
Magnetic Resonance Image Segmentation and

its VHDL Implementation

b y

Zheng Wei LI

A project

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering

In the Department of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2005

© Zheng Wei LI 2005

PROPEFTY0F
RYER90N d W V m iT Y U8RAHY

UMI Number: EC53043

All rights reserved

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform EC53043

Copyright 2008 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Borrow List
Ryerson University requires the signatures of all persons using or photocopying this thesis.

Please sign below, and give address and date.

Name Address Signature Date

Ill

Magnetic Resonance Image Segmentation and
its VHDL Implementation

Zheng Wei LI
Master of Engineering

Electrical and Computer Engineering Department
Ryerson University 2005

Abstract

From experiments, it is shown that the Co-occunence matrix for one still MR] brain

image does not provide enough information for segmentation. The 6D Co-occurrence

image segmentation idea for 3D MRI image is modified and implemented in 2D MR]

image segmentation. That idea is to take two or three images as input at the same time and

then process them with 3D Co-occurrence matrix. With this kind of processing a lot of

information was brought into the Co-occurrence matrix, which is enough to segment the

images. To compare the result, some other segmentation ideas were tested in this project.

From the results, it can be seen that the MRI image segmentation based on the Co­

occurrence texture analysis with two images or three images sampling is practical and the

result is satisfying.

The segmentation is simulated in MATLAB. After the simulation, the segmentation is

implemented in FPGA using VHDL. MODELSIM is used for FPGA functionality

simulation. The result is close to the MATLAB simulation. This makes it possible to

implement the system with FPGA hardware.

K eyw ords: MRI, image segmentation, Co-occurrence, texture analysis, FPGA, VHDL.

IV

ACKNOWLEDGMENTS

I would like to bring my sincere thanks to my supervisor
Prof. Lev Kirischian for helping me accomplish my studies in
RYERSON. His broad knowledge and rich engineering experience
gave me great help during my studies. I will memorize his kindness
and professional engineering ethics forever.

I need thank all the faculty and staff of the Electrical and
Computer Engineering Department. It is their hardworking attitude
and innovative intelligence that lead this department to a better and
better tomorrow.

The special thanks also need give to my wife and my
lovely daughter for their complete support for my work and study.

TABLE OF CONTENTS
Page

LIST OF FIGURES ix

LIST OF TABLES xii

LIST OF ACRONYMS xiv

Chapter

1 P R O JE C T IN TR O D U CTIO N 1
1.1 Motivation 1
1.2 Objective o f The Project and Approach 2
1.3 Original Contribution 3
1.4 Thesis Organization 4

2 TH EO R Y O V ER V IEW AND RELA TED W O RK S 5
2.1 Image Segmentation and its Applications 5
2.2 Texture Analysis and Co-occurrence Matrix Based

Texture Analysis 7
2.3 General Image Processing System 9
2.4 Related Works 10

3 D EV ELO PM EN T OF TH E C O -O C C U R R EN C E
M A TR IX BASED IM A G E SEG M EN TA TIO N
SYSTEM 13

3.1 Algorithm 13
3.1.1 Six-Dimensional Co-occurrence Matrix 13
3.1.2 Three-Dimensional Co-occurrence Matrix 15
3.1.3 The City Block Distance Histogram of Samples And

Controls o f Image 16
3.1.4 City Block Distance Mapped Image 21
3.2 Applications on Different Materials 23
3.2.1 The Application on Material with Strong Texture

Pattern 23

VI

3.2.2 The Application on Material without Strong
Texture Pattern 24

3.3 The Specific Approach for MRI Brain Image 25
3.3.1 The Result Based On Two Input Images 26
3.3.2 The Feature Vector Analysis 30
3.3.3 The Result Based on Three Input Images 33

4 IMPLEMENTATION OF THE MRI IMAGE
SEGMENTATION WITH HARDWARE
DESCRIPTION LANGUAGE 36

4.1 Block Diagram of Algorithm Implementation In
FPGA Using VHDL 37

4.2 The Implementation o f Co-occurrence Matrix
Calculation 39

4.3 The Feature Vector and LI Distance Calculation
Implemented With VHDL 47

4.4 The SRAM Module for Data Input and Output 52
4.5 The Register Module for Data Delay

and Address Delay 55
4.6 Test Bench Design for Simulation 56
4.6.1 Input Data Preparation and Organization 55
4.6.2 Output Data Organization 58
4.6.3 Timing Analysis of Control Signals 59

5 RESULT COMPARISION, ANALYSIS AND
CONCLUSION 64

References 68

APPENDICES I

APPENDIX A1 ; DEVICE UTILIZATION SUMMARY FOR XC2V2000 I
APPENDIX A2: TIMING REPORT FOR DEVICE XC2V2000 I
APPENDIX A3 : DEVICE UTILIZATION SUMMARY OF XC2 V4000 II
APPENDIX A4; TIMING REPORT OF DEVICE XC2V2000 II

Vll

APPENDIX B : MATLAB PROGRAMS III
APPENDIX B1 : MAIN PROCESSING PROGRAM III
APPENDIX B2: PROGRAM FOR CO-OCCURRENCE CALCUALTION XVI
APPENDIX B3 : PROGRAM FOR IMAGE REDUCTION XVIII
APPENDIX B4: PROGRAM FOR ENTROPY CALCULATION XVIII
APPENDIX B5: PROGRAM FOR ENERGY CALCULATION XIX
APPENDIX B6: PROGRAM FOR CONTRAST CALCULATION XIX
APPENDIX B7: PROGRAM FOR INVERSE DIFFERENCE MOMENT

CALCULATION XX
APPENDIX B8: PROGRAM FOR MAXIMUM PROBABILITY

CALCULATION XX
APPENDIX B9: PROGRAM FOR CORRELATION CALCULATION XXI
APPENDIX BIO: PROGRAM FOR CONTRAST CALCULATION XXII

APPENDIX C: PROGRAM TO TRANSFORM IMAGE DATA INTO
DATA FILE FOR VHDL TESTBENCH XXII

APPENDIX D: PROGRAM TO DISPLAY VHDL TESTBENCH
RESULT XXIII

APPENDIX E: VHDL TESTBENCH PROGRAM XXV

Vlll

LIST OF FIGURES

Figure 2-1 Sample of Image Segmentation 6

Figure 2-2 Images with Strong Texture Pattern 7

Figure 2-3 Images with Less Texture Pattern 7

Figure 2-4 General Pattern Recognition System 9

Figure 3-1 MRI Images 16

Figure 3-2 Samples of Material a 17

Figure 3-3 Samples o f Material b 17

Figure 3-4 Samples o f Material c 17

Figure 3-5 The LI histogram of samples and controls for image 21

Figure 3-6 LI distance mapped image of 3-1 (a) 22

Figure 3-7 RAW Image 22

Figure 3-8 LI Distance Mapped Image of Figure 3-7 22

Figure 3-9 Application on Image with Strong Texture 23

Figure 3-10 Segmented Result Based on One Input Image 24

Figure 3-11 Samples Taken From Two Input Images 26

Figure 3-12 (a) The Segmented Image With Different Gray Levels 28

Figure 3-12 (b) The Segmented Image With Different Colors 29

Figure 3-13 The Result Based On Two Input Images 29

Figure 3-14 The Third Original Image 30

Figure 3-15 Sample of Material a From 3 Images 31

Figure 3-16 Sample of Material b From 3 Images 31

Figure 3-17 Sample of Material c From 3 Images 31

ix

Figure 3-18-A The Feature Vectors of Three Materials 33

Figure 3-18-B Three Images Based Feature Vector Histogram 33

Figure 3-19 the segmented image with 3 samples from 3 original images 34

Figure 3-20 Segmented Brain Image 34

Figure 4-1 Block Diagram of Algorithm Implementation in Hardware
Platform Using VHDL 38

Figure 4-3 Diagram o f Data Concatenation 41

Figure 4-4 Simulation Result o f Data Concatenation 41

Figure 4-5 Addresses Accumulation 42

Figure 4-6 Co-occurrence Calculation 43

Figure 4-7 Co-occurrence Simulation Result 44

Figure 4-8 One Dimension Data Array 44

Figure 4-9 Matrix Version o f Figure 4-3 44

F igure 4-10 Tuming Points 46

Figure 4-11 The Final Result o f Co-occurrence Matrix 47

Figure 4-12 The Co-occurrence Matrix o f 5x15 Image Input Block 48

Figure 4-13 Feature Calculation 50

Figure 4-14 LI Distance Calculation 51

Figure 4-15 Write Operation o f Input Block RAM 52

Figure 4-16 The Read Operation o f Input Block RAM 53

Figure 4-17 Co-occurrence Matrix Ram Write Operation 54

Figure 4-18 Read Operation o f Co-occurrence Matrix 54

Figure 4-19 Input Data Delay 55

Figure 4-20 Address Delay 55

Figure 4-21 The Control Signals o f Co-occurrence Matrix Calculation 60

Figure 4-22 Feature Vector and LI Distance Calculation Control Signals 61

Figure 4-23 The Overview of All The Simulation Waveforms 62

Figure 5-1 FPGA Based Segmentation Simulation Result 65

XI

LIST OF TABLES

Table 2-1 (a) 4x4 Image Matrix 8

Table 2-1 (b) Sample O f Co-occurrence Matrix 8

Table 3-1 4x4 Sample Block 17

Table 3-2 Uniformed Image Block 18

Table 3-3 The Co-occurrence Matrix o f table 3-2 18

Table 3-4 Average Co-occurrence Matrix o f Sample a 19

Table 3-5 Average Co-occurrence Matrix o f Sample b 19

Table 3-6 Average Co-occurrence Matrix o f Sample c 19

Table 3-7 Feature Vector o f Material a 20

Table 3-8 Feature Vector of Material b 20

Table 3-9 Feature Vector o f Material c 20

Table 3-10 Average Co-occurrence Matrix o f Sample a (Figure 3-11) 26

Table 3-11 Average Co-occurrence Matrix o f Sample b (Figure 3-11) 27

Table 3-12 Average Co-occurrence Matrix of Sample c (Figure 3-11) 27

Table 3-13 Feature Vector o f Material a (Figure 3-11) 27

Table 3-14 Feature Vector of Material b (Figure 3-11) 28

Table 3-15 Feature Vector of Material c (Figure 3-11) 28

Table 3-16 Average Co-occurrence Matrix o f Material a (Figure 3-15) 31

Table 3-17 Average Co-occurrence Matrix of Material b (Figure 3-16) 31

Table 3-18 Average Co-occurrence Matrix o f Material a (Figure 3-17) 32

Table 3-19 Feature Vector o f Material a (Figure 3-15) 32

Table 3-20 Feature Vector o f Material b (Figure 3-16) 32

XU

Table 3-21 Feature Vector o f Material c (Figure 3-17) 32

Table 4-1 Addresses Accumulation 42

Table 4-2 Co-occurrence Matrix Result 43

Table 4-3 The Right Co-occurrence Matrix 46

Table 4-4 The Co-occurrence Matrix o f 5x15 Image Input Block 48

Table 5-1 Comparison between PC based System and Hardware Based System 66

xui

LIST OF ACRONYMS

FPGA-----Field Programmable Gate Array

MRI Magnetic Resonance Image

2D ------ 2 Dimension

3D -------3 Dimension

RAM ------Random Access Memory

SRAM— Static Random Access Memory

PC............ Personal Computer

DSP-------Digital Signal Processing

IIGGAD— Intensity(i), Intensity(k), Gradient magnitude(i). Gradient magnitude(k), Angle

and Distance

HD--------- Intensity(i), Intensity(k), and Distance

LI Distance— City Block Distance

IDM------- Inverse Difference Moment

M P---------Maximum Probability

XIV

CHAPTER I

PROJECT INTRODUCTION

1.1 Motivation

In recent years, the achievements in semiconductor have made it possible to

implement some very complex algorithms into hardware. One of the greatest achievements

is the Field Programmable Gate Array (FPGA) technology. Nowadays, there are more and

more logic resources in FPGA, its lower price and higher capacity and especially its unique

architecture has encompassed a lot of aspects of digital image and video processing. Its

high speed has made it possible to do real-time image and video processing. The rapid

prototyping character of FPGA also gives the engineers great help in changing the design

flexibly. Its platform character also brings the flexibility to test multiple algorithms without

wasting time on multiple hardware platforms.

For more than one century, scientists and engineers have been and continue

trying to create the “intelligent machine”. The computer is one o f such machines. Digital

Image Processing, Digital Audio Processing and Digital Video Processing are all the

research subjects. At the same time the computer system engineers are trying to implement

the newest algorithm with the most advanced technology. Among the targets the scientists

and engineers are searching for, the visibility is one of the most important one. With

visibility, the machine can recognize the object. The development of this kind of

technology has been widely used everywhere, such as the vehicle plate recognition system,

finger print recognition system.

In such systems, partial “machine vision” functions are implemented. In these

systems, image segmentation is one of the very important steps for a machine to recognize

the target. So it has always been an interesting and important subject for engineers to

implement the new segmentation methods with the cutting edge technology. Driven by the

same purpose, in this project, the Co-occurrence matrix based image segmentation is

simulated in MATLAB and implemented in FPGA.

1.2 Objective of The Project and Approach

Image segmentation is an important and perhaps the most difficult low-level task

[I]. Its application is widely spread into almost everywhere o f image processing.

The target of this project is:

1. To create a new segmentation algorithm with the texture analysis technique

and implement it on hardware platform (FPGA card) using VHDL Language. The

application is on the Magnetic Resonance Image (MRI). The 2 Dimensions (2D) Co­

occurrence matrix based image segmentation algorithm will be altered to fit the MRI image.

2. The algorithm will be verified by simulation in MATLAB. The result from

MATLAB will be compared with some traditional ways of image segmentation.

3. The VHDL implementation and simulation for FPGA based platform. Because

of the natural difference between computer based MATALB simulation and hardware

based ModelSim simulation, the results were compared. The speed, cost is different

between the computer based system and FPGA based system. VHDL is hardware

description language, so it is hardware oriented, so a lot o f functions such as division and

logarithm in MATLAB need a lot o f logic resources in FPGA. So the implementation in

FPGA is quite different with its counter part in MATLAB. Some implementation

techniques will be emphasized in this project.

1.3 Original Contributions

Texture feature analysis has been extensively used in image analysis. The 2D

texture analysis has been studied pretty well.

1. There are a lot o f discussions about 3 Dimensions (3D) texture analysis also

[8]. The 2D Co-occurrence matrix is useful to do texture analysis. The Co-occurrence

matrix based image segmentation is quite effective. As it can be seen, the MRI image does

not have too much texture information inside. But is it possible to do the segmentation with

the texture analysis based Co-occurrence matrix? In this project, such a segmentation idea

is presented and verified.

2. As it is recognized in the engineering field, there is always a distance between

the theoretical result and practical performance. It means it is not always possible to

implement the theoretical simulation with real hardware. So in this project, the Co­

occurrence matrix based image segmentation is implemented in FPGA with VHDL and its

result is compared with the MATLAB simulation result. Some ideas o f implementation

such as Co-occurrence matrix calculation, logarithm calculation are implemented, tested

and presented.

3. In this project, MATLAB and MODELSIM FPGA simulation are connected

by the design o f test bench. This is useful for further studies and research.

1.4 Thesis Organization

This thesis has six chapters and two appendices. A brief introduction is held

in the first chapter. The motivation, objective and approach will be presented in this

chapter. The second chapter is theory overview and related works. Image

segmentation theory and texture analysis and Co-occurrence matrix is discussed here.

The general image processing system is introduced in this chapter also. The related

works and some precedent studies and applications are in this chapter.

Chapter three is “Development of the Co-occurrence Matrix Based MRI

Image Segmentation System”. In this chapter, the whole process of the IID Co­

occurrence Matrix based segmentation method is described. The simulation result

from MATLAB is provided and analyzed.

Chapter four provides the FPGA implementation process of the

segmentation method discussed in previous chapter. The comparison between FPGA

and MATLAB based simulation is presented. Different hardware modules described

by VHDL is also discussed in this chapter.

Chapter five is result comparison and analysis. The conclusion and future

work will be addressed in this chapter also.

The MATLAB simulation program will be provided appendix A and VHDL

simulation program will be provided in appendix B, C, D. Appendix E will provide

the LUT for calculations.

CHAPTER II

THEORY OVERVIEW AND RELATED WORKS

2.1 Image Segmentation and its Applications

As mentioned in the introduction part, image segmentation is a very difficult low

level task. Image segmentation has been extensively used everywhere o f image processing,

such as image compression, image retrieval, object recognition. Basically the image

segmentation process is defined as one that partitions a digital image into disjoint (non­

overlapping) regions [2]. It refers to the grouping o f image elements that exhibit “similar”

characteristics [1], Since seventies scientists have researched on the 2D image

segmentation. Till now some mature and practical ideas have been developed and proved

like the image segmentation by thresh-holding (global thresh-holding, adaptive thresh-

holding, optimal threshold selection), gradient-based segmentation methods, edge

detection and linking. All these ideas are belong to region

approach, boundary approach and edge approach respectively. The region approach

attempts to assign all the pixels to different particular object or region, like the histogram

techniques. If the algorithm tries to locate the boundaries that exist between the different

regions, it is called boundary approach, like the gradient image THRESHOLDING and

LAPLACIAN Edge Detection. The edge approach is between the region approach and

boundary approach. It tries to identify the pixels on the edge, it means the pixels between

the different regions. After the pixels are identified, it will be linked to form the boundary.

Recent years, a lot o f new algorithms have been created, like the 3D Co-occurrence matrix

based image segmentation relies on the texture pattern o f the object, the segmentation using

genetic and hybrid search method [3] and the brain tissue segmentation based on

Gegenbauer reconstruction pre-processing [4],

Figure 2-1 is one sample of image segmentation. 2-1(a) is the original image and

2-1 (b) is the segmented image. This sample is segmented by the region approach.

(a) Original Image (14) (b) (Segmented Image (15)

Figure 2-1 Sample of Image Segmentation

Because image segmentation is a low-level task, so its applications have been

widely spread everywhere of image and video processing such as image coding and

content-based retrieval [20], feature extraction, recognition and extraction.

In the real world, with the fast development o f the micro-electronics technology,

the application o f the segmentation based image processing system is becoming deeper and

wider. The vehicle plate recognition system can be seen on the high way and the apartment

building. The high end industrial inspection system can be found in all kinds o f industries.

2.2 Texture Analysis and Co-occurrence Matrix Based

Texture Analysis

Texture analysis has drawn a lot of attention in the passing decades. With

the different texture type and the specific image analysis problems, texture analysis

can be found in a lot o f applications. Figure 2-2 is some pictures with strong texture

pattern in them. The picture on the left side is some kind of fabric and the picture on

â «

Fabric [16] Pebble Wall [17]
Figure 2-2 Images with Strong Texture Pattern

the right side is an image o f a pebble wall. Figure 2-3 is some pictures with less

texture pattern in them. The picture on the left side is the research subject o f this

Figure 2-3 Images with Less Texture Pattern [18]

project, the MRI brain image. The picture on the right side is the picture of the Mars

taken by the Mars Pathfinder. The tissue characteristic on the above four images are

all different. So the ways to segment these images are different. For images with

strong texture information, the texture analysis is needed for segmentation. Among the

different texture analysis techniques, Co-occurrence matrix is a special one. Haralick

et al. [5] and Galloway [6] suggested the gray level Co-occurrence m atrix and

run length matrix and they have been extensively used in texture classification and

segmentation. The successful synthesis of textures motivates the use of Co-occurrence

as features for texture classification [9].

Table 2-1 is one sample of the Co-occurrence Matrix. Table 2 -1(a) is a 4x4

image matrix, the gray level is from 0 to 3. Table 2 -1(b) is the Co-occurrence Matrix

of 2-1 (a) with distance 1 and direction 0 degree. Each element in Table 2-1 (b) shows

the occurrence rate of the gray-level at distance 1 and direction 0. For example, the

“2” (shaded) means that it happens twice from gray-level “ 1” to gray-level ”2”, which

is exactly what happened in Table 2-1 (a).

Table 2-1 (a) 4x4 Image Matrix

1 1 2

3 3 3 0

1 2 3 3

2 1 0 1

Table 2-1 (b) Sample of Co-occurrence Matrix

0 1 0 0

1 . 1 2 1

0 1 1 1

1 0 0 3

As it can be seen from Table 2-1, the Co-occurrence Matrix is to identify the

occurrence rate o f each gray level at certain distance and direction. Obviously it is a

very good tool for texture analysis.

2.3 General Image Processing System

Most o f the image processing system has some common parts like image capture,

image segmentation and feature extraction, classification and recognition.

Input

Classification

Segmented
Image

Image
Segmentation

Recognition

Feature
Vector

[xl, x2, x3...Xn]

Figure 2- 4 General Pattern Recognition System

A general image processing system, or more specifically the pattern recognition

system was presented in Figure 2-4. As we can see from the above model, image

segmentation process plays a fundamental role in all the subsequent interpretation process,

like image retrieval, pattern recognition, and feature analysis.

The image processing system can be divided into two categories. The first

category is the PC based image processing system, which will process the image with

software. The second category is the hardware based system. Normally the hardware based

system is better in cost, processing speed and size. In this project, the MATLAB simulation

can be considered as the PC based image processing system and the VHDL implementation

is developed towards the direction o f hardware based system.

2.4 Related Works

As it is mentioned in previous chapters, image segmentation is very important. So this

subject has been extensively studied. A lot o f traditional ways of image segmentation are

based on gray-level thresh-holding, image gradient or edge detection and linking. A lot o f

new algorithms are appearing and seem to be effective, like the “Adaptive Image

Segmentation Based on Color and Texture” [11] proposed by Jinqing Chen from ECE

department of Northwestern University and Aleksandra Mojsilovic from IBM research

centre. The adaptive algorithms are gradually taking more places nowadays. Bir Bhanu

from University o f California presented the adaptive genetic way of segmentation in

“Adaptive Image Segmentation Using Genetic and Hybrid Search Methods” [3].

Haralick et al. [5] and Galloway [6] suggested the gray level Co-oceurrenee

matrix and run length matrix and they have been extensively used in texture elassification

and segmentation. Gabriele Lohmann used the Co-occurrence matrix as the tool o f texture

analysis and synthesis in “Analysis and synthesis of Textures: A Co-oceurrenee-Based

Approach”. Vassili etc presenting a new method of MRI texture analysis using Co-

occurrenee matrix. That method is based on extended, multi-sort Co-occurrence matrices

that combine intensity, gradient and anisotropy image features in a systematie and

consistent way. This method has pushed the application o f Co-occurrence matrix to a new

10

high point. That also means the hardware realization o f the algorithm will be too expensive,

that makes it impossible to do it with current technology.

There are different ways to implement the segmentation algorithms. Since the

computer was invented, people have been using it as the implementation tools, especially

now days when computers are becoming more and more powerful. The algorithm can be

programmed by different languages such as C++, Basic, Java or MATLAB. But no matter

which program to use, there is always a computer, which is too big in size and too

expensive in cost and also comparably slow in speed. Because this type of implementation

always needs to be programmed, so it is called software based.

So when real-time processing is in need, the hardware based implementation is

always the first choice. The hardware based systems are also different by the hardware it

uses. For some small system, the micro-processor based embedded system is normally used.

Before the Field Programmable Gate Array (FPGA) technology became powerful enough,

the Digital Signal Processing (DSP) based system was very popular. One sample o f this

system is developed by V.Gemignani etc. in “Real-Time Implementation of A new Contour

Tracking Procedure in a Multi-Processor System” [12]. With the development o f the FPGA

technology towards the direction of larger capacity, faster speed, much more flexible

configuration, the FPGA based system is becoming more and more popular. Some system

is based on DSP+FPGA combination. A lot o f systems are based on FPGA only. Mr.

Steffen Klupsch presented a typical system in [13]. A very important feature o f FPGA is so

called “rapid prototyping”. The engineers can have the hardware prototype in hand at the

beginning stage o f the project, but there still leaves a lot more space for them to change the

11

design or even the methodology without changing the hardware, because that type o f job

can be done in VHDL.

S u n i i n a . r y ! Brief description o f image processing and segmentation theory. The

general image processing system is discussed. The implementation with PC and hardware

were compared in this chapter. The related works and precedent studies were presented in

this chapter.

12

CHAPTER III

DEVELOPMENT OF THE
CO-OCCURRENCE MATRIX BASED IMAGE

SEGMENTATION SYSTEM

Introduction:
This project is trying to find a way to segment the 2D MRI image with Co-

Occurrence matrix. As it is known the Co-occurrence matrix has been widely used in image

texture analysis, but the application in image segmentation be can rarely seen. One simple

reason is that there is no obvious texture structure in MRI brain image (this is proved

through experiment in this project). From the paper o f Vassili A. Lovalev al. [8], some

innovative ideas for the Co-occurrence matrix’s application in the 3D MRI image is

brought up. Could the same idea be used on the 2D image? How and what to modify and

then improve it to fit the 2D MRI brain image segmentation? Is the result acceptable? In

this project all these questions were answered.

3.1 Algorithm

As discussed in previous chapter, the six dimensional Co-occurrence matrix

Segmentation has to be modified to fit the 2D image. This section will focus on this.

3.11 Six-Dimensional Co-occurrence Matrix

I f given a direction and a distance (one pixel, two pixels, etc) in an image. Then

the element o f the Co-occurrence matrix P for an object is the number o f times, divided

13

by M, that gray levels i and J occur in two pixels separated by that distance and direction in

the object, where M is the number of pixel pairs contributing to P. The matrix P is (NxN),

where the gray scale has N shades of gray. Once there is the Co-occurrence matrix, texture

features can be computed from it.

The author of [8] proposed a new 3D texture analysis of magnetic resonance imaging

brain datasets. It is based on extended, multi-sort Co-occurrence matrices that employ

intensity, gradient and anisotropy image features in a uniform way [8]. This idea does not

change the basic idea of Co-occurrence, but increase the sensitivity and specificity of Co­

occurrence descriptors. And the new extended 3D Co-occurrence idea has the rotation and

reflection invariance, which is very important to the texture analysis of the MRI image.

According to this article, if we have an arbitrary voxel (voxel is the element of the 3D

image) pair (/, k) defined on discrete voxel lattice by voxel indexes i = (x - , y . , Z j) ,

k = and with the Euclidean distance d { i , k) . The intensities o f these voxels are

/(i)and I {k) , local gradient magnitudes by G{i), G(k) , and the angle between their 3-D

gradient vectors by a{i,k). Then the general, six-dimensional (6D) Co-occurrence matrix is

defined as [8]

W =\\w{I{i) , I{k) ,G{i) ,Gik),ai i ,k) ,d{i ,k)\ \ (1)

G(i) = ^G^Ai) + Gl i i) + G^[i) (2)

a{i,k) = cos~' {g{ i)»g{k)) (3)

Equation (1) is consisted of “Intensity (1), Intensity (k), Gradient (I), Gradient (K), Angle

(1,K) and Distance (I, K). So this kind o f Co-occurrence matrix like (1) is called IlGGAD

Matrix [8], it is a 6D matrix.

14

3.1.2 Three Dimensional Co-occurrence Matrix

From IIGGAD, some reduced versions o f the above IIGGAD matrix, such as

intensity (IID), gradient magnitude (GGD) and gradient angle (GAD) matrices can be

derived [8], As the author mentioned, the IID version o f the IIGGAD matrix is the simple

3-D version o f the traditional Co-occurrence matrix. And in this project, this version will

be used to segment the 2-D MRI image. There are several mature texture features based on

this IID Co —Occurrence [8]. (P is the Co-occurrence matrix element)

ENTROPY: = (4)
i=l y=l

INERTIA: ̂= (5)

ENERGY: ^ =
i=l /=l

where x and y are elements o f the Co-occurrence matrix.

15

(6)

CONTRAST: C = I z - j l R . ̂ C)
/=: y=| ' I J

INVERSE DIFFERENCE MOMENT (IDM):

V N

/=i y=i

M AXIM UM PROBABILITY

MP = MAX{P.^) (9)

CORRELATION:

(10)

According to [8], LI distance (City Block Distance) is needed to classify ROl

(region o f interest) or AOI (area o f interest) and the background, “sample” is for ROI and

“control” is for background in this project. LI distance is defined as follow:

(11)-----------

i= l (=1

F™, F "are vectors of Co-occurrence feature descriptor for samples and controls, they are

made up by the features like ENTROPY, ENERGY, CONTRAST, INVERSE

DIFFERENCE MOMENT (IDM) and MAXIMUM PROBABILITY (MP).

3.1.3 The City Block Distance Histogram of Samples

and Controls of Image

The target for this project is to segment the different tissues in the MRI images based

on their different texture character. In order to have a more straightforward idea about this

project, here is the brief introduction of the original image used in the test. Figure 3-l(a)

(a) 0)
Figure 3-1 MRI Images

(Courtesy o f the Biomedical Engineering Research Group of Ryerson University)

16

and Figure 3-1 (b) are both 256x256 MRI image. Both images have 256 gray levels. Figure

3-7 is another image with 256 gray levels. The purpose of getting different sizes and

different types o f images is to check if there is any difference in the segmentation results.

At the beginning of this project, one o f the tissues in the image was used as

sample and the other as controls (background). Nine samples were taken from the ROI and

Figure 3-2 Samples of Material a

Figure 3-3 Samples of Material b

Figure 3-4 Samples of Material c

also from backgrounds. Figure 3-2, 3-3 and 3-4 are the samples o f materials a, b and c

respectively. The samples are taken by 4x4 block, so there are 16 pixels in one sample. The

images shown in Figure 3-2, 3-3 and 3-4 are enlarged 7.5 times to be visible. All the

sample images have to be uniformed before the calculation o f Co-occurrence matrix. As it

is mentioned before, the raw image has 256 gray-levels. If the image is not uniformed,

there w on’t be any useful information in the Co-occurrence Matrix. Table 3-1 shows a 4x4

Table 3-1 4x4 Sample B ock

180 197 90 27

27 250 125 94

94 29 34 32

67 78 56 67

17

image block. The Co-occurrence matrix of this block will be a 256x256 matrix, most o f its

elements will be “0” except at location (180, 197), (197, 90), (90, 27), (250, 125), (125, 94),

(94, 29), (29, 34), (34, 32), (67, 78), (78, 56), (56, 67), there is a “1” at these locations. But

even these “ l ”s are so sparse, there won’t be enough information for processing. If the 4x4

block is uniformed by reducing the gray-level to 4:

0— 63->0, 64— 127->1, 128— 191-^2, 192— 2 5 5 ^ 3

the uniformed image shows in Table 3-2.

Table 3-2 UnilTtrmed Image Block

3 3 1 0

0 3 1 2

1 0 0 0

0 0 0 0

]o-occurrence Matrix of Table 3-2 at distai

Table 3-3 The Co-occurrence Matrix o f '

ice “ 1” and dii

fable 3-2

5 0 0 1

2 0 1 0

0 0 0 0

0 2 0 1

The Co-occurrence matrix of the reduced image has more useful information.

From the samples shown above in Figure 3-2, 3-3 and 3-4, the Co-occurrence matrix of

each sample block can be calculated after reducing them into 4 gray-levels. Then the values

of the corresponding elements of the 9 Co-occurrence matrixes are added together, then

18

divided by 9, the average Co-occurrence matrix for all sample ROI can be calculated as

shown in Table 3-4, 3-5, 3-6, for material a, b and c respectively.

Table 3-4 Average Co-occurrence Matrix o f Sample a

3.0000 0.6667 0.7778 0.2222

1.2222 0.7778 0.2222 0.2222

1.1111 0.7778 O. l l l I 0.3333

0.5556 0.5556 1.1111 0.3333

Table 3-5 Average Co-occurrence Matrix o f Sample b

1.7778 0.7778 0J333 0.5556

0.5556 1.0000 0.7778 0.4444

0.6667 0.5556 1.2222 0.8889

0.1111 0.4444 0.5556 1.3333

Table 3-6 Average Co-occurrence Matrix o f Sample c

2.2222 0.7778 0.3333 0

1.1111 0.6667 1.0000 0.2222

0 1.0000 1.1111 0.8889

0.2222 0.4444 0.7778 1.2222

Table 3-4 is the average Co-occurrence matrix o f material a. Table 3-5 is the

average Co-occurrence matrix o f material b and Table 3-6 is the average Co-occurrence

matrbr o f material c. Each ROI’s feature vector can be calculated from the average Co­

occurrence matrix. Each feature vector consists o f “Entropy”, “Energy”, etc, defined by

equation (4) to (10) respectively. Table 3-7, 3-8, 3-9 is the feature vector list o f material a,

b and c.

19

Table 3-7 Feature Vector of Material a
Sample Quantity 9
Entropy 0.4129
Energy 16.2222
Contrast 22
Inverse Difference Moment 5.0864
Max Probability 3

Table 3-8 Feature Vector of Material b
Sample Quantity 9
Entropy -2.5270
Energy 11.6296
Contrast 17.6667
Inverse Difference Moment 4.6574
Max Probability 1.7778

Table 3-9 Feature Vector of Material c
Sample Quantity 9
Entropy 0.1339
Energy 13.7531
Contrast 11.5556
Inverse Difference Moment 5.8302
Max Probability 2.2222

So LI distance can be calculated from the ROI feature vectors verses the ROI

samples’ average feature vectors. For the samples of the background, the same thing can be

done: get each background sample’s feature vector and calculate the LI distance with these

feature vectors verses the background samples’ average feature vector.

To test the effectiveness of LI distance, 18 LI distances were calculated. The

histogram of the LI distance can be drawn. Figure 3-5 is the LI histogram o f Figure 3-1 (b)

The Y axis is the LI distance value. On the X axis, 1 to 9 is the LI distance o f the

background samples versus the ROI samples’ average feature vectors, 10 to 18 is the LI

distance of the background samples versus background samples’ average feature vectors.

From this histogram, it can be seen there is very strong difference between the LI distance

20

o f the ROI and background. That means the segmentation can be done based on the Co­

occurrence matrix.

10 12 14 16 18 20

3.1.4

Figure 3-5— the LI histogram of samples and controls for image

L 1 Distance Mapped Image

From previous section, it has approved that LI distance is effective to do the

segmentation. Based on that, a 5x5 window is running through the image. Each window’s

LI distance is calculated (each window’s feature vector verses the average ROI feature

vector). Different gray levels were assigned to the different LI distance in the new image.

The gray level based LI probability map image is shown as below. Figure 3-6 is the LI

distance mapped image o f Figure 3-l(a). Figure 3-8 is the LI mapped image o f Figure 3-7.

Comparing with the original images, these images show not only the LI distance, but also

the segmentation information. The segmentation seems to be well done, but obviously this

can not be used as the final segmentation resu lt..

21

Figure 3-6 LI distance mapped image o f 3-1(a)

In Figure 3-6 and Figure 3-7, the LI distance mapped image of image 3-6 and 3-8 shows

clearly the edges o f the different tissues. But this is not the aim of segmentation. For

t v

Figure 3-7
RAW Image

Figure 3-8
LI Distance Mapped Image of Figure 3-7

segmentation, different materials need to be separated clearly with different colors or

different gray scales to identify different parts in the image. But for the LI distance, it is

22

very hard to set the different threshold. LI distance mapped image might be used for edge

detecting, but it needs more research and studies. So far, it proves LI distance is a very

good feature for segmentation, but how to use it becomes a new problem.

3.2 Applications on Different Materials

It seems if the threshold o f the LI distance can be found, the segmentation problem

can be easily solved.

3.2.1 The Application on Material with Strong Texture Pattern

Co-occurrence matrix well describes the occurrence frequency o f the different gray-

levels at certain distance and direction, so it should have good segmentation result on

images with strong texture. To prove this, one example is given here. As shown in Figure

3-9(a), it is an image with very strong texture infonnation inside. Two types o f samples are

" 1

(b)(a)
Figure 3-9 Application on Image with Strong Texture

23

taken from the original image, from these samples, the feature vectors are calculated. Then

a 4x4 window is running through the image, the feature vector of each block will be used to

calculate the LI distance against the two different textures. The smaller LI distance means

the current block belongs to that texture with which it is calculating the LI distance. Figure

3-9(b) is the segmented image, the result is satisfactory. So the next step is to apply this

technique on the images without strong texture information.

3,2.2 The Application on Material without Strong Texture

Pattern

Section 3.2.1 proves that the algorithm to be effective on the segmentation for

images with strong texture. But as it is so obvious for us, the MRI brain image datasets do

not have very strong texture information inside. What is the result will be if same idea is

applied to such images? So for images in Figure 3-1, instead of taking only two kinds o f

samples, three kinds of samples are taken from the original image.

i S - '

Figure 3-10 Segmented Result Based on One Input Image

24

Three average feature vectors for these three kinds o f samples need to be calculated. And

then the running window will go through the image. For each window, first to calculate the

LI distance verses all three samples to get three LI distance for each window (or the small

image block). Second to look for the least LI for this window, the least LI means this

window is very close to that kind o f sample. Then assign different colors or gray levels to

this kind o f tissues. After finishing running the whole image, a new segmented image is

stocked in a matrix. This image will only have three different colors or three different gray

levels. So the purpose o f segmentation is achieved. According to above ideas, segmentation

is done in the new programs. The segmentation result is shown in Figure 3-10.

Unfortunately, the result is not acceptable. If take a look back at the sampling on the

original image, it can be found out that when the samples are taken from one kind o f

material, there are almost no useful information in the Co-occurrence matrix of the samples.

The histogram o f theses samples LI distance verses the average feature vectors proves this.

From the original concept o f Co-occurrence, it is known that it is obvious that the Co­

occurrence for this kind o f material is so random and sparse that can rarely provide any

useful information. The different tissues taken from the MRI brain image are almost

uniform, that means there is not much texture information in it. It will be discussed it in

the next section.

3.3 The Specific Approach for MRI Brain Image

Something has to be changed in order to segment the MRI images successfully

with the IID Co-occurrence matrix. After some trial and tests were done, the solution

is found.

25

3.3.1 The Result Based On Two Input Images

From the medical knowledge of the MRI brain images, it is known that Figure 3-l(a)

and Figure 3-1(b) are the same images but with different features shown up. With the

different feature shown up, these two images have different gray-level at the same spot.

That is what the Co-occurrence matrix needs to do the segmentation. This gives a chance to

use the Co-occurrence matrix. So this time three kinds of samples will still be taken. A 4x4

sample block is taken from image a, and another 4x4 sample from image b, these two 4x4

block form a 4x8 sample block. Nine such samples for each kind o f materials will be taken

in total. Figure 3-10 is the samples taken from two images. The average Co-occurrence

matrix can be calculated. From the average Co-occurrence matrix, the average

I I I
Sample a Sample b Sample c

Figure 3-11 Samples Taken From Two Input Images

feature vector of the three materials will be calculated. The average Co-occurrence matrix

is shown in Table 3-10, 3-11, 3-12.

able 3-10 Average Co-occurrence Matrix o f Sample a (Figure 3-11-a)

19.8889 0.5556 0.8889 3.6667

0.1111 0.5556 0.5556 0.2222

0 0.3333 1.4444 1.3333

0 0 1.1111 14.3333

26

Table 3-11 Average Co-occurrence Matrix o f Sample b (Figure 3-11-b)

20.0000 0.5556 2.0000 2.4444

0 1.1111 0.5556 0

0 0.4444 5.7778 1.4444

0 0 1.6667 9.0000

able 3-12 Average Co-occurrence Matrix o f Sample c ('Figure 3-11-c)

5.3333 2.2000 0.7333 0.1333

1.8000 5.9333 2.8667 0.6667

0.7333 3.2667 7.9333 2.4667

0.4000 1.0667 2.2667 7.2000

After all the feature vectors were got, a 4x8 running window will be used to sample the

original images. The LI distance will be calculated verses the three average feature vectors.

Once the least LI is found, the current sample block belongs to that kind o f material that

calculated the LI distance with. The current block is labeled with different colors or

different gray-level into a new image matrix. The segmentation would be done once finish

running through the whole image. The average feature vector is shown in Table 3-13, 3-14

and 3-15.

Sample Quantity 9
Entropy 146.2917
Energy 621.4444
Contrast 41.4444
Inverse Difference Moment 4.6852
Max Probability 19.8889

27

Table 3-14 Feature Vector of Material b (Figure 3-11-b)
Sample Quantity 9
Entropy 135.4420
Energy 531.2716
Contrast 34.6667
Inverse Difference Moment 5.4383
Max Probability 20

Table 3-15 Feature Vector of Material c (Figure 3-11-c)
Sample Quantity 9
Entropy 90.3208
Energy 219.4533
Contrast 32.4667
Inverse Difference Moment 15.7259
Max Probability 7.9333

Figure 3-12 and Figure 3-13 are the segmented images o f Figure 3 -la (or 3-lb).

Figure 3-12 is shown with different gray scales and Figure 3-13 is shown as different colors.

It can be seen that the image is very well segmented according to their texture structure.

Because only 3 samples are taken from the original image and no sample were taken from

the black background, so it seems a messy in the area around the brain MRI. But that does

not affect our aim of segmentation the MRI brain image.

Figure 3-12 (a) The Segmented Image With Different Gray Levels

2 8

Figure 3-12 (b) The Segmented Image With Different Colors

The above results are based on the original image from 3 -1(a) and 3 -1(b). I f the two

input images are exchanged. The segmentation result is like Figure 3-13. Please notice that

the edge o f the image is processed, so it looks better.

1

Figure 3-13 The Result Based On Two Input Images

29

3.3.2 The Feature Vector Analysis

As shown in Figure 3-11. 3-12 and 3-13, the segmented results are acceptable but

there is still space for improvements. It seems that the sampling idea used to construct

some texture is working well. So if continue to do this with more images, the result should

be much better. Another original image is added in the sampling. This time, a 5x5 sampling

block is used instead o f 4x4 block. By doing this, only the center point o f each block was

set to the level it belongs to. So the final segmented image will be much smoother. The

third image is shown in Figure 3-14.

Figure 3-14 The Third Original Image
(Courtesy o f the Biomedical Engineering Research Group of Ryerson University)

Same as the two input images, for each kind o f material, nine samples are taken

firom 3 original images at the same location. Because it is time consuming to take all the

samples manually, so the sample capture program is useful here. The 3 samples are shown

as Figure 3-15, 3-16 and 3-17

30

Figure 3-15 Sample of Material a From 3 Images

Figure 3-16 Sample o f Material b From 3 Images

Figure 3-17 Sample o f Material c From 3 Images

From this three samples, the average Co-occurrence matrix are shown in tables below.

Table 3-16 Average Co-occurrence Matrix of Material a (Figure 3-15)

19.8889 0.5556 0.8889 3.6667

0.1111 1.6667 1.6667 0.4444

0 1.8889 18.0000 1.6667

0 0 52222 14.3333

Table 3-17 Average Co-occurrence Matrix of Material b (Figure 3-16)

20.3333 2.0000 3.0000 0

0 4.2222 1.5556 1.5556

0 1.1111 11.6667 3.6667

0 0 0.4444 20.4444

31

Table 3-18 Average Co-occurrence Matrix of Material c (Figure 3-17)

34.3333 3.0000 0 4.2222

3.0000 4.6667 0 0.7778

0 0 0 0.1111

0 0 0.1111 19.7778

Using the above average Co-occurrence matrix, the feature vectors are in Table 3-19,

Sample Quantity 9
Entropy 239.1657
Energy 978.9383
Contrast 49.4444
Inverse Difference Moment 11.8519
Max Probability 1&8889

Table 3-20 Feature Vector of Material b (Figure 3-16)
Sample Quantity 9
Entropy 242.7560
Energy 1.0181e+003
Contrast 27
Inverse Difference Moment 9.9167
Max Probability 20.4444

Table 3-21 Feature Vector of Material c (Figure 3-17)
Saniple Quantity 9
Entropy 287.9804
Energy 1.6282e+003
Contrast 47.3333
Inverse Difference Moment 6.8858
Max Probability 34.3333

3-20 and 3-21. Figure 3-18-A is the feature vectors of three different materials. Figure 3-

18-B is the plotting of 5 features of the 3 different samples. On the X axis, 1-9 is sample 1,

9 to 18 is sample 2, 19 to 28 is sample 3. It is obvious that the 3 images based feature

vectors are very effective The LI distance is the combination of all the features. The image

is segmented based on LI distance.

32

: :
1400 -

-

§ -lOOCI -

J « 0 -

600 -

jlOD -

200

°C
J U

2
Entropy

M a te r ia l
M a te r ia l 5
M a te r ia l C

16 18
M a x R /o bIDM b j l i t y

Figure 3-18-A The Feature Vectors of Three Materials

300

I8
I

250,

•s >. 200
I

150.

■a 30

"140;

2000

I 1500

25

I

Figure 3-18-B Three Images Based Feature Vector Histogram

3.3.3 The Result Based on Three Input Images

For each kind o f material, nine samples are taken from 3 original images at the

same location. The sample capture program is used here. This time a threshold was held to

filter out the background (pure black), so the final result looks much nicer. All the

33

procedures are the same as the previous one. The final segmented image is shown in Figure

3-19. In Figure 3-19 it is clear to be seen that around the brain there are skin and some

other stuff. That kind of stuff is not needed in the brain segmentation. If taken out that stuff

in this project, the result is shown like Figure 3-20. In order to compare, the gray level is

assigned differently.

»

Figure 3-19 the segmented image with 3 samples from 3 original images

Figure 3-20 Segmented Brain Image

34

From Figure 3-19 and Figure 3-20, a conclusion can be drawn. The result with

sampling from 3 images is much better than the one with sampling from two images. The

materials are almost clearly segmented. That proves the idea o f constructing the texture and

then using Co-occurrence to analyze the brain image is a practical way.

S u n i n i a , r y ; The whole process o f the development o f the IID based MRI image

segmentation system is presented in this chapter. Algorithm modification was discussed in

details. The trial and test approach for the approval o f the algorithm is included in this

chapter. The effectiveness o f LI distance and feature vectors is approved. The final result is

presented and approved to be effective.

35

CHAPTER IV

IMPLEMENTATION OF MRI IMAGE
SEGMENTATION WITH HARDWARE

DESCRIPTION LANGUAGE

Introduction;

One important part of this project is to implement the segmentation algorithm in

FPGA using VHDL language. All the simulations in MATLAB in section III of this project

can be considered the PC based implementation. In MATLAB, the images are considered

as matrixes and MATLAB is pretty good at processing matrixes. The PC based

implementation also provides the engineers and researchers very good debugging

environment. So at the algorithm development stage, the PC based implementation is

necessary and useful.

In most of the cases, the implementation has to be on a hardware device. DSP (Digital

Signal Processing) device provides a very good solution because some of the DSPs provide

floating point calculations, high speed real time processing, etc.

With the development of FPGA technology, it’s becoming more and more popular in

digital signal processing. Its reconfiguring and parallel processing capability is very useful

for image and video processing.

The FPGA implementation with VHDL is hardware based, so some operations like

matrix processing in MATLAB needs a lot of logic resources. A lot of such processing as

division, multiplication and logarithm or floating point calculation become quite different

in VHDL comparing with their counterparts in MATLAB. In MATLAB, all these

36

calculations can be done in floating point. But in FPGA, these operations are done in fixed

point calculations. For sure this will bring some differences to the final result. At the end o f

this section, the results are compared with each other.

4.1 Block Diagram o f The Algorithm Implementation

in FPGA Using VHDL

Chapter two and three already described the outline o f the theoretical

approach o f the IID based MRI image segmentation. From there, a brief diagram can

be drawn as Figure 4-1.

The input data is a 4x4 or 5x5 image block. The average Co-occurrence

matrix o f the input data is calculated. From the Co-occurrence matrix, the feature

vectors are calculated. These feature vectors are used to calculate the LI distance with

the three different material samples. The feature vectors o f the three different

materials are predefined. The minimum LI distance is found that means the current

block belongs to this type o f material. Certain gray-level is assigned and the result is

stored and output for display.

In this project. Block Random Access Memory (BRAM) module and Shift

Register module are used for implementation. The input data is loaded from the hard-

drive from the PC by test bench and stored in a BRAM module named “RAM 144x2”.

“RAM 16x8” is the BRAM module defined to store the Co-occurrence Matrix.

“IIRAM -Syn” is the BRAM module defined to store the final output data for display.

37

“REGISTER 1” is the Shift Register module defined for data delay and “REGISTER2'

is the Shift Register module defined for address delay.

Im age Input block WRl c lk l ld m a l dma2

BRAM
RAM144x2

Registerl
(Delay)

WR2 elk

L U T Log
Square

Feature
Vector A

tinDutl

Data Concatenation
D atl& dat2

Addresses Accumulation
Co-occurrence Matrix

BRAM
R A M I6x8

FEATURE VECTOR
y:?, y s , y ; , y c ;/

Feature
Vector B

finDUtl

Feature
Vector C

tlnDutt

L I DISTANCE LI DISTANCE L I DISTANCE
LIA L i e L IB

L1=LIA I f L1A<=L1B andL1A<=L1C
L l= L lB IfL lB < = L lA andLlB< = LlC
L l= L lC IfL lC < = L lA and LI C<=L1B

S Z .
Assign Gray Level to LI

Ready

W E elk

OUTPUT K BRAM
Result

Figure 4-1 Block Diagram of Algorithm Implementation in Hardware Platform
Using VHDL

38

4.2 The Implementation o f Co-occurrence Matrix

Calculation

The Co-occurrence matrix calculation in MATLAB has been introduced in

previous section. MATLAB can handle matrix flexibly and images are considered as

matrices. VHDL is hardware description language, and it describes has to be practically

embedded into hardware. So it can not transform matrix directly. Comparing with

MATLAB, another big difference is the input data. In MATLAB, the input data is the

256x256 raw image matrix. With the matrix index, the program can take any block o f the

image and process it. In VHDL or actual hardware, the data is stored in memory. Normally,

it is serially read into the next processing word by word. For example, the data in

MATLAB is in the following version;

"0 0 ","0 1 ","10","11",

"10","01","00","01",

"10","H ","10","01",

"10","01 ","10","11",

The above matrix format needs 2-dimensional index to address each element. In this

particularly implementation with VHDL, the above matrix is input like this:

["00","01","10","H","I0","01","00","01","10","H",'T0","01",'T0","01","10","H"], which

only needs one dimension index, (Please be noted that there are ways to index two or three

dimensional matrix in VHDL). Because o f the matrix processing, the Co-occurrence

matrix calculation is just a few lines o f program in MATLAB:

i f (a l = = 1)

39

fo r row = l . rows

fo r col = L co ls- d

i = image(row, col);

J = imagefrow, col+d);

CM(iJ) = CM(iJ) + 1;

i f (a2 = = 1)

CMO,i) = CMO.i) + 1;

end

end

end

end

the above program is to find the Co-occurrence matrix with distance 1 and direction of 0

and 180 degree. The idea is to start from the top left point, moving to the direction o f east

and west, each two adjacent pixels, say (rl, c l) and (rl, c2) with gray level 3 and 6

respectively, causes the value of element (3, 6) in the Co-occurrence matrix increment 1.

Thus a certain texture pattern of the regarding image could be presented in its

corresponding Co-occurrence matrix. Obviously, circuitry described in VHDL can not

calculate the Co-occurrence matrix like this. In this project, the calculation o f Co­

occurrence Matrix is done as following:

First, the input data is loaded into “RAM144x2”. The output of "RAM 144x2" is

named “dat2” . (See Figure 5-3);

Second, “dat2” is loaded into "REGISTER 1". The output o f “REGISTER 1” is

called “d a tl”. Comparing with “dat2”, “d a tl” is one clock cycle delayed.

40

Third, “d a tl” is logically concatenated with “dat2” to get an output. The block

diagram o f these steps is shown in Figure 4-3.

00..01..10..N

V
datl K

RAM 144x2 REGISTER 1

datl dat2

I Z
datl&dat2

OUTPUT 0Data3

Figure 4-3 Diagram of Data Concatenation

The simulation result of the data concatenation process Figure 4-4. “d a ta i” presents “d a tl’

in Figure 4-3, “data2” presents “dat2” in Figure 4-3. “Data3” is the output.

=4f TPave - d e f a u l t

F i l e E d it View I n s e r t Format T ools Window

" k i i S f i rm im # m i >

m m

0110 91011 in 110 noGi loioo ooooi
..powori

Figure 4-4 Simulation Result o f Data Concatenation

As it is shown in Figure 4-4, “00” & “01 ”=“0001”, “01” & “ 10”= “0110”. is

the concatenation function in VHDL. If the input image is a 4x4 block, there will be 16

output results. These results are used as the address o f “RAM 16x8”, this RAM is used to

store the value o f the Co-occurrence matrix. That means when the input is the 1x16 one

41

dimension array such as;

["00","01","10","11","10","01","00","01","10","11","10","01","10","01","10","11"], there

will be 15 addressees [“0001”, “0110”, “ 1011”, “1110”, “1001”, “0100”, “0001”, “0110”,

“ 1011”, “ 1110”, “ 1001”, “0110”, “ 1001”, “0110”, “ 1011”].

The fourth step of Co-occurrence matrix calculation is “Addresses

Accumulation”. “RAM16x8”’s contents are all “0”s when reset. Whenever there is an

address from the address concatenation process, the content of the address pointing to will

increase 1. For example, when there is the first “ 1011”, the content of address “1011”

pointing to will become 1, if there is another one before all the address ends, the content

will become 2. This is shown as Figure 4-5.

=*? wave - d e f a u l t

F i l e View I n s e r t , Fo rmat T o e l s Window

WBBBÊBÊ
...djb/powon ,

Figure 4-5 Addresses Accumulation

To show clearly the idea, the one dimension address array is transformed into Table

4-1. The elements which do not have any address will be filled with 0.

'able 4-1 Addresses Accumulation

00 01 10 11
00 0 1+1 0 0
01 1 0 l+ l+ l+ l 0
10 0 1+1+1 0 1+1+1
11 0 0 1+1 0

Address “00 01” shows up twice so the content of “0001” becomes 2, “01 10” shows

42

up three times, so the content o f “01 10” becomes 3, the same thing with the rest of

the addresses. The simulation result is shown in Figure 4-6.

tf wave - d e f a u lt

F i l e : E d i t View I n s e r t Formal Tools Window

LT U
11 no m
10 Ï01 00

r U L i U U 1loo Ml (10 111 110 IBT
101 110 111 110 1011 110

tb/data1

stmmm
HmniM BIinM 0000 1001 011011011

3
0000 10111111011001

101111110

..vhdjb/resel

..dJb/(WA'oni

..dJWwrlîim

. J iL/wi2iim
.•i1 ib/dmaZ
■iJ. 'b-'crpâl

. . V I id Ib/mcril

Figure 4-6 Co-occurrence Calculation

As shown in Figure 4-6, the operation starts from “0001” (the line points to).

“Data out” changes to 2 when the second “0001” shows up. After all the addresses

have been eheeking through, the results of the Co-occurrence matrix is in Table 4-2.

able 4-2 Co-occurrence Matrix Result

00 01 10 11

00 0 2 0 0
01 1 0 4 0
10 0 3 0 3
11 0 0 2 0

The simulation result is in Figure 4-7.

43

“ = wave - d e f a u l t

F i l e E d it View I n s e r t Format Tools Window

% m ±T i \ K ^ \ ^ ^

0 !2 Ï01

Figure 4-7 Co-occurrence Simulation Result

As shown in Figure 4-7. “Address3sim” is the address for “RAM16x8” . The result of

Co-occurrence Matrix is stored in this Block RAM. The results match Table 4-2. But

neither Figure 4-7 nor Table 4-2 gives the right result. If checking carefully of this

data array again:

f"00","01","I0","U" ,"10","01","GO","01" "I0","H","10","01" "io","oi","io","H'T

Figure 4-8 One Dimension Data Array

If this array is put back into a matrix:

0Q","01","10'y'U

Figure 4-9 Matrix Version of Figure 4-3

As predefined in the former section of this project, the distance of the Co-occurrence

is “1” and the direction is 0 degree. But when the data is collected as an array, there

will be some problems at the gray area shown in Figure 4-8. The gray area in Figure

4-8 is the same gray area in Figure 4-9. In Figure 4-8, from “ 11” to “10” in the gray

44

area, the distance is “ 1” and the direction is “0” degree, but in Figure 4-9, the distance

is still 1 but the direction is not “0” degree, it is kind o f 180 degree(in fact, there is no

such definition here). So as shown in Figure 4-9, from “ 11” to “ 10”, “01” to “ 10”,

“01” to “ 10”, where the arrows are pointing, the three addresses have to be removed

from the addresses list. To simplify the logic, in this project, all these addresses at the

comers are set to “0000” by the following VHDL process:

outaddress.-process (maincount)

begin

I f (mamcount="OOOOOOOOOOOIOIII ") or (maincount="OOOOOOOOOOOI 1011") or

(maincount= "000000000001IIII") then

outaddri <="0000";

else

outaddri < = d a tl & d a tl;

end if;

end process;

In this process, MAINCOUNT is the counter, when it reaches the turning point at

"0000000000010111", "0000000000011011" and "0000000000011111", it will changes

these addresses to “0000”. The simulation is shown is Figure 4-10.

45

i« a v e - d e f a u l t

2 . i l« E d i l View I n s e r t F o rm a t T o o ls Window

I i i i iiJS î i t g I >

Eh ...b/datar» J l i

j'__1 il— I ji— r
25~ Ï2T1 Ï24 ! J ï æ

î Figure 4-10 Turning Points I

In Figure 4-10, the arrows are pointing to the addresses which have been changed to

“0000”. After these addresses have been changed to “0000”, the contents of these addresses

will be right, but the content of address “0000” is pointing to will have 3 extra “ l ”s added

to it. So to get the right value, the content of address “0000” has to subtract 3. This is done

by the following process:

i f (addr="0000") then
ram (0) := conv_std_logic_vector((unsigned(ram(0)) - 3),8);

dataout <= ram (address);
else

dataout <= ram (address);
end if;

In the end, the right Co-occurrence matrix is in Table 4-3

00 01 10 J 11
00 0 2 0 0
01 1 0 2 0
10 0 3 0 3
11 0 0 I 0

46

Comparing with Table 4-2, the underlined number is different. The simulation is in

Figure 4-11.

F i l e E d it View I n s e r t Format Tools Window

« y % I t ±T i I @1 et BX I a urn 0 0an y# î %
«IQH
■alii■I

48 43 5

Figure 4-11 The Final Result of Co-occurrence Matrix

As shown in Table 4-3 and Figure 4-11. The result of the Co-occurrence matrix is

right. If the input image block is changed from 4x4 to 5x5, there will be 4 addresses

changed to “0000”, so the content of “0000” has to subtract “4” to get the right value.

When the Co-occurrence matrix is ready, it is time to calculate the feature vectors and

the LI distance. This will be discussed in the next section.

4.3 The Feature Vector and LI Distance Calculation

Implemented with VHDL

As described in section 4, when the Co-occurrence matrix is ready, it is time to

calculate the feature vectors. Equations (4) to (10) present the mathematical formation

o f all the feature vectors. In VHDL, it is a little bit harder to do the mathematical

operations. This section will describe the details one by one. Before starting the

calculations, here is the brief introduction o f the Co-occurrence matrix used here. The

47

Co-occurrence matrix result is from three input images. The input data is a 5x15

image block which is from three different images. It is shown in Figure 4-12.

=4=f w a v e - d e f a u l t

F i l e E d i t View I n s e r t Format T o o ls Window

i ^ %

...fâ arraF

...b /datain

. . .d jb /c ik

reî'îSsirn s a m
7 9 III 10 II

...tb/m cnt

tb /iese t

Figure 4-12 The Co-occurrence Waveform of 5x15 Image Input Block

The Co-occurrence matrix is shown in Table 4-4.

"able 4-4 The Co-occurrence Matrix of 5x15 Image Input Block
00 _ 01 ^ 10 11

00 38 6 0 0
01 7 9 1 0
10 1 3 3 0
11 0 0 1 1

yj. ENTROPY

As equation (3) shows, function LOGARITHM needed to calculate the entropy.

There is not such function in VHDL standard library, unless the third-party core is

purchased. In this project, the maximum value for F is 70, the minimum value is 0.

So the LUT table will be very useful here. All 70 values of PlogP were pre­

calculated and stored in the LUT. So when there is any input P, there is a

corresponding PlogP. The ENTROPY will be all the PlogP added together. All

48

the calculations in the LUT is round up with integer, because the fraction

calculations are very resources consuming in VHDL.

B. E N E R G Y

As indicated in equation (6), ENERGY is the square sum of all Co-occurrence

matrix elements. So the function o f square is very important here. In VHDL there

is not square function available in standard library. To simplify the logic, in this

project, LUT is still the best solution. When the Co-occurrence value is input one

by one, the corresponding square will be summed up and the result is the

ENERGY.

C. INTERIA

In equation (5), there is the definition of INTERIA. Three steps to calculate

INTERIA. 1. The absolute value o f the difference between the row index and

column index of the Co-occurrence Matrix, called |i-yj-

2. The square of |/-y|, this is done using the same idea as LUT.

3. Multiply the result of step 2 with the corresponding Pij. (Pij is the

Co-occurrence matrix element).

D. CO N TRAST

As described in equation (7), contrast is the sum of product o f (i-j) and the square

of Pij. The square can be found in the LUT, (i-J) is simple to approach.

E. IN V E R SE DIFFEREN CE M O M EN T

Equation (8) describes the Inverse Difference Moment. It is very similar with

contrast. Instead o f multiplication, the square divided by the absolute difference o f

(i-j), then sum up, the result is the IDM.

49

F. M AXIM UM PROBABILITY

Just to compare and always keep the larger value, when finish checking all the

elements of the Co-oeeurrence matrix, there is the maximum probability.

The simulation result of all the feature ealculations is in Figure 4-13

View Insert Formal Tools Window

Iiess3sim

1631 i1E3
far

I PHHiiMll

Figure 4-13 Feature Caleulation

One input image block’s feature vectors calculation is shown Figure 4-13.

“Address3Sim” is the address of the block memory (RAM 16x8) which stores the Co­

occurrence matrix information. There are 16 values, so the addresses are from 0 to 15.

The addresses and eorresponding Co-oceurrenee matrix value are;0^38, l->6, 2->0,

3->0,4->7, 5->9, 6-> l, 7->0, 8->l, 9 ^ 3 , 10->3, ll-> 0 , 12^0 , 13->0, 1 4^1 , 15^1 .

Taking ENERGY as one example: ENERGY=38x38+6x6+0x0+0x0+7x7+9x9+...

=1444+6x6+0x0+0x0+7x7+9x9+.. .=1480+0x0+0x0+7x7+9x9+...=1529+9x9+.. .=16

10+....This is same as shown in Figure 4-13.

When all the ealculations are done, the results are shown in the last cloek eycle of

Figure 4-13. Putting the results in a veetor, it is [22, 22, 38, 274, 1632, 96]. The

50

elements are corresponding to INTERIA, Contrast, Maximum Probability, Entropy,

Energy and Inverse Difference Moment respectively.

G. L I D istance Calculation

When the feature vectors are ready, it is time to calculate the LI distance. As

shown in equation (11), the LI distance calculation involves the division. As

known, it is straight forward for FPGA to do the divisions o f any number which is

the power of 2. But in this case, the division has a lot of numbers which are not the

power of 2. To simplify the calculation, the division part is removed here. So the

LI distance will be the sum of the difference o f the feature vectors. This for sure

will introduce some deviations to the results.

The simulation result is shown in Figure 4-14.

» a v e — d e f a u l t

F i l e E d i t View I n s e r t Format Tools Window

m i

H H

g

l y H

u ...u

0000000000000001

269 27W
■ M Ill 11 ■ ■

Figure 4-14 LI Distance Calculation

51

In Figure 4-14, “Lldistssim l” and “Lldistssim2” and “LldistssimS” are the three LI

distance simulation results, they are 1246, 1195 and 814 respectively. The minimum

value will be chosen from the three values. In this case, "LldistssimS" is the one. So

the first block is judged to belong to the third type of materials (which the LI distance

is calculating against with). “01” will be assigned to this block. When the write enable

signal “WESIM” is ready, “01” is written to address “0000000000000001” o f

“addriisim”. “Addriisim” is the address output Block RAM (“IIRAM-SYN”). After

the whole image is finished, there should be 65536 values in this memory.

4.4 The Block RAM Module for Data Input and Output

Most o f the XILINX devices provide embedded dual-port RAM modules. Virtex-11

devices feature a large number of 18 Kb block SelectRAM memories. [10] The block

SelectRAM memory is a True Dual-Port RAM, offering fast, discrete, and large blocks of

memory in the device. The memory is organized in columns, and the total amount of block

SelectRAM memory depends on the size of the Virtex-11 device. The 18 Kb blocks are

cascadable to enable a deeper and wider memory implementation, with a minimal timing

penalty incurred through specialized routing resources. [19]

The Block RAM is used a few times in this project. There are three Block RAM

Modules used in this project. The first one is for the image block input. The second one is

for Co-occurrence matrix. The third one is for the final result output. All these three Block

RAMs are used as single ported only.

The image input Block RAM is for 256 pixels, there are 8 bit per pixel, so this RAM

is 256x8. In this project, maximum there are 75 input values, so it is more than enough. The

52

control signals are address (addresslSim) and Read and Write Enable (W rlSim). Figure 4-

15 is write operation of this Block RAM. When “w rlsim ” is set to “ 1” , the Block RAM is

in “Write” mode, the data (“datain”) is written into this Block RAM, one data per clock

cycle, “addressIsim” is the writing address.

▼ave - d e f a u l t

F i l e E d i t View I n s e r t Format Tools Window

(■ im m B

Figure 4-15 Write Operation of Input Block RAM

Figure 4-16 is the read operation of input RAM. When “w rlsim ” is set to “0”, the

Block RAM is in “Read” mode, the data (“data2”) is read out from this Block RAM,

one data per clock cycle, “addressIsim” is the reading address.

» a v e - d e f a u l t

F i l e E d it View I n s e r t Format Tools Window

W # i ^ % @ 1 k M 1 ^ : ^ I [V ^ I ^ I 0 I i m l : K 1 # ^ 1 ^ I >

Figure 4-16 The Read Operation of Input Block RAM.

For the Co-occurrence matrix Block RAM (RAM 16x8), as discussed in previous

section, if the write enable signal is ready, “wr2”=’T ”, when the address o f this Block

RAM appears, the corresponding content o f that address pointing to will increase “ 1” .

This is done as shown in Figure 4-17. This RAM is defined as 16x8, because there are

only 16 values in this Block RAM.

53

« a v e - d e f a u l t

F i l e E d it View I n s e r t Format Tools Window

c ^ H S i t ï T 4 B : i 0
BaB i i

tb/wr2sim 0
...d_tb/data1

,..d jb /d3ta2
dJb/dataS

,..ddtess3sim
.. b/data_out

00 I Ï01 _ _
01! 110 101
oral 010110110 0101 0110 1001 0100

Figure 4-17 Co-occurrence Matrix Block Ram Write Operation

It can be seen from Figure 4-17, the content of address “0000” has been increasing

from 0 to 8, and “ 1001” from 0 to 2. “Address3Sim” is the address for Co-occurrence

matrix Block RAM. The read operation is in Figure 4-18.

=4t wave — d e f a u l t

F i l e E d i t View I n s e r t Format Tools Window

...vhd tb/clk

d jb /d a ta l

...d_lb/dala2

...dJb/dataS

...ddtesî3sirn

...b/data out
0101 ïo iflo ïon iïlooo TôTïïld ü i i l i i oïïli 101 il 11 o>TnT)5üDô

Figure 4-18 Read Operation of Co-occurrence Matrix

When “wr2sim” =0, the read signal is effective. At this time, the content is sending

out to “data-out” as shown in Figure 4-18.

For the above Block RAM, only the read and write control signals are not enough.

There are some other signals to control the read and write signals, they will be

discussed in the later section.

The final result output Block RAM is already discussed in previous section, so it

won’t be repeated here.

54

4.5 The Register Module for Data Delay and Address

Delay

In this project, register modules are used to delay the signals. The first register

module is used to delay the input data. The purpose o f this delay is to produce the

addresses o f the Co-occurrence matrix. As shown in Figure 4-19, “data i” is one clock

cycle after “dataZ”. The second register module is used to delay the address. As seen

in Figure 4-20, “address]” is one clock cycle after “addressZ”.

==ft » a v e - d e f a u l t

F i l e E d i t View I n s e r t Format Tools Window

Or

Figure 4-19 Input Data Delay

w ave - d e f a u l t

F i l e E d i t View I n s e r t Fo.rmat Tools Window

. i . . ^ t : t r i ï ï f^ % #

...vhdjb.'dâta_array

..._new th /hd_th/clt.

,..d jb /ôdd(ess2sim

,..d tb/'sddreîîSsirn

Figure 4-20 Address Delay

55

4.6 Test Bench Design for simulation

“With gate counts and system complexity growing exponentially, engineers

confront the most perplexing challenge in product design: functional verification”. [7]

So functional verification is a very important step to the design. In this project, the

software used for functional verification is MODELSIM from Model Technology. The

version used is ModelSim XE II 5.7 C, which is the custom version with XILINX ISE

6. So it is very convenient to use with XILINX design environment.

4.6.1 Input Data Preparation and Organization

In this project, the input image size is 256x256, so there are total 65536 pixels in

the original image. As discussed in section IV, if three images were taken as input,

and each block took 25 (5x5) pixels. These three “5x5” blocks are put together from

left to right, so each image block is 5x15=75 pixels. In order to improve the

segmentation quality, when the window is scanning through the image, each time the

window only move one pixel. So only the pixel at the centre point is replaced with the

new gray level. In this case, there are 63504 image blocks (because of the edge). In

total there are 4762800 pixels as input.

As mentioned in previous section, the input data is in a one dimensional array:

1x75. In this project, MATLAB is used to pre-organize the input data. MATLAB puts

all the 5x15 image blocks into a data array, and then put all these data into a binary

file sequentially from the first image block to the last one. Test Bench will read this

file from the hard-drive of the PC.

Test Bench handles the binary file as the following process:

56

Read_From_Fite: process(clkl)
Variable indataJine: line;

Variable indata: integer ;
variable h .'integer :=0;

f ile input_dataJile:text open rea d jn o d e is "C:/PROJECT/matlab/data/orig2.bin";
begin

i f rising_edge(clkl) and (h < = 1024145) then -1 0 2 4 1 4 5 -4 7 6 2 8 0 0
readline(input_data J ile , indata J in e);
read(indatajine, indata);
1D< =conv_stdJogic_vector(indata,2);
data_array(h) <=ID ;
h:=h+I;
i f endfile(input_data J ile) then

report "end o f file
file_close(inpiit_data J l e) ;

file_open(input_dataJile, "C:/PROJECT/matlab/data/orig2.bin");
end if;

end if;
end process;

Orig2.bin is the binary file of the input data which is saved in the hard-drive under the

directory of “C:/PROJECT/matlab/data”. In this process, “CLKI” is used. It is a

different clock. It is only for reading the data from the binary file. This clock is

independent with the processing clock “CLK”. The function o f this process is to open

the binary file and write the data into “data_array”, one data per clock cycle. The

reading process is ahead of time of the processing. So when the main process reads

data from “data_array”, the data is always ready there, “h” is to setup to stop reading

at certain time. For example, in the program shown above, the reading process will

stop at the 1024145* data. This is good for debugging the program.

Test bench needs read each image block for processing. The reading operation is

done by the following process

f o r j in 0 to 65535 loop

k;= j* 7 5 + l;

57

fo r i in 0 to 14 loop
addrl <= conv_std_logic_vector(i,8);

DA TAIN< =Data_array(i+k) ;
end loop;

There are total 65535 image blocks, each time 75 data is read into the program for

processing. The reading of these 75 data is done by the internal loop. “A ddrl” is the

address for input Block RAM “RAM 144x2”. K controls which image block to read.

For some reason the first data of “Data_array” is not an effective one, so the first data

is skipped by adding one to K {k:=j*75+I instead oïk:=j*75).

4.6.2 Output Data Organization

The output is the reversed operation of the input. When all the output data is

ready in the RAM, it will be sent out. The following process is for data output;

w r ite jo J ile : PROCESS (clkl)
variable outdatajine: line;

variable outdata:integer: =0;
variable holdon:std_logic;

file outputjdata J ile : text open w rite jn ode is
"C:/PROJECT/matlab/vhdl_output521_2. bin ";

begin
if (W Esim='l) then

if rising_edge(clkl) then
outdata: =abs(CONVJnteger(LlDist));

write(outdata_line, outdata);
writeline(output_dataJile, outdatajine);

end if;
end if;

end process;

In this process, when “WEsim” is effective, the data in this Block RAM will be

written in the file named “vhdl_output521_2.bin”. This file is saved on the hard-drive

58

under the directory of “C:/PROJECT/matlab”. In both input and output processes,

“std.textio.all” needs to be included in the library.

This file will be loaded by MATLAB. MATLAB takes the data and reform into

an image, the image is the segmented image.

The idea used to communicate between MATLAB and ModelSim in this project

make it possible to test and verify the algorithm and simulations result. This is good

because the final result can be verified and viewed before the design approach to the

hardware stage.

4.6.3 Timing Analysis of Control Signals

In previous section, all the components have been introduced. The timing of

these components has to be controlled to get the right result. In logic design, timing is

very important. In this project, the control signals are introduced by two parts. The

first part is the Co-occurrence. The simulation waveform is in Figure 4-21.

As shown in Figure 4-21, “C lk l” is an independent clock, it is only for

reading all the data from PC to test-bench. “data array” is the array where test-bench

storages all the data. Because this “data array” needs to load 4762800 bytes into the

memory of the PC, so the simulation process is very slow and resource consuming, the

PC was frozen many times during the simulations. “CLK” is the clock signal which

drives the rest o f the logics. “POWERON” signal is the initial reset signal, so when

this signal is “ 1”, the whole system will reset. That means “reset” signal is effective.

The reason to have “POWERON” is that the “reset” signal is effective for every image

59

:=?: wave - d e f a u lt

F i le Edit View I n s e r t Format Tools Window

ÛÏ e # I j{, % m * I j I t ^
. .v h d jb /d k l
,./data_air'â̂)
.,vhd_tb/clK<-
djb/ck*@in"

..hd (ri/'mcnf
..djb/coui-it

..tbj-'cnt.lxim

tDM DJm JW D ID

uumw rnmrnmi
010011C

.Jb /w rlsîm
...d_iu'ôddtl

.addtesslsim

„.d_tb/mlsiiri
...d_t.b/dma2
..._tbA-vt2sim

...addtesrs2sim

...addfessSsim
,..d_WdMa1
...djb/data2
...djb/data3

...dJbAsddrS

. ,b/addt2sim

...djb.'status

...dJb/stateS

...hd tb/reset

0
0100101
0100101
01001011 (00000000
0
0
uuuu '
UULIU
01
01
0101
uuuu
uuuu
1
1

0

'ÿ jg g g g g ill jÿ ll j lg .

Figure 4-21 The Control Signals of Co-occurrence Matrix Calculation

block. When “reset” is effective “dma2” is set to “1”, “count” is set to “75”, which is

the total quantity of each image block. When “dm al” is “ 1”, “W Rl” is set to “ 1”

immediately. So the data is read into the program, “cntlsim” is the counter for reading

the data, when it reaches “75”, that means the data reading process finish for the

current image block. Then “W Rl” is set to “0”. When “dma2” and “wr2” are both

effective “ 1”, the input RAM is in read mode, so the data is read out from the RAM

and the calculations of Co-occurrence matrix starts. “WR2” is effective means

60

“R A M I6x8” for Co-occurrence matrix is in “write” mode. After the Co-occurrence

matrix is calculated, the values are saved in this RAM. When “WR2” is set to “0”,

“R A M I6x8” is at “read” mode, the Co-occurrence matrix value is read out for feature

vector calculation. The feature vector and LI distance calculation control signals are

shown in Figure 4-22.

w ave - d e f a u l t

F i l e E d i t View I n s e r t Format Tools Window

' t i ̂ I t i ^ B X ! 0 ! 0 0 # m I
.vhd_tb/clk .

...hdjb/rftcfft-.

...addresi35jtn'

..,b/data_out';

. st-ateadiisim
. dldistssinrt 0

...yi1dbt£..îim2 .■ 0

....•’'IldistssimS 0

...d_tb/'ititeria 0

..tb/conbait 0

...vhdj.b/tnb O’

..._tb2entropi) 0

..._tb.<'energj> 0

...vhd_tb/idm 0

d jb .'‘finiîh 0

. .dJLATOiinn 0

...tb/addriiiim

...djb/lldi& t

...ageirida-'ouf

...hd tbAeset 0

9122012211 2 2 2 l:2 2 3 l:2 2 4 p 2 5 i2 E Ï2 M 2 m 12301(231):232)533l234I235)536)3̂
12 113

3 Ï0

u

f u u a t o

— H
OOOOOOOOOOII.

Figure 4-22 Feature Vector and LI Distance Calculation Control Signals

The Co-occurrence matrix data are loaded out to calculate the feature vectors. When

the feature vectors are ready, “datareadysim” is set to be effective for three clock

cycles. In this three clock cycles, the LI distance is calculated. When LI distance

61

PROPERTY 0F
RYERSON U tiim SlT Y U8RARY

wave - d e f a u l t

F i l e E d it Viev; I n s e r t Format Tools Window

y â I ̂ % #

010010*01001011

»
010010 1 m a #* ■! ■! »# ## ## ## mm m w m ## m mi

_ _ T L J Ï_

1

010010
10
0
000010

I B i m

Ï I

— II

000000
001010

M M M I I

001101
odoioi

,vhd_tb/idm . 000001
•djb/lld ist 00

.ageindexcMjt 00

. vhd lb/id 10
i ...d tb/finish 0

M ' n — i

Figure 4-23 The Overview of All The Simulation Waveforms

62

calculation is done, “finish” signal is set to be effective, “finish” makes “WE” (“wesim” in

Figure 4-22) effective. “WE” is the “write-enable” signal for the output Block RAM, when

this signal is ready, the gray-level for the current image block is written into this Block

RAM. Figure 4-23 is the overview of all the simulation waveforms of this project.

In Figure 4-23, there are around 16 image block processing. For the whole image

there are around 65535 such processing.

Summary:

The IID based MRI image segmentation was implemented in FPGA using

VHDL. The implementation scheme is presented and the specific approaches for Co­

occurrence matrix calculation implementation, logarithm calculation implementation and

square calculation implementation are discussed. The logic hardware modules like Block

RAM, Register are presented. The timing controls and data input and output were discussed

in details. The simulation waveforms are presented.

63

CHAPTER V

RESULT COMPARISION, ANALYSIS AND
CONCLUSION

For the above simulations, the FPGA chip used is XILINX “XC2V2000-6bf957”.

This device has 24, 192 logic cells and 1008 K bits BRAM and 624 user 10. [10]

APPENDIX A1 is the device utilization summary. As shown in APPENDIX A l, the

slices are not enough to accomplish the project. There are two ways to solve this

problem. One way is to change the device which has more resources. This for sure

will increase the cost. Another way is to optimize the design to reduce the unnecessary

logic resources.

The timing report of this project utilizing this device is shown in APPENDIX A2.

The timing report in APPENDIX A2 does not have practical value because the device does

not have enough resources. For comparison, device XC2V4000 was selected. XC2V4000

has 51,400 logic cells, which doubled the logic cells of XC2V2000 [10]. The rest o f the

resources like BRAM, Multipliers and user 1/Os also doubled the ones in XC2V2000.

APPENDIX A3 is the device utilization summary of XC2V4000.

As shown in APPENDIX A3, XC2V4000 has enough slices to accomplish this

project. Its timing report is in APPENDIX A4. From APPENDIX A2 and A4, it can be

seen that there is almost no difference between these two timing reports. The maximum

required output time is a little bit delayed in APPENDIX A4.

Same as MATLAB based simulation, in this project FPGA based simulation has three

different results classified by one, two or three input images. One input image based

64

segmentation result is very close to Figure 3-10. Two input images based segmentation is

very close to Figure 3-12. Both of these results are not very satisfying results, so there is no

need to discuss any more here. Figure 5-1 is the three input image based segmentation

result. Comparing with Figure 3-12, it is very close. The result is satisfying. But because of

the calculation errors between FPGA based and MATLAB based simulations, there are

some differences between these two results. With more detailed guidance o f pathological

knowledge, these differences can be defined as good or bad, so the segmentation result can

be improved easily. If considering the result in Figure 5-1 as a good segmentation result, a

FPGA based segmentation system can be implemented with hardware system. This system

for sure will include FPGA, SRAM. Such system has its own advantage and disadvantage

against the PC based system.

0!

Figure 5-1 FPGA Based Segmentation Simulation Result

65

Matlab (PC)
Based System

Hardware (FPGA)
Based System

ADVANTAGE

SPEED 180 Second 0.7S
257 times faster

real-time processing
COST -1000$ -100$ -10 times cheaper

SIZE 0.032M3 0.0015M3 20 times smaller

From Table 5-1, it can be seen the hardware based system has a lot of advantages. Real­

time processing is one of the most important characters of the FPGA based system. And the

processing speed won’t change too much when the size of input Images are increasing.

That is because of the parallel processing ability of the system. The input images can

always be divided into several images and be processed at the same time. But for the PC

based system the increasing size of input images means to dramatically increase the

processing time.

SUMMARY

This project went through the whole process of algorithm modification, theoretical

verification and simulation by MATLAB and most importantly the implementation with

FPGA using VHDL.

The simulation with MATLAB approves the IID based segmentation to be an

effective way for MRI image segmentation. Because of its special characteristics, the

gradient or edge detection based segmentation idea can not segment the exact border of the

different materials inside the MRI image. The IID based segmentation is based on the Co-

66

occurrence o f the different materials, so it has brought some effective elements into the

segmentation.

The implementation with FPGA in VHDL is an important part of this project. VHDL

is hardware description language, so for MATLAB and C++, it is software programming,

but for VHDL, it is hardware designing. So at the beginning of this project, a lot o f troubles

showed up like changing the method from “programming” to “designing”. The MATLAB

programming is more like a sequential thing, but the VHDL design is a parallel thing, so

the “timing” becomes extremely important. After the baiTiers were conquered one by one,

the implementation with FPGA using VHDL was successfully accomplished. The result is

very close to the MATLAB based simulation result. The result is satisfying. That approves

the IID based MRI segmentation can be practically implemented with FPGA hardware.

And the FPGA hardware based system is faster and more economical.

There are still a lot of things can be done regarding the extension of this project. To

physically implement the system will top everything else. It will take a lot of guts and time

to do it. On the algorithm side, the different directions and different distances based Co­

occurrence matrix can be tried for segmentation. And a lot o f new algorithms can be

adapted to this system also, such as the self-organized segmentation system [21]. And with

more pathological research on the subject can help the system with more practical value.

67

References

1. R. M. Haralick and L.G. Shapiro, “Survey: image Segmentation,” Computer

Vision, Graphics, Image Proc., vol.29. pp.100-132, 1985.

2. R.M.Haralick and L.S. Shapiro, Computer vision (Vol.l). Addision Wesley

Reading, MA pp.46-50 (1992).

3. BIR BHANU, SUNGKEE LEE and SUBHODEV DAS. “Adaptive Image

Segmentation Using Genetic and Hybrid Search Methods” . IEEE Transactions on

Aerpspace and Electronic Systems VOL.31, N 0.4 pp. 1268-1291, OCTOBER

1995.

4. Archibald R; Chen KW; Gelb A; Renaut R. “Improving tissue segmentation of

human brain MRI through preprocessing by the Gegenbauer reconstruction

method”. NEUROIMAGE 20(1): pp 489-502. 2003

5. R,M. Haralick, K. Shanmugan, and I. Dinstein, “Textural features for image

Classification,” /EEE Trans. Syst. Man. Cybern., vol. SMC-3, pp.610-621, June

1973.

6. M. M. Galloway, “Texture analysis using gray level run length,” Comput. Graph.

Image Processing, vol. 172-179, 1975.

7. Janick Bergeron “Writing TestBenches—Functional Verification of HDL Models”.

Qualis Design Corporation, Kluwer Academic Publishers, 2000.pp 1-3

8. Vassili A. Kovalev, et. “Three-Dimensional Texture Analysis o f MRI Brain

Datasets”, IEEE Trans on Medical Image Processing, vol.20, N0.5, pp424-433.

May 2001

68

9. Gabriele Lohmann, “Analysis and synthesis o f Textures: A Co-occurrence-based

Approach”. Comput. & Graphics, Vol. 19, N o.l, pp. 29-36, 1995

10. XILINX.Virtex II Platform FPGA User Guide. Page 112. UG002 (v2.0) 23 March

2005. XILINX

11. Unqing Chen, Aleksandra Mojsilovic. “Adaptive Image Segmentation Based on

Color and Texture”. Proceedings o f IEEE International Conference on Image

Processing (ICIP'02), Rochester, New York, Sept. 2002 pp 777-780.

12. V. Gemignani, M. Demi, M. Patemi, and A. Benassi, “Real-time implementation

of a new contour tracking procedure in a multi-processor dsp system," Circ. Sys.

Commun. Comp., pp.3521-3526, 2000.

13. Steffem Klupsch, etc. “Real Time Image Processing Based on Reconfigurable

Hardware Acceleration” . Proceedings o f IEEE Workshop Heterogeneous

Reconfigurahle Systems On Chip (SoC), (no pp). April 2002.

14. http://people.cs.uchicago.edu/~pff/segment/beach.gif

15. http://people.cs.uchicago.edu/~pfl7segment/beach-seg.gif

16. http ://q3 .bevondirc .net/texture s/fabric .zip

17. http://www.theswancoip.com/.../ images/pebble.jpg

18. http://robotics.stanford.edu/~ruzon/NASA/MPF sol3 lander.jpg

19. Virtex-II Platform FPGAs: Complete Data Sheet. Page 3. DS031 (V3.4) March. 1,

2005. XILINX

20. G.Qiu, “Constraint Adaptive Segmentation For Color Image Coding and

Content-Based Retrieval”. IEEE Workshop on Multimedia Signal Processing,

October, Cannes, France, pp.269-274 IEEE 2001.

69

http://people.cs.uchicago.edu/~pff/segment/beach.gif
http://people.cs.uchicago.edu/~pfl7segment/beach-seg.gif
http://www.theswancoip.com/.../
http://robotics.stanford.edu/~ruzon/NASA/MPF

21. Axel Wismuller, Frank Vietze, Johannes Behrends, Anke Meyer-Baese,

Maximilian Reiser, Helge Ritter “Fully automated biomedical image segmentation

by self-organized model adaptation” //ewra/ Networks 17 pp. 1327-1344. 2004

70

APPENDIX A l Device Utilization Summary for XC2V2000

Device utilization summary:
Selected Device : 2v2000bf957-6

Number of Slices:
Number of Slice Flip Flops:
Number of 4 input LUTs:
Number of bonded lOBs:
Number of MULTI 8X18s:
Number of GCLKs:

16916 out o f 10752 157% (*)
1221 out o f 21504 5%

15934 out o f 21504 74%
220 out o f 624 35%

2 out of 14 14%
1 out o f 16 6%

WARNING: Xst:1336 - (*) More than 100% o f Device resources are used

APPENDIX A2 Timing Report for Device XC2V2000

TIMING REPORT

Clock Information:
 —-——— —------------------ + +------ —+
Clock Signal \ Clock buffer (FF name) | Load \
----------------- ------ -------------- ----+-- 4--------- - +
elk \BUFGP \3269 |
 + --------------------------------------- + +

Timing Summary:
Speed Grade: -6

Minimum period: 22.062ns (Maximum Frequency: 45.327MHz)
Minimum input arrival time before clock: 7.879ns
Maximum output required time after clock: 11.056ns
Maximum combinational path delay: 4.915ns

APPENDIX A3 Device Utilization Summary of XC2V4000

Device utilization summary:
Selected Device : 2v4000bf957-6

Number o f Slices:
Number o f Slice Flip Flops:
Number o f 4 input LUTs:
Number o f bonded lOBs:
Number o f MULT18XI8s:
Number o f GCLKs: _ _ _ _ _ _ _ _

16916 out o f 23040 73%
1221 out o f 46080 2%,

15934 out o f 46080 34%
220 out o f 684 32%

2 out o f 20 10%
1 out o f 16 6%

APPENDIX A4 Timing Report of Device XC2V4000

Clock Information:

Clock Signal

elk

TIMING REPORT

. .+ ----------------------------- + — +
I Clock buffer (FF name) | L oad |

\B U FG P \3269 |
+--------------------------------- + +

Timing Summary:
Speed Grade: -6

Minimum period: 22.062ns (Maximum Frequency: 45.327MHz)
Minimum input arrival time before clock: 7.879ns
Maximum output required time after clock: 11.056ns
Maximum combinational path delay: 4.9I5ns

U

APPENDIX B : MATLAB PROGRAMS

APPENDIX B l: MAIN PROCESSING PROGRAM

%LlA_STD.m - Zhengwei LI
%fmd the threshholds of distance in feature space (LI distance)
%by applying samples and controls to the experiment

function [] = Ll_STD(image_src, image_srcl, image_src2)

%size of ROI
R01 = 5;
%number of gray levels the image ROI reduced to
g ray b in s = 4;
%descriptor: distance
distance = 1 ;

%read samples inx 1 =imread('ca 1 .jpg');
al=imread('al.jpg');
al=rgb2gray(al);
a2=imread('a2 .jpg') ;
a2=rgb2gray(a2);
a3=imread('a3 .jpg');
a3=rgb2gray(a3);
a4=imread('a4.jpg') ;
a4=rgb2gray(a4);
a5=imread('a5 .jpg');
a5=rgb2gray(a5);
a6=imread('a6.jpg');
a6=rgb2gray(a6);
a7=imread('a7.jpg');
a7=rgb2gray(a7);
a8=imread('a8.jpg');
a8=rgb2gray(a8);
a9=imread('a9.jpg');
a9=rgb2gray(a9);
al_ l= im read('al_l.jpg ');
a l_ l= rgb2gray(al_ l);
a2_l=im read(’a2_l .jpg');
a2_l=rgb2gray(a2_l);
a3_l=lmread('a3_l .jpg');
a3_l=rgb2gray(a3_l);

III

a4_l=imread('a4_l jp g ’);
a4_ 1 =rgb2gray (a4_ 1);
a5_l =imread('a5_l jp g ’);
a5_ 1 =rgb2gray(a5_l);
a6_l=imread('a6_l jpg');
a6_l =rgb2gray(a6_l);
a7_l=imread('a7_l jpg');
a7_ 1 =rgb2gray (a7_ 1);
a8_l =imread('a8_l jpg');
a8_ 1 =rgb2gray (aS_ 1) ;
a9_l=imread('a9_l jpg');
a9_l =rgb2gray(a9_l);

a 1 _2=imread('a 1_2 jpg') ;
al_2=rgb2gray(al_2);
a2_2=imread('a2_2 jpg') ;
a2_2=rgb2gray(a2_2);
a3_2=imread('a3_2jpg');
a3_2=rgb2gray(a3_2);
a4_2=imread('a4_2jpg');
a4_2=rgb2gray(a4_2);
a5_2=imread('a5_2jpg');
a5_2=rgb2gray(a5_2);
a6_2=imread('a6_2jpg');
a6_2=rgb2gray(a6_2);
a7_2=imread(' a7_2 jpg') ;
a7_2=rgb2gray(a7_2);
a8_2=imread('a8_2jpg');
a8_2=rgb2gray(a8_2);
a9_2=imread('a9_2jpg');
a9_2=rgb2gray(a9_2);

S=[al, al l, al_2, a2, a2_l, a2_2, a3, a3_l, a3 2; a4, a4 1, a4 2, a5, a5_l, a5_2, a6, a6_l,
a6_2; al, a l j , a l 1, aS, a8_l, aS_2, a9, a9_l, a9_2];
%S = imread(sam_srcl);
imshow(S,[]);
SAM_big = S;
[maxrow, maxcol] = size(SAM big);
sample_num = 0;
for i = 1 ; ROI : maxrow - ROI +1

for j = 1 : ROI + ROI + ROI ; maxcol - ROI - ROI - ROI + 1
sample_num = sample_num + 1 ;
SAM(:, sample_num) = SAM_big(i;i+ROI-l, j j+ROI+ROI+ROI-1);
SAMa(;, sample_num) = SAM_big(i:i+ROI-l, j j+ROI-1);
SAMb(:, sample_num) = SAM_big(i:i+ROI-l, j+ROIj+ROI+ROI-1);
SAMc(:, sample_num) = SAM_big(i;i+ROI-l,j+ROI+ROIj+ROI+ROI+ROI-1);

IV

end
end

%reduced sample ROIs
SAM RE = zeros(R01, ROI+ROI+ROI, sample num);
%cooccurrence matrices computed from sample ROIs
SAM CO M = zeros(gray_bins, gray bins, sample num);
%average cooccurrence matrix for samples
REP_M = zeros(gray_bins, gray bins);

%computation o f each sample's cooccurrence matrix
T_CORRELATION = 0;
for i = l:sample_num

%A_Correlation(i) = Correlation_I(SAM(:, i));
%T_CORRELATION = T_CORRELATION + A_Correlation(i);

T_R1 = Correlation_I([CooccurrenceM(Reducelmage4(SAMa(:, i)), gray bins,
distance), CooccurrenceM(Reducelmage4(SAMb(:, :, i)),gray_bins, distance)]);
T_R2 = Correlation_I([CooccurrenceM(ReduceImage4(SAMa(;, :, i)), gray bins,
distance), CooccurrenceM(Reducelmage4(SAMc(;, i)),gray_bins, distance)]);
T_R(i) = (T_R1 + T_R2)/2;
T_C0RRELAT10N = T_C0RRELAT10N + T_R(i);
SAM_RE(:, :, i) = ReduceImage4(SAM(:, :, i));
SAM_CO_M(;, ;, i) = CooccurrenceM(SAM_RE(;, :, i), gray bins, distance);

end

%computation of average cooccurrence matrix for Class A (ca) samples
for i = 1 ;gray_bins

for] = l:gray_bins
for k = lisam plenum

REP_M(i, j) = REP_M(i, j) + SAM_CO_M(i, j, k);
end
REP_M(i, j) = REP_M(i, j)/sample_num;

end
end
display (REP_M);
%computation of the typical feature vector from
%the average cooccurrence matrix
T_ENTROPY = Entropy(REP_M);
waterfall(Entropy(REP_M));
T_ENERGY = Energy(REP_M);
T_CONTRAST = Contrast(REP_M);
T_I_D_M = I_D_M(REP_M);
T_CORRELATION = T_C0RRELAT10N/sample_num;
T_MAX_P = Max_P(REP_M);

bl=imread('bl.jpg');
bl=rgb2gray(bl);
b2=imread('b2.jpg');
b2=rgb2gray(b2);
b3=imread('b3.jpg');
b3=rgb2gray(b3);
b4=imread('b4.jpg');
b4=rgb2gray(b4);
b5=imread('b5.jpg');
b5=rgb2gray(b5);
b6=imread('b6.jpg');
b6=rgb2gray(b6);
b7=imread('b7.jpg');
b7=rgb2gray(b7);
b8=imread('b8.jpg');
b8=rgb2gray(b8);
b9=imread('b9.jpg');
b9=rgb2gray(b9);
bl_l=im read('bl_l.jpg');
b 1 _ 1 =rgb2gray (b 1 1);
b2_l=imread('b2_l .jpg');
b2_l =rgb2gray(b2_l);
b3_l=imread('b3_l .jpg');
b3_l=rgb2gray(b3_l);
b4_l=imread('b4_l .jpg');
b4_l =rgb2gray(b4_l);
b5_l=imread('b5_l jpg');
b5_l=rgb2gray(b5_l);
b6_I=imread('b6_l .jpg');
b6_ I =rgb2gray(b6_ 1) ;
b7_I=imread('b7_l jpg');
b7_ I =rgb2 gray (b7_ 1) ;
b8_l=imread('b8_l jpg');
b8_l=rgb2gray(b8_l);
b9_l=imread('b9_l jpg');
b9_ 1 =rgb2gray (b9_ 1);

b 1 _2=imread('b 1 _2 jpg') ;
b 1 _2=rgb2gray(b 12);
b2_2=i mread('b2_2 jpg') ;
b2_2=rgb2gray(b2_2);
b3_2=imread('b3_2 jpg');
b3_2=rgb2gray(b3_2);
b4_2=imread('b4_2.jpg');
b4_2=rgb2gray(b4_2);
b5_2=iinread('b5_2.jpg');

VI

b5_2=rgb2gray(b5_2);
b6_2=imread(T36_2 .jpg') ;
b6_2=rgb2gray(b6_2);
b7_2=imread('b7_2.jpg');
b7_2=rgb2gray(b7_2);
b8_2=imread('b8_2.jpg') ;
b8_2=Tgb2gray(b8_2);
b9_2=imread('b9_2 .jpg') ;
b9_2=rgb2gray(b9_2);
cb=[bl, b l_ l , b l_2 , b2, b2_l, b2_2, b3, b3_l, b3_2; b4, b4_l, b4_2, b5, b5_l, b5_2, b6,
b6_l, b6_2; b7, b7_l, b7_2, b8, b8_l, b8_2, b9, b9_l, b9_2j;
figure;
imshow(cb,[]);

%read controls in
%C = imread(sam_src2);
%CON_big = rgb2gray(C);
CON_big = cb;

[maxrow, maxcol] = size(CON_big);
control_num = 0;
for i = l:ROI;maxrow - ROI+1

for j = l;R01+ROI+ROI;maxcol - ROI - ROI - ROI + 1
contro lnum = controlnum + 1 ;
CON(:, control num) = CON_big(i:i+ROI-l, j:j+ROI+ROI+ROI-l);
CONa(:, control num) = CON_big(i:i+ROI-l, j:j+ROI-l);
CONb(:, control num) = CON_big(i;i+ROI-l, j+ROI;j+ROI+ROI-l);
CONb(:, control_num) = CON_big(i:H-ROI-l, j+ROI+ROIij+ROI+ROI+ROI-l);

end
end

%reduced control ROIs
CON RE = zeros(ROI, ROI+ROI+ROI, control num);
%cooccurrence matrices computed from control ROIs
CON GO M = zeros(gray_bins, gray_bins, control_num);
CON_M = zeros(gray_bins, gray bins);

%computation of each sample's cooccurrence matrix
CON_CORRELATION = 0;
for i = 1 ;control_num

%B_Correlation(i) = Correlation_I(CON(:, i));
%CON_CORRELATION = CON_CORRELATION + B_Correlation(i);
C0N_R1 = Correlation_I([CooccurrenceM(ReduceImage4(CONa(:, i)), gray_bins,

distance), CooccurrenceM(ReduceImage4(CONb(:, :, i)),gray_bins, distance)]);

VII

C0N_R2 = Correlation_I([CooccurrenceM(ReduceImage4(CONa(:, i)), gray bins,
distance), CooccurrenceM(Reducelmage4(CONb(;, i)),gray_bins, distance)]);

CON_R(i) - (C0N_R1 + CON_R2)/2;
CON_CORRELATION = CONCORRELATION + CON_R(i);
CON_RE(;, i) = Reducelmage4(C0N(:, i));
CON_CO_M(;, i) - CooccurrenceM(CON_RE(:, i), gray bins, distance);

end
“/ocomputation of average cooccurrence matrix for Class B (cb) samples
for i = 1 :gray_bins

for] = l:gray_bins
for k = 1 ;control_num

CON_M(i, j) = CON_M(i, j) + CON_CO_M(i, j, k);
end
CON_M(i, j) = CON_M(i, j)/controI_num;

end
end
display (CON M);
%computation of the typical feature vector of cb from
%the average cooccurrence matrix
CON_ENTROPY = Entropy(CON_M);
CONENERGY = Energy(CON_M);
CON_CONTRAST = Contrast(CON_M);
C0N_1_D_M = 1_D_M(C0N_M);
CONCORRELATION = CON_CORRELAT10N/control_num;
CON_MAX_P = Max_P(CON_M);

cl=imread('cl.jpg');
cl=rgb2gray(cl);
c2=imread('c2.jpg');
c2=rgb2gray(c2);
c3=imread('c3 .jpg');
c3=rgb2gray(c3);
c4=imread('c4 jpg j;
c4=rgb2gray(c4);
c5=imread('c5.jpg');
c5=rgb2gray(c5); -
c6=imread('c6jpg');
c6=rgb2gray(c6);
c7=imread('c7 jpg') ;
c7=rgb2gray(c7);
c8=imread('c8jpg');
c8=rgb2gray(c8);
c9=imread('c9jpg');
c9=rgb2gray(c9);
cl_l=imread('c l_l.jpg');
cl_l=rgb2gray(cl_l);

vm

'S
es.
mo

ITïO

es.

<D (N

. ^ 'W) . ^ “O Û . ^ 'ô û . ^ ”0 0 . " ô û . .V ^ d, Cl# ^ o# ^ Dĥ
. 1.

, iT) / MD
I • I I

l'ë r̂ î T; Z199 r i 9î
, 00 os

| e | e ï e | ô | e ï
5 b cd 5 b c d 5 b c d 5 b c d 5 b cQ ô û

(N 4)(N <U(N D (N <U(N 0>(Nx> hx> y ^ yx> h -û y -ow) E t j) y ùo y cj) c ù û S

Ü Ü Ü O Ü Ü O Ü O O O O O O O O

cd bX)
<U (N

(N (N

0 0 . ^ 0 0 . ^ ô û . . > b D . . b X) . ^ b O . . b û . ^ /—N Q. /'—V CL \ Q. /'—V rv /'—V Q. \ Cl, On
fN (N '-7> CN CN •'-fi CN •’-ri <N *-7»CN --t jCN

■ m m . vo . 00 . o\
^ u > , 0 >^_o ^ u ^ o ^

Ë b ¥ fe)^ Ëb's Ëb
tN <UtN (UtN (UtN <UtN (U (N (UCN U f N X> ÜÆ Ü h Æ y HÆ h J3 Üt ï ûE b o S b o E b û Ë b û E b o S b û E tJû

Il îr T îr T iT T îr T îr T îr T îr T ir
tN|tN| tN| tN|(N|(N|<N|tN| tN|(N| tN|(N|(N|(N^(N^(N|

r N (N m m T f T f m i r) \ c i \ o r ~ r ~ ' O O o o a \ o \
O Ü Ü Ü O Ü Ü Ü Ü O O O Ü O O O

e E a

u o

CC_big = cc;

[maxrow, maxcol] = size(CC_big);
cc_num = 0;
for i = l;R01:maxrow - ROI+1

for j = 1.•ROI+ROI+ROI :maxcol - ROI - ROI - ROI+I
cc_num = cc_num + 1 ;
CC(:, cc num) = CC_big(i:i+ROI-l, j:j+ROI+ROI+ROI-I);
CCa(;, cc num) = CC_big(i:i+ROI-l, j;j+ROI-I);
CCb(:, cc num) = CC_big(i:i+ROI-l, j+ROI:j+ROI+ROI-I);
CCc(:, cc num) = CC_big(i:i+ROM, j+ROI+ROI:j+ROI+ROI+ROI-I);

end
end

%reduced cc ROIs
CO RE = zeros(ROI, ROI+ROI+ROI, cc_num);
%cooccurrence matrices computed from control ROIs
CC_CO_M = zeros(gray_bins, gray bins, cc num);
CC_M = zeros(gray_bins, gray bins);

%computation of each sample's cooccurrence matrix
CC_CORRELATION = 0;
for i = 1 .cc num

%C_Correlation(i) = Corrclation_I(CC(:, :, i));
%CC_CORRELATION = CC_CORRELATION + C_Corrclation(i);
CC_R1 = Corrclation_I([CooccurrcnccM(ReduceImage4(CCa(:, i)), gray bins,

distance), CooccurrenceM(ReduccImagc4(CCb(;, :, i)),gray_bins, distance)]);
CC_R2 = Correlation_I([CooccurrcnccM(RcduceImagc4(CCa(:, ;, i)), gray bins,

distance), CooccurrcnceM(RcduccImagc4(CCc(:, i)),gray_bins, distance)]);
CC_R(i) = (CC_R1 + CC_R2)/2;
CC_CORRELATION = CC_CORRELATION + CC_R(i);
CC_RE(:, i) = ReduceImage4(CC(;, :, i));
CC_CO_M(:, ;, i) = CooccurrcnceM(CC_RE(;, :, i), gray bins, distance);

end
%computation of average cooccurrence matrix for Class C (cc) samples
for i = 1 .'gray bins

for] = I;gray_bins
fo rk = l;ce_num

CC_M(i, j) = CC_M(i, j) + CC_CO_M(i, j, k);
end
CC_M(i, j) = CC_M(i, j)/cc_num;

end
end
display (CC_M);
“/ocomputation of the typical feature vector from
%the average cooccurrence matrix

CC_ENTROPY = Entropy(CC_M);
CC_ENERGY = Energy(CC_M);
CC CO N TR A ST = Contrast(CC_M);
CC_1_D_M = I_D_M(CC_M);
CCCORRELATION = CC_CORRELATION/cc_num;
CC_MAX_P = Max P(CC_M);

“/ooutput the typical feature vector
CA REP = {'sample number', sample num;

'ENTROPY = ', T ENTROPY;
'ENERGY = ', T ENERGY;
'CONTRAST = ', T_CONTRAST;
'IDM = ', T_1_D_M;
'CORRELATION = ', T_CORRELATION;
'MAX PROBABILITY = ', T_MAX_P
}

dispIay(CA_REP);

CB REP = {'CB sample number', control num;
'ENTROPY = ', CONENTROPY;
'ENERGY = ', CON ENERGY;
'CONTRAST-: CON CONTRAST;
'IDM = ', CON I D M;
'CORRELATION=', CONCORRELATION ;
'MAX PROBABILITY= ', CON MAX P

}
display(CB_REP);
CC REP = {'CC sample number’, cc num;

'ENTROPY = ', CC ENTROPY;
'ENERGY = ', CC_ENERGY;
'CONTRAST = ', CC_CONTRAST;
'IDM = ', CC_I_D_M;
'CORRELATION = ', CC CORRELATION;
'MAX PROBABILITY = ', CC_MAX_P
}

display(CC_REP);

%SEG
%read in the original image
IMAGE = imread(im agesrc);
IMAGE 1 = imread(image_srcl);
IMAGE2 = imread(image_src2);
IMAGE = rgb2gray(IMAGE);
IMAGEI =rgb2gray(IM AGEl);
IMAGE2 = rgb2gray(IMAGE2);
[maxrow, maxcol] = size(IMAGE);

XI

SEGEDIMAGE=zeros(maxrow, maxcol);

%probabillty map
PM = zeros(maxrow, maxcol);
PM_all = zeros(maxrow, maxcol);

%maximum LI and minimum LI
maxLl = 0;
minLl = 0 ;

c=R01/2;

%calculate the probability map based on LI distance
%the original image is scanned by size of ROI
fo ri = 1 : l:maxrow-ROI+l

for j = 1 : 1: maxcol - ROl+1

%calculate ROI's cooccurrence matrix
lMAGE_R01a = lMAGE(i:i + R O M , j:j + ROM);
IMAGE ROlb = IM AGE I (i: i + R O M , j :j + ROM);
IMAGE_ROIc = lMAGE2(i;i + RO M , j;j + ROM);
1MAGE_R01 = [lMAGE_R01a, IMAGE_R01b, IMAGE_ROIc];

1MAGE_R01_AVERAGE_GRAYLEVEL=AVERAGE_GRAYLEVEL(IMAGE_R0I);

IMAGE_ROI_AVERAGE_GRAYLEVEL 1 =AVERAGE_GRAYLEVEL(lMAGE_R01b);
if(lMAGE_ROI_A VERAGE_GRA YLE VEL< 15)

SEGEDIMAGE(i;i+ROI-1, j :j+ROI-1)=1 ;
elseif(lMAGE_ROI_A VERAGE_GRA YLEVEL 1<61)

SEGEDIM AGE(i : i+ROM , j :j+ROM)=1 ;
else

Ma = CooccurrenceM(ReduceImage4(lMAGE_ROIa), gray bins, distance);
Mb = CooccuirenceM(ReduceImage4(lMAGE_R01b), gray bins, distance);
Me = CooccuirenceM(ReduceImage4(IMAGE_R01c), gray bins, distance);
Mab =[Ma, Mb];
Mac =[Ma, Me];
IMAGE_R01_C0RRELAT10N1 = CorrelationJ(Mab);
IMAGE_R01_C0RRELAT10N2 = CorrelationJ(Mac);
IM AGEROICORRELATION = (1MAGE_R01_C0RRELAT10N1 +
IMAGE_R01_C0RRELATI0N2)/2;

IM A G E R O IR E = ReduceImage4(lMAGE_R01);
IMAGE_ROI_CO_M = CooccurrenceM(lMAGE_R01_RE, gray bins, distance);

XII

%calculate ROI's feature vector
IMAGE_ROI_ENTROPY = Entropy(IMAGE_ROI_CO_M);
IMAGE_ROI_ENERGY = Energy(IMAGE_ROI_CO_M);
IMAGE_ROI_CONTRAST = Contrast(IMAGE_ROI_CO_M);
IMAGE_ROI J D M = I_D_M(IMAGE_ROI_CO_M);
IMAGE_ROI_MAX_P = MAX_P(IMAGE_ROI_CO_M);

%calculate ROI's LI distance
I_tA = abs(IMAGE_ROI_ENTROPY-T_ENTROPY) +

abs(IMAGE_ROI_ENERGY-T_ENERGY) + abs(IMAGE_ROI_CONTRAST-
T_CONTRAST) + abs(IMAGE_ROI_I_D_M-TJ_D_M) + abs(IMAGE_ROI_MAX_P-
T_MAX_P) + abs(IMAGE_ROI_CORRELATION-T_CORRELATION);

lA = IMAGE_ROI_ENTROPY + IMAGE_ROI_ENERGY +
IMAGE_ROI_CONTRAST + IMAGE_ROIJ_D_M + IMAGE_ROI_MAX_P +
IMAGE ROI CORRELATION ;

tA = TEN TRO PY + TEN ER G Y + TC O N TRA ST + T_I_D_M + T_MAX_P +
T_CORRELATION;

IM A G E R O IL IA = I_tA7(IA + tA);

I J B = abs(IMAGE_ROI_ENTROPY-CON_ENTROPY) +
abs(IMAGE_ROI_ENERGY-CON_ENERGY) + abs(IMAGE_ROI_CONTRAST-
CON_CONTRAST) + abs(IMAGE_ROI_I_D_M-CON_I_D_M) +
abs(IMAGE_ROI_MAX_P-CON_MAX_P) + abs(IMAGE_ROI_CORRELATION-
CON_CORRELATION);

IB = IMAGE_ROI_ENTROPY + IMAGE_ROI_ENERGY +
IMAGE_ROI_CONTRAST + IMAGE_ROI_I_D_M + IMAGE_ROI_MAX_P +
IMAGE ROICORRELATION ;

tB = CON_ENTROPY + CON ENERGY + CON CONTRAST + CON_I_D_M +
C O N M A X P + CONCORRELATION;

IMAGE ROI_LlB = I_tB/(IB + tB);

I j C = abs(IMAGE_ROI_ENTROPY-CC_ENTROPY) +
abs(IMAGE_ROI_ENERGY-CC_ENERGY) + abs(IMAGE_ROI_CONTRAST-
C CC O N TR A ST) + abs(IMAGE_ROI_I_D_M-CC_I_D_M) +
abs(IMAGE_ROI_MAX_P-CC_MAX_P) + abs(IMAGE_ROI_CORRELATION-
CC_CORRELATION);

IC = IMAGE_ROI_ENTROPY + IM A G E R O IE N E R G Y +
IM A G E R O IC O N T R A ST + I M A G E R O I J D M + I M A G E R O I M A X P +
IMAGE_ROI_CORRELATION ;

tC = CC_ENTROPY + CCENERG Y + CCCONTRAST + CC_I_D_M +
CC_MAX_P + CC_CORRELATION;

IMAGE_R0I_L1C = IjC /(IC + tC);

IMAGE ROI L1=IMAGE R0I_L1A;

XIII

if IMAGE_ROI_L 1 >1M AGE_ROI_L 1B
IM AGE_ROI_L 1 =IM AGE_ROI_L 1B ;

end
if IM AGE_ROI_L 1 >IM AGE_ROI_L 1C

IM AGE_ROI_L I =IMAGE_ROI_L 1C;
end
if IM AGE_ROI_L 1 =1M AGE_R0I_L 1A

SEGEDIM AGE(i ; i+ROI-1, j ;j+ROI-1)=4;
end
if IMAGE ROI L I ==IMAGE_ROI_L IB

SEGEDIM AGE(i:i+R0I-l,j;j+R0I-I)=2;
end
if IMAGE_ROI_L 1 ==IMAGE_ROI_L 1C

SEGEDIM AGE(i;i+R0I-l,j:j+R0I-l)=3;
end

end
%mark probability label in full range, not regarding threshhold

%PM_all(i+c, j+c) = 1MAGE_R0I_L1 ;
% if IMAGE_ROI_LI > maxLl
% maxLl = IMAGE ROI LI ;
%end
% if minLl > IMAGE_R0I_L1
% minL 1 = IMAGE ROI L 1 ;
%end

%mark probability label to the center of the ROI according to threshhold
% i f L l jo w >= IMAGE_ROI_LI
% PM(i + c, j + c) = LM ow;
% elseif LI high > IMAGE ROI LI > LI low
% PM(i + c, j + c) = IMAGE_ROI_L 1 ;
% else
% PM(i + c, j + c) = LI high;
% end

end
end

error_size = 4;
for i = 1 : 1 -.maxrow

for j = error_size+I : I: maxcol-error_size
if(((SEGEDIMAGE(i, j)^l)& SEG EDIM AGE(i, j-

error_size)=I)&(SEGEDIMAGE(i, j+error_size)==I))

XIV

SEGEDIMAGE(i,j)=l;
end

end
end

figure;
imshow(SEGEDIMAGE, []);
%display(SEGEDIMAGE);
%convert the probability map to 256 level gray image
%M = fmd(PM == 0);
%PM(M) = LI high;
%display(PM);
%IMAGE_PM = mat2gray(PM, [LI high, Ll_low]);
%imshow(IMAGE_PM, []);

%M = find(PM_all — 0);
%PM_all(M) = maxLl ;
%display(PM_all);
%IMAGE_PM_all = mat2gray(PM_all, [maxLl, minLl]);
%imshow(IMAGE_PM_all, []);

XV

APPENDIX B2: PROGRAM FOR CO-OCCURRENCE
CALCUALTION

% CooccurrenceM.m - Zhengwei LI
% calculates the cooccurence matrix, CM, of an image, i
% d is the distance of the i pixel from the j pixel, and should be a two element vector, such
as [1,1]

function [CM] = CooccurrenceM(image, gray bins, d)

image = double(image);
[rows, cols] = size(image);

%choose which type(s) to proceed
al = 1
a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = 0
a8 = 0

% - 0
% -1 8 0
% -4 5
% -225
% -9 0
% -270
% -1 3 5
% -3 1 5

% Initialize P to be all zeros
CM = zeros(gray_bins, graybins);

%Oand 180
if (al == 1)
for row = 1 :rows - d

for col = 1 :cols - d
i = image(row, col);
j = image(row + d, col + d);
CM (ij) = CM (ij) + l;
if (a2 == 1)

C M (j,i) = C M (j,i) + l;
end

end
end
end

%45 and 225
if(a3 == 1)

XVI

for row = (1 + d):rows
for col = 1 ;(cols - d)

i = image(row, col);
j = image(row - d, col + d);
CM (ij) = CM(iJ) + 1;
if (a4 ==1)

CM(j,i) = CMO.i) + 1;
end

end
end

end

%90 and 270
if (a5 == 1)
for row = (1 + d);rows

for col = 1 :cols
i = image(row, col);
j = image(row - d, col);
CM (iJ) = C M (i,j)+ l;
if (a6 == 1)

CMC,i) = CMG,i)+ 1;
end

end
end

end

% 135and315
if (a7 — 1)
for row = (1 + d):rows

for col = (1 + d);cols
i = image(row, col);
j = image(row - d, col - d);
CM (iJ) = C M (ij) + l;
if(a8 = 1)

CMO',i) = CMOM)+ 1;
end

end
end

end

xvn

APPENDIX B3: PROGRAM FOR IMAGE REDUCTION

%ReduceImage4.m - Zhengwei LI
%convert the input image to 4 gray level grayscale image
%and shift all of the levels up by one to enable the gray
%level to represent an index into the co-occurrence matrix
%(index of a matrix can't be 0).

function y = Reducelmage(x)

X = double(x);
X = mat2gray(x); % scale
X = grayslice(x,4); % reduce the number of gray levels to eight

a = find(x==0)
b - find(x==l)
c = find(x=2)
d = find(x==3)

x(a) = 1
x(b) = 2
x(c) = 3
x(d) = 4

% find the levels

% shift them by one

y =(x);

APPENDIX B4: PROGRAM FOR ENTROPY
CALCULATION

% Entropy .m - Zhengwei LI
% calculates the entropy given a co-occurrence matrix, m

function [Entropy] = Entropy(M)

[rows,cols] = size(M);

Entropy = 0;

for i = 1 ;rows
for] = Lcols

ifM (ij)~ = 0
Entropy = Entropy + M(iJ) * log2(M(iJ));

XVIII

end
end

end

APPENDIX B5: PROGRAM FOR ENERGY CALCULATION

% Energy.m - Zhengwei LI
% calculates the energy given a co-occurrence matrix, M

function [Energy] = Energy(M)

[rows,cols] = size(M);

Energy = 0;

for i = 1 .TOWS
for j = Lcols

Energy = Energy + M(i,j) 2;
end

end

APPENDIX B6: PROGRAM FOR CONTRAST
CALCULATION

% Contrast.m - Zhengwei LI
% calculates the contrast given a co-occurrence matrix, P

function [Contrast] = Contrast(M)

[rows,cols] = size(M);

Contrast = 0;

for i = 1 TOWS
for j = Lcols

i fM (ij)~ = 0
Contrast = Contrast + (abs(i - j))'^2 * M(iJ);

end
end

end

XIX

APPENDIX B7; PROGRAM FOR INVERSE DIFFERENCE
MOMENT CALCULATION

% I_D_M.m - Zhengwei LI
% calculates the inverse difference moment given a co-occurrence matrix, M

function [1_D_M] = I_D_M(M)

[rows, cols] = size(M);

I_D_M = 0;

for i = 1 ;rows
for j = Lcols

if i~ = j
if M(i,j) ~= 0

I_D_M = I_D_M + (M(i j)) / ((abs(i - j)) ^ 2);
end

end
end

end

APPENDIX B8: SUBPROGRAM FOR MAXIMUM
PROBABILITY CALCULATION

% Max P.m - Zhengwei LI
% calculates the maximum probability given a co-occurrence matrix, M

function [Max_P] = Max P(M)

[rows,cols] = size(M);

Max_P = 0;

for i = 1 ;rows
for] = Lcols

Max_P = max(M(i, j), Max_P);
end

end

XX

APPENDIX B9: PROGRAM FOR CORRELATION
CALCULATION

% Correlation ! .m - Zhengwei LI
% calculates the correlation of pixels in two images. This feature vector
% can be calculated from the image itself, no need for cooccurrence matrix
% here, illustrated as follow;

function [R] = Correlation_I(I)

I = double(I);
I = mat2gray(I); % scale
[rows,cols] = size(l);

%initilize variables in the correlation function
R = 0;
X = 0;
y = 0;
Sxy = 0;
Sx = 0;
Sy = 0;
8x2 = 0;
Sy2 = 0;
N = rows * (cols/2);

“/ocalculate the correlation
for i = 1 irows

for] = 1: (cols/2)

x = I(i,j);
y = I(i,j + (cols/2));
Sxy = Sxy + x * y;
Sx = Sx + x;
Sy = Sy + y;
Sx2 = Sx2 + X * x;
Sy2 = Sy2 + y * y;

end
end

R = (N * Sxy - Sx * Sy)/sqrt((N * Sx2 - Sx * Sx) * (N * Sy2 - Sy * Sy));

XXI

APPENDIX BIO: PROGRAM FOR CONTRAST CALCULATION

% Contrast.m - Zhengwei LI
% calculates the contrast given a co-occurrence matrix, P

function [Contrast] = Contrast(M)

[rows,cols] = size(M);

Contrast = 0;

for i = 1 :rows
for j = Lcols

ifM (ij)~ = 0
Contrast = Contrast + (abs(i - j))^2 * M(i,j);

end
end

end

APPENDIX C: PROGRAM TO TRANSFORM IMAGE
DATA INTO DATA FILE FOR VHDL
TESTBENCH

function [] = getorigout(image_src, image_srcl, image_src2)

%size of ROI
ROI = 5;
%number of gray levels the image ROI reduced to
graybins = 4;
%descriptor: distance
distance = 1 ;

%read in the original image
IMAGE = imread(image_src);
IMAGE 1 = imread(image_srcl);
IMAGE2 = imread(image_src2);
IMAGE = rgb2gray(IMAGE);
IMAGE I =rgb2gray(IMAGEl);
IMAGE2 = rgb2gray(IMAGE2);
[maxrow, maxcol] = size(IMAGE);

%probability map
PM = zeros(maxrow, maxcol);

xxn

PM_all = zeros(maxrow, maxcol);

%maximum LI and minimum LI
maxLI = 0;
minLl = 0;

c=R0I/2;

fid = fopen('d;\mri\mri-three-imagebased\samplel\orig5x5.binVw');
%calculate the probability map based on LI distance
%the original image is scanned by size o f ROI
for i = 1 : l;maxrow-ROI+l

for j = 1 : 1: maxcol - ROl+1

%calculate ROl's cooccurrence matrix
IM A G E R O la = lMAGE(i;i + ROl-1, j:j + ROl-1);
lMAGE_R01b = IMAGE l(i:i + R O M , j:j + RO M);
IMAGE_R01c = lMAGE2(i:i + R O M , j:j + RO M);
IMAGE ROl = [IMAGE ROla, IMAGE_ROIb, IMAGE__ROIc];
tempBlock = reshape(double(IMAGE_R01'), 75, 1);
fprintf(fid,'%d\n', tempBlock);

end
end

fclose(fid);

APPENDIX D: PROGRAM TO DISPLAY VHDL
TESTBENCH RESULT

fid=fopen('d:\MRI\Mri-Three-imageBased\samplel\vhdl_output521_2.bin', 'r');
InputLabel = fscanf(fid, '%4d');
InputLabel
fclose(fid);
L = size(InputLabel);
L (l)
Templmg = zeros(63504, 1);
Templmg = Templmg + 4;

count = 1 ;
%for i = 1 : 1 : 65536
for i = 1 : 2 : L (l)

XXIU

TempImg(count, l) = InputLabel(i);
count = count + 1 ;

end

%fid = fopen('d:\mri\mri-three-imagebased\samplel\vhdl5x5.binVw');
%fprintf(fid,'%d\n',TempImg(l ;L(1), 1));
%fclose(fid);

L = size(TempImg);

L(l)

Outlmg = reshape(TempImg, 252,252);

Outlmg = Outlmg';
figure;
imshow(OutImg, []);

XXIV

APPENDIX E; VHDL TESTBENCH PROGRAM

— VHDL Test Bench Created from source file featurevector.vhd — 10:29:53 04/10/2005

-- Notes:
— This testbench has been automatically generated using types std logic and
— std_logic_vector for the ports o f the unit under test. Xilinx recommends
— that these types always be used for the top-level I/O of a design in order
— to guarantee that the testbench will bind correctly to the post-implementation
— simulation model.

LIBRARY ieee;
USE ieee.std logic l 164.ALL;
USE ieee.numeric_std.ALL;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;
use std.textio.all;

ENTITY featurevector newTB vhd tb IS
END featurevector newTB vhd tb;

ARCHITECTURE behavior OF featurevector newTB vhd tb IS

COMPONENT featurevector
PORT(

DATAIN : IN std_logic_vector(0 to 1);
elk : IN std_logic;
clkl : IN std logic;
count : IN std_logic_vector(0 to 7);
addrl : IN std_logic_vector(0 to 7);
addr2 : IN std_logic_vector(0 to 3);
dmal : IN std logic;
dma2 : IN std logic;
reset : IN std_logic;
POWON : IN std logic;
data out : INOUT std_logic_vector(0 to 7);
ENTROPY : INOUT std_logic_vector(0 to 9);
INTERIA : INOUT std_logic_vector(0 to 7);
ENERGY : INOUT std_logic_vector(0 to 12);
CONTRAST : INOUT std_logic_vector(0 to 7);
IDM : INOUT std_logic_vector(0 to 12);
MB : INOUT std_logic_vector(0 to 7);
LIDist : INOUT std_logic_vector(0 to 1);
Finish : INOUT std logic;

XXV

MCNT ; OUT std_logic_vector(0 to 15);
cntlsim : OUT std_logic_vector(0 to 7);
address Isim : OUT std_logic_vector(0 to 7);
intsim : OUT std_logic_vector(0 to 7);
address2sim ; OUT std_logic_vector(0 to 3);
addressSsim : OUT std_logic_vector(0 to 3);
addr2sim ; OUT std_logic_vector(0 to 3);
status ; OUT std logic;
WEsim : OUT std logic;
addriisim ; OUT std_logic_vector(0 to 15);
state3 : OUT std logic;
wrlsim : OUT std logic;
wr2sim : OUT std logic;
DataReadySim : OUT std_logic;
LlDistsSiml : OUT std_logic_vector(0 to 12);
LlDistsSim2 : OUT std_logic_vector(0 to 12);
LlDistsSim3 ; OUT std_logic_vector(0 to 12);
datai ; OUT std_logic_vector(0 to 1);
data2 ; OUT std_logic_vector(0 to 1);
data3 ; OUT std_logic_vector(0 to 3);
IminusJ2sim ; OUT std_logic_vector(0 to 7);
Imagelndexout ; OUT std_logic_vector(0 to 1)
):

END COMPONENT;

type testdata_array is array (0 to 5160) of std_logic_vector (0 to 1); —1024145
signal data_array : testdata_array;

type testdata_array 1 is array (natural range <>) of std_logic_vector (0 to 1);
constant all_test_datal ; testdata_arrayl ;=

("01" ,"10","11","0 0 ",
"11","10","01",'T0",
"11","00",'T1","10",
" 11","10","11 ","0 0 "

);
SIGNAL DATAIN ; std_logic_vector(0 to 1);
SIGNAL elk ; std logic;
SIGNAL MCNT ; std logic_vector(0 to 15);
SIGNAL count : std_logic_vector(0 to 7);
SIGNAL addrl : std_logic_vector(0 to 7);
SIGNAL cntlsim : std_logic_vector(0 to 7);
SIGNAL address Isim : std_logic_vector(0 to 7);
SIGNAL intsim : std_logic_vector(0 to 7);
SIGNAL address2sim : std_logic_vector(0 to 3);
SIGNAL address3sim : std_logic_vector(0 to 3);

XXVI

SIGNAL addrl
SIGNAL addrlsim
SIGNAL dmal
SIGNAL dm al
SIGNAL status
SIGNAL state3
SIGNAL wrlsim
SIGNAL wrlsim
SIGNAL clkl
Signal WEsim
Signal addriisim

: std_logic_vector(0 to 3);
; std_logic_vector(0 to 3);

: std logic;
; std logic;

: std logic;
: std logic;

: std_logic;
: std logic;

: std jogic;
std log ic;

std_logic_vector (15 downto 0);

SIGNAL DataReadySim : std logic;
SIGNAL LlDistsSim l : std_logic_vector (0 to 11)
SIGNAL LlD istsSim l : std_logic_vector (0 to 11)
SIGNAL LlDistsSim3 : std_logic_vector (0 to 11)
SIGNAL datai ; std_logic_vector(0 to I);
SIGNAL datai ; std_logic_vector(0 to I);
SIGNAL data3 : std_logic_vector(0 to 3);
SIGNAL data out : std_logic_vector(0 to 7);
SIGNAL reset ; std logic;

SIGNAL POWON : std jog ic;
SIGNAL INTERIA,CONTRAST,MB ; std logic_vector(0 to 7);
SIGNAL ENTROPY : std_logic_vector(0 to 9);
SIGNAL ENERGY, IDM : stdjogic_vector(0 to II);
SIGNAL IminusJlsim : std_logic_vector(0 to 7);
Signal LlDist stdjogic_vector(0 to 1);

Signal Imagelndexout; stdjogic_vector(0 to 1);
SIGNAL ID : stdjogic_vector(0 to I);
Signal Finish : std_logic;
Signal holdon :std logic;

BEGIN

uut: featurevector PORT MAP(
DATAIN => DATAIN,
clk => clk,
MCNT => MCNT,
count => count,
addrl => addrl,
cntlsim => cntlsim,
address I sim => address I sim,
intsim => intsim,
addresslsim => addresslsim,
address3sim => address3sim.

xxvn

addr2 => addrl,
addrlsim => addrlsim,
dmal => dmal,
dma2 => dmal,
status => status.
States = > States,
wrlsim => wrlsim,
wrlsim => wrlsim,
clkl -> clkl,
WEsim => Wesim,
addriisim => addriisim,

DataReadySim => DataReadysim,
LlDistsSiml => L 1 DistsSim 1,
LlDistsSim l => LlDistsSiml,
LlDistsSimS => LlDistsSimS,
datai -> datai,
datai => datai,
dataS => dataS,
d a ta o u t => dataou t,
reset => reset,

POWON => POWON,
ENTROPY => ENTROPY,
INTERIA => INTERIA,
ENERGY => ENERGY,
CONTRAST => CONTRAST,
IDM => IDM,
IminusJlsim => IminusJlsim,
MB => MB,
LIDist => LIDist,
ImageIndexout=> Imagelndexout,
Finish => Finish

);

- *** Test Bench - User Defined Section ***
tb ; PROCESS
variable k;integer;
BEGIN

POWON <=T ';
for j in 0 to 68 loop

XXVllI

reset < = '! ';
clk<='l';
wait for 10 ns;
clk <= not cUc;
wait for 10 ns;
POWON <= 'O';
reset <= 'O';
dma2 <= '1 '; —write ram by means o f dma;
count<="01001011 ";
dmal <= '1';
k:=j*75+l;

clk<='l';
wait for 10 ns;
clk <= not clk;
wait for 10 ns;

for i in 0 to 74 loop
addrl <= conv_std_logic_vector(i,8);
clk <= not clk;
wait for 10 ns;
clk <= not clk;
wait for 10 ns;
DAT AIN <=Data_array (i+k) ;
end loop;

clk <= not clk;
wait for 10 ns;
clk <= not clk;
wait for 10 ns;

dmal <= 'O';

for i in 0 to 75 loop —15
clk <= not clk;
wait for 10 ns;
clk <= not clk;
wait for 10 ns;

end loop;

dma2 <= 'O'; -w rite ram by means of dma;

for i in 0 to 60 loop
clk <= not clk;
wait for 10 ns;
clk <= not clk;

XXIX

wait for 10 ns;
end loop;

for i in 0 to 16 loop
addr2 <= conv_std_logic_vector(i,4);
clk <= not clk;
wait for 10 ns;
clk <= not clk;
wait for 10 ns;

end loop;

clk <= not clk;
wait for 10 ns;
clk <= not clk;
wait for 10 ns;

clk <= not clk;
wait for 10 ns;
clk <= not clk;
wait for 10 ns;

clk <= not clk;
wait for 10 ns;
clk <= not clk;
wait for 10 ns;

clk <= not clk;
wait for 10 ns;
clk <= not clk;
wait for 10 ns;

clk <= not clk;
wait for 10 ns;
clk <= not clk;
wait for 10 ns;

end loop;
END PROCESS;

— *** End Test Bench - User Defined Section ***
Read_From_File; process(clkl)

Variable indata_line:line;
Variable indata:integer;
variable b : integer :=0;
file input_data_file;text open read mode is "C:/PROJECT/matlab/data/orig2.bin";

XXX

begin
if rising_edge(clkl) and (h<=1024145) then -1024145-4762800

readline(input_data_file,indata_line);
read(indata_line, indata);
lD<=conv_std_logic_vector(indata,2);
data_array(h) <=1D;
h:=h+l;
if endfile(input_data_file) then

report "end of file";
file_close(input_data_fiIe);
file_open(input_data_file, "C:/PROJECT/matIab/data/orig2.bin");

end if;
end if;

end process;

clock_gen:process
begin

C lkl<= 'l';
wait for 10 ns;
clkl<='0';
wait for 10 ns;

end process;

write_to_fiIe: PROCESS (clkl)
variable outdata line: line;

variable outdata:integer:=0;
variable holdon:std_logie;

file ontpnt data file: text open write mode is
"C:/PROJECT/matlab/vhdl_output521_2.bin";

begin
if (W E sim -1') then

if rising_edge(clkl) then
outdata:=abs(CONV_integer(LlDist));
write(outdata_line, outdata);
writeline(output_data_file, outdata_line);

end if;
end if;

end process;

END;

XXXI

