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ABSTRACT 

FATIGUE LIFE PREDICTION IN A DOOR HINGE SYSTEM UNDER  

UNI-AXIAL AND MULTI-AXIAL LOADING CONDITIONS 

© Sacheen Bekah, 2004 

Master of Applied Science 

in the Program of 

Mechanical Engineering 

Ryerson University 

This thesis presents the use of Finite Element (FE) based fatigue analysis to 

locate the critical point of crack initiation and predict life in a door hinge system 

that is subjected to both uni-axial and multi-axial loading. The results are 

experimentally validated. The FE model is further used to obtain an optimum 

design per the standard requirement in the ground vehicle industry. The 

accuracy of the results showed that FE based fatigue analysis can be 

successfully employed to reduce costly and time-consuming experiments in the 

preliminary design stage.  Numerical analysis also provides the product design 

engineers with substantial savings, enabling the testing of fewer prototypes. 
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CHAPTER 1 INTRODUCTION 

1.1 Objective 

 The major challenge in today’s ground vehicle industry is to overcome 

the increasing demands of higher performance, lower weight, and longer life of 

components, all this at a reasonable cost and in a short period of time. Fatigue 

failure is a multi-stage process that begins with crack initiation, propagating 

with continued cyclic loading and finally, rupture of the component or 

specimen. It is estimated that fatigue is responsible for 85% to 90% of all 

structural failures [1]. As such, early engineers used many cut-and-try practices 

in their machine designs in an attempt to minimize these failures [2]. This has 

led to the development of experimentally oriented tests and development 

procedures [2]. For many years, structural designers spent a considerable 

amount of time performing experimental testing, which in some occasions 

appeared to be quite expensive. As the engineering profession developed 

further, analytical techniques were introduced to improve the design procedures. 

As the components became more complex, the more difficult it was to apply 

analytical techniques to predict fatigue life. Instead, numerical approaches have 

been developed, which make it possible to effectively analyze complex 

structures and obtain solutions faster. These numerical approaches use both the 

data obtained from multiple experimental testing together with the analytical 

correlations developed. 

 For the effective use of these numerical approaches, knowledge of Finite 

Element Analysis (FEA) is required. In the same progressive manner as fatigue, 
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FEA is now an integral part of structural design. FEA allows design analysts 

and engineers to create virtual models and perform simulations in the 

preliminary design stage. As such, a considerable amount of time and cost is 

saved.  

 The majority of investigations into the fatigue process are concerned 

with locating critical points where cracks might occur in components under 

specific loading conditions. This is followed by the estimation of the total life 

expectancy of that component [1]. The aim of this thesis is to effectively 

combine the methods involved in fatigue and FEA to predict the life in a 60-

degree front door hinge assembly system. Finite Element (FE) is used as a tool 

to create the virtual model of the hinge and perform a static analysis. The 

stresses and strains from the static analysis are then used as input to locate the 

critical point and predict the life expectancy of the hinge under uni-axial and 

multi-axial loadings. The uni-axial and multi-axial fatigue results are then 

validated from experiments conducted at Van-Rob Stampings Inc. Moreover, 

only numerical approaches are used to improve the fatigue life of the hinge. As 

such, the outcome of these results provide the product development specialists 

at Van-Rob Stampings Inc. with tremendous savings in time and cost because of 

a reduction in the number of prototypes to be tested in the preliminary design 

stage. 

1.2 Background on Fatigue 

 Modern engineering structures and components are rarely subjected to 

purely static loading. The majority of structures involve fluctuating or cyclic 
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loads [1]. These fluctuating or cyclic loads induce cyclic stresses in theses 

structures causing failure through fatigue.  

 For centuries, it has been known that a piece of metal can fail under 

repeated loading at a stress level well below the ultimate tensile strength of the 

material. Hence came fatigue, from a French engineer Monsieur Poncelet, who 

related fatigue to its biological counterpart meaning tired [2]. However, the first 

fatigue investigations came from a German engineer, W.A.S. Albert in 1829, 

who conducted repeated loading tests on iron chains [1]. When fatigue failure 

began to develop rapidly in railway axles in the middle of the nineteenth 

century, numerous engineers began to draw their attention to cyclic loading 

effects [1]. As such, attempts were made to correlate these failures to 

experiments conducted in the laboratories. 

 Between 1852 and 1870, the German railway engineer August Wöhler 

successfully conducted fatigue tests on full-scale railway axles and small scale 

bending, torsion and axial cyclically loaded specimens for different materials 

[1-3]. Thereon, he plotted the results of stress amplitude against life cycles to 

failure, which is commonly known today as the Stress-Life (S-N) curve. R.R. 

Moore later followed the same principles as Wöhler and modified the S-N 

diagram. The currently available S-N data are based under Moore’s fatigue tests 

[1-3]. 

 
 By 1900, engineers put more effort into understanding the mechanisms 

of fatigue failure rather than just observing the results [1,2]. As a result, in the 

late 1950s and early 1960s, two new approaches to fatigue life estimation 
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emerged. The first one is known as the Manson-Coffin Local Strain approach or 

Strain-Life (ε-N) approach [1-4]. The ε-N approach attempts to describe and 

predict crack initiation. The second approach is based on Linear Elastic Fracture 

Mechanics (LEFM) and attempts to explain crack growth [1]. All the 

aforementioned approaches reflect structures under uni-axial stress states. 

 More recently, Miller has been working on ways of finding a unified 

theory of metal fatigue by describing failure of components under multi-axial 

loading [1,3]. Hence, a new approach emerged known as the critical plane 

approach [1-8]. The critical plane approach recognizes that fatigue is essentially 

a directional process where failure occurs through the thickness of the 

component instead of the surface [1,2]. Bannantine-Socie and Wang-Brown 

later developed their own theories following the work of Miller [1-3,5-9]. 

Presently, there is no general agreement about how to fully deal with multi-axial 

fatigue failure. The theories developed by Bannantine-Socie and Wang-Brown 

are still unvalidated [1]. 

1.3 Background Information on the Door Hinge 

 The door hinge under investigation is a 60-degree door hinge commonly 

used in trucks. The 60-degree movement of the hinge embodies the range of 

motion from a fully-closed to a fully-opened position. The 60-degree hinge is 

also available in 45 and 90-degree configurations. The three components 

comprising the hinge are a Door-Side (DS) bracket, a Body-Side (BS) bracket 

and a circular cross-sectional pin (see figure 1-1) are stamped together. This 

allows a free rotation of the DS and BS brackets about the pin, hence simulating 
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the open/close door movement. Each bracket consists of two cut-outs to allow 

for fasteners to attach the BS and DS brackets to the body and door of the 

vehicle respectively. 

 

 
 
 

 

Figure 1-1 A 60-Degree Door Hinge 

1.4 Thesis Contributions  

 There are three major contributions in this thesis: 

I. Development of an effective FE model for a door hinge under uni-axial and 

multi-axial loading conditions. 

II. Computational uni-axial and multi-axial fatigue life predicted for the door 

hinge is experimentally validated. 

III. The accuracy of the results shows that there is no need for developing costly, 

time consuming experiments and FE fatigue analysis will suffice. 

BS Bracket 

DS Bracket Circular Pin 

Oval Hole 

Circular Hole 
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1.5 Thesis Outline 

 This thesis is organized as follows. Chapter two provides the theoretical 

approaches on fatigue, outlining the different methods used herein. Chapter 

three focuses on the uni-axial and multi-axial fatigue experiment. In contrast, 

chapters four and five are dedicated to numerical analysis, FEA and Fatigue 

respectively. Moreover, in chapter four, a detailed description of FE modeling 

of the hinge is also portrayed. Chapter six deal with the improvement in the 

fatigue life of the hinge through traditional optimization techniques. Finally, 

chapter seven reports the findings and provides a brief discussion and 

recommendation for this research. 
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CHAPTER 2 FATIGUE, A THEORETICAL 
APPROACH 

2.1 Overview 

 This chapter focuses on both the basic and advanced forms of fatigue 

failure in structures. Although this research is mainly based on fatigue 

pertaining to complex loading conditions, it is important to understand the basic 

and traditional theories involved in fatigue behaviour such as the stress-life and 

strain-life curves. The onset of uni-axial and multi-axial fatigue behaviours and 

their limitations are followed by detailed explanation on the various 

mechanisms that cause them. Further, environmental factors that adversely 

effects fatigue life are also succinctly discussed. 

Before discussing into the different approaches to describe fatigue 

mechanisms, a brief introduction on the two dissimilar domains adopted by the 

uni-axial and multi-axial stress states is provided. The two domains herewith 

mentioned are referred to as high and low cycle fatigue respectively. 

2.2 High Cycle versus Low Cycle Fatigue 

 Throughout years of investigations in fatigue theory, it has been found 

that the fatigue process embraces two distinct domains whereby the cyclic 

stresses and strains follow different paths to failure. In the first domain, the 

stresses and strains for the material under investigation are largely confined to 

the elastic region. As a result, failure will occur after large number of cycles, 

implying long lives [1,4,5,11]. This mechanism is commonly referred as high 



Chapter 2                                                                                      Fatigue, A Theoretical Approach 

 8

cycle fatigue. As duty cycles become more severe and components more 

complicated, another failure mechanism occurs whereby the material endures 

significant plastic straining leading to short lives. This type of behaviour is 

referred to low cycle fatigue. 

 Recent investigations have led to believe that high and low cycle fatigue 

behaviour can be distinguished by observing the monotonic stress-strain curve 

for the particular material under static loading. The fact is that for an applied 

static load, the material will fall in the high cycle region if the magnitude of the 

maximum stress is lower than the tensile elastic limit or yield strength. On the 

other hand, low cycle fatigue is characterized by a maximum stress higher than 

the yield strength. In summary, high cycle fatigue is typically associated with 

lives greater than 100,000 cycles whereas low cycle fatigue involves lives 

between 1,000 to 100,000 cycles [1].  

 These observations are important as they provide a guideline for the 

selection of the appropriate methods in life prediction. The aforementioned 

methods are thoroughly discussed in sections 2.3 through 2.6. 

2.3 Stress-Life Approach     

 It has been recognized, since 1830, that a metal subjected to a repeated 

or fluctuating load will fail at a stress level considerably lower than that 

required to cause fracture on a single application of that load [1,2,4,12]. The 

nominal stress or S-N approach was the first method developed to describe this 

phenomenon. Throughout years, it has been recognized that the S-N method 

works best in the high cycle regime where elastic events dominate plastic ones. 
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Hence, the S-N curve yields conservative results up to the yield point of the 

material where plastic effect is insignificant. The S-N method is inappropriate in 

the low cycle region, where applied strains have significant plastic component. 

 
 
 
 

 
 
 

 
 

Figure 2-1 The R. R. Moore Fatigue Testing Machine1 

 
A German engineer Wöhler was the first to conduct fatigue tests on 

specimens to characterize the material fatigue performance of metals [1,2,4,12]. 

Using a rotating bending test machine, Wöhler performed tests on notched and 

unnotched specimens and plotted stress amplitude versus cycles to failure, 

known today as the S-N diagram. Extensive efforts have been made over the 

years to understand the fatigue behaviour of metals along the lines of Wöhler. 

More recently, Moore conducted rotating bending tests. Using the R.R. Moore 

Fatigue Testing Machine as shown in figure 2-1, fatigue tests were conducted 

whereby a constant moment was applied to hourglass-shaped specimen polished 

to a mirror finish prior to testing [1]. 

  Bearings 

   Test Sample 
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 2.3.1 The Stress-Life Curve 

Figure 2-2 shows a typical S-N curve based on Moore’s test. The fact is 

that for most materials used nowadays, the S-N curves are characterized by 

Moore’s tests. The usual laboratory procedure for determining the S-N curve is 

to test the first specimen at a very high stress, usually about two thirds of its 

material’s static tensile strength, where failure is expected to occur in fairly 

small number of cycles [1,2]. The stress is subsequently reduced until the point 

where no failure occurs, i.e., the endurance or fatigue limit (EL) [1]. It should be 

noted that the curve in figure 2-2 does not have the influence of mean stresses, 

notches, environment and surface finish. These effects will be discussed later.  

 

Figure 2-2 The S-N Curve1 

The basic equation for the S-N curve as portrayed in figure 2-2 is: 

( )bi
fNSRIiS =∆                                         (2.1)                                                    

where, S∆  is the nominal stress range, SRI is the stress range intercept of the 

life line, Nf is the number of cycles to failure, b1 and b2 are the slopes of life 
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lines 1 and 2 respectively and i is 1, 2 for the two slopes respectively. The 

interesting point to note here is when b2 is equal to zero, the corresponding 

material is said to have reached the endurance limit (EL). Materials such as mild 

steel do have the occurrence of an endurance limit of about 106 cycles as 

opposed to nonferrous materials such as aluminum alloys. For this type of 

material, we have a designated life of 107 cycles as the endurance limit [1].  

 The S-N approach is applicable to situations where cyclic loading is 

essentially elastic, meaning that the S-N curve should be used in regions where 

lives greater than 100,000 cycles are expected [1]. This is because the S-N curve 

is essentially flat in the low cycle region, and would yield an inaccurate 

estimation of life. The reason for this apparent flatness is the large plastic strain, 

which results from the high load levels. Low cycle fatigue analysis is best 

treated by strain-based procedures that account for the effects of plasticity 

[1,2,4].  

2.3.2 The Influence of Mean Stress 

Before examining the influence of mean stress on the S-N curve, it is 

important to consider the general types of cyclic stresses that contribute to the 

fatigue process. Most fatigue data collected in the laboratory employed fully 

reversed loading conditions [1,2,4,13,14] as shown in figure 2-3 (a). However 

most service loading conditions employ tensile loading, compressive loading or 

a combination of both. Figure 2-3 (b) and 2-3 (c) show a fully tensile loading 

and a combined tensile-compressive loading respectively.  

Most realistic service situations involve non-zero mean stress [1].  
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(a) 

 
(b) 

 

 
(c) 

Figure 2-3 Typical Fatigue Stress Cycles1 
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Therefore, it is very important to fully characterize the effect mean 

stresses has on the fatigue process so that laboratory data can be efficiently 

employed in determining life calculations. Several empirical relations that 

characterize the effect of mean stress on fatigue life have been developed. Of all 

the proposed relationships, two has been most widely accepted, those of 

Goodman and Gerber [1,2,4,13,14]. 

According to Goodman, the effect of mean stress will reduce the applied 

stress amplitude in a linear way for both tensile and compressive mean stresses 

[1,14]. This procedure can be summarized as follows: 
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where, Sa is the allowable stress amplitude, So is the allowable stress amplitude 

at zero mean stress, Sm is the mean stress and Su is the ultimate tensile stress. 

Gerber, on the other hand hypothesizes that the mean stress will reduce 

the applied stress amplitude in a quadratic way for both tensile and compressive 

state of mean stresses [1,13]. Hence Gerber’s relation can be summarized as: 
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Experience has shown that the actual data falls between the Goodman 

and Gerber’s relationships [1].  Unfortunately, little or no experimental data 

exists to support one approach over the other. It is therefore recommended that 

the approach yielding the most conservative life be selected. 
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2.4 Strain-Life Approach 

 The stress-life approach has been used extensively to investigate the 

premature failure of structures or components subjected to fluctuating loads [1]. 

Traditionally, the magnitude of the stresses was low, hence the life cycles to 

failure greater than 100,000 cycles. This type of behaviour as previously 

mentioned is strictly confined within the elastic region of the material, before 

the yield point. However, as duty cycles have become more severe and the 

components more complicated, another pattern of fatigue behaviour has 

emerged [1]. In this regime, the cyclic stresses are very high, and a significant 

amount of plastic deformation is associated with the component. As a result, the 

component has short lives in the range of 100 to 100,000 cycles. This type of 

behaviour is commonly referred to as low cycle fatigue or strain controlled 

fatigue.  

 Strain controlled fatigue is based on the observation that in critical 

locations such as notches, the material response is strain rather than load 

controlled [1]. This observation comes from the fact that since most structures 

are designed to confine to the elastic regions, critical locations such as notches 

often cause significant amount of plastic deformation to occur locally. Hence, 

the deformation at the root of a notch is considered to be strain controlled.  

The strain-life method assumes that the extent of plastic deformation at 

the root of a notch will be similar to that of a smooth specimen tested under 

strain controlled. Since the extent of plastic deformation is assumed to be 

similar, their lives will also be similar [1,2,4,5]. A strain transducer attached to 
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an hourglass smooth specimen is used to sense and control the appropriate strain 

limits. Thus, both stress and strain can be simultaneously monitored throughout 

the test, such that the deformation response of a material can be completely 

documented from initial cyclic shakedown, through mid-life steady-state 

response, to the formation and growth of a critical fatigue crack [2]. Unlike the 

nominal stress approach, the strain life methodology is characterized by two 

curves, namely the cyclic stress-strain curve and the strain-life curve. 

2.4.1 Cyclic Stress-Strain Curve 

To fully understand the characteristics of a cyclic stress-strain curve, it is 

important to comprehend the behaviour of a material when it is loaded 

monotonically. Tension tests on certain materials provide basic design data such 

as yield strength, ultimate tensile strength and ductility. In fatigue analyses, it 

provides baseline stress-strain curve for evaluating the nature and extent of any 

subsequently cyclically induced changes in deformation resistance (such as 

cyclic hardening of softening) [1,2,16].  

In a tension test, a smooth cylindrical specimen is continually loaded 

with a tensile uni-axial load. The elongation of the specimen is simultaneously 

monitored throughout this process until the specimen fails. Figure 2-4 shows a 

typical monotonic stress-strain curve. The stress in the engineering stress-strain 

curve is calculated by subsequently dividing the applied load by the original 

cross-sectional area of the specimen. However, in reality, a true stress-strain 

curve yields the true behaviour of the material when loaded monotonically. In 

the latter case, the applied load is divided by the instantaneous cross-sectional 
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area. Figure 2-5 shows a true stress-strain curve as compared to its engineering 

counterpart. The empirical correlations that characterize the engineering and 

true stress-strain curves can be found in [1,2,4,16].  

 

Figure 2-4 The Engineering Stress-Strain Curve1 

 

 

Figure 2-5 A Comparison between True and Engineering Stress-Strain Curves1 
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If during the course of a monotonic tension test the material is loaded to 

point B (see fig. 2-6 below) and the load removed, the curve will follow a 

straight line denoted by line BC. The slope of BC is equivalent to the elastic 

modulus represented by OA. Indeed, the calculation of slope BC is the most 

accurate way of measuring the elastic modulus of the material [1].  

 

Figure 2-6 Loading Reversed into Compression1 

Line OC represents the zero stress line, positive stress being tensile 

loading and negative, compressive loading. If the loading process OB is 

reversed at point C, the material will be in compression up to point D. It should 

be noted that point O is equidistant from points B and D both horizontally and 

vertically. At point D, the process OB is repeated, both in magnitude and 

direction. The curve will then follow the trend DB, forming a complete stress-

strain cycle also known as a hysteresis loop (see figure 2-7). The above 

procedure is the first step towards a cyclic stress-strain curve.  

If the material is continuously cycled between fixed strain limits, one of 

the following four events may happen. Depending on the type of material in 

terms of its properties and heat treatment, the material may [1,2,4]: 
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• cyclically soften 

• cyclically harden 

• remain stable 

• cyclically harden and soften depending on strain range (mixed behaviour) 

The onset of cyclic softening and hardening is illustrated in figure 2-8 below 

where two different materials are tested under fixed strain limits. Although 

strain is fixed, the loads vary significantly in that they converge to different 

levels. 

 

Figure 2-7 A Complete Stress-Strain Cycle, a Hysteresis Loop1 

The discrepancies in load levels demonstrate the material’s response to 

the cyclically induced strain, thus causing the softening or hardening behaviour. 

It is apparent from figure 2-8 that the maximum stress increases with number of 

imposed cycles in the case of softening whereby the stress decreases during the 
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course of hardening [1,2,4]. In both processes, the stresses converge to a certain 

limit and remain stable until the emergence of a fatigue crack. The hardening 

and softening behaviour of materials can be mathematically expressed in terms 

of the ratio of ultimate tensile strength and 0.2% proof strength as follows [1]: 

 4.1
2.0

>
S
Su                                                (2.4) 

  2.1
2.0

<
S
Su                                                (2.5) 

For ratios greater than 1.4, the material cyclically hardens whereas a 

ratio less than 1.2 demonstrate a softening behaviour. Within the range of 1.2 to 

1.4, the material can cyclically soften, harden or exhibit a mixed behaviour [1]. 

 
Cyclic Hardening 

 
 
 
 
 
 

 
 
 

 
Control Between Fixed Strain 

Limits 

 
 

Cyclic Softening 

Figure 2-8 Cyclic Softening and Hardening under Strain Control1 

 After a relatively small number of cycles, no more than about 10% of 

the material’s total life, the hysteresis loop tend to stabilize, meaning the stress 
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amplitude remain constant over the entire life portion [1,2,4]. If the stress strain 

coordinates relating to the tips of the hysteresis loops are plotted, the locus of 

these points generates the cyclic stress-strain curve (see figure 2-9 below) [1]. 

 
 

Figure 2-9 The Cyclic Stress-Strain Curve1 

 Unlike the true stress-strain curve, the cyclic stress-strain curve defines 

the material’s behaviour under cyclic loading conditions. The cyclic stress-

strain curve can be directly compared to its monotonic counterpart to 

quantitatively assess the softening and hardening behaviour of the material. 

When a material cyclically softens, the cyclic yield strength is lower than the 

monotonic yield strength whereas in the case of hardening, the monotonic yield 

strength is higher than that of the cyclic loading [1,2]. Figure 2-10 (a) through 

(d) shows a comparison between cyclic and monotonic behaviour. 

Although the cyclic stress-strain curve is generated experimentally, it 
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can also be mathematically expressed as follows [1,2,4]: 
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where, tε  is the total strain, σ  is the stress amplitude, E is the elastic modulus, 

K1  is the cyclic strength coefficient and n1  is the cyclic strain hardening 

exponent.  

For a known value of E and coefficients K1  and n1 , the cyclic stress-

strain curve can be plotted for any material through the above equation. 

 

 
Cyclic Softening 

 
Cyclic Hardening 

 
Cyclically Stable 

 
Mixed Behavior 

Figure 2-10 Comparison Between Cyclic and Monotonic Stress-Strain Curves1 
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2.4.2 The Strain-Life Curve 

 The strain versus fatigue life behaviour is commonly characterized by 

the strain-life (ε-N) curve. Unlike the S-N curve, the ε-N curve is composed of 

elastic and plastic strain components. If the elastic and plastic strains are plotted 

separately against the number of reversals to failure on a log-log scale, a strain-

life curve can be generated as shown in figure 2-11 [1,2,4]. Therefore, the 

strain-life curve represents the total strain against reversals to failure, total strain 

being the arithmetic sum of elastic and plastic strains [1,2,4]. 

 

Figure 2-11 The Strain-Life Curve1 

Basquin was the first to derive the mathematical relation between the 

elastic strain amplitude and number of reversals to failure [1,4]. Similarly, 

Coffin and Manson established the relation between plastic strain and reversals 

to failure [1,2,4]. Consequently, Morrow concluded that Basquin and Coffin-

Manson elastic and plastic components could be combined to form the total 

strain amplitude and number of reversals to failure. The strain-life curve based 
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on Morrow’s relation can be expressed as follows [1,4,13]: 
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where, the coefficients 1
fσ  and 1

fε  are the fatigue strength and ductility 

coefficients respectively, 2Nf is the number of half cycles to failure, and the 

exponents b and c are the fatigue strength and ductility exponents respectively. 

The first and second expressions on the right hand side of the equation are 

Basquin and Coffin-Manson relations respectively. 

2.4.3 The Influence of Mean Stress 

 Like the S-N curve, the ε-N is equally affected by mean stress. Hence, to 

correlate basic fatigue data obtained by testing laboratory specimens under fully 

reversed loading with realistic service situations, the ε-N should be corrected for 

mean stress. This can be done by shifting the strain-life curve up or down 

depending whether the loading is tensile or compressive as illustrated in figure 

2-12. 

 

Figure 2-12 Effect of Mean Stress on the Strain-Life Curve1 
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The correction for mean stress upon the ε-N was initially proposed by 

Morrow [1,4,15]. By modifying the elastic part of the ε-N curve, a new relation 

for the total strain and number of reversals to failure was developed. Hence, the 

entire ε-N curve can be expressed as [1,15]: 
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where, 0σ  is Morrow’s mean stress.  

On the other hand, Smith-Watson-Topper (SWT) approached the mean 

stress correction criterion by considering the maximum stress present at any 

given cycle [1,4,17]. SWT concluded that the product of the maximum stress 

and the strain amplitude would yield a new ε-N equation including the effect of 

mean stress. The maximum stress for a fully reversed loading can be 

characterized as the following power law relation [1,4,17]: 
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Thus, the modified ε-N equation can be expressed as [1,4,17]: 
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where, maxσ  is the maximum mean stress and aε  is the strain amplitude. 

Based on the approach of SWT, no damage will occur when maxσ  ≤ 0. 

In numerous cases, Morrow and SWT approaches’ would generate 

completely distinct results when applied to a single identical problem. However, 
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the SWT’s approach has proven to yield more conservative results when the 

loading is tensile while Morrow’s method provides more realistic life estimates 

in the case of a compressive loading sequence [1].  

2.5 Uni-axial Fatigue Failure 

A uni-axial fatigue failure occurs when the magnitude of stress or strains 

causing the failure is uni-axial in nature. This means that the stress and strain 

tensors in the component under investigation are aligned in a particular 

direction. This particular characteristic can be fully understood through a 

consideration of the principal stresses xσ , yσ  and zσ  together with shear 

stresses xyτ , yzτ  and xzτ .  Consider a particular component where the x-y axes 

lie in the plane of the component and the z-axis is normal to that plane. A uni-

axial stress state will occur when: 

• The principal and shear stresses normal to the x-y plane are zero [1]. This 

means that zσ = yzτ  = xzτ  = 0. 

• One of the in-plane principal stresses, either xσ  or yσ  is zero. 

The aforementioned methods in sections 2.3 and 2.4 are strictly reserved 

to uni-axial fatigue analysis. This is because the stress and strain life curves are 

created using simple uni-axial testing principles. For the case of the S-N curve, 

the Moore testing machine can be used for either axial, rotating or bending. 

Similarly, the ε-N curves are created by testing smooth, cylindrical, mirror-

polished specimen under simple uni-axial tension.   

However, most realistic fatigue situations involve at least two of either 

axial, bending or torsion. To correlate uni-axial fatigue data with multiple 
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loading situations, such that the S-N and ε-N curves can be usefully employed 

to predict life, a new approach was developed. This new approach is commonly 

known as the equivalent stress-strain approach. The next major section in this 

chapter gives a thorough description of the equivalent stress-strain approach 

pertaining to multiple loading. It is however essential to fully understand the 

extent of multiple loading and its impact on fatigue failure before moving to the 

equivalent stress-strain approach. Situations where the latter fails are also 

briefly discussed. 

2.6 Multi-axial Fatigue Failure 

 This chapter is dedicated to multi-axial concerns. Multi-axial fatigue 

failure occurs due to the occurrence of complex multiple loads causing 

deformation in at least two of axial, bending or torsion. The induced stress state 

varies over time, hence greatly influencing crack initiation and propagation 

[1,2,4]. The basic fatigue techniques discussed thus far are based on uni-axial 

assumptions. However, many practical design situations, including rotating 

shafts, connecting links, automotive and aircraft components and many others 

involve a multi-axial state of cyclic stress [1]. Adopting the S-N and ε-N curves 

in these situations will induce very non-conservative life predictions. Hence, 

Universities and research departments of some major companies notably in the 

power generation, ground vehicle and aerospace stream have been actively 

engaged into research for life predictions under a multi-axial stress state [1].  As 

a result, new theories have been recently developed. These theories embrace 

two domains, namely proportional and non-proportional loadings. It should be 
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noted however, that the onset of non-proportional loading is still in the 

developing stage such that the mathematical correlations available so far have 

not been fully validated. 

 2.6.1 Proportional and Non-proportional Loading 

 Multi-axial loading involves multiple loads. Contrary to a uni-axial 

cyclic loading, during the course of a multi-axial loading, the direction of 

principal stresses varies with time. To fully comprehend this behaviour through 

a consideration of proportional and non-proportional loading, it is important to 

investigate the two parameters causing it, namely bi-axiality ratio, ae, and angle 

of spread, pφ . The bi-axiality ratio and angle of spread indicate whether a 

loading is proportional or non-proportional based on the assessment of the 

principal stresses or strains for a given loading. Proportional and non-

proportional loadings are distinguished by the magnitudes of ae and pφ .  

Similar to the uni-axial assessment, the stresses and strains at the surface 

of the component under investigation are resolved such that the principal and 

shear stresses normal to the surface are zero. From the values of xσ  and yσ , ae 

and pφ  can be calculated as follows [1]: 

1

2

σ
σ

=ea                                                                      (2.11) 

where, 1σ  and 2σ  are ordered with 1σ  being the most positive of xσ  and yσ . 

Similarly, pφ  is the angle between 1σ  and the local x-axis. 

A constant value of ae denotes a proportional loading with 1σ  and 2σ  

being proportional to each other. Likewise, proportional loading occurs when 
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pφ  is invariant with time. It should be noted that a purely uni-axial loading 

results when ae is zero and pφ  constant. A plot of the principal stresses against 

the bi-axiality ratio or angle of spread at every reversal through the loading can 

be equally used to demonstrate proportional and purely uni-axial loadings (see 

Figures 2-13 and 2-14 below). 

 

Figure 2-13 Graphical Display of Proportional Loading 

Through a Consideration of Bi-axiality Ratio18 

 Figure 2-13 shows a plot of stress amplitude against bi-axiality ratio. It 

can be seen from the figure that there is some scatter in the plot. The interesting 

point to note is that the bi-axiality ratio, ae, tends to align vertically close to zero 

[18]. This indicates that the loading is proportional since ae has a constant value 

[18]. The large scatter happens at low values of stress and has no significant 

impact on the life. Only high values of stress should be taken into consideration. 

Likewise, from figure 2-14, the angle of spread, pφ  tend to align itself at about 

45 degrees as indicated by the highest spike in the figure. This indicates the 

predominant angle with the stress tensor constant at 45 degrees. Again the 

smaller spikes should be ignored because they occur at lower stress cycles.  
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The onset of uni-axial loading is portrayed in figure 2-15, from which it can be 

seen that the stresses line up vertically at a certain value. That approximate 

value is significantly close to zero. Hence, the loading is purely uni-axial in this 

case.  

 

Figure 2-14 Graphical Display of Proportional Loading 

Through a Consideration of Angle of Spread18 

 

 

Figure 2-15 Graphical Display of Uni-axial Loading 

Through a Consideration of Bi-axiality Ratio18 

 A multi-axial non-proportional loading condition is illustrated in figures 

2-16 and 2-17 below. The graphical display in figure 2-16 shows that for each 
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value of stress, there is a different value of Bi-axiality ratio. As a result, there is 

a huge scatter in the plot indicating that the principal stress 1σ  and 2σ  are non-

proportional to each other at any time during the course of the loading. The 

other point of interest can be seen from figure 2-17, which shows how the angle 

oscillates between two predominant angles. This indicates that pφ  varies with 

time and that a non-proportional multi-axial condition occurred. 

 

 

Figure 2-16 Graphical Display of Non-proportional Loading 

Through a Consideration of Bi-axiality Ratio18 

There is as yet no general agreement about how to fully deal with non-

proportional loading conditions [1,18]. Recently, theoretical methods have been 

developed, but they have not been completely validated [1,18]. Hence, it is 

strictly recommended to rely on experimental analysis in such cases. The 

aforementioned methods can be classified as the critical plane approach. For the 

current research, the latter was reviewed and briefly explained in section 2.8 

following the equivalent stress-strain approach. 
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Figure 2-17 Graphical Display of Non-proportional Loading 

Through a Consideration of Angle of Spread18 

2.7 Equivalent Stress-Strain Approach 

Failure can be easily predicted if the component under investigation is 

subjected to purely uni-axial loading. Such analysis can be conducted by 

referring to the stress-life or strain-life curves only. However, a purely uni-axial 

state of stress rarely takes place in components rendering the availability of uni-

axial test data useless. As a result, a large number of tests would be required in 

which all of the stress components would have to be varied over an entire range 

of values in all possible combinations in order to deal with the occurrence of 

non uni-axial loading [1].  

Due the high costs of such tests, it was necessary to develop a theoretical 

approach. The approach henceforth developed was the equivalent stress-strain 

approach. As the name suggests, the equivalent stress-strain approach predicts 

life for fatigue under multi-axial loading by calculating an equivalent uni-axial 

stress or strain [1]. As a result, the available S-N and ε-N curves can still be 
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used to predict life. The equivalent stresses or strains used are the maximum 

principal, the maximum shear and Von Mises [1]. The maximum shear (or 

Tresca criterion) and the Von Mises (or Octahedral criterion) stress theories 

have gained the widest acceptance [1]. The empirical correlations behind the 

aforementioned stress theories are tacitly discussed in the next two sub-sections. 

2.7.1 The Von Mises Theory 

 Von Mises predicted that a component would fail under yield when the 

second invariant of the stress deviator, J2, exceeds a critical value. For example 

if the monotonic yield stress is the failure mode, then the component will fail 

when J2 exceeds σy. The stress deviator can be expressed as follows [1]: 
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where, 1σ , 2σ  and 3σ  are the principal stresses in x, y and z direction 

respectively. 

For yielding to occur by tension, 1σ  = 0σ  and 2σ  = 3σ  = 0. Substituting these 

values into the above equation yields [1]: 
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Hence the Von Mises prediction of yield in terms of the principal stress 

becomes [1]: 
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Similar correlations can be developed for different failure modes. These 

correlations will not be further discussed. 

2.7.2 The Tresca Theory 

 On the other hand, the Tresca criterion suggests that a component will 

yield when the maximum shear stress under multi-axial loading reaches the 

value of the shear stress under uni-axial tension test [1]. The maximum shear 

stress can be expressed as follows [1]: 
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When maxτ  exceeds the shear yield stress τ0, failure will occur. It is 

worth noting that the Tresca criterion is much simpler than that proposed by 

Von Mises [1]. However, there is as yet no general agreement which method 

prevails over the other. It is all based on the model geometry, number and type 

of loading and stress distribution.  

2.7.3 Failure of the Equivalent Stress-Strain Approach 

The equivalent stress-strain methods do not take into account the fact 

that fatigue is essentially a directional process, with cracking taking place on 

particular planes. In addition to that, the use of multiple loads creates non-

proportional loading whereby the applied loads have a non-constant bi-axiality 

ratio or phase relationship [1,2]. Therefore, researchers emphasized on this 

particular mechanism of fatigue failure and developed a new methodology 

known as the critical plane approach [1-4,7,8,10]. 
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2.8 Critical Plane Approach 

 The critical plane approach recognizes that fatigue is a directional 

process and considers the accumulation of damage on particular planes [1-

4,7,8,10]. This is in contrast to the equivalent stress-strain approach, which may 

be summing damage that is occurring on different planes [1,2]. Typically, the 

critical plane approach calculates life by summing damage on each plane at 10-

degree intervals (see figure 2-18). The worst plane is then selected as the critical 

plane where crack occurs. 

 

 

Figure 2-18 The Critical Plane Approach1 

 Numerous methods are based on the critical plane approach. As 

previously mentioned, this approach is still in the research phase. Although 

available, these methods were not used and will not be further discussed.  

2.9 Factors Influencing Life 

 The standardized R.R. Moore testing machine and the strain transducer 

used to generate the S-N and the ε-N curves respectively based their tests on 

smooth, cylindrical, mirror-polished specimens under fully reversed loading 
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conditions. Most components are far from being cylindrical and experience 

different loading and environmental conditions. The factors listed below 

influence fatigue life prediction [1]. 

• Component size 

• Type of loading 

• Effect of notches 

• Effect of surface roughness 

• Effect of surface treatment 

 The effect of loading type has previously been discussed, whereby the 

stress and strain-life curves were corrected for mean stress or strains. Moreover, 

the influence of component size can be ignored when finite element is used to 

obtain the stresses and strains. However, the effects of notches, surface 

roughness and treatment cannot be neglected. 

2.9.1 Effect of Notches 

 The stresses and strains in a component can be either nominal or local. If 

the component is a flat plate, there is no difference between nominal and local 

stresses. Many realistic components are far from being flat and include holes 

and fillets. These holes and fillets can be classified as notches. As a result, there 

is significant plastic deformation at the notches, which in turn greatly influence 

fatigue life. In order to translate from elastic strains to elastoplastic strains at the 

notches, the Neuber’s rule are applied [1,2,4,19].  Neuber’s rule asserts that to 

correct elastic to elastoplastic strains, the cyclic stress-strain and strain-life 

curves can be multiplied by a factor Kt that is mathematically expressed in 
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terms of the nominal and local stresses and strains as follows [1,2,4,19]: 
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where, S∆  and e∆  are the nominal stress and strain respectively and σ∆  and 

ε∆  are the local stress and strain range respectively. 

 The nominal stress and strain can be directly measured from the 

component itself. In the case of finite element analysis, the local stress and 

strains can be obtained by using a fine mesh at the notches [22]. 

2.9.2 Effect of Surface Roughness 

 A very high proportion of all fatigue failures nucleate at the surface of 

components implying that surface conditions is an extremely important factor 

influencing life [1].  Scratches, pits and machine marks affect fatigue strength 

by acting as stress raisers [1]. These stress raisers aid in significant plastic 

deformation, reducing the material’s resistance to fatigue. Hence, predicting life 

without considering surface roughness is very non-conservative. It is therefore 

important to measure the arithmetic average surface roughness on a component 

and calculate the surface factor before estimating life.  

2.9.3 Effect of Surface Treatment 

As in the case of surface roughness, surface treatment can have a 

profound influence on fatigue strength [1]. Mechanical, thermal and plating 

processes greatly influence the fatigue strength by altering the residual stress at
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the free surface [1]. Mechanical and thermal processes create a 

compressive layer whereas plating creates a tensile residual stress layer at the 

free surface [1]. To properly estimate the life of a surface treated component, it 

is important to implement the effect of residual stresses on that component. For 

the current research, the specimen was not surface treated. Hence, the 

mechanical, thermal and plating processes will not be further discussed. 

2.10 Application of Finite Element Analysis 

In this chapter, the traditional and advanced fatigue mechanisms were 

discussed. Whether it is the S-N or ε-N approach in the uni-axial case and 

equivalent stress-strain or critical in the multi-axial case, they all require 

stresses and strains. To facilitate this process, finite element analysis (FEA) can 

be used. FEA is certainly a great advantage when the lives of complex 

geometries are being estimated. It also aids in the estimation of local stresses 

and strains. Chapter four is entirely dedicated to FEA, from the modeling aspect 

to static analysis, on the specimen under research. 
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CHAPTER 3 FATIGUE, AN EXPERIMENTAL 
APPROACH  

3.1 Overview 

 This chapter focuses on the experimental aspect of fatigue life 

prediction. Experimental procedures are widely used nowadays for fatigue life 

prediction. However, they have proven to be very costly and time consuming. 

At the preliminary design stage, engineers tend to rely solely on numerical 

simulation rather than experiments. At the final stage of the design, it is 

necessary to conduct experiments to validate the simulation results. In this 

chapter, both uni-axial and multi-axial fatigue experiments are conducted prior 

to numerical simulation. As such, the experimental set-up is copied through 

FEA and fatigue. This exercise is done in this manner to verify whether FEA 

can be applied to fatigue life estimation in the door hinge. This chapter is 

composed of two major different parts, uni-axial and multi-axial experiments 

respectively.  

3.2 Uni-axial Fatigue  

  Uni-axial fatigue tests are usually conducted when full-scale multi-axial 

tests are unavailable or too costly. In the demanding and extremely competitive 

automotive industry, full-scale multi-axial tests are very time consuming. In 

many occasions, the time is very limited for product design engineers to meet 

customer demands and design an efficient reliable product. In such cases, uni-

axial fatigue tests have proven to be very successful. In the current 
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investigation, a uni-axial fatigue test is conducted on the hinge such that the 

experimental results can be used as guidelines to model and simulate a proper 

FE based fatigue analysis. 

3.2.1 Description of Apparatus and Experimental Procedure 

This uni-axial loading experiment is designed to approximate the highest 

severity loading conditions that the hinge is expected to be subjected to in its 

duty life cycle. The uni-axial fatigue test is a hyperextension load against the 

full open stop face of the hinge. The experimental set up is shown in Figure 3-1. 

This set up consists of the door hinge, the lever bar for load transmission, and a 

loading device that is connected to a computer for controlling the magnitude of 

the applied load. 

 

Figure 3-1 Uni-axial Loading Apparatus 

 In the configuration shown in figure 3-1 above, the hinge is in the fully-
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opened position, whereby, the BS bracket rests freely on the DS bracket. A load 

is induced through the computer, where the former is gradually increased from 

zero to a maximum value of 110 Nm. At that maximum value, the load is 

instantly removed and the value drops down to zero. As such, the brackets are in 

full hyperextension. This procedure is repeated at a rate of 25 cycles per minute. 

The component is checked for any evidence of crack initiation at every 5,000 

cycles.  

 3.2.2 Experimental Results 

 Five sets of experiments are conducted. The results are illustrated in 

table 3-1 below. 

 
 

Sample number 

 
 

Number of cycles till 
crack initiation 

 

 
 

Crack length (mm) 

1 287,000 3.5 

2 292,000 5.0 

3 295,000 4.5 

4 280,000 1.5 

5 290,000 1.5 

 
Table 3-1 Experimental Uni-axial Results 

 It is seen that the average number of cycles till crack initiates is 289,000. 

The crack length shown propagates at a very fast rate from a 1 mm length, in the 

order of 10 cycles. As such, the life obtained is taken as the value at a 1 mm 

crack length. Moreover, the critical location for crack initiation is around the 
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edge of the oval hole in the DS bracket (see figure 3-2). 

 

 
Critical Location of Crack 

Figure 3-2 Crack Location Site From Uni-axial Experiment 

3.3 Multi-axial Fatigue  

 This section describes the full-scale multi-axial fatigue tests on the door 

hinge simulating the actual vehicle environment. However, such tests are very 

time consuming. In this case, the door hinge is cycled for an average of 30 days 

until crack initiated.  

3.3.1 Description of Apparatus and Experimental Procedure 

 The multi-axial fatigue set-up consists of the vehicle’s door (figure 3-3). 

The latter is attached to the vehicle’s body by the upper and lower hinges. The 

hinge fixtures, shown in figure 3-4, rigidly attach the doorframe to the vehicle. 

The door is driven by a motor that simulates the open/close door cyclic 

movement. The rate of motion of the motor is controlled by a computer, in 
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which the load is induced. The load is applied at 135 Nm for the first 23 cycles 

and at 320 Nm on the 24th cycle. The 135 Nm load represents the average torque 

required to open the door from a fully-closed to a fully-opened position. On the 

other hand, the 320 Nm torque is a hyperextension load when the door swings 

abruptly to a fully-opened position. The abrupt motion of the door represents a 

stop-check load when the driver suddenly applies on the brakes. 

 

 
 

Figure 3-3 Multi-axial Loading Apparatus 

 Moreover, at all times during the full cyclical movement, a door weight 

of 480 N is included. This experimental set-up represents the most severe 

environment the door hinge is subjected to in its duty life. The hinge is cycled at 

a rate of 9 cycles/min until the initiation of crack. As such, the experiment is 

checked everyday. 

Upper 
Hinge 

Lower 
Hinge 

Motor 

Door 
Frame 

Door 
C.G 
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Figure 3-4 Hinge Fixtures 

 3.3.2 Experimental Results 

 Five sets of experiments are conducted. The results are illustrated in 

table 3-2 below. In the multi-axial case, the average value for crack initiation is 

72,000 cycles. Similarly, the crack propagates at a very fast rate. The interesting 

point here is the occurrence of crack after only 31,600 cycles in sample four. 

This occurrence clearly demonstrates the statistical nature of fatigue. The 

location of the crack is at the root of the notch in the BS Bracket (see fig. 3-5). 

Hinge Fixtures 
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Sample number 

 
Number of cycles till 

first evidence of 
cracking (Cycles) 

 

 
Crack length 

(mm) 

1 88,400 4.0 

2 72,000 5.0 

3 92,700 9.0 

4 31,600 3.0 

5 72,000 5.0 

 
Table 3-2 Experimental Multi-axial Results 

 

Figure 3-5 Crack Location Site From Multi-axial Experiment 

3.4 Results Summary and Conclusions 

 The average life obtained from the uni-axial fatigue test was 289,000 

cycles whereas the multi-axial fatigue test yielded an average life of 72,000 

cycles. As previously stated, the life resulting from a uni-axial test is not as 

important as the one from a multi-axial test. The latter reflects the actual loading 

environment in the door hinge. On the other hand, the former only gives an 

Crack Location 

BS Bracket 

DS Bracket 
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approximate solution to fatigue life prediction. In the preliminary design stage, 

the uni-axial fatigue test results are adequate for the product design engineers. 

Uni-axial fatigue test results are reliable when the component is still in the 

development phase. However, in the validation phase, results from full-scale 

multi-axial tests are imperative. The results clearly showed that the life and 

crack location are very dissimilar in each case. At this point, from a validation 

point of view, the uni-axial fatigue life should be disregarded. However, for the 

current research, the uni-axial result was used as a guideline in the FE modeling 

of the hinge. This is because in the early phase of this research, the full-scale 

multi-axial fatigue test was unavailable. Hence, the uni-axial fatigue result was 

used to refine the gap that existed between numerical and experimental models. 

The experimental multi-axial fatigue result was then used to validate that 

obtained from numerical simulation. 
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CHAPTER 4 NUMERICAL ANALYSIS: FE STATIC 

4.1 Overview 

 In this chapter, Finite Element (FE) is used to model the 60-degree door 

hinge. Two models are considered, one for uni-axial loading and the other for 

multi-axial loading. The uni-axial model consists of a single hinge whereas the 

multi-axial one consists of the entire door hinge system, which includes two 

hinges and the doorframe. A static analysis is conducted on both models to 

obtain the stresses and strains to be used as input for fatigue life prediction.  

 A thorough analysis is also performed on a simple cantilever beam that 

is subjected to a bending load to demonstrate the accuracy and effectiveness of 

certain element types. The result from the aforementioned analysis is then used 

as a guideline to select the proper element type for the hinge under 

investigation. This chapter also demonstrates the importance of geometry check 

in FE. This is achieved by modeling the uni-axial hinge with two different mesh 

options and comparing the effectiveness of both models with the use of 

geometry check parameters and the static results. It is observed that the 

combination of proper element type and mesh selection would yield static 

results that are close to realistic solutions.  

4.2 Analytical vs. Numerical Methods for FE Static Analysis 

 Engineering systems can be categorised as either discrete systems or 

continuous systems. In the case of a static problem, the stiffness in a discrete 
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system is assumed to be present at certain discrete points or degrees of freedom 

(DOF), as in the case of a single DOF spring-mass system. However, for a 

continuous system, the stiffness is considered to be distributed as a series of 

infinitely small decretized domains called elements. They move relative to each 

other in a continuous fashion under an applied load [22].  

 The governing equations of motion of the discretely modeled system are 

easily solvable ordinary differential equations. In contrast, continuous system 

yields partial differential equations, which in most cases, do not have 

mathematical closed-form solution. Therefore, complicated systems such as the 

hinge have to be solved by numerical procedures.   

  The Finite Element Method (FEM) is an example of a numerical 

procedure for solving a set of complex equations that describes the physics of 

the problem of interest [21,22]. The basic idea behind the FEM is piecewise 

approximation whereby the solution of continuous is obtained by dividing the 

entire system into a finite number of small elements, and then approximating the 

solution over each element by a simple interpolation function [23]. The primary 

solution in a static case is the displacement, u, whereas the stresses and strains 

are secondary solutions. 

The correct selection of elements is important in FEA. Elements can be 

classified as 1D, 2D or 3D. Some of the elements are only applicable to certain 

situations and some work better than others in a particular situation. The next 

section discusses how elements can be selected based on the simple cantilever 

beam example. 
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4.3 Element Selection: The Cantilever Beam Example 

 In this section, the maximum bending stress of different element types 

are approximated through a FE based static analysis with the intention of 

demonstrating the usefulness and accuracy of FE modeling. Moreover, a 

qualitative assessment is performed on the element types to demonstrate their 

applicability to particular situations. These situations are axial, bending and 

torsion or a combination of at least two of the aforementioned situations (e.g., a 

comparison between the response and effectiveness of element X and Y when 

both are subjected to a bending load). A cantilever beam as shown in figure 4-1 

below is used as an example for this assessment.  

 
 

 
 
 
 

 
 

 
 

Beam Dimensions 
L = 50 mm 
W = 5 mm 
H = 5 mm 

 
Applied Force 

F = 10 N 
 
 

 

Figure 4-1 The Cantilever Beam 

The exact solution is calculated by means of the Euler-Bernoulli beam 

theorem. This solution is then compared to solutions obtained from finite 

element. In the latter case, 1D, 2D and 3D elements are used. Table 4-1 below 

lists the element types and their applications.  
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Types 

 
Topology 

 
Number of 

Nodes 
 

 
DOF at each 

Node 

 
Applications 

              
 
 
 

1D Bar  

             
 
 
 

Linear 

             
 
 
 
2 

             
 
 

3 (2 
translations + 

1 rotation) 
 

 
One-

dimensional 
beam 

problems 
where 

torsional 
rigidity is 
required. 

 
             
 
 
 

Tria 

             
 
 
 
3 

             
 
 

6 (3 
translations + 
3 rotations) 

 

 
Three-

dimensional 
thin-walled 
structures. – 
Should be 

avoided due 
to high 

stiffness. 
 

              
 
 
 
 
 
 
 

2D Shell 

             
 

Quad 

             
 
4 

             
6 (3 

translations + 
3 rotations) 

 

 
Three-

dimensional 
thin-walled 
structures. 

 
 

Wedge 
 

 
6 

 
3 (3 

translations) 
 

 
Solid 

structures. 

 
 
 

3D Solid 
 

Hex 
 

 
8 

 
3 (3 

translations) 
 

 
Solid 

structures. 

 
Table 4-1 Typical Element Types and their Applications 

 

Using the Euler-Bernoulli beam equation, the maximum bending stress can be 

calculated as follows: 
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I
My

=maxσ                                                                (4.1) 

where, 

FLM =                                                                   (4.2) 

            
2
Hy =                                                                    (4.3) 

                 
12

3WHI =                                                                  (4.4) 

where, I is the moment of inertia and y is the maximum vertical distance from 

the beam’s neutral axis. 

The exact solution is compared to a beam, shell and solid element 

respectively. It can be seen from figure 4-2 below that the value obtained for the 

maximum bending stress is equal to the one from the Euler-Bernoulli theorem. 

However, most structures are three-dimensional. In such cases, these structures 

are approximated by a 2D element topology such as a shell element. 

 
Beam Topology 

Element Edge Length = 10 mm 
 

 
 
 

σmax = 24.0 MPa 
% Error = 0 % 

 
Figure 4-2 Maximum Bending Stress for Beam Element 

Although ideal for modeling bending situations, the beam element is very 
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limited in the hinge application, such that it is only used in certain structures to 

transfer loads from two unconnected 2D-shell or 3D-solid elements.  

Shell Topology 
Element Edge Length = 10 mm 

 
σmax = 20.2 MPa 

% Error = 15.8 % 

 
Shell Topology 

Element Edge Length = 2.5 mm 
σmax = 23.2 MPa 

% Error = 3.33 % 

Shell Topology 
Element Edge Length = 1.25 mm 

σmax = 47.8 MPa 
% Error = 49.8 % 

Figure 4-3 Maximum Bending Stress for Shell Element (Quad4-node) 

As a result, shell and solid elements are widely used in place of beam 

elements. Indeed, shell elements themselves cannot be universally applied. As 
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previously mentioned, shell elements are used as an approximation to solid 

elements. The popularity of the former comes from its six DOF capability. 

Since most components are subjected to both forces and moments in realistic 

situations, the shell is an ideal choice. Shell elements also reduce the amount of 

computation time as compared to solids. However, there are situations where 

shell elements fail. One of the most important situations where shell elements 

fail is depicted below in figure 4-3. This investigation is based on the same 

cantilever beam, whereby the element topology is altered to shell elements. 

Figure 4-3 shows the effect of refining the element edge length on the maximum 

bending stress.  

 
The effect of altering the element edge length from 10mm to 2.5mm 

causes the maximum bending stress to approach the exact solution. Indeed, from 

finite element theory, discretizing the structure into smaller elements should 

cause the solution to converge to the exact value. However, further refinement 

of the mesh from 2.5mm to 1.25mm causes a drastic change in the stress. 

Instead of converging to a value close to the exact solution, the maximum 

bending stress almost doubled from its original value. Furthermore, the contour 

plot of the stress distribution as seen from the spectrum is irregular and very 

distinct from the previous ones. The occurrence of this result can be explained 

by comparing the length to thickness ratio of the shell element. In general, a 

length to thickness ratio of 1:2 is appropriate. In this case, the ratio is 1:4 and is 

therefore unacceptable. Hence, solid elements should be used.  

Generally, structural designers tend to avoid using solid elements 
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because most solids, except for tet4-node elements, do not have rotational 

stiffness. In addition to that, solids increase the analysis run-time when 

compared to shells. However, as seen in the previous example, shells fail when 

the length to height ratio exceeds 1:2. 

 
Solid Topology 

Element Edge Length = 10 mm 

 
σmax = 21.0 MPa 

% Error = 12.5 % 

Solid Topology 
Element Edge Length = 2.5 mm 

 
σmax = 24.3 MPa 

% Error = 0.83 % 

 
Solid Topology 

Element Edge Length = 1.25 mm 

 
σmax = 24.7 MPa 

% Error = 2.92 % 
 

Figure 4-4 Maximum Bending Stress for Solid Element (Hex8-node) 

Moreover, structures consisting of irregular thickness (e.g. a tapered 
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beam) cannot be modeled using shell elements. The use of solids is unavoidable 

in those situations. The next example shows the cantilever beam modeled as a 

solid or commonly known as the brick element. The results show that using a 

refined mesh through the length and thickness cause the solution to converge to 

the exact value. The interesting point to note here is how the unavailability of 

rotational stiffness is compensated by the use of a refined mesh through the 

thickness. These observations are crucial as it enables the structural designer to 

properly select the type of element applicable to a particular analysis.  

The results based on this exercise are used to model the hinge system. 

Before discussing the detailed finite element modeling and analysis of the hinge 

system, it is important to understand the difference between effective and 

improper elements. The next section discusses, and provides acceptable data 

that characterize, effective and improper elements. 

4.4 Geometry Check for Solid Elements 

 Generally, the distortion of a solid element can be measured according 

to its skew and warp angles, together with aspect, taper and jacobian ratios. All 

these measures represent the amount that the solid element deviates from its 

ideal shape. In practice, highly skewed and warped elements, as elements with a 

very high aspect, taper and jacobian ratios should be avoided. 

 The skew angle of solid elements, brick or wedge, are calculated by 

referring to each face in the element. More precisely, the skew angle is 

measured on each face as if it is a tria or quad element. Figure 4-5 below shows 

the measurement of skew angle for a tria and quad element respectively. Hence, 
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the skew angle for a brick or wedge is taken as the highest angle resulting from 

the respective quad or tria element. In practice, this angle should be smaller than 

30 degrees [22,23]. 

 
Skew Angle = 900 – α  

 
Skew Angle = 900 – α  

Figure 4-5 Skew Angle Measurements in Tria and Quad Elements 

 
Warp Angle, θ                                                                  Warped Surface 

Figure 4-6 Warp Angle Measurements in a Quad Element 

 Similarly, the warp angle of a brick or wedge element is measured by 

referring to each face in the element, whereby the highest angle is reported as 

the warp angle. Figure 4-6 shows a highly warped quad element with θ as the 

warp angle. The warp angle should be smaller than 5 degrees [22]. 

 The aspect ratio is calculated as the ratio of the distance between 

opposing faces. Unlike the skew and warp angle, the aspect ratio is calculated 

differently for a brick and a wedge elements. For a wedge element, the two 

triangular faces are averaged to obtain a mid-surface. The aspect ratio of the 
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latter is then calculated. For the remaining quad faces in the wedge element, the 

ratio of the maximum to minimum length are measured and multiplied by the 

aspect ratio of the mid-surface tria element [22]. The resulting solution is the 

aspect ratio of the wedge element (see figure 4-7 below). The maximum 

acceptable ratio is 5:1. 

 

 

Tria Aspect Ratio = 
1
2

2
3

h
h  

 

 

Wedge Aspect Ratio = 
1
2

2
3

3
4

h
h

h
h  

 
 

Figure 4-7 Aspect Ratio Measurements in Tria and Wedge Elements 

The Aspect Ratio (AR) in a brick element is calculated as the ratio of the 

distance between opposing faces. The distances between the centerpoints of all 

three pairs of opposing faces are compared and the maximum value taken as the 

AR (see figure 4-8) [22]. The maximum acceptable ratio is 5:1. 

 The taper and jacobian ratios only exist for quad or brick elements. The 

former is calculated by splitting the quad element into four triangles connected 

at the mid-point of the quad. The area of each triangle is calculated. The ratio of 

the smallest to the total area is the taper ratio. Therefore, for the brick element, 

the aforementioned procedure is repeated for each face and the largest value is 

reported as the taper ratio of the brick element (see figure 4-9 (a)). A minimum 

value of 4:5 is acceptable [22].  
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h1, h2 and h3 are distances between 

the mid-point of each opposite faces. 

 

Brick AR = 
)3,2,1min(
)3,2,1max(

hhh
hhh  

Figure 4-8 Aspect Ratio Measurements in Brick Elements 

 
 

Taper Ratio = ( )
4321
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(a) 

 
 

J1=Jacobian of Face 1; J2=Jacobian 
of Face 2 

Jacobian Ratio = 
1
2

J
J

 

(b) 
Figure 4-9 Taper and Jacobian Ratio Measurements in Brick Elements 

The jacobian ratio is a measure of the deviation of a quad element from its 

ideal rectangular shape. The jacobian is calculated for each face in the brick 

element. The jacobian ratio is the maximum ratio of jacobian between the 

opposite faces. An ideal element has a jacobian ratio of 1.0. Generally, jacobian 

ratios of 0.7 and above are acceptable (see figure 4-9 (b)) [22]. 

4.5 FE Modeling of the Door Hinge System 

 The FE model of the door hinge system is developed using the 
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commercial FE package MSC.PATRAN. The modeling process of the structure 

involves three steps, namely geometry modeling, FE discretizing and structure 

assembling. Two distinct models are considered. The first model (model A) is 

discretized by a combination of hexagonal eight node and pentahedral six node 

elements and the second (model B), a bi-parametric solid, consists solely of 

hexagonal eight node elements. The effectiveness of each model is crucial to 

fatigue life prediction, is compared based on the FE static results. Two separate 

static analyses are then performed on each model. The first one is to compute 

the stresses and strains and use them as input data for a uni-axial fatigue 

analysis whereas the other is for a multi-axial fatigue analysis. The uni-axial and 

multi-axial models are quite dissimilar from each other in the sense that the 

former consists of a single hinge whereas the latter, the entire door hinge 

system. All static analyses are performed using MSC.NASTRAN. 

 4.5.1 Geometry Modeling 

 The hinge model, created in the Computer Aided Design (CAD) package 

IDEAS, is imported into MSC.PATRAN as a PARASOLID. The PARASOLID 

format contains the solid geometry of the hinge (see figure 4-10 below). 

The hinge is a three-piece component consisting of a Body-Side (BS) 

bracket, a Door-Side (DS) bracket and a circular cross-section Pin. The BS 

bracket and Pin are symmetrical components unlike the DS bracket that has an 

oval and a circular shaped hole on each side of the component. The Pin is 

removed from the model since it does not contribute directly to the FEA. The 

pin mechanism allows rotation of the DS about the BS bracket, thus transferring 
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loads from one bracket to the other. A different approach, as will be seen later in 

section 4.5.3, is used to transfer the loads.  

 

Front View 

 

 

Bottom View 

 

Figure 4-10 CAD Model of Door Hinge 

For both models A and B, a surface model is created from the 

PARASOLID. It is important to create a mid-surface from the solid geometry. 

The mid-surface being equidistant from the top and bottom surfaces of the CAD 

model. Model B is split into bi-parametric surfaces for reasons that will become 
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obvious later. A bi-parametric surface is one enclosed by no more than four 

curves. Figure 4-11 compares models A and B. 

 
 

Model A 
 

 
 
 

Model B (Bi-parametric) 
 

Figure 4-11 Comparison between Models A and B  

 4.5.2 FE Discretizing 

After the surfaces are created, each bracket is separately discretized. 

Model A is initially meshed using a combination of Quad4-node and Tria3-node 

shell elements. In general, Triangular elements (Tria3) should be avoided due to 

excessive stiffness. Rectangular elements (Quad4) are ideal for shell mesh. 

However, in components consisting of holes, fillets and curvatures, it is very 

difficult to avoid Tria3 elements. It should be noted that a model in which the 

total number of Tria3 is less than five percent of the total number of elements in 

the model yields conservative results [22]. Figure 4-11 shows the discretized 

shell model with Quad4 and Tria3 elements with an element edge length of 3 

mm. It can be seen from figure 4-12 that Tria3 are indeed formed at curvature 

and holes. 

The shell elements are then extruded to create solid elements. This 
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procedure is done by extruding the mid-surface by ½ the total thickness of the 

model in each direction normal to the surface of the shell element. As a result, 

Tria3 and Quad4 become Wedge6 and Hex8 solid elements respectively. It 

should be noted that the original surfaces couldn’t be meshed directly by solid 

elements, unless tetrahedral elements are used. Like triangular elements, 

tetrahedral elements are excessively stiff. Moreover, when tetrahedral elements 

are used, gaps are induced in the FE model. This is because at curvatures, the 

tetrahedral elements do not geometrically fit to the surface. Hence, if the 

original surfaces are to be used for meshing, extruding a shell mesh (model A) 

is a better option. Otherwise, a bi-parametric solid geometry (model B) has to be 

created. 

 

 

Figure 4-12 Shell Discretization with Quad4 and Tria3 Elements 
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To create a bi-parametric solid geometry, the bi-parametric surface of 

model B is extruded. The bi-parametric solid can then be discretized by using an 

isomesh with hex8 elements. From section 4-3, it was seen that to take into 

account bending, the solid elements had to be refined through the thickness. At 

least 3 solid elements should be used through the thickness, if proper bending 

effects are to be included [22]. Figure 4-13 shows a comparison between the 

meshes of models A and B respectively. 

 

BS Bracket (Model A) 

 

 
BS Bracket (Model B) 

 

DS Bracket (Model A) 

 

 
DS Bracket (Model B) 

Figure 4-13 A Comparison between the FE Models A and B 

After discretization of the model is completed, several geometry checks 

are performed to verify whether the elements qualities are acceptable. Figure 4-
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14 below shows the potential areas where the elements failed the skew angle 

geometry tests. The shaded areas are the distorted elements. 

 

 

 
 

 

 

 

 

 
 

 
 

 

 

 
 

 

Figure 4-14 Distorted Elements in BS and DS Brackets 

When performing geometry checks on the brackets for both models, 

error messages are also issued showing the extent by which the element failed. 

Referring to section 4-4, where the minimum or maximum acceptable values for 

each parameter are listed, the extent by which the failed element deviated from 

the acceptable values can be calculated. Table 4-2 below displays the outcome 



Chapter 4                                                                                          Numerical Analysis: FE Static 

 64

of the geometry check on each bracket for both models. 

 

 
Bracket 
type and 

model 
 

 
Total 

number 
of 

elements 

 
% 

Failure 
in 

jacobian 
ratio test 

 

 
% 

Failure 
in aspect 
ratio test

 
% 

Failure 
in taper 
ratio test

 
% 

Failure 
in skew 
angle 
test 

 
% 

Failure 
in 

warping 
test 

 
BS (A) 

 
7476 

 
0% 

 
0% 

 
93.3% 
Worst: 
0.748 

 

 
0.56% 
Worst: 
34.30 

 
96.9% 
Worst: 
15.00 

 
DS (A) 

 
2688 

 
0% 

 
0% 

 
92.6% 
Worst: 
0.753 

 

 
0.47% 
Worst: 
36.70 

 
92.2% 
Worst: 
15.00  

 
BS (B) 

 
9774 

 
0% 

 
0% 

 
92.9% 
Worst: 
0.130 

 

 
19.8% 
Worst: 
83.30 

 
98.8% 
Worst: 
15.00 

 
DS (B) 

 
6153 

 
0% 

 
0% 

 
93.9% 
Worst: 
0.693 

 

 
41.3% 
Worst: 
77.20 

 

 
97.5% 
Worst: 
15.00 

 
 

Table 4-2 Percentage of Failure in Geometry Tests 

Although not all the elements in the models satisfied the geometry check 

criteria, when meshing the structure, the goal is to minimize the number of 

distorted elements and to obtain values for these distorted elements that are 

close to the acceptable value. It can be seen from table 4-2 that all the elements 

pass the jacobian and aspect ratios. Moreover, the percentage failure in taper 

ratio arising from models A and B are very close. However, the value for the 

worst element in model A is very close to the acceptable value. On the other 
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hand, in model B, the taper ratio for worst element deviate quite a lot. The skew 

angle check can be analyzed in a similar fashion. It can be seen that the 

elements in model B are highly skewed with skew angles significantly larger 

than the minimum. Eventually, element warping cannot be avoided in both 

models because of the highly curved surfaces. The percentage of warp angle 

failure is similar in both models. 

The objective behind the geometry tests in the two models is to compare 

the effectiveness of model A over B or vice-versa. Based on the results, it is 

seen that model A is more accurate. The accuracy of the FE model can also be 

verified by analyzing the stresses in a static case. A sharp transition in stress at a 

certain point in the model other than notches and loading areas arise from 

distorted elements. This can result in the prediction of wrong stress values. This 

feature is demonstrated in section 4.6.  

 4.5.3 Components Assembly 

The final step involves assembling all the discretized components of the 

hinge. To this end, the two components of the hinge, the BS and DS brackets, 

are joined using multi-point constraints (MPC). MPC acts as a rigid bar between 

two nodes and constrains all DOF, three translational in his case, so that the 

nodes move by the same amount in every direction. One of the two nodes is 

called a dependent node and the other, an independent node. If the independent 

node is displaced by a certain amount, the dependent node will undergo a 

similar displacement. Therefore, MPC can be used to transfer loads from one 

node to the other. In this case, the MPC is used to replace the Pin connecting the 
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two brackets. An induced load on BS is therefore transferred to DS and vice-

versa. Since MPC is rigid, it will not deform under external load and does not 

require any physical or material properties as analysis input.  

The interesting point to note here is the mechanism behind the motion of 

the brackets in the hinge. In reality, the DS bracket rotates about the Pin with 

the BS bracket fixed. The DS bracket rotates up to a maximum angle of 60 

degrees. This motion simulates the open/close door movement. Hence, at the 

zero-degree position, the door is fully-opened and at the 60-degree position, the 

door is closed. Figure 4-15 shows the range of motion of the hinge. 

 

 

 

 
 

 
Full Opened Position 

 

 

 
Full Closed Position 

 
Figure 4-15 Range of Motion for the 60-Degree Hinge 

The mechanism of the hinge motion from the fully-closed to the fully-
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opened position is very complex to model through FE. This is because contact 

points have to be defined at subsequent points throughout the entire motion. 

MSC.MARC was used to model the contact points. Two types of contacts were 

used, rigid and sliding contacts. This exercise proved to be very tedious, time 

consuming and unsuccessful. The following assumptions were then made. 

• If the rigid body motion of the hinge is considered, the stress is negligible 

until the BS and DS brackets come directly into contact. 

• A rigid contact can then be used to constrain the BS and DS brackets when 

they come into contact. 

 
• Rigid MPC 

constraining the 
clearance between the 
BS and DS brackets  

 
 

 
 

 
 
 
 
 

Assembled Component  
• Rigid MPC replacing 

the Pin 
 

 
Figure 4-16 Assembled FEM with MPC 

Based on these assumptions, MPC were used to model the rigid contact. 

These rigid MPC ties the nodes on the BS and DS brackets together at the 
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contact area. Hence, a load induced to the DS bracket is transferred to the BS 

bracket through the MPC. Figure 4-16 displays the use of MPC to constrain the 

hinge.  

 4.4.4 Boundary Conditions 

 The hinge is subjected to both uni-axial and multi-axial loading 

conditions. Therefore, two separate models are built for the different loading 

conditions. In the uni-axial model, the circular and oval holes in the DS brackets 

are fixed and a force is applied via a block on top of the BS bracket. Although 

MPC could be used to apply the load, a meshed block is used instead to reflect a 

more realistic loading. The block is attached to the BS bracket using rigid MPC.  

 

 
                   All DOF Fixed 

Applied Load = 110 Nm 
 

Uni-axial Model 

 

 
          All DOF Fixed (Both)  

Applied Load = 335 Nm 
          Door Weight = 480 N 

 
Multi-axial Model 

 
 

Figure 4-17 Applied Loads and Constraints 

The multi-axial model consists of two hinges and a T-shaped support to reflect 

the entire door-hinge system. In this model, the upper circular holes on the BS 
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brackets are fixed. Two separate load cases are applied to the multi-axial model, 

namely an applied torque and the weight of the door. The applied torque is 

converted to a force because solid elements do not have rotational DOF. The 

uni-axial and multi-axial models are shown in figure 4-17. When constraining 

the holes in both the uni-axial and multi-axial models, a certain area around the 

holes was fixed instead of the circumference only. Hence, the correct bolt and 

washer environment is simulated. 

4.5 FE Static Analysis: Analysis Parameters 

 As previously mentioned, the objective of this research is to predict 

fatigue life in the door hinge subjected to uni-axial and multi-axial stress states. 

It is therefore necessary to calculate the stresses and strains in a static analysis 

and use these as input to calculate fatigue life. Before implementing a static 

analysis, geometric and material properties need to be assigned to all the 

elements in the hinge. The geometric properties in this case are self-defined 

when solid elements with a constant gauge are used (E.g., if shell elements are 

used instead of solids, the thickness needs to be entered as a geometric 

property). On the other hand, material properties have to be defined in all cases. 

In this case, the material used is steel (SAE Grade 1008-1010). The desired 

static results from Finite Element Analysis (FEA) are used as input data to 

calculate fatigue life. Therefore it is important to use the elasto-plastic 

properties of the material, since it is unknown at this point whether the stresses 

and strains will fall in the high or low cycle region. The cyclic and monotonic-

true stress-strain curves for SAE1008 are shown in figure 4-18. 
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The question here is whether to use the monotonic or cyclic curve. From a 

static analysis point of view only, the monotonic curve should be used. 

However, since the stress and strain values are used as input data to calculate 

fatigue life, the cyclic curve is used. This feature is explained in chapter 5. 

Based on the material non-linearity, a non-linear static analysis is conducted. 

MSC.NASTRAN is used to solve for the stresses and strains. This analysis is 

conducted on both models A and B. The results are discussed in the next 

section. 

 

 
 

Figure 4-18 Stress-Strain Curves for SAE1008 

The question here is whether to use the monotonic or cyclic curve. From a 

static analysis point of view only, the monotonic curve should be used. 

However, since the stress and strain values are used as input data to calculate 

fatigue life, the cyclic curve is used. This feature is thoroughly explained in 

chapter 5. Based on the material non-linearity, a non-linear static analysis is 

conducted. MSC.NASTRAN is used to solve for the stresses and strains. This 
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analysis is conducted on both models A and B. The results are portrayed in the 

next section.      

4.6 Simulation Results 

 In this section, the stress contour plots for both the uni-axial and multi-

axial models are displayed. FEA generates maximum and minimum principal 

stresses (i.e., tensile and compressive stresses) together with the equivalent Von 

Mises and shear stresses. It is important at this point to analyse each stresses 

effectively and use the most critical one as input to calculate life. The rule of 

thumb is that the critical stress will have the most adverse effect on fatigue life. 

Using improper stress values will result in inaccurate fatigue life prediction.  

 The accuracy and effectiveness of both models A and B are now 

investigated. The most appropriate model can be selected (see figure 4-19) by 

examining the distribution of the Z-component of stress in the uni-axial loading. 

In a uni-axial stress state, the X- and Y- components of the stresses lie in the 

plane of the model with the Z-component being close to zero. 

 
Model A 

 
Model B 

Figure 4-19 A Comparison between the Z-Component of Stress  

In Models A and B based on a Uni-axial Loading 
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 It can be seen from figure 4-19 that the stress is uni-axial in nature in 

both models except at the holes on the DS brackets. The sharp transition in 

stresses in these areas is due the constraints. The hinge was fixed in all DOF at 

these locations, thus the high stress values are really artificial stresses. In an 

experimental analysis, the stresses will be close to zero at these locations. One 

of the drawbacks of FEA is that artificial stresses are created at loading and 

constrained points. These stresses should be ignored. However, looking at the 

spectrum on the right hand side of both models, it can be seen that the stresses 

are excessively higher in model B than in model A. The maximum stress in 

model B is 357 MPa, whereas in model A, the stress is 185 MPa.  

 

 
Maximum Stress Location 
 

Figure 4-20 Maximum Principal Stress Contour in the Uni-axial Model 
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Since the maximum Z-component of stress is higher than the tensile 

strength, it is concluded that model B is inaccurate. The occurrence of the high 

stresses is certainly due to distorted elements. Hereafter, only model A is used 

for uni-axial and multi-axial fatigue analysis. Figures 4-20 and 4-21 display the 

maximum principal stress based on the uni-axial and multi-axial loading cases 

respectively. In the uni-axial model, the maximum stress is 255 MPa, and in the 

multi-axial model, the maximum stresses are 343 MPa and 142 MPa for the 

torque and weight cases respectively. The maximum principal stress is the most 

critical stress in both loading cases. 

 

4.7 Results Summary and Conclusion  

 It is concluded that the most appropriate FE model is model A. Model A 

has an equal element edge length and thickness of 2.5 mm. A mesh size of 3.5 is 

initially used, and subsequently reduced to 3 mm and 2.5 mm. Although, the 

results are not reported here, the stress results tend to converge. However, the 

attainment of convergence cannot be definitively reported as the mesh size 

could not be further refined. This is because the high mesh density required a 

more powerful computational tool (Random Allocated Memory). Hence, the 

stress values were taken as the converged results. At this point, it is assumed 

that a correct life prediction by fatigue analysis implies that converged stress 

values are employed. The most important observation from the static analysis is 

the location of the maximum stress in the model for both the uni-axial and 

multi-axial models.  
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Maximum Stress Location                  Torque based 

 
Maximum Stress Location                  Weight based 

Figure 4-21 Maximum Principal Stress Contour in the Multi-axial Model 
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 Firstly, in the uni-axial model, the maximum stress occurred at the inner 

edge of the oval-shaped hole. Although this is the constrained area, only the 

stresses at the top and bottom surfaces can be ignored (i.e. surfaces in contact 

with the washer). It will be seen later that crack is initiated at the oval hole. At 

this stage, no further explanation will be given until confirmation from the 

fatigue analysis is obtained. Secondly, the maximum stresses in the multi-axial 

model are at different locations for the torque and weight cases respectively. It 

will be seen afterwards that the stresses in both cases are superimposed to 

simulate the multi-axial environment of the hinge. Similarly, it will be seen that 

the crack occurs at the location of the maximum stress.  

 Indeed, this is the real advantage of FEA. It is not only efficient in the 

analysis of complex models, but it also generates local stress-strain information 

at the root of notches if a sufficient small size mesh is used. The maximum 

principal stresses are therefore used as input data in the numerical fatigue 

analysis. 
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CHAPTER 5 FE BASED FATIGUE ANALYSIS 

5.1 Overview 

 In this chapter, the fatigue life of the door hinge is predicted using 

computational methods under both uni-axial and multi-axial loading. In the 

former, the hinge is subjected to a single load and the stress results associated 

with this load are cycled until crack initiates. In the latter, a hinge system is 

analyzed, whereby results from two separate loads are superimposed and used 

to predict life. Moreover, the bi-axiality ratio and angle of spread are evaluated 

and plotted at the critical location in the multi-axial case to assess whether a 

proportional or non-proportional loading exists. 

5.2 High Cycle vs. Low Cycle Domains 

 The onset of high and low cycle fatigue are explained in chapter two. It 

is stated that if the maximum stress in a component is lower than the yield 

strength of the material, the component fails under high cycle fatigue. This 

means that the life cycles to failure is greater than 100,000 cycles. In contrast, 

when the maximum stress is higher than the yield strength, the component fails 

under low cycle fatigue with life between 100 to 100,000 cycles. As a matter of 

fact, knowing the failure mechanism before running the fatigue analysis is very 

important. This is because in the high cycle region, using parameters based 

upon the S-N curve yields conservative results. Similarly, in the low cycle 

region, using parameters based upon the ε-N curve is preferred.  
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Consider the maximum stress in the hinge in the uni-axial loading case 

and the S-N curve for the material used, SAE1008 hot-rolled (see figure 5-1). 

The maximum stress obtained from FEA is 255 MPa while the stress range on 

the vertical axis of the S-N curve is varying from 80 MPa to 256 MPa. Since the 

maximum principal stress is right at the yield point and lies within the stress 

range, using the S-N curve would result in the prediction of conservative fatigue 

life (line LA1 in figure 5-1). On the other hand, consider the maximum principal 

strain and the ε-N curve (see figure 5-2). The corresponding maximum principal 

strain is 3.63E-3. If this strain value is applied to the ε-N curve (i.e., using the 

Strain-Life approach), the number of life cycles to failure will be infinite (line 

LB1 in figure 5-2). Hence, the S-N approach is the most appropriate in the uni-

axial fatigue case. 

Likewise, consider the maximum principal stress and strain in the multi-

axial loading case. Since the torque yields the highest stress and strain, it is 

solely used to assess whether the S-N or ε-N approach is to be adopted. The 

maximum principal stress and strain are 343 MPa and 8.5E-3, respectively. If a 

horizontal line is drawn from the stress value of 343 MPa to the far right vertical 

axis on the S-N curve, it is seen that the line does not cross the curve (line LA2 

in figure 5-1). Therefore, an infinite life will be predicted if the S-N curve is 

used. On the other hand, if the corresponding strain value is used on the ε-N 

curve and a similar line drawn from the maximum principal strain, the line 

crosses the curve at a finite value (line LB2 in figure 5-2).  This shows that the 

ε-N approach is more suitable in the multi-axial case.  
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Figure 5-1 S-N Plot for SAE1008 Hot-Rolled18 

 

Figure 5-2 ε-N Plot for SAE1008 Hot-Rolled18 

 
At this stage, it is necessary to deal with the uni-axial and multi-axial 

fatigue analyses separately, since they require different analysis parameters. The 

next two sections describe the uni-axial and multi-axial fatigue analyses, 
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respectively. 

5.3 Uni-axial Fatigue  

 In this section, a uni-axial assessment is conducted on the hinge. The 

chart below (figure 5-3) shows the required path for a successful prediction of 

life. Based on the observations in the previous section, the S-N approach is used 

for the uni-axial fatigue analysis. The available S-N curve is characterized from 

tests performed on a smooth cylindrical hourglass specimen at fully reversed 

loading. The hinge differs significantly from the test specimen in geometry, 

loading environment and surface finish. These differences have a significant 

impact on fatigue life. Hence, the S-N curve is modified accordingly so that it 

can be used to predict life.  

 The modification of the S-N curve is solely dependent on the loading 

history, which is the service environment the hinge is subjected to in the 

experimental process. This means that the static load applied to the hinge is 

cycled, based upon the loading history.  

5.3.1 Loading History 

The loading history for the hinge in the uni-axial fatigue analysis is 

obtained experimentally. Figure 5-4 shows the loading history. In general, the 

range of any loading history is from –1 to +1. For a fully tensile loading, which 

is the case here, the minimum value should be greater than zero and the 

maximum value no greater than +1. In the uni-axial experiment, the applied 

load was increased up to a maximum value of 110 Nm and released. 
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Figure 5-3 Flow-Chart for Uni-axial Fatigue Life Calculation 

FE STATIC 
RESULTS 

LOADING 
HISTORY 

MATERIAL 
INFORMATION 

• The loading history is
scaled according to the
maximum stress. 

• The maximum value of
the scaled loading history
is the maximum principal
stress 

• The un-scaled loading history is
compared to the fully reversed
sinusoidal curve. 

• If the mean stress is non-zero, the
S-N curve is modified to take into
account mean stress. 

• Goodman or Gerber mean stress
correction is applied to the S-N
curve. 

• The scaled loading history is cycled-counted
by the rainflow cycle process [1,2,25-27]. 

• The rainflow process converts the load
history into blocks of constant stress
amplitude [1,2,25-27]. 

• The modified S-N curve is used to calculate
the damage caused by each block of stress. 

• The damage is accumulated based on
Miner’s rule (i.e. the life is calculated at each
cycle) [1,2,4,28]. 

• When the sum of the damage equals unity,
the accumulation stops. 

• The life at the unit value is taken to be the
fatigue life. 

 

LIFE 

 1  2

 3 

 4
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Hence, the true loading history has a minimum and a maximum value of 

0 Nm and 110 Nm respectively. However, in FEA, the curve defining the 

loading history is normalized (i.e. the true loading history is divided by the 

maximum value of 110 Nm). The static stress resulting from the applied load of 

110 Nm is then superimposed with the normalized loading history. As such, the 

true service the hinge is subjected to in the experiment is properly reflected by 

this superposition method.  

 
 
 

 
 

Figure 5-4 Normalized Loading History for the Uni-axial Analysis 

5.3.2 Analysis Parameters 

 The next step in the analysis is the implementation of the S-N curve. As 

previously mentioned, the latter has to be modified in case mean stresses are 

present. When the loading history is compared to a sinusoidal waveform, it is 
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clearly seen that mean stresses are present. Therefore, based on either Goodman 

or Gerber mean stress correction factors, the S-N curve is modified. This can be 

done by pivoting the elastic line about the intersection point on the horizontal 

life axis (see figure 5-5).  

 
 

 
 

Figure 5-5 Mean Stress Correction in the S-N Curve 

To date, little or no experimental data exist to support one approach over 

the other. Therefore, both Goodman and Gerber corrections are used and the 

one yielding the most conservative result is taken as the appropriate correction 

factor. The final step involves combining the scaled loading history and the 

modified S-N curve. The loading history is converted to constant blocks of 

stress amplitudes such that it can be used on the S-N curve. This conversion is 

done from the rainflow cycle counting process.  

The rainflow cycle counting is an algorithm commonly used in fatigue 

whereby an irregular load history is converted to blocks of constant amplitude 
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like a histogram [1,2,25-27]. Figure 5-6 shows a sketch of this process.  

             
          Stress History 
 

 

 
Rainflow Histogram 

 

Figure 5-6 Histogram Illustrating the Rainflow Procedure 

 After the rainflow histogram is created, the life is calculated via the 

linear damage summation based upon Miner’s rule [1,2,4,28]. Miner calculated 

the life by summing the damage after each cycle. For each block in the 

histogram, the corresponding life is extracted from the S-N curve and a damage 

parameter is calculated (see figure 5-7). 

 
       Rainflow Histogram 
 

 

   
  S-N Curve 

 

 
 

Figure 5-7 The Linear Damage Summation Procedure 

 Henceforth, the damage parameter at stress S1 is denoted by the ratio of 

the number of cycles of operation to the total number of cycles to cause failure 

at that stress level [1]. This can be mathematically expressed as follows [1]: 
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The damage parameter D1: 

1

1
1 N

n
D =                                (5.1) 

where, n1 is the first cycle and N1 , the corresponding life cycles to failure 

obtained from the S-N curve from S1. Hence, failure is predicted when the sum 

of the damage parameter equals unity. 

1
1

=∑
=

n

i
iD                               (5.2) 

Furthermore, the number of life cycles to failure is the inverse of the 

damage parameter at which the accumulation stops (i.e., if the damage sum 

approaches unity at D1000, then the corresponding life cycles to failure is 1/ 

D1000). 

All the steps herewith mentioned are included in MSC.FATIGUE. These 

procedures can be done in a few easy steps by selecting the appropriate 

stress/strain combination, material curve and mean stress correction. The uni-

axial fatigue results are reported in the following sub-section 

 5.3.3 Simulation Results 

 In summary, the maximum principal stress of 255 MPa from FE is 

superimposed with the loading history and the latter is cycle-counted by the 

rainflow procedure to create a set of blocks with constant stress amplitude 

called the rainflow histogram. Moreover, the loading history is compared with a 

sinusoidal waveform to assess the presence of mean stresses in the hinge. The 

corrected S-N and the rainflow histogram are simultaneously used to calculate 
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damage using Miner’s rule. The fatigue life cycles to failure is then evaluated 

from the accumulation of damage. Figure 5-8 below shows the fatigue life 

contour in the hinge. The minimum life cycles to failure is shown in a log scale 

on the bottom right corner of the figure.  

 The weakest spot is around the edge of the oval hole in the DS bracket. 

The minimum life cycles to failure is 309,000 cycles. It should be noted that if 

the analysis is conducted as described, the minimum life is 383,000 cycles. This 

is because the hinge is considered to have a perfectly polished surface. In 

reality, the edge of the hinge has a rough surface due to manufacturing 

processes. The surface roughness was measured at different locations in the 

hinge and the average value implemented in the analysis. That average value is 

353 microns. The inclusion of surface roughness yielded a life of 309,000 

cycles (the inverse logarithmic of the value shown in figure 5-8).  

 As previously mentioned, the location of the hot spot is around the oval 

hole of the DS bracket. More precisely, crack occurs at the contact surface 

between the bolt and the edge of the bracket. This can be explained by 

considering the sliding motion of the bolt around the oval hole.  

 In contrast to the circular hole, the bolt does not fit perfectly 

around the edge of the oval hole. The clearance is to allow easy placement and 

removal of the hinge from the vehicle. Thus, when the load is applied and 

cycled, the bolt slides across the oval hole. Although the sliding movement is 

not very significant, it causes the occurrence of scratch marks, on a microscopic 

scale, which eventually turn into crack. Such mechanisms are carefully modeled 



Chapter 5                                                                                               FE Based Fatigue Analysis 

 86

in the FEA. The maximum stress located on the top or bottom surface of the 

hole (i.e., areas in contact with the washer) were ignored in the analysis.  

 
Crack Location                                         Minimum Life 

 
Fatigue Life Contour 

Figure 5-8 The Uni-axial Fatigue Life Contour in the Hinge 
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5.3.4 Results Summary and Conclusions 

 The life predicted from the numerical analysis was 309,000 cycles 

compared to 289,000 cycles tested experimentally. From a theoretical or 

numerical point of view, fatigue is usually predicted in the order of two or three 

times the realistic value. In this case, life was predicted accurately. The required 

fatigue life is 260,000 cycles was reached. However, the environment in which 

the hinge operates is far from being strictly uni-axial. The service environment 

of the hinge is multi-axial. Hence, a multi-axial fatigue analysis needs to be 

conducted.  

5.4 Multi-axial Fatigue 

 In this section, a multi-axial assessment is conducted in the door hinge 

system. To conduct such assessment, the equivalent stress-strain approached is 

used. This assumes a uni-axial stress state when calculating life. The bi-axiality 

ratio and angle of spread is evaluated at critical locations in the hinge system in 

order to decide in the existence of a state of proportional of non-proportional 

loading exist. For proportional loading, the uni-axial assumption is valid and the 

predicted life is correct. In case a state of non-proportional loading exists, life 

has to be re-evaluated by the critical plane approach. Figure 5-9 shows a flow 

chart adopted in the equivalent stress-strain approach. 

Moreover, from static FE results, it is seen that the stress and strain 

values fall in the low cycle region. Hence, the equivalent stress-strain approach 

uses the σ-ε and ε-N curves to evaluate life. In the next section, it is seen how 

the multiple load cases and their respective loading histories are combined. 
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Figure 5-9 Flow Chart for Multi-axial Fatigue Life Calculation  
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• The stress vs. strain at each
node is plotted and compared
with the baseline σ-ε curve
obtained from smooth specimen
testing. 

• Based upon this comparison,
Neuber’s rule is asserted to
correct for plasticity at the
notches. 

• As a result, the baseline σ-ε and
ε-N curves are modified
according to the most critical
load case. 

• The un-scaled loading history is
compared to the fully reversed
sinusoidal curve. 

• If the mean strain is non-zero,
the ε-N curve is modified again
to take into account mean
strain. 

• SWT or Morrow mean strain
correction is applied to the new
ε-N curve. 

• The scaled loading history is cycle-counted
by the rainflow cycle process. 

• The rainflow process converts the load
history into blocks of constant strain
amplitude. 

• The modified ε-N curve is used to calculate
the damage caused by each block of strain. 

• The damage is accumulated based on
Miner’s rule (i.e. the life is calculated at each
cycle). 

• When the sum of the damage equals unity,
the accumulation stops. 

• The life at the unit value is taken to be the
fatigue life. 
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5.4.1 Loading History 

 The loading history is the service environment the hinge system 

is subjected to in its duty life cycle. The loading history for the hinge system is 

the open/close door movement. This means that the loading history starts at the 

fully-closed position and stops at the fully-opened position of the door. 

However, since the full range of motion of the door is not considered, the 

loading history was modified. The loading histories shown in figure 5-10 are the 

outputs from the actual testing process. The loading histories in the multi-axial 

case consist of two dissimilar cases. Referring to the experimental testing 

process, the induced loading consists of two torques. The first torque (T1) is at 

135 Nm and the other (T2) at 335 Nm. As such, T1 is cycled 23 times before 

T2, and this process repeats itself.  

                                                     P2 

P1

                                              P2 

P1

Figure 5-10 Loading Histories for the Applied Torque, T1 and T2 

 In FEA, the loading histories are combined, normalized and input as a 

single loading history. This is done by cumulatively adding 23 cycles of T1 and 

1 cycle of T2. Hence the entire loading history consists of 24 cycles. 

Henceforth, the unit of life cycles to failure is entered as 24 cycles. Hence, each 
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calculated life in the linear damage summation is divided by 24.The complete 

loading consisting of a total of 24 cycles is shown in figure 5-11. P1 and P2 are 

the closed position of the door whereas the maximum point on each curve 

represents the full opened position of the door. 

 The combined loading history has close to a million data points. As seen 

in figure 5-11, each loading torque has small spikes. Those spikes are the result 

of vibration in the hinge when the door swings from a closed to an opened 

position. If the damage is summed at each data point, the simulation time will 

be very lengthy. To reduce the simulation time, a process called peak valley 

slicing is used [1,2]. Peak Valley Slicing (PVS) is a fairly simple mechanism, 

which tracks and extracts the peaks and valleys of all signals to be used in the 

analysis. Figure 5-11 shows the process of PVS, whereby the original complete 

loading consisting of one million data points is converted to one with only 292 

points. When a gate value is entered, which is usually a small percentage of the 

load, the peaks and valleys that fall within that gate value are deleted. Hence, 

the number of data points is reduced. 

This procedure accelerates the analysis and is useful when complex 

loading histories are involved in a fatigue analysis. The combined loading 

history is afterwards normalized and implemented in the analysis. In contrast to 

the torques, the weight does not change throughout the open/close door 

movement. Therefore, the weight history is entered as a simple static offset of 

the stress results from FE and need not be normalized.  

Similar to the S-N approach in the uni-axial fatigue analysis, the load 
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history is compared to the sinusoidal waveform and corrected for mean strain.  

Prior to that, the loading histories are combined with their respective static load 

case strain results. Furthermore, the two load histories from the combined 

torques and weight are superimposed and resolved to a single scalar loading 

history.  

Step 1 

 
Step 2 

 

 
 

Figure 5-11 Combined Loading Histories from PVS 
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5.4.2 Analysis Parameters 

Unlike the S-N approach, the equivalent stress-strain approach involves 

the use of the σ-ε and ε-N curves. In addition, Neuber’s rule is used in the low 

cycle region to correct for plasticity by shifting both σ-ε and ε-N curves upward. 

[1,2,4,19]. The amounts the curves are shifted depend on the extent of plasticity 

involved. Henceforth, the stress and strain results from FE are used to determine 

the amount of plastic deformation in the hinge. The stress vs. strain result is 

plotted at each node from the FEM and the resulting plot compared with the 

baseline σ-ε curve obtained from the smooth specimen testing. This is the main 

reason behind the use of cyclic stress-strain in the FE static analysis. Hence, the 

stress vs. strain plot has the shape of the predefined σ-ε curve and can be 

accurately compared with the corresponding baseline curve (see figure 5-12). 

The ε-N curve is modified by the same amount. 

     σ-ε Curve 

 
1- Modified σ-ε Curve 
2- Original σ-ε Curve 

     ε-N Curve 

 
3- Modified ε-N Curve 
4- Original ε-N Curve 

 
Figure 5-12 Neuber Correction Procedure 

 The modified ε-N curve is further corrected for mean strain. This 

process is similar to the uni-axial S-N approach, where the loading history is 

compared to the sinusoidal waveform. Since the loading history is tensile, the 

  1 
  2 

  3 

  4 
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SWT correction factor is used. SWT corrects for mean strain by pivoting the ε-

N curve about the zero-life vertical axis (see figure 5-12). Miner’s rule is then 

used to sum the damage and predict life (see figure 5-13). 

  Rainflow Histogram 

 

ε-N curve 

 
 

Figure 5-13 SWT Curve and The Linear Damage Summation Procedure 

5.4.3 Simulation Results 

 In summary, the maximum principal strain for each load case (applied 

torque and weight) is combined with the respective loading histories. The 

loading histories are superimposed by the principle of linear superposition and 

cycle counted by the rainflow procedure. The resulting rainflow histogram of 

constant strain and the modified ε-N are used to predict life. A multi-axial 

assessment is then conducted at critical locations in the hinge system to 

determine whether a state of non-proportional loading exists. Figure 5-14 below 

shows the fatigue life contour in the hinge system. It is seen that the crack 

location is on the bottom surface of the DS bracket with a life of 10,470 cycles 

to failure. The log of life is shown on the bottom right corner of figure 5-14. 

The shortest life appears to be around the oval-hole surface, which is in 

contact with the washer. The location of crack at that location is spurious since a 
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surface in contact with a washer cracks only in the presence of machine marks 

or extrusions. This is not the case here, meaning the location and estimation of 

life is incorrect. The occurrence of a crack at that location is due to the presence 

of artificial stresses from FE static analysis. The contact surface of the washer 

and the doorframe was constrained with rigid MPC. As a result, the MPC acts 

as links that concentrate loading at specific nodes, thus causing the high 

stresses. The stresses and strains at loading and constrained nodes should be 

ignored in any FE static analysis.  

 

 

Incorrect Crack Location                                       Correct Crack Location 

Figure 5-14 Fatigue Life Contour Under Multi-axial Stress State 
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 The real hot spot is around the flange in the BS bracket. More precisely, 

the crack location is at the notch radius. The minimum life cycles to failure at 

that location is 99, 600 cycles. The initial value was calculated as 119,000 

cycles. With the inclusion of an average surface roughness value of 213 

microns, the life reduced to 99, 600 cycles. 

 The next step in the analysis is to assess multi-axiality by calculating the 

bi-axiality ratio and angle of spread at the critical location. Figure 5-15 (a) 

displays the plot of Maximum principal strain vs. bi-axiality ratio at every 

reversal in the loading history. Similarly, figure 5-15 (b) shows a plot of 

reversal vs. angle of spread. 

It can be seen from figure 5-15 (a) that the bi-axiality ratio tends to line 

up vertically, not equal but close to zero at the most critical node. This indicates 

that a proportional state of stress exists. As such, the assumption on the 

equivalent stress-strain approach is valid. This observation is further supported 

by examining at the angle of spread (figure 5-15 (b)), which shows that the 

angle is at a constant value. Hence, the predicted life is correct. 

5.4.4 Results Summary and Conclusions 

 The life predicted from FEA is 99,600 cycles compared to the 

experimental value of 72,000 cycles. Moreover, it can be seen that the accepted 

standard value of 260,000 cycles was not reached. This means that the hinge has 

to be replaced after 72,000 cycles. The solution to this problem is to conduct a 

sensitivity analysis in the hinge to improve the life. The sensitivity analysis was 

conducted and the results are illustrated in the appendix. 
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Figure 5-15 Bi-axiality Ratio and Angle of Spread Plots 
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CHAPTER 6 CONCLUSION AND 
RECOMMENDATIONS 

6.1 Conclusion 

 FE based fatigue was used to locate the critical point of crack initiation 

and to predict the life in a door hinge system. Both uni-axial and multi-axial 

fatigue analyses were conducted. The simulation results were experimentally 

validated through full-scale uni-axial and multi-axial fatigue tests conducted at 

Van-Rob Stampings Inc. For the computational approach, two dissimilar FE 

models were built, for uni-axial and multi-axial loading cases, respectively. 

Also, two separate FE analyses were conducted in each loading case; static and 

fatigue. The static analyses were conducted prior to fatigue and the stress and 

strain results were then used as input to fatigue life prediction. The simulation 

results for the uni-axial loading case yielded a life of 309,000 cycles compared 

to 292,000 cycles obtained experimentally. Similarly, a life of 99,600 cycles 

was obtained compared to the experimental value of 72,000 cycles for the multi-

axial loading case.  

 The accuracy of the simulation results showed that the FE based fatigue 

life prediction approach was very effective. Hence, this approach can be 

efficiently employed in place of costly, time-consuming fatigue experiments at 

the preliminary design stage. The simulation results also provide the product 

design specialists with substantial savings, enabling fewer prototypes to be 

tested at the preliminary design level. 

 The standard requirement for the durability of such a hinge in the ground 
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vehicle industry is 260,000 cycles. From the multi-axial results, it is seen that 

the life of the hinge was distinctly lower than the standard requirement. Hence, 

traditional optimization techniques were used to improve the life expectancy of 

the hinge. However, due to the strong influence of cost in design optimization, it 

was seen that the life could only be altered by modifying the notch radius of the 

hinge. The life was only increased to 189,000 cycles under the multi-axial 

loading case. Although the required design life was not attained, the 

improvement in fatigue life enables the replacement of the door hinge only once 

instead of four times during the in-service monitoring phase.      

6.2 Recommendations for Future Work 

 As stated previously, the simulation results were experimentally 

validated. However, it should be noted that fatigue is essentially a statistical 

quantity. Presently, numerical or theoretical approaches can only predict fatigue 

life up to a factor of two. Accurate results are obtained in very few cases, as is 

for the door hinge. The statistical nature of fatigue is illustrated in chapter three, 

where it is seen that the lives evaluated experimentally varies from 72,000 to 

92,700 cycles for the multi-axial loading case. The cause for this discrepancy is 

mainly the surface roughness in the hinge. During the manufacturing process, 

each hinge has a different surface roughness associated with it. Therefore, for 

future research, more hinge samples should be tested and their surface 

roughness measured prior to testing. Furthermore, the surface roughness values 

should be implemented in the simulation procedure. As such, a correlation can 

be found between the experimental and simulation results (see figure 6-1). This 
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correlation can then be used to evaluate fatigue life in different hinge designs or 

other components and structures.  

Comparison between Experimental 
and Numerical Results
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Figure 6-1 Chart of Fatigue Life vs. Surface Roughness 

Moreover, the minimum required life of 260,000 cycles was not 

obtained. Hence, computational optimization techniques have to be used to 

improve the life of the hinge. Hereafter, a sensitivity analysis was conducted on 

the hinge. The analysis included the effects of thickness, material’s UTS, 

surface treatment and notch radius. The results, illustrated in the appendix, 

demonstrate how the life of the hinge can be increased. Hence, it is 

recommended to optimize the hinge taking into account these sensitivity factors. 
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APPENDIX 
 
 
 

Chart of Life vs. Thickness
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Figure A-1 Effect of Thickness on the Fatigue Life of the Hinge 

 
 
 
 

Chart of Life vs. UTS
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Figure A-2 Effect of Steel’s UTS on the Fatigue Life of the Hinge 
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Chart of Life vs. Surface Treatment 
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Figure A-3 Effect of Surface Treatment on the Fatigue Life of the Hinge 

 
 
 
 

 
 
 

 
 
 

 
 

Figure A-4 Notch Radius Increase 
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Chart of Life vs. Notch Radius 
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Figure A-5 Effect of Notch Radius on the Fatigue Life of the Hinge
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