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Abstract 

Developing a Diagnosis, Prognosis and Health Monitoring (DPHM) framework for a small 

satellite is a challenging task due to the limited availability of onboard health monitoring sensors 

and computational budget. This thesis deals with the problem of developing DPHM framework 

for a satellite attitude actuator system that uses a single gimballed Control Moment Gyro (CMG) 

in pyramid configuration as an actuator. This includes the development of computationally light 

data-driven model, fault detection, isolation and prognosis algorithms that works only using the 

attitude rate measurements from the satellite. 

A novel scheme is proposed for developing a data-driven model which fuses the symmetric 

property of the data and the system orientation property of actuators that reduces the need for 

historical data by 93.75%. The data is trained using Chebyshev Neural Network. A threshold based 

fault detection algorithm is used to detect the faults of spin motor and gimbal motor used in a 

CMG. A novel optimization based fault isolation formulation is developed and simulated for given 

uniformly distributed system parameters. The algorithm has a success rate of 93.5% in isolating 

faults of 8 motors (4 gimbal and 4 spin) that can fail in 254 different ways. For Fault Prognosis, 

an error based scheme is developed as a measure of degradation. General path model with Bayesian 

updating is used for predicting the remaining useful life of the spin motor. It performs with 96.25% 

accuracy when 30% of data is available. Overall, the proposed algorithms can be regarded as a 

promising DPHM tool for similar non-linear systems. 
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CHAPTER 1 

1. Introduction 

Due to the recent advancements in computer hardware such as microprocessors, applications of 

computationally intensive Artificial Intelligence (AI) algorithms in complex engineering systems 

have been increasing. Most of the Engineering systems are rapidly shifting from manually 

controlled to autonomous systems. As humans are no more operating the system and monitoring 

its sensors data, looking for anomalies, there has to be a framework in place to ensure nominal 

operation. Another reason for health monitoring is to avoid expenses due to unexpected downtimes 

and irreversible failures, which inspired researchers to develop Health Monitoring Systems (HMS) 

such as Condition-based Maintenance (CBM) and Prognostics and Health Management (PHM) 

Systems  (Vachtsevanos 2006). The goal of this framework is to predict system’s faults and failures 

as early as possible so that necessary actions can be taken as a preventive measure. 

In a system like spacecraft, which operates in outer space it is difficult to carry out 

maintenance activities. Hence, the fault has to be identified, isolated and the control system has to 

be reconfigured appropriately to prevent the spacecraft from going to an uncontrollable state. 

Figure 1.1 shows the different subsystems in a spacecraft that are prone to faults and failures. In 

this thesis, the Fault Detection & Isolation FDI and Prognosis for Attitude and Orbit Determination 

and Control System (AOCS) for a satellite is studied.  

 

Satellite 

Subsystems

Structure Thermal AOCS C&DH Power Communication

Attitude and Orbit 
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Control 

Command & 
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Payload

 

Figure 1.1 Subsystems in a Satellite 
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1.1 Motivation 

The goal of this thesis is to develop a Diagnosis and Prognostics Health Management 

(DPHM) algorithm which includes Fault Detection & Isolation (FDI) and Prognosis for Actuators 

used in AOCS. Also, the main focus is on small satellites. The reason for choosing AOCS and 

small satellites is given as follows. 

1.1.1 Why Small Satellites? 

In general, a satellite that is less than 180 kg are termed as small satellites (NASA 2015). 

Satellites can be classified into seven categories based on its mass as shown in Table 1.1 (Konecny 

2004). In the Nano satellite category, CubeSats are quite popular for cost effective science 

investigations, constellation missions, Student Satellites, etc. CubeSat come in different 

configurations such as 1U, 1.5U, 2U, 3U, 6U and 12U.  1U CubeSat measures 10×10×10 cm.  

 

Table 1.1 Classification of Satellites based on Mass 

Satellite Class Mass 

Large satellites >1000 Kg 

Medium satellites 500 to 1000 Kg 

Mini satellites 100 to 500 Kg 

Micro satellites 10 to 100 kg 

Nano satellites 1 to 10 Kg 

Pico satellites 0.1 to 1 Kg 

Femto satellites < 100 g 

 

Table 1.2 Launch Costs of Spaceflight 

Class Nanosatellite Microsatellite Mini Satellite Microsatellite 

Mass (kg) 5 10 20 50 100 150 200 300 450 750 1000 

Price LEO X 

103 $295  $545  $995  $1,750  $3,950  $4,950  $5,950  $7,950  $17,500  $22,000  $28,000  

 

Due to latest developments in electronics and MEMS (Microelectromechanical systems) it 

is possible to manufacture a small satellite that meets complex mission requirements. The launch 

costs of a satellite is directly proportional to its mass. Table 1.2 shows the cost of launch for a 
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satellite (Spaceflight 2017). It is evident from this cost table that launch costs increases as the mass 

of the spacecraft increases. One of the major reasons for the boom in small satellites industry is its 

lower development and launch costs. Also, for the cost of manufacturing and launching heavier 

satellites, multiple small satellites can be launched that can achieve the almost the same mission 

requirements as large ones. Also multiple small satellites launched in formation can obtain survey 

multiple regions at a time. But a single large satellite can survey only one region at a time. Also 

small satellites are used for experimentation purposes to demonstrate new technologies at a lower 

cost and also used for student projects.  

It is estimated by Allied Market Research that the Small Satellite Market is expected to 

reach around $7 Billion by the year 2022 (AlliedMarketResearch 2017). Also a report from 

SpaceWorks projects that 2400 small satellites in the mass category of 1-50 kg will be launched 

from 2017 to 2023. The history and projection of launch from 2010-2023 is given in (Doncaste 

2017). 

 

Figure 1.2 History and Projection of Small Satellite Launches from 1-50kg (Doncaste 2017) 

 Small satellites always has a constraint in terms of in terms of space, mass, power and 

computing budget. Hence sensors may not be installed for measuring the health of the individual 

components. This makes the development of DPHM for small satellites more challenging. The 

main requirements for a DPHM framework in small satellites are it shall work with minimal 

measurement information and computational power. 
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1.1.2 Why AOCS? 

AOCS subsystem in a satellite is responsible for determining and controlling the 

orientation/attitude. When the satellite is released from the launch vehicle, the disturbance torques 

from the launcher interface will be imparted on the satellite. This torque affects the initial attitude 

angular velocity of the satellite, which is also known as tumbling. AOCS de-tumbles the spacecraft 

using algorithms such as b-dot (Aerospaziali 2015) and stabilizes the satellite.  

After the satellite is stabilized, it has to constantly reorient it selves based on mission 

requirements or to overcome any attitude changes due to the disturbance torques. The relationship 

between AOCS and other subsystems in a satellite are highlighted below  

1. Payload - Remote Sensing: Remote sensing satellites that survey the surface of the earth 

uses payloads such as camera, spectrometer, etc. These payloads absorb the reflected light 

from the earth for data acquisition. These sensors must constantly be aligned to focus on 

the surface of the earth during data acquisition mode. AOCS system aligns the spacecraft 

so that payloads can focus on the surface of the earth. 

2. Payload - Telescopes & Observatory: The performance of astrophysical observatories in 

earth are affected by atmospheric dust. Hence spacecraft based observatories like Hubble 

space telescope helps in observing the deep space by eliminating the noise due to 

atmospheric dust. These telescopes has to be oriented appropriately based on the target 

location. Each time when a new target body is selected, spacecraft has to be re-oriented by 

AOCS to focus the telescope to that particular target object. 

3. Communication Subsystem: In general, there will be three antennas in spacecraft. The 

Uplink antenna, Downlink Antenna and Beacon Antenna. The uplink and downlink 

antenna is responsible for communication from ground to spacecraft and vice versa. 

Sometimes high gain antennas are used for downlink which sends signals only in particular 

directions. These type of antennas must be pointed towards earth for proper communication 

link. AOCS helps in orienting the communication system of the spacecraft. 

4. Power Subsystem: Almost all the satellites use solar panel for power generation in sunlit 

phase of the orbit and battery as energy storage to be used later in the dark phase of the 

orbit. The power subsystem is the key for electricity supply for all the electronics in a 

satellite. To generate maximum power, solar panels has to be perpendicular to the sunrays.  

Hence the orientation of the spacecraft helps the designers in sizing and placement of solar 
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panels. While on-orbit, AOCS can orient the spacecraft to get maximum power generation. 

5. Thermal Subsystem: The electronic components inside the spacecraft typically has an 

operating range of -20o C to 60o C. But the typical temperature in sunlit phase would be 

around 200 o C and around -150 o C in dark phase. Based on the planned AOCS operations, 

thermal management systems in satellite would be designed to manage the internal 

temperatures as desired. Intelligent thermal management systems requires the orientation 

information of the spacecraft to operate nominally.  

 

 

Figure 1.3 Subsystem wise Failure of Spacecraft from years 1980-2005  (Tafazoli 2009) 

 

 

Figure 1.4 AOCS Time to failure after launch from years 1980-2005  (Tafazoli 2009) 

Due to the dependencies of almost all the other subsystems with the AOCS subsystem, any 
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faults or failure in AOCS, if not recovered promptly may result in a complete mission failure. From 

the years 1980 – 2005, AOCS contributed for up to 32% of the total failures in the spacecraft 

(Tafazoli 2009). Figure 1.3 shows the percentages of subsystem wise failure from the year 1980-

2005. Also from Figure 1.4, it is evident that AOCS system failed more than 40% of the time 

within 3 years of on-orbit operation.  

AOCS system in a spacecraft consists of several sensors and actuators. Sensors are used for 

measuring the attitude of the spacecraft. Some of the absolute measurement sensors include Sun 

Sensor, Magnetometer, Star sensor, horizon sensor, etc. These sensors provide the absolute attitude 

measurement of the spacecraft with respect to Sun, earth’s magnetic field, stars, earth horizon 

respectively. On the other hand, relative attitude sensors provide the measurement relative to the 

previous state. Gyroscope is one of the widely used relative measurement sensors that measures 

the satellites attitude angular velocity which can be processed to provide with the attitude angular 

position. For the absolute measurement sensors to work, orbital position of the spacecraft is 

essential which can be measured using GPS sensor. Usually two or more sensors work in 

combination to determine attitude of satellite. 

Actuators in AOCS system provides the torques required for de-tumbling and reorienting 

the spacecraft. Micro thrusters are used as attitude control actuators in large satellites which works 

on the same principle as a rocket engine. In small satellites, actuators like Reaction Wheels (RW), 

Control Moment Gyros (CMG) and Magnetorquers are quite common. Reaction wheels are 

flywheels connected to a motor which creates reaction torques by accelerating or decelerating the 

flywheel. The counter torque is created in a direction opposite to the direction of acceleration. 

Control Moment gyros has a momentum wheel which rotates a flywheel at a constant speed, and 

a gimbal motor which gimbals the momentum wheel in the required direction to create control 

torques. Magnetorquer creates a magnetic field that interacts with earth’s magnetic field which 

creates required control torques. Magnetorquer can only be used in Low Earth Orbit (LEO) 

satellites as the magnetic field of earth becomes weaker above altitudes of around 1000 km.  

Depending on the attitude accuracy and other mission requirements, the actuators are 

selected. Sometimes one or more actuators are used in conjunction. Control Moment gyros provide 

a highly accurate attitude accuracy with low power consumption. Also the constantly rotating 

momentum wheels resists the spacecraft from attitude drifts due to gyroscopic stabilization effect. 

Reaction wheels and momentum wheels also provide a better accuracy for attitude control. 
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Magnetorquers provides very low accuracy and also they are unable to produce three axis control. 

Also the magnetic fields of earth constantly changes for a satellite in orbit and hence the control 

system has to dynamically find the control inputs required for actuating the  

The failures in AOCS system can be due to any of the sensors, actuators or the electronic 

modules. The list of component wise failure for ADCS is given in Figure 1.5 (Tafazoli 2009). 

Almost 30% of all failures is caused by actuators out of which two-thirds are caused to Control 

Moment Gyros, Reaction Wheels and Momentum Wheels.  

 

 

Figure 1.5 Component wise Failure for AOCS for the year 1980-2005  (Tafazoli 2009) 

 

1.2 History of Faults and Failures of Spacecraft AOCS Actuators 

The actuators such as CMG, RW and MW are rotating electro-mechanical components 

which are prone to faults and failures while in constant operation. Some of the examples of 

previous failures related to these actuators are listed as follows.  

International space station (ISS) used four 4.7 KNm double gimballed CMGs with 360 

degrees gimbal rotation for both the axes. This provided ISS with attitude control capabilities 

without the use of a thruster system. Their life expectancy was approximately 10 years. These 

CMGs consisted of a flywheel spinning at 6600 rpm which can produce an output of 258 Nm of 

torque. One of the CMG’s failed after 1.3 years of operation and the next one developed fault after 

6 years of operation (Gurrisi 2010). Since this was a human mission, there were for CMG’s used 

0%

5%

10%

15%

20%

F
ai

lu
re

 P
er

ce
n
ta

g
e

Component



  Chapter 1 Introduction 

 

8 

 

for redundancy and also thrusters were available as a backup for attitude control. There have been 

repair activities carried out previously in ISS for CMGs (Malik 2005). It has to be noted that the 

current, temperature and vibrations were measured from for the CMG.  

NASA’s Kepler space telescope used four RWs as attitude control actuators. It was 

launched on 2009. After 3 years of operation, during July 2012 one of the reaction wheels failed 

(Johnson 2017). As three wheels were sufficient for a complete three axis attitude control, one 

failure did not compromise the mission. Later in May 2012, second wheel failed leaving the 

spacecraft with only two working reaction wheels (Johnson 2017). This led to under actuation in 

attitude control. NASA engineers tried to recover at least one of the failed reaction wheels to get 

the spacecraft back on control but were unsuccessful. The primary objective of any telescope is to 

observe different celestial bodies by reorienting the spacecraft towards the target object. Since 

reorientation was not possible without attitude control, Kepler mission was compromised. 

 Other notable reaction wheel failure would be from the Dawn mission of NASA where two 

of the reaction wheels stopped functioning on April 23, 2017 (NASA 2017). In Hubble space 

telescope, already two service missions have been carried out to fix the RWs. Also, Hayabusa 

spacecraft from Japan Aerospace Exploration Agency had two RW failures.  

1.3 DPHM for Satellite AOCS actuators 

AOCS module in satellite constantly calculates the current attitude position based on the 

sensor measurements. If there is any difference between the required attitude and the current 

attitude, the control system calculates the torque requirements to bring back the satellite to the 

required state. The calculated torque is converted into control inputs such as voltage or current for 

the actuators to deliver the torque.  

The placement of a DPHM module in an AOCS of a satellite is shown in Figure 1.6. After 

the onset of fault in attitude actuators, the performance will be affected. This creates a difference 

between the expected and actual performance which will then be declared as fault by the FDI 

algorithm. After fault is detected, the algorithm must also locate the source of fault. Finally the 

DPHM should estimate the remaining useful life of the faulty component called as prognosis. 

DPHM algorithm that detects, isolates and finds the remaining useful life of a faulty component is 

essential for the AOCS system for preventive maintenance activities. The information DPHM 

algorithm will then be used for developing a reconfigured control scheme to continue maintaining 

the full attitude control of satellite. 
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Figure 1.6 DPHM Module in AOCS Subsystem of Satellite 

 

1.4 Faults in a CMG 

Each CMG has a Gimbal Motor (GM), Spin Motor (SM) and a Flywheel. Any faults in CMG 

are either associated with a gimbal motor or a spin motor. The faults that are associated with gimbal 

motor and spin motor are discussed below. 

1.4.1 Faults in a Gimbal Motor 

Stepper motor is a brushless DC electric motor that rotates by dividing one full rotation 

into several steps. Each command voltage input to a stepper motor completes one step. Unlike 

servomotors, the main advantage of stepper motor is that it reaches the expected angular position 

precisely without the need for a closed loop control. For the CMG system in the thesis, stepper 

motor is used as the gimballing actuator due to its precision without the need for feedback (Abreu 

2010; Choi et al. 2015). Companies such as Micromo manufactures space grade permanent magnet 

stepper motors in small sizes which can be installed in small satellite applications (Abreu 2010).  
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Some of the main faults that occur in the stepper motor are stalling and speed reversals 

(Bodson et al. 2006). In an experimental study done by (Bodson et al. 2006), permanent magnet 

stepper motors was analyzed for stall faults and speed reversals. Both the problems occur due to 

resonance condition in stepper motors. Stalling may also occur due to high torque loads and 

constant change in the direction of rotation. In stalling, the motor comes to a complete stop even 

though commanded to rotate. In speed reversal motion, the motor will constantly try to rotate back 

and forth around a single position and appear as if the motor is stalling (Bodson et al. 2006). In 

this thesis, stalling of the stepper motor is considered and called as stall fault of gimbal motor. This 

is due to the fact that the gimbal motor in satellite may constantly rotate back and forth for attitude 

control. 

1.4.2 Faults in a Spin Motor 

Brushless DC motor is one of the common motors used for reaction wheels and momentum 

wheels in a spacecraft. The faults in these type of motor can be classified as (1) additive fault (2) 

multiplicative fault based on how the faults are modelled in the system. In a reaction wheel or a 

momentum wheel control system, additive faults are typically observed (Godard 2010). Changes 

in friction between stator and rotor due to aging and temperature could lead to discrepancies 

between expected and actual performance. Also, malfunctioning may lead to continuous 

generation of unexpected torques which can be modeled as an abrupt change and classified as 

multiplicative faults. 

 

Figure 1.7 Types of Faults (Godard 2010) 
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Based on the form of fault, i.e. the fault behaviour with respect to time, Faults can be 

classified as (1) Abrupt, (2) Transient (3) Intermittent and (4) Incipient. Abrupt faults occur 

instantaneously due to hardware damage. These faults prevails until the faulty unit is repaired or 

replaced. Transient faults represents any temporary malfunctions which will recover by it selves 

after a certain time. Repeated occurrences of transient faults is termed as intermittent faults. Both 

transient faults and intermittent faults may or may not affect the AOCS performance based on the 

time of onset and severity. Incipient faults represent degradation of the motor due to wear and tear 

which increases with respect to aging. Incipient faults are crucial in AOCS subsystem, where the 

fault gets worse over time and lead to complete failure. All types of faults can be represented as 

shown in Figure 1.7. 

1.5 Literature Review 

The literature review is divided into two sections, (1) Fault Diagnosis and (2) Fault 

Prognosis. A general review is done for each section followed by CMG specific literature review 

for each section. 

1.5.1 Fault Diagnosis 

Fault diagnosis system performs two main tasks namely, Fault Detection and Isolation 

(FDI). The fault detection algorithm finds faults at a plant/system level and isolation scheme 

locates the fault at a component level. Fault diagnosis methods can be divided into three 

approaches namely Model-Based, Signal Based and Knowledge Based (Gao et al. 2013). Major 

fault diagnosis methods based on review paper from (Gao, C Cecati, et al. 2015) are shown in 

Figure 1.8.  

Model-based approaches requires the model of the plant to be available. In this approach, 

the relation between the measured and estimated outcomes are mathematically formulated and are 

used to detect and isolate faults. A review of model based approaches are available in (Marzat et 

al. 2012; Gao, C Cecati, et al. 2015). The model based approaches can be subdivided into two 

types, Stochastic and Deterministic methods. Stochastic methods make use of filter based 

approaches such as Kalman filters. Some of the Kalman filter based fault detection schemes used 

in various applications can be found in (Pourbabaee et al. 2016; Sidhu et al. 2015; Nadarajan et al. 

2016) and also unscented Kalman filter based fault detection schemes are available in (Sunil Nag 

P.V., Gowtham kumar Silla, Venkata Harsha Vardhan Gummadi, Harishankar C B & Kumar Ray 



  Chapter 1 Introduction 

 

12 

 

2016; Rahimi et al. 2015; Xiong et al. 2007). Deterministic methods make use of observer based 

approach or parity relations approach. An extensive literature review of deterministic methods is 

available in (Gao, C Cecati, et al. 2015). 
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Figure 1.8 Major Fault Diagnosis Methods 

 

Signal-based approaches does not require explicitly require a model of the system but 

works based on processing the measurement signals. As the faults occurred in the plant would be 

reflected in the measurement signals, they can be processed to perform the fault detection. The 

processing of signals includes feature extraction as a time-domain signal or frequency-domain 

signal or both (Gao, C Cecati, et al. 2015).  Vibration measurements use frequency-domain signals 

and are applicable to rotating components such as gear trains (Feng & Zuo 2013) and bearings. 

Acoustic based frequency-domain fault diagnosis method also come under vibration signal 

measurement and the scheme is given in (Pan et al. n.d.). Time-domain signal-based fault diagnosis 

approaches are applied for electric motors (Bouzid & Champenois 2013; Shahriar et al. 2013). The 

time-frequency signal-based approaches discussed in (Feng et al. 2013). CMG system is also a 

rotating component which consists of electric motors which makes it a good candidate for Signal-

based methods if signals from each CMG is measured individually. But the main focus on this 

thesis is to come up with an algorithm that can work without any component level measurements. 

Both the Model-based and signal based approaches require apriori knowledge of the system 

model or the signal patterns for different faults. But data-driven approaches require large historical 

dataset of the system to be available. Using the data, system model can be developed for residual 
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based fault diagnosis or feature extraction, classification models, etc. can be developed to detect 

and isolate fault. One of the main advantages for the data driven approach is that it can be 

applicable to complex systems where the plant model is unavailable. Data Driven fault diagnosis 

can be categorized as Qualitative Knowledge-based and Quantitative Knowledge-based as 

mentioned in the review paper from (Gao, Carlo Cecati, et al. 2015).   

Qualitative Knowledge-based methods work based on the specific set of rules developed 

using the history of data from the system or using experience information documented by human 

experts. An object oriented expert system based framework for fault diagnosis is given in 

(Kodavade 2012). Since the faults over time may leave a specific trends in the measured data, it 

can also be analysed for any fault trends. This method is called as Qualitative Trend Analysis 

(QTA). Some of the applications of fault diagnosis based on QTA may be found in (Maurya et al. 

2007; Gao et al. 2010). Review of other applications of Qualitative-Knowledge based methods are 

provided in (Venkatasubramanian et al. 2003a; Gao, Carlo Cecati, et al. 2015). 

Quantitative-Knowledge based can be sub divided into Statistical-Analysis-Based (SAB), 

Nonstatistical-Analysis-Based (NSAB) and fusion of both SAB with NSAB.  

(1) For SAB approach, popular methods include Principal Component Analysis (PCA), Partial 

least squares (PLS), Independent component analysis (ICA), Statistical Pattern Classifiers 

(SPC) and Support Vector Machines (SVM). Recent applications of these methods can be 

can be found in: ICA (Guo et al. 2014) ,PCA (Zhang et al. 2013), PLS (Zhao et al. 2014) 

and SVM (Namdari et al. 2014). These approaches are mainly used where there is a need 

for data dimensionality reduction or extracting features from data.  

(2) Nonstatistical approach involves using nonlinear approximation models for learning the 

behaviour of an Input-Output system. These trained models will then be used as a reference 

system and checked against the performance of the actual system to find faults. Artificial 

Neural networks (ANN) are one of the widely used tools non-linear approximations and 

can be found in (Elnokity et al. 2012; Shatnawi & Al-khassaweneh 2014).  

(3) SAB and NSAB approaches are fused together and used in some literature. SAB helps in 

extracting distinct features or dimensionality reduction of data and NSAB approaches learn 

the non-linear input-output system. Extensive literature review for such methods is 

available in (Gao, Carlo Cecati, et al. 2015) 

Hybrid approaches involve the combination of two or more approaches from any of the 
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model-based, signal-based or knowledge-based approaches. Since each approach has its own 

limitations, combining them together can help in overcoming some of the disadvantages of each 

methods when used individually. An extensive review of hybrid approaches for fault diagnosis is 

given in (Venkatasubramanian et al. 2003b). 

Fault Diagnosis of CMGs in Satellites: 

In the thesis, the main focus is on data-driven FDI scheme. Even though reaction wheel 

and momentum wheel operate differently, the components used in both the system are same and 

hence reaction wheels are also considered for this literature survey. A dynamic neural network 

based approach is used for RW fault detection in (Al-zyoud & Khorasani 2006). This method trains 

the ANN model with the RW torque data as outputs for voltage command inputs. They use 20,000 

data samples for model training. This model is compared with system measurements to generate 

residues which are then evaluated for reaction wheel faults based on a thresholds. Since torque 

measurements from individual reaction wheels may not be available in small satellites and training 

20,000 samples of data requires high computational budget, this method may not be desirable for 

small satellites. Another work by (Joshi et al. 2007) used RADARSAT Telemetry data from 

Attitude Control System to train ANN as an input-output system to detect actuator faults. But the 

details of the data regarding what type of sensor information is used is not provided.  

A hierarchical fuzzy rule-based fault diagnosis for formation flying is provided in (Barua 

& Khorasani 2011). In this work, faults due to RWs are considered but not as a CMG system. In 

the work done by (Cheng et al. 2016), a hybrid approach that uses both model based methods and 

ANN is used for fault detection. This work is limited by its use of a simple actuator dynamics 

model. Another dynamic neural network based work is available in (Tafazoli 2005) where high-

fidelity model of reaction wheel is used. A diagnostic tree approach is provided in (Barua & 

Khorasani 2007) for reaction wheel fault diagnosis. But the proposed approach requires several 

attributes of the reaction wheel such as Motor Torque, Motor Current, wheel speed, etc. which 

means this algorithm is limited by its need for component level sensor measurements. A dynamic 

neural network based approach is given for fault diagnosis of reaction wheels in satellites in 

(Mousavi & Khorasani 2014). It uses 50,000 training samples for neural network training and it is 

not clear if orthogonal configuration or pyramid configuration is used. A Kernel Fuzzy C-Means 

approach for fault diagnosis for satellite reaction wheels is given in (Hu et al. 2012) but did not 

consider the dynamics of the RW motor. 
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To the author’s best of knowledge, there are only two available literature for fault diagnosis 

for a CMG system. In the first work by (Abreu 2010), the motors dynamics in CMG is not 

considered for fault detection algorithm. In this work CMG is also considered as a single motor 

component. But a single gimballed CMG system consist of two motors, one gimbal motor and one 

spin motor. In the second work by (Choi et al. 2015) published recently, a fuzzy Q-learning 

algorithm for fault detection is provided. Here the dynamics of both Gimbal Motor as well as spin 

motor for all four CMGs are considered with high-fidelity MW models. But this work is limited 

by the fact that, the fuzzy algorithm needs the measurements of Angular Velocity and Current of 

both gimbal and spin motor and also requires the torque measurement of spin motor.  

1.5.2 Fault Prognosis 

Fault prognosis is estimating the degradation of the system so as to find the remaining 

useful life. In a DPHM framework, fault prognosis come after fault diagnosis. Based on the 

literature review, prognostics methods can be classified as Physical-model based, Knowledge 

based and Data-Driven based (Peng et al. 2010). Major fault prognosis methods are shown in 

Figure 1.9. An extensive review of fault prognosis methods is available in (Kothamasu et al. 2009) 

and machinery based prognosis is available in (Jardine et al. 2006; Peng et al. 2010).  

 

Fault Prognosis Methods

Knowledge 

Based

Physical 

Model 

Based

Data-Driven Based

HMM

Fuzzy 

Logic
Expert 

System

Statistical 

Based

ARMA

Reliability 

Based

Weibull 

Model

Weibul 

Distribution

Hybrid 

Methods

Artificial 

Intelligence 

methods

ANNRNN
SVM

 

Figure 1.9 Major Fault Prognosis Methods 

 

Physical Model based methods are approaches that requires the mathematical model of the 

degradation of the system. Crack propagation models are one such example. These type of models 
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are applied on residuals which is a measure of degradation of the system. A physics based 

prognostics approach for bearings is given by (QIU et al. 2002) and for aircraft actuators is given 

by (Byington & Stoelting 2004). Some of the other physics based prognostics approach can be 

found in (Oppenheimer & Loparo 2002; Jianhui Luo et al. 2003).  

Knowledge based methods are based on the human expertise in the domain which are 

documented as “If-then” rules which will then be converted into a computer algorithm as if experts 

would predict the prognosis. These type of algorithms are termed as expert systems and some of 

the works using expert based system for fault prognosis can be found in (Garga et al. 2001; Biagetti 

& Sciubba 2004). Fuzzy logic is another algorithm that falls under the category of a knowledge 

based method where it provides a way to arrive at the fault prognosis by processing various noisy 

attributes and operate it based on a Boolean logic. Prognosis algorithms developed based on Fuzzy 

logic is reviewed in (Majidian & Saidi 2007). 

Both the knowledge based method and physics based method require apriori knowledge of 

the system. Data-Driven methods are purely based on the history of run to failure data obtained 

from the system. A survey of data driven prognosis is provided in literature by NASA Ames 

Research Center (Schwabacher 2005). Data-driven model can be categorized into statistical 

methods, reliability methods and artificial intelligence methods (Liao & Köttig 2014). Statistical 

methods make use of Hidden Markov Models (HMM) (Peng & Dong 2011), Auto-regressive 

moving average (ARMA) Models (Liu et al. 2012; Yan et al. 2004), etc. Reliability methods make 

use of Weibull models or Weibull distribution models for prognosis estimation (Guo et al. 2009; 

H. Sutherland, T. Repoff, M. House 2003). In artificial intelligence based approaches, the history 

of data is trained using algorithms like Recurrent Neural Network (RNN), Support Vector 

Machines (SVM), etc. and later used to predict the remaining useful life of the system. An 

extensive review on artificial intelligence based prognosis is given in (Peng et al. 2010; Liao & 

Köttig 2014).  

A review paper examining the pros and cons of selecting between data-driven method and 

a physical-model based method is given by (An et al. 2015). There are also hybrid methods as 

reviewed in (Liao & Köttig 2014) where two or more of different methods are used in combination 

to predict the remaining useful life of the system.  

Fault Prognosis of CMGs in Satellites: 

Regarding the fault prognosis of CMGs, to the best of author’s knowledge there has been 
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no work done for gimbal motors. Since CMG system has a spin motor any failure prognosis work 

provided related to momentum wheel, reaction wheel or electric motors are reviewed here. An 

experimentally verified study for momentum wheel prognosis for satellites in given in (Jin et al. 

2012). In this work, an extensive experimentation has been done for several months to analyze the 

failure rate of bearings used in momentum wheels. Different on-orbit conditions such as vacuum, 

high temperature and microgravity effects on the remaining useful life of the bearing system were 

studied. This work mainly focussed on studying the degradation of lubricant’s physical and 

chemical properties used in bearings as well as the degradation of contact surfaces due to abnormal 

friction. Using the same measurement parameters a Wiener degradation model based life 

estimation algorithm is provided in (Li et al. 2015). But in terms of small satellites, measuring the 

parameters of the lubricant and surface properties is impractical.  

A prognostic work for momentum wheels using similitude method is given in (Wang et al. 

2016). In this work neural networks are used to develop a data-driven model using the telemetry 

data that has the rotational speed and temperature measurements of the bearings. Later, a Weight 

Application to Exponential Parameters (WAFT) method is used to forecast the RUL of the 

momentum wheel. It is clearly seen from the plots provided in this paper that the wheel rotational 

speed decreases as the momentum wheel degrades. For small satellites, measuring the individual 

bearing rotational speeds of all the motors/bearings requires speed sensors for each wheel.  

Two of the works published by same group of authors (Q. Liu, J. Zhou 2009; Q. Liu, G. 

Jin 2007) dealt with the momentum wheel RUL prediction using Bayesian Reliability techniques 

but the paper is unavailable online and hence no comments can be made about this work. A data 

plot of the thermal subsystem anomalies in thermal system of ISS is given in (Iverson et al. 2012). 

This is due to the degradation of spin motor in CMG used in ISS causing temperature and 

vibrational anomalies. This report discusses the need for developing a data-driven algorithms for 

a spacecraft. A fault prognosis approach for attitude control system is given in (Hua et al. 2013) 

but this work did not used the dynamics of actuators. An electric motor prognosis scheme given 

by (Rocchi et al. 2014) uses accelerometer signals for measuring the degradation. Recent works 

on bearing fault prognosis given by (Zhang et al. 2011; Kim et al. 2012) also uses the accelerometer 

measurements. 
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1.6 Attributes of Data 

Since the thesis deals with the data driven approach, it would be noteworthy to mention some 

of the attributes related to big data. The first one is called Gartner’s Interpretation – 3Vs which 

were given around the year 2004. Later, IBM added one more attribute to the original 3Vs and 

Microsoft added three more attributes to the original 3Vs for maximizing the value of its business. 

The attributes are given as follows (Kaufmann 2016). 

(1) Gartner’s 3Vs: Volume, Velocity, Variety 

(2) IBM’s 4Vs: Volume, Velocity, Variety, Veracity 

(3) Microsoft’s 6Vs: Volume, Velocity, Variety, Veracity, Variability, Visibility 

The definitions for these attributes as given in  (Kaufmann 2016; Gupta 2014) are as follows: 

• Volume represents the amount of historical data that is available. The amount of data 

available increases every year due to Internet of Things (IOT). Currently there are around 

10.5 ZB (Zettabytes) of data and is expected to reach around 35 ZB by the year 2020. 

• Velocity represents the speed with which the data is accessible. In other words it can be 

defined as the frequency of the incoming data that has to be processed 

• Variety of data can be of two types: structured and unstructured. Structured data are well 

defined with the rules. Numbers, text, image are some examples of structured data. 

Unstructured data on the other hand has no rules and can be a mixture of variety of data 

types. 

• Veracity of the data represents the accuracy of the data. Sometimes the available data 

may contain noise and false information which makes it unreliable. 

• Variability refers to the change in meaning of the data. The same data may mean 

something entirely different that it was in the past. This is mostly the case for speech and 

text data.  

• Visibility of data represents the insights that the data can offer. This provides the 

foresight to the problem at hand. 

The volume attribute of data is critical in data-driven model development. More the volume 

of historical data, more information can be extracted from the data. This also adds complexity in 

model training that it requires more computational effort to train a huge volume of data. For 

quicker training of the data-driven model, the volume of data that has to be reduced without any 

loss of information.  



  1.7 Problem Statement 

   

19 

 

1.7 Problem Statement 

Based on the literature survey, the shortcomings of the existing work in the literature has 

been addressed as the problem statements below. 

[PROBLEM 1] – For developing an Input-Output based data-driven model for attitude 

actuators in satellites, dataset with more than 20000 data points are used for training ANN 

(Al-zyoud & Khorasani 2006; Mousavi & Khorasani 2014). But more computational power 

is required for training such a huge volume of dataset onboard satellite or the training has to 

be done in the ground station. Also for a newly launched satellite, such huge volume of 

historical data may not be available. 

[PROBLEM 2] – For the fault detection, the algorithms proposed in the literature are limited 

by (1) use of simple system dynamics that did not consider the motor dynamics of the 

actuators (Cheng et al. 2016; Abreu 2010) (2) use of component level measurements such as 

current, torque etc. (Barua & Khorasani 2007; Choi et al. 2015). In small satellites, installing 

additional sensors for component level measurements may not be possible due to space and 

mass constraints. 

[PROBLEM 3] – To the best of author’s knowledge there is not much literature available on 

fault isolation of a CMG actuator system for satellites. One of the works available (Choi et 

al. 2015), is a model based approach and requires several component level measurement 

information from the motors used in the CMG. 

[PROBLEM 4] – Based on the literature review, the existing fault prognosis methods used 

for momentum wheel prognosis uses component level measurements or lubricant and 

surface property measurements (Jin et al. 2012). The measurements used are vibration 

signals, temperature, lubricant property etc. Installing one or more of these sensors for each 

of the motors used in a small satellite is not practical due to space and mass constraints. Also 

other studies available on bearings and rotating electric components fault prognosis needs 

vibration measurement from individual rotating shafts. 

1.8 Research Objectives 

To address the problems formulated above, the following are the objectives that are set for 

the thesis. 

[OBJECTIVE 1] - To address the Problem 1, the need for large volume of historical dataset 
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has to be reduced. A framework has to be developed that reduces the volume of historical 

data for developing a data driven model. This can be done using one of the following two 

ways. (1) To find a property associated with the data that can reduce the volume of dataset 

required, (2) To find the mapping function that converts the input-output data from one CMG 

to other CMGs. This ensures that the data from one CMG is sufficient for developing a 

model for the entire CMG system. Also in terms of data-driven model training, a 

computationally light data-driven model has to be used so that training may be done onboard 

spacecraft.  

[OBJECTIVE 2] - To address the Problem 2, a fault detection scheme has to be developed 

that can work only with the attitude measurements. Some of the attitude measurement 

sensors available onboard satellites include gyroscope, magnetometer, sun sensor etc. This 

will eliminate the need for performance measurements at a component level. Also the 

complete dynamics of the actuator system has to be used (including satellite and CMG motor 

dynamics model) for developing and verifying the fault detection algorithm. This ensures 

that the dynamics used may closely match with the actual satellite.  

[OBJECTIVE 3] -  To address the Problem 3, a data driven fault isolation algorithm for a 

single gimballed CMG actuator system has to be developed. A single gimballed CMG 

installed in pyramid configuration has 4 gimbal motors and 4 spin motors. The Isolation 

algorithm shall isolate faults with respect to each of the 8 motors used. Like mentioned in 

the Objective 2, the fault isolation algorithm shall work only with the attitude level 

measurements form the satellite. This algorithm shall be developed and verified by using 

complete actuator dynamics.  

[OBJECTIVE 4] - To overcome problem 3, a prognostics algorithm to find the remaining 

useful life of a spin motor has to be developed. This algorithm shall (1) work only with the 

spacecraft attitude rate measurements and does not require any other additional information. 

(2) use a computationally light training model so that the prognosis algorithm can be run 

onboard satellite.  

1.9 Main Contributions 

[CONTRIBUTION 1] - To address the Objective 1, a novel framework for reducing the need 

for a large volume of historical data is provided. This framework fuses data driven model 

with two properties. (1) Symmetric property of data is used for mapping the input-output 
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function when a single CMG is operated, (2) System orientation property of the pyramid 

configured CMG actuator system is used where the data from a single CMG is mapped to 

other three CMGs. A simple feature extraction technique is provided, which reduces noise 

to a certain level and the dependency of data on initial state of the spacecraft. Also the data 

is trained using Chebyshev Neural Network (CNN) which is computationally light algorithm 

in terms of training (Lee & Jeng 1998) when compared to other ANNs. The proposed 

framework reduces the need for the volume of historical data by 93.5%. 

[CONTRIBUTION 2] -  To address Objective 2, an adaptive threshold based fault detection 

algorithm is used for fault detection in CMG. As stated in Objective 1, complete attitude and 

actuator dynamics is used for development and verification of the algorithm. Also the 

proposed algorithm uses only attitude rate measurements from the spacecraft which can be 

easily obtained using an onboard gyroscope. The proposed algorithm works for all types of 

spin motor faults such as abrupt, transient, intermittent faults and the stall fault of the gimbal 

motor. 

[CONTRIBUTION 3] - To address Objective 3, a novel optimization based fault isolation 

formulation is proposed that isolates the fault of all 8 motors used in the CMGs. The 

proposed formulation works only with the attitude rate measurement of the satellite and the 

data-driven model. Complete attitude dynamics is used for the satellite as well as all the 8 

motors to develop and verify the algorithm. Since there are 8 motors, it may fail in 28 = 256 

different ways. Extensive simulations have been performed inducing faults in random to 

verify the accuracy of the algorithm. The proposed algorithm performed with an overall 

accuracy of 93.5% for different cases of fault. 

[CONTRIBUTION 4] - To address Objective 4, an error/residual based scheme for fault 

prognosis is provided which works using the attitude rate measurement and the data-driven 

model. General Path Model (GPM) which is one of the computationally light algorithms 

(Coble & Hines 2008),  is used to estimate the Remaining Useful Life (RUL) of the spin 

motor. Based on simulation from different cases, it can be concluded the algorithm estimates 

the RUL of spin motor with an overall accuracy of 96.17% when 30% prior data is available. 

Complete attitude and actuator dynamics is used for simulating this algorithm.  



  Chapter 1 Introduction 

 

22 

 

1.10 Thesis Outline 

The derivations of satellite attitude kinematics and dynamics equations along with the 

dynamics of motors are provided in Chapter 2. Along with that, the derivation with respect to 

actuator configuration is also provided. In Chapter 3, the proposed data driven model for fault 

detection, feature extraction scheme are outlined and the performance plots are provided. In the 

first part of chapter 4, fault detection algorithm is provided using which all the fault cases of gimbal 

motor and spin motor are simulated. The results are discussed for all cases with the information 

on the speed with which the algorithm detects fault. In the second part of Chapter 4, fault isolation 

algorithm is derived and simulations results for several cases are provided. In Chapter 5, prognosis 

algorithm is given and simulated. The prediction accuracy of the algorithm is provided with sample 

plots. Chapter 4 to 5 follows the DPHM’s order of fault detection, isolation and prognosis. Finally 

in Chapter 6, the summary of contributions and results of the thesis are provided and some of the 

directions for future work are outlined.  
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CHAPTER 2 

2. Satellite and Actuator Dynamics 
 

Since the history of attitude data for satellites that is appropriate for development of a data 

driven FDI and prognosis is unavailable in literature, data has to be generated using the attitude 

dynamics model of the satellite. To explain the derivations of the dynamic model, the coordinate 

frames such as the inertial frame, orbital frame, and body frame are defined first. This is followed 

by providing the derivations of the dynamics and kinematics. The dynamics model is given as 

three sections in this chapter for the ease of understanding of reader. First is the derivation of 

attitude kinematics and dynamics for a satellite that uses a momentum exchange device. Secondly 

the derivation of the angular momentum dynamics specific to the actuator and its configuration is 

provided. In this thesis, single gimballed control moment gyro (CMG) is used in a pyramid 

configuration. Thirdly the derivation of dynamics and kinematics of the motors used for the CMG 

is given. Two types of motor used here. One is the gimbal motor and other is the momentum wheel 

motor/spin motor. Combining all these dynamics equations provides with the complete satellite 

attitude dynamics model.  

2.1 Reference Frames 

To derive the attitude dynamics of the spacecraft, the following four reference frames are 

required: Earth Centered Inertial Frame (ECI), Earth Centered Earth Fixed Frame (ECEF), Local 

Vertical Local Horizontal Frame (LVLH) also called as orbital frame and Satellite Body Frame 

(SBF) (Kumar 2012). All the frames used here are orthogonal, three axis right hand Cartesian 

coordinate system. The spacecraft is considered as a rigid body and the SBF coincides with the 

centre of mass of the spacecraft. 

(1) Earth Centered Inertial Frame (ECI): The frame 𝖑 − 𝑋𝐼𝑌𝐼𝑍𝐼 as mentioned in Figure 2.1 is 

the inertial frame where 𝑋𝐼𝑌𝐼 plane lies in the equator, 𝑋𝐼 points towards the vernal equinox, 

𝑍𝐼 points the earth’s Geographic North Pole and 𝑌𝐼 completes the right hand triad.  

(2) Earth Centered Earth Fixed Frame (ECEF): This body frame of Earth represented as 

𝕰 −  𝑋𝐸𝑌𝐸𝑍𝐸 where the 𝑋𝐸𝑌𝐸 plane lies in the equator, 𝑋𝐸 passes through the prime 
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meridian, 𝑍𝐸 passes through the Geographic North Pole and 𝑌𝐸 completes the right hand 

triad. 

(3) Local Vertical Local Horizontal (LVLH)/Orbital Frame: The frame 𝕺 −  𝑥𝑂𝑦𝑂𝑧𝑂 in Figure 

2.1 represents the orbital frame or LVLH frame which lies on the body centre of spacecraft. 

𝑧𝑂 is along 𝑅⃗  and points towards earth, 𝑥𝑂 points along the orbital velocity vector of the 

spacecraft and 𝑦𝑜 completes the right handed triad. The angle  𝜃 is used for circular orbits 

and true anomaly is used for eccentric orbits. 

(4) Spacecraft Body Frame (SBF): Spacecraft body frame 𝖁 − 𝑥𝐵𝑦𝐵𝑧𝐵 coincides with the 

LVLH frame when the attitude angles, pitch, roll and yaw are zero. The orientation of SBF 

frame with respect to LVLH frame represents the attitude of the spacecraft. 

 

 

Figure 2.1 Reference Frames (Godard 2010) 
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2.2 Satellite Attitude Dynamics 

The rotational dynamics of a satellite that uses momentum exchange devices like Control 

Moment Gyro, Momentum Wheels or Reaction wheels can be given as follows (Tsiotras 2001).  

𝐻̇𝐵𝐼
𝐵 + 𝜔𝐵𝐼

𝐵 × 𝐻𝐵𝐼
𝐵 = 𝜏𝑒 (2.1) 

where 𝐻𝐵𝐼
𝐵 ∈ ℝ3×1 is the total angular momentum of the satellite including the actuator and 𝜔𝐵𝐼

𝐵 ∈

ℝ3×1 is the angular velocity of the satellite with respect to inertial frame expressed in the body 

frame and 𝜏𝑒 ∈ ℝ3×1 is the external torque disturbances. The total angular momentum of the 

satellite can also be given by, 

𝐻𝐵𝐼
𝐵 = 𝐽𝜔𝐵𝐼

𝐵 + ℎ𝑎𝑐𝑡 (2.2) 

𝐻̇𝐵𝐼
𝐵 = 𝐽𝜔̇𝐵𝐼

𝐵 + 𝐽𝜔̇𝐵𝐼
𝐵 + ℎ̇𝑎𝑐𝑡 (2.3) 

where 𝐽 ∈ ℝ3×3 is the total inertia of the satellite including the actuator and ℎ𝑎𝑐𝑡 ∈ ℝ3×1 is the 

angular momentum imparted by the actuator on to the satellite. Substituting equations (2.2) and 

(2.3) in (2.1), the following equation is obtained. 

 

 

 

𝐽𝜔̇𝐵𝐼
𝐵 + 𝐽𝜔̇𝐵𝐼

𝐵 + 𝜔𝐵𝐼
𝐵 × 𝐽𝜔𝐵𝐼

𝐵 + ℎ̇𝑎𝑐𝑡 + 𝜔𝐵𝐼
𝐵 × ℎ𝑎𝑐𝑡 = 𝜏𝑒 (2.4) 

The above equation captures the attitude dynamics of spacecraft with respect to inertial frame 𝖑 

represented in body frame 𝖁. The change in total satellite inertia due to the actuator dynamics is 

considered to be negligible and hence 𝐽̇ = 0. Also for the actuators such as CMG, the inertia along 

the rotation axis is considered while the rotational inertia about other axes are assumed to be 

negligible. Also when the actuators such as CMG are rotating. The equation (2.4) can be rewritten 

as follows to obtain the attitude rate/velocity of the satellite. 

𝜔̇𝐵𝐼
𝐵  = 𝐽−1(𝜏𝑒 − 𝜔𝐵𝐼

𝐵 × 𝐽𝜔𝐵𝐼
𝐵 − ℎ̇𝑎𝑐𝑡 − 𝜔𝐵𝐼

𝐵 × ℎ𝑎𝑐𝑡) (2.5) 

2.3 Satellite Attitude kinematics 

Attitude kinematics provides the relationship between the angular positions with respect to 

the angular velocities obtained from the satellite dynamics equations. The kinematic equations 

provides the actual angular position of the satellite based on the velocity dynamics. To formulate 

attitude kinematics, Quaternion representation is used for its simplicity.  

Satellite (Including Actuator 

Inertia) Component 
Actuator 

Component 
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[
𝑞̇𝑣

𝑞̇4
] =

1

2
 [
𝑞4𝐼 + 𝑞𝑣

×

−𝑞𝑣
𝑇 ] 𝜔𝐵𝑂

𝐵  (2.6) 

𝑞̅ =  [
𝑞𝑣

𝑞4
] = [

𝑒̅ 𝑠𝑖𝑛(
𝜙

2
)

𝑐𝑜𝑠(
𝜙

2
)

]  (2.7) 

where 𝐼 ∈ ℝ3×3 represents a identity matrix, 𝑞̅ ∈ ℝ4×1 represents unit quaternion (Wie 1998), 𝜙 

represents the principal angle and 𝑒̅ ∈ ℝ3×1 = [𝑒1
2   𝑒2

2   𝑒3
2]𝑇 denotes the principal axis related to 

Euler’s theorem. The vector 𝑞𝑣 ∈ ℝ3×1 = [𝑞1 𝑞2 𝑞3]𝑇  denote the quaternion parameters that 

represent the attitude of the spacecraft body frame 𝖁 with respect to the orbital frame 𝕺.  

Quaternion parameter 𝑞4 ∈ ℝ1×1 is constrained by the equation (2.8) and 𝑞𝑣
× ∈ ℝ3×3 is a skew 

symmetric matrix given by equation (2.9) 

𝑞4
2 = 1 − 𝑞𝑣

𝑇𝑞𝑣 (2.8) 

𝑞𝑣
× = [

0 −𝑞3 𝑞2

𝑞3 0 −𝑞1

−𝑞2 𝑞1 0
] (2.9) 

The angular velocity of the satellite with respect to the Inertial frame expressed in 

spacecraft body frame can also be represented as  

𝜔𝐵𝐼
𝐵 = 𝜔𝐵𝑂

𝐵 + 𝜔𝑂𝐼
𝐵  (2.10) 

where 𝜔𝐵𝑂
𝐵 ∈ ℝ3×1 the attitude angular velocity of the satellite with respect to orbital frame 𝕺 

expressed in body frame 𝖁 and 𝜔𝑂𝐼
𝐵 ∈ ℝ3×1 is the satellite’s orbital angular velocity with respect 

to inertial frame 𝖑 expressed in body frame 𝖁. The spacecraft dynamics equation from section 2.2 

provides the attitude rate of spacecraft with respect to inertial frame and it has to be mapped with 

respect to orbital frame so that it is compatible with the quaternion kinematics equations. The 

direction cosine matrix 𝐶𝑂
𝐵 ∈ ℝ3×3 that maps the rotation of the spacecraft body frame with respect 

to the orbital frame is given by 

𝐶𝑂
𝐵 = (𝑞4

2 − 𝑞𝑣
𝑇𝑞𝑣)𝐼 + 2𝑞𝑣

𝑇𝑞𝑣 − 2𝑞4𝑞𝑣
× (2.11) 

The orbital angular velocity of the spacecraft with respect to inertial frame, 𝜔𝑂𝐼
𝐵   can be 

obtained by mapping the magnitude of orbital velocity, 𝜔0 to the inertial frame using the mapping 

matrix 𝐶𝑂
𝐵.  

𝜔𝑂𝐼
𝐵   =  𝐶𝑂

𝐵  [0 𝜔0 0]𝑇 (2.12) 

𝜔0 = 𝜃̇ (2.13) 
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For circular orbits, the orbital velocity is given by 𝜃̇ = √𝜇𝑒/𝑅𝑒
3, where 𝜇 represents the 

earth’s gravitational constant which is equal to 398600 𝑘𝑚3/𝑠2 and 𝑅𝑒 represents the distance of 

satellite from the center of the earth which is equal to 6878 𝑘𝑚 (including the radius of earth 

6378 𝑘𝑚 and the altitude of satellite 500 𝑘𝑚) .  

2.4 External Disturbances Torques 

A spacecraft in Low Earth Orbit is exposed to various disturbances, it generates undesired 

torques affecting the attitude.  Some of the disturbances are due to earth’s gravitational field 

gradient, aerodynamic drag and solar radiation pressure. There may also be some unknown 

disturbances affecting the spacecraft attitude which must be considered. The total disturbance 

torque vector can be given by (Godard et al. 2013) 

𝜏𝑒 = 𝜏𝐺 + 𝜏𝐴 + 𝜏𝑆 + 𝜏𝐷  (2.14) 

Due to the uneven gravitational field on earth, the satellite will be experiencing uneven 

gravitational pull along its length, breadth and height. Also, uneven mass distribution in the 

satellite can cause variations in gravitational forces across its geometry. But, for a small satellite 

the forces due to uneven gravity gradient is assumed to be negligible and only the forces due to 

the uneven mass distribution is considered. The disturbance due to the gravity is given by (Wie 

1998). 

𝜏𝐺 = 3 ∗ 𝜔0
2𝑐3

×𝐽𝑐3 (2.15) 

𝑐3 = 𝑐𝑂
𝐵[0 0 1]𝑇  (2.16) 

The electromagnetic radiation from the sun, imparts a radiation force on any surface that 

is exposed to the sunrays. This causes both orbital and attitude perturbations in a satellite. Small 

satellites are more prone to solar perturbations because of its low rotational inertia. The solar 

radiation pressure for small satellites are given by (Kaplan 1976). 

𝜏𝑆 = 𝑆𝑜𝑙𝑓 [

2𝑒−5(1 − 2 sin(𝜔0𝑡))

1𝑒−3(cos(𝜔0𝑡))

−5𝑒−5(cos(𝜔0𝑡))

] (2.17) 

Based on the worst expected disturbances for a small satellite, the scaling factor for solar 

radiation pressure is given by 𝑆𝑜𝑙𝑓 = 1.7𝑒−6 (Godard et al. 2013).  

In Low Earth orbits, there will be a few air molecules floating around the space which 

causes an aerodynamic drag on the satellites orbiting in high velocities. The aerodynamic drag 

force depends on the surface of the spacecraft that is along the orbital velocity vector. Due to the 
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difference in the drag forces along the surface, a torque is imparted on the spacecraft creating 

attitude perturbations. The atmospheric drag torque for small satellites is given by (Wie 1998). 

𝜏𝐴 = 1.36 𝐴𝑓

[
 
 
 
 
 1 + sin(𝜔0𝑡) +

1

2
sin(2𝜔0𝑡)

−5𝑒−2(4 + 2 sin(𝜔0𝑡) +
1

2
sin(2𝜔0𝑡))

−(1 + sin(𝜔0𝑡) +
1

2
sin(2𝜔0𝑡)) ]

 
 
 
 
 

 (2.18) 

Based on the worst expected disturbances for a small satellite, the scaling factor for 

aerodynamic drag is given by 𝐴𝑓 = 1𝑒−11 (Godard et al. 2013). The unknown disturbance torque 

for small satellites is given by   

𝜏𝑑 = (
1

2
+ ||𝜔𝐵𝑂

𝐵 ||2) [

sin(𝜔0𝑡)

cos(𝜔0𝑡)

cos(𝜔0𝑡)
] (2.19) 

2.5 CMG Dynamics 

The placement of single gimballed CMG in pyramid configuration on a satellite body frame 

is shown in the Figure 2.2. Each CMG component has a gimbal motor, a spin motor and a 

flywheel/momentum wheel. The CMG produces control torques by gimballing the momentum 

wheel to create a change in the angular momentum of the satellite. The control torques are equal 

to the change in angular momentum. The inclination angle 𝛽 = 54.73° is the inclination angle for 

each CMG as shown in Figure 2.2. This angle provides with the near spherical momentum 

envelope for the satellite (Wie et al. 2001) and desirable for a complete attitude control. The angles 

𝛿𝐺𝑀𝑗
, 𝑗 = 1 𝑡𝑜 4 represents the gimbal angle of each gimbal motor. The angular momentum of 

each spin wheel in the gimbals is given by ℎ𝜔𝑗
 ∈ ℝ1×1  , 𝑗 = 1 𝑡𝑜 4.  

ℎ𝜔𝑗
= 𝐽𝜔𝑗

Ω𝜔𝑗  (2.20) 

where, 𝐽𝜔𝑗
 ∈ ℝ1×1 and Ω𝜔𝑗

 ∈ ℝ1×1
 are the inertia and the RPM of each of the flywheels due to the 

spin motors. The momentum generated by each gimbal can be mapped on the spacecraft body 

frame 𝖁 using the Euler angle direction cosine matrices. The rotation matrices 𝑅𝑥 , 𝑅𝑦 represents 

the rotation about the 𝑥 and 𝑦 axes respectively and can be given as follows. 

𝑅𝑥(𝜃) =  [
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

] (2.21) 
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Figure 2.2 Single Gimballed CMGs in Pyramid Configuration 
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𝑅𝑦(𝜃) =  [
cos 𝜃 0 − sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

] 

(2.22) 

Using the rotation matrices, the angular momentum imparted by the momentum wheel 1 on 

spacecraft body frame 𝖁 is given by 

ℎ𝑔𝑖𝑚1 = 𝑅𝑦(−(90 − 𝛽))𝑅𝑥(𝛿𝐺𝑀1
) [

0
ℎ𝜔1

0

] (2.23) 

ℎ𝑔𝑖𝑚1 = [

− cos𝛽 sin 𝛿𝐺𝑀1

cos 𝛿𝐺𝑀1

sin 𝛽 sin 𝛿𝐺𝑀1

] ℎ𝜔1  (2.24) 

where ℎ𝑔𝑖𝑚1 ∈ ℝ3×1 is the angular momentum of the CMG 1 on the satellite, 𝛿𝐺𝑀1
 is the gimbal 

angle due to the actuation of GM 1. Similarly, the angular momentum imparted by other CMGs 

on satellite is given by 

ℎ𝑔𝑖𝑚2 = 𝑅𝑥(90 − 𝛽)𝑅𝑦(𝛿𝐺𝑀2
) [

−ℎ𝜔2

0
0

] (2.25) 

ℎ𝑔𝑖𝑚2 = [

− cos 𝛿𝐺𝑀2

−cos𝛽 sin 𝛿𝐺𝑀2

sin 𝛽 sin 𝛿𝐺𝑀2

] ℎ𝜔2  (2.26) 

ℎ𝑔𝑖𝑚3 = 𝑅𝑦(90 − 𝛽3)𝑅𝑦(−𝛿𝐺𝑀3
) [

0
−ℎ𝜔3

0

] (2.27) 

ℎ𝑔𝑖𝑚3 = [

cos 𝛽 sin 𝛿𝐺𝑀3

−cos 𝛿𝐺𝑀3

sin 𝛽 sin 𝛿𝐺𝑀3

] ℎ𝜔3  (2.28) 

ℎ𝑔𝑖𝑚4 = 𝑅𝑥(−(90 − 𝛽))𝑅𝑦(−𝛿𝐺𝑀4
) [

ℎ𝜔4

0
0

] (2.29) 

ℎ𝑔𝑖𝑚4 = [

cos 𝛿𝐺𝑀4

cos 𝛽 sin 𝛿𝐺𝑀4

sin 𝛽 sin 𝛿𝐺𝑀4

] ℎ𝜔4  (2.30) 

where  ℎ𝑔𝑖𝑚𝑗  ∈ ℝ3×1 𝑎𝑛𝑑 𝛿𝐺𝑀𝑗
, 𝑗 = 1 to 4 corresponds to the CMG 1 to 4. The total angular 

momentum of the CMG configuration on the satellite is the vector sum of the individual CMG 

momentum. The total angular momentum vector is given by (Wie et al. 2001).  

𝐻𝑐𝑚𝑔 = ℎ𝑐𝑚𝑔1 + ℎ𝑐𝑚𝑔2 + ℎ𝑐𝑚𝑔3 + ℎ𝑐𝑚𝑔4 (2.31) 
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𝐻𝑐𝑚𝑔 = [

− cos 𝛽 sin 𝛿𝐺𝑀1

cos 𝛿𝐺𝑀1

sin 𝛽 sin 𝛿𝐺𝑀1

] ℎ𝑤1 + [

−cos 𝛿𝐺𝑀2

−cos 𝛽 sin 𝛿𝐺𝑀2

sin 𝛽 sin 𝛿𝐺𝑀2

] ℎ𝑤2

+ [

cos 𝛽 sin 𝛿𝐺𝑀3

−cos 𝛿𝐺𝑀3

sin 𝛽 sin 𝛿𝐺𝑀3

] ℎ𝑤3 + [

cos 𝛿𝐺𝑀4

cos 𝛽 sin 𝛿𝐺𝑀4

sin 𝛽 sin 𝛿𝐺𝑀4

] ℎ𝑤4 

(2.32) 

where 𝐻𝑐𝑚𝑔 ∈ ℝ3×1 is the total angular momentum of the satellite imparted by CMGs. The above 

equation can be rewritten in matrix form as  

𝐻𝑐𝑚𝑔 = 𝐴ℎ𝑤  (2.33) 

A = [

− cos 𝛽 sin 𝛿𝐺𝑀1

cos 𝛿𝐺𝑀1

sin 𝛽 sin 𝛿𝐺𝑀1

 

− cos 𝛿𝐺𝑀2

−cos 𝛽 sin 𝛿𝐺𝑀2

sin 𝛽 sin 𝛿𝐺𝑀2

 

cos 𝛽 sin 𝛿𝐺𝑀3

−cos 𝛿𝐺𝑀3

sin 𝛽 sin 𝛿𝐺𝑀3

 

cos 𝛿𝐺𝑀4

cos 𝛽 sin 𝛿𝐺𝑀4

sin 𝛽 sin 𝛿𝐺𝑀4

] (2.34) 

ℎ𝑤 = 

[
 
 
 
 
 𝐽𝜔1

Ω𝜔1

 𝐽𝜔2
Ω𝜔2

 𝐽𝜔3
Ω𝜔3

 𝐽𝜔4
Ω𝜔4]

 
 
 
 

 (2.35) 

where 𝐴 ∈ ℝ3×4 is the mapping matrix that transforms the momentum from each of the momentum 

wheels to the spacecraft body frame 𝖁. The rate of change of momentum has to be solved for 

applying it to the dynamics equation of spacecraft. The rate of change of angular momentum is 

given by  

𝐻̇𝑐𝑚𝑔 = 𝐴̇ℎ𝑤 +  𝐴ℎ̇𝑤  (2.36) 

𝐴̇  = [

− cos 𝛽 cos 𝛿𝐺𝑀1

sin 𝛿𝐺𝑀1

sin 𝛽 cos 𝛿𝐺𝑀1

 

− sin 𝛿𝐺𝑀2

−cos 𝛽 cos 𝛿𝐺𝑀2

sin 𝛽 cos 𝛿𝐺𝑀2

 

cos 𝛽 cos 𝛿𝐺𝑀3

−sin 𝛿𝐺𝑀3

sin 𝛽 cos 𝛿𝐺𝑀3

 

sin 𝛿𝐺𝑀4

cos 𝛽 cos 𝛿𝐺𝑀4

sin 𝛽 cos 𝛿𝐺𝑀4

] 

[
 
 
 
 
𝛿̇𝐺𝑀1

𝛿̇𝐺𝑀2

𝛿̇𝐺𝑀3

𝛿̇𝐺𝑀4]
 
 
 
 

 (2.37) 

ℎ̇𝑤 = 

[
 
 
 
 
 𝐽𝜔1

Ω̇𝜔1

 𝐽𝜔2
Ω̇𝜔2

 𝐽𝜔3
Ω̇𝜔3

 𝐽𝜔4
Ω̇𝜔4]

 
 
 
 

 (2.38) 

Here the inclination angle 𝛽 is a constant and the gimbal angles are variable. The momentum wheel 

spin rate is considered as a constant for the CMG system used in this thesis. But the rate of change 

of wheel speed is also considered in the equations as it is required when the spin motor becomes 

faulty. In case of variable CMGs, the speed of the momentum wheel is variable and not constant. 
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2.5.1 Gimbal Motor Dynamics 

Stepper motor can work without any feedback sensors unlike servomotors with high 

precision (Rivas 2005) and are available is small sizes. This makes the stepper motor a good option 

for a CMG (Abreu 2010). The dynamics equations for a two phase and four phase stepper motors 

is given in literature (Krause P 1989; Lyshevski 2008). The rotational load on the stepper motors 

are due to the Frictional Torque 𝜏𝑓𝐺𝑀
, Dynamic load Torque 𝜏𝐿𝐺𝑀

, and the inertia of the load 𝐽𝐿𝐺𝑀
. 

The rotational dynamics of the stepper motor can be given by 

𝜔̇𝐺𝑀 =
1

(𝐽𝐿𝐺𝑀
+ 𝐽𝑟𝐺𝑀

)
 (𝜏𝑒𝐺𝑀

− 𝜏𝑓𝐺𝑀
− 𝜏𝐿𝐺𝑀

) (2.39) 

𝜃̇𝐺𝑀 = 𝜔̇𝐺𝑀  (2.40) 

Where, 𝜏𝑒𝐺𝑀  is the torque produced by the stepper motor, 𝐽𝑟𝐺𝑀  is the rotational inertia of the stepper 

motor, 𝜃𝐺𝑀  is the angular position of the rotor and 𝜔̇𝐺𝑀  is the angular velocity of the stepper motor. 

The frictional torque is given by the equation, 

𝜏𝑓𝐺𝑀
= 𝑏𝑓𝐺𝑀

𝜔𝐺𝑀 + 𝑐𝑓𝐺𝑀
𝑠𝑖𝑔𝑛(𝜔𝐺𝑀) (2.41) 

The terms 𝑏𝑓𝐺𝑀
 𝑎𝑛𝑑 𝑐𝑓𝐺𝑀

 correspond to the viscous and coulomb friction constants of the stepper 

motor respectively. The mechanical dynamics of the motor is given from the equations (2.39) to 

(2.41). Now the electrical dynamics of the motor, such as current and voltage are given below.  

𝐼𝑝̇ℎ𝑎𝑠𝑒,𝐺𝑀 =
1

𝐿𝑤𝐺𝑀

(𝑉𝑝ℎ𝑎𝑠𝑒,𝐺𝑀 − 𝐼𝑝ℎ𝑎𝑠𝑒,𝐺𝑀𝑅𝑤𝐺𝑀
− 𝑉𝑝ℎ𝑎𝑠𝑒,𝑒𝑚𝑓) (2.42) 

where 𝐼𝑝ℎ𝑎𝑠𝑒,𝐺𝑀 is the motor current for each phase, 𝑅𝑤𝐺𝑀
 is the winding resistance of the coil, 

𝐿𝑤𝐺𝑀
 is the winding inductance of the coil and 𝑉𝑝ℎ𝑎𝑠𝑒,𝑒𝑚𝑓 is the back emf induced by each phase 

of the stepper motor due to the rotation of the rotor. For a two phase stepper motor with the phases 

A and B, the back emf voltage can be calculated as follows. 

𝑉𝐴,𝑒𝑚𝑓 = −𝑅𝑇𝐺𝑀𝜓𝑀𝐺𝑀
sin(𝑅𝑇𝐺𝑀𝜃𝐺𝑀)𝜔𝐺𝑀  (2.43) 

𝑉𝐵,𝑒𝑚𝑓 = 𝑅𝑇𝐺𝑀𝜓𝑀𝐺𝑀
sin(𝑅𝑇𝐺𝑀𝜃𝐺𝑀)𝜔𝐺𝑀  (2.44) 

where 𝑅𝑇𝐺𝑀  is the number of rotor pole pairs and 𝜓𝑀𝐺𝑀  is the maximum flux linkage. The linkage 

between the mechanical dynamics and the electrical dynamics of the motor can be given as follows. 

𝜏𝑒𝐺𝑀
= 𝑅𝑇𝐺𝑀𝜓𝑀𝐺𝑀

[−𝐼𝐴,𝐺𝑀 sin(𝑅𝑇𝐺𝑀𝜃𝐺𝑀) + 𝐼𝐵,𝐺𝑀 sin(𝑅𝑇𝐺𝑀𝜃𝐺𝑀)] (2.45) 

 For a stepper motor, 𝑉𝑝ℎ𝑎𝑠𝑒,𝐺𝑀 is the input voltage/control parameter for the motor. The 

current of the motor is not controllable and the stepper motor withdraws the required current based 

on the load. Two phase stepper motor is considered for the study here where 𝑉𝐴,𝐺𝑀 and 𝑉𝐵,𝐺𝑀 are 
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the input phase voltages for the phase A and B respectively. The voltage input scheme for a stepper 

motor is given by the following formula. 

𝑉𝐴,𝐺𝑀,𝑖 = sin (𝛿𝐺𝑀,𝑖 + 90°)  (2.46) 

𝑉𝐵,𝐺𝑀,𝑖 = sin (𝛿𝐺𝑀, 𝑖)  (2.47) 

Where 𝛿𝐺𝑀,𝑖  is the required gimbal angle from the stepper motor at time 𝑖. The parameters used 

for the stepper motor model is given in the following table 

 

Table 2.1 Parameters for Gimbal Motor (Lyshevski 2014) 

Parameter Value 

Viscous friction, 𝑏𝑓𝐺𝑀
  9.2 ∗ 10−4 𝑁𝑚 𝑠 𝑟𝑎𝑑−1 

Coulomb friction, 𝑐𝑓𝐺𝑀
 10−4 𝑁𝑚 

Winding resistance, 𝑅𝑤𝐺𝑀
 0.58  Ω    

Winding inductance, 𝐿𝑤𝐺𝑀
 6.9 ∗ 10−4 𝐻 

No. of rotor pole pairs, 𝑅𝑇𝐺𝑀   50 

Maximum Flux Linkage, 𝜓𝑀𝐺𝑀
 4.9 ∗ 10−3 𝑁𝑚 𝐴−1 

Inertia, 𝐽𝐿𝐺𝑀
+ 𝐽𝑟𝐺𝑀

 8.1 ∗ 10−5 𝑘𝑔 𝑚2 

 

2.5.2 Spin Motor Dynamics 

Momentum wheels are mounted on a spin motor which spins at a constant speed in a CMG 

system. A high-fidelity model for a spin motor available in literature is used here. This high fidelity 

motor model considers the non-linearities and all the parameters such as back electro motive force 

(BEMF), cogging torque, ripple torque etc. One of the space grade motor parameters, ITHACO 

type A by Goodrich is used for this study as given in Table 2.2 (Bialke 1998). There are several 

sub-models in the high-fidelity model of the spin motor. Each of the sub-models are shown in the 

dashed boxes in Figure 2.3. Each of the sub-model loops are formulated as follows 

(a) The EMF torque sub-model is given by 

𝐼𝑏𝑢𝑠𝑆𝑀 =
1

(𝑉𝑏𝑢𝑠𝑆𝑀−1)
(𝐼𝑚

2
𝑆𝑀

𝑅𝐵𝑆𝑀
+ 0.04|𝐼𝑚|𝑉𝑏𝑢𝑠𝑆𝑀 + 𝑃𝑞𝑆𝑀

+ 𝜔𝑆𝑀𝐼𝑚𝑆𝑀
𝐾𝑒𝑆𝑀

) (2.48) 

where the 𝑉𝑏𝑢𝑠𝑆𝑚 & 𝐼𝑏𝑢𝑠𝑆𝑀 are the bus voltage & current, 𝐼𝑚𝑆𝑀
 is the motor current, 𝐾𝑒𝑆𝑀

 is 

the back electro motive force (BEMF) voltage gain, 𝜔𝑆𝑀 is the spin motor angular velocity.  
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(b) The negative feedback viscous friction generated in the bearings can be given by 

𝜏𝑉𝑆𝑀
= (0.049 −  0.002(𝑇𝑆𝑀 + 30))𝜔𝑆𝑀 (2.49) 

(c) The coulomb friction is from the rotation of the bearings 

(d) The negative feedback speed limiter sub-model is to limit the spin motor speed to avoid 

saturation.  

(e) The torque control of the motor is given by the torque gain 𝐾𝑡𝑆𝑀
 which delivers torque 

proportional to the current driver.  

(f) The noise due to variation in the lubrication dynamics is given as follows  

𝜏𝑛𝑜𝑖𝑠𝑒𝑆𝑀
= 𝐽𝑤𝑆𝑀

𝜃𝑎𝑆𝑀
𝜔𝑎𝑆𝑀

2 sin (𝜔𝑎𝑆𝑀 𝑡𝑆𝑀) (2.50) 

 The non-linear high-fidelity model of the spin motor that includes the discontinuous 

function approximations using the sigmoidal functions is given as follows (Sobhani-Tehrani & 

Khorasani 2008).  

𝐼𝑚̇𝑆𝑀
= 𝐺𝑑𝑆𝑀

𝜔𝑑𝑆𝑀
[𝑓𝑢𝑛3 − 𝑓𝑢𝑛5] − 𝜔𝑑𝑆𝑀

𝐼𝑚𝑆𝑀
+ 𝐺𝑑𝑆𝑀

𝜔𝑑𝑆𝑀
𝑉𝑐𝑜𝑚𝑚𝑆𝑀

 (2.51) 

𝜔̇𝑆𝑀 =
1

𝐽𝑤𝑆𝑀

{𝑓𝑢𝑛1 + 𝑘𝑡𝑆𝑀
𝐼𝑚𝑆𝑀

[𝑓𝑢𝑛2 + 1] − 𝜏𝑣𝑆𝑀
𝜔𝑆𝑀 − 𝜏𝑐𝑆𝑀

𝑓𝑢𝑛4𝑆𝑀

+ 𝜏𝑛𝑜𝑖𝑠𝑒𝑆𝑀
} 

(2.52) 

 

 

The approximated functions are given by, 

 

𝑓𝑢𝑛1(𝜔𝑆𝑀) = 𝐶𝑆𝑀𝑠𝑖𝑛 (
𝑁𝑆𝑀𝑡𝑆𝑀

2
𝜔𝑆𝑀) 

(2.53) 

𝑓𝑢𝑛2(𝜔𝑆𝑀) = 𝐵𝑆𝑀𝑠𝑖𝑛(3𝑁𝑆𝑀𝑡𝑆𝑀𝜔𝑆𝑀) (2.54) 

𝑓𝑢𝑛3(𝜔𝑆𝑀, 𝐼𝑚𝑆𝑀
, 𝑉𝑏𝑢𝑠𝑆𝑀) =

exp(−𝑎𝑆𝑀𝑉𝑆𝑀)

1 + exp(−𝑎𝑆𝑀𝑉𝑆𝑀)
𝑉𝑆𝑀 

(2.55) 

𝑓𝑢𝑛4(𝜔𝑆𝑀) =
1 − exp(−𝑎𝑆𝑀𝜔𝑆𝑀)

1 + exp(−𝑎𝑆𝑀𝜔𝑆𝑀)
 

(2.56) 

𝑓𝑢𝑛5(𝜔𝑆𝑀) =
ks𝑆𝑀

(𝜔𝑆𝑀 − 𝜔𝑠𝑆𝑀
𝑓𝑢𝑛4)

2
{

1

1 + exp[−𝑎𝑆𝑀(𝜔𝑆𝑀 − 𝜔𝑠𝑆𝑀
)]

+
1

1 + exp[𝑎𝑆𝑀(𝜔𝑆𝑀 + 𝜔𝑠𝑆𝑀
)]

} 

(2.57) 
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𝑉𝐺𝑀(𝜔𝑆𝑀, 𝐼𝑚𝑆𝑀
, 𝑉𝑏𝑢𝑠𝑆𝑀) 

= 𝑘𝑓𝑆𝑀
[𝑉𝑏𝑢𝑠𝑆𝑀 − 6 −

1

1 + exp(−𝑎𝑆𝑀𝐼𝑏𝑢𝑠𝑆𝑀
)]

(1 + 𝑅𝑖𝑛𝑆𝑀
𝐼𝑏𝑢𝑠𝑆𝑀

)

−
1 − exp(−𝑎𝑆𝑀𝑘𝑒𝑆𝑀

𝜔𝑆𝑀)

1 + exp(−𝑎𝑆𝑀𝑘𝑒𝑆𝑀
𝜔𝑆𝑀)

𝑘𝑒𝑆𝑀
𝜔𝑆𝑀] 

 

 

 

(2.58) 

 In the given functions, 𝑓𝑢𝑛1 and 𝑓𝑢𝑛2 accounts for motor disturbances, 𝑓𝑢𝑛3 accounts for 

the EMF torque limiting sub-model, 𝑓𝑢𝑛4 accounts for the coulomb friction sub-model which is 

obtained by analytical approximation, 𝑓𝑢𝑛5 accounts for speed limiter sub-model and the 𝑉𝑐𝑜𝑚𝑚𝑆𝑀
 

indicates the command voltage. The  sigmoidal parameter 𝑎𝑆𝑀 is taken as 10 based on literature 

(Sobhani-Tehrani & Khorasani 2008) and the sampling time is taken as 𝑡𝑆𝑀 = 0.001𝑠. 

Table 2.2 Parameters of Spin Motor (ITHACO Type ‘A’ Motor) 

Parameter Value 

Coulomb friction, 𝜏𝑐𝑆𝑀
 0.002 𝑁𝑚 

Viscous friction, 𝜏𝑉𝑆𝑀
 3.84 ∗ 10−4 𝑁𝑚/𝑟𝑎𝑑/s 

Drive Gain time constant, 𝜏𝑑𝑆𝑀
 0.245 

Ripple Torque, 𝐵𝑆𝑀 0.22 

Temperature, 𝑇𝑆𝑀 23 °𝐶  

Cogging Torque, 𝐶𝑆𝑀 0 

Torque Noise Frequency, 𝜔𝑎𝑆𝑀
 0.2 𝑟𝑎𝑑/𝑠 

Jitter Angle, 𝜃𝑎𝑆𝑀
 0.05 𝑟𝑎𝑑 

BEMF Nominal, 𝐾𝑒𝑆𝑀
 0.029 𝑉/𝑟𝑎𝑑/𝑠 

Motor Torque Constant, 𝑘𝑡 0.029 𝑁𝑚/𝐴 

Bus Voltage Nominal, 𝑉𝑏𝑢𝑠𝑆𝑀 8 𝑉 

Bridge Resistance, 𝑅𝐵𝑆𝑀
 2 Ω 

Driver Gain, 𝐺𝑑𝑆𝑀
 0.19 𝐴/𝑉 

Number of Motor Poles, 𝑁𝑆𝑀 36 

Input Filter Resistance, 𝑅𝑖𝑛𝑆𝑀
 2 Ω 

Quiescent Bus Power, 𝑃𝑞𝑆𝑀
 3 𝑊 

Driver Bandwidth, 𝜔𝑑𝑆𝑀
 9 𝑟𝑎𝑑/𝑠 

Voltage Feedback Gain, 𝑘𝑓𝑆𝑀
 0.5 𝑉/𝑉 

Over-speed Circuit Gain, 𝐾𝑠𝑆𝑀
 95 

Maximum Wheel Speed, 𝜔𝑆 680 𝑟𝑎𝑑/𝑠 
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Figure 2.3 High Fidelity Model for Spin Motor   

(Bialke 1998; Rahimi et al. 2015) 

2.6 Summary 

The attitude kinematics and dynamics derivations of a satellite, CMGs in pyramid 

configuration and the spin motor & gimbal motors used in CMGs are provided in this chapter. 

These equations are combined together to get a complete attitude kinematics and dynamics of 

satellite.  
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CHAPTER 3  

3. Data Driven Model Development 
 

 In this chapter, a Nonstatistical based (NSAB) approach is used for developing the data 

driven model of the system. In this approach, the data-driven model has to capture the input-output 

dynamics of the plant/system from the historical data. This data-driven model will then be 

compared with the actual performance of the system to generate residuals. The data-driven model 

placement in a DPHM scheme shown in  Figure 3.1. Based on literature research, the main 

challenges for developing and training a data-driven model is the need for a large set of historical 

data. Large set of data from satellites may not be available at the initial stages after launch and also 

training a large dataset requires lot of computational power. In this chapter, these two challenges 

are tackled by developing a novel scheme for reducing the need for a large historical data set. The 

formulations for the data driven model and the performance of the same is provided in this chapter. 

A single gimballed CMG in a pyramid configuration is used as the actuator.  

Plant

Data-Driven 

Model

Inputs Residuals
Fault 

Detection

Fault 

Isolation

Fault Prognosis/

RUL Estimation

FDI – Fault Diagnosis Prognosis

 
Figure 3.1 Placement of Data-Driven Model in a Data Driven DPHM system 

3.1 Proposed Data Driven FDI Algorithm 

The schematic of the proposed data-driven algorithm is shown in Figure 3.2. The model 

development is divided into three stages. The first stage is the data acquisition, second stage is 

developing a data-driven model at the component level (1 CMG), and the third stage is developing 

a data-driven model by mapping the component level model to the entire CMG system in pyramid 

configuration. A feature extraction scheme is also used which is discussed in stage 1. For each 

stage, the formulations and the result plots are provided. 
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Stage 1

Data Acqusition 

[Component 1, Nominal case]

Stage 2

Develop Data Driven 

Model for Component 1

Stage 3

Generate Data Driven Model 

for AOCS Subsystem

f

 

Figure 3.2 Stages of Data Driven Model Development 

3.2 Stage 1 - Data Acquisition and Feature Extraction 

The first step in developing a data driven model is to acquire the historical data from the 

system. For the attitude data acquisition, satellites use two classes of sensors. First type is the 

absolute measurement which provides the absolute attitude position of the spacecraft. Sun Sensor, 

Magnetometer and Star sensor are certain examples of absolute measurement sensors. Absolute 

measurement sensors also requires orbital position of the satellite to determine the attitude 

position. Second type is the relative measurement where the sensor provides the rate of change of 

attitude which will then be utilized to estimate attitude position. For the proposed FDI and 

Prognosis scheme, the attitude rate information is used to develop an input-output data-driven 

model. Attitude rates can be measured onboard satellites using gyroscope which is one of the 

widely used sensors.  

The Data acquisition and feature extraction scheme is provided in Figure 3.3. The attitude 

actuator system discussed in the thesis consists of 4 CMGs in pyramid configuration. Each CMG 

has 1 gimbal motor and 1 spin motor. Hence there is a total of 4 gimbal motors and 4 Spin Motors 

in a pyramid CMG system. As discussed in the introduction of this chapter, the objective of the 

proposed data acquisition scheme is to work with minimal amount of historical data. If the volume 

of data is minimal, it will greatly reduce the training time in developing a data driven model and 

in turn reduce the computational budget. Due to the unavailability of the historical data from the 

literature, the data is generated from the Dynamics model of the spacecraft with added sensor noise 

as if it were acquired from the actual satellite. The simulation parameters used are mentioned in 

Table 3.1. The simulation for data generation is carried out using Simulink.  
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AOCS Subsystem 

Satellite/Plant

f

Subsytem  2 Subsytem  n

CMG 1 CMG 2 CMG 3

Run CMG 1 in the 

operating region 

….

Generated gyroscope 

data acquisition 

Tag the data as 

Nominal Operation, 

CMG 1 

Feature 

extraction

CMG 4

 
Figure 3.3 Data Acquisition and Feature Extraction Scheme  

Table 3.1 Simulation Parameters for Data Acquisition (Only CMG 1 is operated) 

Parameter Value 

Spin Motor Voltage [𝑉𝑆𝑀,1 𝑉𝑆𝑀,2 𝑉𝑆𝑀,3 𝑉𝑆𝑀,4] [5 5 5 5] 𝑉  

Spin Motor Bus Voltage, [𝑉𝑏𝑢𝑠𝑆𝑀,1 𝑉𝑏𝑢𝑠𝑆𝑀,2 𝑉𝑏𝑢𝑠𝑆𝑀,3 𝑉𝑏𝑢𝑠𝑆𝑀,4] [8 8 8 8] 𝑉  

Spin Motor Current Constant, [𝐾𝑡𝑆𝑀,1 𝐾𝑡𝑆𝑀,2 𝐾𝑡𝑆𝑀,3 𝐾𝑡𝑆𝑀,4] [0.029 0.029 0.029 0.029] 𝐴 

Gimbal Motor Voltage, [𝑉𝐺𝑀,1 𝑉𝐺𝑀,2 𝑉𝐺𝑀,3 𝑉𝐺𝑀,4] [2.4 0 0 0] V 

Process Noise Standard Deviation, 𝜎𝑃 

(for 𝑞1, 𝑞2, 𝑞3 and 𝜔1, 𝜔2, 𝜔3) 
10−4  

Measurement Noise Standard Deviation, 𝜎𝑀  

(for 𝜔1, 𝜔2, 𝜔3 measurements) 
10−3 𝑟𝑎𝑑/𝑠 

Satellite Moment of Inertia, 𝐽 [
0.015 0 0

0 0.017 0
0 0 0.020

]  𝑘𝑔 𝑚2 

Flywheel Moment of Inertia, 𝐽𝑊 10−5 𝑘𝑔 𝑚2 

Initial Conditions: [𝑞10
𝑞20

𝑞30] [1 0.25 0] 

Initial Conditions: [𝜔10
𝜔20

𝜔30] [0.01 0.05 −0.03] 

Initial Conditions: [𝛿10
𝛿20

𝛿30
𝛿40] [0 0 0 0] 
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3.2.1 Noise Considerations 

There are several sensors that are used in satellites for attitude determination. Some of the 

popular angular position sensors are magnetometer, sun sensor, star tracker, horizon sensor, etc. 

and angular rate sensor is gyroscope. Each sensor has its own accuracy and limitations. The 

accuracy levels for traditional attitude determination sensors are given in (Griffin 2004). The only 

measurement used throughout the thesis is the attitude rate or attitude angular velocity 

measurements which can be obtained from a MEMS gyroscope. Hence the noise pertaining to the 

gyroscope is considered as measurement noise.  

There are mainly two noises in a gyroscope such as Bias and White Noise as given by 

gyroscope sensor manufacturers (Vectornav 2017). Bias is the output from the gyroscope even 

when it is kept stationary. It is a constant noise and can be determined by acquiring the data when 

the gyroscope is stationary. Then the data is averaged over time to find the bias. Once the value of 

bias noise is identified, it can be constantly subtracted from the real-time gyroscope measurement 

to eliminate the bias error. If not removed, it adds a linearly increasing error while determining 

attitude position from the gyroscope. There is also another term called bias stability which is a 

measure of the average change in bias value over a period of time. Since this is a constant error, it 

is not considered in this thesis and is assumed to be already removed from the measurements. 

White noise, also known as Angular Random Walk (ARW) is a high frequency noise 

caused by thermo-mechanical events (Vectornav 2017). This is an additive Gaussian noise from 

the gyroscope measurements which has a mean of zero and the magnitude of noise denoted by the 

standard deviation. The worst case values for white noise is taken as 𝜎𝑀 =  1 × 10−3 𝑟𝑎𝑑/𝑠 based 

on the experimental results of attitude determination using MEMS gyroscope given by (Carrasco 

2016). The error in (Carrasco 2016) were calculated by applying Allan variance methods to the 

experimental data from a low cost IMU. Hence, for a space grade sensor used in satellites, the 

noise will be lesser than what is considered in the thesis. The process noise is nothing but the errors 

due to the unknown change in the state of the system. For the study, the process noise is assumed 

to be 𝜎𝑃 =  1 × 10−4 𝑟𝑎𝑑/𝑠.  

3.2.2 Data Acquisition 

The gimbal motor 1 is commanded with angles ranging between −81° 𝑡𝑜 81° based on the 

literature review (Lappas et al. 2005; Abreu 2010). This given range can be categorized into four 
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regions namely (i) 0° 𝑡𝑜 81° (ii) 81° 𝑡𝑜 0°, (iii) 0° 𝑡𝑜 − 81° (iv) −81° 𝑡𝑜 0°. These four categories 

are based on the influence of the command angle on the direction of the attitude angular 

acceleration. The direction of angular acceleration may be either clockwise or counter-clockwise 

with respect to each of the satellite body frame 𝑥𝐵𝑦𝐵𝑧𝐵 depending on the region of operation. The 

results of the simulation on operating CMG 1 is shown in Figure 3.4. The next step is to extract 

feature from the raw data that would be useful for developing a data driven model.  

 

Figure 3.4 Data Acquisition by operating CMG 1 

3.2.3 Feature Extraction 

The generated gyroscope measurement data is noisy and the values of angular velocity is 

dependant on the initial angular velocity of the satellite. Hence, it adds a complexity that the data 

driven model has to be developed for all possible intial velocity conditions. The dependancy of the 

data with respect to the intial conditions has to be removed for reducing this complexity. Feature 

extraction has to be performed to make the data independent of the initial conditions as well as 
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remove some level of noise. One of the ways to remove the dependancy of the initial conditions is 

to obtain the derivative of the dataset. If the data driven model is developed with respect to the 

derivative of the data, it removes the dependancy from the initial conditions. The derivative also 

is the angular acceleration which is a direct measure of performance of momentum based attitude 

actuators. 

Calculating the derivative of angular velocity of the satellite may increase the effect of 

noise on the data. To reduce the noise, the sum of the angular velocity is calculated for a time 

window which can be called as feature extraction. The time window is selected as 0.025 𝑠 based 

on the time taken for gimbal motor to rotate one step. Equation (3.1) shows the formulation for 

this feature extraction. The elements of matrix 𝑓𝐶𝑀𝐺1 ,𝑖 represents the feature extracted from 

𝜔1, 𝜔2 and 𝜔3 respectively and 𝑖 represents step count and 𝑁 represents the time window. 

𝑓𝐶𝑀𝐺1,𝑖(𝛿𝐺𝑀1,𝑖) =  

[
 
 
 
 
 
 
 
 
 

∑  𝜔1,𝑛

𝑡

𝑛=𝑡−𝑁

− ∑  𝜔1,𝑛

𝑡−𝑁

𝑗=𝑡−2𝑁

∑  𝜔2,𝑛

𝑡

𝑛=𝑡−𝑁

− ∑  𝜔2,𝑛

𝑡−𝑁

𝑗=𝑡−2𝑁

∑  𝜔3,𝑛

𝑡

𝑛=𝑡−𝑁

− ∑  𝜔3,𝑛

𝑡−𝑀

𝑗=𝑡−2𝑁 ]
 
 
 
 
 
 
 
 
 

 (3.1) 

 The feature values for 𝜔1, 𝜔2 and 𝜔3 are shown in Figure 3.5, Figure 3.6 and Figure 3.7 

respectively. This extracted feature is independant of initial angular velocity and also the noise is 

reduced to a certain level. Based on the graph obtained from the feature extraction, it is visually 

evident that the data is symmetric about the x and y axes in the graph.  

The symmetricity can also be proven mathematically using the skewness formula. Skewness 

is used as a measure of assymmetry of data (Doane & Seward 2011). Skewness is given by  

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑀𝑒𝑎𝑛 − 𝑀𝑒𝑑𝑖𝑎𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 (3.2) 

 For an ideal symmetric data, the skewness must be equal to zero. If the data is noisy, getting 

a value of zero is not possible. For the given case of data here, the skewness values are obtained 

in the ranges from −0.2 𝑡𝑜 0.2 about mean value. Negative skeness means the mean lies on the 

left side of the data and positve skewness means the mean lies on the right side of the data.  
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Figure 3.5 Feature Extraction from 𝝎𝟏 

 

Figure 3.6 Feature Extraction from 𝝎𝟐 

Region I 

 𝛿𝐺𝑀1,𝑖 =  0° 𝑡𝑜 81° 

𝛿𝐺𝑀1,𝑖 > 𝛿𝐺𝑀1,𝑖−1 

 

Region II 

 𝛿𝐺𝑀1,𝑖 =  81° 𝑡𝑜 0° 

𝛿𝐺𝑀1,𝑖 < 𝛿𝐺𝑀1,𝑖−1 

 

Region III 

𝛿𝐺𝑀1,𝑖 =  0° 𝑡𝑜 − 81° 

𝛿𝐺𝑀1,𝑖 < 𝛿𝐺𝑀1,𝑖−1 

 

Region IV  
𝛿𝐺𝑀1,𝑖 = −81° 𝑡𝑜 0° 

𝛿𝐺𝑀1,𝑖 > 𝛿𝐺𝑀1,𝑖−1 

 

Region II 

 𝛿𝐺𝑀1,𝑖 =  81° 𝑡𝑜 0° 

𝛿𝐺𝑀1,𝑖 < 𝛿𝐺𝑀1,𝑖−1 

 

Region I 

 𝛿𝐺𝑀1,𝑖 =  0° 𝑡𝑜 81° 

𝛿𝐺𝑀1,𝑖 > 𝛿𝐺𝑀1,𝑖−1 

 

Region III 

𝛿𝐺𝑀1,𝑖 = 0° 𝑡𝑜 − 81° 

𝛿𝐺𝑀1,𝑖 < 𝛿𝐺𝑀1,𝑖−1 

 

Region IV  
𝛿𝐺𝑀1,𝑖 = −81° 𝑡𝑜 0° 

𝛿𝐺𝑀1,𝑖 > 𝛿𝐺𝑀1,𝑖−1 
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Figure 3.7 Feature Extraction from 𝝎𝟑 

Data of Nominal 

Case, Component 1

Data Set 

‘Region I’

Parse Data into 

Symmetric Sets

Develop Data Driven 

Model for Region I

Develop Data 

Driven Model for 

all Regions

Using Symmetric 

Property

Data Set 

‘Region II’

Data Set 

‘Region III’

Data Set 

‘Region IV’

 

Figure 3.8 Scheme for Developing Data Driven Model - Component Level 

Region IV  
𝛿𝐺𝑀1,𝑖 =  −81° 𝑡𝑜 0° 

𝛿𝐺𝑀1,𝑖 > 𝛿𝐺𝑀1,𝑖−1 

 

Region I 

 𝛿𝐺𝑀1,𝑖 =  0° 𝑡𝑜 81° 

𝛿𝐺𝑀1,𝑖 > 𝛿𝐺𝑀1,𝑖−1 

 

Region II 

 𝛿𝐺𝑀1,𝑖 =  81° 𝑡𝑜 0° 

𝛿𝐺𝑀1,𝑖 < 𝛿𝐺𝑀1,𝑖−1 

 

Region III 

𝛿𝐺𝑀1,𝑖 =  0° 𝑡𝑜 − 81° 

𝛿𝐺𝑀1,𝑖 < 𝛿𝐺𝑀1,𝑖−1 
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3.3 Stage 2 - Data Driven Model Component Level  

The schematic for developing a data driven model for 𝐶𝑀𝐺1 operation (compoent level) is 

shown in Figure 3.8. Since the data is symmetric about both 𝑥 = 0 and 𝑦 = 0, it can be parsed into 

four regions with each data set representing a region of the graph in the Figure 3.4 to Figure 3.7. 

Once the data is parsed into symmetric regions, it is sufficeint to train the data driven model for 

only one of the regions and other three regions can be derived using the symmetric property. The 

data from region I is chosen to be trained with the data driven model for all the features extracted 

from 𝜔1, 𝜔2 and 𝜔3 respectively. By training only for one region, the need for data is reduced one-

fourth. Neural Network models are used to train the data. 

3.3.1 Model Selection 

Artificial Neural Network (ANN) which are inspired from the biological neural networks 

has evolved into many forms involving single to several layer of perceptrons. ANN can 

approximate nonlinear functions accurately if appropriate architecture is used. In developing a data 

driven model, ANNs can be used as an input-output mapping function. A detailed structure of a 

single perception in a neural network is shown in Figure 3.9. Each perceptron will take a set of 

inputs 𝑋1 𝑡𝑜 𝑋𝑛 that is amplified by its corresponding weights 𝑤1 𝑡𝑜 𝑤𝑛. All the amplified inputs 

are summed together and passed through activation function to get the final output from a 

perceptron. Activation function gives a non-linearity to the output. Some of the activation 

functions typically used are Unit Step, Signum, Sigmoid, hyperbolic tangent etc. Generally 

sigmoid functions are used for positive data outputs and hyperbolic tangent function is used for 

both positive and negative outputs. 

 

× 

× 

X1

Xn
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∑ Y = f(∑xiwi)

Activation 
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Figure 3.9 A Single Perceptron Model used in ANN 
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Combination of several perceptrons in different patterns and layers provides with different 

types of neural network architectures. Two major types of neural networks that are seen in 

literatures for input-output mapping are Feed Forward Neural Networks and Recurrent Neural 

Networks (RNN). In feedforward network, the information moves from the input layer to the 

hidden layers and finally to the output layer. In RNNs data propagates both in the forward and 

backward direction based on the network architecture. RNNs are generally popular in time series 

training. A Multilayer Feedforward neural network can approximate nonlinear functions 

accurately but the computational time for data training increases with the number of perceptrons 

used. A single perceptron can only capture linear functions. For non-linear functions or functions 

with many input and output dimensions, single perceptron may not be sufficient to capture the 

dynamics. Adding more layers with several perceptrons between input(s) and output(s) improves 

the nonlinear mapping ability of the ANNs. However, finding the required network structure for a 

particular application is a laborious task. Also increasing the number of perceptrons increases the 

computational time to train the ANN and may also increase the possibility of overfitting. Reducing 

the number of perceptrons may be a computationally efficient choice but it may not approximate 

the function properly. Lots of trial and error has to be done before obtaining a structure that works 

appropriately for the given data. Trial and error can be done by changing the number of perceptrons 

in each layer, changing the layer or changing the connections among the neural network 

architecture. 

To avoid the problem of more computational time on training several layers of ANN, the 

hidden layers may be replaced with higher order inputs so that the non-linear dynamics may be 

captured before the input stage of neural networks. According to Hornik’s theorem, the inputs 

converted to the higher order will be able to capture the non-linear function more effectively just 

with a single layer. These type of ANNs use a function to add higher order dimensionality to the 

input data before feeding it to the neural networks and called as Functional Link Neural Network 

(FLNN). This avoids the need for a complex ANN to capture the non-linearity. 

For the developing a data driven model from the satellite data developed from feature 

extraction, a type of FLNN called Chebyshev Neural Network is used (CNN). The functional link 

used in CNN are called as Chebyshev polynomials. CNNs are used in many areas of function 

approximation problems (Singh et al. 2017) & (Purwar et al. 2007) and classification problems 

(Vyas et al. 2016).  
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3.3.2 Chebyshev Neural Network 

The CNN structure used in this thesis is a single hidden layer network and are explained 

as follows. The first two orders of Chebyshev polynomials can be given as follows 

𝑇0 = 1 (3.3) 

𝑇1 = 𝑥 (3.4) 

Where 𝑇0 and 𝑇1 is the zeroth order and first order Chebyshev polynomial and 𝑥 is the input 

data. The higher orders of the Chebyshev polynomials can be given as follows (Lee & Jeng 1998).  

𝑇𝑖+1 = 2𝑥𝑇𝑖 − 𝑇𝑖−1 (3.5) 

Where x is the input and 𝑇𝑖 represents the Chebyshev polynomial 𝑖. They are sets of orthogonal 

polynomials that are defined as a solutions to Chebyshev differential equation. According to best 

approximation theory, Chebyshev functional expansion is advantageous over other functional 

expansions (Lee & Jeng 1998). Hyperbolic tangent is used as the activation function as the outputs 

contain both positive and negative numbers. The architecture of CNN used for training is shown 

in Figure 3.10. The CNN used here is a single input single output (SISO) architecture. 

Mathematically, the CNN can be represented using the following equation 

𝑠𝑢𝑚 =  ∑𝑇𝑖𝑤𝑖

𝑛

𝑖=0

 (3.6) 

𝑂𝑢𝑡𝑝𝑢𝑡, 𝑦 = tanh(𝑠𝑢𝑚) (3.7) 
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Figure 3.10 Chebyshev Neural Network (CNN) Architecture 
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3.3.3 Data Normalization 

The inputs used here are the commanded gimbal angles |𝛿𝐶𝐺1
| which ranges from 

0° 𝑡𝑜 81°. When these inputs are converted into Chebyshev polynomials, it becomes huge 

numbers. Hence the data is normalized/scaled between -1 and 1. To normalize the Chebyshev 

polynomials, the following formula is used.  

𝑁𝑓𝑎𝑐𝑡𝑜𝑟𝑖
= max(𝑇𝑖) − min (𝑇𝑖)   (3.8) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑇𝑖) =
𝑇𝑖

𝑁𝑓𝑎𝑐𝑡𝑜𝑟𝑖

   (3.9) 

 Each of the Chebyshev polynomial are normalized before multiplying with the weights. 

The Normalization factor 𝑁𝑓𝑎𝑐𝑡𝑜𝑟𝑖
 has to be stored to be used later with the prediction model. 

3.3.4 Model Training 

The most common form of training ANN is supervised learning. In supervised learning, 

Inputs with known outputs are fed into the neural networks. In the first epoch of training, the neural 

networks are initialized with random weights which produces random output. This random output 

will not match with the desired outputs as the network has not be trained yet. Hence the weights 

of the neural network has to be adjusted so that the network output match with the required output.  

To adjust the weight vectors, a learning algorithm has to be developed that can change the 

values of weights at each iteration so that the difference between the output from the network and 

expected output reduces iteratively. Mathematically, the objective is to minimize the error between 

the actual outputs from the neural network with the expected output and can be formulated as error 

function.  The error function can be defined as follows. 

𝐸𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝐸 =
1

2
(𝑓𝐺𝑀1,𝑅𝑒𝑔𝑖𝑜𝑛 𝐼

− 𝑓𝐺𝑀1,𝑅𝑒𝑔𝑖𝑜𝑛 𝐼
)
2

   (3.10) 

Where 𝑓𝐺𝑀1
 is the expected output from the CNN and 𝑓𝐺𝑀1

 is the estimated output from 

the CNN. The most commonly used algorithm for ANN training is the Gradient Descent Back 

Propagation Algorithm (GD-BP). In GD-BP the error from the objective function is propagated 

backwards from output layer to the input layer. While the error is propagating the weights are 

adjusted proportional to its contribution to the error so that the error is reduced at each iteration. 

The formula for gradient calculation using chain rule is given by (LeCun et al. 2015). 

𝛿𝐸

𝛿𝑤𝑖
= −

𝛿𝐸

𝛿𝑦

𝛿𝑦

𝛿𝑠𝑢𝑚

𝛿𝑠𝑢𝑚

𝛿𝑤𝑖
    (3.11) 



  3.3 Stage 2 - Data Driven Model Component Level 

 

49 

 

 The Equation (5.11) provides with the information on the contribution of each weight to 

the error. For the CNN used in the thesis, Equation (5.11) after differentiation of can be given as 

𝛿𝐸

𝛿𝑤𝑖
= −𝐸 ∗ 𝑡𝑎𝑛ℎ′(𝑠𝑢𝑚) ∗ 𝑤𝑖    (3.12) 

 The error gradient for all the weights has to be calculated. This can then be used to update 

the weights. The formula for updating weights is given by (Schmidhuber 2015).  

Δ𝑤𝑖,𝑡  = 𝜂
𝛿𝐸𝑡

𝛿𝑤𝑖,𝑡
    (3.13) 

𝑤𝑖,𝑡+1  = 𝑤𝑖,𝑡 + Δ𝑤𝑖,𝑡     (3.14) 

where 𝜂 is the learning rate. The learning rate is the important parameter as it scales the rate of 

change of the weights from GD-BP algorithm and this parameter directly affects the convergence 

rate. If the learning rate is too small, several iterations are required to converge to the required 

solution. On the other hand if the learning rate is too large, it may lead to the error oscillating 

around the optimal solution leading to a non-optimal solution (Riedmiller & Braun 1993). This 

problem may be avoided by adding another factor called momentum rate as shown in equation 

(5.12)  

𝑤𝑖,𝑡+1  = 𝑤𝑖,𝑡 + 𝜂
𝛿𝐸𝑡

𝛿𝑤𝑖,𝑡
+ Μ Δ𝑤𝑖,𝑡−1  (3.15) 

where Μ is the momentum rate. Momentum parameter scales the influence of the previous error 

gradient to the current iteration. This term may reduce the oscillations and make the learning 

procedure more stable and also quicken the convergence of error function in steep regions. 

However for the current data driven fitting the momentum parameter is not used. Since the 

momentum parameter is also equally dependant on learning rate  improvements may not be 

accomplished in some cases (Riedmiller & Braun 1993).  

3.3.5 Training Results 

Chebyshev neural network of 3rd order is trained using GD-BP algorithm with region I 

data. The inputs are the absolute values of gimbal angles |𝛿𝐶𝐺1
| and the outputs are the extracted 

features from 𝜔1, 𝜔2 𝑎𝑛𝑑 𝜔3 respectively. Online training method is employed in which each 

epoch will have one iteration for each data point. Random numbers from 0 to 1 are used for initial 

population of weights. Training is done in MATLAB software using Dell Precision T3400 

computer with Intel® Core™ 2 Quad 2.39 GHz CPU with 6GB 800MHz, DDR2 ECC SDRAM. 
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Training for each feature took about 0.38 seconds for 50 epochs and a total of around 1.14 seconds 

for a total of all three features with 50 epochs. 

The result of the training and the error convergence plots are shown in Figure 3.11. For all 

the three features, the error convergence happens within 20 epochs. The author tried with higher 

order CNNs which seemed to over fit with the data. Since the data is containing a certain level of 

noise, it is better to avoid overfitting the CNN with the noise dynamics. The CNN with 3rd order 

polynomial, captures the underlying nonlinearity from the data eliminating the noise. The weights, 

𝑁𝑓𝑎𝑐𝑡𝑜𝑟 and the errors are shown in the table below.  

 

Table 3.2 Parameters of CNN 

Feature  𝒊 𝑵𝒇𝒂𝒄𝒕𝒐𝒓  𝑾𝒊 Error Metric, E 

For feature 

extracted from 

𝜔1 

0 0 0.1040 

1.8 × 10−3 
1 81 −0.1047 

2 13.122 × 103 −0.0389 

3 2.126 × 106 −0.0331 

For feature 

extracted from 

𝜔2 

0 0 0.0031 

1.8 × 10−3 
1 81 0.2190 

2 1.312 × 104 −0.0179 

3 2.126 × 106 −0.0483 

For feature 

extracted from 

𝜔3 

0 0 −0.1119 

2.3 × 10−3 
1 81 0.0300 

2 1.312 × 104 0.0503 

3 2.126 × 106 0.0118 

 

 

The errors from the CNN as mentioned in Table 3.2 are in the orders of 10−3. This error 

may be due to the noise from the generated data that is transferred onto the extracted feature. The 

next step is to use the estimated output from neural network and expand it to other regions.  
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Figure 3.11  Results: CNN Training using GD-BP 
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3.3.6 Component Level Model  

In the previous section, the CNN model is developed for the data set from region I. But this 

has to be expanded to other regions to make it as a component level (CMG 1) model. From the 

feature extraction as shown in Figure 3.4 to Figure 3.7, the following conclusion can be made 

about the feature 𝑓𝐶𝑀𝐺1
. Each of the features has positive or negative value that is dependent on 

the region of operation. This the reason for categorizing 𝑓𝐶𝑀𝐺1
 into four regions. The values of 

𝑓𝐶𝑀𝐺1
 on different regions for operation are shown in Table 3.3. 

 

Table 3.3 Effect of Gimbal Motor Operational Region on 𝒇𝑪𝑴𝑮𝟏,𝒊
  

Command angle 

𝜹𝑮𝑴𝟏,𝒊 

Value of 𝒇𝑪𝑴𝑮𝟏,𝒊
 

extracted from 𝝎𝟏 

Value of 𝒇𝑪𝑴𝑮𝟏,𝒊
  

extracted from 𝝎𝟐 

Value of 𝒇𝑪𝑴𝑮𝟏,𝒊
 

extracted from 𝝎𝟑 

Region I 

0° 𝑡𝑜 81° 

𝛿𝐺𝑀1,𝑖 > 𝛿𝐺𝑀1,𝑖−1 

Positive 

(𝜔1 increases)  

Positive 

(𝜔2 increases) 

Negative 

(𝜔3 decreases) 

Region II 

81° 𝑡𝑜 0° 

𝛿𝐺𝑀1,𝑖 < 𝛿𝐺𝑀1,𝑖−1 

Negative 

(𝜔1 decreases) 

Negative 

(𝜔2 decreases) 

Positive 

(𝜔3 increases) 

Region III 

0° 𝑡𝑜 − 81° 

𝛿𝐺𝑀1,𝑖 < 𝛿𝐺𝑀1,𝑖−1 

Negative 

(𝜔1 decreases) 

Positive 

(𝜔2 increases) 

Positive 

(𝜔3 increases) 

Region IV 

−81° 𝑡𝑜 0° 

𝛿𝐺𝑀1,𝑖 > 𝛿𝐺𝑀1,𝑖−1 

Positive 

(𝜔1 increases) 

Negative 

(𝜔2 decreases) 

Negative 

(𝜔3 decreases) 

Effect converted as 

mathemetial 

formulations for all 

regions 

𝑆𝑖𝑔𝑛(𝛿𝐺𝑀1,𝑖 − 𝛿𝐺𝑀1,𝑖−1) 𝑆𝑖𝑔𝑛(|𝛿𝐺𝑀1,𝑖| − |𝛿𝐺𝑀1,𝑖−1|) 𝑆𝑖𝑔𝑛(𝛿𝐺𝑀1,𝑖 − 𝛿𝐺𝑀1,𝑖−1) 

 

 The effect of Gimbal motor operation can also be conveted into mathematical formulation 

as shown in Table 3.3. This formulation is a single equation that can be used to represent the sign 

(positive or negative) of 𝑓𝐶𝑀𝐺1
for all the regions. The sign formulation can be represented in a 

matrix from as represented in Equation (3.16). This matrix has to be multiplied with 
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𝑓𝐶𝑀𝐺1(𝑟𝑒𝑔𝑖𝑜𝑛 𝐼),𝑖 to get the estimate 𝑓𝐶𝑀𝐺1,𝑖 for all the regions as mentioned in Equation (3.17).  

 

𝑓𝐸,𝑖(𝛿𝐺𝑀1,𝑖 , 𝛿𝐺𝑀1,𝑖−1)

=  [

𝑠𝑖𝑔𝑛(𝛿𝐺𝑀1,𝑖 − 𝛿𝐺𝑀1,𝑖−1) 0 0

0 𝑠𝑖𝑔𝑛(|𝛿
𝐺𝑀1,𝑖

| −  |𝛿
𝐺𝑀1,𝑖−1

|) 0

0 0 𝑠𝑖𝑔𝑛(𝛿𝐺𝑀1,𝑖 − 𝛿𝐺𝑀1,𝑖−1)

] 

(3.16) 

𝑓𝐶𝑀𝐺1,𝑖  = fE,i(𝛿𝐺𝑀1,𝑖 , 𝛿𝐺𝑀1,𝑖−1) 𝑓𝐶𝑀𝐺1(𝑟𝑒𝑔𝑖𝑜𝑛 𝐼),𝑖
(𝛿𝐺𝑀1,𝑖)    (3.17) 

 

The results after expansion are shown in Figure 3.12 to Figure 3.14. The estimation from 

the CNN for the first region is expanded to all the other regions. From the results it can be 

concluded that it matches with the data from other regions. Also it does not matter which region 

is taken for training. Any region may be used for training as the data is symmetric with respect to 

both x axis and y axis and the model can be expanded from one region to other thereby using only 

one fourth of the data. 

 

 

Figure 3.12 CNN estimation expanded from region I to all regions 
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Figure 3.13 CNN estimation expanded from region I to all regions 

 

Figure 3.14 CNN estimation expanded from region I to all regions 



  3.4 Stage 3 - Data Driven Model for AOCS Subsystem 

 

55 

 

3.4 Stage 3 - Data Driven Model for AOCS Subsystem 

The scheme for developing data driven model from one CMG to all the other CMGs is shown 

in Figure 3.15. A total of two system properties are used 

1. Orientation of CMG’s 

2. Vector Addition Property of  Angular Velocity 

The CMG system used in spacecraft consists of 4 CMG’s comprising of same type of gimbal 

motors, spin motors and flywheels. Hence the performance of all the CMG’s would be same as 

CMG1. But on the satellite level, the effect of CMG’s performance on attitude are affected by the 

orientation of the CMG’s on satellite. By using the rotation matrices for mapping orientation, the 

data driven model developed for CMG1 can be extended to the other CMG’s using the orientation 

and vector addition property. 

 

Data Driven 

Model for fCMG1

...

Data Driven 

Model for fCMG2

Using System 

Property

Using System 

Property

Data Driven model for 

AOCS Subsystem 

Actuators

+

Data Driven 

Model for fCMG3

Using System 

Property

Data Driven 

Model for fCMG4

 

Figure 3.15 Schematic for Developing Data Driven Model: Component Level 

 

Each CMG is rotated about the spacecraft body 𝑧𝐵 axis with respect to CMG1. The CMG2, 

CMG3 and CMG4 are rotated about 𝑧𝐵 axis with the angles of 90°, 180° 𝑎𝑛𝑑 270° respectively 

with respect to CMG1. The rotation matrix about z axis for a right hand orthogonal Cartesian 

coordinate system is given by  
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𝑅𝑧(𝜃) =  [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] (3.18) 

 The rotation matrix from equation (3.18) can be used to arrive at the formulations for the 

effect of other CMGs on spacecraft from the model of CMG1. The formulations can be given as 

follows.  

𝑓𝐶𝑀𝐺2,𝑖 = 𝑅𝑧(90°)𝑓𝐶𝑀𝐺1,𝑖  (3.19) 

𝑓𝐶𝑀𝐺3,𝑖 = 𝑅𝑧(180°) 𝑓𝐶𝑀𝐺1,𝑖  (3.20) 

𝑓𝐶𝑀𝐺4,𝑖 = 𝑅𝑧(270°) 𝑓𝐶𝑀𝐺1,𝑖 (3.21) 

One of the properties of angular velocity is that the angular velocity vector is additive. The 

angular velocity vector of a system can be given by the vector sum of individual angular velocity 

vectors. Since the feature that is used here is also a measure of angular velocity, the additive 

property of the angular velocity holds true. Hence the data driven model for each CMG can be 

added together in a vector form to get the combined effect of all CMG’s on satellite attitude. The 

final data driven model including all CMG’s are given as follows.  

𝑓𝐶𝑀𝐺 = 𝑓𝐶𝑀𝐺1
+ 𝑓𝐶𝑀𝐺2

+ 𝑓𝐶𝑀𝐺3
+ 𝑓𝐶𝑀𝐺4

 (3.22) 

 This single Equation (3.22) represents the performance of all CMG’s combined. This can 

be used to predict the performance of all the actuators on the spacecraft. Simulation is done to 

check the performance of Equation (3.22) in mimicking the actual performance of the spacecraft. 

The parameters mentioned in Table 3.1 and Table 3.4 are used for simulation. In this simulation 

all the four CMGs are operated with different initial conditions so as to showcase the robustness 

of the extracted feature with respect to the initial coditions. Since the model from CMG 1 is 

mapped to other three CMGs, it is clear that only one fourth of the data is used here. 

 

Table 3.4 Simulation Parameters for Data Driven Model, Subsystem Level. 

Parameter Value 

Gimbal Motor Voltage, [𝑉𝐺𝑀,1 𝑉𝐺𝑀,2 𝑉𝐺𝑀,3 𝑉𝐺𝑀,4] [2.4 0 0 0] V 

Initial Conditions: [𝑞10
𝑞20

𝑞30] [1 0.25 0] 

Initial Conditions: [𝜔10
𝜔20

𝜔30] [0.01 0.05 −0.03] 𝑟𝑎𝑑/𝑠 

Initial Conditions: [𝛿10
𝛿20

𝛿30
𝛿40] [−1.8 45 18 −36]° 
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Figure 3.16 Performance of the Data Driven Model, Subsystem Level 
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The results are shown in Figure 3.16. The entire region of operation of gimbal angles for 

all CMGs are verified in this simulation. As seen from the Figure 3.16, there are slight differences 

with the actual feature and the CNN estimation. This may be due to two reasons. One due to the 

unknown meausurement errors which are not accounted while developing the data driven model 

and other due to the inaccuracies of the model. As long this slight difference in performance does 

not affect the perfomance of the FDI and Prognosis, this difference is acceptable. 

3.5 Conclusion  

The data driven model is developed for the CMG system using the CNN. At stage 1 of 

development, it is clear that only one-fourth of the data is used for developing a component level 

model. At stage 3 of the model development, the model from one CMG is mapped to other CMGs. 

This means that 75% data requirement is eliminated. When combining stage 2 and stage 3 together, 

it is clear that the data-driven model for 4 CMGs can be developed only using one-fourth data from 

one CMG. Hence stage 2 and stage 3 in combination reduces the need for historical data by 

93.75%.   
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CHAPTER 4 

4. Fault Detection and Isolation  
 

In a FDI algorithm of DPHM framework, Fault Detection precedes Fault Isolation. The 

placement of FDI scheme in a DPHM framework is shown in Figure 4.1. There are gimbal motors 

and spin motors in a CMG system, which are rotating electromechanical components and are prone 

to faults and failures. After the onset of fault or failure of an actuator, if controller reconfiguration 

is not made promptly, the satellite may reach an uncontrollable state leading to total loss of 

mission. FDI algorithms must detect and locate the faults in actuator system as soon as it has 

occurred so that it can demand the need for satellite control reconfiguration in a timely manner. 

 

Plant

Data-Driven 

Model

Inputs Residuals
Fault 

Detection

Fault 

Isolation

Fault Prognosis/

RUL Estimation

Fault Diagnosis Prognosis

  

Figure 4.1 Placement of FDI module in a data Driven DPHM system 

In first part of this chapter, fault detection scheme is discussed and simulation results are 

provided. An adaptive threshold based fault detection scheme is used to detect fault. In the second 

part of this chapter, a novel optimization based Fault Isolation scheme is provided. The novelty 

lies on the isolation problem formulation where the data driven model and system orientation 

property equations are derived and fused together to arrive at the required equations. From the 

literature, it is observed that one of the main challenges for a small satellite FDI algorithm is that 

it requires component level measurements such as rotation speed, current, torque etc. from the 

motor. But the small satellites may have a restricted space, mass and data handling budget to install 

and acquire individual measurement data. This problem is addressed in this chapter by developing 

the Fault Detection and Isolation algorithms in such a way that it works only using the satellite 

attitude rate measurements and any other component level measurements are not required. 
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4.1 Fault Detection 

The fault detection scheme used in the study is shown in Figure 4.2. The data driven model 

developed in the previous chapter predicts the performance of the system. To predict the feature, 

the data driven model requires the information of the gimbal command angle and the last 

commanded gimbal angle, i.e. 𝛿𝐺𝑀,𝑖 𝑎𝑛𝑑 𝛿𝐺𝑀,𝑖−1 for all the gimbal motors. Simultaneously, the 

actual performance is measured from the system and compared with data-driven model prediction 

to generate residuals. The residuals are evaluated to detect faults. 

 

System Performance 

Prediction 

(Data Driven Model)

System Performance 

Measurement

+/-

Fault Detection

f

Online Feature 
Extraction

Error

f

Error>threshold

Activate Fault 

Isolation
 

Figure 4.2 Fault Detection Scheme 

4.1.1 Fault Detection Algorithm 

To find out how close the system performs with respect to expected performance form data 

driven model, the residuals are calculated as the difference between the actual performance and 

model performance. Mathematically, the absolute difference between the actual feature, 𝑓𝐶𝑀𝐺,𝑖  ∈

ℝ3×1 and the model predicted feature 𝑓𝐶𝑀𝐺,𝑖  ∈ 𝑅3×1 is calculated. The absolute difference value 

is a 𝑅3×1 matrix and each element in the matrix provides the difference in the values from the 
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features of 𝜔1, 𝜔2 𝑎𝑛𝑑 𝜔3 respectively. The elements in this matrix is summed to find the error. 

The equation (4.1)  represents the error calculation formulation at the timestamp 𝑖 and the 

summation symbol 𝛴𝑀𝑎𝑡 denotes the summation of the elements in the matrix. 

𝐸𝑟𝑟𝑜𝑟𝑖 = ∑ |𝑓𝐶𝑀𝐺,𝑖 − 𝑓𝐶𝑀𝐺,𝑖|
𝑀𝑎𝑡

+ 𝑛𝑜𝑖𝑠𝑒𝑖 (4.1) 

 In an ideal scenario when the system is under nominal operation, error must be equal to 

zero. But due to the random sensor noise and small errors in the data driven model, there will 

always be some magnitude of errors. Hence a threshold has to be used to detect fault in which if 

the error is below threshold then the system is considered to be in nominal operation and 

considered faulty otherwise. The threshold can be constant or adaptive. For a constant threshold 

factor, history of data is required. Constant threshold has to be kept a bit higher than the error 

values obtained in the nominal condition. Since this value is needs historical data, a variable 

threshold factor called adaptive threshold can be used. The adaptive threshold does not require 

historical data and is based on the fact that, for a normally distributed dataset 99.73% of the data 

falls within the standard deviation ±3𝜎 (Grafarend 2006) from the mean. The formulation for 

adaptive threshold is given as follows (Shi et al. 2005).   

𝜇𝑖 = 
1

𝑁
∑ 𝐸𝑟𝑟𝑜𝑟𝑗

𝑖

𝑗=𝑖−𝑁

 (4.2) 

𝜎𝑖 = √
1

𝑁
∑ (𝐸𝑟𝑟𝑜𝑟𝑗

𝑖

𝑗=𝑖−𝑁

− 𝜇𝑖)2     (4.3) 

𝑇ℎ𝑟𝑒𝑠𝑖 = 𝜇𝑖 + 6𝜎𝑖 (4.4) 

where 𝑁 is the adaptive window, 𝜇𝑖 is the mean and 𝜎𝑖 is the standard deviation of the error data. 

The threshold and standard deviation is calculated for every time stamp for detecting fault. 

4.2 Fault Detection Simulation Results 

To evaluate the performance of the fault detection algorithm, simulation is performed for 

examining stall fault of the gimbal motor and abrupt, transient, intermittent and incipient faults of 

the spin motor. The simulations were performed using the Dell Precision T3400 computer with 

Intel® Core™ 2 Quad (Q6600) 2.39 GHz CPU with 6GB 800MHz, DDR2 ECC SDRAM.  

The simulation parameters are shown in Table 4.1. Simulation has been performed with a 
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fault induced in one of the gimbal motors at 𝑡𝑖𝑚𝑒 =  35𝑠 to show the difference between constant 

and adaptive threshold. The constant threshold is selected as 0.2 based on the historical data and 

the adaptive threshold is calculated based on equation (4.4). The results are shown in Figure 4.3. 

It can be seen from the results that the adaptive threshold changes constantly based on the standard 

deviation and mean values of the previous errors. Both the adaptive and constant threshold detects 

the fault at 35𝑠. 

 

Table 4.1 Simulation Parameters for fault detection 

Parameter Value 

Spin Motor Voltage [𝑉𝑆𝑀,1 𝑉𝑆𝑀,2 𝑉𝑆𝑀,3 𝑉𝑆𝑀,4] [5 5 5 5] 𝑉  

Spin Motor Bus Voltage, [𝑉𝑏𝑢𝑠𝑆𝑀,1 𝑉𝑏𝑢𝑠𝑆𝑀,2 𝑉𝑏𝑢𝑠𝑆𝑀,3 𝑉𝑏𝑢𝑠𝑆𝑀,4] [8 8 8 8] 𝑉  

Spin Motor Current Constant, [𝐾𝑡𝑆𝑀,1 𝐾𝑡𝑆𝑀,2 𝐾𝑡𝑆𝑀,3 𝐾𝑡𝑆𝑀,4] [0.029 0.029 0.029 0.029] 𝐴 

Gimbal Motor Voltage, [𝑉𝐺𝑀,1 𝑉𝐺𝑀,2 𝑉𝐺𝑀,3 𝑉𝐺𝑀,4] [2.4 2.4 2.4 2.4] V 

Process Noise Standard Deviation (for 𝑞 and 𝜔) , 𝜎𝑃 10−3 

Measurement Noise Standard Deviation (for 𝑞 and 𝜔), 𝜎𝑀 10−4  

Satellite Moment of Inertia, 𝐽 [
0.015 0 0

0 0.017 0
0 0 0.020

]  𝑘𝑔 𝑚2 

Flywheel Moment of Inertia, 𝐽𝑊 10−5 𝑘𝑔 𝑚2 

Initial Conditions: [𝑞10
𝑞20

𝑞30] [1 0.25 0] 

Initial Conditions: [𝜔10
𝜔20

𝜔30] [0.01 0.05 −0.03] 

Initial Conditions: [𝛿10
𝛿20

𝛿30
𝛿40] [0 0 0 0] 

 

 

Figure 4.3 Comparison of Adaptive and Constant Threshold 
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4.2.1 Gimbal Motor - Stall fault 

The stalling of the gimbal motor is considered in this case. Stalling occurs when the motor 

completely stops rotating/stepping even when it is commanded to rotate. In this simulation stalling 

is simulated by cutting off the command voltage to the gimbal motor.  

The fault profile used for the simulation and the fault detection time is shown in Table 4.2. 

In this case, Gimbal Motor 2 is considered as faulty and the fault is induced at time 12 𝑠. The 

adaptive threshold algorithm detects the fault at 12.02 𝑠. Since this is a software simulation the 

fault is detected almost immediately after the fault has occurred. But on the real hardware, there 

may be delay due to the measurement speeds, command and data handling speed. 

 

Table 4.2 Gimbal Motor - Stall fault profile and detection 

Time (s) 
𝑽𝑮𝑴,𝟐 (V) 

(Command Voltage) 

Change/Fault Detection 

Time (s) 

t < 12 2.4  - 

t > 12 0  12.02 

 

The gimbal angle input commands and the results obtained are shown in Figure 4.4. Form 

the results, it is clear that, as soon as the fault is induced, the system deviates from the nominal 

performance region. Hence, the total error and adaptive threshold suddenly peaks after the onset 

of fault. The adaptive thresholds was able to capture this sudden change in the system as the fault 

goes beyond the 6𝜎 operating zone.  

4.2.2 Spin Motor – Abrupt fault  

Spin motor is considered to be in abrupt fault scenario when the parameter of the spin 

motor system changes its value from one to another at a certain point of time. In this simulation 

case, abrupt fault due to a change in bus voltage of the spin motor 2, 𝑉𝑏𝑢𝑠𝑆𝑀,2 is considered. The 

fault is induced at time 12 𝑠.  

Table 4.3 Spin Motor - Abrupt fault profile and detection 

Time (s) 𝑽𝒃𝒖𝒔𝑺𝑴,𝟐 (V) 
Change/Fault Detection 

Time (s) 

t < 12 8  0 

t > 12 5 12.1 
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In this case the fault is identified at 12.1 𝑠 as shown in Figure 4.5. Even though the fault is 

identified quicker in this case, it is not as quick as the detection of stall fault of the gimbal motor. 

This may be due to the fact that, the fault considered here is not 100% and just a partial fault. 

Hence the error increases gradually and takes slightly more time to detect fault.  

4.2.3 Spin Motor – Transient fault  

Spin motor is considered to be in transient fault scenario when the parameter of the spin 

motor system changes its value from one to another at a certain point of time then coming back to 

nominal state afterwards. In this simulation case, abrupt fault due to change in bus voltage of the 

spin motor 1, 𝑉𝑏𝑢𝑠𝑆𝑀,1 is considered. The fault is induced at time 12 𝑠 𝑡𝑜 15 𝑠. 

Table 4.4 Spin Motor - Transient fault profile and detection 

Time (s) 𝑽𝒃𝒖𝒔𝑺𝑴,𝟏 (V) 
Change/Fault Detection  

Time (s) 

t < 12 8 - 

12 > t > 15 5 12.1 

t > 15 8 15.1 

 

Both the onset of fault and the time it takes to recover from the fault is detected at 0.1 𝑠. 

The results are shown in Figure 4.6. Visually, it can be noted from the figure that the average error 

between the time 12 𝑠 𝑡𝑜 15 𝑠 is higher than the error in nominal condition due to the ongoing 

fault in that time.  

4.2.4 Spin Motor – Intermittent fault  

Spin motor is considered to be in intermittent fault scenario when the parameter of the spin 

motor system changes its value from one to another from time to time. In this simulation case, 

abrupt fault due to change in bus voltage of the spin motor 3, 𝑉𝑏𝑢𝑠𝑆𝑀,3 and 𝐾𝑡𝑆𝑀,3 is considered. The 

faults are induced at time 7 𝑠 𝑡𝑜 10 𝑠, 12 𝑠 𝑡𝑜 14 𝑠 𝑎𝑛𝑑 16 𝑠 𝑡𝑜 18 𝑠 .  

The results are shown in Figure 4.7. In this scenario the onset of faults are detected at 0.5𝑠 

and 0.7𝑠 respectively after the occurrence of fault. This is quicker than the detection of previous 

fault cases of spin motors. This is may be due the fact that in this case both the faults, 𝑉𝑏𝑢𝑠𝑆𝑀,3 and 

𝐾𝑡𝑆𝑀,3 are considered together which increases the magnitude of fault. Hence the fault detection is 

quicker in this case. Visually, it can be noted from the figure that the error between the 
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time 7 𝑠 𝑡𝑜 11 𝑠, 12 𝑠 𝑡𝑜 14 𝑠 and 16 𝑠 𝑡𝑜 18𝑠 is higher than the average error in nominal 

condition due the ongoing faults in that time. 

 

Table 4.5 Spin Motor - Intermittent fault profile and detection 

Time (s) 𝑽𝒃𝒖𝒔𝑺𝑴,𝟑 (V) 
𝑲𝒕𝑺𝑴,𝟑 (𝑨) Change/Fault Detection  

Time (s) 

t <7 8 0.029 - 

7 > t > 11 5 0.020 7.05 

11> t > 12 8 0.029 11.07 

12 > t >14 3 0.020 12.05 

14> t > 16 8 0.029 14.1 

16 > t > 18 5 0.020 16.05 

18 > t > 20 8 0.029 18.07 

 

4.2.5 Spin Motor – Incipient fault  

Spin motor is considered to be in incipient fault scenario when the parameter of the spin 

motor system changes its value incrementally over time. In this simulation case, abrupt fault due 

to change in bus voltage of the spin motor 4, 𝑉𝑏𝑢𝑠𝑆𝑀,4 is considered. The fault is induced as an 

incremental function as shown in the table below.  

 

Table 4.6 Spin Motor - Incipient fault profile and detection 

Time (s) 𝑽𝒃𝒖𝒔𝑺𝑴,𝟒 (V) 
Change/Fault Detection  

Time (s) 

t < 13 8 - 

13 > t > 20 8-0.3(t-13) 13.8s 

 

The results are shown in Figure 4.8. In this scenario the onset of fault is detected at 0.8 𝑠 

after the occurrence of the fault. This fault detection time is the slowest when compared to the all 

the other cases of faults. This was expected as the fault ramps up slowly to create an effect in the 

error in the same rate. Also, from the error plot, it is visually visible that the error increases with 

respect to time after the onset of fault.  
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Figure 4.4 Simulation Results: Stall Fault of Gimbal Motor 
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Figure 4.5 Simulation Results: Abrupt Fault of Spin Motor 
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Figure 4.6 Simulation Results: Transient Fault of Spin Motor 
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Figure 4.7 Simulation Results: Intermittent Fault of Spin Motor 
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Figure 4.8 Simulation Results: Incipient Fault of Spin Motor 
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4.3 Fault Isolation 

Once the fault is detected, it is necessary to locate/isolate the fault to identify which motor 

has failed and assist the controller reconfiguration algorithms appropriately. For a complex 

engineering system with several sub-systems and components, each component has to be 

monitored for fault. Using measurement data from individual components, fault isolation can be 

done by detecting faults at the component level. But in a system like small satellites, it is not always 

possible to measure the performance all the components (motors) individually as it requires lots of 

sensors, data handling and power. 

 

System 

Performance 

Measurement

Error

f

Gimbal 

motor 1 

model

Gimbal 

motor 2 

model

Gimbal 

motor 3 

model

Gimbal 

motor 4 

model

Data Driven Model

Spin 

motor 1 

model

Spin 

motor 2 

model

Spin 

motor 3 

model

Spin 

motor 4 

model

Vector Model

Minimize Error

(Optimization)

Obtain Fault 

Factors

Fault Isolation 

+
--

 

Figure 4.9 Proposed Fault Isolation Scheme 

Developing Fault Isolation algorithms that can work with satellite level measurements to 

isolate faults at a component level is quite challenging task but is ideal for small satellites. The 

system under consideration, i.e., CMG consists a total of 8 components (4 gimbal motors, 4 spin 



   Chapter 4 Fault Detection and Isolation 

 

72 

 

motors). Fault isolation scheme is developed in such a way that it can isolate faults of 8 motors 

only with the attitude rate measurement data and no other additional measurement is required. 

4.3.1 Hierarchical Methodology 

The proposed fault isolation algorithm in this thesis uses a hierarchical approach. This is 

to execute the proposed isolation algorithm only after the fault is detected and not run all the time 

so as to save computational power. The hierarchical scheme is shown in figure. First at a satellite 

level, fault is detected at AOCS subsystem and later the isolation algorithms will be executed to 

detect fault at component level. This hierarchical scheme is shown in Figure 4.10. 

 

Satellite 
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Figure 4.10 Hierarchical Scheme 

4.4 Optimization Problem Formulation:  

A novel optimization based fault isolation algorithm is provided in this thesis which works 

by fusing data driven model with vector decomposition model. The novelty of the algorithm lies 

in the problem formulation. The objective function for the optimization is given by  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖 + ∑ 𝑛𝑜𝑖𝑠𝑒𝑛

𝑖

𝑛=𝑖−𝑁

= ∑ ∑ |𝑓𝐶𝑀𝐺,𝑖 − 𝑓𝐶𝑀𝐺,𝑖|
𝑀𝑎𝑡

𝑖

𝑛=𝑖−𝑁

 (4.5) 

where  𝑓𝐶𝑀𝐺,𝑖 is the feature is extracted from the sensor measurement of the system, 𝑓𝐶𝑀𝐺,𝑖 can be 

called as the expected output, 𝛴𝑀𝑎𝑡 is the summation of the elements of the matrix 

|𝑓𝐶𝑀𝐺,𝑖 − 𝑓𝐶𝑀𝐺,𝑖|, 𝑁 is the summation window and 𝑛𝑜𝑖𝑠𝑒 is the sum of measurement and process 

noise. Each of the motors, whether it is a gimbal motor or a spin motor has an effect on angular 
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velocity. Hence expected output must be affected by all the motors used in CMG. Since angular 

velocity is additive, the angular velocity of the satellite is a sum of individual angular velocities 

imparted by motors on the satellite. It is noteworthy to mention here that the feature used here is 

also a measure of angular velocity and hence the vector properties of angular velocities would be 

preserved. At a high level, the expected output is given as a sum of effect of gimbal motors and 

spin motors. This can be written in equation form as follows. 

𝑓𝐶𝑀𝐺,𝑖 = 𝐹𝐺𝑀 𝑓𝐺𝑀,𝑖
𝑇 + 𝐹𝑆𝑀 𝑓𝐺𝑀,𝑖

𝑇  (4.6) 

where 𝑓𝐺𝑀 ∈ ℝ3×4 is the matrix consisting the effect of all gimbal motors with each column 

representing the expected feature from each gimbal motors and 𝑓𝐺𝑀 ∈ ℝ3×4 is the matrix 

consisting of the effect of all spin motors with each column representing the expected feature from 

each of the spin motors. The fault factor parameters for gimbal motors and spin motors are given 

by 𝐹𝐺𝑀 ∈ ℝ1×4 and 𝐹𝑆𝑀 ∈ ℝ1×4 respectively and these are the variables to be optimized. The 

gimbal motor components of Equation (4.6) can be expanded as follows. 

𝑓𝐺𝑀𝑖
= [𝑓𝐶𝑀𝐺1,𝑖

𝑓𝐶𝑀𝐺2,𝑖
𝑓𝐶𝑀𝐺3,𝑖

𝑓𝐶𝑀𝐺4,𝑖
]  (4.7) 

𝐹𝐺𝑀 = [𝐹𝐺𝑀1
𝐹𝐺𝑀2

𝐹𝐺𝑀3
𝐹𝐺𝑀4]  (4.8) 

 Each of the factors in 𝐹𝐺𝑀1
 𝑡𝑜 𝐹𝐺𝑀4

 represents the fault factor for the gimbal motors from 

1 to 4 respectively. Since gimbal motor is considered to undergo stall fault, i.e., stops performing 

100%, the effect of gimbal motor would be either present if there is no fault (factor 1) or absent if 

there is a fault (factor 0). Since the fault effect for gimbal motor is 100%, the data driven model 

developed in chapter 3 for all the CMG systems, 𝑓𝐶𝑀𝐺1,𝑖
, 𝑓𝐶𝑀𝐺2,𝑖

, 𝑓𝐶𝑀𝐺3,𝑖
 𝑎𝑛𝑑 𝑓𝐶𝑀𝐺4,𝑖

 can be used as 

a gimbal motor model for the equation (4.8). Once optimization finds the fault factors, the 

following logic is used to find if the gimbal motor is faulty or not. 

If  𝐹𝐺𝑀𝑛
= 0 

              𝐺𝑀𝑛 = 𝑓𝑎𝑢𝑙𝑡𝑦 

Else If  𝐹𝐺𝑀𝑛
= 1 

              𝐺𝑀𝑛 = 𝑛𝑜𝑡 𝑓𝑎𝑢𝑙𝑡𝑦 

𝑒𝑛𝑑 

For spin motors, each of the factors in 𝐹𝑆𝑀1
 𝑡𝑜 𝐹𝑆𝑀4

 represents the fault factor of spin 

motors from 1 to 4 respectively. Spin motor does not undergo 100% stop at once. When the fault 

occurs at spin motors, the wheel decelerates over time and hence it creates a change in the angular 
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velocity of the satellite. This change happens independent of the gimbal motor fault. Hence the 

effect of spin motor fault can be modelled separately and has to be added as another variable as 

formulated in equation (4.6). Developing the model for expected output of the spin motors 𝑓𝑆𝑀 is 

discussed below.  

4.4.1 Vector Decomposition Model for Spin Motors 

Spin Motor operates the flywheel at a constant angular velocity that generates angular 

momentum due to gyroscopic effect. This effect has to be formulated mathematically to capture 

the spin motor model.  

 

xB

yB

zB

1GM

1h

w

Change in Magnitude of 

Angular Momentum 

after onset of fault

Spin 

Motor 1

Angular 

Momentum Vector 

for Nominal 

Condition

Angular 

Momentum 

Vector for fault 

Condition



1h

 

Figure 4.11 Effect of Spin Motor Fault in Angular Momentum 

Any spinning wheel produces an angular momentum based on the right hand thumb rule 

as shown in Figure 4.11. The magnitude of angular momentum depends on the inertia and the 

angular velocity of the wheel. As soon as the fault occurs in the spin motor, it reduces the angular 

velocity of the wheel which alters the angular momentum, thereby creating an unintended torque 

on the satellite. This unintended torque can be measured as a change in attitude angular velocity 

of the satellite and also in the extracted feature. This unintended change in angular velocity of the 

spacecraft due to the change in angular momentum of spin motor 1 as shown in Figure 4.11 can 
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be modelled as a unit vector given by the following equation.  

𝑓𝑆𝑀1,𝑖
=  𝑅𝑦(−(90 − 𝛽1))𝑅𝑥(𝛿1) [

0
1
0
] 𝑠𝑓1  = [

− cos 𝛽1 sin 𝛿1

cos 𝛿1

sin 𝛽1 sin 𝛿1

] 𝑠𝑓1 (4.9) 

where 𝑅𝑥 𝑎𝑛𝑑 𝑅𝑦 are the standard 𝑥, 𝑦 rotation matrices for a right hand orthogonal reference 

frame that maps the vector from the frame of reference of flywheel to the satellite body frame. The 

scaling factor, 𝑆𝑓1 is to scale the unit vector into the actual fault magnitude. The scaling factor is 

considered as 𝑆𝑓1 = 1 in this thesis based on simulation results. From the equation (4.9) it is clear 

that the input for this model is only the gimbal command angle. The vector models for other spin 

motors can be given as follows.  

𝑓𝑆𝑀2,𝑖
=  =  𝑅𝑥(90 − 𝛽2)𝑅𝑦(𝛿2) [

−1
0
0

] 𝑠𝑓2 = [

− cos 𝛿2

−cos 𝛽2 sin 𝛿2

sin 𝛽2 sin 𝛿2

] 𝑠𝑓2 (4.10) 

𝑓𝑆𝑀3,𝑖
= 𝑅𝑦(90 − 𝛽3)𝑅𝑦(−𝛿3) [

0
−1
0

] 𝑠𝑓3 = [

cos 𝛽3 sin 𝛿3

−cos 𝛿3

sin 𝛽3 sin 𝛿3

] 𝑠𝑓3 (4.11) 

𝑓𝑆𝑀4,𝑖
= 𝑅𝑥(−(90 − 𝛽4))𝑅𝑦(−𝛿4) [

1
0
0
] 𝑠𝑓4 = [

cos 𝛿4

cos 𝛽4 sin 𝛿4

sin 𝛽4 sin 𝛿4

] 𝑠𝑓4 (4.12) 

The faults due to spin motors, can be written in a matrix form as follows.  

𝑓𝑆𝑀𝑖
= [𝑓𝑆𝑀1,𝑖

𝑓𝑆𝑀2,𝑖
𝑓𝑆𝑀3,𝑖

𝑓𝑆𝑀4,𝑖
]  (4.13) 

𝐹𝑆𝑀 = [𝐹𝑆𝑀1
𝐹𝑆𝑀2

𝐹𝑆𝑀3
𝐹𝑆𝑀4]  (4.14) 

𝑓𝐺𝑀 ∈ ℝ3×4 is the matrix consisting of the effect of all spin motors with each column 

representing the vector output feature of each of the spin motors and 𝐹𝑆𝑀,1 𝑡𝑜 𝐹𝑆𝑀,4 represents the 

fault factors for each of the spin motors from 1 to 4 respectively. The fault factors can be either 0 

or 1. The logic based algorithm to isolate fault is shown below. 

If  𝐹𝑆𝑀𝑛
= 1 

              𝑆𝑀𝑛 = 𝑓𝑎𝑢𝑙𝑡𝑦 

Else If  𝐹𝑆𝑀𝑛
= 0 

              𝐺𝑀𝑛 = 𝑛𝑜𝑡 𝑓𝑎𝑢𝑙𝑡𝑦 

𝑒𝑛𝑑 

If the spin motor is faulty it adds to the effect of angular velocity (fault factor 1) and if the 

spin motor is operating nominally, then there is no effect in angular velocity (fault factor 0). From 
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the equation (4.5)-(4.11), the objective function, and all the necessary models and equations to 

setup an optimization algorithm is derived. The next step is to select an optimization algorithm to 

find the faulty parameters and isolate fault based on the logic algorithms for the gimbal motors 

and the spin motors in a CMG.  

4.5 Optimization Algorithm Selection 

There are two categories in optimization methods such as deterministic methods and 

stochastic methods. Deterministic methods include gradient descent method, Newton’s method, 

brute force search etc. (Horst, Reiner 2013). Stochastic methods include genetic algorithms, 

particle swarm optimization, simulated annealing etc. (Schneider 2006). Since deterministic 

methods move along a least cost path to find the optimal solution, there is a possibility that it may 

get stuck in the local minimum. Stochastic methods on the other hand search for the optimal 

solution in the entire search bounds. The stochastic methods, assures to find global optimal 

solution if iterated enough (Horst, Reiner 2013). Due to the robustness of stochastic methods to 

local minimum, it is decided to use one of the most commonly used stochastic methods, Genetic 

Algorithm.  

4.5.1 Genetic Algorithm 

Genetic Algorithm (GA), is a stochastic optimization method that was first published in 1975 

(Holland 1992). This is based on Darwin’s Evolution theory which states that evolution is based 

on the natural selection and the fittest genetic pool that suits the environment survives for the next 

generation. This concept is mathematically formulated in an iterative way such that the fittest 

optimization parameters for a given objective function survives. The GA formulation creates a 

new set of optimization population (parameters) for every iteration based on the previous 

population and their fitness levels. New population generation from previous population involves 

biology based schemes such as the selection (selection of the best population for the next 

generation), crossover of chromosomes (breeding the current population to get a new set of 

population) and mutations of genes (altering the genes in a chromosome after breeding to get more 

diversity). The schematic of working of genetic algorithm is shown in Figure 4.12 
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Figure 4.12 Genetic Algorithm Optimization Scheme 

4.5.2 Initial Population and Cost function 

A population in an iteration/generation is a set of chromosomes in that generation. The total 

number of variables in a chromosome is equal to the total number of variables to be optimized. 

Each of the variables in a chromosome is called as gene. Initial population has to be generated so 

as to start the first iteration/generation of genetic algorithm. Generally the initial population are 

generated at random that lies within the operating bounds of the optimization parameters.  

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = [𝑔𝑒𝑛𝑒1 𝑔𝑒𝑛𝑒2 … 𝑔𝑒𝑛𝑒𝑛] 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  [𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒1 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒2 … 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑛] 

Each set of chromosome from the initial population is evaluated for its performance based 

on the objective/cost function. Appropriate fitness function is very critical for the genetic algorithm 

optimization and its success.  

4.5.3 Reproduction, Crossover and Mutation 

The main process of evolution happens at this stage of genetic algorithm where the survival 

of the fittest principle from Darwin’s evolution is used. Each iteration in a genetic algorithm is 

called generation. Based on the evolution schemes, the population has to evolve in the best interests 
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of the cost function. This evolved parameters are the new set of population for the next iteration. 

There are three models for evolution such as reproduction, crossover and mutation. The idea 

behind each evolution is formulated in such a way that the population moves one step closer 

towards an optimal chromosome.  

 Reproduction or selection is the method of choosing the best cost chromosome for the next 

generation. The best chromosomes are selected based on the cost performance. The selection of 

best chromosomes ensures that, in the next generation of population the cost will either improve 

or in worst case will remain the same. The new generation of best set of chromosomes that are 

selected after reproduction are also called as elite individuals. 

 The crossover or mating is creation of new generation of chromosomes based on 

reproduction with two chromosomes from the previous generation. This method reproduces by 

mating one or more selected gene(s) of one chromosome with rest of the genes of other 

chromosome thereby generating a new generation of chromosome.  

  Mutation is the last step in the evolution. After each generation of population is derived 

from the previous steps, mutation randomly changes the values of one or more randomly selected 

gene(s) of a chromosome. This random change ensures that the newly generated gene pool is as 

diverse as possible so that the entire sample space of the variable is considered. Mutation reduces 

fast convergence by ensuring the exploration of more range of optimization variables which is 

otherwise eliminated at reproduction and crossover stages.   

4.5.4 Iteration and Stopping Criterion 

At each iteration/generation, the processes of reproduction, crossover and mutation are 

repeated. Since the best gene pool is generated at each iteration, the entire population shifts towards 

the fittest gene pool to satisfy the given cost function. The iteration has to be repeated until the 

stopping criterion is reached. Stopping criterion may be one of the three: Whether the set number 

of iterations have been reached, the cost function has reached to a required value, the average 

change in cost function is constant or very less than the previous change.  

4.6 Fault Isolation Simulation Results 

Based on the optimization formulation in section 4.4, fault isolation algorithm is executed 

using the genetic algorithm function available in MATLAB. The simulations were performed 

using the Dell Precision T3400 computer with Intel® Core™ 2 Quad (Q6600) 2.39 GHz CPU with 
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6GB 800MHz, DDR2 ECC SDRAM. As an example, the simulation is performed considering 

both the Gimbal Motor 1 and Spin Motor 1 is faulty. The convergence of genetic algorithm is 

quick where the optimization algorithm converges to the optimal solution within 5 generations as 

shown in Figure 4.13. Algorithm run time is approximately 0.4 seconds for 30 generations. The 

stopping criterion for this algorithm is provided as 30 generations.  

 

Table 4.7 Simulation Parameters for Fault Isolation Algorithm 

Parameter Value 

Spin Motor Voltage [𝑉𝑆𝑀,1 𝑉𝑆𝑀,2 𝑉𝑆𝑀,3 𝑉𝑆𝑀,4] [5 5 5 5] 𝑉  

Spin Motor Bus Voltage, [𝑉𝑏𝑢𝑠𝑆𝑀,1 𝑉𝑏𝑢𝑠𝑆𝑀,2 𝑉𝑏𝑢𝑠𝑆𝑀,3 𝑉𝑏𝑢𝑠𝑆𝑀,4] 

(Nominal Condition) 
[8 8 8 8] 𝑉  

Spin Motor Bus Voltage, [𝑉𝑏𝑢𝑠𝑆𝑀,1 𝑉𝑏𝑢𝑠𝑆𝑀,2 𝑉𝑏𝑢𝑠𝑆𝑀,3 𝑉𝑏𝑢𝑠𝑆𝑀,4] 

(Fault Condition) 
[3 3 3 3] 𝑉  

Spin Motor Current Constant, [𝐾𝑡𝑆𝑀,1 𝐾𝑡𝑆𝑀,2 𝐾𝑡𝑆𝑀,3 𝐾𝑡𝑆𝑀,4] 

(Nominal Condition) 
[0.029 0.029 0.029 0.029] 𝐴 

Spin Motor Current Constant, [𝐾𝑡𝑆𝑀,1 𝐾𝑡𝑆𝑀,2 𝐾𝑡𝑆𝑀,3 𝐾𝑡𝑆𝑀,4] 

(Fault Condition) 
[0.02 0.02 0.02 0.02] 𝐴 

Gimbal Motor Voltage, [𝑉𝐺𝑀,1 𝑉𝐺𝑀,2 𝑉𝐺𝑀,3 𝑉𝐺𝑀,4] 

(Nominal Condition) 
[2.4 2.4 2.4 2.4] V 

Gimbal Motor Voltage, [𝑉𝐺𝑀,1 𝑉𝐺𝑀,2 𝑉𝐺𝑀,3 𝑉𝐺𝑀,4] 

(Fault Condition) 
[0 0 0 0] V 

Process Noise Standard Deviation (for 𝑞 and 𝜔) , 𝜎𝑃 10−4 

Measurement Noise Standard Deviation (for 𝑞 and 𝜔), 𝜎𝑀 10−3  

Satellite Moment of Inertia, 𝐽 [
0.015 0 0

0 0.017 0
0 0 0.020

]  𝑘𝑔 𝑚2 

Flywheel Moment of Inertia, 𝐽𝑊 10−5 𝑘𝑔 𝑚2 

Initial Conditions: [𝑞10
𝑞20

𝑞30] [0 0 0] 

Initial Conditions: [𝜔10
𝜔20

𝜔30] 
Uniform Distribution: Range, 

Δ = [±0.04 ±0.04 ±0.04] rad/s 

Initial Conditions: [𝛿10
𝛿20

𝛿30
𝛿40] 

Uniform Distribution: Range, 

 Δ = [±81 ±81 ±81 ±81] ° 

Time of fault 
Uniform Distribution: Range, 

Δ = 3s to 8s  
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The simulation parameters are shown in the Table 4.7. All the conditions for nominal and 

faulty conditions that are used for the motor are provided. Since the simulation has to be performed 

for different conditions, a uniform random distribution is used. The range of values for gimbal 

command angles are given as ±81° to simulate the entire sample space of gimbal motor operation. 

The quaternions are not varied as the attitude position information is not an input variable for the 

isolation algorithm and not affected by the attitude position. The time of fault and other values are 

given in Table 4.7. As shown in Figure 4.13, the GA optimization converges close to zero after 

removing the average noise value. This can be calculated from the history of data as 

∑ 𝑛𝑜𝑖𝑠𝑒𝑛
𝑖
𝑛=𝑖−𝑁 = 0.8. Ideally the convergence must be equal to zero, but due to the uncertainties 

in noise and small errors in the data driven model of Gimbal motor, the cost function for an optimal 

solution may never be equal to zero. 

 

Figure 4.13 Genetic Algorithm Optimization Convergence 

 As there are a total of 8 motors, the total number of fault cases would be 28 = 256. In fault 

isolation algorithm, the main challenge is to locate the faulty motor correctly. The results of 

isolation can be shown in the form of a confusion matrix. For ease of displaying results, the fault 

cases are divided as shown in Table 4.8. The cases are divided based on the number of motors that 

becomes faulty at a time. Simulations were performed using the simulation parameters as given in 

Table 4.8 considering any 1 motor becomes faulty, any 2 motors becomes faulty and so on.   

 Each case is simulated for 200 random simulation parameters and the performance of the 
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isolation algorithm is shown in Table 4.8. The accuracy for each case is based on the confusion 

matrix from Table 4.9 to Table 4.16. The algorithm isolates fault with 93.25% accuracy for a total 

of 1600 simulations cases performed with random simulation conditions. It has to be noted that 

the simulation has been performed only for the conditions given in the Table 4.7. The accuracy of 

the algorithm shown in Table 4.8 pertains to the range of the uniformly distributed system 

parameters. Furthermore, if the parameters such as measurement noise, process noise, initial 

attitude angular velocity, number of Monte Carlo simulations, etc., are changed the accuracy of 

the algorithm as presented in Table 4.8 may change. From the results in Table 4.8, it can be seen 

that the proposed algorithm performs with better accuracy when the number of motors that 

becomes faulty increases. This may be due to the fact that the increase in faulty motors reduces 

the redundancy in performance. From the confusion matrix it is clear that the algorithm clearly 

distinguishes between the gimbal motor fault and the spin motor fault. This may be due to the fact 

that the performance of the faulty gimbal motor and the performance of the faulty spin motor are 

different and may not be redundant.  

The algorithm were able to isolate faults in the spin motor more accurately than the gimbal 

motor faults. In terms of GM faults there are cases where the algorithm confuses the fault of GM 

2 with GM 4, etc. This may be due to the fact that, CMG is pyramid configuration is a redundant 

actuator system where in some cases, the fault in one of the motor produces the same change in 

angular momentum in a satellite as if the other motor has become faulty. The confusion in isolation 

occurs in case of redundancy.  

Table 4.8 Performance of Isolation Algorithm 

No. of faulty Motors No. of Cases Accuracy  

1 8𝐶1 = 8 87.63 % 

2 8𝐶2 = 28 85.5 % 

3 8𝐶3 = 56 88 % 

4 8𝐶4 = 70 93.5 % 

5 8𝐶5 = 56 93.5 % 

6 8𝐶6 = 28 98.75 % 

7 8𝐶7 = 8 98.75 % 

8 8𝐶8 = 1 100 % 

 Total Cases  

256 

Overall Accuracy  

  93.25 % 

Note: 𝑛𝐶𝑟 represents the combination formula of n objects taken r at a time 
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Table 4.9 Confusion Matrix: Any 1 Motor becomes faulty 
A

ct
u

al
 Identified  

- GM 1 GM 2 GM 3 GM 4 SM 1 SM 2 SM 3 SM 4 

GM 1 100 0 0 0 0 0 0 0 

GM 2 9 91 0 0 0 0 0 0 

GM 3 3 3 94 0 0 0 0 0 

GM 4 8 17 0 75 0 0 0 0 

SM 1 0 0 0 0 92 8 0 0 

SM 2 0 0 0 0 18 82 0 0 

SM 3 0 0 0 0 0 25 75 0 

SM 4 0 0 0 0 3 6 0 91 

 

Table 4.10 Confusion Matrix: Any 2 Motors becomes faulty 

A
ct

u
al

 Identified  

- GM 1 GM 2 GM 3 GM 4 SM 1 SM 2 SM 3 SM 4 

GM 1 89 11 0 0 0 0 0 0 

GM 2 0 67 0 33 0 0 0 0 

GM 3 10 0 90 0 0 0 0 0 

GM 4 16 8 8 68 0 0 0 0 

SM 1 0 0 0 0 100 0 0 0 

SM 2 0 0 0 0 5 95 0 0 

SM 3 0 0 0 0 4 17 79 0 

SM 4 0 0 0 0 2 1 1 96 

 

Table 4.11 Confusion Matrix: Any 3 Motors becomes faulty 

A
ct

u
al

 Identified  

- GM 1 GM 2 GM 3 GM 4 SM 1 SM 2 SM 3 SM 4 

GM 1 92 8 0 0 0 0 0 0 

GM 2 36 64 0 0 0 0 0 0 

GM 3 18 0 73 9 0 0 0 0 

GM 4 13 0 13 75 0 0 0 0 

SM 1 0 0 0 0 100 0 0 0 

SM 2 0 0 0 0 0 100 0 0 

SM 3 0 0 0 0 0 0 100 0 

SM 4 0 0 0 0 0 0 0 100 
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Table 4.12 Confusion Matrix: Any 4 Motors becomes faulty 
A

ct
u

al
 Identified  

- GM 1 GM 2 GM 3 GM 4 SM 1 SM 2 SM 3 SM 4 

GM 1 100 0 0 0 0 0 0 0 

GM 2 3 93 3 0 0 0 0 0 

GM 3 0 0 93 7 0 0 0 0 

GM 4 0 0 0 93 0 0 0 0 

SM 1 0 0 0 0 90 10 0 0 

SM 2 0 0 0 0 7 93 0 0 

SM 3 0 0 0 0 0 0 95 5 

SM 4 0 0 0 0 0 0 9 91 

 

Table 4.13 Confusion Matrix: Any 5 Motors becomes faulty 

A
ct

u
al

 Identified  

- GM 1 GM 2 GM 3 GM 4 SM 1 SM 2 SM 3 SM 4 

GM 1 97 3 0 0 0 0 0 0 

GM 2 8 84 8 0 0 0 0 0 

GM 3 0 3 84 14 0 0 0 0 

GM 4 0 0 5 95 0 0 0 0 

SM 1 0 0 0 0 97 3 0 0 

SM 2 0 0 0 0 2 98 0 0 

SM 3 0 0 0 0 0 0 98 2 

SM 4 0 0 0 0 0 0 3 95 

 

Table 4.14 Confusion Matrix: Any 6 Motors becomes faulty 

A
ct

u
al

 Identified  

 GM 1 GM 2 GM 3 GM 4 SM 1 SM 2 SM 3 SM 4 

GM 1 100 0 0 0 0 0 0 0 

GM 2 4 96 0 0 0 0 0 0 

GM 3 0 0 100 0 0 0 0 0 

GM 4 0 0 0 100 0 0 0 0 

SM 1 0 0 0 0 100 0 0 0 

SM 2 0 0 0 0 2 98 0 0 

SM 3 0 0 0 0 0 0 100 0 

SM 4 0 0 0 0 0 0 4 96 
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Table 4.15 Confusion Matrix: Any 7 Motors becomes faulty 
A

ct
u

al
 Identified  

 GM 1 GM 2 GM 3 GM 4 SM 1 SM 2 SM 3 SM 4 

GM 1 100 0 0 0 0 0 0 0 

GM 2 4 96 0 0 0 0 0 0 

GM 3 0 0 100 0 0 0 0 0 

GM 4 0 0 0 100 0 0 0 0 

SM 1 0 0 0 0 100 0 0 0 

SM 2 0 0 0 0 2 98 0 0 

SM 3 0 0 0 0 0 0 100 0 

SM 4 0 0 0 0 0 0 4 96 

 

Table 4.16 Confusion Matrix: All 8 Motors becomes faulty 

A
ct

u
al

 Identified  

 GM 1 GM 2 GM 3 GM 4 SM 1 SM 2 SM 3 SM 4 

GM 1 100 0 0 0 0 0 0 0 

GM 2 0 100 0 0 0 0 0 0 

GM 3 0 0 100 0 0 0 0 0 

GM 4 0 0 0 100 0 0 0 0 

SM 1 0 0 0 0 100 0 0 0 

SM 2 0 0 0 0 0 100 0 0 

SM 3 0 0 0 0 0 0 100 0 

SM 4 0 0 0 0 0 0 0 100 

 

4.7 Summary 

In first part of this chapter, the data driven model developed in chapter 3 was utilized to 

develop a threshold based fault detection algorithm. The time of fault detection for all types of 

faults were given in the simulation results. The plots for all cases of fault has been provided. In the 

second part of the chapter, a novel optimization based fault isolation algorithm was proposed and 

the formulations were derived. From extensive simulation results, it was concluded that the 

proposed isolation algorithm performs with 93.25% accuracy for the given random simulation 

conditions.   
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CHAPTER 5 

5. Fault Prognosis 
 

 Prognosis is estimating the remaining useful life of the system. A system is considered to 

be failed if it completely stops performing the required task or the performance is degraded in such 

a way that it is no longer useful for the system. System may degrade due to wear and tear or after 

the onset of fault. In both the cases predicting the degradation/remaining useful life is essential to 

plan the preventive maintenance tasks on time. In satellites, prediction of remaining useful life of 

attitude actuators assists engineers in control reconfiguration and/or other maintenance planning 

promptly. This eliminates the possibility of total loss of mission due to actuator failures. In this 

thesis, degradation of the actuator is considered to occur after the onset of fault and hence the 

placement of prognosis algorithm comes after the FDI module as shown in Figure 5.1.  

 

Plant

Data-Driven 

Model

Inputs Residuals
Fault 

Detection

Fault 

Isolation

Fault Prognosis/

RUL Estimation

Fault Diagnosis Prognositics

  

Figure 5.1 Placement of Fault Prognosis Module in a data Driven DPHM system 

In terms of satellite CMG actuator system, most of the failures happened in the past cases 

are related to momentum/spin wheel motors (Malik 2005). Normally, the space grade spin motors 

are expected to work for the total mission of the satellite or at least 10 – 20 years without any 

reliability issues (Gurrisi 2010). Based on literature review, the works that have been done in the 

past on the prognosis of spin motors are based on component level measurements such as 

temperature, vibration, lubricant properties, etc. Since component level sensors may not be 

available in small satellites, an error based prognosis scheme is developed in this chapter that can 

estimate the remaining useful life of momentum wheel only based on attitude rate measurements 

of the satellite.  
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5.1 Data Driven Prognosis 

As discussed in literature survey of chapter 1, data driven prognosis models are developed 

based on history of run to failure data. In this chapter, the run to failure data is generated manually 

using the dynamic equations from chapter 2 and data-driven model from chapter 3. The scheme 

for data-driven prognosis used in this chapter is shown in Figure 5.2. The history of run to failure 

data is obtained at the first step. Then the feature is extracted from the data as mentioned in 

Equation (3.1) so as to eliminate the dependancy of data on the intial conditions and also to 

eliminate the noise upto a certain level. General path model is used to obtain the apriori model 

parameters for the historical data. Based on the apriori knowledge, any new measurement 

oncoming to General path model will predict the remaining useful life of the spin motor. Each 

stage of the prognosis scheme is explained in the following sections of this chapter. 
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Figure 5.2 Fault Prognosis Scheme 
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5.2 Failure Degradation Model 

The spin motor consists of the motor assembly, bearings, shell etc. The list of failures in 

momentum wheels are shown in Figure 5.3 (Wang et al. 2016). Based on the statistics of history 

of failures in a momentum wheel by (Wang et al. 2016), the highest number of failures have 

occurred due to bearings. It is critical to understand the health of the bearings to understand the 

health of the momentum wheel components. The main causes of bearing wheel assembly failures 

are due to excessive/insufficient lubrication, insufficient/excessive preloading, etc. This affects the 

friction properties of the bearing and thereby creating an undesired frictional torque.  

 

Figure 5.3 Statistics of Momentum Wheel Faults 

The indicators of these faults will be evident in the performance of the spin motor in terms 

of speed, current and the temperature (Wang et al. 2016). The faults due to change in speed and 

current can be modelled using the Spin motor bus voltage 𝑉𝑏𝑢𝑠𝑆𝑀 and the torque gain 𝐾𝑡𝑆𝑀. The 

degradation of these two parameters denote the failure degradation of the spin motors. Hence, to 

generate the history of run to failure data, the degradation of the 𝑉𝑏𝑢𝑠𝑆𝑀 and 𝐾𝑡𝑆𝑀 has to modelled 

(Sobhani-Tehrani & Khorasani 2008). Based on the literature survey on electric motors, rotating 

bodies (Ciandrini et al. 2010; Rocchi et al. 2014; Hacker et al. 2015) and the degradation models 

used (Nguyen et al. 2017), the degradation of the spin motor is modelled as an exponential 

function. The exponential degradation model for the bus voltage 𝑉𝑏𝑢𝑠𝑆𝑀 and the torque gain 𝐾𝑡𝑆𝑀 

is given by  

𝐾𝑡𝑆𝑀_𝑀 = 𝐶1 − 𝑎1 × 𝑒𝑏1𝑡 (5.1) 

𝑉𝑏𝑢𝑠𝑆𝑀_𝑀  = 𝐶2 − 𝑎2 × 𝑒𝑏2𝑡 (5.2) 

where 𝑡 represents the timestamp. In this study, the timestamp is the number of days. The 
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parameters 𝑎1, 𝑎2, 𝑏1 𝑎𝑛𝑑 𝑏2 represents the parameters of the exponential model which controls 

the effect of degradation. The parameters 𝐶1 𝑎𝑛𝑑 𝐶2 represent the onset of fault and are selected 

as 0.02 𝐴 𝑎𝑛𝑑 3 𝑉 respectively from chapter 4. The motor is assumed to reach end of life if either 

the 𝑉𝑏𝑢𝑠𝑆𝑀_𝑀 = 2.25 𝑉 or 𝐾𝑡𝑆𝑀_𝑀 =  0.01 𝐴, whichever is earlier. A sample plot for one of the 

cases of  𝑉𝑏𝑢𝑠𝑆𝑀_ 𝑀 𝑎𝑛𝑑 𝐾𝑡𝑆𝑀_𝑀 degradation model is shown in Figure 5.4. 

 

 

Figure 5.4 Degradation Model 

  

As seen in the Figure 5.4, the 𝐾𝑡𝑆𝑀_𝑀 reaches the failure point after 550 days,  𝑉𝑏𝑢𝑠𝑆𝑀_𝑀 

reaches the failure point around 475 days. In this case, the end of life the spin motor would be 475 

days. 

5.3 Data Acquisition 

Any degradation in the performance of the spin motor affects its rotational velocity thereby 

affecting the momentum capacity of the CMG. This affects the attitude angular velocity of the 

satellite that can be measured as error between the expected performance and the actual 

performance. The error will be proportional to the level of degradation. Using the simulation 

parameters mentioned in the Table 5.1, simulations were performed to collect run to failure data 

of satellite for different cases of exponential model parameters 𝑎1𝑎𝑛𝑑 𝑎2 to understand various 

levels of degradation.  
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Table 5.1 Simulation Parameters for Prognosis Data Collection 

Parameter Value 

Spin Motor Voltage [𝑉𝑆𝑀,1 𝑉𝑆𝑀,2 𝑉𝑆𝑀,3 𝑉𝑆𝑀,4] [5 5 5 5] 𝑉  

Spin Motor Bus Voltage, [𝑉𝑏𝑢𝑠𝑆𝑀,1 𝑉𝑏𝑢𝑠𝑆𝑀,2 𝑉𝑏𝑢𝑠𝑆𝑀,3 𝑉𝑏𝑢𝑠𝑆𝑀,4] [𝑉𝑏𝑢𝑠𝑆𝑀 𝑀𝑜𝑑𝑒𝑙 8 8 8] 𝑉  

Spin Motor Current Constant, [𝐾𝑡𝑆𝑀,1 𝐾𝑡𝑆𝑀,2 𝐾𝑡𝑆𝑀,3 𝐾𝑡𝑆𝑀,4] [𝐾𝑡𝑆𝑀 𝑀𝑜𝑑𝑒𝑙 0.029 0.029 0.029] 𝐴 

Gimbal Motor Voltage, [𝑉𝐺𝑀,1 𝑉𝐺𝑀,2 𝑉𝐺𝑀,3 𝑉𝐺𝑀,4] [2.4 2.4 2.4 2.4] V 

𝐾𝑡𝑆𝑀 𝑀𝑜𝑑𝑒𝑙 parameters [𝐶1 𝑏1] [0.02 𝐴 0.6]  

𝐾𝑡𝑆𝑀 𝑀𝑜𝑑𝑒𝑙 parameter 𝑎1 2 × 10−4 to 10 × 10−4 

𝑉𝑏𝑢𝑠𝑆𝑀 𝑀𝑜𝑑𝑒𝑙 parameters [𝐶2 𝑏2] [3 𝑉 0.6]  

𝑉𝑏𝑢𝑠𝑆𝑀 𝑀𝑜𝑑𝑒𝑙 parameter 𝑎2 3.08 × 10−2 to 15.4 × 10−2 

Process Noise Standard Deviation (for 𝑞 and 𝜔) , 𝜎𝑃 10−3 

Measurement Noise Standard Deviation (for 𝑞 and 𝜔), 𝜎𝑀 10−4  

Satellite Moment of Inertia, 𝐽 [
0.015 0 0

0 0.017 0
0 0 0.020

]  𝑘𝑔 𝑚2 

Flywheel Moment of Inertia, 𝐽𝑊 10−5 𝑘𝑔 𝑚2 

Initial Conditions: [𝑞10
𝑞20

𝑞30] [0 0 0] 

Initial Conditions: [𝜔10
𝜔20

𝜔30] [0.04 0.02 0] 

Initial Conditions: [𝛿10
𝛿20

𝛿30
𝛿40] [0 0 0 0] 

 
Figure 5.5 Run to Failure Data for two cases 
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Feature is extracted from the data based on the Equation (3.1) and the errors are obtained 

using Equation (4.1). Few cases of error measurement due to the degradation of the spin motor 1 

is given in Figure 5.5. As shown in the Figure 5.5, the system reaches end of life at around 275 

days and 475 days for two different cases. Similarly several cases of error values are generated as 

and are collected as history of run to failure data. 

5.4 General Path Model 

General Path Model (GPM) was first proposed for degradation modelling to shift the 

reliability analysis from the time-of-failure analysis to the process-of-failure analysis (Lu et al. 

1993). Generally the reliability estimation is based on the time of failure from accelerated testing 

data. But the general path model estimates the distribution of time of failure for identical 

components. The general path model for degradation of a unit 𝑖 at a time 𝑡 is given by  

𝑦𝑖,𝑡 = 𝜌(𝑡, 𝜙, 𝜃𝑖) + 𝜀𝑖,𝑡 (5.3) 

Where 𝜙 is a vector of effects due to fixed population and 𝜃𝑖 is the effect due to random 

population for the 𝑖𝑡ℎ component and 𝜀𝑖,𝑡 is the standard error term due to measurement. The 

variable, 𝜌 is the degradation function. In order to use the GPM model the following conditions 

must be met (Coble & Hines 2008). 

1. There must be a function/model that could capture the degradation dynamics 𝜌(𝑡, 𝜙, 𝜃𝑖) 

of a system under study. This function may be a data-driven model or physics based 

model. 

2. The history of degradation data must be available and must be from an identical 

component or system. 

3. The historical data must have almost all the data for the entire range of variations of 

individual components and also the data must be collected under similar use. 

4. There must be a specific failure criterion available for the marking the end of life of the 

system.  

The failure criteria may be obtained using the history of run to failure data or may be from 

the engineering experience. 

5.4.1 Criterion for using General Path Model 

A data containing run to failure information of a system must have the following three 

characteristics to be used with general path model: (1) Monotonicity, (2) Prognosability and (3) 
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Trendability (Coble 2010).  

Monotonicity characterizes the trend of the data. The data must have an upward/downward 

trend throughout the degradation time. This means that if the system starts degrading, it should not 

recover from the current degradation level by itself. Recovery is acceptable up to a certain extent 

but may disrupt the GPM prediction. For example, crack propagation in a material is not 

recoverable and is an ideal example for using GPM. But in case of some batteries, they self-heal 

if not used for a certain period of time in which GPM may not work properly. The formula for 

monotonicity is given by (Coble 2010). 

𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 = 𝑚𝑒𝑎𝑛 (
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑑𝑎𝑡𝑎)

𝑛 − 1
−

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑑𝑎𝑡𝑎)

𝑛 − 1
) (5.4) 

where 𝑛 is the total number of data points and 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑑𝑎𝑡𝑎) and 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑑𝑎𝑡𝑎) represents 

the number of positive values and negative values in the data respectively. The monotonicity also 

explains the shape of the curve up to a certain extent. The higher the monotonicity value, the higher 

the discipline of the degradation data in terms of following the upward/downward trend. 

Prognosability is related to the measure of the spread of end/failure values across all the 

run to failure datasets. It is calculated as the ratio of standard deviation of failure values to the 

mean of the difference between failure values with start values. It is given by the following formula 

(Coble 2010). 

Prognosability = exp (
𝜎𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠

𝑚𝑒𝑎𝑛 (𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 − 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠)
)  (5.5) 

The exponential given in the above equation scales the calculated values between 0 and 1. 

The higher the prognosability value, the lower the spread of stopping/failure values and there will 

be no ambiguity for selecting a single stopping criterion value. 

Trendability finds the trend of the data. Monotonicity just finds out if the dataset is 

following an upward trend or lower trend. But trendability calculates the correlation of data with 

respect to time. Monotonicity parameter won’t give a clear picture regarding the noise of the data. 

If the data is noisy, linear correlation is not possible indicating that the slope of data is almost 0. 

The formulation for trendability is given by (Coble 2010) 

Trendability = min (𝑐𝑜𝑟𝑟𝑐𝑜𝑒𝑓𝑓(𝑑𝑎𝑡𝑎)𝑖), 𝑖 = 1 𝑡𝑜 𝑛 (5.6) 

Where 𝑛 represents the total datasets available and 𝑐𝑜𝑟𝑟𝑐𝑜𝑒𝑓𝑓 represents the correlation 

coefficient of each dataset. The minimum correlation gives the worst possible correlation value 

among the entire dataset. The examples for a dataset with good GPM parameters and bad GPM 
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parameters are given in (Coble 2010). For the best possible results from the general path model, 

the values of Monotonicity, Prognosability and Trendability must be close to 1. Generally, for a 

80% noisy dataset, the acceptable values are close to 0.7 (Coble 2010). In the history of run to 

failure datasets obtained for satellite, the values of Monotonicity, Prognosability and Trendability 

were above 0.7. 

5.4.2 Function used for GPM 

Since the degradation model used for data generation is an exponential model, it is natural 

to assume that the same function can be utilized as a general path model function. But as mentioned 

in literature (Coble & Hines 2008), the exponential model is not very robust to noise as compared 

to polynomial models. Hence a quadratic polynomial is used as a function for fitting the run to 

failure data. A general polynomial function is given by the equation 

𝑦 = 𝑐1𝑥
0 + 𝑐2𝑥

1 + ⋯+ 𝑐𝑛𝑥𝑛−1  (5.7) 

where 𝑦  is the predicted output and 𝑥 is the input and 𝑐 is the parameter of the function which has 

to be determined after curve fitting/training. The above equation can be written in matrix form for 

the entire dataset as follows 

𝑌 = 𝐶𝑋  (5.8) 

𝑌 = [𝑦1 𝑦2 … 𝑦𝑚]𝑇    (5.9) 

𝐶 =  [𝑐1 𝑐2 … 𝑐𝑛]𝑇   (5.10) 

 𝑋 =  [

𝑥11 𝑥12 … 𝑥1𝑛

𝑥21 𝑥22 … 𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] (5.11) 

where m represents the number of datasets and n represents the number of polynomials used. To 

curve fit a data by using the function given in equation (5.8), the parameters matrix 𝐶 has to be 

obtained. Using the least squares error method, parameter can be obtained as  

𝐶̂ = (𝑋𝑇Σy
−1 𝑋)

−1
𝑋𝑇Σy

−1𝑌  (5.12) 

Σy =  

[
 
 
 
 
𝜎𝑦1

2 0 … 0

0 𝜎𝑦2
2 … 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎𝑦𝑚

2 ]
 
 
 
 

 (5.13) 

where 𝐶̂ is the estimated parameter matrix after curve fitting and the Σy variance-covariance noise 
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matrix that gives the noise information for each entry in the 𝑌 matrix. The variance for each entry 

in y can be calculated using the historical run to failure dataset.  

5.5 Curve Fit Results  

Based on the formulations provided in section 5.4.2, the dataset was fit and the parameters 

obtained are given in Table 5.2. Since this is a quadratic fit, there will be three parameters. The 

parameter 𝑐1 is a constant term in the polynomial function.  This parameter is a representative of 

the average starting value of the dataset or in other words the initial level of degradation. Since the 

variance is very low for parameter 1, this means that the initial fault level for all the data are almost 

equal. This was expected since the dataset used here all start with same level of initial fault. This 

table of parameters are the apriori information for the prognostic GPM model. The fit results for 

few cases are shown in Figure 5.6 and Figure 5.7. 

Table 5.2 Curve fit Results/Apriori Parameters 

Parameter Mean(Parameter),𝜇𝑐  Variance, 𝜎𝑐
2 

𝑐1 0.1057 1.1085 × 10−5 

𝑐2 −3.1227 × 10−5 4.9156 × 10−10 

𝑐3 3.8692 × 10−7 2.8676 × 10−14 

 

Figure 5.6 GPM fit : Case 1 
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Figure 5.7 GPM fit : Case 2 

5.6 Bayesian Updating 

In a real-time system, only partial data will be available as the system just started degrading. The 

Online Prediction results using the partial data is shown in Figure 5.8. This is not predicting the 

RUL appropriately as the few data points does have a particular trend to follow. Bayesian updating 

technique will be helpful in these cases. Bayesian updating scheme allows the GPM model to use 

the apriori parameter information from Table 5.2 and use them for the online prediction. The 

formulation for using Bayesian update procedure in  a quadratic function is given in (Coble 2010). 

Additional information on Bayesian statistics can be found in literature (LOUIS 2000; Gelman, 

A., J. Carlin, H. Stern 2004). The formulation for Bayesian updating is given below. The matrix 

𝑌𝐵
 represents the output matrix with Bayesian updating, 𝑋𝐵is the input matrix with bayesian 

updating and Σy
𝐵

 is the variance covariance noise matrix with bayesian updating.  

𝑌𝐵 = [𝑦1 𝑦2 ⋯ 𝑦𝑚 𝜇
𝑐1

𝜇
𝑐2

⋯ 𝜇
𝑐𝑛
 ] (5.14) 

 𝑋𝐵 = [
𝑋𝑚×𝑛

𝐼𝑛×𝑛
] (5.15) 

Σy
𝐵 =  [

Σy𝑚×𝑚
0𝑚×𝑛

0𝑛×𝑚 Var𝑛×𝑛

],𝑉𝑎𝑟 = 𝑑𝑖𝑎𝑔[𝜎𝑐1
2 𝜎𝑐2

2 ⋯ 𝜎𝑐𝑛
2 ]  (5.16) 
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Timestamp (Day) 

Figure 5.8 Prediction Without Bayesian Update 

 

Timestamp (Day) 

Figure 5.9 Prediction With Bayesian Update 
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Apriori parameters must be added on the output matrix as shown in the equation (5.14). 

The variance of the apriori parameters must be added in the variance-covariance noise matrix as 

shown in the equation (5.16). And finally an identity matrix is added to the Input matrix as shown 

in equation (5.15). This type of formulation ensures that the apriori parameters are utilized 

whenever less data is available for real-time prediction. Figure 5.9 shows the prediction of RUL 

of spin motor with Bayesian updating.  

5.6.1 Stopping Criterion 

The failure/stopping criterion determines the end point of failure while prediction. The 

failure criterion of the general path model is selected based on the history of failure data. If the 

failure criterion is high, the prediction model may predict the end of life higher than the actual 

value and it is not desirable. A threshold of 0.14 is taken based on the average of upper 90% 

distribution of failure values. This will give a better reliability and may avoid overestimation of 

RUL (Coble 2010). 

 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 =  0.14  (5.17) 

  

5.7 RUL prediction and Results 

The RUL prediction is run for three sample cases and the results are tabulated in Table 5.3. 

It is clear from the table that, the performance accuracy increases with the increase in available 

data. This is due to the fact that as more data becomes available, the prediction algorithm gets more 

information on the current degradation dynamics to predict the performance. When 20% of data is 

available the accuracy is around 87% but when 30% data is available, the accuracy suddenly 

increases to 96%. When available data is 20%, the current degradation dynamics would be difficult 

to comprehend by the GPM model and the prediction is mostly based on the apriori information. 

If 30% data is available, the performance accuracy improves to 96.17% as more information on 

degradation is available for the GPM to comprehend. The more the data, the prediction accuracy 

is better. The plots of RUL prediction for few sample cases are shown from Figure 5.10 to Figure 

5.12. The prediction was performed using MATLAB tool using the Dell Precision T3400 computer 

with Intel® Core™ 2 Quad (Q6600) 2.39 GHz CPU with 6GB 800MHz, DDR2 ECC SDRAM. 

The computational time for one prediction from initialization to results calculation takes around 

0.3s. 
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Table 5.3 RUL Prediction Results for different levels of available data 

Random Cases 
TRUE 

RUL 

GPM + Bayesian Estimated RUL 

With 20% 

available data 

With 30% 

available data 

With 50% 

available data 

1 382 299 364 396 

2 306 278 302 311 

3 292 268 276 298 

Accuracy % - 87 % 96.25% 98.5% 

 

In a statistical perspective of prediction, there is a measure called Prediction Interval (PI) 

which is a measure of upper and lower bounds of confidence intervals for prediction. These values 

provide with the estimate of confidence intervals for future observations based on the required 

confidence. The formula for prediction interval is given by  

𝑃𝐼 =  𝑀𝑒𝑎𝑛 ± 𝑧 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (5.18) 

where 𝑧 is the normal distribution curve value for the required confidence interval. In this case, 

90% confidence interval value is used which means the value of 𝑧 = 1.64. The values of mean 

and standard deviation are based on the historical data points for that particular timestamp under 

study. The PI bounds are given for all the cases of prediction results from Figure 5.10 to Figure 

5.12. It can be seen from the figure that the confidence interval increases with respect to increase 

in prediction timestamp. 

5.8 Summary 

The run to failure data collection methodology for the prognosis of a spin motor in a CMG 

system was provided. A quadratic model was used for curve fitting the data. Using the curve fitted 

model parameters as apriori information, Bayesian updating technique is used to predicting 

remaining useful life of a system in real time. The algorithm performs with 96.25% accuracy when 

30% of data is available for online prediction. The results were also tabulated and few result plots 

were provided. 
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Timestamp (Day) 

 

Timestamp (Day) 

Figure 5.10 Performance of GPM Model with 20% of available data 
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Timestamp (Day) 

 

Timestamp (Day) 

Figure 5.11 Performance of GPM Model with 30% of available data 
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Timestamp (Day)

 

Timestamp (Day) 

Figure 5.12 Performance of GPM Model with 50% of available data
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CHAPTER 6 

6. Conclusion 
 

 For an AOCS of a satellite, timely discovery of faults and failures are essential for an 

autonomous fault tolerant control system. The DPHM framework inspired from literature were 

discussed which consists of fault detection, fault isolation and prognosis. The fault detection 

module of DPHM framework must detect anomalies in the system based on the measurement plant 

parameters. Fault isolation module must locate the fault in the plant based on the available state 

measurements of the system. The fault detection and isolation module in combination is called 

fault diagnosis. Various fault diagnosis methods that are available in literature were discussed in 

Chapter 1. Next module of the DPHM would be fault prognosis. This module estimates the 

remaining useful life of the system after the onset of fault. Types of fault prognosis methods are 

discussed in chapter 1. These three modules in DPHM is essential for engineers to take corrective 

action and avoid downtime or the total loss of system due to faults and failures. 

 The problem of fault detection, isolation and prognosis for a satellite actuator sub-

system that uses single gimballed CMG in a pyramid configuration is dealt from chapters 3 to 5. 

For all of the three modules, algorithms were provided that can successfully diagnose and estimate 

RUL of the components after onset of fault. Based on literature survey and considering a satellite 

with limited space and computation budget, an algorithm that can work with limited measurement 

information and also with minimum computational power is essential for onboard DPHM 

framework. The proposed algorithms for all three modules of DPHM framework were developed 

such that it can work with limited information and less computational power.  

6.1 Summary of Contributions 

The contributions in the thesis in terms of data-driven model development and all the three 

modules of DPHM framework such as fault detection, isolation and prognosis are given as follows.  

6.1.1 Data-Driven Model Development 

For developing a data driven model, an extensive historical dataset is essential. This means 

that for training the dataset, a lot of computational power is required which may not be available 

in a small satellite. 
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To tackle this problem, a novel framework for data acquisition is provided in Chapter 3 

which reduces the need for extensive history of data. The framework fuses data driven model with 

two properties. (1) Symmetric property at component level (Single CMG) is utilized which reduces 

the need for component level data by three-fourth, (2) System orientation property of the pyramid 

configured CMG actuator system is utilized where the data of a single CMG can be mapped to 

other three CMGs. This reduces the need for data by three-fourth at a system level. The proposed 

framework after fusing the two properties, reduces the need for data by 93.75%. A simple feature 

extraction technique is provided, which reduces noise and the dependency of data on the initial 

state of the spacecraft. Also the data is trained using Chebyshev Neural Network (CNN) which is 

computationally light for training when compared to other ANNs.  

6.1.2 Fault Detection 

For fault detection of CMGs a threshold based fault detection algorithm is used in chapter 4. 

The problems observed in literature review were addressed in this chapter. The algorithms 

proposed in literature either needs component level measurements which may not be available in 

small satellites or did not consider the complete actuator dynamics of the satellite. To address this 

problem, fault detection algorithm is developed in such a way that it only requires the attitude rate 

information at the satellite level and considers the complete satellite and actuator dynamics 

including the gimbal motor and the spin motor dynamics. The algorithm works for all types of spin 

motor faults such as abrupt, transient, intermittent faults and stall fault of the gimbal motor.  

6.1.3 Fault Isolation 

Based on literature survey, it can be inferred that there are no fault isolation algorithms for 

CMG’s that considers the complete actuator dynamics and can work only with satellite level 

measurements. To address this problem, a novel optimization based fault isolation formulation is 

proposed in chapter 4 which can work with attitude rate measurements considering complete 

attitude dynamics of the satellite. The proposed isolation algorithm can isolate faults of all 8 motors 

used in the CMG system. Since there are 8 motors, it may fail in 28 = 256 different ways. 

Extensive simulations have been performed inducing faults in random to verify the accuracy of 

the algorithm. The proposed optimization based isolation method has an overall accuracy of 93.5% 

for different cases of fault simulated. 
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6.1.4 Fault Prognosis 

The fault prognosis algorithms available in literature requires the rotational and vibrational 

measurements from the motors used in satellites. But as mentioned earlier, component level 

measurements may not be available small satellites. In chapter 5, an error/residual based scheme 

for fault prognosis is provided that works only using the attitude rate measurements from the 

satellite. General Path Model (GPM) which is one of the computationally light algorithms, is used 

to develop a tool for estimating the Remaining Useful Life (RUL) of the spin motor. Apriori 

knowledge is applied to the GPM using Bayesian updating technique. Based on simulation of 

different cases, it can be concluded the algorithm estimates the RUL with an overall accuracy of 

96.25% when 30% data is available. Complete attitude and actuator dynamics is used for 

development of this algorithm. 

6.2 Future Work 

Considering the demand for autonomous DPHM algorithms onboard machinery/plant, a 

range of research can be executed as an addition or improvement from the contributions provided 

in the thesis. A few of them are outlined below. 

(1) Performing Hardware-In-Loop (HIL) / Process-In-Loop (PIL) Simulations: The 

proposed algorithm performs well in MATLAB simulations performed in a desktop 

computer. But for the satellite in orbit, the algorithm has to perform on the Onboard 

Computer (OBC). Hence the algorithm has to be tested on different processors using HIL/PIL 

Simulations to investigate its performance real-time. 

(2) Expanding form single to dual/three axis gimbal & variable CMGs: The proposed 

algorithms work for a single gimballed CMG in pyramid configuration. But it would be 

interesting to extending the proposed framework for a dual or three axis gimballed system. 

This will increase the redundancies in the satellite level measurements which may affect the 

performance of fault isolation algorithm. In the thesis, a constant spinning momentum wheel 

is considered. But it would be interesting to explore the proposed framework to variable 

speed momentum wheels (also called as Variable CMGs). 

(3) Expanding from small satellites to large satellites: The process noise and disturbance 

torques considered in this thesis pertains to small satellites where their magnitudes may not 

be quite high as large satellites like ISS. If the noise and disturbances are quite high, use of 

filters or hybrid approaches along with the proposed algorithm is recommended. 
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(4) Satellites in Formation Flying / Multi-agent Systems: Intuitively, the proposed algorithm 

must work for a decentralized formation flying satellite as each satellite in this type of 

formation will have its own AOCS system measurements and OBC. But in terms of 

centralized formation flying, the satellite may only have relative attitude measurements. It 

would be interesting to explore the modifications required in the proposed framework for 

applying them to centralized and semi-centralized formation flying.  

(5) Implementation in other similar systems: Although, the algorithm developed here is 

implemented for a CMG actuator in satellite, the author believes that it can be implanted in 

similar systems with minimal or no modifications. Some of the examples of similar systems 

include AOCS with Reaction Wheels, AOCS with Magnetorquers, attitude control in 

Quadcopters, attitude control of aircrafts, direction control system in autonomous 

automobiles, etc.  
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