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Abstract

Electroencephalogram (EEG) is widely used for monitoring, diagnosis purposes and also

for study of brains physiological, mental and functional abnormalities. EEG is known to

be a high-dimensional signal in which processing of information by the brain is reflected

in dynamical changes of the electrical activity in time, frequency, and space. EEG sig-

nal processing tends to describe and quantify these variations into functions with known

spatio-temporal-spectral properties or at least easier to characterize. Multi-channel EEG

recordings naturally include multiple modes. Matrix analysis, via stacking or concatenat-

ing other modes with the retained two modes, has been extensively used to represent and

analyze the EEG data. On the other hand, Multi-way (tensor) analysis techniques keep

the structure of the data, and by analyzing more dimensions simultaneously, summarize

the data into more interpretable components.

This work presents a generalized multi-way array analysis methodology in pattern

classification systems as related to source separation and discriminant feature selec-

tion in EEG signal processing problems. Analysis of ERPs, as one of the main cat-

egories of EEG signals, requires systems that can exploit the variation of the signals

in different contextual domains in order to reveal the hidden structures in the data.

Temporal, spectral, spatial, and subjects/experimental conditions of multi-channel ERP

signals are exploited here to generate three-way and four-way ERP tensors. Two key

elements of this framework are the Time-Frequency representation (TFR) and CANDE-

COMP/PARAFAC model order selection techniques we incorporate for analysis. Here,
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we propose a fully data-driven TFR scheme, via combining the Empirical Mode Decom-

position and Reassignment method, which yields a high resolution and cross-term free

TFR. Furthermore, we develop a robust and effective model order selection scheme that

outperforms conventional techniques in mid and low SNRs (i.e. 0− 10 dB) with a better

Probability of Detection (PoD) and almost no extra computational overhead after the

CANDECOMP/PARAFAC decomposition.

ERP tensor can be regarded as a mixture that includes different kinds of brain activity,

artifacts, interference, and noise. Using this framework, the desired brain activity could

be extracted out from the mixture. The extracted signatures are then translated for

different applications in brain-computer interface and cognitive neuroscience.
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Chapter 1

Introduction

1.1 Electroencephalogram

Electroencephalogram (EEG) was discovered in 1924 by a German scientist, Hans Berger.

Since then, this recording technique has become one of the most used tools to study and

monitor the brain activity and diagnose various neurological disorders. The intrinsic

simplicity and its low cost compared to other recording and brain imaging techniques,

such as fMRI and PET, has made EEG a popular and widely accepted modality [1].

EEG is the recording of the electrical fields generated in the brain. Various groups

of pyramidal cells of neurons, oriented perpendicularly to the surface of the head, are

responsible for generating these electrical fields. Neurons are the source of these electrical

fields by generating ionic current flows. Neurons that produce synchronized electric

fields are grouped together and can be modeled as a microdipole [2]. EEG essentially

records the electrical activity generated by various microdipoles located in the surface

cortex of the brain. In order to generate an observable electric field from the scalp,

approximately a group of 106 neurons orientated in the same direction with synchronized

activity is enough [3]. However, EEG is a complex combination of rhythms that reflects

the dynamical changes of the activities created in different parts of the brain concurrently.

Although brain is the most complex organ in the body, through study of the brain activity,
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a huge improvement of knowledge of the brain has perceived in the past decades.

Initially, before computers become ubiquitous, EEG analysis and conclusions were

conducted through tedious visual interpretation and via manual measurements of the

EEG traces. Hence, the extracted results were unreliable and subject to different inter-

pretation of neurologists. Thanks to progresses in computerized data processing, fast and

robust processing of the EEG signal became possible. Nowadays, various parametric and

nonparametric methods are incorporated for digital processing of EEG signals to extract

some insights from the data for different applications. Progressive developments in elec-

trical engineering and the fascination with the human brain have attracted researchers

from different scientific fields to investigate EEG recordings. Some of the main reasons

behind the extensive usage of EEG are listed as follows [2]:

i. The temporal resolution of EEG compared to other neuroimaging modalities is high.

EEG can provides a resolution of up to few milliseconds, whereas PET and fMRI

are limited to a few seconds.

ii. The knowledge of the mechanism that generates spontaneous EEG activity has in-

creased. Furthermore, fMRI is inapplicable for registering many types of mental

activities, brain disorders and malfunctions of the brain, due to their low impact on

the blood oxygenation level.

iii. EEG recording systems are low cost and way cheaper than the multimillion dollar

fMRI and PET scans.

iv. New advanced signal processing methods such as Blind Source Separation (BSS),

or time-frequency analysis like wavelet analysis and multi-way models have emerged

and adapted for EEG analysis.

As a result, nowadays EEG has been widely used by many research centres and

hospitals across the world in many different applications. Some of the applications in

clinical neuroscience are monitoring alertness, coma and brain death [4], Detecting neu-

rodegenerative disease such as Alzheimer’s disease [5], Investigating sleep disorders [6]
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and epilepsy [7], measuring the depth of anesthesia [8], testing drug effects [9]. Further-

more, EEG has found lots of applications in Brain Computer Interface (BCI) field which

is a new communication channel that connects human brain with a device, bypassing

the classical neuromuscular communication channels. Controlling video games [10], or

controlling a machine [11] are some of BCI systems applications.

1.1.1 EEG Recordings

EEG can be recorded by placing different sensors on the scalp. Sensors are generally

constructed from Ag/AgCL (Silver/Silver chloride) and they are typically built in the

form of disks with the radius of 5 mm. Different standardizations for recording of EEG

in term of placement of the electrodes have been proposed (10 − 20 system, Maudsley

system, 10 − 10 system). Nowadays, the 10 − 20 recording system is the most common

in the filed. The International 10 − 20 system of electrodes placement presents an uni-

form coverage of the entire scalp. This system is based on an iterative subdivision of

arcs on the scalp starting from craniometric reference points: Nasion (Ns), Inion (In),

Left (PAL) and Right (PAR) pre-auricular points [12]. The standard set of electrodes

is detailed in Figure 1.1. The 10 and 20 in the International 10 − 20 system are named

based on the distance between adjacent electrodes which indicates that distance between

adjacent electrodes is either 10% or 20% of the specified distance measured using specific

anatomical landmarks, e.g. the total distance between the front and back or left and

right of the head. Electrodes are named with a a letter followed by a subscript number.

The letter specifies the anatomical area or lobe of the brain where the electrode is places:

prefrontal or frontopolar (Fp), frontal (F), central (C), parietal (P), occipital (O), tem-

poral (T) and auricular (A). Depending on where the electrode is located, the subscript

takes different values. Letter z as the subscript, indicates zero or midline placement of the

electrode, and a numeric subscript indicates lateral placement. Even numbers are used

to indicate the electrodes on the right side of the head, while odd numbers correspond

to the electrodes on the left side. Besides, the subscript number increase with increasing
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distance from the anterior posterior midline of the head [12].

Having the electrodes placed accordingly, we can use different montages for the record-

ing of brain electrical potentials. Two popular montages for recording the EEG signals

are the referential or bipolar montages (Figure 1.2). In referential montages, we have

a reference electrode where the voltage differences between all electrodes and this com-

mon electrode are recorded. In bipolar montages, however, instead of using a reference

electrode, the voltage difference between two designated electrodes is recorded (i.e., each

electrode pair is considered as a channel). One of the main disadvantage of the referential

montage is related to the fact that no reference is truly inactive, hence we can not find

a single reference electrode that is optimal for all situations. As a result, the so-called

common average reference, which corresponds to an artificial reference that is obtained

by subtracting the time signal averaged over all sensors from the data of each channel,

is a new montage that tries to alleviate this shortcoming. Bipolar montages, on the

other hand, reduce the effects of common noise/artifacts and eliminate the influence of

contaminated references [12].

The effective bandwidth for EEG signals is limited to approximately 100 Hz. For

many applications the bandwidth may be considered even half of this value. Therefore,

in order to satisfy the Nyquist criterion, a minimum frequency of 200 Hz is needed for

sampling the EEG signals. However, 256 Hz is the conventional sampling frequency used

in most EEG acquisition systems.

1.1.2 EEG Rhythms

EEG signals exhibit several patterns of rhythmic or periodic activity that are associated

with various physiological and mental processes. EEG rhythms are highly sensitive to

the subject’s state and can easily change depending on the subject’s task. However,

historically there are 5 commonly identified rhythmic activities in EEG the recordings

which are divided in different frequency bands. The typical EEG frequency rhythms and

their respective frequency bands are [2]:
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(a)

(b)

Figure 1.1: Placement of recording electrodes according the international 10− 20 system
seen from (a) left and above the head. A = Ear lobe, C = central, P = parietal, F =
frontal, Fp = frontal polar, O = occipital; (b) indicates a two-dimensional view of the
electrode set-up configuration [13].

• δ rhythms, found in the frequency band of 1 to 4 Hz (δ band).

• θ rhythms, found in the frequency band of 4 to 8 Hz (θ band).
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(a) (b)

Figure 1.2: (a) Bipolar and (b) unipolar measurements. [13].

• α rhythms, found in the frequency band of 8 to 13 Hz (α band).

• β rhythms, found in the frequency band of 13 to 30 Hz (β band).

• γ rhythms, found in the frequency band of 30 to 100 Hz (γ band).

A brief description of these EEG rhythms are as follows:

δ rhythms

δ rhythms are the slowest of all the existing rhythms. However, they present the higher

amplitude of all. These waves are primarily associated with deep sleep and may be

present in the waking state. Having these characteristics, it is very likely for the genuine

delta response to be mistaken with the artefact signals caused by the large muscles of

the neck and jaw.

θ rhythms

θ rhythms are associated with drowsiness, childhood, adolescence and young adulthood.

Larger contingents of theta wave activity in the waking adult are abnormal and are caused

by various pathological problems. θ rhythms are also found during problem solving, for

example mathematical problems such as adding or subtracting. It is located in the

prefrontal part of the cortex.

6



α rhythms

α rhythms are associated with relaxed states. α waves appear in the posterior half of the

head, are usually found over the occipital region of the brain, and can be detected in all

parts of brain posterior lobes. α rhythms commonly appears as a round or sinusoidal-

shaped signal. However, in rare cases it may manifest itself as sharp waves. In such cases,

the negative component appears to be sharp and the positive component appears to be

rounded. Different α rhythms are found in the human cortex: µ rhythm, α occipital

rhythm and α parietal rhythm.

µ rhythms are rhythms that have been widely used in the implementation of BCI

systems. They are named based on the similarity of their shape with letter µ (with

sharp negative peaks). µ rhythms are identified in the frequency range close to 10 Hz.

A known phenomenon related to synchronization of the groups of neurons in the motor

cortex area is governed with change of these rhythms. Movement of arms and legs are

controlled with these groups of neurons. When limbs are in the idle state and inactive,

the µ rhythm presents activity, whereas when a subject moves his limbs the rhythm

presents a decrease of amplitude, which is known as desynchronization. It has also been

shown that this phenomenon and pattern presents in the brain not only when a subject

physicality does an action of movement, but also happens when a subject just thinks

about performing the same action without executing that. This has been the motivation

for developing BCI systems based on motor imagery [11].

Another example of α rhythms, that are visible at occipital electrodes O1 and O2,

is the α occipital rhythms. The amplitude of α occipital rhythms is higher compared

to other rhythms. While the subject’s eyes are closed, these rhythms enhance their

amplitude, and subsequently they reduce the amplitude when the subject keeps his eyes

opened. They also decrease in response to visual stimuli.

α parietal rhythm, is the last of the α rhythms that is identified in the parietal area

with the dominant response at the electrode Pz. These rhythms can be enhanced when

the subject closes his eyes. The functional properties of the parietal rhythm are not fully
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understood.

β rhythms

β rhythms are observable at different locations in the cortex and their main feature is

having low amplitude with multiple and varying frequencies. A β wave is associated

with the usual waking rhythm of the brain that can be identified during active thinking,

active attention, focus on the outside world or solving concrete problems, and is found

in normal adults. A high level β wave may be acquired when a subject is in a panic

state. There are different types of β rhythms, such as β Rolandic rhythms and β frontal

rhythms.

β Rolandic rhythms usually present activity around the 20 Hz. Spontaneous activity

recorded on electrodes close to the sensorimotor area (C3,Cz and C4), which are usually

around the 20 Hz, are identified as β Rolandic rhythms. These rhythms are associated

with the intentionality of performing a movement, presenting desynchronization even

before than the µ rhythm.

The other type of β rhythms are β frontal rhythms with the dominant activity ob-

servable at electrodes F3, Fz and F4. They appear during cognitive tasks related with

decision making.

γ rhythms

γ rhythms cover the frequencies above 30 Hz (mainly up to 45 Hz). Sometimes, these

rhythms are called fast beta wave. γ rhythms are believed to be associated with higher

mental activity, including perception, problem solving, fear, and consciousness. The

amplitude of these rhythm are very low and they are rarely seen in EEG recordings.

However, detection of these rhythms are important as they can be used as the indicator for

certain brain diseases. The frontocentral areas are the region with high EEG frequencies

and the highest levels of cerebral blood flow (as well as oxygen and glucose uptake). γ

rhythms appear to be involved in higher mental activity, including perception, problem
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solving, fear, and consciousness.

Figure 1.3 shows the typical normal brain rhythms with their usual amplitudes levels.

These rhythms may last as long as the state of the subject is not changed and therefore

they are approximately cyclic in nature.

On the other hand, there are other brain waveforms and some of them are as follows

[1]:

• Spiky type signals with a wide frequency range such as k-complexes, vertex waves

(which happens during sleep), and some seizure signal.

• Transient signal such as Event Related Potentials (ERP) and contain Positive Oc-

cipital Sharo Transient (POST) signals.

• Signals that originate from the defected region of the brain, such as tumoural brain

lesions.

• The sleep spindles within the 11− 15 Hz frequency range.

• Eyelid flutter with closed eyes that originates the frontal artefacts in the alpha

band.

• Lambda (λ) waves are most prominent in walking patients, but are not very com-

mon. They are characterised with sharp transients occurring over the occipital

region of the walking subject during visual explorations.

Usually, detection and understanding of the brain rhythms from scalp EEGs, even

with trained eyes, is a difficult job. However, with the help of powerful computers and

application of advanced signal processing tools, separation and analysis of the desired

waveforms from within the EEG signals has become feasible. We next consider the

development in the EEG signal processing context, but before that some fundamentals

about it are discussed.
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Figure 1.3: The EEG signal on the top and four typical dominant brain normal rhythms,
from low to high frequencies; the delta wave is observed in infants and sleeping adults,
the theta wave in children and sleeping adults, the alpha wave is detected in the occipital
brain region when there is no attention, and the beta wave appears frontally and parietally
with low amplitude [1].

1.2 Fundamentals of EEG Signal Processing

EEG signals are signatures of neural activity in the brain that are non-invasively cap-

tured from the scalp. These multichannel signals are presented in time domain but is

believed to reflect the dynamical changes of the electrical activity in frequency and spatial

domains as well. This allows processing of the EEG signals using conventional signal pro-

cessing algorithms which are developed for analysis of the data in either time, frequency,

space, multidimensional or multi-way domains. The fundamental concepts considered in

developing EEG signal processing tools and algorithms are as follows [1]:
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1.2.1 Nonlinearity of the medium

The head as a mixing medium combines and mixes EEG signals that are locally generated

within the brain at the electrode positions. As a system, the output behaviour is directly

influenced by its input sources in different situations. Various biological and physiological

phenomenon can affect and change the brain metabolism, which may change the mixing

process of head and subsequently, these effect can make EEG signal the output of a

nonlinear system. Analysis and modelling of such system is very complicated and nobody

has yet fully modelled it. However, chaos theory and analysis of dynamics of time series

has helped researchers to characterise the nonlinear behaviour of EEG signals.

1.2.2 Nonstationarity

The signals are generally called nonstationary if the statistics of the signals, such as

mean, variance, and higher order statistics, change with time. Consequently, we can

quantify the nonstationarity of the signals by measuring some statistics of the signals at

different time lags. If there is no considerable variation in these statistics, the signals can

be considered stationary.

Generally, the multichannel EEG signals can be modeled as a multivariate Gaussian

distribution. However, the mean and covariance properties of those models generally

change from segment to segment. As a result, EEG signals are considered stationary

only within short segments or intervals, that is, quasi-stationary. Furthermore, this

Gaussian assumption holds during normal brain condition and it is not valid during

mental or physical activities. The changes in the distribution of signal segments can

be measured by the deviation of the distribution from Gaussian. Estimates of some

higher-order moments, such as skewness and kurtosis can be checked as a measure of

the non-Guassianity of the signal. Patterns observed during eye blinking, or during

the transitions between various ictal states of seizure, and in the event-related potentials

(ERP) and evoked potentials (EP) are some examples of non-stationarity in EEG signals.
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1.2.3 Signal Segmentation

Effective assessment of EEG signals by neurophysiologists and clinicians necessitates

labelling of the EEG signals into segments with similar characteristics. Within each seg-

ment, usually the signals have a similar time and frequency statistics and are considered

statistically stationary. As an example, an EEG recorded from an epileptic patient may

be divided into three segments of preictal, ictal, and postictal segments. Each may have

a different duration.

In segmentation of EEGs time or frequency properties of the signals would be ex-

ploited to define a dissimilarity measurement between the adjacent EEG frames. Then,

an empirical threshold usually determines whether those frames would belong to the

same segment or not. Some of the criteria that are used as dissimilarity measure are

based on autocorrelation function, high order statistics, error energy in autoregressive

(AR)-modelling of the signals, and spectral error measure of the periodogram.

Although the above criteria can be effectively used for segmentation of EEG signals, In

order to detect certain abnormalities better system can be used. By extracting meaningful

and discriminative features that describe the behaviour of the signals, the segmentation

problem can be translated to a classification problem where different classifiers can be

used.

1.3 EEG Signal Analysis

Most traditional methods of signal analysis are based on the assumption of the ergodicity

of the time series which requires stationarity of the signals. Physiological time series

comply with that assumption only for very limited time intervals and quite often the

evolution and variation of the signal in time is of primary interest. This is especially the

case for brain electrical activity. According to the present understanding, the processing

of information by the brain is reflected in dynamical changes of electrical activity in time,

frequency, and space. Therefore, the study of these processes requires methods which
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can describe the variation of the signal in time and frequency in a quantitative way.

EEG signal analysis is the art of decomposing the signal into functions with known

Spatio-Temporal properties or at least easier to characterize. The conventional methods

for EEG analysis can be categorized into the time domain, frequency domain, time-

frequency, and spatio-temporal domains. Each of these methods analyse one or at most

two of the contextual information embedded in EEG signals which we briefly discuss

about in the next section.

1.3.1 Time Domain Analysis

Linear Prediction Models

Finding a set of model parameters that can optimally describe the signal generation

system is the main objective of prediction models. These models usually use a noise type

input. In autoregressive (AR) modelling of signals each sample of a single channel EEG

measurement is defined to be a linear combination of a number of previous samples plus

input sample, that is,

y[n] = −
p∑

k=1

aky[n− k] + x[n] (1.1)

where ak, k = 1, 2, · · · , p are the linear parameters, n denotes the discrete sample time,

and x[n] is the noise input. In an autoregressive moving average (ARMA) linear predictive

model each sample is defined as the linear combination of a number of its previous input

and a combination of output sample values, that is,

y[n] = −
p∑

k=1

aky[n− k] +

q∑
k=0

bkx[n− k] (1.2)

where bk, k = 1, 2, · · · , q are the additional linear parameters. The parameters p and

q are the model orders. The Akaike Information Criterion (AIC) is traditionally used

to determine the optimum order of the model. The parameters of the model can be

estimated using normal equations or via some iterative optimization techniques. In [14]
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a parametric modelling of a single evoked potential is addressed.

Gaussian Mixture Model

Different parameters defined in the distributions characterises the signals in this ap-

proach. The distributions in terms of probability density functions are the sum of a

number of weighted Gaussian functions with different means and variances. The overall

distribution for K Gaussian components is defined as

p(x|θk) =
K∑
k=1

ωkp(x|µk, σk), (1.3)

where the vector of unknown parameters θk = [ωk, µk, σk] for k = 1, · · · , K subject to∑K
k=1 ωk = 1. µk and σk are the mean and variance of the kth Gaussian distribution

function denoted by p(x|µk, σk). Expectation Maximization (EM) algorithm is often

used for estimating the parameters of the model. Moreover, AIC or other more efficient

model order selection techniques can also be used for selecting the optimum number of

components K in the model [15]. In [16], the Gaussian mixture model is used for EEG

pattern classification.

1.3.2 Frequency Domain Analysis

Since the invention of the Fourier Transform in early nineteenth century, which was

considered a revolution in the signal processing field, along the temporal analysis signals

have often been analysed in frequency domain more effectively. EEG signals behave

differently for different states of the brain and as said earlier have distinctive frequency

contents. So, it is worth analysing the EEG signals in frequency domain. However, the

traditional windowed Fourier transform is not sufficient in this case. It is subject to high

statistical errors, and it is severely biased as a consequence of the unfulfilled assumption

that the signal is either infinite or periodic outside the measurement window. Parametric

methods like the autoregressive (AR) model are free from the ”windowing” effect since
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no assumptions about the signal outside the measurement window are needed, but still,

stationarity of the signal is required and signal structures of duration shorter than the

measurement window cannot be identified. Moreover, parametric spectrum estimation

of EEG signals required that an accurate estimate of the model order to be available, as

overestimating or underestimating the model order may result in splitting the true peaks

and combining peaks in close proximity in frequency spectrum, respectively.

EEG signals are often statistically nonstationary, particularly when an abnormal event

is captured within the signals. As the Fourier transform integrates over the whole ob-

served segment, the temporal information is lost in the process and the characteristics of

the signals is not represented accurately. A time-frequency (TF) approach is the solution

to the problem.

1.3.3 Time-Frequency Domain Analysis

Signal transformation plays a crucial role in the majority of signal processing applications.

The goal of this transformation is to obtain much simpler representation of the signal. For

instance, single tune signals are localized in spectral domain and have narrow frequency

bands. Hence, they appear sparse in Fourier or cosine transform domains. On the

other hand, data such as wideband noise with a flat spectrum data, are localized in

temporal domain and have an impulsive behaviour in time. Hence, to more effectively and

efficiently analyse the data, transformation becomes the main aspect of signal processing.

When the characteristics of the signal is changing over time, we need to capture the non-

stationarity with a transformation that considers both temporal and spectral contents.

Time-frequency domain information exploits the data characteristics and properties in

both time and frequency.

Short-Time Fourier Transform (STFT) is defined as the discrete-time Fourier trans-

form evaluated over a sliding window in an effort to keep track of the temporal and

spectral evolution of the analysed signal contemporary. However, due to windowing

effect, perfect resolution can not be achieved in both time and frequency-domains.
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On the other hand, Wavelet Transform (WT) and related methods such as Matching

Pursuit (MP) have brought essential progress in this respect. Unlike the STFT, the time-

frequency kernel for the WT-based method can better localize the signal components in

timefrequency space.

The use of the wavelet transform in the study of brain signals was first applied by [17],

[18], [19] to the evaluation of evoked potentials and also for the analysis of electrocorti-

cal activity. Evoked potentials are signals of amplitude an order of magnitude smaller

than the ongoing EEG activity. The most commonly applied method of evoked poten-

tials (EP) evaluation is based on averaging single EPs triggered by a repeating stimulus.

This method relies on unrealistic assumptions concerning the purely deterministic and

repeatable character of the EP, the purely stochastic character of the on-going EEG,

and the independence of both signals. Wavelet analysis offers an alternative method of

EP evaluation which is based on an important feature of the method-its ability to dis-

criminate between signals lying in the same frequency range but with different temporal

localizations. Wavelet analysis has proved to be useful in characterizing changes in brain

activity, although in the study of time-locked phenomena such as EPs.

Using Wavelet transform, the time-frequency components characterizing the signals

can be calculated and consequently an efficient and compact representation of the signal

can be obtained. Usually a small number of wavelet components is sufficient to represent

the signal with good fidelity which means often signals are sparse in wavelet domain.

Nevertheless, wavelet analysis is itself subject to certain limitations connected with the

fact that the bandwidth is inversely proportional to the time scale, which effectively limits

the resolution. The bandwidth changes in steps (usually by a factor of two) and therefore

we can not get precise frequency estimates especially at high frequencies. There have

been different attempts to overcome this limitation. When the orthogonality assumption

is relaxed, finer tuning of the time-frequency scale is possible; however, the computational

procedures are much more complicated in this case.

Another drawback is that the wavelet representation depends also on the data window
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setting and is sensitive to the time shift of the window. This limitation is not critical in

the case of time-locked phenomena like EPs. In such cases the wavelet transform offers

a universal and convenient parametrization which can be used for comparison of signals,

but this kind of representation is much less suitable for transients which occur more or

less randomly in the signal (e.g., spindles, K-complexes, etc.).

These limitations can be overcome by the MP technique, offering a maximally adap-

tive approach and very fine resolution close to the theoretical limit. In MP, from a large

dictionary of possible functions, a subset is chosen in such a way as to match optimally

the local signal structures. The windowed Fourier transform and wavelet transform (WT)

can be considered as particular cases of MP corresponding to restrictions concerning the

choice of parameters for the atoms of the dictionary. Each atom is characterized quan-

titatively by four parameters: time and frequency coordinates, time span, and intensity;

in the case of MP all of them can change freely.

The density of the signal in the time-frequency plane can be visualized with MP in

a form of Wigner distribution. However, due to the decomposition embedded in MP,

TFR achieved by MP provides a clear picture in time-frequency space and does not have

interference or cross-terms unlike the Wigner or Cohen class distributions.

Although MP seems to have interesting properties, it still has some problems. Greedy

MP algorithms even for a simple combination of dictionary’s functions can fail in certain

cases, some of them addressed in [20]. One solution with a cost of increased computational

requirements could be to use orthogonalized matching pursuit. However, this might also

introduce numerical instabilities [21]. Besides, instead of using fixed basis for constructing

the dictionary, incorporating the dictionary learning algorithms (DLAs) would enable us

to learn the atoms of the dictionary in a data-driven and unsupervised way.

1.3.4 Spatio-Temporal Domain Analysis

Most physiological information, signals, and images are found as mixtures of more than

one component. Unmixing and separating these components is then a challenge in this
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context. However, if the number of recording channels is large enough and the consti-

tuting sources in the mixtures are either uncorrelated, independent, or disjoint in some

domain, then we can accurately separate the components. This problem is known as the

blind source separation (BSS) problem where some a priori, constraints such as inde-

pendence of the sources, are considered to solve it. The term blind in BSS refers to the

case of having both the sources and the mixing system (or medium) unknown. Principal

component analysis (PCA), matrix factorization, independent component analysis (ICA)

are different examples of the approaches that have been used in the source separation

context.

ICA is the more popular one, as it decomposes the signals into the constituent inde-

pendent components and plays a crucial role in de-noising and separation of biomedical

signals. A perfect separation of the signals requires taking into account the structure

of the mixing process. In real applications like EEG, this process is unknown but some

assumptions can be made, that is the instantaneous case that the source signals arrive

at the sensors at the same time. As a result, the BSS model can be written as

X = H S + V (1.4)

where S ∈ RM×T ,X ∈ RN×T ,V ∈ RN×T denote the matrix of source signals, observed

signals, and noise, respectively. H ∈ RN×M is the mixing matrix. N is the number of

sensors , M is the number of sources, and T is the total number of measured samples.

The separation is done using a demixing matrix W ∈ RM×N that uses only the observed

information to recover the independent sources according to Y = WX.

The aim of BSS using ICA is to estimate an unmixing matrix W such that Y best

approximate the independent sources X. As such, the unmixing matrix can be calculated

as the inverse of the mixing matrix, i.e. W = H−1. This implies that separation is unique

up to permutation and scaling ambiguities in the output independent components. BSS

has been widely employed in the literature for separating normal EEG rhythms and also

artefacts removal [22, 23]. Figure 1.4 illustrates the BSS concept for separation of brain
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sources.

Figure 1.4: BSS concept; mixing and blind separation of the EEG signals.

Furthermore, the optimization underlying the solution of BBS problem may be sub-

ject to fulfilment of number of conditions, which could be based on a priori knowledge

about the sources or the mixing matrix. These constraints could be statistical as well as

geometrical, such as sparsity of sources or the mixing matrix, that can lead to more accu-

rate solutions [24, 25]. In the context of EEG signal processing, although the number of

signals mixed at the electrodes seems to be limited, the number of sources corresponding

to the neurons firing at a time can be enormous. However, if the objective is to study a

certain rhythm in the brain, the problem can be transformed to the time-frequency do-

main or even to the space-time-frequency domain. In such domains the sources may be

considered disjoint and generally sparse. Having said this, our main goal in this disserta-

tion focuses on high-dimensional techniques that achieve representative and discriminant

features that potentially improve characterising and quantifying brain activities.

So far in this chapter, we have discussed the importance and challenges of EEG

signal processing. Furthermore, we have introduced the conventional techniques, i.e.
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temporal domain, spectral domain, TF analysis as a suitable signal representation that

provides comprehensive information in signals and their non-stationary behaviour. Also,

we have highlighted the popular spatio-temporal techniques. However, these techniques

rely on at most two contextual domains in the EEG analysis, although, it is believed that

processing of the information in brain is reflected in dynamical changes of the electrical

activity in time, frequency, and space. Moreover, two-way analysis is unique subject to

some additional constraints which may not be always physiologically meaningful. Study

of the brain processes requires methods which can describe these variations of the EEG

signal in time, frequency, and space in a quantitative way, which inspires the research of

this dissertation. Therefore, the main focus of the present dissertation is to develop EEG

signal processing framework that seek to decompose EEG into functions with known

spatio-temporal-spectral properties or at least easier to characterize. Furthermore, the

extracted components could be more discriminative, easier to interpret, and effectively

applied for different applications.

1.4 Contributions of The Dissertation

This work presents a generalized multi-way array analysis methodology in pattern clas-

sification systems as related to source separation and discriminant feature selection and

classification in EEG signal processing problems. Analysis of ERPs, as one of the main

categories of EEG signals, requires systems that can exploit the variation of the signals

in different contextual domains in order to reveal the hidden structures in the data.

Multi-way analysis framework enables us to consider as much as relevant contextual in-

formation in our analysis simultaneously rather than sequentially adding the domains in

the analysis which is done conventionally in the two-way analysis. Here in this thesis,

the proposed framework via the blessing of the dimensionality of EEG signals, i.e. in-

corporating temporal, spectral, spatial, subjects/conditions modes in the analysis seeks

to separate and localize the EEG sources that might have overlap in some domains. We
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investigate three different implications in the proposed system as follows: i) EEG signal

decomposition; ii) localizing to the events of interest; and iii) identification and classifica-

tion of ERP signals. In all three implications, our main objective is to develop techniques

that successfully quantify the patterns of interest in EEG signals. The proposed EEG-

based framework could also be considered as the brain imaging system for poor people,

as it has the good temporal resolution compared to the costly and conventional brain

imaging fMRI systems, and still produces a satisfactory and acceptable spatial resolution

that could be used for visualizing and analysing the ERP signals.

We use three different EEG datasets in this dissertation as following:

• The multichannel SSVEP dataset from the Swartz Center for Computational Neu-

roscience (SCCN) at University of California San Diego (UCSD), which consisted

of ten healthy adults (8 males and 2 females, mean age: 23 years) with normal or

corrected-to-normal vision.

• The multichannel EEG dataset of five healthy male subjects (mean age: 26.2 years

old; standard deviation: 2.3) that were recorded in the BCI lab of the Federal

University of Esprito Santo in Brazil.

• The multi-channel ERP dataset that was recorded in Auditory Development Lab

at McMaster University. 22 participants (17−22 years old, mean age 18.93±1.39),

neurologically healthy, right-handed, and with normal hearing participated in the

experiments.

Every EEG processing system consists of three main parts: Signal Acquisition, Signal

Processing, and Translation part. The block diagram in Figure 1.5 shows the overview of

the proposed framework. In this block diagram, our contributions’ areas are highlighted

with the darker color as explained below:

In order to capture the non-stationarity of EEG signals, analysing the temporal and

spectral domains concurrently is inevitable which requires TFR techniques that can char-

acterise EEG data accurately. TFR is considered as a pre-processing step in the system
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Figure 1.5: Flowchart of the proposed methodologies highlighting the original contribu-
tions with the darker color.

to help with better localization/analysis of the events. Having a coarser TFR is okay

in some cases but finer TFR helps with ERPs as these are time locked phenomenon

that require higher resolution for an effective analysis. Furthermore, as EEG is naturally

high-dimensional, the data collected can also be fitted into the multi-way array including

multiple modes. Then, the interactions among multiple modes can be revealed via multi-

way analysis. Hence, the signal processing part of the system requires methodologies

that can characterise and model different interactions among various EEG modes. To

fulfill this objective, we exploit the followings:

1. Time-Frequency Representation (TFR): We intend to generate a high-resolution

and cross-term free time-frequency representation that increases the effectiveness

of localization in EEG signals and captures the non-stationarity and non-linearity

within the EEG signal.
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2. CANDECOMP/PARAFAC model order selection: Based on the above TFR tech-

nique, we form the EEG multi-way array by adding other relevant modes, and our

goal is to develop a unique and novel model order selection technique for decom-

posing the EEG multi-array into its constituting components. The extracted com-

ponents uniquely characterize the embedded events in the analysed EEG segment

and can be used further for various exploratory and classification applications.

In the next step, we intend to translate the extracted meaningful and unique features

from the EEG data into different applications. To make this happen, once the multi-

way array of EEG signals are formed, based on the contextual modes incorporated in

the formation of the EEG tensor, we introduce three applications for multi-modal event-

related potentials analysis in a way that they are categorized into individual-level and

group-level analysis:

Individual-level Analysis

Three-way array of EEG signals are decomposed and the extracted signatures are used

for the following applications:

1. Source localization of brain activities.

2. Brain-Computer Interface.

Additionally, the developed method makes sure that the obtained features are robust to

noise and outliers and are effective for classification and detection of the event of interest.

Group-level Analysis

Four-way array of EEG signals, including the mode of subjects, is decomposed for re-

search questions of cognitive neuroscience. The extracted multi-domain feature is used

for group-level analysis of ERP signals. We introduce a novel multi-domain feature selec-

tion technique in a way that it represents the ERP characteristics and differentiates the

two groups of subjects/conditions in the experiments with a proper significance level.
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Outcome of the proposed work

Table 1.1, summarizes the various solutions provided by the proposed data-driven signal

processing framework in efficiently analyzing non-stationary EEG signals and localizing

the events and extracting discriminative features from them. The proposed framework

with multi-way analysis as its significant highlight is expected to become a versatile non-

stationary signal analysis tool, which has the benefits of localization and discriminant

analyses. The outcome of the proposed work as an EEG processing system, including

the data acquisition, signal processing, and the translation stages could be summarized

as following:

Table 1.1: Summary of the proposed solutions and the requirement for efficient EEG
signal analysis

Requirements for efficient Solution provided/ suggested by Chapter
EEG signal analysis the proposed work Reference

and feature extraction

EEG characteristics Capture non-stationarity with TFR Chapter 1
TF analysis Data-driven and high resolution TFR Chapter 2

Multi-way nature of EEG Multi-way Analysis Chapter 3
Capture the true underlying CANDECOMP/PARAFAC Chapter 4

structure of EEG signals Model Order Selection
EEG tensor formation Multi-channel Reassigned-EMD Chapter 5

Localization of Brain Activities Three-way EEG tensor analysis Chapter 5
Brain-Computer Interface PARAFAC-based feature extraction Chapter 5

Multi-domain feature selection Four-way EEG tensor analysis Chapter 6

1.5 Organization of The Dissertation

The dissertation is organized in 7 chapters. The flowchart in Figure 1.6 displays the

evolution of this dissertation. We begin with identifying the right TFR technique for

the proposed work that best suits the non-stationarity of EEG data and results in a

high-resolution and cross-term free TFR. In Chapter 2, the classical TF transformations

and the proposed TFR method are explained. Time-Frequency analysis is effective for
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Figure 1.6: Organization of the dissertation.

EEG analysis and has been widely used in the literature, However, it may not be able to

extract and separate the overlapping events in EEG. Multi-way analysis techniques, on

the other hand, by retaining the additional dimensions, keep the structure of the multi-

dimensional data and may reveal the hidden structure that two-way analysis cannot do.

The proposed TFR in this chapter is later used for the formation of multi-way EEG ten-

sors. In Chapter 3 multi-way arrays and the corresponding multi-way analysis techniques

are introduced. CANDECOMP/PARAFAC and TUCKER are two well-known models

in the multi-way analysis context. We select the CANDECOMP/PARAFAC model for

our EEG analysis due to its uniqueness property and more interpretable decomposed

signatures. Selecting the optimum number of components in CANDECOMP/PARAFAC

model is an active challenge in the community. A novel and robust methodology for CAN-

DECOMP/PARAFAC model order selection is developed in Chapter 4. The method is

capable of handling both white and colored noises and outperforms the state-of-the-art

techniques in the literature. In Chapter 5, two individual-level applications for three-

way EEG tensor with modes: time × frequency × channel are presented. The first

25



application is for localizing the brain activities and extracting the event of interest from

a mixture of events in multi-channel EEG recordings. The second application is to use

the extracted signature from CANDECOMP/PARAFAC analysis of EEG tensor for a

brain-computer interface system. The extracted signature can effectively characterise the

embedded events in EEG signals and further be used for detection and classification of

ERP signals. In Chapter 6, a group-level analysis for four-way EEG tensor with modes:

time × frequency × channel× subjects/conditions via CANDECOMP/PARAFAC model

is presented. Furthermore, in this chapter a novel multi-domain feature selection scheme

is developed , that not only characterize the ERP signal via its coupled temporal and spec-

tral signatures, but also can effectively differentiate the two groups of subjects/conditions

with an acceptable significant level. Chapter 7 presents a summary of the complete work

with analysis of the achieved results at various stages. The novelty and the multifold

benefits of the proposed work are highlighted. The future directions on enhancing this

methodology are presented as well.
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Figure 2.1: Chapter 2- Time-frequency Representation.

EEG signals are non-stationary, and they therefore can not be efficiently represented in

the time domain, x(t). Fourier representation, X(f), reveals spectral constitutive features

of the signal, but it does not preserve any explicit localization in time. It is well-known

that Fourier representation faces limitations when we are looking for non-stationarity
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features of the signal. Hence, when is comes to analyze signals with time-varying char-

acteristics, the time-domain and frequency domain analysis tools are not sufficient. To

overcome this difficulty and to analyze the non-stationary signals effectively, techniques

that provide joint time and frequency information are needed. Joint TF representation

(TFR) indicates a two dimensional energy representations of a signal in terms of time

and frequency domains. The work in the area of TFR methods is extensive [26–29].

Depending upon the application in hand and the feature extraction strategies, any of the

TF approaches could be used. In this chapter, first we review the classical TF repre-

sentation techniques and highlight their shortcomings and then propose an adaptive TF

representation scheme that is suitable for EEG analysis and results in a high-resolution

and cross-term free TFR.

2.1 Classical Time-frequency Distributions

Figure 2.2 displays the most well-known TF transformation techniques. Any of these

techniques transform a temporal signal, x(t), into a TF distribution denoted with V(t, f),

where t and f locate each sample in the TF plane and V(t, f) is the TF value at the

corresponding location. Such transformation is displayed in Figure 2.3. Depending on

the transformation technique, TF distributions with different properties are achieved.

For example, some methods construct distributions with non-negative entries while some

might result in negative values also. Temporal and Spectral marginals of a TFD are

TF 

Representations 

Wavelet

Scalogram
MP-TFRSpectrogram

Cohen Posch

TFR

Cohen Class

TFR

Dictionary 

Learning 

Figure 2.2: A diagram of well-known TF distributions.
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Figure 2.3: A diagram of TF transformation.

calculated along each time and frequency coordinates as shown below:

TM(t) =

∫ +∞

−∞
V(t, f)df ,

SM(f) =

∫ +∞

−∞
V(t, f)dt . (2.1)

2.1.1 Cohens Class Bilinear TFRs

Due to the windowing embedded in the TFR, perfect resolution can not be achieved in

both time and frequency-domains. In an attempt to reduce this effect, quadratic methods

of TFR will adapt the analyzed signal as the analysis window, i.e. in order to obtain

the 2D representation of the distribution of signal energy over time and frequency, the

quadratic TFR incorporates the time varying autocorrelation of the signal as:

VWV (t, f) =

∫ +∞

−∞
x(t+ τ/2)x∗(t− τ/2)e−i2πfτdτ. (2.2)

where, VWV is Wigner-Ville distribution (WVD) of the signal.

2.1.2 Cohen-Posch TFR

Cohen-Posch TFR, or positive TFR (PTFR), produces a TFR with non-negative entries.

Cohen and Posch [30] showed that there is an infinite set of positive TFRs and derived
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a formulation via signal dependant kernels to compute the positive TFRs as follows:

VPTFR(t, f) = |x(t)|2|X(f)|2{1 + c. ρ(s(t), S(f))} , (2.3)

where

s(t) =

∫ t

−∞
|x(τ)2dτ | ;S(f) =

∫ f

−∞
|X(ξ)2|dξ , (2.4)

and

ρ(s(t), S(f)) = h(s(t), S(f))− h1(s(t))− h2(S(f)) + 1. (2.5)

In the above equation, h(s, S) is a positive kernel function of the variables s and S,

0 ≤ s, S ≤ 1 and normalized to one. h1(s) and h2(S) are the marginals of h(s, S)

(defined in (2.1)), and c is a numerical constant in the range of

1

max(ρ(s(t), S(f)))
≤ c ≤ 1

min(ρ(s(t), S(f)))
. (2.6)

2.1.3 Spectrogram

Linear TF analysis decompose the signal over a set of basis functions. The simplest linear

TF representation is short-time Fourier transform (STFT) of signal, which is based on the

stationarity assumption of the signal in short durations and takes the Fourier transform

of the windowed segments after multiplying the signal by a window. The basis functions

used in Fourier transform are orthonormal cosine functions with varying frequencies.

Given a signal x(t) and a window h(t), the STFT of x(t) is defined by

VSTFT (t, f) =

∫
R
x(τ)h∗(τ − t)e−i2πfτdτ (2.7)

where h∗(t) is the complex conjugate of h(t). The spectrogram SSTFT (t, f) is then usually

defined as |VSTFT (t, f)|2 and generally used to display the TF energy distribution over

the TF plane.
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2.1.4 Wavelet Scalogram

Wavelet scalogram is based on wavelet decomposition where orthonormal basis functions

with different sizes are used to decompose a signal as given by the following equation:

VCWT (t, s) =
1√
s

∫
x(τ)g(

τ − t
s

)dτ , (2.8)

where g( t
s
) is the mother wavelet, and s being the scaling parameter, corresponds to the

size of each basis function. The basis function used in wavelets, which are called mother

wavelets, are small waves satisfying certain mathematical conditions. Various scaled

versions of the mother wavelet are created by expanding and compressing the mother

wavelet. These different scaled versions of the mother wavelet are slided over the signals,

and captures and models the localized signal structures and characteristics.

We need to find VCWT (t, f). There is no precise relation between scale and frequency.

However, an approximate answer for the relationship between scale and frequency is

associated to the centre frequency of the wavelet. Having the centre frequency of the

wavelet, Fc, determined, we can relate the scale to frequency as following:

Fs =
Fc
s · 4

(2.9)

where 4 is the sampling period, Fc is the center frequency of a wavelet in Hz, and Fs

is the pseudo-frequency corresponding to the scale s, in Hz. The idea is to associate a

purely periodic signal of frequency Fc with a given wavelet which is the frequency Fc,

maximizing the Fourier transform of the wavelet modulus.

Wavelet scalogram displays the TF structure obtained from the wavelet transform.

In scalogram, each wavelet signal is plotted as a filled rectangle whose its location and

size are related to the time interval and the scale range for this wavelet signal. Center

frequency of the wavelets are changed by the scaling parameter that expands and com-

presses the wavelets. Small scale factors corresponds to higher frequencies and larger

scale factor corresponds to the lower frequencies. In other words, in order to capture
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high-frequency characteristics, wavelets use short time scales and on the contrary, a long

time scale is used to capture the low frequency structures in a signal.

2.1.5 Matching Pursuit TFR

Matching pursuit (MP) TF representation is generated based on MP decomposition as

proposed in [31]. MP uses an over-complete, redundant, and non-orthogonal basis func-

tions, including all possible translations, modulations and scalings as shown in the fol-

lowing equation:

Gγi(t) =
1
√
si
g

(
t− pi
si

)
exp [j(2πfit+ φi)] . (2.10)

where g(t) is the primary Gaussian function, and Gγi(t) is a basis function generated

from the primary waveform. The scale factor si, and the parameter pi controls the width

and the temporal placement of the basis function, respectively. The parameters fi and φi

are the frequency and phase of the basis function, respectively. A particular combination

of the TF decomposition parameters (si, pi, fi, φi) is denoted by γi. The set of all the

possible TF basis functions is called the redundant TF dictionary and each member of

this collection is called a TF atom. The term redundant indicates that the number

of basis functions in the TF dictionary is much larger than the minimum number of

required orthonormal basis functions to completely decompose a given signal. Selection

of the dictionary and the basis functions is done based on the specific application in hand.

The Gabor dictionary (i.e., sinusoidal oscillations modulated by Gaussian envelope) is

especially well suited to describe most of EEG structures and is widely used for the

processing and representing of EEG signals in the literature and has shown to offer the

best TF localization properties [26], [32], [33].

A real Gabor function can be expressed as:

gγ(t) = K(γ)e−π(
t−u
s )

2

sin
(

2π
ω

N
(t− u) + φ

)
(2.11)

32



where N is the size of the signal for which the dictionary is constructed, K(γ) is such

that ‖gγ‖= 1. γ = {u, ω, s, φ} denotes the parameters of the dictionary’s functions

(time-frequency atoms). These parameters form a continuous three-dimensional space

which yields a dictionary with an infinite number of atoms. Hence, in practice, we

usually use a subset of the possible dictionary’s functions. The price we pay for this

sub-sampling is that the resulted decomposition, due to the particular scheme of sub-

sampling the parameter space, is biased. In other words, any fixed sub-sampling scheme

of the parameter space in order to form the practical dictionary for MP decomposition,

introduces statistical bias in the resulting parametrization. To reduce this effect MP

with stochastic dictionaries are used, where the parameters of a dictionary’s atoms are

randomized before each decomposition.

MP decomposes a signal, x(t), into a linear combination of TF functions Gγi(t) se-

lected from a redundant Gabor dictionary of TF basis functions as given in the following

equation:

x(t) =
I∑
i=1

aγiGγi(t) +RI
x , (2.12)

where x(t) being the signal, aγi =
∣∣〈RI

x , Gγi(t)
〉∣∣ is the expansion coefficient on Gγi(t),

and RI
x is the residue signal after I iteration.

The signal x(t) in (2.12) is projected over a redundant dictionary of TF functions with

all possible combinations of scaling, translations and modulations. At each iteration, a

TF function from the Gabor dictionary with the highest correlation is selected. After

subtracting the projected part from the signal, the remaining signal called the residue was

further projected on the dictionary in the same way at each iteration. After I iterations,

signal x(t) could be expressed as the summation in (2.12), where the first part of (2.12)

is the summation of selected TF functions until I iterations, and the second part is the

residue which can be further decomposed in the subsequent iterations. This process is

repeated till all the energy of the signal is decomposed or the energy of the residue is

below a certain threshold. At each iteration of the MP, a portion of the signal energy was
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modeled with an optimal TF resolution in the TF plane. However, after some iterations,

we can see that the coherent and incoherent structures of the signal are captured and

separated into the decomposed part and the residue (RI
x) in (2.12). Consequently, as the

residue does not show any TF localization to be decompose after high enough iterations,

which depends on the nature and length of the signal, the decomposition residue in (2.12)

can be assumed to be due to random noise and be ignored.

After MP selected the collection of TF atoms that accurately model the signal x(t),

MP-TFR of the given signal, V(t, f), is constructed by summing the TFR of each de-

composed TF atom as shown below:

V(t, f) =
I∑
i=1

|aγi |2WVGγi(t, f) , (2.13)

where WVGγi(t, f) is the WVD of the Gabor atom Gγi(t).

Although MP seems to have interesting properties, it has its own problems and draw-

backs. In certain cases, the greedy MP may fail to properly decompose a signal containing

even a simple combination of dictionary’s functions. For some theoretical examples of

failure of MP refer to [20]. However, the use of orthogonalized matching pursuit can help

us resolve some of the cases, with an increased computational cost and a possibility of

introducing numerical instabilities at its side effects [21].

2.1.6 Dictionary Learning algorithms for TFR

Fourier and wavelet dictionaries due to the well-defined mathematical bases, has been

widely used for spectral analysis of signals, although they are not flexible enough to

represent the shape diversity of EEG patterns. Furthermore, the Gabor dictionary be-

cause of its temporal shift-invariance property has also become popular. Nevertheless,

it also suffers from a lack of flexibility to represent evoked potentials and EEG bursts.

For example, a custom-based dictionary approach is preferred over Fourier or wavelets

dictionaries when it comes to representing repeatable and complexly shaped epileptic
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activities such as inter-epileptic peaks [34, 35]. In EEG analysis, the spatial modelling

has been the focus of various studies by considering the inter-channels links via complex

atoms and multichannel decomposition. The EEG temporal modelling is more difficult.

Some approaches assume the temporal stationarity and treat only the spatial aspect,

which brings about ambiguity. Generic Gabor dictionary is used by other approaches as

it is shift-invariant. But it remains difficult to learn an EEG dictionary that integrates

both temporal and spatial aspects together.

Recently, dictionary learning algorithms (DLAs) via a data-driven and unsupervised

way have enabled us to learn dictionary atoms. It is essentially a set of iterations al-

ternating between sparse approximation and dictionary update that results in learned

atoms. The learned atoms are no longer generic but instead are data-driven and adapted

to the studied data. Thus, learned dictionaries outperform generic ones for processing of

the data that does not comply with the assumptions of the generic dictionaries. A recent

one [36], for EEG data via a multivariate and shift-invariant temporal dictionary learning

approach has been shown to outperform the Gabor dictionaries in terms of their sparse

representative power; i.e. the number of atoms necessary to represent a fixed percentage

of the EEG signals.

2.2 Review and shortcomings of TFR Methods

So far in this chapter, we have introduced the classical TFR techniques that have been

used for EEG signal analysis in the literature. Now, we highlight the shortcomings of

these methods, and then in the next section our proposed technique is presented. A TFR,

V(t, f), that is non-stationary compatible and could be used for extraction of meaningful

features should satisfy the following properties [37]:

• A desirable TF transformation provides a high time and frequency resolution.

Therefore, the effectiveness of any TFR lies in how well it can transform the signal

on to a TF plane with optimal TF resolution. The ideal case would be to have both
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time and frequency resolution as high as possible. However, due to the Heisenberg

uncertainty principle, high resolutions in both time and frequency domains cannot

exist simultaneously. According to the Heisenberg uncertainty principle [38], the

TF resolution has to satisfy the condition σtσf >= 1
2
, where σt and σf are the

respective time width and frequency width of the TF structure.

• It is invariant to time shift or amplitude scale in the signal. As in a sensitive TFR

to shift, any transformation in the signal would result in a complete change in

the structure of the TFR and the extracted TF-based features. Such TFR cannot

satisfy the translation invariance property required for the features. Therefore, it

is essential for a TFR to follow the same translations as in the signal rather than

providing a completely new TF transformation.

• The suitable TF representation provides non-negative TF values:

V(t, f) ≥ 0 (2.14)

In order to produce meaningful features, the value of the TFR should be positive

at each point; otherwise it would be difficult to explain and interpret the extracted

features. For example, it is possible to get a negative mean in a negative TFR

at a given time, which means that the instantaneous frequency is also negative.

In real-world applications, presence of negative energy or negative instantaneous

frequency cannot be interpreted [31].

• Satisfies correct time and frequency marginals:

∫ +∞

−∞
V(t, f)df = |x(t)|2 ,∫ +∞

−∞
V(t, f)dt = |X(f)|2 . (2.15)

where, V(t, f) is the TFR of signal x(t) with Fourier transform of X(f). The TFR
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which satisfies the non-negativity and marginal criteria is called positive TFR [30].

A high-resolution estimate of joint TF distribution of the signal can be achieved via

a positive TFR with correct marginals. A TFR like that is a suitable TF represen-

tations for analysis of non-stationary signals and provides a high TF localization

of the signal energy.

As mentioned in this chapter, several TFD methods exist; however, not all the methods

are nonstationary compatible, or are suitable TF representations for non-stationary fea-

ture extraction purposes. WVD offers high TF resolution; however, the WVD contains

the so-called interference terms or cross-terms. The presence of cross-terms in the TFR,

that do not belong to the signal, would result in incorrect interpretation of the signal

properties. Pseudo Wigner-Ville distribution (PWVD), smoothed pseudo Wigner-Ville

distribution (SPWVD), Choi-Williams distribution (CWD) and Cohen kernel distribu-

tion are examples of other developed TFRs in the literature with the motivation of re-

moving these cross-terms by defining a kernel in ambiguity domain. These distributions

belong to a general class called the Cohen's class of bilinear TF representation. These

TFRs satisfy time and frequency marginals; however, the distributions do not always

satisfy the non negativity constraint.

Cohen-Posch TFR, or positive TFR (PTFR), produces non-negative TFR of a signal

that does not contain any cross terms. Even though PTFR successfully constructs a

positive and high resolution TFR of a given signal, this method cannot be implemented in

most cases. In order to calculate positive kernels, the method requires the signal equation

which is not usually known. Therefore, although the existence of PTFRs is proven, their

derivation process is too complicated to be considered in most of the applications.

In STFT, due to windowing effect, resolution is limited by the Heisenberg's TF un-

certainty and perfect resolution can not be achieved in both time and frequency-domains.

It suffers from TF resolution trade off; when time is short, frequency resolution is coarse,

and vice-versa. On the other hand, Wavelet Transform (WT) and related methods such

as Matching Pursuit (MP) have brought essential progress in this respect. Compared to
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the STFT, WT can better localize the signal components in time-frequency space due to

the adaptive varying time width defined by the scaling parameter of the mother wavelet

in contrary to the fixed time-width window in STFT. Additionally, scalogram provides

a positive and cross-term free TF representation. Nevertheless, wavelet analysis is itself

subject to certain limitations connected with the fact that the bandwidth is inversely pro-

portional to the time scale, which effectively limits the resolution. The main drawback

of the scalogram is its poor temporal resolution at low frequency regions of the TF plane

and poor spectral resolution at high frequencies. Therefore, scalogram cannot efficiently

display TFR of signals containing components with short durations and low frequencies,

or vise versa. We can tackle this drawback and achieve finer tuning of the time-frequency

scale by relaxing the orthogonality assumption of the wavelets. There have been different

attempts to overcome this limitation. However, the computational cost of this procedure

would be increased a lot. Another drawback is that the wavelet representation is not

shift-invariant and is sensitive to the time shift of the window. These limitations can be

overcome by the MP technique, offering a maximally adaptive approach and very fine

resolution close to the theoretical limit. It uses an over-complete dictionary of atoms

where each atom is characterized quantitatively by four parameters: time and frequency

coordinates, time span, and intensity that can change freely. The windowed Fourier

transform and WT can be considered as special cases of MP by restricting the choice of

parameters for the atoms of the dictionary.

By virtue of the energy conservation, MP allows us to conveniently visualize its density

in the time-frequency plane in the form of a Wigner distribution. Furthermore, unlike

the Wigner or Cohen class distributions, MP representation is free of cross-terms and

result in a clear picture in time-frequency space. As explained earlier in this chapter,

although WVD distribution is a powerful TF representation with high TF resolution,

in case of multi-components signals, the TF resolution will be affected by cross-terms.

However, when WVD is applied to single components, their summation is a cross-term

free TFR. Since practical signals are composed of several components, the cross-term
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Table 2.1: Desirable TFR Properties for TF Quantification

Property Positivity Marginals Time-Frequency Time-Frequency Practical
Resolution Localization Ability

WVD 7 X X 7 X
PTFR X X X X 7

Spectrogram X 7 7 7 X
Scalogram X 7 7 7 X
MP-TFR X 7 X 7 X

free MP-TFR provides a TF representation adaptive to the TF structure of a given

signal. Although MP seems to have interesting properties, it still has some problems.

The constructed MP-TFR did not satisfy temporal or spectral marginals. Greedy MP

algorithm take time for representation and in certain cases can fail to properly decompose

signal containing even a simple combination of dictionary's functions. Moreover the

signal decomposition is biased by the dictionary selection and sampling exploited in MP-

TFR, which means different applications may require different dictionaries. There were

efforts to optimize the MP-TFR to construct a positive, high resolution and cross term

free TFR that satisfies the marginal criteria, although the computational cost of the

approach increased dramatically. These TFR techniques are called adaptive TFR as it is

constructed according to the properties of the signal being analyzed [39]. The properties

of different TFR techniques are summarized in Table 2.1. Dictionary learning algorithms

are good for sparse representation of the signals, however it may not end up to mono-

component decomposition and there is no guarantee that the extracted components to

be spectrally localized.

Having said the shortcomings of the classical TFR methods, we want to propose

a fully data-driven and high-resolution TFR methodology, that satisfies all the TFR

requirements and could be effectively used for EEG signal analysis. As EEG is a multi-

component signal and non-stationary and we seek to characterize and decompose it into

its constituting factors, it is crucial to have a TFR that is cross-term free and highly

localized in time and frequency domains concurrently.
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2.3 TFR based on Empirical Mode Decomposition

and Reassignment method (RS-EMD)

Here, we propose to use the approach that transform the EEG segment into TFR with a

high temporal and spectral resolution, which to the authors knowledge is novel in EEG

signal processing context. The method is a combination of Empirical Mode Decompo-

sition (EMD) and Reassignment method, which we call it RS-EMD afterwards. EMD

is a fully adaptive decomposition technique that is useful for analyzing natural signals,

which are most often non-linear and non-stationary and multi-component. EMD has been

widely used for EEG analysis; see [40] for a comprehensive review of EMD applications.

EMD decomposes the EEG signal into the spectrally localized components, which is de-

sirable here as we could further reduce the interference of different components of EEG

in TF representation. Hence, with taking TF transformation of the resulting components

after EMD and adding them up, we can calculate the overall TF spectrum of the EEG

segment. The idea of sequentially combining the EMD and the TFR of the extracted

components is not novel and has been used previously for different applications. For

example, combination of EMD and Hilbert transform, known as Hilbert-Huang Trans-

form (HHT), that captures the instantaneous frequency of the extracted IMF via Hilbert

transform has been used previously for EEG signal analysis [41]. However, HHT suffers

from high variance and usually an average of several segments should be considered for

analysis. Besides, combining the EMD with Choi-Williams Distribution was proposed

in [42] to suppress the cross-terms interference in the Cohen class TFR. On the other

hand, Time-Frequency reassignment [43] can be viewed as a postprocessing technique

aimed to overcome the localization and interference trade-off that is usually observed in

classical TF representations of multi-component signals. Combining EMD with the reas-

signment method has been independently used before for assessment of pain expression

in infant cry signal [44] and flue gas turbine signal [45]. However, those works are not

widely available and combining EMD and Reassignment method is novel in the context
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of EEG signal processing and tensor analysis and seems to suit more readily for ERP

analysis. Hence, we propose to use the Reassignment method to calculate the TFR of

extracted components after empirical mode decomposition of EEG signals. Finally, by

adding up the reassigned spectrogram of each of the EMD-based extracted components,

via RS-EMD we can get a high resolution and cross-term free TF representation for each

of the EEG segments.

In parallel with the Reassignment method another postprocessing technique for en-

hancing the readability of the TFR was developed and named ”synchrosqueezing” which

is a special case of reassignment with the additional advantage of allowing for recon-

struction and mode retrieval [46]. The SynchroSqueezing Transform (SST) is a post-

processing technique applied to the continuous wavelet transform in order to generate

localized time-frequency representations of nonstationary signals. In SST the resulting

wavelet coefficient that have the same instantaneous frequency are combined via the syn-

chrosqueezing procedure. SST could be resurfaced as an alternative for EMD that lacks

solid mathematical foundations due to its data driven and empirical nature [47]. Besides,

in situations where the modes in the signal are too close, EMD mail fail to separate them,

but SST can do the mode separation. However, this condition of having too close modes

is not relevant to our applications in this thesis and it is the basis-free nature of EMD

that makes it attractive for our analysis. Furthermore, another advantage of EMD is

that it could be exploited for completely removing the trend of EEG signals that exists

in most recordings. The methods are explained in details in the following sections.

2.3.1 Empirical Mode Decomposition (EMD)

EMD is a fully data-driven technique for decomposing a non-stationary multicomponent

time series into a set of finite number of oscillatory components called Intrinsic Mode

Functions (IMFs), through a sifting process. An IMF satisfies the following two condi-

tions [48]:

1. The number of maxima, which are strictly positive, and the number of minima,
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which are strictly negative, for each IMF, are either equal, or differ at most by one.

2. The mean value of the envelope, as defined by the maxima and the minima, for

each IMF, is zero.

The EMD process over an arbitrary time series x[n] computesN IMFs (c1[n], . . . , cN [n])

and a residue signal rN [n]:

x[n] =
N∑
i=1

ci[n] + rN [n] (2.16)

The decomposition via the sifting process is described as follows:

1. For a given discrete time signal x[n], all the local minima and maxima of x[n] are

identified.

2. The upper envelope EU is calculated by using a cubic spline to connect all the local

maxima. Similarly, the lower envelope EL is calculated from the local minima. The

upper and lower envelopes should cover all the data in x[n] between them.

3. The mean Emean = (EU + EL)/2 of the upper and lower envelopes is calculated,

and x[n] is updated by subtracting the mean from it x[n]← x[n]− Emean.

4. The previous three steps are executed till x[n] is reduced to an IMF c1[n], which

conforms to the properties of IMFs described previously. The first IMF contains

the highest oscillation frequencies found in the original data x[n].

5. The first IMF c1[n] is subtracted from x[n] to get the residue r1[n].

6. The residue r1[n] is now taken as the starting point instead of x[n], and the pre-

viously mentioned steps are repeated to find all the IMFs ci[n] so that the final

residue rN either becomes a constant, a monotonic function, or a function with a

single maximum and minimum from which no further IMF can be extracted.

Figure 2.4 illustrates a sample EEG signal along its extracted IMFs via EMD. The figure

shows that the higher index of IMFs corresponds to lower frequency oscillations. It is
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Figure 2.4: Empirical Mode Decomposition of a sample EEG signal. Original signal
(Top), extracted IMF1 to IMF7 showing the high to low frequency oscillations, and the
residue (Bottom).

known that each of the extracted IMFs has a good spectral localization characteristics.

Here in the simulations we use a new variant of EMD, Complete Ensemble Empirical

Mode Decomposition with Adaptive Noise (CEEMDAN) [49], that is based on averaging

the modes obtained by EMD applied to several realizations of Gaussian white noise added

to the original signal. That would result in better spectral separation of the modes, i.e.

to prevent mode mixing which is one of the main drawbacks of ordinary EMD, and a
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lesser number of sifting iterations.

Computational Complexity of EMD

It was shown in [50] that the time complexity of EMD/EEMD is T (n) = 41 · NE ·

NS · n(log2 n) which is in the order of O(n log n), where n is the data length and the

parameters NS,NE are the sifting and ensemble numbers respectively. Therefore, the

time complexity of the EMD/EEMD is equivalent to the traditional Fourier transform

but with a larger factor. This proves that EMD is a computationally efficient method

and can be applied to a much larger class of scientific and engineering problems.

2.3.2 EMD-based Detrending of EEG signals

One of the interferences that is present in most EEG recordings is characterised by a

very low frequency oscillation superimposed to the fluctuating process and is known as

EEG trend. In general, EMD decompose each EEG signal into several oscillatory modes

(IMFs) that can be effectively used for detrending. The IMFs with the lower indices

correspond to high frequency oscillations, whereas those with higher indices correspond

to the trend in the signal. A simple EMD-based EEG detrending method is described

in [51] which is through partial reconstruction of the signal, fine-to-coarse, by adding

up lower index IMFs till the mean varies significantly from zero. Denoting the recorded

signal as x[n], the detrended signal y[n] can be estimated as follows

ŷD[n] =
D∑
i=1

ci[n], (2.17)

where D is the larger IMF index prior contamination by the trend. As the mean of each

of the IMFs {ci[n]; i = 1, · · · , D} is zero, an intuitive rule for choosing D is to calculate

the empirical mean of ŷd[n] as a function of a test order d and monitor the evolution of

that to identify for which d = D it departs significantly from zero. An example of this

approach is given in Figure 2.5, where a 2.5s segment of an EEG signal is considered.
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Figure 2.5: Detrending of a EEG signal. left: standardized empirical mean of the fine-to-
coarse EMD reconstruction, evidencing D = 5 as the change point. Top right: original
signal. Middle right: estimated trend obtained from the partial reconstruction with
IMFs 6 to 7 + the residual. Bottom right: detrended signal obtained from the partial
reconstruction with IMFs 1 to 5.

2.3.3 Reassignment Method (RM)

Discarding phase information in forming TF representation in conventional linear TF

methods, including short-time Fourier transform (STFT), has certain consequences in-

cluding magnitude spreading. Although, there has been research on improving the read-

ability of the TF plane by incorporating the STFT phase information explicitly or im-

plicitly in the process.

Besides, as an alternative path, instead of using the phase information we can also

effectively improve the readability of the TF plane with combining STFTs with suitable

analysis windows in a way called Reassignment [43]. RM is essentially a postprocessing

technique aims to sharpen the TF representation, while keeping the temporal localization,

by assigning the local energy to the center of energy distribution. It is particularly well

adapted to multicomponent signals [52] and permits to overcome the localization and
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interference trade-off that is usually observed in classical TF analysis.

To understand how RM works, it is worth going back to classical TF distributions

definitions and properties. Given a signal x(t) and a window h(t), the STFT of x(t) is

defined by

V h
x (t, ω) =

∫
R
x(τ)h∗(τ − t)e−iωτdτ (2.18)

where h∗(t) is the complex conjugate of h(t). The spectrogram Shx(t, ω) is then usually

defined as |V h
x (t, ω)|2. Uncertainty principle, which impose that one cannot localize a sig-

nal with an arbitrary precision in time and frequency concurrently, is the most significant

issue in TF signal analysis. In order to balance between frequency resolution and time

localization, TF representation techniques use various tuning parameters. For example,

we can tackle that by varying the size of the analysis window in STFT (or spectrogram).

The Wigner-Ville distribution, or multi-linear distributions are other examples of many

attempts in the literature to optimize this trade-off. However, each of these methods rely

on strong assumptions, which makes them suitable only for a specific class of signals.

On the other hand, Reassignment techniques offer an alternative approach with the

goal of sharpening the TF representation while keeping the temporal localization. Fur-

thermore, they are particularly well adapted to multicomponent signals. Starting with

the definition (2.7) of the STFT, the spectrogram can be written as

Shx(t, ω) =
1

2π

∫∫
R2

Wh(τ − t, ν − ω)Wx(τ, ν)dτdν, (2.19)

where Wx(t, ω) is the Wigner-Ville distribution (WVD), defined for any function x(t) by

Wx(t, ω) =

∫
R
x(t+ τ/2)x∗(t− τ/2)e−iωτdτ. (2.20)

The question is whether WVD is superior to spectrogram or not ? The answer is yes

and no. The spectrogram could be considered as the 2D smoothing of the WVD of

the analyzed signal by the WVD of the analyzing window. This alternative formulation
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let us compare the the main features of a spectrogram with a WVD. While WVD is

favourable as it can sharply localize individual linear chirps in the TF plane, the 2D

smoothing involved in the spectrogram computation results in a smearing of their energy

distribution. On the other hand, oscillatory interference between individual components

(cross-terms) is due to the quadratic nature of the WVD which itself can be removed by

the 2D smoothing used in the spectrogram computation.

Reassignment method (RM) seeks to make up for the TF smearing and shifts caused

by the 2D smoothing defining the spectrogram. In order to do so, a meaningful TF

location need to be determined to assign the local energy given by the spectrogram to it.

This location corresponds to the centroid of the distribution (2.19), whose coordinates

are defined by

ω̂x(t, ω) =
1

Shx(t, ω)

∫∫
R2

ν Wh(τ − t, ν − ω)Wx(τ, ν)
dτdν

2π

t̂x(t, ω) =
1

Shx(t, ω)

∫∫
R2

τ Wh(τ − t, ν − ω)Wx(τ, ν)
dτdν

2π
. (2.21)

RM then include moving the value of the spectrogram from the point of computation

to this so-called centroid:

Ŝhx(t, ω) =

∫∫
R2

Shx(τ, ν) δ (ω − ω̂x(τ, ν)) δ
(
t− t̂x(τ, ν)

)
dτdν, (2.22)

where δ stands for the Dirac distribution [52].

To summarize the TFR technique, after decomposing each EEG channel signal into

its constituting IMFs via EMD, the next step is to calculate the RM of each extracted

IMF excluding the ones corresponding to the trend of EEG in (2.17), i.e., c1(t), . . . , cD(t).

Finally, the total Reassigned TFR of a EEG signal is obtained by adding up the RMs of

all IMFs, which result in a localized and cross-term free TF representation.

Figure 2.6 shows the TF representation of a sample 10Hz Steady-State Visual Evoked

Potential (SSVEP) signal which is characterized by a dominant frequency component at
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(a) (b)

Figure 2.6: Time-Frequency representation of a sample 10Hz Steady-State Visual Evoked
Potential (SSVEP) signal: (a) Wavelet Transform using Complex Morlet “cmor1-1.5”;
(b) RS-EMD, i.e., EMD followed by Reassigned TFR of extracted IMFs.

10Hz and also higher harmonics at 20 and 30Hz: (a) Continuous Wavelet transform

using Complex Morlet “cmor1-1.5”; (b) RS-EMD method which is EMD followed by

Reassigned TFR of extracted IMFs. It illustrates that the proposed RS-EMD technique

has a good temporal and spectral resolution contemporarily compared to the conventional

Wavelet transform mainly used for Multi-way analysis of EEG signal [53–55], which

suffers from low temporal resolution at lower frequencies and low spectral resolution at

higher frequencies.

The proposed RS-EMD satisfies all the TFR requirements, it is cross-term free due to

incorporation of the EMD algorithm as it decomposes the signal into mono-components.

Being a variant of spectrogram, it is all positive and due to Reassignment method it

satisfies the marginals and have high resolution in both time and frequency domains

simultaneously and can be effectively used for practical applications.

2.3.4 Quantitative Performance Index

Parametric identification of signals corrupted with noise is an interesting application of

time-frequency analysis. For this purpose it is very important that a time-frequency
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distribution highly concentrates signals’ energy along the instantaneous frequency. A

metric that measures the ratio of energy along the instantaneous frequencies and the

energy outside these regions was proposed in [56, 57] as follows

B = 10 log

∫∫
(t,ω)∈R TFR(t, ω) dt dω∫∫
(t,ω)6∈R TFR(t, ω) dt dω

(2.23)

where the symbol TFR(t, ω) denotes the time-frequency representation, and R is the

instantaneous frequency path of the desired signal. This ratio quantifies the localization

performance of TFR and can be compared for different TFRs, as a function of noise

variance. Hence, the TFR that gives greater B for a set of signals with known actual

instantaneous frequencies has been more effective in localizing the energy the of signal. In

Chapter 5 we compare the RS-EMD with the conventional Wavelet-based TFR method

in terms of localization of energy for a synthetic EEG signal with known instantaneous

frequency.

2.4 Chapter Summary

This chapter presented the comparison of few well known TF distribution techniques

from their TF resolution point of view. The shortcoming of each of the TF methods

was explored and a fully data-driven TRF technique with high temporal and spectral

resolution was developed. The properties of the proposed TFR are listed in Table 2.2

that satisfies all the TFR requirements. Combination of EMD and Reassigned method,

with a high-resolution TF representation characteristic, was exploited for transforming

the EEG signals into the time-frequency plane. Furthermore, EMD is favourable as it

could be used for EEG detrending. Detrending is simply embedded in the proposed TFR

method. Simulation results on real EEG data show that the proposed TFR method could

be effectively used for EEG analysis and separation and localization of events in EEG

could be explored further via RS-EMD method.
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Table 2.2: Desirable TFR Properties of the proposed technique

Property Positivity Marginals Time-Frequency Time-Frequency Practical
Resolution Localization Ability

RS-EMD X X X X X

Nevertheless, study of the brain processes requires methods which can describe these

variations of the EEG signal in time, frequency, and space in a quantitative way, which

inspires the incorporation of more contextual information in the analysis. Hence, we need

to consider multi-way arrays (tensor) for the analysis. In the next chapter we introduce

the multi-way arrays and the corresponding analysis models.
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Chapter 3
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Figure 3.1: Chapter 3- Multi-way Analysis.

EEG signal is characterized as a high-dimensional and noisy data, and there has been

numerous attempts to decompose it into functions with known spatio-temporal-spectral

properties or at least easier to characterize which is the philosophy behind EEG anal-

ysis. In this context, the approaches for EEG analysis can be categorized into time
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domain analysis, frequency domain analysis via Fourier Transform, spatio-temporal and

time-frequency analysis. In the last two cases, methods have focused on analyzing two

dimensions simultaneously.

The spatio-temporal analysis seek to represent the data as a sum of components,

each of them having their own temporal and spatial signatures. In order to do so,

there is a fundamental assumption about the brain network which states that activity of

each brain network has a fixed spatial pattern with the dynamics of it changing in time.

However, it is quite known that this kind of two-dimensional decomposition is not unique

and in order to obtain meaningful and unique description of the data some additional

constraints need to be added to the problem. The two most popular methods used in this

type of analysis are the Principal Component (PCA) and the Independent Component

Analysis (ICA), which extract the signatures by constraining them to be orthogonal or

statistically independent, respectively. These mathematical constraints, although useful

in many applications, do not always lead to interpretable and physiologically meaningful

decompositions.

On the other hand, time-frequency methods use variants of the Short-Term Fourier

Transform (STFT) in an attempt to characterize the non-stationarity of EEG signals

and decompose the EEG time series into some basis functions with localized support in

time and frequency. The coefficients of this decomposition can be mapped into a time-

frequency plane and their square absolute value (energy) is known as the spectrogram.

Selecting different basis for decomposition, e.g., Gabor or Wavelet functions, result in

different type of spectrograms although they are very similar and statistically equivalent.

Furthurmore, standard matrix factorizations techniques, such as PCA/SVD, ICA,

Nonnegative Matrix Factorization (NMF), and their variants, are invaluable analyzing

tools for feature selection, dimensionality reduction, noise reduction, and data mining

[58]. However, they have only two modes or 2-way representations (say, space and time),

and data need to be fitted into a matrix for analysis which make their usage limited. In

many applications the data is naturally high-dimensional and in addition to the intrinsic
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modes of time, frequency, and space it may also contain higher-order modes (ways) such

as trials, subjects, task conditions, and groups. For instance, a sequence of trials in

an EEG experiment may lead to a large stream of data with many dimensions: space,

time-frequency, subjects, trials, and conditions.

Applying the two-way analysis techniques to such high-dimensional data inevitably

requires the data to be unfolded. Clearly the “flat-world view” provided by two-way

matrix factorizations (ICA, NMF) may be insufficient and it is natural to use tensor de-

composition approaches. Hence, by incorporating the multi-way analysis, all dimensions

or modes are retained and because of multilinear models often produce unique and physi-

cally meaningful components. It has been shown in numerous research areas [59, 60], that

underlying information content of the data may not be captured accurately or identified

uniquely by two-way data analysis. Moreover as mentioned earlier two-way analysis is

unique only if specific constraints such as statistical independence and orthogonality are

enforced on the components. However, these assumptions and constraints are not often

necessary for multi-way models and some multi-way analysis techniques are unique under

mild conditions.

Multi-way data or tensor analysis is the extension of two-way data analysis to higher-

order data sets. Multi-way analysis can be incorporated for revealing the hidden struc-

tures and capturing the latent correlation between variables in a multi-way array [61].

For instance, it is very usual in the neuroscience studies to have multiple subjects (peo-

ple or animals) and trials in the experiments which lead to data structures conveniently

represented by multi-way arrays or blocks of three-way data. Analyzing the data of every

subject separately, ignoring the multi-way structure of the data, would lose the covari-

ance information among subjects. Hence, it is essential for the analysis tools to keep the

multi-dimensional structure of the data, in order to discover hidden components within

the data and retain the integrative information. The multi-way analysis (tensor factor-

izations and decompositions) is a natural choice in this context, for instance, in EEG

53



studies multi-way analysis of multichannel EEG data enables us to capture the spatial

correlation between the channels by representing signals in both time and frequency do-

mains. Furthermore, multi-way analysis framework provides convenient multi-channel

and multi-subject time-frequency-space sparse representations, artifacts rejection in the

time-frequency domain, feature extraction, multi-way clustering and coherence tracking.

Our main objective here is to decompose the time-varying multichannel EEG signals

into components with distinct temporal, spectral and spatial signatures which are then

discriminative enough across different conditions.

3.1 Multi-way arrays

Multi-way arrays, also referred to as tensors, are higher-order generalizations of vectors

and matrices [62]. Higher-order arrays are represented as X ∈ RI1×I2,...,×IN , where the

order of X is N(N > 2). A zero-order tensor is a scalar, a first-order tensor is a vector, a

second-order tensor is a matrix, and tensors of order three and higher are called higher-

order tensors (see Figure 3.2).

Higher-order arrays have a different terminology compared to two-way data sets.

Each dimension of a multi-way array is called a mode (or a way), and the number of

variables in each mode is used to indicate the dimensionality of a mode. For instance,X ∈

RI1×I2,...,×IN is a multi-way array with N modes (called N -way array or Nth-order tensor)

with I1, I2, . . . , IN dimensions in the first, second, . . ., Nth mode, respectively. Each entry

of X is denoted by xi1i2...iN . For a special case, where N = 3, let X ∈ RI1×I2×I3 be a

three-way array that has three modes (or indices or dimensions) as shown in Figure 3.3.

Then xi1i2i3 denotes the entry in the i1th row, i2th column, and i3th tube of X.

3.1.1 Notation

We use the notation of Reference [63]. Scalars are denoted by lowercase letters, e.g.,

a. Vectors are denoted by boldface lowercase letters, e.g., a. Matrices are denoted by
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boldface capital letters, e.g., A. Higher-order tensors are denoted by underlined boldface

letters, e.g., A. The ith entry of a vector a is denoted by ai, element (i, j) of a matrix A

is denoted by aij, and element (i, j, k) of a third-order tensor X is denoted by xijk. The

jth column of a matrix A is denoted by aj. Indices typically range from 1 to their capital

version, e.g., i = 1, · · · , I. The nth element in a sequence is denoted by a superscript in

parentheses, e.g., a(n) denotes the nth vector in a sequence.

The inner product of two same-sized tensors X,Y ∈ RI1×I2,...,×IN is the sum of the

products of their entries, i.e.,

〈X,Y〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

xi1,i2,...,iNyi1,i2,...,iN . (3.1)

Figure 3.2: Illustration of multi-way data: zero-way tensor = scalar, 1-way tensor = row
or column vector, 2-way tensor = matrix, N-way tensor = higher-order tensors. The
4-way and 5-way tensors are represented here as a set of the three-way tensors [61].
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Figure 3.3: A three-way array (third-order tensor) Y ∈ R7×5×8 with elements yitq [61].

The norm of a tensor X ∈ RI1×I2,...,×IN is the square root of its inner product with

itself, i.e.,

‖X‖=
√
〈X,X〉. (3.2)

For matrices (i.e., second-order tensors), ‖.‖ refers to the analogous Frobenius norm, and,

for vectors (i.e., first-order tensors), ‖.‖ refers to the analogous two-norm.

3.1.2 Subarrays, Tubes and Slices

Subtensors or subarrays are formed when a subset of the indices is fixed. For matrices,

these are the rows and columns. A tensor fiber is a one-dimensional fragment of a tensor,

obtained by fixing all indices except for one (Figure 3.4(a)). A matrix column is a mode-1

fiber and a matrix row is a mode-2 fiber. Third-order tensors have column, row, and tube

fibers. A tensor slice is a two-dimensional section (fragment) of a tensor, obtained by

fixing all indices except for two indices. Figure 3.4(b) shows the horizontal, lateral, and

frontal slices of a third-order tensor.

It is often very convenient to represent tensors as matrices or to represent multi-way

relationships and a tensor decomposition in their matrix forms. Matricization, also known

as unfolding or flattening, is the process of reordering the elements of an N -way tensor
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(a)

(b)

Figure 3.4: (a) Fibers for a third-order tensor (all fibers are treated as column vectors);
(b) Slices for a third-order tensor Y ∈ RI×J×K . A colon is used to indicate all elements
of a mode [61].

into a matrix. The mode-n matricization of a tensor X ∈ RI1×I2,...,×IN is denoted by

X(n) and arranges the mode-n one-dimensional fibers to be the columns of the resulting

matrix. Specifically, tensor element (i1, i2, · · · , iN) maps to matrix element (in, j) where

j = 1 +
N∑
k=1
k 6=n

(ik − 1)Jk, with Jk =
k−1∏
m=1
m 6=n

Im (3.3)

Note that Jk = 1 if k = 1 or if k = 2 and n = 1. Since matricization is just a

rearrangement of the elements, clearly ‖X‖= ‖X(n)‖ for n = 1, ..., N .

The n-mode (vector) product of a tensor X ∈ RI1×I2,...,×IN with a vector v ∈ RIn is

denoted by X×n v. The result is of order N − 1, i.e., the size is I1 × · · · × In−1 × In+1 ×
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· · · × IN . Elementwise, the n-mode product can be formulated as

(X×n v)i1···in−1in+1···iN =
In∑
in=1

xi1i2···iN vin . (3.4)

We note that multiplication in all modes results in a scalar and multiplication in every

mode except n and p results in a matrix of size In × Ip. A tensor may be multiplied by

multiple vectors at once. For example, assume v(n) ∈ RIn for n = 1, ..., N . Then we use

the notation X×1 v(1) ×2 v(2) · · · ×N v(N) to denote multiplication in multiple modes.

3.1.3 Outer, Kronecker, and Khatri-Rao Products

Several special matrix products are important for representation of tensor factorizations

and decompositions.

The outer product of the tensors X ∈ RI1×I2,...,×IN and Y ∈ RJ1×J2,...,×JM is given by

Z = X ◦Y ∈ RI1×I2,...,×IN×J1×J2,...,×JM (3.5)

where zi1,i2,...,iN ,j1,j2,...,jM = xi1,i2,...,iN yj1,j2,...,jM . The symbol ◦ represents the vector outer

product. Note that, the tensor Z contains all the possible combinations of pair-wise

products between the elements of X and Y. As special cases, the outer product of two

vectors a ∈ RI and b ∈ RJ yields a rank-one matrix

A = a ◦ b = a bT ∈ RI×J (3.6)

and the outer product of three vectors: a ∈ RI , b ∈ RJ and c ∈ RK yields a third-order

rank-one tensor

Z = a ◦ b ◦ c ∈ RI×J×K (3.7)

where zi,j,k = aibjck. Generally, an N -way tensor X ∈ RI1×I2,...,×IN is rank one if it can
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be written as the outer product of N vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(n) (3.8)

This means that each element of the tensor is the product of the corresponding vector

elements:

xi1,i2,...,iN = a
(1)
i1
a

(2)
i2
· · · a(N)

iN
for all 1 ≤ in ≤ In. (3.9)

The Kronecker product of two matrices A ∈ RI×J and B ∈ RT×R is a matrix denoted

as A⊗B ∈ RIT×JR and defined as

A⊗B =


a11B a12B . . . a1JB

a21B a22B . . . a2JB
...

...
. . .

...

aI1B aI2B . . . aIJB

 . (3.10)

It should be mentioned that, in general, the outer product of vectors yields a tensor

whereas the Kronecker product gives a vector.

The Khatri-Rao product is the matching columnwise Kronecker product. Given ma-

trices A ∈ RI×K and B ∈ RJ×K , their Khatri-Rao product is denoted by A � B. The

result is a matrix of size (IJ)×K and defined by

A�B = [a1 ⊗ b1 a2 ⊗ b2 · · · ak ⊗ bk] . (3.11)

Recall that the Kronecker product of two vectors a ∈ RI and b ∈ RJ is a vector of length

IJ defined by

a⊗ b =


a1b

a2b
...

aIb

 .
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3.2 Multi-way Models

In general, multi-way data analysis methods are extensions of two-way analysis techniques

based on the idea of linear factor models [61, 62]. The factor models in the context of

bilinear factor models is defined as follows. Let the matrix X ∈ RM×N represent the

original data set. We can model X using an R-component bilinear model as

xij =
R∑
r=1

airbjr + eij, (3.12)

where
∑R

r=1 airbjr is the part of the model consisting of matrices A ∈ RM×R and B ∈

RN×R. Each column of B corresponds to a factor, and each row of A contains the scores

corresponding to R factors. Matrix E ∈ RM×N contains the residual. We can measure

how well a model fits the data by analyzing the residual. Bilinear or multi-linear analysis

enables us to extract the factors that are linear combination of variables. These extracted

factors summarize the data and reveal the hidden structure and information content of

the data and could be used for interpreting the data. Bilinear factor models have a close

relation with the definition of rank of a matrix. The rank of X is the number of its

non-zero singular values. Equivalently, it is the minimum r such that X can be written

as

X =
r∑
i=1

aib
T
i , (3.13)

with ai ∈ RM ,bi ∈ RN . In general, this presentation is unique up to numbering and

common scaling of the ai,bi. So, Bilinear factor model decomposes the data into com-

bination of rank-1 matrices. We later extend this into the context of multi-linear factor

analysis in order to define the rank of a tensor.

Higher-order tensor decompositions are nowadays frequently used in a variety of fields

including psychometrics, chemometrics, image analysis, graph analysis, and signal pro-

cessing [61]. The most well-known multi-way models in the literature are Tucker fam-

ily [64] and the PARAFAC family [65, 66], which is also called Canonical Decomposition
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(CANDECOMP). CANDECOMP/PARAFAC solution is unique up to a scaling and

permutation of the component matrices. It is this uniqueness property that makes CAN-

DECOMP/PARAFAC a popular technique in various fields. Tucker is a more flexible

multi-way model compared to CANDECOMP/PARAFAC. The flexibility of a Tucker

model is related to the existence of non-restricted higher-order core array which implies

that each component in each mode can interact with any component in other modes.

On the other hand, in a CANDECOMP/PARAFAC model, due to the super-diagonal

core-array in the modeling, a component in a certain mode can be related to a single

component in another mode.

These models consist of two parts: a parametric part with multiple factors describing

the data structure and a residual part relating to measurement noise. Multi-way models

are mainly optimized in the sense of least squares by iterative algorithms, such as Alter-

nating Least Squares (ALS) which estimates one factor at a time keeping the estimates

of other components fixed. The formulation of these two models are explained in the

following sections.

3.2.1 TUCKER Model

Tucker models are extension of bilinear factor analysis to higher-order data sets, which are

also called N-way principal component analysis techniques. Tucker family in consisted of

three models, i.e., Tucker1, Tucker2, and Tucker3 models [62]. Tucker1 simply matricizes

the multi-way data and decomposes the resulted unfolded multi-way array via Singular

Value Decomposition (SVD). Tucker1 essentially reduce the rank in one mode. However,

Tucker2 and Tucker3 models allow rank reduction in more than one mode and are named

to reflect the number of modes rank reduction considered in the model. Tucker3 is a

more flexible multi-way model due to the core array, which enables the interaction of

each component in each mode with all components in other modes. Equation (3.14)

shows a commonly-used formulation for a Tucker3 model applied on a three-way array
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(I×J×K) (I×J×K)(I×P)

(K×R)

(J×Q)(P×Q×R)

Figure 3.5: (P,Q,R)-component Tucker3 model, where a three-way array Y ∈ RI×J×K

is modeled with component matrices A ∈ RI×P , B ∈ RJ×Q and C ∈ RK×R in the first,
second and third mode, respectively. G ∈ RP×Q×R is the core array and E ∈ RI×J×K

contains the error terms.

Y ∈ RI×J×K .

yijk =
P∑
p=1

Q∑
q=1

R∑
r=1

gpqraipbjqckr + eijk, (3.14)

or equivalently using n-mode multiplication in the form of

Y = G×1 A×2 B×3 C + E (3.15)

where A ∈ RI×P , B ∈ RJ×Q, and C ∈ RK×R are the component matrices corresponding

to the first, second, and third modes, respectively. G ∈ RP×Q×R is the three-way core

array and E ∈ RI×J×K is a three-way array containing the residuals. Illustration of a

Tucker3 model on a three-way array is given in Fig. 3.5.

For a three-way model, the core array is a third-order tensor, G as given in Figure

3.5, where gpqr represents the interaction of the pth factor in the first, qth factor in the

second and rth factor in the third mode. Determining the optimum rank in each mode

in TUCKER model is a challenge and usually need to be tuned by the user. Practically,

the ranks estimated using the SVD on unfolded data in each mode can be used for this

purpose. However, there are other systematic rank selection technique, e.g., cross vali-

dation and Difference in Fit (DIFFIT), and a Convex-hull based method [67, 68].
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Besides, by imposing orthogonality constraints on the extracted components of Tucker

model, a model called Higher-Order Singular Value Decomposition (HOSVD) was pro-

posed in [69]. HOSVD can be computed by unfolding the tensor in each mode and

estimating the left singular vectors constituting that mode. Those singular vectors which

are called n-mode singular vectors then form the component matrices in each mode.

Having the components matrices of all modes estimated, a core tensor can be computed

consequently.

3.2.1.1 Algorithms

The original algorithm for computing a Tucker3 model was described by Tucker in [64],

that for a three-way array Y, after unfolding the data in each mode, e.i., Y(1), Y(2),

and Y(3), the model calculated the eigenvectors of Y(i)Y
T
(i), which are essentially the left

singular vectors of Y(i), to form the component matrix for mode i. The final step is to

estimate the core tensor using the original data and the component matrices. The number

of components extracted from each mode need to be specified priorly. In order to provide

the optimum solution in the least square sense another algorithm, called TUCKALS3 [70],

was proposed that was the extension of the original one via ALS for three-way arrays.

The TUCKALS3 algorithm finds the best approximation for Y ∈ RI×J×K by minimizing

the least squares error function given in

‖Y− Ỹ‖2= ‖Y−G×1 A×2 B×3 C‖2
F (3.16)

where A, B, and C are columnwise orthogonal component matrices in the first, second,

and third modes, respectively, and G is the core tensor. Usually the component ma-

trices obtained in Algorithm 1 are used to initialize the ALS algorithms. Then, these

components matrices are alternatively estimated one at a time by keeping the other com-

ponent matrices fixed. Estimation of component matrices is repeated until convergence is

reached, e.g., no change in the model fit. Then, in a final step the core tensor is estimated
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via n-mode product (Algorithm 2).

Algorithm 1 TUCKER3 [64](Y ∈ RI×J×K , P,Q,R)

Y ∈ RI×J×K and P,Q,R as the rank of component matrices. Estimate of A, B, C, and
the core tensor G.
A ← First P left singular vectors of Y(1). B ← First Q left singular vectors of Y(2).
C← First R left singular vectors of Y(3). G← Y×1 AT ×2 BT ×3 CT .

Algorithm 2 TUCKER3-ALS [70](Y ∈ RI×J×K , P,Q,R)

Y ∈ RI×J×K and P,Q,R as the rank of component matrices and a convergence criterion
ε. Estimate of A, B, C, and the core tensor G. Initialize A ∈ RI×P , B ∈ RJ×Q, and C ∈
RK×R. ε not satisfiedX← Y×2B

T×3C
T . A← the first P left singular vectors of X(1).

X← Y×1AT×3CT . B← the first Q left singular vectors of X(2). X← Y×1AT×2BT .
C← the first R left singular vectors of X(3). G← Y×1 AT ×2 BT ×3 CT .

Besides, there are other variants of ALS-based Tucker decomposition that try to im-

prove the performance of the algorithm in terms of speed or accuracy. Another approach

is to use the Bayesian framework for Tucker decomposition with automatic order selec-

tion. For an overview of different techniques refer to [62].

3.2.2 CANDECOMP/PARAFAC MODEL

One of the most well-known multi-way models in literature is the Parallel Factor Analysis

(PARAFAC) model. The model was independently proposed in 1970 by Harshman [71]

and by Carroll & Chang [65] which is also called Canonical Decomposition (CANDE-

COMP). CANDECOMP/PARAFAC model for an N-way array of data Y ∈ RI1×I2×...×IN

can be formulated as

yi1i2...iN =
R∑
r=1

a
(1)
i1r
a

(2)
i2r
. . . a

(N)
iNr

+ ei1i2...iN , (3.17)
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or equivalently, using the vectors outer product as

Y =
R∑
r=1

a(1)
r ◦ a(2)

r ◦ . . . ◦ a(N)
r + E , (3.18)

where a
(1)
r =

[
a

(1)
i1r

]
∈ RI1 , a

(2)
r =

[
a

(1)
i2r

]
∈ RI2 , and a

(N)
r =

[
a

(1)
iNr

]
∈ RIN are respectively

the constituent vectors of different modes of the array and E is an N-way array containing

the residuals.

For simplicity and without loss of generality, we stick to three-way array of the data

Y ∈ RI×J×K where CANDECOMP/PARAFAC model according to (3.18) can be written

as

yijk =
R∑
r=1

airbjrckr + eijk, (3.19)

where ar = [air] ∈ RI , br = [bjr] ∈ RJ , and cr = [ckr] ∈ RK are respectively the

constituent vectors of the corresponding factor matrices. This is a special case of (3.14),

where for an R-component three-way CANDECOMP/PARAFAC model, the core array

is restricted to be a superdiagonal core array, G ∈ RR×R×R where gijk 6= 0 if i = j = k,

otherwise gijk = 0. This means that for a superdiagonal core array, ith factor in one mode

can only interact with the ith factors of other modes and there is no interaction with other

factors. Mathematically, a CANDECOMP/PARAFAC model can be represented as the

decomposition of a tensor as a linear combination of rank-one tensors. The coefficient of

this decomposition are the elements of the superdiagonal core that constitute a vector of

coefficients. (An Nth-order rank-one tensor is a tensor that can be written as the outer

product of N non-zero vectors. Let a,b, c be column vectors of size I × 1, J × 1 and

K × 1, respectively, and Y be a tensor of size I × J ×K, then Y = a ◦b ◦ c is the vector

outer product if and only if yijk = aibjck. This generalizes a ◦ b = abT in the case of

matrices). So, equivalently equation (3.19) can be written as

Y =
R∑
r=1

ar ◦ br ◦ cr + E . (3.20)
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(I×J×K) (I×J×K)

Figure 3.6: R-component CANDECOMP/PARAFAC model, where a three-way array
Y is expressed as the sum of rank-1 tensors and error terms. ai ,bi and ci are the i-th
components in the first, second and third mode, respectively. E is a three-way array
containing the residuals.

So, an R-component CANDECOMP/PARAFAC model can be expressed as in (3.20),

where ai, bi, and ci indicate the ith column of component matrices A ∈ RI×R, B ∈ RJ×R,

and C ∈ RK×R, respectively. E ∈ RI×J×K is a three-way array containing the residuals.

Sometimes the “Kruskal operator” shorthand notation is used:

[[A,B,C]] =
R∑
r=1

ar ◦ br ◦ cr (3.21)

Illustration of an R-component CANDECOMP/PARAFAC model on a three-way

data set is given in Figure 3.6. In an alternative approach, using the matrix notation, a

CANDECOMP/PARAFAC model can be written as

Yk = ADkB
T + Ek (3.22)

where Yk represents the kth frontal slice of a three-way array, and A and B are the

component matrices in the first and second modes, respectively. Dk is a diagonal matrix,

whose diagonal elements are the kth row of the third component matrix C. Ek is the

kth frontal slice of the residual.
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3.2.2.1 Connection between CANDECOMP/PARAFAC Model and TUCKER3

Model

Multi-linear models, capture the multi-linear structure in data. Multi-linearity of the

model denotes that the model is linear in each mode, and factors extracted from each

mode are linear combinations of the variables in that mode. The extracted factors form

the columns of a component matrix that summarize the structure in each mode.

As mentioned earlier, the CANDECOMP/PARAFAC summarization due to the unique-

ness property makes it a popular technique in various fields. Uniqueness is achieved by

imposing some restrictions on the model, that factors in different modes can only in-

teract with the corresponding factors. A core array in multi-way models represent the

interaction between factors in different modes, as given in (3.14). By assuming that each

component matrix in CANDECOMP/PARAFAC decomposition has full rank, we can

write (3.20) as following

Y = I3,R ×1 A×2 B×3 C + E, (3.23)

where I3,R represents a three-way super-identity tensor of size R × R × R, the elements

of which are equal to 1 when all indices are equal and 0 otherwise (Figure 3.7).

Due to the presence unrestricted core array in a Tucker3 model, G in (3.14), this model is

more flexible compared CANDECOMP/PARAFAC model. This flexibility is originated

from the fact that in Tucker3 model a factor in a mode can interact with any factor in the

other modes. On the other hand, in a PARAFAC model, a component in a certain mode

can be related to a single component in another mode. While the core array enables us

to explore the underlying structure of a multi-way dataset much better than a restricted

CANDECOMP/PARAFAC model, full-core array structure in Tucker3 has some draw-

backs. First, this property is the reason for rotational indeterminacy in Tucker3 models.

Unlike CANDECOMP/PARAFAC, a Tucker3 model cannot determine component ma-

trices uniquely. Consider rotating a component matrix by a rotation matrix, then we can
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(I×J×K) (R×R×R)(I×R) (J×R)

(K×R)

R

R

R

Figure 3.7: CANDECOMP/PARAFAC model with a superdiagonal core tensor G =
I3,R for the third-order tensor Y ∼= I3,R ×1 A×2 B×3 C =

∑R
r=1 ar ◦ br ◦ cr.

easily cancel the rotation effect by applying the inverse of the rotation to the core array

and still get the same model fit. Therefore, a Tucker3 model can determine component

matrices only up to a rotation. Second, interpretation of Tucker3 models is much more

difficult compared to CANDECOMP/PARAFAC models.

In a CANDECOMP/PARAFAC model, we extract the same number of components in

each mode. When one component is identified as an artifact, for instance in the anal-

ysis of an EEG tensor, that particular component shows the signature of an artifact in

the time domain in the first mode, in the frequency domain in the second mode and in

the spatial domain in the third mode. Therefore, we actually identify an artifact using

the rank-1 tensor corresponding to it. By using CANDECOMP/PARAFAC model for

analysis of three-way tensor of multichannel EEG with modes of time, frequency and

electrodes (space), we assume that each brain activity is characterised by certain modal-

ities in time and frequency domains and a certain mixture of brain activities is recorded

at each electrode.
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3.2.2.2 Algorithms

The problem of computing CANDECOMP/PARAFAC model given a three-way tensor

Y and a choice for R, is to find the factor matrices (A,B,C). Using the “Kruskal

operator” notation defined in (3.21), the problem could be formulated as a least-squares

optimization problem:

min f(A,B,C) ≡ 1

2
‖Y− [[A,B,C]]‖2. (3.24)

The original algorithms proposed for computing a CANDECOMP/PARAFAC model

are based on the ALS approach [65]. The component matrices are estimated one at

time as follow by rewriting the CANDECOMP/PARAFAC model on a three-way array

Y ∈ RI×J×K given in (3.19) and (3.20) using the Khatri-Rao product as

Y(1) = A(C�B)T + E(1) (3.25)

where A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R are the component matrices corresponding

to the first, second, and third modes, respectively and the three-way arrays Y and E are

unfolded in the first mode, and matrices of size I × JK, denoted by Y(1) and E(1), are

formed. The objective is then to minimize the least squares objective function written

for a CANDECOMP/PARAFAC model as

‖Y− X̃‖2= ‖Y(1) −A(C�B)T‖2
F . (3.26)

where X̃ is the reconstructed multi-way array from the estimated factor matrices. Mini-

mizing this function with respect to A, is equivalent to finding the least squares estimate

for A as Y(1)((C�B)T )† where † is the Moore-Penrose pseudoinverse operator. Similarly,

we can also calculate the least square estimates of other factors. Hence, the ALS-based al-

gorithm iteratively updates these estimates until a convergence criterion, e.g., no change

in model fit, is satisfied.
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Algorithm 3 PARAFAC-ALS [71](Y ∈ RI×J×K , R)

Y ∈ RI×J×K , R rank of tensor, and a convergence criterion ε. Estimate of A, B,
C. Initialize A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R. ε not satisfied Z ← C � B.
A ← X(1)Z(ZTZ)−1. Z ← C � A. B ← X(2)Z(ZTZ)−1. Z ← B � A. C ←
X(3)Z(ZTZ)−1.

Although Algorithm 3 is the most commonly used approach to fit a CANDECOMP/

PARAFAC model, it is prone to local minima and convergence to the global optimum is

not guaranteed. Besides, like any other iterative approach, it is sensitive to the initial-

ization of the factor matrices and different initializations of the algorithm may converge

to different local optima. Random initialization or using generalized eigenvalue decom-

positions are common approaches for initializing a CANDECOMP/PARAFAC model.

Furthermore, ALS suffers from slow convergence rate. Alternative algorithms have been

proposed for fitting a CANDECOMP/PARAFAC model, in particular for three-way ten-

sors, with the objective to improve ALS algorithm in terms of convergence rate and

robustness to overfactoring. Acar et al. [72] proposed an approach using a first-order

gradient-based optimization method to solve the CANDECOMP/PARAFAC optimiza-

tion problem in (3.26); the performance of the method that is called OPT using a nonlin-

ear conjugate gradient method is showed to outperform the ALS algorithm and leads to

increased accuracy in the case of overfactoring. Furthermore, ALS methods need to un-

fold the tensor frequently and often converge slowly. It could also suffer from the so called

degeneracy problem [73] where some factors diverge and at the same time tend to cancel

each other as the goodness of fit progresses. CANDECOMP/PARAFAC-degeneracies

occur when one attempts to approximate a tensor by another of lower rank, causing two

or more factors to tend to infinity, and at the same time to almost cancel each other,

giving birth to a tensor of higher rank. If cancellation between diverging rank-1 ten-

sors cannot occur, then neither CANDECOMP/PARAFAC-degeneracy can. This is in

fact what happens with tensors with positive entries. Thus, imposing the non-negativity

during the execution of successive iterations is one way to prevent degeneracy in CAN-
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DECOMP/PARAFAC decomposition.

ALS algorithm was compared with a number of competing algorithms in [77] includ-

ing, direct trilinear decomposition (DTLD), alternating trilinear decomposition (ATLD),

alternating coupled vectors resolution (ACOVER), selfweighted alternating trilinear de-

composition (SWATLD), pseudo-alternating least-squares (PALS), alternating slice-wise

diagonalization (ASD) and alternating coupled matrices resolution (ACOMAR). Al-

though, ALS outperformed all of the algorithms in terms of the quality of solution,

but when the computation time is a priority, ASD could be considered as an alternative.

Nearly all existing algorithms are based on carefully adapting existing optimization

algorithms, see [62] for an overview of the literature. More recent developments for gen-

eral tensors include work on increasing the efficiency and robustness of gradient-based

and Newton-like methods [72], modifying and improving ALS [74], studying the conver-

gence of ALS [75] and reducing the cost of the unfolding operations required during the

approximation [76].

Optimization approach for fitting CANDECOMP/PARAFAC

As an alternative to the ALS approach, which tries to estimate a factor matrix one at

a time by fixing the other factor matrices, all the factor matrices could be solved simul-

taneously using a gradient-based optimization approach (OPT). Although f in (3.24)

is written as a function of matrices, it could be thought as a scalar-valued function by

vectorizing and stacking the component matrices in a column vector and then it would be

straight forward to drive the gradient of it. Having the derivatives determined, we can use

any first order optimization technique. for example in [72] the numerical performance of

a generic nonlinear conjugate gradient (NCG) method was explored. Compared to ALS,

instead of alternatively estimating the factor matrices, OPT solves for all factor matrices

simultaneously. This has the benefit of increased accuracy in the case of overfactoring.
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On the other hand, ALS can be remarkably fast, but it is not always accurate. OPT is

more accurate, but maybe not as fast as ALS.

PARAFAC decomposition based on Single Mode blind Source separation

The objective of most ALS algorithms is to minimize the fitting error exploiting some

algebraic properties of the factors. However, in addition to the algebraic properties, we

often have access to some a priori knowledge about the components in specific modes.

For instance, components in a specific mode may have clear physical meaning such as

independency, sparsity, nonnegativity or have temporal structures. For example, in brain

signal processing spectral components are nonnegative and usually sparse, while temporal

components are often statistically independent. By incorporating this type of knowledge

and keeping in mind the special structure of PARAFAC model as in (3.25), where the

matricized tensor in each mode could be expressed as the product of the corresponding

components matrix by the Khatri-Rao product of other component matrices, we can

extract the latent components from their arbitrary linear mixtures by using suitable

constrained matrix factorization methods such as independent component analysis (ICA),

sparse component analysis, and nonnegative matrix factorization (NMF).

By assuming that some a priori knowledge about the components at least in one mode is

available, the components in this mode can be estimated first by incorporating standard

Blind Source Separation (BSS) algorithms. Looking at the matricized expression of

PARAFAC model help us to understand it better. As Y(1) = A(C �B)T , the columns

of Y(1) are just linear mixtures of the columns of A, hence this is the motivation of

extracting A first by using a proper BSS algorithm Ψ such that

Â = Ψ(Y(1)) = Ψ
(
A(C�B)T

)
= A P D (3.27)

where P and D are R×R permutation matrix and invertible diagonal matrix, respectively

and denote the unavoidable ambiguity of permutation and scaling. Having the factor
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matrix A estimated, exploiting the Khatri-Rao product structure using a series of rank-1

singular value decompositions the remaining component matrices (B and C) are then

computed. The success of this technique relies on proper priori knowledge of one mode.

The method fails if such knowledge is not available or we have used incorrect priori

knowledge, since (3.27) may not hold anymore. However, once such priori knowledge is

available, using this method can help us achieve faster convergence speed. This method

is extremely efficient and overcomes the bottleneck issue of CANDECOMP/PARAFAC

decomposition which occurs when two or more components in at least one mode are highly

collinear. Particularly, when the ordinary CANDECOMP/PARAFAC decompositions

are not unique, more interpretable results can be achieved via this method even with

physical meaning [78].

3.2.3 Numerical Complexity

In this section our goal is to give an idea of the cost per iteration of various multi-way

analysis algorithms. In fact, just considering total number of iterations for comparison of

iterative algorithms is not very meaningful, as the costs per iteration for each algorithm

might be significantly different. Furthermore, we can reduce the complexity of the prod-

uct between two matrices or other matrix operations by taking into account any possible

structure. Kronecker product of matrices create some structure that can be incorporated

to reduce the overall computational complexity. However, in this section we are not

taking advantage of such structure and the calculations are for the general matrices.

Matrix inversion is one of the main parts of most tensor decomposition algorithms,

which is implemented via singular value decomposition (SVD). First, we calculate the

complexity of SVD and then derive the complexity of other algorithms based on that.

Singular Value Decomposition (SVD)

Let the so-called reduced SVD of a I × J matrix A of rank r, I ≥ J ≥ r, be written as:
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A = U Σ VT = Ur Σr VT
r , (3.28)

where U and V are orthogonal matrices, Σ is I × J diagonal, Ur is a I × r submatrix

of U, UT
r Ur = Ir, Σr is r × r diagonal and Vr is a J × r, VT

r Vr = Ir. The calculation

of the diagonal matrix Σ needs 2IJ2 − 2J3/3 multiplications, if matrices U and U are

not explicitly formed, but kept in the form of a product of Householder symmetries and

Givens rotations [79]. In order to calculate matrices Ur and Vr, additional 5Ir2 − r3/3

and 5Jr2 − r3/3 multiplications are required, respectively.

For instance if r = J , the total complexity for computing Σ, UJ and V is of order

7IJ2 + 11J3/3. If I � J , this complexity can be decreased to O(3IJ2) by resorting to

Chans algorithm [80].

High-Order SVD (HOSVD)

For a three-way array Y ∈ RI×J×K , calculating the HOSVD involves three SVD of

dimensions I×JK , J ×KI and K× IJ respectively, where only the left singular matrix

is required explicitly. Consider computing the reduced SDV of rank Ri in mode i, then

the overall computational complexity for the three SVDs can be summarized as

2IJK(I + J +K) + 5(R2
1JK + IR2

2K + IJR2
3)− 2(I3 + J3 +K3)/3− (R3

1 +R3
2 +R3

3)/3

Furthermore, estimating the core tensor has extra burden and for that singular matrices

also need to be contracted on the original tensor. As we need to contract it on all the

modes, the complexity depends on the order in which the contractions are executed.

Assuming I ≥ J ≥ K ≥ Ri, it is better to contract the third mode first and the

first mode last. This computation requires IR1JK + R1JR2K + R1R2KR3 additional

multiplications.
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Alternating Least Square (ALS)

Considering the complexity of one iteration of ALS for estimating the factor matrix in

the first mode. For that we need to solve the linear system below for A in the LS sense

according to (3.26):

ZAT = T (3.29)

where the dimensions of Z, A, and T are m× r , q × r and m× q respectively. First, we

need to compute matrix Z = B�C which is the Khatri-Rao product two rank-R matrices

and requires JKR multiplications. Then the SVD of matrix Z of size JK × R needs

7JKR2 + 11R3/3 multiplications, according to the previous part. Finally the product

VR Σ−1
R UT

R T represents RJKI +RI +R2I multiplications.

The total cumulated operations for one iteration of ALS algorithm for a three-way

array is as follows,

(JK +KI + IJ)(7R2 +R) + 3RIJK + (I + J +K)(R2 +R) + 11R3

where the two last terms are often negligible.

The convergence of the ALS algorithm sometimes may take up a very large number

of iterations. Good initialization of the algorithm, in some cases, help to reach the

global minimum very quickly. However, it is not always true and sometimes even trying

any starting point does not help us to reach a global minimum quickly via ALS. Some

reasons for this type of behaviour could be related to the solution that is embedded in a

deep swamp, or is in fact unreachable at the solution rank, and can only be approached

through an infinite series of diverging sets of loadings. When the convergence is slow

we can use a variant of ALS, called line search with the idea of limiting the number of

iterations of a given cycle in the convergence path. This is done by predicting the value

of the loading factors a certain number of iterations ahead by computing a sort of linear

regression and optimizing the coefficients. The problem then involves solving a system of

three polynomials with three unknowns, which leads to a high numerical complexity that
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for the simplest case leads to solving a polynomial of degree 6 in R for a three-way array.

According to [81], the Enhanced Line Search (ELS) adds (8R + 10)IJK multiplications

to each iteration of ALS. However, ELS makes the number of iterations decrease, hence

allowing a decrease of the overall complexity.

3.3 Chapter Summary

In many applications the data structures often contain higher-order contextual informa-

tion, and representing the data via multi-way arrays enables us to retain the structure

of the data and analyze all the dimensions concurrently using multi-way analysis tech-

niques. Moreover, it is known that the underlying information content of the data may

not be captured accurately or identified uniquely by two-way data analysis. In this chap-

ter the multi-way array and the corresponding analysis explored for extracting hidden

structures and capturing underlying correlations between variables and summarize the

data into unique and physically meaningful components. CANDECOMP/PARAFAC

and TUCKER are two common multi-way models that are used in various applications.

We choose CANDECOMP/PARAFAC for EEG analysis as it is more favourable due to

its uniqueness property and better interpretability of the resulting components. Further-

more, various decomposition techniques for CANDECOMP/PARAFAC model are pre-

sented. ALS is the most popular algorithm due to its simplicity and satisfactory perfor-

mance. The computational complexity of ALS algorithm for CANDECOMP/PARAFAC

decomposition is also explored. Most of the decomposition methods require that the

rank (model order) of the tensor to be known a priori, which is not available in practical

application. Hence, optimum rank selection is an active challenge in this context and

various techniques have been proposed for that in the literature. We cover the state-of-

the-art techniques for CANDECOMP/PARAFAC order selection and also our proposed

approach in the next chapter.
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Figure 4.1: Chapter 4- CANDECOMP/PARAFAC Model Order Selection.

One of the main reasons behind the rapid increase in popularity of Multi-way (Tensor)

analysis, as evidenced by numerous research areas, is that underlying latent informa-

77



tion content of the high-dimensional data may not be captured accurately or identified

uniquely by two-way data analysis. The multi-way data analysis techniques are general-

ization of two-way (matrix) data analysis techniques based on the idea of linear factor

models [60, 62]. Tensor analysis seeks to extract a more interpretable data summarization

by exploring the multi-linear relationships between the variables used to represent the

data. CANDECOMP/PARAFAC [71], also known as Canonical Polyadic Decomposi-

tion (CPD), is a well-known and common tensor factorization model. This approach has

been applied in many areas such as chemometrics [82], wireless communication [83, 84],

analysis of fMRI data [85] , Electroencephalogram (EEG) signal processing [53–55], data

mining and web analysis [86], classification, and clustering [87, 88].

In a CANDECOMP/PARAFAC model, a tensor can be decomposed as a linear com-

bination of rank-one tensors. An Nth-order rank-one tensor is a tensor that can be

written as the outer product of N non-zero vectors. Each of these extracted rank-one

tensors corresponds to a component or a factor of the data that itself could be uniquely

characterized by its associated vectors. For example, in the context of EEG signal pro-

cessing, when we generate a three-way Time-Frequency-Space EEG tensor, the observed

EEG tensor could be decomposed using CANDECOMP/PARAFAC into rank-one EEG

tensors. Each of the extracted components technically representing an event in EEG that

could be uniquely characterized by its time, frequency and spatial signatures [53].

In order to capture the true underlying latent structure of observed data, it is cru-

cial to extract the right number of signal components in a CANDECOMP/PARAFAC

model. Knowing that underestimating or overestimating the number of signal compo-

nents may mislead us in interpreting the data, estimation of the tensor rank or in other

words, the optimum number of rank-one tensors has been addressed in several CANDE-

COMP/PARAFAC modeling problems [67, 88–90]. The essence of effective model order

selection and the situations in which overestimation or underestimation of model order is

preferable is discussed in [91]. In some applications like radar imagery a detection method

biased toward overestimation is preferable as the cost of missing a target is much higher
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than a false alarm. However, in most applications underestimation is favourable in low

SNRs as using an overestimated source number yields inaccurate parameter estimates

which necessitate overwhelming costs.

Moreover, in many applications this problem is more challenging in the presence

of colored noise or interference. As the signal information is extracted based on its

correlation structure assuming the noise samples to be uncorrelated, the presence of

colored noise with correlated samples, seriously affects the signal parameter estimation

performance. Prewhitening is an effective way to tackle this problem, which decorrelates

the noise samples, therefore minimizing the disturbance between the noise and signal

subspaces, and consequently avoiding the performance degradation.

Prewhitening requires that an estimate of the noise covariance matrix to be available.

This covariance matrix is characterized by numerous parameters in the case of a non-

parametric noise model. Hence, for a high-dimensional data, a large number of samples

are required to estimate the noise covariance matrix properly. However, by assuming a

parametric structure for the noise, we can reduce the number of required parameters and

also the complexity of the noise characterizing method [92, 93]. Here we assume that

the noise has a Kronecker structure. Estimating the noise parameters with Kronecker

structure has been addressed in many works such as [94–96]. In EEG experiments, the

measured signal usually has a very low signal-to-noise ratio (SNR). This could be due to

low signal strength that is coupled with noise from different sources, such as the EEG

acquisition system, the brain, or external environment. Brain noise, from ongoing or

non-stimulus correlated activity, is often the dominating noise in EEG recordings and

has a complicated structure, with correlations in both time and space. These correla-

tions are usually reflected in temporal and spatial covariance matrices. A model that

combines these two covariance matrices using the Kronecker product has been shown

to be satisfactory and effective in the EEG noise modeling context [97–99]. Moreover,

the Kronecker structured covariance matrix has practical applications in other fields like

sensor array processing, Multiple-Input Multiple-Output (MIMO) wireless systems [100],
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model oder selection scheme.

and genomics [101], due to its efficient characterization.

After Prewhitening, all the parameter estimation and model order selection methods,

developed with the assumption of white noise, could be exploited for analysis. Then, if

needed, through a dewhitening step, the original signal subspace could be retrieved. The

combination of model order selection schemes with prewhitening schemes was first used

in [102]. Here, we are extending it for the multidimensional case (Figure 4.2).

There are several techniques for determining the number of signal components of

the CANDECOMP/PARAFAC model in the literature, for example, residual analysis

[67], convex-hull-based method [68], CORe CONsistency DIAgnostic (CORCONDIA)

[89, 103, 104] that are mostly based on Alternating Least Squares (ALS) algorithm.

Although, there are other CANDECOMP/PARAFAC decomposition methods that may

be in some situations more efficient than ALS, (e.g. [78, 90, 105–110]), some of them

even with the capability of automatic rank determination or even handling the Kronecker

structure colored noise, i.e. Closed-Form PARAFAC based Model Order Selection (CFP-

MOS) method [111]. Nevertheless, those methods are not in the scope of this work and

we are mainly focusing on the ALS-based CANDECOMP/PARAFAC approaches due

to its programming simplicity and the satisfactory performance [112]. Furthermore, it

is often suggested to use several diagnostic tools together rather than a single method,

as there is no rule of thumb in determining the optimal number of signal components

(optimal in terms of interpretation) for real data [91].
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In this Chapter, our goal is to propose a novel, theoretical, robust, and consistent

method, based on the available data, for the ALS-based CANDECOMP/PARAFAC

model order selection that can handle additive colored noise with the Kronecker struc-

ture. The rest of the chapter is organized as following: First the rank selection problem

formulation and statement are explained followed by a brief overview of the rank selection

techniques. Then, our proposed technique is explained.

4.1 Problem Formulation

An N−way tensor X ∈ RI1×I2×...×IN is of rank one if it can be written as the outer

product of N nonzero vectors, i.e.,

X = a(1) ◦ a(2) ◦ . . . ◦ a(N) (4.1)

where the symbol ◦ denotes the vector outer product and each element of the tensor X

is the product of the corresponding vector elements. In other words, X is of rank one, if

and only if xi1i2...iN = a
(1)
i1
a

(2)
i2
. . . a

(N)
iN

.

In a CANDECOMP/PARAFAC model, a tensor is decomposed into the sum of rank-

one tensors. For simplicity and without loss of generality here we only consider a three-

way tensor. Let a,b, c be column vectors of size I×1, J ×1 and K×1, respectively, and

X be a tensor of size I×J×K, therefore, an R?-component CANDECOMP/PARAFAC

model for a three-way array of noiseless data X ∈ RI×J×K can be written as

X =
R?∑
r=1

ar ◦ br ◦ cr, (4.2)

where R? is the true number of signal components in the model (True Rank), ar,

br, and cr indicate the rth column of component matrices A ∈ RI×R?
, B ∈ RJ×R?

,

and C ∈ RK×R?
, respectively. By assuming that each component matrix in CANDE-

COMP/PARAFAC decomposition has full rank, we can also write (4.2) in terms of
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n-mode products as follows:

X = I3,R? ×1 A×2 B×3 C. (4.3)

In practice the observed data is a contaminated version of X and can be represented as

Y = X + E(c), (4.4)

where E(c) ∈ RI×J×K is a three-way array containing the additive colored noise samples,

which are typically correlated with each other in several modes and has the white noise

as its special case.

Here we focus on the multidimensional colored noise with a Kronecker structure, that

is characterized by the following correlation structure:

Cov = Cov3 ⊗Cov2 ⊗Cov1, (4.5)

where Cov ∈ RM×M with M = I×J×K is the noise covariance matrix in all dimensions

and Cov1 ∈ RI×I , Cov2 ∈ RJ×J and Cov3 ∈ RK×K are the covariance matrices in mode-

1, mode-2 and mode-3 respectively which are defined as [93]:

Cov ,
1

σ2
n

E{vec(E(c)).vec(E(c))T}, (4.6)

Covr ,
1

αr
E{E(c)

(r).(E
(c)
(r))

T}, (4.7)

where r = 1, 2, 3, and αr is the scaling coefficient and σ2
n is the noise power after

prewhitening. In the context of EEG signal processing, the noise free EEG events could

be well characterized by Time-Frequency-Space EEG tensors [53]. However, EEG is

typically contaminated with strong background noise that is correlated in both time

and across channels. It has been found that the joint spatio-temporal covariance ma-
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trix can be modelled as the Kronecker product of the spatial and temporal covariance

matrices [97].

Applying the Eigenvalue decomposition (EVD) or the Cholesky decomposition to

Cov and Covr, r = 1, 2, 3, yields [93]

Cov = L.LT , Covr = Lr.Lr
T , r = 1, 2, 3, (4.8)

where L ∈ RM×M is the noise correlation factor in the joint dimensions and L1 ∈ RI×I ,

L2 ∈ RJ×J and L3 ∈ RK×K are the correlation factors in mode-1, mode-2 and mode-3

respectively. It can be verified [93] that L = L3 ⊗ L2 ⊗ L1 and the multidimensional

colored noise E(c), can be related to the i.i.d white Gaussian noise tensor according to

E(c) = E×1 L1 ×2 L2 ×3 L3, (4.9)

where E ∈ RI×J×K is a tensor with samples from zero-mean i.i.d Gaussian distribution

with variance of σ2
n.

4.1.1 Problem Statement: Rank Approximation

The rank approximation of a noisy tensor Y, is defined according to (4.10) as, when

the R? is unknown, the R for which a criterion f(Y, R) is minimized, such that Y is

expressed as a sum of R rank-one tensors,

R̂ := argmin
R

{
f(Y, R) |Y ∼=

R∑
r=1

ar ◦ br ◦ cr

}
. (4.10)

Finding the best R-component CANDECOMP/PARAFAC model that approximates the

observed noisy tensor Y well is a challenge in this regard. While most of the criteria

developed in this context are ad-hoc, here our goal is to provide a robust theoretically

based criterion for rank approximation in the presence of colored noise, which relies on

characteristics of available data.
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4.2 Rank Selection Techniques

Model order selection techniques can be categorized into two methods: feed-forward

and feed-backward. While in the former category, the parameters of the model and the

model order itself are estimated simultaneously, (e.g. [78, 113]), or the model order is

estimated first and then parameters of the model for that order are estimated separately,

(e.g. [103, 111]). In the later category, first the parameters of the model are estimated

for a range of possible model orders, and then in a backward direction, suitability of the

considered model orders according to a criterion is evaluated and the optimum model

order is selected [104]. Figure 4.3 shows the schematic of these two categories.

While each of the above mentioned categories has its own advantages and disad-

vantages, the feed-forward methods are often computationally more efficient than the

feed-backward methods as decomposing and estimating the factor matrices of the corre-

sponding CANDECOMP/PARAFAC model, (i.e. A,B,C) is done just for the priorly

estimated model order. However, feed-forward methods do not have post evaluation

capability; In other words, the estimated factor matrices A,B,C have no control over

the order selection. In addition, most of them cannot validate and compare estimated

factors for different orders. On the other hand, the feed-backward model order selection

methods, use the complete resulted estimates of CANDECOMP/PARAFAC, A,B,C, in

validation of their criteria. Furthermore, the selecting criterion in most of the cases has

a meaningful interpretation (e.g. Mean Squared Error (MSE)), which is good from the

validation point of view and the noteworthy advantage of the feed-backward methods

over the feed-forward ones.

4.2.1 Existing CANDECOMP/PARAFAC model rank selec-

tion techniques with white noise

Most of the CANDECOMP/PARAFAC model order selection methods start by com-

puting a set of candidate model orders, which is assumed to contain the true model
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Figure 4.3: Schematic of (a) feed-forward and (b) feed-backward CANDE-
COMP/PARAFAC model order selection techniques.

order, and then based on an appropriate model selection criteria, the optimum number

of signal components is determined. Some of these methods include DIFFIT [67], COR-

CONDIA [89], Threshold-CORCONDIA [103], and a Convex-hull based method [68].

4.2.1.1 Core Consistency Diagnostic (CORCONDIA)

CANDECOMP/PARAFAC can be written as a special Tucker3 model where the core

is superdiagonal with ones on the diagonal and zeros elsewhere. This special way of

writing the model can be used to check the adequacy of a CANDECOMP/PARAFAC

model by estimating what Tucker3 core is found if estimated unconstrained from the

CANDECOMP/PARAFAC loadings. The core consistency [89] is given as the percentage

of variation in this core array consistent with the theoretical superdiagonal array. The

expression of CORCONDIA (CC) is as follows

CC(R) = 100

(
1−

∑R
i=1

∑R
j=1

∑R
k=1(gijk − tijk)2

R

)
(4.11)

where gijk and tijk are elements of the estimated Tucker3 core and the superdiagonal core

array, respectively according to (3.14).

The maximum core consistency (100) is thus found according to (4.11). Consistencies

found well below 70 to 90 indicate that either too many components are used or the

model is otherwise mis-specified. The consistency can also become negative which means
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that the model is not reasonable. Note that core consistency is an ad-hoc method. It

often works well on real data, but not as well with simulated data. CORCONDIA does

not provide proof of dimensionality, but it can give a good indication. The estimate of

CORCONDIA, denoted as R̂CC , is given by

R̂CC = max R subject to CC(R) ≥ η (4.12)

where 0 < η < 1.0 is the threshold coefficient (typically 70% < η < 90% is used). The

CORCONDIA measure is almost 100% for both true and underestimated model orders,

and then starts to drop for overestimation of model order. So, having the estimate of

the component matrices for a given model order using CANDECOMP/PARAFAC, we

estimate the core array based on the Tucker3 model, and then compare it with a same

size super-diagonal core array to see how good the model is fitted. If the Frebenious

norm of the difference is less than a threshold the model fit is good. We do the same

process by increasing the model order up to a point that the distance between those

two core arrays are increased further than the threshold [89]. The CORCONDIA has

been commonly applied in the literature and is known as a benchmark for CANDE-

COMP/PARAFAC model order selection. The problem with this method is that the

effectiveness of the CORCONDIA is highly determined with a subjective threshold that

should be increased with Signal-to-Noise ratio (SNR) to keep a consistent performance.

In Threshold-CORCONDIA [103] the authors have tried to tackle this problem by con-

sidering the difference of the core consistency for two adjacent candidate ranks as a means

of rank estimation. This method also requires a thresholding, and the optimal threshold

coefficients are selected using the probability of detection, but the problem is that, still

a common threshold is used for a wide range of noise levels which does not improve the

performance in all SNRs and furthermore, the computation of the threshold adds to the

complexity of the method.

The above mentioned methods are all based on the idea of misfit or the goodness-

of-fit. From another perspective, several model selection methods based on the r-mode
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unfoldings are also developed. RD-RMT [114] tackles the CANDECOMP/PARAFAC

model rank selection by extending the classical r-mode matrix unfolding to multi-mode

matrix unfolding and through a sequence of nested hypothesis tests, in the framework

of random matrix theory, the true model rank is enumerated. Furthermore, some model

selection methods based on Higher Order Singular Value Decomposition (HOSVD) were

proposed in [111]: R-Dimensional Exponential Fitting Test (R-D EFT), R-D AIC, and

R-D MDL.

4.2.1.2 R-D Exponential Fitting Test

The eigenvalues of the sample covariance matrix play a major role in the model order

estimation. It is showed that the noise eigenvalues exhibiting a Wishart profile can

have their profile approximated by an exponential curve [115]. Let X ∈ RM×N be the

observation matrix and λi be the i-th eigenvalue of the sample covariance matrix. The

exponential model may be expressed as

E{λi} = E{λ1} · q(α, β)i−1, (4.13)

where E{ ·} is the expectation operator and we assume that the eigenvalues are sorted

so that λ1 is the largest and we at least have one noise eigenvalue. The term q(α, β) is

heuristicly defined as

q(α, β) = exp

−
√√√√ 30

α2 + 2
−

√
900

(α2 + 2)2
− 720α

β(α4 + α2 − 2)

 (4.14)

so that 0 < q(α, β) < 1 and α = min{M,N} and β = max{M,N}. Then an analytic

expression of the ordered eigenvalues profile, obtained under noise only hypothesis, is

used to fit the eigenvalues of the noise [115].

Basically the method is based on the observation that, in noise-only case, the profile

of ordered eigenvalues can be well approximated by a decaying exponential. The strategy

87



for model order selection is simple: it consists in looking for a break in profile by compar-

ing observed profile and the theoretical noise-only one. Assume d non-coherent sources

corrupted by additive noise and let P denote the number of candidate noise eigenvalues.

The basic idea behind the EFT method is to choose the highest P for which the candidate

noise eigenvalues can be well fitted to the theoretical decaying exponential. Moreover, the

method assumes that there is at least one noise eigenvalue, i.e., d < M . For each value of

P in the range 1 < P < M − 1 we find the parameters of the decaying exponential which

best fit the observations and we compute the prediction for the (M − P )-th eigenvalue,

which we denote by λ̂M−P . Thereby, it is possible to obtain M −1 predicted eigenvalues,

namely λ̂M−P for 1 < P < M − 1. To decide whether the (M − P )-th eigenvalue λM−P

fits to the exponential profile we measure its relative distance to the predicted eigenvalue

λ̂M−P . By setting a threshold ηP , which could be obtained by Monte Carlo simulations

carried out in the noise-only case, the following hypotheses is formulated:

HP+1 : λM−P is a noise EV,
λM−P − λ̂M−P

λ̂M−P
≤ ηP

HP+1 : λM−P is a signal EV,
λM−P − λ̂M−P

λ̂M−P
> ηP (4.15)

The largest P for which the test HP+1, fails, denoted by Popt determines the estimated

model order d = M − Popt.

R-D EFT method is the extension of EFT for high-dimensional data. By having

different r-mode unfolding, we can apply the EFT to each of the R observation matrices

obtained after unfolding in the associated mode. Then the link to R-D EFT is in the way

that eigenvalues in different modes are combined, which is done by defining the Global

Eigenvalues as follows: Let us define M = ΠR
r=1Ii. For the r-mode unfolding the sample

covariance matrix is defined as

R̂(r)
xx =

Ir
M

X(r) ·X(r)
T ∈ RIr×Ir . (4.16)
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The global eigenvalues are based on the r-mode eigenvalues represented by λ
(r)
i for

r = 1, ..., N and for i = 1, ..., Ir. For the sake of simplicity, let us first assume that

I1 = I2 = · · · = IN . Then we can define global eigenvalues as being

λ
(G)
i = λ

(1)
i · λ

(2)
i . . . · λ(N)

i (4.17)

Therefore, based on (4.13), it is straight forward that the noise global eigenvalues also

follow an exponential profile, since

E{λ(G)
i } = E{λ(G)

1 } · (q(α1, β1) · . . . · q(αN , βN))i−1 . (4.18)

Using the product of eigenvalues in the definition of global eigenvalues has another benefit

which increases the gap between the noise and actual eigenvalues. Therefore, the break in

the profile is easier to detect via global eigenvalues than using only one mode eigenvalues.

To cope with the fact that in many applications the size of the N dimensions might differ,

without loss of generality, let us consider the case in which I1 > I2 > ... > IN . We start

by estimating d with the modified EFT method considering the first unfolding only.

If d < I2, we could have taken advantage of the second mode as well. Therefore, we

compute the global eigenvalues λ
(G)
i as (4.18) for 1 < i < I2, thus discarding the I1 − I2

last eigenvalues of the first mode. We can obtain a new estimate d. If d < I3 we could

continue in the same fashion, by computing the global eigenivalues considering the first

3 modes. Clearly, the full potential of the proposed method can be achieved when all

modes are used to compute the global eigenvalues. This happens when dopt < IN , so that

λ
(G)
i can be computed for 1 ≤ i ≤ IN .

Having the thresholds calculated, the computational complexity of the R-D EFT

method is comparable to R-D AIC and R-D MDL. The method is also limited to additive

white Gaussian noise, however, it is reported to be more robust and consistent compared

to the state-of-the-art model order selection techniques [111].
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4.2.1.3 Second ORder sTatistic of the Eigenvalues (SORTE)

SORTE [88], is based on the profile of eigenvalues of the sample covariance matrix of

the unfolded tensor in one mode. SORTE is based on the second order statistics of

difference of the consecutive eigenvalues, which makes it free of any required threshold.

By computing the sample covariance matrix of mode-n unfolded tensor and by extracting

its eigenvalues, compute the differences of eigenvalues ∇λ̂t = λ̂t− λ̂t+1, t = 1, · · · , In−1.

Then, for a correct number of components R, we have

∇λ̂R+1 = ∇λ̂R+2 = · · · = ∇λ̂In−1 = 0. (4.19)

To compute the gap between eigenvalue, compute the variance of the sequence {∇λ̂i}In−1
i=k

as

σ̂2
k =

1

In − k

In−1∑
i=k

(
∇λ̂i −

1

In − k

In−1∑
i=k

∇λ̂i

)2

, (4.20)

where k = 1, · · · , In − 1. From (4.19) and (4.20), it is easy to check that σ̂2
k > 0, k = 1, · · · , R,

σ̂2
k = 0, k = R + 1, · · · , In − 1.

(4.21)

Further, define a Second ORder sTatistic of the Eigenvalues (SORTE) as follows:

SORTE(k) =


σ̂2
k+1

σ̂2
k

, σ̂2
k > 0,

+∞, σ̂2
k = 0,

(4.22)

where k = 1, · · · , In − 2. Then, from the definition (4.22), we have

SORTE(k) > 0, k = 1, · · · , R− 1,

SORTE(k) = 0, k = R,

SORTE(k) = +∞, k = R + 1, · · · , In − 3,

SORTE(k) = 0, k = In − 2,

(4.23)
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According to (4.23), we can perform the model selection by the following criterion:

R̂ = argmin
k=1,···,In−3

SORTE(k). (4.24)

SORTE is computationally more efficient than R-D EFT. However, unlike R-D EFT

that uses the tensor structure to combine the eigenvalues, SORTE suffers from the lack

of exploiting the information of different modes and needs a further step to somehow

combine the extracted model orders from different modes of the observed tensor. Besides,

SORTE tends to overestimate the model in low SNRs and is only applicable when the

White Gaussian Noise is present.

4.2.1.4 Approximate Rank-Detecting Factorization

Finding common linear subspaces in data is a classical and well-studied problem in Ma-

chine Learning and the applied sciences. A standard way to address these problems

algorithmically is jointly diagonalizing the matrices. However, in some scenarios a com-

plete diagonalization may not be necessary, and the problem is finding a single common

rank one constituents of the matrices. A new framework called AROFAC2 [113] can be

used for CANDECOMP/PARAFAC decomposition and rank selection. AROFAC2 algo-

rithm uses the intrinsic algebraic structure of a low-rank degree tensor in the calculations,

and reduces determination of rank to a clustering problem. The method avoids spurious

components, and is stable with respect to outliers and non-Gaussian noise, however its

performance degrades with increasing the rank of the tensor.

Most of the CANDECOMP/PARAFAC feed-forward model order selection techniques

use the well known ALS as the core of decomposition algorithm which suffers from its

high computational cost and the so called degeneracy problem when the collinearity of

the factors in at least one mode of observed tensor is high. Although, there exists some

feed-forward methods like CP-SMBSS and deflation method [78, 107] and even CFP-
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MOS [111], that are not based on ALS and avoids the estimation of spurious components

when the rank is overestimated, feed-backward methods based on variants of ALS, aiming

to mitigate the degeneracy problem by adding some constraints on the extracted factors,

are still widely used and therefore requires attention.

Our contribution here is to provide a consistent feed-backward method for CAN-

DECOMP/PARAFAC model order selection with additional advantages. The proposed

method not only has the ability of handling colored noise, but also, the criterion for

different orders is a quantitative measure that can evaluate the models for each specific

order. For example, if the true order is 10, our algorithm not only finds the value 10,

but also provides the trade-off to settle for a lower dimension. This is a practical issue

where in some modeling problem, some error could be tolerated for the purpose of using

a lower dimensional model. For example, if tolerance ε is acceptable, our reconstruction

error can show what is the lowest order within the tolerance of ε error, which in this case

may be a model with an order of less than 10.

4.3 Proposed Rank Selection approach based on Re-

construction Error

In applications where we encounter colored noise, the rank estimation problem could

be tackled, first, by whitening the noise and then using the conventional rank estima-

tion approaches. Having the noise whitened, any of the previously mentioned methods,

developed with the additive white noise assumption, could be exploited for the rank

selection.

A multidimensional whitening technique, developed in [93], is used here for the

prewhitening step. The prewhitening method in [93] assumes that the true CANDE-

COMP/PARAFAC model rank is available. However, using a similar approach, here

our goal is to propose an algorithm that simultaneously does the prewhitening and rank

selection, which is novel in this context.
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4.3.1 Multidimensional Prewhitening

Having either prior knowledge about the true noise covariances or by using the available

noise only measurement tensor E(c), the sample covariance matrix (SCM) in each mode

could be calculated according to (4.7)

Ĉovr =
1

βr
E

(c)
(r).(E

(c)
(r))

T , r = 1, 2, 3 (4.25)

where βr is chosen such that tr(Ĉovr) = Nr where Nr is the size of the corresponding

mode, i.e. I, J,K for mode-1, mode-2 and mode-3 respectively. There are other ap-

proaches for estimating the covariance matrices with Kronecker structure including the

maximum likelihood estimator of the factor matrices that leads to an iterative alternat-

ing algorithm called the flip-flop algorithm [99], or the recent algorithm developed for

estimation of rank deficient covariance matrices [116].

Having the SCMs estimated, we can obtain an estimate of the correlation factors L̂r

by applying an EVD, i.e., Ĉovr = Qr.Λr.Qr
T which yields L̂r = Qr.Λr

1/2.

The prewhitening is then performed by

Y′ = Y ×1 L̂−11 ×2 L̂−12 ×3 L̂−13 , (4.26)

where the inverse of L̂r can be obtained as L̂−1r = Λr
−1/2.Qr

T . In case that any of the

correlation factors are rank deficient, their pseudo-inverse can be used. Using (4.4),(4.9)

and the n-mode product properties, we can write (4.26) as

Y′ = X×1 L̂−11 ×2 L̂−12 ×3 L̂−13

+ E×1 (L1.L̂
−1
1 )×2 (L2.L̂

−1
2 )×3 (L3.L̂

−1
3 ), (4.27)

where the noise tensor becomes approximately white, and by having full-rank correlation

factor matrices, the rank of prewhitened signal subspace X′ = X×1 L̂−11 ×2 L̂−12 ×3 L̂−13

remains unaffected and the same as the rank of X. Therefore, we can do the rank
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selection using the prewhitened signal Y′ instead of Y. From now on, we assume that

the noise is whitened and for simplicity of notations we use Y as the prewhitened signal.

Having the colored noise whitened, first we develop a method based on Reconstruction

error for rank selection of the whitened tensor. Then, in the next section, for the cases

that no prior information about the covariance of noise is available, we develop an iterative

algorithm for simultaneously whitening and rank estimation.

4.3.2 Rank Estimation Criterion

Like most of the CANDECOMP/PARAFAC-decomposition based methods, for each can-

didate rank, the factor matrices of the corresponding CANDECOMP/PARAFAC model,

(i.e. A,B,C), are first estimated via ALS algorithm [71] and then according to (4.3)

an estimate of the data with that candidate rank is calculated. Traditionally, one of the

criterion that is widely used as the stopping criteria of the ALS algorithm, as well as

in the backward direction for optimum order selection is the Data error εR defined as

following:

εR =
1

M
‖ Y − X̂R ‖2 (4.28)

where Y is the noisy observed data tensor and M = I × J ×K is the total number of

samples and X̂R is the estimation of noiseless data via (4.3) by using an R-component

CANDECOMP/PARAFAC model which factor matrices are estimated using the ALS

algorithm.

The Data error εR, based on the maximum likelihood theorem, is known to be a

monotonically decreasing function of the model order and cannot be solely used for

model order selection problems. The characteristics of the Data error for a sample rank-

five tensor while fitting an R-component CANDECOMP/PARAFAC model is depicted in

Figure 4.4(a). Increasing the model order would result in a smaller Data error. In order to

overcome this limitation, the classical model order selection methods, like AIC and BIC,

have tried to add a penalty term, which is an increasing function of the model order,
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Figure 4.4: The characteristics of the Data Error and Reconstruc-
tion Error for a sample rank-five tensor Y while fitting an R−
component model (1 <R< 10) in CANDECOMP/ PARAFAC analysis.

to compensate that behaviour. Besides, in the context of CANDECOMP/PARAFAC

model order selection, the Data error in the form of DIFFIT [67] or in combination with

CORCONDIA [104] have been used for model order enumeration in order to overcome

its downside.

On the other hand, by looking at the characteristics of Reconstruction error γR (see

Figure 4.4(b)) defined as:

γR =
1

M
‖ X− X̂R ‖2 (4.29)

where X is the noiseless data tensor associated with the observed noisy tensor according

to (4.4), the true rank of the tensor (R? = 5 in this case) is revealed at the minimum

of γR by its intrinsic characteristics. Therefore, the Reconstruction error seems to be a

potential metric for detecting the true rank of a tensor. However, the challenge here is

that in real applications we do not have access to the noiseless data tensor X and the

only thing that we observe is Y which leads to the Data error.

It can be shown that by observing the available Data error, εR, and having prior
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knowledge about the variance of the noise, the Reconstruction Error could be modelled

as a sample of a Chi-Squared distribution. Using that, we can find a probabilistic upper-

bound with a confidence region for the Reconstruction Error which has the AIC and BIC

as its special cases [117]. The estimate of the Reconstruction Error then could be used

for the optimum model order selection. The upperbound of γR is computed as follows:

γR(Q(β),Y, Q(α)) =
RI

M
σ2
n + UR(Y, Q(α)) + β

√
2RI

M
σ2
n , (4.30)

where σ2
n is the noise variance after prewhitening and R is the number of signal compo-

nents used in the CANDECOMP/PARAFAC model. Q(α) and Q(β) are the validation

probability and the confidence probability used to provide the probabilistic upper bound

for γR. Furthermore, UR is the upperbound corresponding to unmodeled or discarded

possible components (A full derivation of (4.30) is addressed in Appendix A).

Therefore, the optimum model order for CANDECOMP/PARAFAC in the context of

Reconstruction Error, according to (4.10), would be the smallest R that would minimize

the upperbound of γR among a set of possible candidates 1 ≤ R ≤ Rmax:

R̂ = Ropt = argmin
R

γR(Q(β),Y, Q(α)). (4.31)

The maximum candidate rank, Rmax, either can be available as prior knowledge or

can be selected based on the CORCONDIA measure explained in the following section.

The proposed rank selection method is summarized in Algorithm 4.

4.3.2.1 Incorporating CORCONDIA for selection of Rmax

The performance of CORCONDIA is highly dependent on a threshold which could lead

to overestimation or underestimation of the number of signal components in different

scenarios [104]. The CORCONDIA (CC) measure is almost 100% for both true and

underestimated model ranks and then starts to drop for overestimation of model rank

(Figure 4.5(a)), where with the fixed threshold of 80%, the model is overestimated, and
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Algorithm 4 Rank Selection with known Covariance

Y ∈ RI×J×K and a maximum rank Rmax and Covr for r = 1, 2, 3. Optimum Rank
R̂. obtain the correlation factor matrices Lr. obtain the prewhitened tensor Y′ via
(4.26). R← 1 Rmax using Y′, estimate the factor matrices A, B, C for an R-component

CANDECOMP/PARAFAC model using ALS. find an estimate of noiseless data X̂
′
R via

(4.3). εR ←− 1
M
‖Y′ − X̂

′
R‖2. obtain the upperbound of the Reconstruction Error γR

via (4.30).
R̂←− argmin

R
γR.

in order to have the best performance the threshold should be around 90%). The gap

between the CC measures of true order and the overestimated one varies depending on

the SNR. When the SNR is high, the drop of CC for the overestimated orders is very

small, although for low SNRs the drop is significant. Therefore, the ideal threshold should

increase with SNR, and to overcome this drawback in [104], the authors suggested the use

of the difference of fit in consecutive model orders as an aid to increase the performance

of CORCONDIA, and to remove the subjective interpretation of the threshold.

Regardless of the CORCONDIA plot trajectory, the CC measure is shown to be small

and robust for the high overestimates of the model order. Therefore, a lower bound

threshold is robust in providing an upper limit for the model rank, (i.e. Rmax):

Rmax = max R subject to CC(R) ≥ ηlb , (4.32)

where ηlb is the user-defined lowerbound of the threshold coefficient. Empirically range

of 5% ≤ ηlb ≤ 20% works well.

4.3.3 Numerical Complexity

The goal of this section is to give the overall complexity of the proposed rank selection

technique. As we saw in the previous Chapter, the number of required multiplications per

iteration was calculated. Although, usually there is a stopping criterion using the relative

error rather than a fixed number of iterations for convergence, In fact, to calculate the
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Figure 4.5: (a) The CORCONDIA measure for a sample rank-five ten-
sor Y along with 12.5% and 80% threshold lines, while fitting an R −
component model for 1<R< 10; (b) The upperbound ofγR for different estimation
of variances of noise, using available εR, measured for a sample rank-five tensor
Y ∈ R15×15×20 while fitting an R-component CANDECOMP/PARAFAC model for
1 < R < 10.

cost of iterative algorithms a fixed number of iterations is considered. Computational

complexity of ALS for a three-way array is O((JK +KI + IJ)(7R2 + R)l + 3RIJKl +

(I +J +K)(R2 +R)l+ 11R3l), where I, J,K are dimension in the corresponding modes,

R the rank of the array, and l is the fixed number of iterations in the optimization

stage. Computational complexity of Reconstruction Error based model order selection is

O(Rmax)×O((JK+KI+IJ)(7R2 +R)l+3RIJKl+(I+J+K)(R2 +R)l+11R3l). This

is obtained based on Rmax required runs of ALS for estimating the minimum of γR, while

almost no extra computation overhead after CANDECOMP/PARAFAC decomposition

is required.
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4.3.4 Unknown Noise Covariance

In situations in which we have no prior information about noise covariances and neither,

the signal free measurements are available, (e.g. for EEG signals), we propose an algo-

rithm that simultaneously estimates the covariance matrices and the rank selection. In

Algorithm 5, first, through an iterative process, the covariance matrices for each mode

are estimated, then the obtained noise covariance matrices are used for prewhitening and

rank selection afterwards.

The algorithm estimates the noise covariances as following: it calculates the pre/de-

whitened tensor Y̌
′

in three steps: prewhitening of Y via (4.26), truncated HOSVD via

(4.33), and dewhitening via (4.34).

Y̌ = S[t] ×1 U1
[t] ×2 U2

[t] ×3 U3
[t] (4.33)

where Y̌ ∈ RI×J×K is the truncated HOSVD, S[t] ∈ Rp1×p2×p3 , and Ur
[t] ∈ RMr×pr with

pr = min(Mr, R). Exploiting the HOSVD-based low rank approximation we obtain the

denoised prewhitened tensor Y̌. Finally, for parameter estimation, the original signal

subspace should be recovered through the dewhitening stage as following

Y̌
′
= Y̌ ×1 L̂1 ×2 L̂2 ×3 L̂3. (4.34)

Consequently, the estimates of the factor matrices of an R-component CANDE-

COMP/PARAFAC model are calculated and the noiseless tensor is reconstructed using

(4.3), then the residual tensor, Ê
(c)

R = Y − X̂R, is used for estimating the covariance

matrices of the noise. We found in most of the cases, less than 5 iterations is required to

converge to the true parameters. A stopping criteria is developed in [93] using a similar

approach for cases that we may end up in non-convergence parameter estimates. Note

that for each model rank R, (1 ≤ R ≤ Rmax), we get a different estimate of the noise ten-

sor and consequently a different pre/de-whitened tensor Y̌
′
R, (i.e. the estimate of noise

tensor, Ê
(c)

R , is a function of number of signal components R). Hence, we would use the
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Algorithm 5 Simultaneous Noise estimation and Rank Selection

Y ∈ RI×J×K and a maximum rank Rmax and a stopping iteration T . Optimum Rank
R̂. it ←− 0 L̂R

r ←− IMr R ← 1 Rmax it ≤ T obtain the pre/de-whitened tensor

Y̌
′
R in 3 steps: prewhitened via (4.26), truncated HOSVD via (4.33) and dewhitened via

(4.34). using Y̌
′
R, estimate the factor matrices A,B,C of an R-component CANDE-

COMP/PARAFAC model using ALS. find an estimate of noiseless data X̂
′
R via (4.3).

Ê
(c)

R ←− Y − X̂
′
R. given Ê

(c)

R , estimate the correlation factor matrices L̂R
r via (4.25).

it←− it+ 1
using L̂R

r , obtain the prewhitened tensor Y′R via (4.26).

estimate the factor matrices A,B,C of Y′R for an R-component CANDE-

COMP/PARAFAC model using ALS. estimate the noiseless data X̂
′
R via (4.3).

εR ←− 1
M
‖Y′R − X̂

′
R‖2. obtain the upperbound of the Reconstruction Error γR via

(4.30). R̂←− argmin
R

γR.

corresponding whitened tensor, Y′R, for estimating the factor matrices of an R-component

CANDECOMP/PARAFAC model and finding the optimum model rank, unlike the fixed

whitened tensor Y′ that we used in Algorithm 4 for a known noise covariance.

4.4 Simulations

We are considering real-valued data in all the simulations. In the CANDECOMP/

PARAFAC model, the factor matrices in (4.3) contain i.i.d Zero-Mean Gaussian entries

with unit variance. The colored noise is generated according to (4.9) using zero-mean

white noise samples with unit variance. Along each mode the colored noise is modeled

as a first-order autoregressive process

e
(c)
i+1 = ρr . e

(c)
i +

√
1− |ρr|2 . ei+1, (4.35)

such that both the correlation factor Lr and covariance matrix Covr, are functions of

a single correlation coefficient ρr. For example, Covr for Mr = 3 has the following
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structure

Covr =


1 ρr ρ2

r

ρr 1 ρr

ρ2
r ρr 1

 .
A scaling parameter η is used to obtain different SNRs. Let E(c) be the colored noise

tensor, and let X be the noise-free tensor. Then

Y = X + η
‖X‖
‖E(c)‖

E(c) (4.36)

is the noisy version of the tensor where η is the percentage of noise to add. In the

simulations we use the Tensor Toolbox 1 for CANDECOMP/PARAFAC decomposition

with the following configurations: convergence criterion set as 10e−6, no constraints on

the modes, line-search acceleration scheme initialized, and using direct trilinear decom-

position for initialization. For each parameter setting, 1000 independent Monte Carlo

runs have been conducted. The performance measure is the PoD, (i.e., Pr(R̂ = R?)),

the probability that the estimated rank is equal to the true rank, averaged over noisy

realizations of all Monte Carlo runs.

In the simulations we assume that the true rank of the observed tensor is smaller than

the size of its corresponding modes. The simulations are divided into two parts. First,

by setting the correlation coefficients ρr = 0 for r = 1, 2, 3, we evaluate the performance

of the proposed method compared to other methods. In this scenario, no prewhitening is

needed and evaluation is based solely on the merit of effectiveness of different methods in

true rank selection considering white noise. Second, we evaluate the effect of prewhitening

on the rank selection of the proposed method in the colored noise scenario. In the

following sections we discuss the results of each scenario.

1MATLAB Tensor Toolbox, Available online, http://www.sandia.gov/~tgkolda/TensorToolbox/
.
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4.4.1 Additive White Noise

The correlation coefficients in this case, are set as ρr = 0 for r = 1, 2, 3 which means that

the noise is white and the covariance matrices are identity. We compare our method (rank

selection based on Reconstruction Error) in this scenario with the following schemes:

CORCONDIA with a fixed typical threshold setting of 80%, aided-CORCONDIA [104],

and also rank selection based on the AROFAC2 [113], the SORTE [88], the Convex-

hull method [68], the RADOI method [118], and R-D AIC, R-D MDL and R-D EFT

methods [111]. In the proposed scheme, we set α = 100 and β = 200 (refer to [117]

for the discussion on selection of these parameters). The lower bound threshold in the

CORCONDIA is also chosen as ηlb = 12.5%.

The Data error εR at the true order, according to its definition (4.28), could be a

good estimate of the noise variance if we assume that the CANDECOMP/PARAFAC

model fits the measurements well. Although we do not have prior knowledge about

the true order, we found through our simulations that γR is not that sensitive to the

variance of noise, σ2
n, as long as it is selected from the vicinity of true model order in

εR. Figure4.5(b) shows the estimated Reconstruction Error γR of a sample realization

three-way CANDECOMP/PARAFAC model of size I = 15, J = 15, K = 20 and R? = 5

for 1 ≤ R ≤ Rmax. γR is plotted using 3-different noise variances, selected as ε4, ε5, ε6

from the Data error, which are all minimized at the true order R̂ = 5. Therefore, we used

the average of Data error, εR for 1 ≤ R ≤ Rmax, as an estimate of the noise variance in

the simulations. The other approach is to use the majority voting technique to choose

the mode of the selected orders via different noise variances as the optimum order.

Next, the PoD versus SNR for R? = 5 and R? = 7 components in a three-way

CANDECOMP/PARAFAC model of size I = 15, J = 15, K = 20 using different selection

methods are depicted in Figure 4.6(a) and Figure 4.6(b), respectively. Comparing the

simulation results we can see that the CORCONDIA with a fixed threshold 80%, which

is highly dependent on the threshold value and SNR, has a low PoD at high SNRs due to

frequent over-enumeration. 80% threshold only seem to be a proper one at SNR = −5dB
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Figure 4.6: Comparison of PoD, i.e. Pr(R̂ = R?)% vs. SNR for different Rank selection
methods while fitting a CANDECOMP/PARAFAC model averaged over 1000 Monte
Carlo realizations while ρr = 0 for r = 1, 2, 3: (a) for a rank-5 tensor Y ∈ R15×15×20; (b)
for a rank-7 Y ∈ R15×15×20.

and SNR = 5dB for R? = 5 and R? = 7 respectively, where the PoD is almost high.

Thus making it clear that this method is not consistent for different settings and model

orders. The performance of AROFAC2, which is developed based on structure of low-

rank tensors, degrades with increasing tensor-rank. SORTE tends to underestimate in

low SNRs and has an inferior performance compared to aided-CORCONDIA, which

uses the discriminative power of Data error in the neighbourhood of true model order.

Although aided-CORCONDIA is an efficient method and almost comparable with the

proposed method, it still requires an extra computational load to calculate its threshold.

The performance of RADOI method, which is an empirical method, is inferior to other

methods and degrades with increasing the model order and requires higher SNRs to

perform better. The performance of R-D AIC, R-D MDL are close and consistent with

the results of [111] which are deemed inferior compared to R-D EFT. The convex-hull

based method has a comparable performance with the proposed method, however, the

proposed method outperforms other methods for both considered model orders in all

SNRs, especially in mid and low SNR scenarios, (i.e. 0−10 dB), by having a higher PoD.
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Figure 4.7: Boxplot of the estimated rank of the observed tensor over 1000 Monte Carlo
realizations at SNR = 0dB using different estimation methods. On each box, the central
mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points the algorithm considers to be not outliers, and
the outliers are plotted individually for: (a) rank-five tensor Y; (b) rank-seven tensor Y.

Furthermore, to evaluate the statistics of estimated ranks using different methods,

the boxplots of the estimated rank at SNR = 0dB for R? = 5 and R? = 7 are illustrated

in Figure 4.7(a) and Figure 4.7(b), respectively. The boxplot shows the median, 25th

and 75th percentiles, and outliers of the estimated rank. Figure 4.7(a) shows that, for a

true rank of 5, CORCONDIA with a fixed 80% threshold overestimates the rank in most

cases, the median at R̂ = 6, while AROFAC, SORTE, RADOI, and R-D MDL tend to

underestimate when they couldn’t estimate the true rank (25th percentile is at R̂ = 4).

Fig. 4.7(b) shows for a true rank of 7, the proposed method detects the correct rank

at R̂ = 7 consistently, and the only methods that have a close performance, but still tend

to underestimate, are R-D EFT and Convex-hull. Other methods tend to underestimate

the rank more by having the median at R̂ = 6 for AROFAC, CORCONDIA, aided-

CORCONDIA, R-D AIC and the median at R̂ = 5 for R-D MDL, RADOI and SORTE.

Also, SORTE has the highest inconsistency in model order selection by having a widely
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Figure 4.8: Comparison of PoD, i.e. Pr(R̂ = R?)% vs. SNR for a rank-overlap problem
with the true rank of 3 and ρr = 0 for r = 1, 2, 3 for different Rank selection methods
averaged over 1000 Monte Carlo realizations of Y ∈ R15×15×20.

distributed boxplot.

In order to evaluate the performance of the proposed method when we have linear

dependence in constituting factor matrices of a tensor or especially the rank-overlap prob-

lem, (i.e. some loading components of the factor matrices are collinear, e.g. bottlenecks

and swamps), an other simulation is performed. A simple example for the rank-overlap

problem with a rank-3 tensor is as follows

X = a1 ◦ b1 ◦ c1 + a1 ◦ b2 ◦ c2 + a2 ◦ b2 ◦ c3 . (4.37)

Figure 4.8 depicts the PoD versus SNR for R? = 3 when we have the rank-overlap

problem, averaged over 1000 Monte Carlo realizations. As the figure shows the SORTE

method that is based on the mode-1 unfolding completely fails, as the number of eigen-

values in mode-1 unfolding is 2. RADOI method which also uses the mode-1 unfolding

fails in high SNRs, however, in lower SNRs it has a high PoD that might be due to

the fact that RADOI empirically tries to model the signal and noise subspaces with two

different discriminant functions and in lower SNRs one of the noise eigenvalues might be
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misclassified as the signal subspace and hence the correct order is selected. The perfor-

mance of CORCONDIA, AROFAC, and the aided-CORCONDIA degrades drastically

in the rank-overlap problem. RD-based methods which are based on global eigenvalues

have a good performance. The Convex-hull method which is based on the goodness of fit

also performs good. However, the proposed scheme outperforms the other state-of-the-

art methods in the rank-overlap problem as it is based on reconstruction error in which

correlation of factors does not affect its performance.

Furthermore, we compared the performance of the methods for different model ranks

at a fixed SNR. Figure 4.9(a) depicts the PoD versus tensor rank for R? = 1, 2, . . . , 14

at SNR = 5dB averaged over 1000 Monte Carlo realizations when all the factors in

the model have the same magnitude, (i.e. in (4.3) we use identity tensor). The results

show that the CORCONDIA with a fixed threshold has the highest inconsistency among

the compared methods and once more confirms the downside of this method. The per-

formance of RADOI degrades drastically as the model order increases. The proposed

method, on the other hand, has remarkably superior and consistent performance for

different model orders compared to other methods where the drop in the PoD of the

proposed method is small even for high model orders. In Figure 4.9(b), we compare the

performance of the methods, where unlike the previous one, instead of having the same

magnitude we have different magnitudes for each factor by setting a diagonal tensor in

(4.3) with its elements being uniformly distributed between (0.2, 1). We chose this range

to prevent having any component with a very small and negligible contribution. The

results show that the performance of all methods degrades for higher model orders, but

the proposed method still has the best performance.

In addition, Figure 4.9 shows that PoDs are relatively low, and might fall even lower

than 50% in some methods when the true rank is high and approaches the tensor dimen-

sions. It is nonsense to do rank selection when the desired components are not recovered.

So, we need to figure out what is the cause of degradation for high model orders, whether

it is due to shortcoming of ALS algorithm or the model order selection scheme itself.
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Figure 4.9: Comparison of PoD, i.e. Pr(R̂ = R?)% vs. tensor rank, at SNR = 5dB,
ρr = 0 for r = 1, 2, 3 for different rank selection methods averaged over 1000 Monte Carlo
realizations of Y ∈ R15×15×20: (a) for an identity tensor in (4.3); (b) for a diagonal tensor
in (4.3) with its elements uniformly selected between (0.2, 1).

The fit of the model is generally used to evaluate performance of a tensor decomposition,

although this measure does not imply quality of the estimated components. In order to

verify theoretically the quality and accuracy of the estimated components via ALS and

validate the efficiency of the proposed algorithm an appropriate measure is an essential

prerequisite. The squared angular error between the estimated component and its orig-

inal one is such a measure [119]. In Figure 4.10 the estimation accuracy of the factor

matrices in terms of Mean Square Angular Error (MSAE) compared to the theoretically

achievable Cramer-Rao Induced Bound (CRIB) for different model orders and a range of

SNR values is depicted. When the noise is additive Gaussian noise, the CRIB on esti-

mation of factor matrices in CANDECOMP/PARAFAC model can be calculated [119].

The CRIB may serve a gauge of achievable accuracy of estimation/CP decomposition.

It is an asymptotically (in the sense of variance of the noise going to zero) tight bound

on the angular error between an estimated and true factor. For example, it is known

that when CRIB on the squared angular error (in dB) is lower than 20dB, which corre-
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Figure 4.10: Estimation accuracy of the factor matrices in terms of MSAE compared to
the CRIB for different model orders vs. SNR, ρr = 0 for r = 1, 2, 3 averaged over 100
Monte Carlo realizations of Y ∈ R15×15×20: (a)-(d) for an identity tensor in (4.3); (e)-(h)
for a diagonal tensor in (4.3) with its element uniformly selected between (0.2, 1).

sponds to the standard deviation of 5.7◦, it is hard to retrieve the components. CRIB

can explain performance of simulations when the tensor rank is high and approaches the

tensor dimension. We can see in Figure 4.10 that the CRIB at SNR = 5 dB for high

model orders is not within the reliable range (i.e. MSAE < 20 dB). Moreover, CRIB is

lower for a diagonal tensor (lower row) in (4.3), compared to identity tensor (upper row),

which reflects the difficulty the ALS algorithm faces in estimating the factor matrices by

having components with different magnitudes. Hence, we can say that the degradation

of PoD when the tensor rank is high could be related to the ALS algorithm, which can

not estimate the factor matrices correctly, and not to the model order selection schemes.

Now, acknowledging the effectiveness of the proposed method with additive white

noise, in the next section we evaluate the effect of adding correlation between noise
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Figure 4.11: Comparison of PoD, i.e. Pr(R̂ = R?)% vs. Tensor rank at SNR = 5dB and
ρr = 0.5 for r = 1, 2, 3, while fitting a CANDECOMP/PARAFAC model averaged over
1000 Monte Carlo realizations of Y ∈ R15×15×20: (a) for colored noise; (b) for prewhitened
noise.

samples on the rank selection performance and see how the proposed method can tackle

the colored noise problem.

4.4.2 Additive Colored Noise

In this scenario different correlation coefficients, (i.e. ρr for r = 1, 2, 3), are consid-

ered to evaluate the effect of additive colored noise on degradation of the rank selection

performance and how prewhitening can help us to prevent that.

4.4.2.1 Known Covariance Matrix

Here, we assume that we have access to the signal free measurements and the true

covariance matrices of the colored noise in each mode are also available. Algorithm 4

is used in this part and for all other methods considered for the comparison, first the

prewhitening is done and then rank selection is performed. Figure 4.11(a) shows the

PoD of the true rank versus tensor rank, averaged over 1000 Monte Carlo realizations,

for R? = 1, 2, . . . , 14 at SNR = 5dB with ρr = 0.5 for r = 1, 2, 3. The only parametric
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change in this setting, compared to Figure 4.9, is the consideration of the additive colored

noise. The results show that even for a moderate correlation coefficient ρr = 0.5, all of

the rank selection methods degrades drastically. Although, Convex-hull method still does

a relatively good job when the true rank is low. The performance of the RADOI method

which is believed to be able to handle colored noise also degrades and the RD-based

methods that are based on white noise assumption fail completely in this scenario.

In Figure 4.11(b) the effect of prewhitening of the colored noise on the true rank selec-

tion is depicted. We can see that by prewhitening we can effectively prevent performance

degradation in all methods except the AROFAC2 method, where not much improvement

in the rank selection is achieved for the low rank orders range. It could be due to the

fact that AROFAC2 is based on clustering and prewhitening, which is like a rotation in

the signal subspace, might affect the number of detected clusters.

Next, we compare the effect of having colored noise samples with different correla-

tion coefficients for a range of 0.1 ≤ ρr ≤ 0.9 on PoD at SNR = 5dB for a rank-7

Y ∈ R15×15×20. Figure 4.12(a) shows the performance degradation effect of hav-

ing colored noise with different correlation coeficients, while Figure 4.12(b) shows that

prewhitening can consistently prevent performance degradation for all range of corre-

lation coefficients. It shows that for ρr ≥ 0.4 the performance of proposed method,

without prewhitening of the colored noise, degrades and the probability of detection of

the true rank is almost zero for any ρr ≥ 0.6. We can see that the Aided-CORCONDIA,

SORTE, RD-based methods and the core of the proposed method, which are developed

based on the white noise assumption, have a considerable improvement in their PoD

after prewhitening. However, CORCONDIA(%80) and AROFAC2 are unresponsive to

prewhitening, which is due to the fact that AROFAC2 is said to be independent of the

noise structure and the correlation between the noise samples does not influence its per-

formance that much. CORCONDIA, on the other hand, although is the most inconsistent

method among the compared ones, has almost no performance degradation in the pres-

ence of colored noise which might be due to the fact that, CORCONDIA measures the
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Figure 4.12: Comparison of PoD, i.e. Pr(R̂ = R?)%, vs. Correlation Coefficient (0.1 ≤
ρr ≤ 0.9), at SNR = 5dB, for different Rank selection methods averaged over 1000
Monte Carlo realizations for a rank-7 Y ∈ R15×15×20 : (a) without prewhitening of the
colored noise; (b) with prewhitening of the colored noise.

similarity of the estimated core tensor with the theoretical super diagonal one and pres-

ence of additive colored noise samples may not influence the trend of the CORCONDIA

measure. On the other hand, prewhitening does not improve the RADOI method, as the

true rank-7 is fairly high for this method and it completely fails.

4.4.2.2 Unknown Covariance Matrix

In this part, we assume that no information about the covariance of the colored noise is

available and we use the developed Algorithm 5 for estimating the covariance matrices

of the noise and simultaneously obtaining the whitened tensor for model rank selection.

We compare the PoD of the true rank versus SNR for the proposed method, having a

Rank-7 three-way CANDECOMP/PARAFAC model of size I = 15, J = 15, K = 20

contaminated with additive colored noise with two different correlation coefficients of

ρr = 0.2, 0.5 for r = 1, 2, 3. Figure 4.13 shows that the proposed approach is effective for

the moderate correlation factors for almost all the considered SNRs, and the performance

is comparable to the scenario that we have access to the true covariance matrices of the
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Figure 4.13: PoD vs. SNR of the proposed method with and without having the co-
variance matrices of the noise, averaged over 1000 Monte Carlo realizations of a rank-7
Y ∈ R15×15×20 contaminated with colored noise of ρr = 0.2, 0.5 for r = 1, 2, 3.

colored noise. However, for the low SNR of 0dB, the performance is slightly inferior. This

proves the essence of availability of a good estimate for the noise covariance matrix in

order to detect the true rank efficiently. Perhaps incorporating more robust noise covari-

ance estimation techniques in the algorithm could further improve the results, especially

when we have a limited number of measurements and the sample covariance matrix is

not reliable.

4.5 Chapter Summary

CANDECOMP/PARAFAC decomposes a tensor into a summation of rank-one tensors.

The ALS algorithm used for this decomposition is attractive for its simplicity and sat-

isfactory performance for well-defined problems. In this chapter we reviewed various

ALS-based approaches that have been proposed in the literature to extract the true rank

of the observed tensor, most of them based on the so called model fit or Data error. Al-

though, the available Data error is informative, it partially models the noise and known

to be a monotonically decreasing function of the model order, that makes it inapplicable

to rank selection. Furthermore, in this chapter we developed a novel methodology for
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CANDECOMP/PARAFAC model order selection. we propose using the Data error to

approximate the unknown Reconstruction error. The Reconstruction error, as the rank

selection criterion, intrinsically reveals the true rank of the observed tensor. In addition

the range of possible ranks is determined exploiting the CORCONDIA measure. The pro-

posed algorithms handle the additive colored noise with the Kronecker structure through

an embedded multidimensional prewhitening scheme. Furthermore, when we have no

information about the covariance of the noise priorly, the proposed algorithm can also es-

timate the noise covariance through an iterative method while simultaneously determines

the rank. The results show the advantage of the proposed method in both robustness and

accuracy, in terms of PoD, over the conventional CANDECOMP/PARAFAC model or-

der selection methods such as different variants of CORCONDIA. Consequently, the pro-

posed method could be effectively exploited for CANDECOMP/PARAFAC model order

selection, while almost no extra computation overhead after CANDECOMP/PARAFAC

decomposition is required.

In the following Chapters we present some practical applications of EEG tensor analy-

sis using CANDECOMP/PARAFAC model where we use the TFR technique proposed in

Chapter 2 for EEG tensor formation and also estimate the model order by our developed

technique based on the Reconstruction Error.
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Figure 5.1: Chapter 5- EEG Tensor Analysis.

Data processing and analysis has a key role in study of the brain and brain research

using brain imaging tools. The recorded brain imaging data has a structural nature and

can be fitted and represented by a one-way series (a vector), a two-way array (a matrix),

and a multi-way array (a tensor). Hence, depending on how the data is represented
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various signal processing and analysis methods are applied.

EEG is known to be a high-dimensional signal in which processing of the information

by the brain is reflected in dynamical changes of the electrical activity in time, frequency,

and space. Study of these processes requires methods which can describe these variations

of the signal in time, frequency, and space in a quantitative way. In general, EEG

signal processing seek to decompose EEG into functions with known Spatio-Temporal-

Spectral properties or at least easier to characterize. For example, in the early stage

of EEG studies, when the temporal analysis techniques were popular, EEG data were

represented by a time series and all data samples were carried by a 1D vector. Since

then, after invention of Fourier transform, power spectrum analysis of the time series has

been often applied for exploring EEG characteristics in spectral domain. These methods

only use one contextual dimension which is either temporal or spectral domain.

Conventional methods use two-way decomposition techniques. By exploiting the pop-

ular time-frequency analysis (TFA) techniques, the time series of single-trial EEG were

mapped to 2D images. Furthermore, it is very common that multiple electrodes, span-

ning different locations of the scalp, to be used in the experiments to collect EEG data.

Hence, EEG recordings naturally include two modes of time and space, at least. These

EEG data representations require a two-way array or matrix and subsequently two-way

signal processing methods has been extensively used for EEG data analysis. Two of

the most famous techniques in this context are PCA and ICA that along other matrix

factorization techniques have been performed on the observed EEG matrix to remove

artifacts and to extract brain activities of interest [61]. These techniques consider just

two contextual dimensions, e.g. time and frequency or time and spatial domains. How-

ever, two-way analysis is unique subject to some additional constraints which may not

be always physiologically meaningful. On the other hand, Multi-way analysis techniques,

by retaining the additional dimensions, keep the structure of the multidimensional data

and by analyzing more dimensions simultaneously, summarize the data into more inter-

pretable components.
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5.1 Multi-way nature of EEG signals

Indeed, in EEG experiments, along the two modes of time and space that are naturally

inherited in the recordings, usually other modes are also present. For instance, different

subject groups may have participated in the experiments and analysis of EEG signals

may compare responses between groups (e.g. comparison of responses in a healthy control

group and a clinical group). Thus, at least one more mode could be considered in the

analysis and it is the subject. Furthermore, in an experiment to elicit event-related

potentials (ERPs), usually the stimuli is presented several times to the subject and EEG

is recorded for each of the trials. There might be also various stimulus presentation

conditions. Hence, there are modes of EEG trial and stimulus condition. This means

the brain data collected by EEG techniques can be naturally fit into a multi-way array

including multiple modes.

However, most of the analysis tools for brain research are aligned for one-way or two-

way data, which means that in order to use the two-way signal processing methods the

recorded data needs to be fitted in a matrix. This is often called unfolding a multi-way

array into a matrix. To do so, the extra modes besides the two modes of time and space

are often concatenated or stacked with the time or the space mode to form a matrix.

The difference between concatenation and stacking is in the way we connect the data in

a plane. In the former the data are horizontally connected, while in the later the data

are vertically connected in a plane. For EEG data, such unfolding inevitably loses some

structure and potentially the existing interactions between / among the folded modes,

such as time, frequency and space modes. However, the interactions between various

modes of data can be of research interest and may reveal hidden structure of data.

Consequently, multi-way array processing tools, by keeping the structure of the data, are

considered promising tools for investigating the latent structure and interactions among

multiple modes [120].
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5.2 Multiple modes and high-order tensors of EEG

data

There are three different type of EEG data, including spontaneous EEG, ERPs, and

ongoing EEG that regardless of which type we collect, the raw recording are continuous

and the length of the recording in time can be dozens of minutes or even a few hours or

days. For off-line analysis the continuous EEG data are usually segmented in terms of

stimulus types. These segments, which can also be called epochs or trials in case of ERPs,

naturally constitute the additional mode segment beside to the two modes of time and

space. Besides, if the EEG data of one segment is transformed into the time-frequency

domain, another mode called as frequency is produced. Moreover, particularly in ERPs,

usually two or more experimental conditions are tested. These variations could be a

change in the stimulus properties, e.g. change of frequency or length of a sound in the

experiment for mismatch negativity (MMN), or any environmental change during the

EEG data recording. Furthermore, often several participants are involved in the experi-

ments to facilitate the within-subject analysis. This mean that modes of condition and

subject also exist. Also, regarding the between-subject analysis in an ERP experiment,

there are two or more groups of subjects. Therefore, another mode is the group.

As a result, in an EEG experiment, potentially, there could be even 7 modes including

time, frequency, space, trial, condition, subject and group. Although, in the ERP study,

the mode of trials disappears due to the synchronized averaging usually applied on EEG

data over single trials to improve the SNR. Consequently, the high-order tensors including

some of the seven modes do naturally exist in any EEG experiment. Obviously, such a

tensor may be very big in sizes.

It is not straightforward to visualize the tensors with more than three modes. For

demonstration, Figure 5.2 shows a third-order tensor including the three modes of time,

frequency and space. The third-order tensor consists of the time-frequency representation

(TFR) of the multi-channels EEG data.
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Figure 5.2: third-order tensor of EEG with modes: time × frequency × space

5.3 EEG tensor generation via RS-EMD

In order to form a high-order EEG tensor that includes the mode of frequency in it,

we need to transform EEG data of one segment into the time-frequency domain. As

EEG is a multi-component signal and tensor analysis seeks to decompose it into its

constituting factors, it is crucial to have a TF representation that is cross-term free and

highly localized in time and frequency domains concurrently.

Existing method and its main problem

Continuous Wavelet Transform (CWT) is previously used for generating EEG tensor

[53–55, 121]. The continuous wavelet transform C(a, τ) at scale a of a signal x(t) is

defined as

C(a, τ) =

∫ +∞

−∞
x(t)φ(a, t, τ)dt , (5.1)

where φ is the chosen wavelet. Common choices include the class of biorthogonal wavelets,

Debauchy wavelets, and the Morlet wavelets [122]. The connection between the scale a

and the frequency f is given by

f ≈ fc
a · ∆t

, (5.2)
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where fc is the center frequency of the wavelet and ∆t is the sampling interval for x(t).

The disadvantage of CWT-based time-frequency is the limited resolution, especially in

the low-frequency region, which is very important in EEG signal analysis. CWT suffers

from the lack of ability to exactly localize a single oscillatory event in time and frequency

contemporarily. Indeed, every wavelet that is well-defined in frequency cannot be local-

ized in a well-defined time window and vice versa.

Here, we use the approach that was proposed in Chapter 2 to transform the EEG

segment into TFR with a high temporal and spectral resolution, which to the authors

knowledge is novel in this context. The RS-EMD method is a combination of Empirical

Mode Decomposition (EMD) and Reassignment method.

Multi-way analysis of EEG signals has been incorporated for various application, the

purpose of them is often source localization of brain activity [123], research questions of

cognitive neuroscience or clinical neuroscience [60], or related to brain-computer interface

[124]. Regardless of the specific application, two issues should be addressed when it

comes to exploiting multi-way analysis. The first is what type of model to choose for

analysis, whether the CANDECOMP/PARAFAC model or the Tucker model would be

used for analysis and also how to select the number of components for that model which

is regarding the model order selection. The second issue is whether the tensor is for

individual-level analysis or for group-level analysis. Regarding the former analysis, the

tensor is generated using the EEG data of one subject and usually includes the data of

one segment (or called as epoch, trial) of that subject in an EEG experiment. As for the

latter analysis, the tensor has more modes and contain the data of multiple trials of one

subject or multiple subjects. We categorize the applications of tensor decomposition on

EEG based on the above-mentioned classes. In this Chapter, we cover two individual-level

applications and then in the next Chapter a group-level analysis is presented. RS-EMD

and Reconstruction Error based CANDECOMP/PARAFAC model order selection are

the core of these applications.
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5.4 Localization of Brain Activities via Multi-way

Analysis of EEG Tensor

EEG signal, which measures the electrical activity of neurons, is now widely used to study

brain’s physiological, mental and functional abnormalities, due to its non-invasiveness,

mobility and its high temporal resolution [1]. The EEG recordings can also be used

for monitoring of spontaneous and evoked brain activity that allow for spatio-temporal

localization of neuronal activity. Localization of the electrical activities of brain has

gained considerable attention over the last decades [125, 126], because of its potential

diagnostic value for epilepsy [127], stroke [128], traumatic brain injury [129], and even in

brain computer interface applications [130].

Multichannel EEG data in [55, 121] has been constructed as a third-order tensor,

with modes: time × frequency × channel, for seizure analysis. The idea is to stack the

Time-Frequency (TF) representations of different channels of EEG as the third mode of

the tensor. Effective localizing of EEG events using tensor analysis necessitate exploiting

a TF representation technique with high spectral and temporal localization.

Here, our goal is to localize the EEG events using multi-way analysis of frequency

× time × space EEG tensor, which is generated using RS-EMD method. Then, tensor

analysis is exploited for extracting localized signatures that uniquely characterize the

underlying EEG events.

5.4.1 Methods

The proposed technique could be divided into two main parts: EEG tensor generation,

and EEG tensor analysis. time × frequency × space EEG tensor is first generated by cal-

culating the TF representation of all EEG channels, which is done here via RS-EMD that

is the combination of EMD followed by calculating the reassigned TF representation of the

extracted intrinsic mode functions. Then in the second step, CANDECOMP/PARAFAC

decomposition of EEG tensor enables us to localize the spatial and spectral signatures of
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the analysed EEG events. CANDECOMP/PARAFAC is more favourable here compared

to TUCKER models, as it provides a unique decomposition and the same number of

components in each mode that also makes it easier to interpret.

A block diagram of the proposed localization technique is illustrated in Figure 5.3.

5.4.2 Three-way EEG Tensor Generation

One of the key elements of time × frequency × space EEG tensor generation is the

TF representation techniques we choose, and localization of the extracted signatures are

highly dependent on the temporal and spectral resolution of the resulting TF images.

Here, we use the proposed RS-EMD method for TFR that exploits the benefits of EMD in

decomposing the EEG into spectrally localized components called Intrinsic Mode Func-

tions (IMF), and then take advantage of the reassignment technique that gives us a near

optimal resolution in TF plane [43].

5.4.3 CANDECOMP/PARAFAC Modeling of EEG Tensor

Mathematically, a PARAFAC model for a three-way tensor of noiseless data X ∈ RI×J×K

can be written as

X =
R∑
r=1

ar ◦ br ◦ cr, (5.3)

where R is the number of components in the model and symbol ◦ denotes the vector

outer product. In a CANDECOMP/PARAFAC model, a tensor is decomposed into the

sum of rank-one tensors, which are defined as the outer product of vectors. In practice

the observed data is a contaminated version of X and can be represented as

Y = X + E, (5.4)

where E ∈ RI×J×K is a three-way array containing the White Gaussian noise elements.

Illustration of a two-component CANDECOMP/PARAFAC model on a three-way EEG
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Figure 5.3: Block diagram of the proposed EEG localization algorithm.

data set is given in Figure 5.4.

CANDECOMP/PARAFAC analysis of EEG tensor assumes that every event in the

EEG could be uniquely characterized and represented by a temporal and a spectral

signature, and that event is elicited in different channel locations with different varia-

tions, making the elements of the space signature. TF representations of multichannel

EEG data using CWT have been used previously in [121] to construct a three-way EEG

tensor which is then decomposed into time-frequency-space components using CANDE-

COMP/PARAFAC analysis for seizure analysis and source localization. This allows the

spectral, spatial, and temporal signatures of EEG events to be found and extracted.

Besides, in order to capture the true underlying structure in data, it is important

to extract the right number of components R in the CANDECOMP/PARAFAC model
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Figure 5.4: two-component CANDECOMP/PARAFAC model, where a three-way array
Y is expressed as the sum of two rank-1 tensors and error terms .ai , bi and ci are the i
th components in the first, second and third mode, respectively. E
is a three-way array containing the residuals.

(5.3), which is the number of existing events in EEG tensor analysis. Selecting the

optimum number of components in CANDECOMP/PARAFAC model is still an active

challenge. Here, we use our developed method based on Reconstruction Error in the

previous Chapter for selecting the optimum model order.

5.4.4 Results

First, we examine the localization capability of the proposed method on a simulated

multichannel EEG data and then we use a real EEG dataset to evaluate our algorithm.

5.4.4.1 Synthetic EEG data

In this section, we simulate 2 seconds of 32-channel EEG data sampled at 256 Hz while

embedding 3 different events with distinct characteristics in it. These activities are 50 Hz

oscillations of amplitude of 0.8 on all channels over the whole 2-second data mimicking

the electronic noise, two burst of 35 Hz sinusoidal oscillations with an amplitude of 1.0

and duration of 0.5 second were placed in Channels 30, 31 and 32 at the posterior areas

resembling occipital gamma activity, and one burst of 25 Hz oscillation with amplitude

of 1.5 and duration of 0.4 second, contemporary happening with previous event, were

generated at each ear at Channels 11 and 15. Finally, normal distributed random noise

of power 1.0 was added to all channels.
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Figure 5.5: A comparison between the localization ratios B, for both the proposed RS-
EMD method and the CWT-based TFR, evaluated for a sample EEG signal with 50 Hz
oscillation.

Localization Performance Index

In order to quantify the localization performance of the RS-EMD compared to conven-

tional wavelet-based TFR we use the performance index introduced in Chapter 2. The B

ratio in (2.23) for one of the EEG channels with 50Hz oscillation and one burst of 25 Hz

was compared for RS-EMD and Complex Wavelet transform. The reason for comparing

our results with CWT is that it was the only TFR that was previously used for EEG

tensor analysis and we used it in our analysis for benchmarking. The resulting mean in-

stantaneous frequency is given as the mean of frequencies when more than one component

is present in the signal. However, as we apply EMD to decompose the multi-component

signal into mono-components then the instantaneous frequencies are 50 Hz and 25 Hz for

each component. Having the instantaneous frequency path, we can calculate the B ratio

for a range of different SNR for the input signal. The results are shown in Figure 5.5

where reassigned method gives B for 5.5 dB greater than the Complex Wavelet trans-

form for EEG signal, particularly when the SNR of the input signal is relatively high.

This index shows that the proposed RS-EMD techniques can generate a more localized

TFR compared to CWT-based TFR. We later in this section explore the effect of this
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advantage on the extracted signatures after EEG tensor decomposition.

Synthetic EEG tensor Analysis

The corresponding three-way EEG tensor was generated where we used the window length

of 127 and 512 frequency bins in RM calculations. Besides, we also generated another

three-way EEG tensor where Wavelet transform with Complex Morlet mother wavelet

was used for TFR. We used linear frequency bins within 1− 80 Hz with the resolution of

0.25 Hz in CWT-based TFR. As we knew priorly that there were 3 components embedded

in the EEG data, we approximated the constructed EEG tensor of Y ∈ R512×512×32
+ with

a 3-component CANDECOMP/PARAFAC model. We used the well-known Alternating

Least Squares (ALS) algorithm, with non-negative constraint, for estimating the factor

matrices. The resulting factor matrices after RS-EMD based EEG tensor analysis are

illustrated in Figure 5.6(b). The extracted factor matrices reveals the temporal, spectral,

and spatial signatures of all activities where each of the extracted components correspond

to one of the embedded events. The results of CWT-based EEG tensor analysis are

depicted in 5.6(a). Considering the WT-based results and by particularity comparing the

extracted signatures in the spectral domains of both techniques, it interestingly aligns

with the previous B ratio results where the extracted signatures using RS-EMD are more

localized and confirms the advantage of RS-EMD over CWT for EEG tensor analysis

and localizing embedded events. The extracted spectral signatures using CWT for tensor

generation show spectral overlap between components in the frequency domain, although

it is not true in this case. Therefore, the proposed method in able to effectively localize

and separate the ongoing activities in the brain even for the temporally overlapping

events.

5.4.4.2 Steady-State Visual Evoked Potential

Steady-State Visual Evoked Potential (SSVEP) is a periodic response elicited in the

brain by the repetitive representation of visual stimulus, at frequencies greater than 6
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Figure 5.6: 3-component CANDECOMP/PARAFAC decomposition of a synthetic three-
way EEG tensor Y ∈ R512×512×32. temporal signatures, spectral signatures, and topo-
graphic maps of spatial signatures of the extracted factors are depicted: (a) using Wavelet
transform for TFR; (b) using the proposed technique for TFR.

Hz. SSVEP is characterised with localized spectral and spatial signatures, having a

sharp spectral component at the harmonics of the stimulus frequency spread mainly over
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the occipital region of the brain [131]. Knowing these characteristics, we now evaluate

our method to see how successful it is in localizing SSVEPs and separating it from the

ongoing activities of the brain.

SSVEP dataset

The multichannel SSVEP dataset used in this part is from Swartz Center for Computa-

tional Neuroscience (SCCN) at University of California San Diego (UCSD) [132], which

consisted of ten healthy adults (8 males and 2 females, mean age: 23 years) with normal

or corrected-to-normal vision. The 248-channel EEG data were recorded according to

10-20 international system and down sampled to 256 Hz.

Following the onset of SSVEP, a set of EEG channels develop rhythmic activity that

is typically composed of multiple frequency harmonics of the visual stimulator. What

makes the SSVEP distinctive from ongoing background activities of the brain is the

presence of specific frequency components localized on certain channels over the occipital

region. Hence, SSVEP would be an EEG event that has localized spectral and spatial

characteristics.

Keeping that in mind, we expect that after CANDECOMP/PARAFAC analysis of

a SSVEP tensor, one of the extracted factors would correspond to the SSVEP activity

characterized by having a frequency component localized over a certain region of to-

pographic map of the brain, while a non SSVEP factors would have several frequency

components distributed over topographic map of brain. Due to nonstationarity nature of

EEG and as most of the EEG activity is limited up to 50 Hz, a two second long epoch is

used and we consider 256 frequency bins between 0− 50 Hz and a window length of 127

in RS calculations. Therefore for a 249-channel EEG, the constructed frequency × time

× space EEG tensor is Y ∈ R256×512×248
+ . We approximated the EEG tensor with a 40-

component CANDECOMP/PARAFAC model, selected based on our proposed method in

the previous Chapter, using ALS algorithm with non-negativity constraint on extracted

factors. Nevertheless, it is often suggested to use several diagnostic tools together rather
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Figure 5.7: CANDECOMP/PARAFAC decomposition of a sample 10Hz SSVEP tensor
Y ∈ R256×512×248: (a) Temporal signatures; (b) Spectral signatures; (c) Topographic
maps of Spatial signatures of 5 visually selected factors. The extracted factor #17
characterizes 10 Hz SSVEP and some other extracted factors characterizing the EEG
background activities are also shown for comparison.

than a single method, as there is no rule of thumb in determining the optimal number

of components (optimal in terms of interpretation) for real data and usually a range of

model orders are considered. In our experiments we were able to assign a component to

SSVEP, i.e. find a one that satisfies the SSVEP characteristics, for the range of 10− 50

model orders.

Figure 5.7 shows the temporal, spectral and spatial signatures of the 5 extracted

factors out of 40, after CANDECOMP/PARAFAC analysis of a 2-second segment of

a 10 Hz SSVEP signal from subject 1 in the database. These 5 factors are visually

selected from the total of 40 extracted factors. The first component (Factor #17) is

characterized by having a spectral signature localized over 10 Hz, temporal activity over
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the whole 2s segment, and with a spatial signature distributed over the occipital region

which matches with SSVEP properties. Other selected factors are representing the EEG

background activities in different frequency bands and various lobes of the brains. For

example, factor #7 could be representing an eye blink artifact, as it has a sharp temporal

signature and a spatial signature localized over the frontal region. We got similar and

consistent results from all 10 subjects in our simulations. These examples prove that if

an EEG event has intrinsically localized spectral and spatial characteristics, multi-way

analysis of the EEG tensor, in the form of the proposed framework, can be used for

localizing the brain activities, with a set of signatures that uniquely characterize that

event. Extracted localized features, then, could be effectively used for various purposes,

e.g. Brain Computer Interface for classification of different brain states or for seizure

localization and determining its onset-zones.

5.5 New method for SSVEP Detection via CANDE-

COMP/ PARAFAC and Canonical Correlation

Analysis

The decomposition of EEG signals into interpretable building components has been of

great interest along the years. However, traditionally two-way decomposition techniques,

considering just two contextual dimensions or “signatures”, e.g. time and frequency or

time and space, have been used in the literature, which needs exploiting some additional

constraints in the decomposition for the sake of uniqueness. In order to obtain a more

natural representation of an original multi-dimensional data structure, the use of tensor

decomposition approaches are necessary, since additional dimensions or modes can be

retained only in multi-linear models to produce structures that are unique and which

admit interpretations that are neurophysiologically meaningful. Advances in developing

high-spatial density array EEG have called to multi-dimensional signal processing tech-
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niques as multi-way analysis, multi-way array (tensor) factorization/decomposition or

dynamic tensor analysis [61].

Tensor-based methods are a more natural approach to handle signals that vary in more

than two dimensions and seek to summarize the data into extracted factors, which are lin-

ear combination of the constituting variables. The well-known CANDECOMP/PARAFAC

decomposition is a powerful approach to decompose a tensor into building components.

In the last years, several works have been performed in applying CANDECOMP/

PARAFAC for EEG signal analysis, e.g., for estimating the sources of cognitive processing

using a Wavelet decomposition [53], Event-Related Potential (ERP) analysis [54], artifact

removal [55] and epileptic seizure localization [121]. It was also used in a BCI based on

motor imagery [61].

On the other hand, several approaches to detect the SSVEPs have been developed in

the literature. SSVEP occurs as evoked potential during intermittent photic stimulation

(IPS). IPS is widely used in clinical practice (e.g. to detect abnormal epileptogenic

sensitivity to flickering light) and in neuroscience research. In basic research IPS can

be used to obtain a better understanding of the alpha rhythm and it can be utilized for

BCI applications. If the stimulation frequency is > 5 Hz, then individual VEP responses

overlap and result a quasi-sinusoid oscillation with the same frequency as the stimulus

(SSVEP). “SSVEP-BCI” uses the excitation of the retina of eye by a stimulus at a certain

frequency, making the brain generating an electrical activity of the same frequency with

its multiples or harmonics. The objective in SSVEP-based BCI applications is to detect

this frequency reliably with high accuracy and furthermore to detect when the frequency

is not present, thus when the person does not look at the stimulus. The detection of the

SSVEP is challenging if the stimulus frequency is in the near of the natural alpha rhythm

because SSVEP and alpha rhythms can merge into one because the alpha changes its

frequency after flicker onset towards the flicker frequency (entrainment effect). Therefore

appropriate time-frequency techniques must be used in order to realize a reliable SSVEP

detection with an optimal time-frequency resolution, i.e. for each electrode N (space)
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a time-frequency representation of the dimension sampling points (time) × frequency

bins (frequency) result. The results of topographic time-frequency analysis can be seen

as three-way tensor. With the application of tensor decomposition the EEG tensor can

be summarized into components which can improve the interpretation and visualization

of such data. The resulting factors (a number of factors for the modes space, time,

and frequency) can be used as input data for classification algorithms (e.g. k-means,

Support Vector Machine (SVM)). There are several studies which use this strategy for

VEP analysis, detection and classification [133–136]. In [135], three classes of geometric

figures were evaluated, flickering at 15 Hz, and a SVM classifier was used to discriminate

classes from feature vectors, achieving the highest classification accuracy (80%). [136]

used two techniques (“maximum method” and “sharpness method”) for recognition of

SSVEPs and all possible 2, 4 and 12 stimuli combinations are compared for a BCI system.

Here, we modify this procedure and introduces a combination of tensor decomposi-

tion and canonical correlation analysis (CCA) in order to detect SSVEP, which is novel

in this context as CCA have been used for SSVEP detection in the original signal do-

main and using CCA in the transformed domain is novel. The automatic detection of

SSVEPs is done through correlation analysis between tensor models (using three-way:

time×frequency×space) and simulated tensor model (“template”). The CCA procedure

maximizes the correlation between the linear combination of variables. Being a simple

correlation in the end, CCA is often thought of as a descriptive procedure to investigate

the relationship between (two random) variables. Using CCA as the detection algorithm

we compare each of the extracted signatures of the CANDECOMP/PARAFAC model

with the corresponding simulated signatures of a target SSVEP signal. We only consider

the spectral and spatial signatures, considering that the SSVEP is present in the tem-

poral signature. A maximum criterion decides which target is intended every 1 second,

which makes it suitable for real-time BCI applications.
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5.5.1 CANDECOMP/PARAFAC Analysis of EEG tensor

Three-way EEG tensor of time × frequency × space was generated and decomposed

according to (5.3). The multi-way array shows the variation of EEG signals in tempo-

ral, spectral and spatial domain (Figure 5.2). TF representation of EEG signals was

calculated via the novel RS-EMD method developed in the previous section exploit-

ing EMD and RM techniques. We used ALS algorithm, with non-negative constraint,

for estimating the factor matrices. Each of the extracted components via CANDE-

COMP/PARAFAC analysis uniquely represents one of the embedded events in the ana-

lyzed EEG segment which is characterized with three signatures in time, frequency and

spatial domain.

5.5.2 Canonical Correlation Analysis (CCA)

As a multivariate statistical method, canonical correlation analysis (CCA) explores the

underlying correlation between two sets of data. Given two sets of random variables

X ∈ RI1×J and Y ∈ RI2×J , which are normalized to have zero mean and unit variance,

CCA is to seek a pair of linear transforms wx ∈ RI1 and wy ∈ RI2 , called canonical

variables, such that the correlation between linear combinations x̃ = wT
xX and ỹ = wT

y Y

is maximized as

max
wx,wy

ρ =
E
[
x̃ỹT

]√
E [x̃x̃T ] E [ỹỹT ]

=
wT
xXYTwy√

wT
xXXTwxwT

y YYTwy

. (5.5)

The maximum of correlation coefficient ρ with respect to wx and wy is the maximum

canonical correlation.

A set of template signals is usually generated for each of the targets in SSVEP-BCI

and after calculating the correlation between recorded SSVEP and all the targets, the one

that has the highest correlation ρ is selected as the intended target by the subject. CCA
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is a technique widely used in the processing of multi-channel EEG signals for detection of

SSVEP components [137, 138]. In most of them CCA is exploited in the original domain,

meaning that template signals are in time domain resembling sine and cosine functions

with different frequencies. However, the novelty of the proposed technique is that we

calculate the correlation in the signature domain, meaning that extracted spectral and

spatial signatures after CANDECOMP/PARAFAC analysis are used to calculate the

correlation with a set of defined templates for each of the targets.

5.5.3 Methods

5.5.3.1 Subjects and EEG preparation

Five healthy male subjects (mean age: 26.2 years old; standard deviation: 2.3) were

recruited to participate in this study. The experiments were performed in the BCI lab

of the Federal University of Esprito Santo in Brazil according to the rules of the ethics

committee of UFES/Brazil, under registration number CEP-048/08. Volunteers were

screened and selected having no problem in the topics related to precautions as visual

problems, headaches, family history with epilepsy and brain damage.

5.5.3.2 System architecture, visual stimulus and experimental task

The equipment used for EEG signal recording was the BrainNet-36, manufactured by

Lynx Tecnologia Ltd. Twelve channels of EEG signal with the reference electrode at

the left ear lobe were recorded at 600 samples/s, with 1 to 100 Hz pass-band filter. The

ground (GND) electrode was placed on the forehead. Using the extended international

10-20 system, the electrode positions chosen were P7, PO7, PO5, PO3, POz, PO4, PO6,

PO8, P8, O1, O2 and Oz (see Figure 5.8(a)). The volunteers sat on a comfortable chair,

in front of a 17-Inch LCD screen, 70 cm far from this.

A coupling structure of small boxes (4cm x 4cm x 4cm) containing Light-Emitting

Diodes (LEDs) was mounted in two sides of the LCD and away from each other in
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(a) (b)

Figure 5.8: (a) Electrodes location using 10-20 system; (b) LCD screen showing the cue
of beginning with the two LEDs coupled.

30cm (see Figure 5.8(b)). The participants were asked to watch the visual stimuli (two

LED flickers), the timing was controlled by a microcontroller (PIC18F4550, Microchip

Technology Inc., USA) with 50/50% on-off duties). Two LEDs (luminous intensity of

10.000 mcd) of white color, covered with thin white papers diffusers were used. The

flickering frequencies were 8.0 Hz (top) and 13.0 Hz (bottom), which were presented

simultaneously to the user. The frequencies were selected from outside of 9− 11Hz band

to avoid the interference of the alpha rhythm.

The experiments were performed off-line. During the first five seconds a cross on the

screen is shown to the volunteers. Then, a beep sound is played indicating the onset of

trial. The volunteer was instructed to fix the attention on the flicker located on the top.

After fifteen seconds, the volunteer rested for five seconds. Finally, in the last fifteen

seconds, the volunteer had to fix the attention to the bottom flicker.

5.5.4 Results

Initially, two three-way time×frequency×space template tensors for two target SSVEP

signals of 8 Hz and 13 Hz were generated. The template SSVEP signals constituted of

the summation of sine and cosine signals at the target SSVEP’s frequencies. A 2s signal

sampled at 256Hz for each target frequency is generated and its TFR is calculated af-

terwards, considering 80 frequency bins. Based on the hypothesis that the visual evoked
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Figure 5.9: Signatures of the SSVEP templates for 8 Hz (left panel), and 13 Hz (right
panel). The signatures characterise the spectral (top), temporal (middle), and spatial
(bottom) dynamics of the corresponding SSVEP signal.

potentials contain more energy in the occipital region, the spatial signature was consid-

ered just for O1, O2 and Oz channels, and zero elsewhere. Hence, a three-way template

tensor of X ∈ R80×512×12
+ was formed for each target frequency. Then a 1-component

CANDECOMP/PARAFAC model was fitted to extract the signatures of the templates.

Figure 5.9 shows the signatures of SSVEP templates for 8 Hz and 13 Hz, reflecting an

activity during the whole segment with a dominant corresponding frequency component

localized over the occipital region of the brain.

On the other hand, every 2-second of the 12-channel input EEG signals without

overlapping was used to generate the Y ∈ R80×512×12
+ EEG tensor. Then a CANDE-

COMP/PARAFAC model was fitted where the model order R was selected via our pro-

posed approach in Chapter 4. The output of each CANDECOMP/PARAFAC model

for EEG signal has R atoms or signature (spectral (ar), temporal (br), and spatial (cr),

where r = 1, 2, · · · , R), in each mode according to (5.3).

Based on the proposed approach, the estimation of correlations between the extracted

signatures of EEG tensor and the corresponding template signatures should be calculated.
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Figure 5.10: Schematic of the proposed technique for SSVEP detection.

After decomposition only the spectral and spatial signature are used here for calculating

the correlations, and the temporal signature is ignored, as we assume that there is a

SSVEP signal in the EEG segment under analysis. Therefore, these signatures were

analyzed with the aim of ensuring the existence of evoked potentials in that region of the

brain and also locating its respective frequency component. Finally, the frequency that

has the highest correlation is selected as the intended target. A graphical explanation of

the process is illustrated in Figure 5.10.

The spectral signature of all extracted components for subject 1 is depicted in Fig-

ure 5.11. We can see clear peaks at 8 and 13 Hz when the subject was stimulated with

8 and 13 Hz, respectively. The figure also shows baseline frequency activity extracted in

some components. Exploiting a detrending technique could improve the results. Accu-

racy and Information Transfer Rate (ITR) [bits/min] for all the subjects participated in

the experiments are shown in Table 5.1.
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Figure 5.11: Extracted spectral signatures via CANDECOMP/PARAFAC, (i.e. a1, a2

and a3) when Subject 1 was stimulated with: (a) 8 Hz and (b) 13 Hz, respectively.

ITR can be calculated as follows

ITR = log2N + P log2 P + (1− P ) log2

1− P
N − 1

, (5.6)

where N is the number of targets in BCI and P the accuracy of classification [139].

The results are quite promising: the subjects 3 and 5 achieved the highest mean

accuracy of 83.3% considering a window length of 2 second. Indeed, increasing the

window length would improve the results further as there is a trade-off between accuracy

and speed. On the other hand, SSVEP-based BCIs are preferable due to achievable

high information transfer rates and no need of training for the subjects. Besides, the

extracted components via CANDECOMP/PARAFAC can separate overlapped events

in the brain and localize the SSVEP signals. If there exists an SSVEP in the EEG

Table 5.1: Accuracy Results Using WL of 2 s

Acc. [%] Frequency (class) Results

Subjects 8 Hz 13 Hz Average ITR [bits/min]

Subject 1 80.0% 60.0% 70.0% 7.13
Subject 2 73.3% 60.0% 66.7% 4.91
Subject 3 86.7% 80.0% 83.3% 21.01
Subject 4 73.3% 80.0% 76.7% 12.98
Subject 5 80.0% 86.7% 83.3% 21.01
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segment, CANDECOMP/PARAFAC enables us to extract and separate it from ongoing

activities of the brain. Then, the extracted signatures can be effectively used via CCA

for SSEVP detection. The proposed methodology was effectively used in the BCI system

and detected events can be further translated into commands for controlling a wheelchair

or any device control.

5.6 Chapter Summary

In this Chapter we talked about Multi-way nature of EEG signals and various appli-

cations including source localization of brain activities, research questions of cognitive

neuroscience, or brain-computer interface. Two individual-level analysis was presented in

this Chapter. the first one, is for localization of brain events. Various oscillatory activities

within EEG may overlap, However, tensor decomposition by means of Time-Frequency-

Space transformation makes it possible in many cases to isolate each oscillatory behaviour

well, even when these activities are not well-separated in two-way domain. Temporal,

spatial and spectral information of the multichannel EEG are used here to generate a

three-way EEG tensor. RS-EMD that is combination of EMD and Reassigned TFR,

with a high-resolution TF representation characteristic, is exploited here for EEG tensor

generation. Simulation results on synthetic and real three-way EEG data show that the

proposed method could be effectively used for separation and localization of events in

EEG. Besides, the clinically meaningful extracted signatures could be used for various

purposes. In the second application, an SSVEP-BCI system was designed that uses the

extracted signatures via CANDECOMP/PARAFAC in order to detect SSVEP signals

using a canonical correlation analysis approach. The results are quite promising and

proves the virtue of the proposed framework for EEG analysis. The proposed framework

let us map the multi-channel EEG signals into higher-dimensions and help us separate

and localize the events that have overlap in some domains.

In the next Chapter, a group-level analysis of EEG signals using a four-way EEG
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tensor, including the mode of subjects/conditions, is presented. We also develop a

methodology to select the desired component characterising the ERP after CANDE-

COMP/PARAFAC analysis.
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Figure 6.1: Chapter 6- Multi-domain Feature Selection scheme from EEG tensor.

EEG reflects the electrical activity of the brain neurons and it has been widely used

for different clinical and diagnostic purposes. These neuronal activities are not only the
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spontaneous brain activities, but also include those elicited by external stimuli which

are referred to as event-related potentials (ERPs) [140]. The main sensory modalities

used for eliciting the response are auditory, somatosensory, and visual modalities. One

of the small ERPs that is evoked with small changes in the acoustic environment is the

mismatch negativity (MMN). MMN is elicited via an oddball paradigm which is the

presentation of an oddball or deviant event, embedded in a stream of repeated or familiar

events, the standards. It is a negative component in the response obtained by subtracting

the response to the standard event from the response to the deviant event. MMN is

characterised with peak amplitude of 0.5 - 5µV with the latency of about 100 - 250ms

from the deviant onset, and exhibits the strongest intensity in the temporal and frontal

areas of topographic scalp maps [141]. The MMN reflects the brain’s ability to perform

automatic comparisons between consecutive stimuli and provides an electrophysiological

index of sensory learning and perceptual accuracy, and it has been extensively used in the

research of cognitive processing, clinical neuroscience, and neuro-pharmacology [141, 142].

As the signal to noise ratio (SNR) is very low in EEG recordings and the MMN

is a relatively small ERP, signal processing becomes an important part of the MMN

research. The most common feature that is used to represent MMN, like other ERPs,

is the peak amplitude. This feature is not robust as it only reveals the information of

MMN in the time-domain for one electrode and is subject to high sensitivity to many

experimental conditions. Other contextual information, e.g., spectrum in the frequency

domain, the region of interest in the time-frequency representation (TFR), and even

combination of one of these features with the information in the spatial domain to produce

the topography map of the ERP, are also used to characterise the ERPs in the literature

[140]. So, the information in different domains is exploited sequentially and the features

are measured across multiple channels and participants. In order to detect differences

at the group or condition level, some statistical analysis on these data are carried out.

Group level analyses play an important role in paradigms where SNR is very low [143].

Indeed, the individual features that take into account one domain, may be less sensitive
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to identify the difference between groups of subjects than an analysis that can exploit

more information of brain responses in more domains simultaneously.

Recently, the so-called multi-domain features were used for group-level analysis of

ERPs [144, 145]. In this method the natural structure of the EEG signals is exploited

in the form of multi-way array (tensor) by representing the ERP of multi-participants

in the time, frequency and spatial domains concurrently. The extracted multi-domain

feature of an ERP using Nonnegative Tensor Factorization (NTF) [61], reflect the multi-

linear structure of the associated brain activity across multiple subjects and can reveal

the properties of the ERP in different domains simultaneously.

CANDECOMP/PARAFAC is one of the popular NTF models that decomposes the

observed tensor into summation of rank-one tensors [62]. Each of these extracted rank-

one components represent a multi-domain feature along its constituting signatures. We

are facing two challenges for representing MMN with a multi-domain feature: First,

what is the optimum number of features (rank-one components) that we need to extract

from the ERP-tensor, and second, how to select the multi-domain feature extracted by

NTF that really corresponds to the desired MMN. CANDECOMP/PARAFAC analysis

enables us to decompose the observed ERP tensor into its constituting brain activities

which are characterised by a set of signatures. The challenge is to select the component

that corresponds to the desired activity. Here in this Chapter, we address the multi-way

feature selection problem which is usually done by visual inspection of all the extracted

temporal and spectral signatures and finding the one that matches our prior knowledge

about the MMN characteristics in time and frequency domain. We propose a new scheme

based on a template matching approach which is novel in this context. Furthermore, we

use the Reconstruction Error CANDECOMP/PARAFAC model order selection and the

RS-EMD method for TFR of the ERP segments in the analysis.
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6.1 Methods

The proposed technique could be divided into two main parts: ERP tensor generation,

and multi-domain feature selection via ERP tensor analysis. Having a multi-channel

dataset across two group of subjects/conditions, a 4-way ERP tensor of time × frequency

× channel × subjects/condition is first generated by calculating the Time-Frequency

(TF) representation of all EEG channels, which here is done by the combination of

Empirical Mode Decomposition (EMD) followed by calculating the reassigned TF spec-

trogram of the extracted intrinsic mode functions. Then in the second step, CANDE-

COMP/PARAFAC analysis of ERP tensor enables us to decompose the tensor into the

constituting components and select the desired multi-way feature via a template matching

approach.

6.1.1 ERP Data Description

The multi-channel ERP dataset was recorded in Auditory Development Lab at McMas-

ter University. 22 participants (17− 22 years old, mean age 18.93± 1.39), neurologically

healthy, right-handed, and with normal hearing, were recruited from the McMaster Uni-

versity community. The McMaster University Research Ethics Board approved all pro-

cedures. The 128-channel EEG data were recorded using Biosemi Active Two amplifier

according to 10− 20 international system and later on reduced to 81-channels and down

sampled to 256 Hz for analysis. The experiments were conducted in a sound-attenuated

room. Two recorded piano tones with frequencies of 262 Hz and 494 Hz were used as the

standard and the deviant stimuli, respectively. Each participant was presented with a

continuous sequence of tones in two sessions, each lasting 30 minutes, while they watched

a silent movie on a computer screen. The tones were presented in an oddball sequence

with the inter-onset interval (IOI) of 500 ms and a constraint that two deviant tones

could not be presented sequentially. Total of 3600 tones were totally presented in each

session to the subjects with the deviance occurrence rate of 10% in one session and 20%
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(a) (b)

Figure 6.2: Auditory evoked event-related potential (ERP) waveform averaged across
channels located at the mid-frontal area (F1, Fz, F2, FC1, FCz, and FC2) for (a) 10%
session;(b) 20% session. Top: standard trial (blue), deviant trial (red), and the difference
waveform of deviant minus standard trial (black). The shaded areas indicate the standard
error of mean. Bottom: The topography of the MMN shows the typical frontal negativity
of the MMN.

in the other session. For more details about the dataset and experimental settings please

refer to [146].

The continuous EEG data were band-pass filtered between 0.4−25 Hz and segmented

into single trials including 100 ms pre-stimulus period and 500 ms after the stimulus onset.

The baseline was corrected based on the average amplitude of the 100 ms pre-stimulus

period. Trials with signal amplitudes beyond the range between −100 and 100µV in

any recording channel were rejected. The remaining artifact-free single trials were then

averaged to obtain the ERP data for the standard and deviant stimuli and subsequently

the difference ERP. Figure 6.2 shows the resulted waveforms for 10% session and 20%

session, including the MMN negative peak around 100 ms and the topography of the

MMN with the typical frontal negativity. The negative peak in 10% session has the
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Figure 6.3: Illustarion of a four-way ERP tensor of time × frequency × channel ×
subject/condition which can be decomposed into its constituting factors via CANDE-
COMP/PARAFAC analysis.

tendency to be higher than the negative peak in 20% session, however this peak analysis

may not be significantly different across two group of subjects. Hence, considering more

contextual information in the form of multi-way array could be beneficiary in a sense that

the extracted multi-domain feature can significantly discriminate two groups/conditions.

6.1.2 ERP-tensor Generation via RS-EMD

Multichannel EEG data are naturally high-dimensional with variation of the signal in

temporal, spectral and spatial domains. Furthermore, for a group-level analysis of ERP,

the subjects/condition mode can also be considered for formulating the 4-way ERP-

tensor. The observed ERP-tensor can be regarded as a mixture that includes different

kinds of brain activity, artifacts, interference, and noise. Using tensor decomposition, the

desired brain activity could be extracted out from the mixture.

A 4-way ERP tensor of time × frequency × channel × subjects/condition is generated

by calculating the Time-Frequency (TF) representation of all EEG channels. Figure 6.3

illustrates the 4-way tensor used for group-level ERP analysis. The key element of this

procedure is the TF representation techniques we incorporate, as the localization of the

extracted signatures via NTF is highly dependent on the temporal and spectral resolution

of the resulting TF images. Here, we use the RS-EMD technique that we proposed earlier
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in Chapter 2 and also in [147] which exploits the combination of EMD of ERP signal

and the Reassignment method (RM) calculation of the resulting Intrinsic Mode Functions

(IMF) to yield a high resolution and cross-term free TF representation for better localizing

of brain activities.

6.1.3 CANDECOMP/PARAFAC Modeling of ERP tensor

Mathematically, a CANDECOMP/PARAFAC model for a 4-way tensor of noiseless data

X ∈ RI×J×K×L can be formulated according to (3.18) as

X =
R∑
r=1

ar ◦ br ◦ cr ◦ dr, (6.1)

where R is the number of components in the model and ar, br, cr, and dr indicate the rth

column of component matrices A ∈ RI×R, B ∈ RJ×R, C ∈ RK×R, and D ∈ RL×R, respec-

tively. The symbol ◦ denotes the vector outer product. In a CANDECOMP/PARAFAC

model, a tensor is decomposed into the sum of rank-one tensors, which are defined as the

outer product of vectors. Vector outer product for a four-way tensor is defined as follows.

Let a, b, c, and d be column vectors of size I × 1, J × 1, K × 1 and L× 1 respectively,

and X be a tensor of size I×J×K×L, then X = a◦b◦c◦d if and only if xijkl = aibjckdl

where xijkl is the element (i, j, k, l) of a forth-order tensor and the ith entry of a vector

a is denoted by ai. CANDECOMP/PARAFAC model of a four-way tensor can also be

written in the form of n-mode tensor products as

X = I4,R ×1 A×2 B×3 C×4 D. (6.2)

In practice the observed data is a contaminated version of X and can be represented as

Y = X + E, (6.3)
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where E ∈ RI×J×K×L is a four-way array containing the white Gaussian noise elements.

Illustration of a four-way ERP tensor data is given in Figure 6.3.

CANDECOMP/PARAFAC algorithms try to estimate the component matrices through

minimization of some distance, usually the Frobenius norm, between the observed tensor

data and the used model as follows

D(Y|{Â, B̂, Ĉ, D̂}) =
1

2
‖Y − I4,R ×1 Â×2 B̂×3 Ĉ×4 D̂ ‖2

F . (6.4)

where .̂ indicates the estimated factor matrices. Alternating Least Squares (ALS) is the

conventional method for estimating the factor matrices for CANDECOMP/PARAFAC

analysis which takes the number of components R as the input parameter and estimates

the component matrices. Hence, the four-way ERP tensor of time × frequency × channel

× subject/condition can be decomposed using PARAFAC into spectral, temporal, spatial

and the subject/condition (feature) factor matrices including R components in each one.

This allows the multi-domain features along their spectral, spatial, and temporal signa-

tures of ERP to be found and extracted. As we are interested in group-level analysis

of the subjects, the extracted factor in the subject/condition mode would be the fea-

ture to consider. Indeed, each column of the subject factor is a multi-domain feature for

group-level analysis that spans the same spectral, temporal and spatial components [144].

Generating ERP-tensor for group-level analysis assumes that every multi-domain feature

in the ERP could be uniquely characterized and represented by a temporal, a spectral,

and a spatial signature; and the variation of this feature in different subjects/conditions

is reflected in the subject/condition signature.

6.1.3.1 CANDECOMP/PARAFAC model order selection

In order to capture the true underlying structure in data, it is important to extract the

right number of components R in the CANDECOMP/PARAFAC model (6.1), which

is the number of multi-domain features in ERP tensor analysis. Selecting the optimum
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number of components in CANDECOMP/PARAFAC model is still an active challenge in

the community. The existing ALS-based methods include DIFFIT, core consistency di-

agnostic (CORCONDIA), Convex-hull based approach, and our proposed method based

on Reconstruction Error [148] that was explained in Chapter 4. Most of them are based

on the so called model fit or Data Error in (6.4). The available Data Error is a mono-

tonically decreasing function of the model order, which makes it inapplicable to rank

selection. In this study, we use the Reconstruction Error based technique developed by

the authors for selecting the optimum model order in CANDECOMP/PARAFAC. The

Reconstruction Error (6.5), which is the error between the reconstructed data and the

unavailable noiseless data, intrinsically reveals the true rank of the model at its minimum

and has a superior performance compared to other state-of-the-art methods specially in

low SNR scenarios [148].

γR =
1

M
‖X− I4,R ×1 Â×2 B̂×3 Ĉ×4 D̂ ‖2

F . (6.5)

Figure 6.4 illustrates the behaviour of the Data Error and Reconstruction Error for

CANDECOMP/PARAFAC model order selection of the four-way ERP tensor.

6.1.4 Proposed Multi-domain Feature Selection Scheme

According to (6.1), the number of multi-domain features extracted using CANDECOMP/

PARAFAC analysis is R, which would be in the order of 50−70 features for ERP-tensors.

Visual inspection of the extracted features is usually done to select the desired one that

matches with our prior knowledge about the MMN characteristics. Instead, here we

propose a template matching approach which in novel in this context. Two concerns

should be addressed when it comes to a proper multi-domain feature selection for group-

level analysis. First, all the temporal, spectral and spatial information of MMN can be

used as a prior knowledge, to reduce the number of features to the ones that adhere

to the MMN characteristics. Second, as we want to obtain a multi-domain feature of
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(a) (b)

Figure 6.4: Illustarion of two types of error after CANDECOMP/PARAFAC analysis of
four-way ERP tensor of time × frequency × channel × subject/condition for a range of
possible model orders: (a) Data Error; (b) Reconstruction Error.

MMN that can better discriminate the two groups of subjects/conditions, consequently,

from the short-listed set of multi-domain features, the one that shows a significant level

of difference, proved by some statistical tests, between two group of subjects/conditions

would be selected.

6.1.4.1 Template Matching Method

ERPs are time-locked, so the temporal signature of MMN could be used in a template

matching approach to find the desired multi-domain feature. Moreover, the spectrum

of MMN is in a range of 2 to 8.5 Hz and the peak of the spectrum is below 5 Hz. In

order to use the temporal and spectral signatures of MMN for template matching, we

need to define a similarity or distance metric which measures the distance between the

associated signature of decomposed multi-domain feature and the template. We can use

the normalized cross-correlation coefficient, the angle between the two vectors as the

similarity measure. In our experiment, we use the angle between the template and the

extracted signatures as the distance measure. Suppose that the template is atemp, the

extracted column of the factor matrix being {ar, r = 1, ..., R}, R being the number of
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multi-domain features, we calculate the angle of ar with the template atemp:

cr = cos−1

(
abs

(
aTr atemp

)
‖ar‖.‖atemp‖

)
, r = 1, . . . , R (6.6)

where the superscript ′T ′ denotes transpose and ‖.‖ denotes the vector norm. Here

we use the absolute value abs
(
aTr atemp

)
to cope with the scale ambiguity problem in

CANDECOMP/ PARAFAC decomposition. Then we calculate the minimum distance

ci = min(cr) , r = 1, . . . , R (6.7)

If ci is less than a predefined threshold ξ for both temporal and spectral signature, we

can select the ith subject/condition component as a potential multi-domain feature.

6.1.4.2 Discriminability of the Multi-domain Feature

The significance of the group difference in the multi-domain feature of MMN could be

evaluated by a statistical analysis. ANalysis Of VAriance (ANOVA) test was conducted

to select the multi-domain feature that yields a significant difference level between the

two group of subjects/conditions by having the lower p-value. Indeed, if the means of

multi-domain feature for one group/condition is µ1 and for the other group/condition is

µ2, then the Null hypothesis H0 and the Alternative hypothesis H1 can be formulated as

following

H0 : µ1 = µ2 or µ1 − µ2 = 0 ,

H1 : µ1 6= µ2 or µ1 − µ2 6= 0. (6.8)
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Hence, the parameter of interest is the difference in means µ1−µ2, and the test statistics,

assuming an equal variance for both groups/conditions, can be written as [149]

t0 =
µ̄1 − µ̄2

sp

√
1

n1

+
1

n2

(6.9)

where sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
and µ̄1, µ̄2 are sample means, s2

1, s
2
2 are sample

variances, and n1 and n2 are the samples sizes of the two groups/conditions considered

in the t-test. We reject the Null hypothesis if t0 < −tα/2,n1+n2−2 or t0 > tα/2,n1+n2−2,

where the tα,n is the t-distribution with n degrees of freedom and significance level α

which is usually set in practice as α = 0.05. Hence, if we reject the Null hypothesis and

go in favor of Alternative hypothesis, that means there is enough evidence that the two

groups/conditions are statistically different.

6.2 Results

After preprocessing and synchronized averaging of the segmented multichannel EEG

signals, the final 81-channel difference MMN signals are obtained by subtracting the

standard trials from the deviant trials. The resulting 81-channel evoked potentials have

155 samples in time domain. Transforming each of the channels into TF plane, via the

proposed technique [147] and retaining only the 0 − 20 Hz band with the resolution of

0.25 Hz, would yield 80 frequency bins in a 80 × 150 TF image. We used the window

length of 127 and 1024 frequency bins in RM calculations. Besides, considering all the

81-channels and the 21 subjects, each of them with two conditions of deviance occurrence

rate of 10% and 20%, we have 81 channels and (22×2) = 44 subjects/conditions. Hence,

the four-way ERP tensor of Y ∈ R80×155×81×44
+ was generated which is a non-negative

tensor due to the TF transformations.

CANDECOMP/PARAFAC decomposition of the ERP tensor for a range of possible
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orders was obtained and the factor matrices were estimated with the following config-

urations: convergence criterion set as 10e−6, non-negativity constraint on the modes,

line-search acceleration scheme initialized, and using direct trilinear decomposition for

initialization.

The maximum possible order was set to Rmax = 80 and the optimum order was

selected using the Reconstruction Error based criterion [148] using α = 100 and β =

1900000, which turned out to be R = 52 (Figure 6.4). Hence, we have a spectral factor

A ∈ R80×52
+ , a temporal factor B ∈ R155×52

+ , a spatial factor C ∈ R81×52
+ , and a sub-

ject/condition factor D ∈ R44×52
+ . Its worth noting that there is no rule of thumb when

it comes to the optimum CANDECOMP/PARAFAC model order selection and usually

a range of possible orders would be suggested for practical applications.

The extracted 52 multi-domain features are then evaluated and the angle between

their corresponding temporal and spectral factors and the MMN’s temporal and spectral

templates are calculated via (6.6). Fig. 6.5(a) shows the temporal and spectral templates

used for calculating the angles, that aligns with our prior knowledge about the MMN.

We used a Gabor function to generate the 155 and 80-sample vectors as the temporal

and spectral templates, respectively. The width and center of each Gabor function was

set according to the MMN characteristics. Fig. 6.5(b) depicts the histogram of resulting

angles for the extracted features. The histogram shows that we can discriminate the

desired multi-domain features from the undesired ones by measuring their angles with

the given templates. Most of the angles are above 1 radian and only a few multi-domain

features are close to the desired templates. By setting a threshold around ξ = 0.5 radian,

all the multi-domain features that their angles are higher than the threshold are discarded.

The remaining ones are the desired multi-domain features that matched with the MMN

templates. The subject/condition signature of the remaining multi-domain features are

tested for group-level statistical significance. 2 multi-domain features of #21 and #49

matched the MMN temporal and spectral templates, and we run the t-test on their two

groups of subject/condition signatures and got the p-value = 0.001, 0.4, respectively,
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(a)

(b)

Figure 6.5: (a) Temporal and spectral signatures used in the template matching approach
with temporal component peaked at about 100 ms and the spectrum peaked around 5
Hz. (b) Histogram of the calculated angles for both temporal and spectral signatures of
all extracted multi-domain features.

which indicates that there is only a significant difference and a main effect in MMN

multi-domain feature #21 for the two rates of deviant occurrence between subjects.

PARAFAC analysis of ERP-tensor can effectively localize and separate the ongoing

activities in the brain even if they are temporally or spectrally overlapped. Each of the 52

extracted components in PARAFAC modeling, is made of 4 factors of temporal, spectral,

spatial and subject/condition that are coupled together and corresponds to one of the

embedded events in the ERP segment. Fig. 6.6 shows three multi-domain features (sub-

ject/condition signature) #21, #43 and #16 along their constituting temporal, spectral

and spatial factors. These factors reveal the temporal, spectral, and spatial signatures

of the multi-domain feature that are common for all the subjects. Besides, the strength

and variation of the multi-domain feature itself, indicates the difference of the brain ac-

tivity among the subjects or conditions. The selected multi-domain feature #21, with

the significant difference between two conditions (p-value = 0.001), has the smallest an-

gle according to (6.6) and simultaneously possess the properties of MMN in the time

and frequency domains with its temporal component peaked at about 100 ms and the
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Figure 6.6: Illustarion of three extracted multi-domain features along their temporal,
spectral and spatial signatures. The selected feature #21 (top row) matches both tem-
poral and spectral characteristics of the MMN and also differentiate the subjects signifi-
cantly (p-value < 0.05) for the two experimental conditions. The other two multi-doman
features #43,#16 (middle and bottom row) are samples from the total of 52 features
that do not satisfy the selection criteria.

spectrum peaked around 5 Hz. The spatial component of the feature indicates that the

difference in MMN between two deviants appeared in the frontal area. The two other

depicted multi-domain features either do not statistically satisfy the t-test (#43) or the

template matching criteria (#16).

6.2.1 Decomposition of Multiple Models

In order to verify the consistency of the results, for each of the model orders, the

PARAFAC decomposition was run 10 times and the results of each decomposition ana-

lyzed with the template signatures to select the most similar one to the templates. For

each run the minimum angle was determined and the statistics of the angles for 10 run

were obtained. Figure 6.7(a) shows the maximal, averaged and minimal of the sum of the
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(a) (b)

Figure 6.7: CANDECOMP/PARAFAC analysis of four-way ERP tensor of time × fre-
quency × channel × subject/condition for a range of possible model orders among 10
runs under each model: (a) The maximal, averaged and minimal sum of angles of the
temporal and spectral signatures for the selected multi-domain feature; (b) The maxi-
mal, averaged and minimal p-value of the p-values for the selected features (p-value is to
reveal the degree of the difference between two experimental conditions in the selected
multi-domain feature in each run of each model).

temporal and spectral signatures’ angles for the selected multi-domain feature (according

to (6.6)) among 10 runs under each model. The figure shows that the minimal angle and

the averaged angle are very close to each other when the model order is larger than 40,

which indicates that the selected feature in this range is similar to the MMN template.

This is interesting, as based on our model order selection criterion, the optimum model

order is R = 52, however we are still able to find a feature similar to the MMN templates

for any model order between 40− 70 which supports why in practice we usually specify

a range of possible orders.

Besides, figure 6.7(b) shows the maximal, averaged and minimal p-value of the p-

values for the selected multi-domain features (according to (6.6)) among 10 runs under

each model. We have two experimental conditions in the EEG experiment and we com-

pare the mean of selected multi-domain features for the two experimental conditions.

P-value reflects the degree of the difference between two experimental conditions in the

selected multi-domain feature in each run of each model. If p-value is lower that a
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threshold, then there is enough evidence that the mean of multi-domain feature for two

experimental conditions are significantly different. In particular, when the number of

components is larger than 40, the minimal p-value and the averaged p-value are very

close to each other and both are smaller than the conventional threshold (p = 0.05).

Hence, we can tell that when the number of components was larger than 40, the differ-

ence between two groups of subjects in the selected multi-domain feature of MMN was

significant and there was a main effect in most runs.

Furthermore, figure 6.7(b) shows that even for some models with a smaller number

of components than 40, p-value is smaller that the threshold and subsequently there is a

main effect, which suggest that the mean of the selected multi-domain feature is signif-

icantly different between two experimental conditions. However, Figure 6.7(a) demon-

strates that the corresponding rank-1 tensor associated with the multi-domain feature

is not closely correlated with the MMN template signatures (the sum of angles is a

large number). This means the selected multi-domain feature is representing other brain

activities, rather than MMN.

The results show that although the conventional peak analysis for ERPs might not

be discriminative enough for group analysis, the multi-way analysis framework help us

to extract more discriminative features. Due to presence of different source of noise and

interference in EEG recordings, EEG datasets might be heterogeneous in time domain

and the peak amplitude could be easily contaminated. However, we can reduce the

heterogeneous effect by mapping the EEG dataset to multi-way domain as the multi-

domain pattern of desired brain activity can not simply be contaminated. As a result, the

multi-domain feature can outperform the feature in one or two domains in discriminating

different groups/conditions.
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6.3 Chapter Summary

In this Chapter a group-level analysis of EEG signals via tensor decomposition by ex-

ploiting the mode of subjects/conditions in the analysis presented. Adding the mode

of subject enables us to compare different group of subjects in the experiments. With

CANDECOMP/PARAFAC analysis of 4-way ERP tensor of time × frequency × channel

× subject/condition of MisMatch Negativity (MMN), a multi-domain feature is extracted

that is more discriminative than the peak amplitude of MMN for group-level analysis. In

addition, in this Chapter we developed a methodology to select the desired feature. We

showed that through a template matching approach the desired multi-domain feature

could be selected which effectively discriminate the subjects for the two experimental

conditions with an acceptable significance level. Furthermore, the temporal and spectral

signatures of the selected multi-domain feature of MMN do match the temporal, spectral

characteristics of the MMN in our study.
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Chapter 7

Conclusions and Future Work

In this dissertation, we presented a robust signal processing framework for efficiently an-

alyzing multi-channel EEG signals. The proposed method was evaluated using synthetic

and real world signals in different stages, and desirable results were achieved. Figure 7.1

displays the contribution flowchart as evolved throughout this dissertation.

Chapter 1 presented a detailed introduction on EEG signal and conventional analysis

techniques, including temporal, spectral, time-frequency, and Spatio-temporal analysis.

In Chapter 2, popular time-frequency representation techniques that can be exploited to

capture the non-stationarity of EEG signals and their shortcomings were reviewed. In

addition in this Chapter the RS-EMD method, a fully data driven and cross-term free

TFR with high-resolution in temporal and spectral domains, was explored and evalu-

ated for characterizing the EEG properties. Knowing that two-way analysis may not

capture the underlying content of the EEG signals, in Chapter 3 multi-way arrays and

the corresponding analysis models were introduced that by retaining the structure of

the high-dimensional EEG data tries to summarize the information into physiologically

meaningful factors. In this chapter, we studied CANDECOMP/PARAFAC model that

decomposes a tensor into a summation of rank-one tensors. One of the key parametres in

this model is the number of components. Various ALS-based approaches have been pro-

posed in the literature to extract the true rank of the observed tensor, most of them based
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Figure 7.1: Flowchart of the proposed contributions.

on the so called model fit or Data error. Although, the available Data error is informative,

it partially models the noise and known to be a monotonically decreasing function of the

model order, that makes it inapplicable to rank selection. In Chapter 4, we proposed

using the Data error to approximate the unknown Reconstruction error. The Recon-

struction error, as the rank selection criterion, intrinsically reveals the true rank of the

observed tensor. The results show the advantage of the proposed method in both robust-

ness and accuracy, in terms of PoD, over the conventional CANDECOMP/PARAFAC

model order selection methods.

The brain data collected by EEG techniques can be naturally fit into a multi-way

array including multiple modes. In Chapters 5 and 6, we consider two classes of appli-

cations for multi-modal ERP tensor analysis, whether the tensor is for individual-level

analysis or for group-level analysis and considered three different EEG datasets for those

applications. Regarding the former analysis, the tensor usually includes the data of one

segment (or called as epoch, trial) of one subject in an EEG experiment. As for the

latter analysis, the tensor tends to contain the data of multiple trials of one subject
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or multiple subjects. In Chapter 5, individual-level analysis are explored with appli-

cations in source localization of brain activity, and brain-computer interface. Various

oscillatory activities within EEG may overlap, However, tensor decomposition by means

of time-frequency-space transformation makes it possible in many cases to isolate each

oscillatory behaviour well, even when these activities are not well-separated in two-way

domain. Temporal, spatial and spectral information of the multichannel EEG are used

here to generate a three-way EEG tensors. Reassigned-EMD with a high-resolution TF

representation characteristic, is exploited for EEG tensor formation. Besides, the clini-

cally meaningful extracted signatures are used in a Brain-Computer Interface system for

detecting and identifying the desired event.

In Chapter 6, a group-level analysis of four-way EEG data with an application in

research questions of cognitive neuroscience is explored. Adding the mode of subjects

enables us to compare different group of subjects in the experiments. With CANDE-

COMP/PARAFAC analysis of 4-way ERP tensor of time × frequency × channel ×

subject/condition of MisMatch Negativity (MMN), a multi-domain feature is extracted

that is more discriminative than the peak amplitude of MMN for group-level analysis.

In addition, in this Chapter we developed a methodology to select the desired multi-

domain feature. We showed that through a template matching approach the desired

multi-domain feature could be selected that not only could effectively discriminate the

subjects for the two experimental conditions with an acceptable significance level, but

also the temporal and spectral signatures of the selected multi-domain feature of MMN

do match the temporal, spectral characteristics of the MMN in our study that is another

advantage of the proposed methodology in characterizing the ERP signals.

7.1 Outcome of the proposed work

Table 7.1, summarizes the various solutions provided by the proposed data-driven signal

processing framework in efficiently analyzing non-stationary EEG signals and localizing
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Table 7.1: Summary of the proposed solutions and the requirement for efficient EEG
signal analysis

Requirements for efficient Solution provided/ suggested by Chapter
EEG signal analysis the proposed work Reference

and feature extraction

EEG characteristics Capture non-stationarity with TFR Chapter 1
TF analysis Data-driven and high resolution TFR Chapter 2

Multi-way nature of EEG Multi-way Analysis Chapter 3
Capture the true underlying CANDECOMP/PARAFAC Chapter 4

structure of EEG signals Model Order Selection
EEG tensor formation Multi-channel Reassigned-EMD Chapter 5

Localization of Brain Activities Three-way EEG tensor analysis Chapter 5
Brain-Computer Interface PARAFAC-based feature extraction Chapter 5

Multi-domain feature selection Four-way EEG tensor analysis Chapter 6

the events and extracting discriminative features from them. The proposed framework

with multi-way analysis as its significant highlight is expected to become a versatile non-

stationary signal analysis tool, which has the benefits of localization and discriminant

analyses. The outcome of the proposed work as an EEG processing system, including

the data acquisition, signal processing, and the translation stages could be summarized

as following:

Our main contribution in signal processing stage focuses attention on developing a

framework for multi-way discriminative analysis of EEG signals. Analysis of ERPs, as

one of the main categories of EEG signals, requires systems that can exploit the variation

of the signals in different contextual domains. Multi-way analysis framework enables us

to consider as much as relevant contextual information in our analysis, without ruining

the natural structure of the data, in order to reveal the hidden multi-linear structures in

the data. To fulfill this objective, in the first point, a fully data-driven time-frequency

representation methodology is selected to capture the non-stationarity in the EEG signals

which is robust to noise and artifacts. TFR is considered as a pre-processing step in this

systems approach to help with better localization/analysis of events. Having a coarser

TFR is okay in some cases but finer TFR helps with time-locked ERPs that require
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higher resolution.

Time-frequency Representation

Reassigned-EMD, a fully data-driven TFR technique is proposed that satisfies the general

TFR requirements. It has a high-resolution in both temporal and spectral domains and

also a cross-term free TFR due to its inherited properties from EMD that decomposes the

EEG into mono-component factors. Moreover, EMD can be effectively used for capturing

the non-linearity in the signal and detrending the EEG signals that is simply embedded

in the proposed EEG tensor formation.

In the second point, by adding other contextual modes, i.e. spatial and subject/condition

mode to the analysis, we form the high-dimensional ERP tensor in order to extract the

meaningful and unique features from EEG tensor. Then, for an effective analysis of EEG

data, an optimum multi-way model order selection scheme is developed.

CANDECOMP/PARAFAC Model Order Selection

CANDECOMP/PARAFAC decomposes a tensor into a summation of rank-one tensors.

The ALS algorithm used for this decomposition is attractive for its simplicity and sat-

isfactory performance. Estimating the optimum model order is a crucial part of this

analysis. Various ALS-based approaches have been proposed in the literature to ex-

tract the true rank of the observed tensor, most of them based on the so called model

fit or Data error. Although, the available Data error is informative, it partially mod-

els the noise and known to be a monotonically decreasing function of the model order,

that makes it inapplicable to rank selection. We developed a novel methodology for

CANDECOMP/PARAFAC model order selection, that propose using the Data error to

approximate the unknown Reconstruction error. The Reconstruction error, as the rank

selection criterion, intrinsically reveals the true rank of the observed tensor.

Finally, in the translation part of the system, several applications are employed to

evaluate the proposed work for multi-modal ERP analysis. These application are divided

162



into individual-level and group-level analysis and are as follows:

Individual-level Analysis

In this analysis the tensor usually includes the data of one segment (or called as epoch,

trial) of one subject in an EEG experiment. Two applications are considered in this

context. Fist application is for localization of brain events. Various oscillatory activities

within EEG may overlap, However, tensor decomposition by means of Time-Frequency-

Space transformation makes it possible in many cases to isolate each oscillatory behaviour

well, even when these activities are not well-separated in two-way domain. Temporal,

spatial and spectral information of the multichannel EEG are used here to generate a

three-way EEG tensor. Reassigned-EMD, with a high-resolution TF representation char-

acteristic, is exploited here for EEG tensor generation. Simulation results on synthetic

and real three-way EEG data show that the proposed method could be effectively used for

separation and localization of events in EEG. Besides, the clinically meaningful extracted

signatures could be used for various purposes. In the second application, an SSVEP-BCI

system was designed that uses the extracted signatures via CANDECOMP/PARAFAC

in order to detect SSVEP signals using a canonical correlation analysis approach. The

results are quite promising and proves the virtue of the proposed technique for EEG

analysis.

Group-level Analysis

In this analysis the tensor tends to contain the data of multiple trials of one subject

or multiple subjects. A group-level analysis of four-way EEG data with an application

in research questions of cognitive neuroscience is explored. Adding the mode of subject

enables us to compare different group of subjects in the experiments. With CANDE-

COMP/PARAFAC analysis of 4-way ERP tensor of time × frequency × channel ×

subject/condition of MisMatch Negativity (MMN), a multi-domain feature is extracted

that is more discriminative than the peak amplitude of MMN for group-level analysis.
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In addition a methodology to select the desired feature is developed. We showed that

through a template matching approach the desired multi-domain feature could be selected

which effectively discriminate the subjects for the two experimental conditions with an

acceptable significance level. Furthermore, the temporal and spectral signatures of the

selected multi-domain feature of MMN do match the temporal, spectral characteristics

of the MMN in our study.

7.2 Limitations and Future Work

While the ERP datasets used in this work were almost limited in terms of number of

subjects participated in the experiments, the analysis results might not reflect a general

outcome. Hence, accessing to more subjects can help us make less biased and more

statistically significant conclusions about the data.

The following could be the directions for future work in applying and enhancing the

proposed work with more intelligence and accuracy.

• Bayesian Inference has proved its effectiveness in model selection and parameter

estimation in various applications. Using the framework of Bayesian Learning it

is also possible to consider correlation on factor matrices (i.e. temporal or spatial

domains) in CANDECOMP/PARAFAC model for EEG analysis. However, con-

sidering the correlation would make the problem more complex and challenging to

solve.

• It is known that EEG sources are sparse in some domains. Exploiting sparsity in the

constituting domains for EEG analysis, could be beneficiary in source localization

and may result in more interpretable factor analysis.
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Potential trend: Tensor decomposition for data of two modalities

simultaneously

Recently, research of the simultaneous EEG and functional magnetic resonance imaging

(fMRI) has becomes very attractive in order to overcome the inherent shortcoming of

EEG (low spatial resolution) and fMRI (low temporal resolution). Therefore, how to

process the data of the two modalities becomes a very significant research question. Cur-

rently, most of the data processing methods for the data of the two modalities are in

terms of matrix decomposition. Nevertheless, when EEG data and fMRI data are repre-

sented by two tensors, the tensor decomposition methods for the data of two modalities

can be applied. Indeed, as long as data of one modality is denoted by a tensor (data

of the other mode can be represented by a vector, a matrix or a tensor) and they have

a common mode in both dataset, the data of two modalities can be factorized by the

coupled tensor decomposition methods.
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Derivation of the probabilistic

upperbound in (4.30)

The Reconstruction error γR in (4.29) is the sum of squared Gaussians and therefore is

a member of non-central Chi-squared distributions with the mean calculated as follows:

E(ΓR) =
1

M
E
(
‖ X− X̂R ‖2

F

)
. (.1)

Assuming the true rank of the tensor to be within the range of (1, Rmax) , we can

rewrite (2) as following

X =
R∑
r=1

ar ◦ br ◦ cr +

∆R∑
r=1

λr ar ◦ br ◦ cr,

= I3,R ×1 AR ×2 BR ×3 CR + Λ3,∆R
×1 A∆R ×2 B∆R ×3 C∆R . (.2)

where R is the considered model order and ∆R = Rmax−R corresponds to the unmodeled

components. Λ3,∆R
is a diagonal tensor with its diagonal elements λr, including (R?−R)

ones and (Rmax −R?) zeros.

By assuming i.i.d Guassian noise and the observed noisy tensor in the form of Y =

X + E, the estimate of an R-component CANDECOMP/PARAFAC model for a three-

way tensor using ALS can be written as follows

X̂R =
R∑
r=1

âr ◦ b̂r ◦ ĉr, (.3)
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where the factor matrices are estimated using the least squares. For example, for esti-

mating matrix A we have

Y(1) = A(C�B)T + E(1) (.4)

Â = AR + E(1)

[
(CR �BR)T

]†
(.5)

where � is the Khatri Rao product and † is the pseudo-inverse of a matrix. Therefore,

we can write the estimate of the X̂R in each sequence of ALS for A as following

X̂R = I3,R ×1 Â×2 BR ×3 CR

= I3,R ×1

(
AR + E(1)

[
(CR �BR)T

]†)×2 BR ×3 CR

= I3,R ×1 AR ×2 BR ×3 CR + I3,R ×1 E(1)

[
(CR �BR)T

]† ×2 BR ×3 CR. (.6)

Accordingly, using (.2) and (.6), we can write (.1) as

E(ΓR) =
1

M
E
(
‖ Λ3,∆R

×1 A∆R ×2 B∆R ×3 C∆R

− I3,R ×1 E(1)

[
(CR �BR)T

]† ×2 BR ×3 CR ‖2
F

)
. (.7)

Expanding the norm and knowing that the expectation of noise is zero, we can simplify

and write (.7) as follows

E(ΓR) =
1

M
E
(
‖ Λ3,∆R

×1 A∆R ×2 B∆R ×3 C∆R ‖2
F

)
+

1

M
E
(
‖ I3,R ×1 E(1)

[
(CR �BR)T

]† ×2 BR ×3 CR ‖2
F

)
. (.8)

where the first term, which we call it ∆R, is the norm of the unmodeled or discarded

possible components and is independent of noise and a decreasing function of model

order, whereas the second term is noise dependant and an increasing function of model
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order R. So, we can write (.8) as

E(ΓR) =
1

M
E
(
‖∆R‖2

F

)
+

1

M
E

(
‖

R∑
r=1

ê(1)r ◦ br ◦ cr ‖2
F

)
. (.9)

where ê(1)r ∈ RI×1 is rth column of the rotated matrix E(1) ∈ RI×JK with rotation[
(CR �BR)T

]† ∈ RJK×R.

Furthermore, every element of the second term in (.9) could be written as

êijk =
R∑
r=1

ê(1)irbjrckr, (.10)

where according to the definition of Frobenius norm we can fix and factor out the noise

dependent term ê(1)ir, i ∈ (1, I) from the summation leading to RI number of independent

noise samples. Therefore, we can write (.9) as follows

E(ΓR) =
1

M
‖∆R‖2

F + E

(
RI∑
i=1

|ui|2
)
. (.11)

where the uis are independent, zero mean, white Gaussian noises with variance σ2
n/M .

Hence, Reconstruction error γR is a sample of random variable χ2
RI and for this random

variable we have
M

σ2
n

(
ΓR −

1

M
‖∆R‖2

F

)
∼ χ2

RI (.12)

where ΓR is a Chi-square random variable of order RI. The expected value and the

variance of ΓR are

E(ΓR) =
RI

M
σ2
n +

1

M
‖∆R‖2

F , (.13)

var(ΓR) =
2RI

M2
(σ2

n)2. (.14)

The MSE that is the expected value of ΓR has two terms. The first term is the noise
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dependent part and is a monotonically increasing function of R. The second term is

a function of the unmodeled or discarded possible components ∆R. The norm of the

unmodeled components is a decreasing function of R [117].

Using the pdf of the random variable ΓR, for a given confidence probability p1, there

exists a DR for which the reconstruction error γR is bounded as follows [117]

Pr{|γR − E(ΓR)|≤ DR} = p1. (.15)

The value of DR is a function of p1 and the variance of ΓR, and can be calculated using

the Chi-square CDF table. Therefore, with probability p1 the reconstruction error is

bounded with

γR(p1) ≤ γR ≤ γR(p1) (.16)

where

γR(p1) = E(ΓR) +DR =
1

M
‖∆R‖2

F +
RI

M
σ2
n +DR . (.17)

The terms of these values are functions of R, M , σn, and the confidence probability,

except one term which is a function of the unmodeled components. The structure of the

available Data error εR is such that it can be used to provide probabilistic bounds on

‖∆R‖2
F . It is shown that the Data error is a sample of a Chi-square random variable

ER [117]
M

σ2
n

(ER) ∼ χ2
M−RI (.18)

where χ2
M−RI is a Chi-square random variable of order M − RI. The random variable

ER similarly has the following expected value and variance [117]

E(ER) =

(
1− RI

M

)
σ2
n +

1

M
‖∆R‖2

F (.19)

var(ER) =
2

M

(
1− RI

M

)
(σ2

n)2 +
4σ2

n

M2
‖∆R‖2

F (.20)
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Given the noisy data εR, one sample of the random variable ER is available. The

variance of this random variable is of order 1
M

of its expected value. If the data length

is long enough, the variance of this random variable is close to zero. In this case, one

method of estimating ‖∆R‖2
F is to assume that the available sample εR from (4.28) is a

good estimate of its expected value in (.19). Therefore, by assuming that E(ER) ≈ εR, it

yields [117]:

1

M
‖∆R‖2

F ≈ εR −
(

1− RI

M

)
σ2
n. (.21)

However, for a finite-length data, the validity of this estimation depends on the exact

behaviour of the variance of ER which is completely ignored in this estimation. It is

proved in [117] that using the observed data, with validation probability p2, we can

provide probabilistic bounds on the unavailable unmodeled components effects,

LR(Y, σn, p2) ≤ 1

M
‖∆R‖2

F ≤ UR(Y, σn, p2) (.22)

where the lower and upper bounds are functions of only the observed data and the

validation probability. With validation probability p2 and confidence probability p1, the

Reconstruction error is bounded as follows [117]:

γR(p1,Y, p2) ≤ γR ≤ γR(p1,Y, p2) (.23)

where

γR(p1,Y, p2) = UR(Y, p2) +
RI

M
σ2
n +DR(p1, σn,M) (.24)

The bounds on the Reconstruction error are only functions of the Chi-square CDF table,

σ2
n, R, M , probabilities p1 and p2, and the observed data tensor Y.

IfR is large enough, we can estimate the Chi-square distribution of ΓR with a Gaussian

distribution. In this case, there is no need to check the Chi-square CDF table and with

p1 = Q(β), the probabilistic event in (.15) can be written in the form
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Pr
{
|ΓR − E(ΓR)|≤ β

√
var(ΓR)

}
= Q(β) (.25)

where Q(β) =
∫ β
−β

1√
2π
e

−x2

2 dx. Estimating this random variable with a Gaussian implies

that DR in (.24) is simply

DR(Q(β), σn,M) = β
√

var(ΓR) = β

√
2RI

M
σ2
n. (.26)

On the other hand, if M−RI is large enough, we can estimate the Chi-square distribution

of ER with a Gaussian distribution. In this case, there is no need to use the Chi-square

CDF table to calculate the bounds of the unmodeled coefficients effect. The values of

these bounds with validation probability p2 = Q(α) are provided in Appendix D of [117]

as

Pr
{
|ER − E(ER)|≤ α

√
var(ER)

}
= Q(α). (.27)

Using this to find the upperbound for ‖∆R‖2
2 we should solve the following inequality:

E(ER)− α
√

var(ER) ≤ εR . (.28)

This inequality provides the upperbound as long as p2, or equivalently, Q(α) has been

chosen sufficiently large such that [117]

α ≥ M√
2(M −RI)

(
1− RI

M
− εR
σ2
n

)
. (.29)

Finally, the upperbound of γR in (.24) can be written as follows:

γR(Q(β),Y, Q(α)) =
RI

M
σ2
n + UR(Y, Q(α)) + β

√
2RI

M
σ2
n , (.30)

where σ2
n is the noise variance after prewhitening and R is the number of signal compo-
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nents used in the CANDECOMP/PARAFAC model. Q(α) and Q(β) are the validation

probability and the confidence probability used to provide the probabilistic upper bound

for γR. Furthermore, UR is the upperbound corresponding to unmodeled or discarded

possible components which could be obtained as [117]

UR(Y, Q(α)) = εR −mn +
2α2σ2

n

M
+KR(α) , (.31)

where mn and KR(α) are defined as:

mn = (1− RI

M
)σ2

n, (.32)

KR(α) = 2α
σn√
M

√
σ2
n

M
+ εR −

1

2
mn . (.33)

�
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