prevention Extension in

Software-Defined Networks”, 45th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN'15), 2015.

[13]. Z. Qin, L. Ou, J. Liu, A. X. Liu J. Zhang, "An Advanced Entropy-Based DDoS Detection

Scheme”, IEEE, 2010.

[14]. Alpna and Sona Malhotra, “DDoS Attack Detection and Prevention Using Ensemble

Classifier (RF)”, IJARCSSE, 2016.

[15]. Arif Jamal Malik, Waseem Shahzad, and Farrukh Aslam Khan, “Network Intrusion

Detection Using Hybrid Binary PSO and Random Forests Algorithm”, Security and

Communication Networks, 2012.

[16]. Nabila Farnaaz and M.A. Jabbar, “Random Forest Modelling for Network Intrusion

Detection System”, IMCIP, 2016.

[17]. Keisuke Kato and Vitaly Klyuev, “An Intelligent DDoS attack Detection System Using

Packet analysis and Support Vector Machine”, IJICR, Volume 5, Issue 3, September 2014.

[18]. Sivatha Sindhu, Geetha subbiah and Kannan Arputharaj, “Decision tree based lightweight

intrusion detection using a wrapper approach”, Expert Systems with Applications, pp. 129-

141, January 2012.

[19]. Saurav Nanda, Faheem Zafari, Casimer DeCusatis, Eric Wedaa and Baijian Yang,

“Predicting Network Attack Patterns in SDN using Machine Learning Approach”, IEEE

2016.

[20]. Zhong-dong Wu, Wei-Xin Xie and Jian-ping Yu, “Fuzzy C-Means Clustering Algorithm

Based on Kernel Method”, ICCIMA, 2003

[21]. Md. Al Mehedi Hasan, Mohammed Nasser, Biprodip and Shamim Ahmad, “Support Vector

Machine and Random Forest Modeling for IDS”, JILSA, pp. 45-52, 2014.

 66

[22]. lasr.cs.ucla.edu, “UCLA Dataset”, [Online]. Available: https://lasr.cs.ucla.edu/DDoS/traces/.

[Accesssed April 2017].

[23]. mininet.org, “Mininet”, [Online]. Available: http://mininet.org/. [Accessed June 2016].

[24]. secdev.org, “Scapy”, [Online]. Available: http://www.secdev.org/. [Accessed January 2016].

[25]. Xin Xu and Xuening Wang, “An adaptive network intrusion detection method based on PCA

and support vector machines”, Advanced Data Mining and Applications, Springer, pp. 696-

703, 2005.

[26]. Ming-Yang Su, “Real-time anomaly detection systems for Denial-of-Service attacks by

weighted k-nearest-neighbor classifiers”, Expert Systems with Applications, PP. 3492-3498,

2011.

[27]. Sindia and Julia Punitha Malar Dhas, “SDN Based DDoS Attack Detection and Mitigation

in Cloud”, IJCTA, pp. 39-47, 2017.

[28]. Kuan-yin Chen, Anudeep Reddy Junuthula, Ishant Kumar Siddhrau, Yang Xu, H. Jonathan

Chao, “SDNShield: Towards More Comprehensive Defense against DDoS Attacks on SDN

Control Plane”, IEEE, 2016.

[29]. Christos Douligeris and Aikaterini Mitrokotsa, “DDoS attacks and defense mechanisms:

classification and state-of-the-art”, Computer Networks, pp. 643–666, 2004.

[30]. Mohammed Alenezi and Martin J Reed, “Methodologies for detecting DoS/DDoS attacks

against network servers”, The Seventh International Conference on Systems and Networks

Communications, 2012.

[31]. Manjula Suresh and R. Anitha, “Evaluating Machine Learning Algorithms for Detecting

DDoS Attacks”, Communications in Computer and Information Science, January 2011.

[32]. Stefan Seufert and Darragh O’Brien, “Machine Learning for Automatic Defence against

Distributed Denial of Service Attacks”, ICC, 2007.

[33]. Bhatia, Sajal, Schmidt, Desmond, & Mohay, George M, “Ensemble based DDoS detection

and mitigation model”, Fifth International Conference on Security of Information and

Networks, pp.79-86, 2012.

https://lasr.cs.ucla.edu/ddos/traces/

 67

[34]. Yang Xu and Yong Liu, “DDoS Attack Detection under SDN Context”, IEEE INFOCOM,

2016.

[35]. pythonprogramming.net, “Python for Machine Learning”, [Online]. Available:

https://pythonprogramming.net/machine-learning-tutorial-python-introduction. [Accessed

June 2017].

[36]. scikit-learn.org, “Sklearn”, [Online]. Available: https://scikit-learn.org/. [Accessed June

2017].

[37]. Przemysław Berezinski, Bartosz Jasiul, and Marcin Szpyrka, “An Entropy-Based Network

Anomaly Detection Method”, Entropy, 2015.

[38]. H. Kim and N. Feamster, “Improving network management with software-defined

networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119, February 2013.

[39]. www.cs.iit.edu, “Decision tree classification”, [Online]. Available: http://www.cs.iit.edu/

[Accessed Aug 2017].

[40]. www.analyticsvidhya.com, “Cross-validation in random forest”, [Online]. Available:

https://www.analyticsvidhya.com/blog/2015/11 [Accessed Aug 2017].

[41]. Jorge Proenca, Tiago Cruz, Edmundo Monterio and Paul Simoes, “How to use Software

Define Networking to improve Security - a Survey”, ECCWS2015-Proceedings of the 14th

European Conference on Cyber Warfare and Security, 2015.

[42]. Rodrigo Braga, Edjard Mota, and Alexandre Passito, “Lightweight DDoS Flooding Attack

Detection Using NOX/OpenFlow”, 35th Annual IEEE Conference on Local Computer

Networks, 2010.

[43]. Juels, A. and J. G. Brainard, Client Puzzles, “A Cryptographic countermeasure against

connection depletion attacks”, NDSS, 1999.

[44]. Chaitanya Buragohain, Nabajyoti Medhi, “FlowTrApp: An SDN Based Architecture for

DDoS Attack Detection and Mitigation in Data Centers”, 3rd International Conference on

Signal Processing and Integrated Networks, 2016.

https://pythonprogramming.net/machine-learning-tutorial-python-introduction
https://scikit-learn.org/
http://www.cs.iit.edu/
https://www.analyticsvidhya.com/blog/2015/11

 68

[45]. Sung, M. and J. Xu, “Ip traceback-based intelligent packet filtering: A novel technique for

defending against internet DDoS attacks”, ICNP ’02. IEEE Computer Society, Washington,

DC, USA, 2002.

[46]. www.rapidminer.com , “k-fold cross-validation”, [Online]. Available: https://

rapidminer.com. [Accessed August 2016].

http://www.rapidminer.com/

