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Abstract

The behavior of a water-based nanofluid containing motile gyrotactic micro-organisms
passing an isothermal nonlinear stretching sheet in the presence of a non-uniform magnetic
field is studied numerically. The governing partial differential equations including continuity,
momentums, energy, concentration of the nanoparticles, and density of motile micro-organ-
isms are converted into a system of the ordinary differential equations via a set of similarity
transformations. New set of equations are discretized using the finite difference method and
have been linearized by employing the Newton'’s linearization technique. The tri-diagonal
system of algebraic equations from discretization is solved using the well-known Thomas
algorithm. The numerical results for profiles of velocity, temperature, nanoparticles concen-
tration and density of motile micro-organisms as well as the local skin friction coefficient Cg,,
the local Nusselt number Nu,, the local Sherwood number Sh, and the local density number
of the motile microorganism Nn, are expressed graphically and described in detail. This
investigation shows the density number of the motile micro-organisms enhances with rise of
M, Gr/Re?, Pe and Q but it decreases with augment of Rb and n. Also, Sherwood number
augments with an increase of M and Gr/Re?, while decreases with n, Rb, Nb and Nr. To
show the validity of the current results, a comparison between the present results and the
existing literature has been carried out.
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Introduction

The problem of boundary layer flow passing a stretching sheet has been an important and
interesting challenge for research studies due to its numerous applications in industry and
engineering. Some of these applications consist of cooling of papers, glass-fiber production,
plastic sheets and polymer extrusion, hot rolling wire drawing, metal spinning, glass blowing,
stretching of rubber sheets and plastics, and in textile industry. In these processes, the rate of
stretching and cooling has significant effects on the quality and final product formation.

The investigation of the boundary layer flow past a flat plate with constant speed began first
by Sakiadis [1]. After Sakiadis, a large number of research papers addressed the boundary layer
flow passing the stretching surfaces considering different parameters such as the blowing or
suction [2-3], porosity [4-5] and magnetic field [6-7] and various types of fluids such as New-
tonian [8], and polar fluids [9], non-Newtonian [7, 10-11]. To improve the thermal properties,
researchers presented nanofluids (liquid containing nanometer-sized particles). They have
widely used in engineering (such as cooling), biomedical (such as cancer therapy) and process
industries. Fluid flow and heat transfer in a formed boundary layer flow due to the nanofluids
movement on a stretching sheet includes the wide range of recent researches. A very important
issue in the boundary layer flow is the heat transfer characteristics; because, as mentioned, the
quality of the final products depends on the rate of heat transfer. Therefore, nanofluids due to
the high thermal conductivity of nanoparticles can be used to increase the heat transfer rate
[11-12]. Kuznetsov and Nield [13] analytically examined the natural convection of a nanofluid
passing a vertical sheet with consideration of the Brownian motion and the thermophoresis
effects. Noghrehabadadi et al. [14] carried out the flow and heat transfer of nanofluids over
stretching sheet considering partial slip and thermal convective boundary conditions. Zaraki
et al. [15] numerically investigated the effects of the shape, size and type of nanoparticles, type
of base fluid and working temperature on the flow and heat transfer characteristics of a natural
convection boundary layer. Makinde and Aziz [16] conducted a numerical study of nanofluid
boundary layer flow over a stretching sheet with the convective boundary condition at the sur-
face. Vajravelu et al. [17] performed a numerical study of the convective heat transfer of Ag-
water and Cu-water nanofluids flow over a non-isothermal stretching sheet. Khan et al. [18] stud-
ied the flow and heat transport of ferrofluid over a flat surface subjected to uniform heat flux and
slip velocity. Problem of the natural convection of a nanofluid over vertical plate embedded in
porous media is investigated by Noghrehabadadi et al. [19]. Rana and Bhargava [20] carried out
the numerical study of the flow and heat transfer of a nanofluid over a nonlinearly stretching
sheet by using two different methods (finite difference and finite element). Some other related
studies have investigated different aspects of nanofluids passing a stretching sheet [21-28].

Recently, nanofluid flows that respond to the imposition of magnetic fields have attracted
much attention. Chiam [6] examined magneto-hydrodynamics (MHD) flow over a surface
stretching with a power-law velocity using the numerical shooting method. Helmy [7] perused
the problem of MHD boundary layer flow for a power law fluid. Very recently, the behavior of
boundary layer flow due to the nanofluids movement on a stretching sheet in the presence of
magnetic field is evaluated in many articles.

The effects of uniform magnetic field, radiative flux and slip boundary condition are studied
on the characteristics of heat transfer and flow of a nanofluid over a permeable stretching sheet
by Ibrahim and Shankar [29]. Ferdows et al. [30] carried out an analysis of a nanofluid flow
passing a non-linear stretching flat plate in the presence of radiative heat flux and a non-uni-
form magnetic field. Khan et al. [31] analyzed unsteady boundary layer flow of a nanofluid
over a horizontal stretching sheet and reported the effects of thermal radiation and magnetic
field on the heat transfer rate (Nusselt number), mass transfer rate (Sherwood number) and
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shear stress. Mabood et al. [32] have considered MHD boundary layer flow and heat transfer of
a nanofluid over a nonlinearly stretching sheet with viscous dissipation effects. Some of the
related articles listed in [33-40].

Bioconvection is defined as the macroscopic fluid motion because of the density gradient
resulting from collective swimming of motile micro-organisms [41-45]. The self-impelled
motile micro-organisms enhance the base fluid density in a particular direction in such a way
that they cause the bioconvection flow. Based on cause of impellent, the motile micro-organ-
isms can be classified into different types of micro-organisms including oxytactic or chemo-
taxis, negative gravitaxis and gyrotactic micro-organisms. The stimulators of these micro-
organisms are Oxygen concentration gradient, negative gravity and the displacement between
the center of buoyancy and mass, respectively [41]. Unlike the motile micro-organisms, the
nanoparticles are not self-impelled and their motion is because of the Brownian motion and
thermophoresis effect in nanofluid. The history of studies on the subject of nanofluid biocon-
vection is not so long. Kuznetsov firstly discussed it in 2010 [46]. At the beginning, he investi-
gated the onset of bioconvection in a horizontal layer filled with a fluid containing both
gyrotactic micro-organisms and nanoparticles. After that, he examined the effect of oxytactic
micro-organisms on the characteristics of nanofluid flow [47]. Free convection boundary layer
regime passing a horizontal flat sheet of a water-based nanofluid containing micro-organisms
is studied by Aziz and et al. [48]. Khan and et al. [49] studied the effect of Navier slip and mag-
netic field on the heat and mass transfer of a nanofluid with presence of gyrotactic micro-
organisms over a vertical surface. In another work, Khan et al. [50] conducted a discussion on
the natural convection of non-Newtonian nanofluid containing of gyrotactic micro-organisms
along a moveless plate in a porous media. Khan and Makinde [51] investigated the MHD
boundary layer flow of a water-based nanofluid containing motile gyrotactic micro-organisms
along a linearly stretching sheet. The effect of a uniform magnetic field on nanofluid biocon-
vection passing a permeable vertical sheet is proposed by Mutuku and Makinde [52].

This paper studies the effects of the presence of a non-uniform magnetic field on behavior
of water suspension containing nanoparticles and motile gyrotactic micro-organisms passing a
nonlinear stretching sheet. In the present study, we have entered a new concept in the problem
of boundary layer flow passing a stretching sheet. We have investigated the transport phenom-
enon in a nanofluid containing self-impelled motile gyrotactic micro-organisms in the pres-
ence of non-uniform magnetic field and convective cooling process. The Brownian motion,
thermophoresis and convective cooling phenomenon are also analyzed. The aim of the current
paper is to expand the studies of Rana and Bhargava [20] and Mabood et al. [32] by considering
the simultaneous effects of micro-organisms and non-uniform magneto-hydrodynamics
boundary layer flow with viscous dissipation. Numerical solutions are presented and a compar-
ison with the published data (Mabood et al. [32]) is also incorporated in the article to prove the
validity. New set of equations are discretized using the finite difference method and have been
linearized by employing the Newton’s linearization technique. Then, Numerical results for var-
ious physical parameters are expressed graphically and described in detail.

Problem Definition and Mathematical Modeling

We consider a two dimensional, steady, laminar, incompressible viscous boundary layer flow
of an electrically conducting nanofluid containing gyrotactic micro-organisms passing a non-
linear stretching vertical flat plate. Water is considered as the base fluid because the micro-
organisms only survive in water in natural conditions. Physical model of problem and Carte-
sian coordinate are shown in Fig 1. During the convection flow, the following assumptions
have been considered:
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Fig 1. Flow configuration and coordinate system.

doi:10.1371/journal.pone.0157598.g001

o The sheet is stretching with velocity u,,(x) = ax”. a is a positive constant and # is called the

nonlinear stretching parameter.

o The flow field is under influence of a variable magnetic field B(x) normal to the stretching
sheet and in direction y to form B(x) = By x™12 (6,30, 32].

o Joule heating is ignored and it is assumed that the induced magnetic field is very small com-

pared to external magnetic field.

o The temperature (T,,), nanoparticle concentration (C,,) and density of motile microorganism
(N,,) at the stretching surface are assumed constant and are considered to be greater than the
ambient temperature (T,,), nanoparticle concentration (C.) and density of motile microor-
ganism (N,,), respectively.

o The nanoparticles suspension is stable and dilute such that there is no agglomeration and
accumulation of nanoparticles. It should be noted that increasing concentration of nanopar-
ticles leads to the instability.

« It is supposed that the nanoparticles have no effect on the direction and velocity of micro-
organism’s swimming.

« Boussinesq approximation is used to determine the variation of density in the buoyancy
term.

« Radiative heat transfer is negligible and viscous dissipation is included.

o Itis assumed that both the base fluid and nanoparticles locally are in thermal equilibrium

state.
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o The motile micro-organisms, nanoparticles and base fluid have similar velocity.

Considering the above mentioned assumptions, the governing equations for mass, momen-
tum, energy, nanoparticles concentration and density of gyrotactic micro-organisms can be
expressed in the following form [49]:

Continuity,

Ou  Ov

oy =0 (1)

Momentums,

Ou ~ Ou\  0Op Pu  u
Pf<“a+"a—y> = —a+uf(@+a—}}2> +pgB(1-C )T ~T,)

(2)
—g(p, = P)(C—C.) —gv(p, — p)(N —N,) — oBju
op
oy~ 0 (3)
Energy,
ug—&-vg—a ﬂ-k& 41 D@_Cg_’_& EQ_F QQ +H_0€ @2
Ox Oy - T\ ox? dy* Poyoy T, Ox dy k \oy
caBXu?
& (4)

Nanoparticles concentration,

ua_cﬂg_a 8%4_@ D, (O°T 0°T
Ox dy  \0xx Oy T,

B +8_y2 (5)

Density of gyrotactic microorganism,

ON ON bW, 0 ocC 0 ocC O’N O°N O’N

a4 I (N +=(NZE)| =D, (== +=—+2 6
e oy (Vo) o (V)| =P (e e 2ay) ©

The pressure terms can be eliminated from the momentum equations by cross-differentia-

tion. Integrating the resulting equation with respect to y and using boundary condition at infin-
ity [53], the simplified momentum equation can be written as:

Oou  Ou Ou  0%u
(et v5e) =G+ 5] + g1 = COT =) glp, ~ p)(C - C.)

—8Y(p,, — p))(N = N_) — oBju

(7)

The defined boundary conditions for the velocity, temperature, nanoparticles concentration
and density of motile micro-organisms fields are as follows:

u=ax", v=0, T=T,, ¢=¢, N=N, at x=0

u—0, v—0, T—>T_, N—N_ at x— o0 (8)
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In the above equations, u and v are the velocity components along x and y axes, respectively,
T is the temperature, C is the nanoparticle concentration, N is the density of motile micro-
organisms, p is the pressure, ps pp, p,, are the density of nanofluid, nanoparticles and micro-
organisms, respectively, Dg, D, D,, are the Brownian diffusion coefficient, thermophoresis dif-
fusion coefficient and diffusivity of micro-organisms, respectively, k, o are the thermal and
electrical conductivity of the fluid, respectively, a = k/(pC,) is the thermal diffusivity, y is the
average volume of a microorganism, b is the chemotaxis constant, W, is maximum cell swim-
ming speed and bW, is assumed to be constant, 7 = (pC),/(pC)sis the ratio of the effective heat
capacitance of the nanoparticle to that of the base fluid.

Introducing the following similarity transformations [20, 32, 52]:

n= ((;”)yﬁ/ u = ax'f (), =(<2“>)<>/ (f(n)+:1nf’(n))7

Cror ©)

7TW_TZX«7

_C-C,
7Cw_coo’

_N-N_

0(n) o(n) x(m)

The partial differential equations are converted into the non-linear, coupled and ordinary
differential equation as following:

F" = G~ M () ()0 — Nrgp — Rog) = 0 (10)
%e” +0'(f + Nbg') + Nt(0') + Ec[(f )’ + M(f)’] = 0 (11)

¢+ Lefo/ + ()0 =0 (12)

% +Lbfy — Pelo (Q+x) +¢x] =0 (13)

Table 1. Comparison of Nusselt and Sherwood numbers between the results of present study and reported by Khan and Pop [24] at Le = Pr=10,
n=1,M=Ec=Nr=Rb=Pe=Lb=0=0and different values for Nt and Nb.

Nb Nt

0.1 0.1
0.2
0.3
0.4
0.5
0.3 0.1
0.2
0.3
0.4
0.5
0.5 0.1
0.2
0.3
0.4
0.5

doi:10.1371/journal.pone.0157598.t001

-6'(0) -4'(0)

Present code Khan and Pop [24] Present code Khan and Pop [24]
0.952493 0.9524 2.129151 2.1294
0.693282 0.6932 2.273639 2.2740
0.520173 0.5201 2.528152 2.5286
0.402662 0.4026 2.794607 2.7952
0.321125 0.3211 3.034519 3.0351
0.252242 0.2522 2.409896 2.4100
0.181664 0.1816 2.514845 2.5150
0.135567 0.1355 2.608648 2.6088
0.104652 0.1046 2.687421 2.6876
0.083334 0.0833 2.751676 2.7519
0.054284 0.0543 2.383477 2.3836
0.039063 0.0390 2.446704 2.4468
0.029153 0.0291 2.498260 2.4984
0.022513 0.0225 2.539748 2.5399
0.017933 0.0179 2.572979 2.5731
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Fig 2. Effects of different parameters on the skin friction coefficient (-f'(0)), Nusselt number (-8'(0)) and Sherwood number (-¢'(0)) (a)
Present code and (b). Mabood et al. [32].

doi:10.1371/journal.pone.0157598.9002
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Table 2. Comparison of the density number of the motile micro-organisms between the results of present study and reported by Akbar and Khan

[54]atn=1,M=Nb=1,Ec=0,Nr=Nt=Gr=0.5,Lb =Le =2, Rb = 0.3 and different values for Q and Pe.

0

0.1
0.2
0.4
0.6
0.8
1.0

Pe =0.3

Akbar and Khan [54] Present code
2.772 2.819

2.814 2.861

2.894 2.945

2.978 3.029

3.059 3.114

3.143 3.197

doi:10.1371/journal.pone.0157598.t002

Pe =0.5

Akbar and Khan [54]

3.143
3.215
3.353
3.494
3.636
3.773

Present code

3.203
3.275
3.418
3.561
3.704
3.847

Pe =0.7

Akbar and Khan [54]

3.525
3.624
3.823
4.025
4.232
4.434

Present code

3.598
3.699
3.903
4.107
4.311
4.515

1.2

Ec=Nb=Nt=Nr=Rb=Q=0.1

Gr/Re’=Le=5, Lb=Pe=1

Fig 3. Effects of M and n on the dimensionless velocity.

doi:10.1371/journal.pone.0157598.g003
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Where,
No=DlCe=C) DG C) 0B Gr (g1 CO(T, = T)X/Y)
o o ap(n+1)" Re? u2x? V2
- C,—C, — N, —N_
Ne— P PG =G o VP m )W NG v v v (14)
pB(I—C.)(T,—T.) pB(L—C.)(T, —T.) 2 D, D,
2
Ec = u :%7 Q= Noe

—_w __ Pe "
G (T, - T,) D, (N, = N,)

The boundary conditions of equations in similarity space can be written as

f0)=0, f(0)=1, 6(0)=1, ¢(0)=1, x(0)=1, f(oc)=0, 6(c0) =0, ¢(0)
=0, x(c0)=0 (15)

The prims indicate the derivative with respect similarity variable 7. In Eqs (10-14), M refers
to magnetic number, Gr/Ré? is local Richardson number, Nr is the buoyancy ratio parameter,

Nb=Nt=Nr=Rb=Q=0.1
n=2, M=2.5, Le=5, Lb=Pe=1

Gr/Re’=0.001, 1, 5,
10, 15, 20 (Ec=0.1)
Ec=0.2, 0.4, 0.6,

0.7 (Gr/Re’=5)

S

I_I;ILI |

3.5 4

Fig 4. Effects of Gr/Re? and Ec on the dimensionless velocity.

doi:10.1371/journal.pone.0157598.9004
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fm

Rb is the bioconvection Rayleigh number, Pr is Prandtl number, Nb is the Brownian motion
parameter and Nt is the thermophoresis parameter, Ec is local Eckert number, Le and Lb are
the traditional Lewis number and the bioconvection Lewis number, respectively, Pe is the bio-
convection Peclet number and Q is the micro-organisms concentration difference parameter.
It is necessary to mention that Eqs (10) and (11) are locally similar because the dimensional
parameters of Richardson number and Eckert number are local similarity parameters. On the
other hand, existence of Ec in energy equation makes this equation be the local similarity for all
values of n, while the momentum equation reduces to a full similarity equation for n = 1/2.

The shear stress, the local heat flux, the local mass flux and the motile micro-organisms flux
on the surface are 7., gy, ¢, and g,,, respectively and can be expressed as

8u> <8T> <0C) (8N>
‘Cw:H_ b w:_ A ? m:_D O ’ n:_Dm_ 16
<8y y=0 q ay y=0 q ’ ay y=0 q ay y=0 ( )

Ec=Nb=Nt=Q=0.1, Pe=Lb=1
Gr/Re’= Le=5, n=0, M=2.5

Nr=0.2, 0.4, 0.6 (Rb=0.05)
————————— Rb=0.1, 0.3, 0.5 (Nr=0.1)

p——— |
~ e il | | |
Fig 5. Effects of Nr and Rb on the dimensionless velocity.
doi:10.1371/journal.pone.0157598.9005
PLOS ONE | DOI:10.1371/journal.pone.0157598 June 20, 2016 10/32



el e
@ : PLOS ‘ ONE MHD Boundary Layer Flow Analyze of a Nanofluid Containing Micro-Organisms Passing a Stretching Sheet

In the present study, the important parameters of the skin friction coefficient Cg, the local
Nusselt number Nu,, the local Sherwood number Sh, and the local density number of the
motile micro-organisms N, are defined as

Xq
—~ Ni Nn =——" 17
puz N T (T, - TL) , N (17)

* T D,C,-C.) " D, (N-N_)

By combining the Eq (14) and Eq (15), we obtain

n+1.

1, 1
5 f(O), R€;1/2Nux:— n-+ n-+ /

5—9(0), Re*Sh, = — 5 9'(0), Re;'/Nn,

1/2 _
Re/"C, =

= /"0 (19)

Ec=Nb=Nt=Nr=Rb=0=0.1
0.8} Gr/Re’=Lb=Pe=1, Le=10

0.6

Om)

0.4

0.2

Fig 6. Effects of M and n on the dimensionless temperature.

doi:10.1371/journal.pone.0157598.9006
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0.8

0.6

0(n)

0.4

0.2

Ec=Nb=Nt=Nr=Rb=Q=0.1
Lb=Pe=1, Le=5, n=2, M=2.5

Gr/Re’=0.001, 1, 5, 10, 20

Fig 7. Effects of Gr/Re” on the dimensionless temperature.
doi:10.1371/journal.pone.0157598.g007

Numerical Solution Technique

The system of non-linear, coupled and ordinary differential Eqs (10-13) subjected to the
boundary conditions (15) has been solved using the iterative finite difference method. Before
discretizing the ordinary Eqs (10-13), first, Eq (10) is simplified to a set of equation as follows;

f=z
(19— a), (19 — b)
zZ +fz —z° 4+ Gr(0 — Nrg — Rby) =0
As the equations show, the momentum equation is coupled with heat and nanoparticles
concentration equations by the buoyancy term in the momentum equation. So, it is necessary

to solve these equations in the coupled form. First, third order momentum equation is simpli-
fied into two (one and two order) equations, because the coefficient matrix must be three

PLOS ONE | DOI:10.1371/journal.pone.0157598 June 20, 2016 12/32
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1.6

1.2

6m)

0.8

0.4

Nb=Nt=Nr=Rb=Q=0.1,Lb=Pe=1,
Gr/Re’=Le=5, n=2, M=2.5

Ec=0.1, 0.3, 0.5, 0.6, 0.7

NN |

] ] ]

.
0.5 1 1.5 2 2.5

Fig 8. Effects of Ec and Gr/Re” on the dimensionless temperature.

doi:10.1371/journal.pone.0157598.g008

dimensional at the numerical method used to solve the algebraic equations. Then, these two
equations are simultaneously solved with the other governing equations. Eq (19-a) is discre-
tized using backward difference approximation because the exact value of fis given in the first
node. Eqs (11-13) and (19-b) are discretized using the central difference approximation and
the nonlinear terms linearized by Newton’s method. Thus, the differential Eqs (11-13) and
(19-b) are converted into a tri-diagonal system of algebraic equations that can be solved by the
well-known Thomas algorithm. The step size and error tolerance have been considered 10~*
and 107%, respectively. Results show that the choice of . = 12 satisfies the perfect effect of
boundary layers. To ensure the accuracy and validity of the present solution, we have compared
the obtained results from our program with the ones published in the literature for the skin
friction coefficient, Nusselt and Sherwood numbers in Table 1 (Khan and Pop [24]), Fig 2
(Mabood et al. [32]). In another validation, results obtained by this study and those reported
by Akbar and Khan [54] are compared. Results of this comparison are reflected in Table 2. As

PLOS ONE | DOI:10.1371/journal.pone.0157598 June 20, 2016 13/32



el e
@ ' PLOS ’ ONE MHD Boundary Layer Flow Analyze of a Nanofluid Containing Micro-Organisms Passing a Stretching Sheet

1.2

Ec=Nr=0.3, Gr/Re’=Q=Rb=0.1
Lb=Pe=1, Le=5, n=2, M=2.5
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Fig 9. Effects of Nb and Nt on the dimensionless temperature.

doi:10.1371/journal.pone.0157598.g009

it is noticed, there is excellent agreement between the results of the present study and those
published in the literature [24, 32, 54], so we are confident to use the present code.

Results and Discussion
Velocity Profiles

Figs 3-5 show the effects of various parameters on the dimensionless velocity of nanofluid flow.
The set of these figures tells us that based on the values of dimensionless variables, the maximum
dimensionless velocity occurs at the sheet surface or at various distances from it. The velocity
overshoot in the adjacency of the sheet is the result of the buoyancy force. The presence of body
force induced by magnetic field, known as Lorentz force, leads to the deceleration of momentum
and accordingly, causes a decrease in the velocity overshoot and momentum boundary layer
thickness as represented in Fig 3. As shown in Fig 4, the velocity increases with enhancing Eckert
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number Ec. This result can be justified by this explanation that heating due to viscous dissipation
of the fluid increases the resulting increases in Ec. On the other hand, we know that heating due
to viscous dissipation reduces the viscosity of the nanofluid which results in increasing locomo-
tion. According to Eq (8), it can be said that the effect of buoyancy force increases and decreases
with an increasing in Richardson number Gr/Re” and nonlinear stretching parameter n, respec-
tively, thus it is clear that the velocity increases or overshoots in the adjacency of the sheet as Gr/
Ré increases and n decreases as shown in Figs 3 and 4. The implication of increasing Rb, is that
the power of convection caused by bioconvection is enhanced against the convection of buoyancy
force. Thus, it can be stated that the flow velocity decreases with increasing in Rb as displayed in
Fig 5. Also, from Fig 5, it can be seen that the dimensionless velocity decreases with increasing Nr
due to increase in the negative buoyancy created by the presence of nanoparticles.
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Fig 11. Effects of M and n on the nanoparticles concentration.

doi:10.1371/journal.pone.0157598.g011

Temperature Profiles

The variation of the dimensionless temperature within the thermal boundary layer with ther-
mophysical parameters are demonstrated in Figs 6-10. The dimensionless temperature
increases due to a decrease in the dimensionless velocity with increasing magnetic field M and
the nonlinear stretching parameter # As shown in Fig 6, it can be seen that the effect of mag-
netic parameter M on the thermal boundary layer thickness is much more pronounced than
the nonlinear stretching parameter #. Compared to the magnetic field, there are the revers con-
ditions for Richardson number Gr/Re” as illustrated in Fig 7. As shown in Figs 8 and 9, both
the dimensionless temperature and thermal boundary layer thickness increase with the
increase of thermophoresis parameter Nt, Brownian motion parameter Nb and Eckert number
Ec. The additional heating that is created by the interaction of nanoparticles and the fluid due
to the Brownian motion, thermophoresis effect and viscous dissipation increases the tempera-
ture. Consequently, the thermal boundary layer thickness becomes thicker for the values of
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higher Nb, Nt and Ec. Also, it can be expressed that due to the additional heating the dimen-
sionless temperature overshoots in the vicinity of the stretching sheet. Fig 10 demonstrates that
bioconvection Rayleigh number Rb and buoyancy ratio parameter Nr slightly enhance the
dimensionless temperature of nanofluid.

Nanoparticles Concentration Profiles

Figs 11-14 display the influence of the different parameters on the nanoparticles concentration.
As depicted in Figs 11 and 12, the nanoparticles concentration, within the concentration
boundary layer, increases and decreases with an increase of nonlinear stretching parameter n
and Richardson number Gr/Re’, respectively. This is due to the fact that the dimensionless
velocity decreases and increases as growing of n and Gr/Re?, respectively. Also, it is important
to note that the nanoparticles concentration decreases near the flat plate and increases away
from it with an increase in magnetic parameter M. Thus, it is clear that the momentum bound-
ary layer thickness becomes thicker with n and M and becomes thinner with Gr/Re”.

Gr/Re’=0.001, 1, 5, 10, 20, 30 (Le=5)
Le=3, 5,9, 15, 30 (Gr/Re’=3)

Ec=Nb=Nt=Nr=Rb=Q=0.1
Lb=Pe=1, n=2, M=2.5

Fig 12. Effects of Gr/Re? and Le on the nanoparticles concentration.

doi:10.1371/journal.pone.0157598.9012
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Both the nanoparticles concentration and boundary layer thickness significantly decreases
with increasing Lewis number Le as depicted in Fig 12. This is due to the fact that the convec-
tion of nanoparticles increases as Lewis number Le increases. From Fig 13, it is can be seen that
both the nanoparticles concentration and boundary layer thickness decreases with increasing
Brownian motion parameter Nb. Fig 14 shows that The nanoparticles concentration increases
in the vicinity of stretching sheet and decreases far from it as thermophoresis parameter Nt
increases. So, it can be concluded that the nanoparticles boundary layer thickness becomes
thicker with Nt.

Density of Motile Micro-Organisms Profiles

Figs 15-18 depict the variation of density of gyrotactic micro-organisms with coordinate 7 for
different thermophysical parameters. Like the nanoparticles concentration, the presence of the
magnetic field causes a decrease of the density of motile micro-organisms near the stretching
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Fig 14. Effects of Nt on the nanoparticles concentration.
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sheet whereas increases the density motile micro-organisms away from it as is shown Fig 15.
As already noted, the dimensionless velocity decreases with the increase of nonlinear stretching
parameter n. Consequently, the boundary layer and density of motile micro-organisms boosts
with an increasing in nonlinear stretching parameter n (see Fig 15). From Fig 16, it is observed
that the density of motile micro-organisms decreases due to an increase in the dimensionless
velocity with increasing Richardson number Gr/Re”. The increasing Richardson number Gr/
Ré also decreases the motile micro-organisms boundary layer thickness and as a result the
motile micro-organisms flux increases with an increase in Richardson number Gr/Re>. As rep-
resented in Fig 17, the density of motile micro-organisms strongly decreases as bioconvection
Lewis number Lb and Peclet number Pe increase. In fact, increasing in bioconvection Lewis
number Lb and Peclet number Pe means the decrease of micro-organisms diffusion, so it is
clear that both the density and boundary layer thickness for motile micro-organisms declines
as growing of Pe and Lb. The reduction of both the density and boundary layer thickness for
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motile micro-organisms with an increase in Eckert number Ec and micro-organisms concen-
tration difference parameter Q is indicated in Fig 18.

The Local Skin Friction Cy,, Local Nusselt Number Nu,, Local Sherwood
Number Sh, and Local Density Number of the Motile Micro-Organisms Nn,

Figs 19 and 20 illustrate the influence of the different thermophysical parameters on the skin
friction coefficient Cy. Our results in Figs 19 and 20 state that the local skin friction coefficient
Cy amplifies with the increase of magnetic parameter M, nonlinear stretching parameter n,
bioconvection Rayleigh number Rb and buoyancy ratio parameter Nr. This is due to the fact
that the resistance of nanofluid containing of motile micro-organisms to flow increases with
the increase of these parameters. Also, the different effects can be seen with the increase of
Richardson number Ri, Peclet number Pe, Brownian motion parameter Nb and micro-organ-
isms concentration difference parameter Q as are shown in Figs 19 and 20.
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doi:10.1371/journal.pone.0157598.g016

The variation of local Nusselt number Nu, with the different pertinent parameters is shown
in Figs 21 and 22. Fig 23 demonstrates that the Nusselt number is decreasing with an increase
in magnetic parameter M, nonlinear stretching sheet n and Lewis number Le and also with a
decrease in Gr/Re”. This is due to the fact that the dimensionless temperature in the thermal
boundary layer increases as magnetic parameter M, nonlinear stretching sheet n and Lewis
number Le grows and Richardson number Gr/Re” declines. As displayed in Fig 22, an increase
in Eckert number Ec, Brownian parameter Nb and thermophoresis parameter Nt causes the
decrease of the heat transfer rate from the stretching sheet. Same as before, the mentioned
parameters enhances the dimensionless temperature in the thermal boundary layer and as a
result the thermal boundary layer thickness enhances with the increase of Eckert number Ec,
Brownian parameter Nb and thermophoresis parameter Nt. Also, Fig 23 shows that the heat
transfer rate at surface increases with bioconvection Lewis number Lb and decreases with
buoyancy ratio parameter Nr and the bioconvection Rayleigh number Rb. This can be
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Fig 17. Effects of Q and Lb on the density of motile microorganisms.
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attributed to the enhancement of dimensionless temperature of nanofluid containing gyrotac-
tic micro-organisms due the increase of negative buoyancy with Nr and Rb.

As was shown in Fig 11, an increase in magnetic parameter M decreases the nanoparticles
near the flat plate and this leads to a decline in the local Sherwood number Sh, as represented
in Fig 24. Due to increase in nonlinear stretching parameter n, the nanoparticles concentration
increases, leading to a decline in the local Sherwood number Sh,. The mass transfer rate of the
sheet or the local Sherwood number Sh, also increases due to a decrease in the concentration of
nanoparticles with increasing Gr/Re” as shown in Fig 24. Finally, Fig 24 indicates that the local
Sherwood number Sh, rises enhances as Lewis number Le rises. This confirmed that the gradi-
ent of nanoparticles concentration profiles boosts with an increase in Lewis number Le as was
introduced in Fig 12.

Fig 25 depicts the variation of the local Nusselt number Nu, on the stretching sheet with the
variation of the thermophoresis parameter Nt, Brownian parameter Nb, the buoyancy ratio
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parameter Nr and the bioconvection Rayleigh number Rb. Our result shows that the rate of
heat transfer increases with an increase of Nb and Nt due to the increase in the gradient of
nanoparticles concentration profiles (see Figs 13 and 14). Also, it can be observed that Sher-
wood number rises with the increase of the buoyancy ratio parameter Nr and the bioconvection
Rayleigh number Rb.

The effect of magnetic parameter M on the density number of the motile micro-organisms
for different n, Rb and Lb is depicted in Fig 26. It can be seen that the density number of the
motile micro-organisms increases with an increase of magnetic parameter M. This is due to the
reason that the magnetic field decreases the density of motile micro-organisms near the
stretching sheet. With increasing of the nonlinear stretching parameter #, the density of motile
micro-organisms augments within the boundary layer, leading to a reduction of the motile
micro-organisms flux at the surface. The density number of the motile micro-organisms also
decreases with increasing the bioconvection Rayleigh number Rb because of a reduction in the
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dimensionless velocity with increasing in the bioconvection Rayleigh number Rb. As biocon-
vection Lewis number Lb increases the density number of motile micro-organisms increase
and this occurs since the convection of motile microorganism enhances with an increase of bio-
convection Lewis number Lb. From Fig 27, an increase in the motile micro-organisms flux is
noted with Eckert number Ec, Richardson number Gr/Re’, Peclet number Pe and the micro-
organisms concentration difference parameter Q. This would be attributed to the fact that the
concentration of motile micro-organisms within the boundary layer for motile micro-organ-
isms decreases as these parameters increase. These were shown in Figs 15-18.

Conclusions

In the present paper, we have examined the boundary layer flow of a water-based nanofluid
containing gyrotactic micro-organisms passing a nonlinear stretching vertical sheet in the pres-
ence of non-uniform magnetic field. The governing partial differential equations for mass,
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momentum, energy, concentration of nanoparticles, and motile micro-organisms density are
converted into a system of the ordinary differential equations via a set of similarity transforma-
tions. These equations are numerically solved using an implicit finite difference method. The
results of the investigation represent the following conclusions:

o The dimensionless temperature increases with the increase of bioconvection Rayleigh
numbers Rb and buoyancy ratio parameter Nr. In contrast, it is seen that the temperature
declines with Richardson number Gr/Re’, magnetic parameter M and nonlinear stretching
parameter n.

« The nanoparticles concentration reduces near the stretching sheet and enhances away from
it with an increase in magnetic parameter M and thermophoresis parameter Nt.

. . . . . 2
o The density of motile micro-organisms decreases as Richardson number Gr/Re” and Eckert
number Ec increase and increases with non-linear stretching parameter #. Like nanoparticles,
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the presence of magnetic field causes that the density of motile micro-organisms decreases in
the vicinity of the sheet and increases far from it.

The local skin fiction Cg, increases with the increase of magnetic parameter M, non-linear
stretching parameter n, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb,
whereas, decreases with Richardson number Gr/Re’, Peclet number Pe, Brownian motion

parameter Nb and micro-organisms concentration difference parameter Q.

Increasing magnetic parameter M, non-linear stretching parameter n, Lewis number Le,
Brownian motion parameter Nb, thermophoresis parameter Nt, bioconvection Rayleigh
number Rb, buoyancy ratio parameter N7 and decreasing Richardson number Gr/Re” and
bioconvection Lewis number Le reduce the rate of heat transfer at the surface.

Sherwood number rises with an increase in magnetic parameter M, Richardson number Gr/
Ré?, Lewis number Le, thermophoresis parameter Nt, however, diminishes with non-linear
stretching n, bioconvection Rayleigh number Rb, Brownian motion parameter Nb and buoy-
ancy ratio parameter Nr.

The density number of the motile micro-organisms augments with magnetic parameter M,
bioconvection Lewis number Le, Richardson number Gr/Re’, Peclet number Pe and Q and
reduces with bioconvection Rayleigh number Rb and non-linear stretching parameter #.
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