
SEGMENTATION-AWARE CONVOLUTIONAL NETS

by

Adam W. Harley

BA, Ryerson University, Canada, 2012

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2016

c© Adam W. Harley 2016

AUTHOR’S DECLARATION FOR

ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or in-

dividuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopy-

ing or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

(ii)

SEGMENTATION-AWARE CONVOLUTIONAL NETS

Master of Science in Computer Science, 2016

Adam W. Harley

Ryerson University

Abstract

This thesis introduces a method to both obtain segmentation information and

integrate it uniformly within a convolutional neural network (CNN). This

counter-acts the tendency of CNNs to produce smooth predictions, which is un-

desirable for pixel-wise prediction tasks, such as semantic segmentation. The

segmentation information is obtained by a form of metric learning, where a

CNN learns to compute pixel embeddings that reflect whether any pair of pix-

els is likely to belong to the same region. This information is then used within

a larger network, to replace all convolutions with foreground-focused convolu-

tions, where the foreground is determined adaptively at each image point by

local embeddings. The resulting network is called a segmentation-aware CNN,

because the network can change its behaviour at each image location according

to local segmentation cues. The proposed method yields systematic improve-

ments on a standard semantic segmentation benchmark when compared to a

strong baseline.

(iii)

Acknowledgements

Thanks to my advisor, Kosta Derpanis, for pulling me into the vibrant world of

computer vision, and for showing me so many opportunities to make progress

toward my goals. Thanks also to Iasonas Kokkinos, who supervised me in an

internship, for his trust and generosity in sharing valuable research ideas.

(iv)

Table of Contents

1 Introduction 1

1.1 Motivation . 6

1.2 Contributions . 7

1.3 Outline of thesis . 9

2 Literature Review 11

2.1 Background . 11

2.1.1 Neurons . 12

2.1.2 Learning . 12

2.1.3 Architectures . 14

2.2 Related work . 18

2.2.1 Metric learning . 19

2.2.2 Segmentation-aware descriptors 19

2.2.3 Convolutional nets for semantic segmentation 20

2.2.4 Conditional random fields 21

3 Technical Approach 23

3.1 Segmentation-aware convolutional nets 23

3.1.1 Learning segmentation embeddings 24

3.1.2 Segmentation-aware bilateral filtering 27

(v)

TABLE OF CONTENTS

3.1.3 Segmentation-aware convolution 29

3.2 Implementation details . 31

3.2.1 Network architecture 31

3.2.2 Efficient convolutional implementation details 34

3.3 Summary . 38

4 Experiments 39

4.1 Overview . 39

4.1.1 Datasets . 39

4.1.2 Metrics . 42

4.1.3 Training details . 43

4.2 Evaluation . 44

4.2.1 Embeddings . 44

4.2.2 Segmentation-aware bilateral filtering 46

4.2.3 Segmentation-aware convolution 48

4.3 Discussion . 50

5 Conclusion 53

5.1 Thesis summary . 53

5.2 Future work . 54

References 58

(vi)

List of Tables

4.1 PASCAL VOC 2012 validation results for the various considered

approaches, compared against the baseline. 47

4.2 PASCAL VOC 2012 test results for the baseline approach and

the final proposed segmentation-aware approach. 50

(vii)

List of Figures

1.1 Part of a typical convnet for computer vision. 3

1.2 Classification vs. semantic segmentation. 4

1.3 Issues with convolutional nets on semantic segmentation. . . . 5

1.4 Standard CNNs versus segmentation-aware CNNs. 8

2.1 A fully-connected network. 15

2.2 A convolutional network. 16

2.3 The convolution operation, in two examples. 16

3.1 Visualization of the goal for pixel embeddings. 24

3.2 Visualization of the learned embeddings. 26

3.3 Examples of embedding-based segmentation masks, compared

with photometric-based masks. 29

3.4 Overview of segmentation-aware bilateral filtering. 30

3.5 The VGG-16 network. 32

3.6 Schematic for the CNN featured in this work. 33

3.7 Implementation of convolution in Caffe, compared with the im-

plementation of segmentation-aware convolution. 36

(viii)

LIST OF FIGURES

4.1 Overview of the PASCAL VOC 2012 dataset. 41

4.2 Performance near object boundaries (“trimaps”). 49

4.3 Visualizations of the results. 52

(ix)

Chapter 1

Introduction

In computer vision, deep learning models (LeCun, Bengio, & Hinton, 2015;

Schmidhuber, 2015) are at the core of state-of-the-art approaches to a vari-

ety of high-level tasks, including object recognition (Krizhevsky, Sutskever, &

Hinton, 2012; Simonyan & Zisserman, 2015), object detection (Girshick, Don-

ahue, Darrell, & Malik, 2014), and image annotation (Karpathy & Fei-Fei,

2015).

There exist many different types of deep learning models, but the most

popular is likely the convolutional neural network (CNN, or convnet). Like

most deep learning models, convolutional nets can be understood as an ordered

set of processing stages, which gradually transform the input into a desired

output. For example, the input may be an image, and the output may be a

word that describes the image. The processing stages are called layers, which

can be imagined as forming a tall (or deep) stack, where the bottom layer

reads in the input, and the top layer provides the final abstraction.

Inside a convolutional net, the stack of layers generally alternates between

two layer types: convolution layers, and subsampling layers. The convolution

1

CHAPTER 1. INTRODUCTION

layers use filters to extract feature-rich versions of their inputs. The definition

of a desirable “feature” depends on the convolution layer, but features gen-

erally correspond to edges, textons (i.e., texture elements), and object parts.

The subsampling layers reduce the spatial resolution of their inputs. Together,

these layers allow the network to gradually consolidate its collected features

into higher-order representations. Figure 1.1 shows an illustration of the two

layer types working together. This is often interpreted as a hierarchical pro-

cess of perception: lower layers of the network detect contours, middle layers

find shapes, and higher layers perform (for instance) object recognition.

Many tasks require concise representations of whole images, and repeated

subsampling aligns well with this demand. Classification is a good example of

this: the top output of a convolutional net designed for classification has spatial

dimensions 1× 1, representing a single prediction for the entire image. There

are some tasks, however, for which the typical setup of a convolutional network

is ill-suited. Semantic segmentation is one such task. For an input image with

dimensions H×W , the goal in semantic segmentation is to produce an H×W

matrix of predictions, indicating the object category present at every pixel

in the image. This is illustrated in Figure 1.2. Other tasks requiring dense,

spatially-precise predictions include optical flow estimation (Dosovitskiy et al.,

2015), surface normal estimation (Wang, Fouhey, & Gupta, 2015), and depth

estimation (Eigen, Puhrsch, & Fergus, 2014).

In the task of producing an accurate mapping from H × W inputs to

H×W outputs, convolutional nets struggle with two issues: spatial resolution

loss, and smoothness of predictions. That is, whereas the ideal prediction map

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Part of a typical convnet for computer vision. The input (a three-
channel colour image) acts as the bottom layer of the network. Subsequent
layers alternate between convolution and subsampling. Convolution layers
filter their inputs to extract features from them. Subsampling layers reduce
the spatial resolution of their inputs, to give higher layers a wider field of view.
Through many such layer pairs (and much training), the network attempts to
achieve a (pre-specified) mapping from inputs to outputs.

3

CHAPTER 1. INTRODUCTION

Figure 1.2: Classification vs. semantic segmentation. In classification, the
objective is to produce a class label for an entire image. In semantic segmen-
tation, the objective is to produce a class label for every pixel in the image.

4

CHAPTER 1. INTRODUCTION

Figure 1.3: Issues with convolutional nets on semantic segmentation. The
output from these networks tends to be low-resolution (due to subsampling),
and smooth (due to convolution).

would match the input with pixel-perfect accuracy, the predictions produced

by convnets are small and blurry. This is illustrated in Figure 1.3.

Spatial resolution loss is caused by the subsampling layers of the network.

These stages play an important role in the hierarchical consolidation of fea-

tures, and widen the higher layers’ field of view. Because of these benefits,

subsampling cannot be removed in a straightforward manner. There exists

substantial research on working around this issue: methods have been pro-

posed for replacing these layers with resolution-preserving alternatives (Chen,

Papandreou, Kokkinos, Murphy, & Yuille, 2015; Yu & Koltun, 2016), and

restoring the lost resolution via upsampling stages (Noh, Hong, & Han, 2015;

Long, Shelhamer, & Darrell, 2014).

While there has been much recent work on the issue of spatial resolution

loss, the issue of smoothness has remained relatively unexplored. Considered

independently from the spatial resolution issue, smoothness is caused by the

convolution layers. As the image of an object moves through the receptive

field of a neuron (or set of neurons), the activation levels change gradually,

as a function of how well the input matches the neurons’ learned templates.

5

CHAPTER 1. INTRODUCTION

This property of convnets is very useful for full-image understanding tasks,

but degrades performance on per-pixel prediction accuracy, where rapid pixel-

accurate changes in behaviour are required.

Thus, it is towards resolving convolutional nets’ smooth predictions that

this thesis makes a contribution.

1.1 Motivation

As a motivating example to the key idea of this thesis, consider the case where

a convolutional network is attempting to classify a pixel that is just off the

boundary of an object. Figure 1.4 (top) shows an example of this. To classify

the pixel, the convnet needs to draw in information from a wide area surround-

ing the pixel. Since the area will contain a mix of “background” pixels and

“object” pixels, the network will likely make an unconfident prediction (e.g.,

output 60% confidence in “background”, and 40% confidence in “object”), re-

flecting the mix of useful and distracting information in the patch. Similarly,

when the network attempts to classify a pixel that is just within the boundary

of an object, the patch will again contain a mix of information, and the pre-

diction will be similar. Visualizing these predictions as an image, they appear

blurred and imprecise. Therefore, the issue of “smooth predictions” relates to

a weakness of convnets in dealing with the presence of distracting information

near object boundaries.

This thesis proposes a way for convnets to block incoming information that

is likely to be distracting. The basic approach is to complement each convo-

lution filter with a local foreground-background segmentation mask, so that

6

CHAPTER 1. INTRODUCTION

the network has a mechanism for allowing only “foreground” pixels to pass

through the filters. The “foreground” of each patch is defined in relation to

the patch’s central pixel. Critically, the masks are generated within the con-

vnet, and are computed “on the fly” during convolution. Additionally, the

segmentation cues on which the masks rely, as well as the parameters defining

mask usage throughout the network, are learned in the selfsame convnet. Fig-

ure 1.4 illustrates the approach, and compares it with standard convolutional

nets. The proposed network is called a segmentation-aware convolutional net,

because the network adjusts its behaviour on a per-pixel basis according to

local segmentation cues derived from the input image.

1.2 Contributions

There are three key components to creating segmentation-aware convolutional

nets, corresponding to the three primary contributions of this thesis.

1. Dense convolutional embeddings. The first idea is to learn an em-

bedding (i.e., a feature space) that differentiates pixels according to rel-

ative foreground-background information. This is done by training fea-

tures to respect distance thresholds from their neighbours, according to

semantic parity.

2. Segmentation-aware bilateral filtering. The second idea is to create

local segmentation masks from the embeddings, in a new convolution-like

layer for convnets that generalizes the bilateral filter (an edge-preserving

smoothing technique; J.-S. Lee, 1983; Aurich & Weule, 1995; Smith &

7

CHAPTER 1. INTRODUCTION

Figure 1.4: Standard CNNs versus segmentation-aware CNNs. From an in-
put image (left), two neighbouring patches are highlighted, with their centre
pixels marked. The first patch is centered on a water pixel, just off the boat.
The second patch is centered on a boat pixel. Since the patches are very
similar overall, the standard CNN generates similar predictions for the two
patches (e.g., “boat” for both). Visualizing these predictions as a heatmap,
they appear blurred and imprecise. In a segmentation-aware CNN, the net-
work internally creates local segmentation masks according to the central pixel
of each patch. In the illustration, the masked regions are coloured white; in
the network, input from these regions would be ignored. This enables the
network to treat each patch differently, and generate predictions with finer
spatial precision. The benefits of this are visible in the heatmap generated by
the network, which is noticeably superior to the corresponding output of the
standard CNN.

8

CHAPTER 1. INTRODUCTION

Brady, 1997; Tomasi & Manduchi, 1998). The masks can be used to

filter the convnet’s prediction maps, to sharpen the predictions at object

boundaries, while making predictions within boundaries more uniform.

3. Segmentation-aware convolution. The third component is a simple

modification to convolution layers, allowing the dense non-linear masks

to modulate the application of the linear filters of convolution. This

achieves a learnable type of normalized convolution (cf. Knutsson &

Westin, 1993).

Together, these components make a segmentation-aware convolutional net.

Some advantages of the segmentation-aware convnets over standard convnets

are discernible in visualizations of segmentation-aware networks’ outputs. Fur-

thermore, experimental results show that segmentation-aware convnets achieve

a considerable gain in accuracy on a challenging semantic segmentation bench-

mark. While the evaluation in this work is focused on semantic segmentation,

the contributions may prove useful in other tasks requiring dense pixel-wise

predictions.

1.3 Outline of thesis

The thesis is organized as follows:

• Chapter 2 provides a basic overview of neural network theory and algo-

rithms, and follows with a summary of the literature most closely related

to the current work.

9

CHAPTER 1. INTRODUCTION

• Chapter 3 presents segmentation-aware convolutional nets, in several

parts. The chapter begins with a theoretical overview of the three main

ideas: embeddings, bilateral filtering, and segmentation-aware convolu-

tion. Next is a description of how each concept is realized in a neural

network. Finally, a technical description is provided on efficient imple-

mentation details.

• Chapter 4 describes the empirical evaluation used to verify the findings

of this work. This includes visualizations that provide qualitative infor-

mation on the approach’s strengths and weaknesses, and a quantitative

evaluation on a standard semantic segmentation benchmark. The eval-

uations explore, in turn, (i) the embeddings, (ii) the bilateral filtering,

and (iii) the segmentation-aware convolution.

• Chapter 5 provides a summary of the main contributions and results,

and discusses possible directions for future work.

Parts of this work have appeared in “Learning Dense Convolutional Em-

beddings for Semantic Segmentation” (Harley, Derpanis, & Kokkinos, 2016).

10

Chapter 2

Literature Review

There are two main sections in this chapter. The first (Sec. 2.1) is dedicated to

summarizing the theory and mathematics of neural networks, so as to provide

sufficient background information for the subsequent chapters. The second

section (Sec. 2.2) attempts to situate the thesis in relation to the active fields

of research around it.

2.1 Background

The following subsections provide a brief overview of neural networks. Consid-

ering the breadth of neural network theory and literature, this section is only

intended to summarize the aspects that are most relevant to the current work;

a more thorough overview can be found in review articles (e.g., LeCun et al.,

2015; Schmidhuber, 2015) and texts (e.g., Bishop, 1995). The first subsection

provides a definition for the “neurons” in neural networks (Sec. 2.1.1). Fol-

lowing this is a subsection on “learning” (Sec. 2.1.1), describing what is meant

by the word, and how learning occurs in neural nets. Finally, “architectures”

are covered (Sec. 2.1.3), and convolutional nets are introduced.

11

CHAPTER 2. LITERATURE REVIEW

2.1.1 Neurons

A neural network is a feed-forward graph of nearly-identical processor units

called neurons. Each unit computes a nonlinear function, typically

σ(x) = max(0, x), (2.1)

which is called the rectified linear unit function (ReLU; Nair & Hinton, 2010).

(Earlier work with neural networks used tanh or logistic sigmoid units (e.g.,

LeCun, Bottou, Bengio, & Haffner, 1998), but the ReLU has since been shown

to produce slightly more powerful networks.)

In a ReLU, x is a weighted sum of inputs,

x =
∑

n

wnφn + b, (2.2)

where wn is the weight applied to the input φn, and b is a shift factor called a

bias. The inputs can either be data, or outputs from preceding neurons in the

network. All weights and biases are typically learnable parameters.

2.1.2 Learning

Learning in this context simply refers to advancing toward some desired be-

haviour. The only apparatus for this is to adjust the weights and biases of the

neurons in the network.

The adjustments to the weights and biases are derived from gradient de-

scent on a loss function (or energy function). The loss represents how poorly

the network is performing its task, as evaluated on a labelled dataset. For

instance, to train a network to categorize images of hand-drawn digits, one

12

CHAPTER 2. LITERATURE REVIEW

could set up a network that has ten neurons in the final layer, and task the

network with the following objective: for an image depicting digit k, neuron

k should produce a value of one, and all other neurons should produce zeros.

This objective can be phrased as the following loss function:

L =
∑

e

9∑

i=0

(ye,i − de,i)2, (2.3)

where e iterates over all of the examples in the dataset, ye,i is the output of

neuron i for example e, and de,i is the desired output at that neuron. If the

network produces the correct output ye,i = de,i for all digits i for all examples

e, the loss will be zero; any deviation from this objective will be accumulated

in L.

Moving to a lower loss (i.e., learning) requires computing the partial deriva-

tive of the loss function with respect to every parameter of the network, and

shifting every parameter along the negative gradient. This can be done effi-

ciently through an algorithm called backpropagation (Werbos, 1982; Rumel-

hart, Hinton, & Williams, 1986), which is a dynamic programming algorithm

for iteratively applying the chain rule. Gradient descent is a greedy algorithm,

so it is only guaranteed to converge to a local minimum, not necessarily the

global one.

Ideally, gradient descent would be done directly on L, but it is prohibitively

expensive to consider all examples before performing a parameter update. For

this reason, updates are typically computed over a small set of examples at a

time. The set of examples is typically called a batch. If the examples are chosen

randomly, this achieves stochastic gradient descent, which is very reliable in

13

CHAPTER 2. LITERATURE REVIEW

practice (LeCun et al., 1998).

In practice, the true gradient (notwithstanding stochasticity) is never used

directly to update the weights and biases. Instead, a modified version of the

gradient is used, depending typically on two design parameters. The first

parameter is the learning rate, which is simply a multiplicative scale factor on

the gradient. If the learning rate is too high, gradient descent may not find a

good minimum; if the learning rate is too low, gradient descent will take an

unnecessarily long time. The second design parameter is momentum, which

replaces the gradient with a weighed average of the current gradient and prior

gradients (Sutskever, Martens, Dahl, & Hinton, 2013). The update to a weight

w, then, is

wt+1 = wt + vt+1, where

vt+1 = µvt − ε∇wtL.
(2.4)

In these equations, t refers to the current iteration, v refers to the “velocity”

of the gradient, µ is the momentum coefficient, and ε is the learning rate. The

design parameters µ, ε are sometimes referred to as hyperparameters, since

they are not optimized within the learning process of the neural network like

regular parameters.

2.1.3 Architectures

Many neural network graphs, called architectures, are viable. Architectures

implicitly comprise hundreds of hyperparameters, but there exist some stan-

dard (i.e., well-tested and popular) architectures, which helps simplify the

network design process. Figure 2.1 illustrates a fully-connected network, which

14

CHAPTER 2. LITERATURE REVIEW

Figure 2.1: A fully-connected network. Each neuron processes the output of
the entire layer preceding it, by taking a weighted sum and passing that sum
through a nonlinearity.

is a graph with stacked layers of neurons, in which every pair of neighbouring

layers is fully connected. Every edge in the graph of a fully-connected network

corresponds to a learnable parameter (i.e., a weight).

This work, and other works like it, use a convolutional network (Fukushima,

1980; LeCun et al., 1998), which is a graph with far fewer connections, but

a similar layered structure. Figure 2.2 illustrates the architecture. Similar

to a fully-connected network, each layer of a convolutional net processes the

output of the layer preceding it, but each neuron only connects to a local

region in the layer below, and all neurons within a layer share their parameters.

Interpreting the set of weights for a convolutional layer as a template, t (i.e.,

t = [w1, w2, . . . , wn]), one can write the output for a neuron as

yi = σ

(∑

j∈Ni

xi−jtj

)
, (2.5)

where i is the index of the current neuron, and the indices j ∈ Ni iterate over

15

CHAPTER 2. LITERATURE REVIEW

Figure 2.2: A convolutional network. Each neuron processes the output of a
local neighbourhood from the layer preceding it. Neurons within a layer share
their parameters.

Input image

Convolution filter

Output image

−1 −1 −1
0 0 0
1 1 1

Input image Convolution filter Output image

−1 0 0
0 0 0
1 1 0

−1 −1 −1
0 0 0
1 1 1

· · ·
· 3 ·
· · ·

1

Figure 2.3: The convolution operation, in two examples. At every location
in the input, a dot product is taken between the 3 × 3 filter (or template)
and the local 3 × 3 area in the input. In the first example, the boundary
cases are marked with dots; the values to be filled in at those locations depend
on the implementation. In the second example, the same filter is applied to
a grayscale image. Inspecting the output, one can deduce that the filter is
selective for horizontal edges.

16

CHAPTER 2. LITERATURE REVIEW

offsets in the local spatial neighbourhood. That is, each yi (before the non-

linearity) is produced by pointwise multiplying a template with a local region

in the input. This amounts to sliding the template across every location in the

input, and computing the dot product at every location; this produces a “fil-

tered” version of the input. “Filter” and “template” are therefore synonymous

here. The result of a convolution is called a feature map, so called because it

marks the locations of the feature targeted by the filter. Figure 2.3 illustrates

the operation in 2D, first with a small matrix and then with an image. (The

name “convolution” comes from signal processing literature, although in signal

processing, the operation strictly requires rotating the filter by 180◦ before the

dot product; in neural networks, this step is often skipped, so it is skipped in

Figure 2.3 as well.)

The use of convolution layers instead of fully-connected layers is motivated

by two important properties of natural images. First, pixels far away from

each other are unlikely to be correlated, meaning that long-range connections

in the network are unnecessary. This motivates using local connections, rather

than full (image-spanning) connections. Second, patterns in images are often

repeated in different spatial locations. For example, horizontal edges may ap-

pear anywhere in the image. This motivates using the same filters everywhere,

i.e., sharing weights between neurons.

Note that it is also within the capacity of fully-connected nets to learn local,

spatially-invariant feature detectors. However, since convolutional networks

are designed to accomplish this task with far fewer parameters, they are easier

to train. This relates to the issue of overfitting : with too many parameters, or

17

CHAPTER 2. LITERATURE REVIEW

not enough data, there is a risk of learning (i.e., modelling) noise, rather than

the underlying signal. The robustness of convolutional nets, paired with the

availability of large datasets of labelled images, has made room for extremely

large (and effective) convolutional nets.

For high-level vision tasks, convolutional nets typically have somewhere

between 5 and 19 layers, each with somewhere between 64 and 1024 unique

filters, with filter dimensions between 3×3 and 7×7. Recently, these networks

have grown even further in complexity, reaching upwards of 100 layers (He,

Zhang, Ren, & Sun, 2016). It is not unusual for state-of-the-art models to have

over 100 million parameters (Krizhevsky et al., 2012; Simonyan & Zisserman,

2015). With massively parallel graphics processing unit (GPU) implementa-

tions, these models are relatively fast to evaluate at test time; for example,

classifying a 256×256 pixel image takes approximately 2 milliseconds with an

8-layer architecture. Training, however, can take days or weeks.

2.2 Related work

This section focuses on four major research topics in feature learning and

computer vision closely linked to the current work: metric learning (Sec. 2.2.1),

segmentation-aware descriptor construction (Sec. 2.2.2), the use of convnets for

semantic segmentation (Sec. 2.2.3), and finally the use of conditional random

fields (in Sec. 2.2.4).

18

CHAPTER 2. LITERATURE REVIEW

2.2.1 Metric learning

The goal of metric learning is to produce features from which one can estimate

the similarity between pixels or regions in the input (Frome, Singer, Sha, &

Malik, 2007). Bromley, Guyon, LeCun, Sackinger, and Shah (1994) pioneered

learning these descriptors in a convolutional network, for signature verification.

Subsequent related work has yielded compelling results for tasks such as wide-

baseline stereo correspondence (Han, Leung, Jia, Sukthankar, & Berg, 2015;

Zagoruyko & Komodakis, 2015; Žbontar & LeCun, 2014). Recently, the topic

of metric learning has been studied extensively in conjunction with handcrafted

image descriptors (Trulls, Kokkinos, Sanfeliu, & Moreno-Noguer, 2013; Simo-

Serra et al., 2015), improving the applicability of those descriptors to patch-

matching problems.

Most prior work in metric learning has been concerned with the task of

finding one-to-one correspondences between pixels seen from different view-

points. The current work, in contrast, will address the task of matching all

pairs of points that lie in the same region. This requires a higher degree of

invariance than has previously been necessary—not only to rotation, scale,

and partial occlusion, but also to objects’ interior details.

2.2.2 Segmentation-aware descriptors

The purpose of a segmentation-aware descriptor is to capture the appear-

ance of the foreground while being invariant to changes in the background

or occlusions. To date, most work in this domain has relied on handcrafted

segmentation-aware descriptors. For instance, soft segmentation masks (Ott &

19

CHAPTER 2. LITERATURE REVIEW

Everingham, 2009; Leordeanu, Sukthankar, & Sminchisescu, 2012) and bound-

ary cues (Maire, Arbeláez, Fowlkes, & Malik, 2008; Shi & Malik, 2000) have

been used to augment handcrafted features, in a way that suppresses contri-

butions from pixels likely to come from the background (Trulls et al., 2013;

Trulls, Tsogkas, Kokkinos, Sanfeliu, & Moreno-Noguer, 2014). The current

work will do this as well, though for learned features, and in a fashion that

allows the suppression function itself to be learned.

Prior work has also investigated the use of affinity cues to improve perfor-

mance on segmentation tasks (Fowlkes, Martin, & Malik, 2003; Ren & Malik,

2003; Dai, He, & Sun, 2015), but these required handcrafted algorithms for

computing the affinity information, and would typically be pre-computed in

a separate process. The current work is unique for learning the cues directly

from image data, and for computing the affinities densely and “on the fly”

within a convnet.

2.2.3 Convolutional nets for semantic segmentation

As expressed in the introduction, convnets typically produce class-accurate

but low-resolution and spatially-imprecise predictions. Several methods have

been proposed for addressing the spatial resolution problem. A resolution-

preserving alternative to pooling is to add “holes” to the convolution filters

(Chen et al., 2015), so that they cover a wider field of view with the same

number of parameters. A complementary strategy is to add up-sampling stages

to the network, via trainable “de-convolution” layers (Noh et al., 2015; Long

et al., 2014). These techniques are effective at addressing resolution loss, but

20

CHAPTER 2. LITERATURE REVIEW

only indirectly address the issue of smoothness.

More in line with the current work, there is also research on incorporating

segmentation cues into the network, to prevent the loss of spatial precision.

For example, Dai et al. (2015) recently used superpixels to generate masks for

convolutional feature maps, enforcing sharp contours in their outputs. The

current work takes this idea further, by replacing the sparse handcrafted seg-

mentation cues with dense learned variants.

2.2.4 Conditional random fields

The loss of spatial precision has also been addressed as a post-processing step

disjoint from the convnet, by attaching a dense conditional random field (CRF)

(Krähenbühl & Koltun, 2011) to the final layer of the network (Chen et al.,

2015; Yu & Koltun, 2016; Zheng et al., 2015). In these works, the CRF initial-

izes its prediction map with the one provided by the convnet, and iteratively

optimizes it (through mean field inference) to maximize the label agreement

between all pairs of similar pixels. One of the pixel similarity cues for the CRF

is provided by a bilateral filter. The utility of the bilateral filter is explored

in this work as well, but without the CRF formulation. Another important

difference is that the standard bilateral filter uses Gaussians in colour and po-

sition space to compute pixel similarity, whereas the current work computes

similarity for arbitrary feature vectors, and allows the features to be learned

through training.

Concurrent with this work, Jampani, Kiefel, and Gehler (2016) recently

explored the idea of learning high-dimensional filters and implementing them in

21

CHAPTER 2. LITERATURE REVIEW

convolutional nets. The current work takes this idea further, by combining the

bilateral filter with arbitrary convolutional filters, allowing any layer (or even

all layers) to perform segmentation-aware versions of their original filtering

operations.

A final distinction to make from these prior works is in the width of the

bilateral filter. Implementations of CRFs typically use a very wide filter, some-

times extending to the full width of the image. This necessitates that the fil-

tering be performed in a permutohedral lattice (Krähenbühl & Koltun, 2011;

Chen et al., 2015; Zheng et al., 2015). The current work, in contrast, uses

relatively small filter sizes (e.g., 9× 9 or smaller), allowing an implementation

of bilateral filtering very similar to the efficient convolution already present in

publicly available convolutional network frameworks, such as Caffe (Jia et al.,

2014).

22

Chapter 3

Technical Approach

This chapter presents the main theoretical and technical components of seg-

mentation-aware convolutional nets. The first part (Sec. 3.1) is focused on

theory, describing the functions that compose segmentation-aware convolution.

The second part (Sec. 3.2) is focused on implementation details, describing how

the functions form a network, and outlining how each part was implemented

efficiently. The intent with this ordering is to provide a coarse-to-fine overview

of the technical approach. The chapter ends with a short summary (Sec. 3.3).

3.1 Segmentation-aware convolutional nets

The following subsections describe the three main components of the proposed

approach, which build on one another. The first section (Sec. 3.1.1) char-

acterizes the objective function for segmentation embeddings, and describes

how these embeddings can be learned from per-pixel labels. The next sec-

tion (Sec. 3.1.2) uses the embeddings to create per-patch soft segmentation

masks, generalizing the bilateral filter. The last section (Sec. 3.1.3) shows how

segmentation-aware masks can be merged with convolution filters, achieving

23

CHAPTER 3. TECHNICAL APPROACH

Figure 3.1: Visualization of the goal for pixel embeddings. For any two pixels
sampled from the same object, the embeddings should have a small relative
distance. For any two pixels sampled from different objects, the embeddings
should have a large relative distance. The embedding space is illustrated in
2D, though in principle it can have any dimensionality.

segmentation-aware convolution.

3.1.1 Learning segmentation embeddings

The first goal of the current work is to train a set of convolutional layers to

create an embedding function, which maps (i.e., embeds) pixels into a feature

space RN , where their semantic similarity can be measured as a distance.

Pixel pairs that share a semantic category should produce similar embeddings

(i.e., a short distance), and pairs with different categories should produce

dissimilar embeddings (i.e., a large distance). Some example 2D embeddings

are illustrated in Figure 3.1. (The embeddings will eventually be implemented

as 64-dimensional vectors, but the descriptions to follow will remain general.)

The embedding goal is represented in a loss function, L, which accumulates

the (inverse) quality of embedding pairs sampled across the image. In this

work, pairwise comparisons are made between each pixel i and its spatial

neighbours, j ∈ Ni. Collecting pairs within a fixed window lends simplicity

24

CHAPTER 3. TECHNICAL APPROACH

and tractability, although in general the pairs can be collected at any range.

Denoting the quality of a particular pair of embeddings with `ij, the overall

loss for an image of embeddings is defined as

L =
∑

i∈I

∑

j∈Ni

`ij, (3.1)

where I represents the image, and i ∈ I iterates over all the pixel indices in

the image. The network is trained to minimize this loss through stochastic

gradient descent.

The inner loss function, `ij, represents how well a pair of embeddings ei

and ej respect the affinity goal. Pixel-wise labels are a convenient resource

for quantifying this loss, since they can provide information on whether or

not the pixels belong to the same region. Using this information, the distance

between embeddings can be optimized according to their label parity. That is,

same-label pairs can be optimized to have a small distance, and different-label

pairs can be optimized to have a large distance. Denoting the label of pixel i

with li, and the embedding at that pixel with ei, the inner loss is defined as:

`ij =

{
max (|ei − ej| − α, 0) if li = lj

max (β − |ei − ej|, 0) if li 6= lj

, (3.2)

where α and β are design parameters that specify the “near” and “far” thresh-

olds against which the embedding distances are compared, respectively. In this

work, α = 0.5, and β = 2 were used. In practice, the specific values of α and

β are unimportant, so long as α ≤ β and the remainder of the network can

learn to compensate for the scale of the resulting embeddings (e.g., through λ

25

CHAPTER 3. TECHNICAL APPROACH

Embedding
Network PCA

1

Figure 3.2: Visualization of the learned embeddings. An image (left) is sent
through the embedding network, which generates a 64-channel embedding for
every pixel. The embeddings were then compressed into a 3-channel image
(right). The visualization reveals successful separations between most of the
objects in the scene.

in Eq. 3.3).

The embedding distances can be computed with any distance function. In

this work, L1 and L2 norms were both tried initially. Embeddings learned

from the two distances were similar, but the L1-based embeddings were found

to be easier to train. Specifically, it was found that the L1-based embeddings

can safely be trained with a higher learning rate than L2-based ones, because

they are less vulnerable to the problem of exploding gradients. Therefore, the

implementation in this work uses an L1 distance for the embeddings.

Figure 3.2 shows a visualization of the embeddings after training. As will be

detailed in Sec. 3.2.1, the embeddings are learned in a set of convolution layers,

whose final output is a high-dimensional feature vector (e.g., 64 dimensions) for

every pixel. The visualization was generated by compressing the embeddings

down to three dimensions by principal component analysis (PCA), and using

those three images as the colour channels of a new image.

26

CHAPTER 3. TECHNICAL APPROACH

3.1.2 Segmentation-aware bilateral filtering

The embeddings learned with the above method can provide a measure of how

likely two pixels i and j belong to the same region. A soft version of this

quantity can be obtained with a monotonically decreasing function of their

distance,

mij = exp(−λ|ei − ej|), (3.3)

where λ is a learnable parameter specifying the hardness of this decision. Given

any pixel i, one can use this function to compute soft segmentation masks of

its neighbourhood. Figure 3.3 shows examples of the learned embeddings and

resulting segmentation masks, and compares them with simpler masks cre-

ated from photometric colour distances. In general, the learned embeddings

successfully generate accurate foreground-background masks; colour-based em-

beddings are not quite as reliable.

A first application of these masks is to smooth the responses of a layer in

a way that respects the underlying image boundaries. Given an input signal,

x, one can compute a weighted average, y, as follows:

yi =

∑
j∈Ni

xi−jmij∑
j∈Ni

mij

. (3.4)

where xi is the input at location i, and j ranges over the neighbourhood of i,

Ni.

Equation 3.4 has some interesting special cases, which depend on the un-

derlying indexed embeddings ek (for an arbitrary index k):

• if ek = 0, the equation yields the average filter, or “average pooling”;

27

CHAPTER 3. TECHNICAL APPROACH

• if ek = (k) the equation yields Gaussian smoothing;

• if ek = (k, Ik), where Ik denotes the image red-green-blue (RGB) vector

at k, the equation yields bilateral filtering (J.-S. Lee, 1983; Aurich &

Weule, 1995; Smith & Brady, 1997; Tomasi & Manduchi, 1998), which

is a well-known edge-preserving smoothing technique.

Since the embeddings are learned in a convolutional net (and may learn to

represent anything), Eq. 3.4 represents a generalization of all these cases.

Interestingly, a current popular algorithm for dense conditional random

fields (CRFs; Krähenbühl & Koltun, 2011) also uses the bilateral filter. In

the inference step for computing the CRF, the iterative update to the mean

field approximation is implemented as a repeated application of two filters,

one bilateral and one spatial. Pushing this a step further, Jampani et al.

(2016) proposed to learn the kernel used in the bilateral filter, but keep the

arguments to the similarity measure (i.e., ei) fixed. In this work, by training

the network to provide convolutional embeddings, even the arguments of the

bilateral distance function can be learned.

When the embeddings are integrated into a larger network that uses them

for filtering, the embedding loss function (Eq. 3.1) is no longer necessary.

Since all of the terms in the normalized mask (Eq. 3.4) are differentiable, the

global objective (e.g., classification accuracy) can be used to tune not only the

input terms, xi, but also the mask terms, mij, and their arguments, ei and

ej. Therefore, the embeddings can be learned end-to-end in the network when

used to create masks. In this work, the embeddings were trained first with a

dedicated loss, then fine-tuned in the larger pipeline as masks.

28

CHAPTER 3. TECHNICAL APPROACH

Input image Patch Photometric
mask Embedding Embedding

mask

1

Figure 3.3: Examples of embedding-based segmentation masks, compared with
photometric-based masks. For four locations in the image shown on the left,
the figure shows (left-to-right): a patch extracted around that location, the
mask generated by colour distances in RGB space, a visualization of the em-
beddings, and the embedding-based mask.

Figure 3.4 shows an overview of how segmentation-aware bilateral filtering

sharpens predictions in practice.

3.1.3 Segmentation-aware convolution

The averaging described in the previous subsection can be understood as a

very special case of convolution with a constant filter. The edge-preserving

averaging has been repeatedly shown to yield improved spatial accuracy (J.-

S. Lee, 1983; Aurich & Weule, 1995; Smith & Brady, 1997; Tomasi & Man-

duchi, 1998), which leads to the question of what the counterpart would be

for general convolution.

Extending directly the idea of the previous section, if one writes dis-

crete convolution of the signal, x, with a template, t, as yi =
∑

j∈Ni
xi−jtj,

29

CHAPTER 3. TECHNICAL APPROACH

Input image
“Boat” confidences

Embeddings

Sharpened “boat” confidences

1

Figure 3.4: Overview of segmentation-aware bilateral filtering. Given an input
image (left), a CNN typically produces a smooth prediction map (middle top).
With learned pixel embeddings (middle bottom), the prediction map can be
sharpened via segmentation-aware bilateral filtering (right).

segmentation-aware convolution is given by:

yi =

∑
j∈Ni

xi−jmijtj∑
j∈Ni

mij

, (3.5)

i.e., a non-linear convolution, where the input signal is multiplied pointwise by

the normalized local mask at every location, before forming the inner product.

Note that the mask acts as an applicability function for the signal, which

makes segmentation-aware convolution a special case of normalized convolution

(Knutsson & Westin, 1993). In general, the idea of normalized convolution is to

“focus” the convolution operator on the part of the input that truly describes

the input signal, avoiding the interpolation of noise or missing information.

In this case, “noise” corresponds to information coming from regions distinct

from the one to which node i belongs; this type of information may adversely

affect the features because it comes from other objects and the background.

Any convolutional filter can be made segmentation-aware. The advan-

30

CHAPTER 3. TECHNICAL APPROACH

tage of segmentation awareness depends on the filter. For instance, a center-

surround filter might be rendered useless by the effect of the mask (since it

would block input from the “surround”), whereas a filter selective to a par-

ticular shape might benefit from invariance to context. The basic intuition is

that the information masked out needs to be distracting rather than helping—

which calls for learning the masking functions. In this work, backpropagation

is used to learn both the arguments and the softness of each layer’s mask-

ing operation, so the network can always converge to the fallback option of a

standard CNN.

3.2 Implementation details

This section first describes how the basic ideas of the technical approach are

integrated in a CNN architecture, and then establishes details on how the

individual components are implemented efficiently as convolution-like CNN

layers.

3.2.1 Network architecture

There are two main parts to the architecture: one part produces embeddings,

and the other does semantic segmentation (i.e., assigns object class labels to

the pixels). The semantic segmentation part is a re-implementation of the

popular “DeepLab” semantic segmentation network (Chen et al., 2015; specif-

ically, the publicly released “large field-of-view” architecture). Both DeepLab

and the embeddings net are based on the VGG-16 network (Simonyan & Zis-

serman, 2015), which is a powerful object recognition model. The VGG-16

31

CHAPTER 3. TECHNICAL APPROACH

Figure 3.5: The VGG-16 network. The layer dimensionalities are annotated
above the network, and the layer names are annotated below, with “conv”
for convolutional, and “fc” for fully-connected. The convolution layers are
grouped by the resolution of their feature maps. In all, the network has 16
layers. In the DeepLab variant of this network, the fully-connected layers are
converted into convolutional ones.

network is illustrated in Figure 3.5. An overview of the full two-part architec-

ture is shown in Figure 3.6.

The embeddings network has the following architecture. The first five

layers share the design of the earliest convolutional layers in VGG-16. There

is a subsampling layer after the second convolution layer and also after the

fourth convolution layer, so the five convolution layers capture information

at different scales. The output from each layer is sent to a pairwise distance

computation (im2dist, detailed in Sec. 3.2.2) followed by a loss (as in Eq. 3.2),

so that each layer develops embedding-like representations. The idea of using

a loss at each intermediate layer is inspired by Xie and Tu (2015), who used

this strategy to learn boundary cues in a CNN. The motivation behind this

strategy is to provide early layers a stronger signal of the network’s end goal,

reducing the burden on backpropagation to carry the signal through multiple

32

CHAPTER 3. TECHNICAL APPROACH

Input Output

L

im2col GEMMDeepLab

E1 E2 E3 E4 E5 Eavg

im2dist im2dist im2dist im2dist im2dist im2dist

L L L L L L

⊙

1

Figure 3.6: Schematic for the CNN featured in this work. The CNN combines
a semantic segmentation network (DeepLab) with an embedding network. Em-
bedding layers are indicated with boxes labelled E; the final embedding layer
computes a weighted average of the other embeddings. Loss layers, indicated
with L boxes, provide gradients for each embedding layer, and also for the
final output. Outputs from DeepLab are merged with segmentation informa-
tion from the embedding network, by pointwise multiplication of an im2col
output from DeepLab, and an im2dist output from the embeddings; this re-
sult is sent to a general matrix multiplication (GEMM), which can achieve
either segmentation-aware convolution (by multiplication with learned filter
weights), or bilateral-like filtering (by multiplication with ones). This merging
and multiplication can be applied to any layer of DeepLab.

layers (C.-Y. Lee, Xie, Gallagher, Zhang, & Tu, 2015). The benefits of the

multi-layer loss will be investigated in the evaluation (Sec. 4.2.1).

The outputs from the intermediate embedding layers are upsampled to a

common resolution, concatenated, and sent to a randomly-initialized convolu-

tional layer with 1× 1 filters. This layer learns a weighted average of the first

five convolutional layers’ outputs, and creates the final embedding for each

pixel. The layer is trained in the same way as the intermediate layers (with

im2dist and a loss), and the output is used as the final set of embeddings.

The final embeddings are used to mask and sharpen DeepLab’s intermediate

33

CHAPTER 3. TECHNICAL APPROACH

representations. The most basic version of this masking involves performing

segmentation-aware bilateral filtering on DeepLab’s final layer outputs, just

before the softmax (i.e., “FC8”); this achieves the sharpening effect illustrated

in Figure 3.4. The most intrusive version of the masking involves masking the

inputs to every convolutional layer in the network, converting all convolutions

into segmentation-aware convolutions.

3.2.2 Efficient convolutional implementation details

This section provides the implementation details that are required to efficiently

integrate the embeddings, masks, and segmentation-aware convolutions with

CNNs. Source code for this work will be made available online. All new

layers are implemented both for CPU and GPU in the popular deep learning

framework Caffe (Jia et al., 2014).

Computing distances

Computing pairwise distances densely across the image is a computationally

expensive process. The current work implements this efficiently by solving it

in the same way Caffe (Jia et al., 2014) realizes convolution: via an image-

to-column transformation, followed by matrix multiplication. The image-to-

column transformation in convolution simply involves re-organizing the ele-

ments of each (potentially overlapping) patch into a column—this process is

named im2col. The image-to-column transformation for distances involves

computing distances within each patch, and organizing those distances into

a column (ordered the same way as in im2col)—this new process is named

im2dist. The two processes are illustrated and compared in Figure 3.7.

34

CHAPTER 3. TECHNICAL APPROACH

More precisely, the distance computation works as follows. For every po-

sition i in the feature-map provided by the layer below, a patch of features is

extracted from the neighbourhood j ∈ Ni, and local distances are computed

between the central feature and its neighbours. These distances are arranged

into a row vector of length K, where K is the total dimensionality of the patch.

This process turns an H ×W feature-map into an H ·W ×K matrix, where

each element in the K dimension holds a distance relating that pixel to the

central pixel at that spatial index.

Computing masks

To convert the distances into masks, the H ·W ×K matrix is passed through

an exponential function with a specified hardness, λ. This operation realizes

the mask term (Eq. 3.3). In this work, the hardness of the exponential is

learned as a parameter of the CNN.

The mask matrix is then normalized (Eq. 3.4). To find the normalizing

coefficients, i.e., the denominator in the normalized mask (Eq. 3.4), the mask

matrix is summed across the K dimension, creating a mask sum for every

spatial location. The mask values are then pointwise divided by the sums,

creating the final normalized masks.

A potentially convenient alternative to the two previous steps (correspond-

ing to Eq. 3.3 and Eq. 3.4) is to scale the H ·W ×K matrix of distances by

λ, and send the result through the softmax function

σ(zk) =
ezk∑K
j=1 e

zj
for k = 1, . . . , K. (3.6)

The reason this may be convenient is that many neural network frameworks

35

CHAPTER 3. TECHNICAL APPROACH

Figure 3.7: Implementation of convolution in Caffe, compared with the imple-
mentation of segmentation-aware convolution. The variables H, W denote the
height and width of the input; E denotes the number of channels in the input
(i.e., the “depth” of the input); K denotes the dimensionality of a patch (e.g.,
K = 9 in convolution with a 3× 3 filter); F denotes the number of filters (and
the dimensionality of the output). In both cases, an H×W ×E input is trans-
formed into an H×W ×F output. Convolution works by an image-to-column
transformation (i.e., “unrolling” the input), and a matrix multiplication with
weights. Segmentation-aware convolution works similarly, with an image-to-
column transformation on the input, an image-to-distance transformation on
the embeddings, a pointwise multiplication of those two matrices, and then a
matrix multiplication with weights.

36

CHAPTER 3. TECHNICAL APPROACH

(e.g., Caffe) already have implementations for the softmax function.

Applying masks

To perform the actual masking, the input to be masked is simply processed

by im2col (producing another H ·W ×K matrix), then multiplied pointwise

with the normalized mask matrix. Since im2dist is modelled after im2col, the

values in the matrices are aligned so that each pixel of a patch gets multiplied

by its similarity to the central pixel.

From the product, segmentation-aware bilateral filtering is merely a matter

of summing across the K dimension, or equivalently, multiplying with a K×1

matrix of ones, producing an H · W × 1 matrix that can be reshaped into

dimensions H ×W .

Segmentation-aware convolution (Eq. 3.5) simply requires multiplying the

H ·W × K masked values with a K × F matrix of weights, where F is the

number of convolution filters. The result of this multiplication can be reshaped

into F different H ×W feature maps.

Computing loss

The loss function for the embeddings (3.1) is implemented using similar com-

putational techniques. First, the label image is processed with a new layer

named im2parity. This creates an H ·W ×K matrix, where for each pixel i,

the K-dimensional row vector specifies (with {0, 1}) whether or not each local

neighbour j ∈ Ni has the same label as the central pixel. The result of this

process can then be straightforwardly combined with the H ·W × K result

of im2dist, to penalize each distance according to the correct loss case (as in

37

CHAPTER 3. TECHNICAL APPROACH

Eq. 3.2).

3.3 Summary

This chapter presented the technical approach, which consists of three main

components: embeddings, segmentation-aware bilateral filtering, and segment-

ation-aware convolution. The embeddings are pixel-wise features, which map

pixels into a space where their relative distance can be used to infer a local

foreground-background segmentation. The embeddings are used to create a

mask for every patch in the image, which highlights the “foreground” rela-

tive to the central pixel of each patch. Using the masks as filters (i.e., tak-

ing a dot product of the mask and the patch at each location) accomplishes

segmentation-aware bilateral filtering. This can be used to sharpen the out-

puts of a convnet. Using the masks together with convolution (so that each

convolution filter is first multiplied pointwise with the local mask) achieves

segmentation-aware convolution. This has the effect of spatially “focusing”

the convolution filters on the foreground at every location, which is expected

to improve the spatial precision of the resulting outputs.

The embeddings are learned in a standard convolutional architecture (a

simplified VGG-16 architecture). The segmentation-aware bilateral filtering

and convolution are integrated into a strong baseline semantic segmentation

CNN (DeepLab), with no other changes to the architecture. These networks

are implemented in a popular deep learning framework (Caffe). The low-level

implementation details are based closely on the optimized implementation of

convolution from that framework.

38

Chapter 4

Experiments

This chapter presents an empirical evaluation of the proposed approach. The

first section provides an overview of the datasets and metrics used (Sec. 4.1).

The second section presents the evaluation of the proposed approach against

a standard baseline (Sec. 4.2). The third section discusses the significance of

these results (Sec. 4.3).

4.1 Overview

This section describes the dataset (Sec. 4.1.1), and the metrics used in the

evaluation (Sec. 4.1.2), to clarify and motivate the interpretations to follow in

the evaluation.

4.1.1 Datasets

The evaluation in this thesis is centered on one standard benchmark, the

PASCAL VOC 2012 semantic segmentation challenge (Everingham, Van-Gool,

Williams, Winn, & Zisserman, 2012). Since the PASCAL dataset is too small

to train a large CNN without overfitting, two additional datasets are used for

39

CHAPTER 4. EXPERIMENTS

their training data. This selection and usage is consistent with many works in

semantic segmentation, including this work’s baseline, Chen et al. (2015).

PASCAL VOC 2012

The dataset used for evaluation is the PASCAL Visual Object Classes (VOC)

2012 dataset (Everingham et al., 2012), augmented with additional images

from Hariharan, Arbeláez, Bourdev, Maji, and Malik (2011). The complete

dataset consists of 10,582 training images, 1,449 validation images, and 1,456

testing images. All images are annotated with object class labels, on a per-

pixel basis. The annotations are stored in uncompressed PNG images, using

the pixel values to denote the object class identification number at each loca-

tion. These labels are typically visualized as images, with a colourmap pro-

vided in the VOC development kit. Figure 4.1 shows a sample of the images in

the dataset, and corresponding coloured label images. There are twenty object

classes, and one “background” class (which contains other objects). The ob-

ject classes are: airplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow,

dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train,

and tv/monitor. The dataset allows some slack for hard-to-categorize pixels,

e.g., at object boundaries; these hard pixels are marked as “void”, and do not

get scored in the evaluation.

Annotations for the training and validation sets are available for use and

inspection, but annotations for the test set are held out, and stored on a secure

server. This is done to standardize the evaluation across all works that use the

dataset. Evaluation on the test set is only possible by submitting results in

a pre-specified format to the server. The frequency of submissions is strictly

40

CHAPTER 4. EXPERIMENTS

Figure 4.1: Overview of the PASCAL VOC 2012 dataset. Example images are
shown in the top row, and the corresponding colour-mapped label images are
shown in the bottom row. The white areas in the label images are categorized
as “background”; the light edges noticeable on some object contours are “void”
regions, which are not scored in the evaluation.

limited to two submissions per week, to discourage tuning of the algorithms

based on test performance. This is currently the standard benchmark for

semantic segmentation algorithms (Long et al., 2014; Chen et al., 2015; Zheng

et al., 2015; Yu & Koltun, 2016; Noh et al., 2015).

MS COCO

One of the two datasets used for training only (i.e., no evaluation), is the Mi-

crosoft Common Objects in Context (MS COCO) dataset (Lin et al., 2014).

The dataset consists of 82,783 training, 40,504 validation, and 40,775 testing

images, with per-pixel labels for 80 object classes and one background class.

The classes cover all of the PASCAL VOC object classes, plus a variety of

additional animals, vehicles, sports equipment, kitchenware, food, furniture,

appliances, and electronics. In this work, the MS COCO training and valida-

41

CHAPTER 4. EXPERIMENTS

tion sets were simply concatenated (making a total of 123,287 images), and

used as a “pre-training” set. All CNNs in this work were trained on MS COCO

before they were trained on PASCAL VOC.

ImageNet

The second dataset used only for training is ImageNet (Russakovsky et al.,

2015). This dataset consists of 1.3 million training images, 50,000 validation

images, and 100,000 testing images. This dataset is labelled on a per-image

basis, with a single object label per image. A total of 1000 object classes are

represented in the labels. This dataset was used to train the VGG-16 network

(Simonyan & Zisserman, 2015). The learned weights from the fully-trained

VGG-16 were used to initialize the weights of both the baseline (DeepLab)

and the proposed approach. This sort of initialization is equivalent to pre-

training the networks on ImageNet for object recognition. Training a VGG-16

network on ImageNet takes two to three weeks (on four GPUs working in

parallel), but trained models have been publicly released online.

4.1.2 Metrics

Performance on the PASCAL VOC 2012 semantic segmentation challenge is

assessed on the pixel-wise intersection over union (IOU) for each class sepa-

rately (Everingham, Van Gool, Williams, Winn, & Zisserman, 2010). The sets

in the IOU are the predicted labels and the correct labels for a single class;

the complete calculation, therefore, requires finding the size of the intersection

(i.e., the number of pixels that were correctly predicted to belong to the class),

then calculating the size of the union (i.e., the number of correct predictions,

42

CHAPTER 4. EXPERIMENTS

the number of incorrect predictions, and the number of missed pixels of the

class), and dividing the first quantity by the second. This can be written as

follows:

accuracy =
true positives

true positives + false positives + false negatives
, (4.1)

where “positives” and “negatives” depend on the class. The mean accuracy

over all classes is the standard measure of overall performance.

For reference, the first row of Table 4.1 shows the accuracy of the replicated

baseline DeepLab CNN, at 66.33% IOU.

4.1.3 Training details

Following the implementation of Chen et al. (2015), and additional details

released in follow-up work (Papandreou, Chen, Murphy, & Yuille, 2015), the

baseline CNN was initialized from a fully-convolutional version of VGG-16,

then trained in two stages. In the first stage, it was trained for 24,000 iterations

on MS COCO, starting with a learning rate of 0.01 on the final classifier,

and 0.001 on all other layers, and multiplying these rates by 0.1 every 8,000

iterations. In the second stage, the network was trained for 6,000 iterations

on PASCAL VOC, beginning with the same learning rates as the first stage,

but multiplying by 0.1 every 2000 iterations. Both stages used a momentum

factor of 0.9 on the learning rate, and a batch size of 30 images for the gradient

descent. The data was augmented by taking random 321 × 321 crops, and

performing left-right mirror flipping at random for every image. Additional

training details can be found in Chen et al. (2015).

43

CHAPTER 4. EXPERIMENTS

The embeddings were initialized from VGG-16, then trained for 20,000

iterations on MS COCO, starting with a learning rate of 1e-5 on the final

embedding, and 1e-6 on all other layers. The learning rate was gradually

decreased to 0 following the polynomial decay function (1− iter/max iter)0.9.

The batch size in this case was 10 images. All other aspects of training matched

the baseline training procedure.

The segmentation-aware convolution network was initialized from the MS

COCO-trained baseline (DeepLab) network, then infused with embeddings,

and trained on the PASCAL VOC dataset for 12,000 iterations, multiplying

the learning rate by 0.1 every 4,000 iterations. All other aspects of training

matched the baseline training procedure.

4.2 Evaluation

This section steps through an evaluation of the proposed approach on the

Pascal VOC 2012 dataset. Parallel to the initial presentation of the technical

approach (Sec. 3.1), the evaluation first focuses on the embeddings (Sec. 4.2.1),

then segmentation-aware bilateral filtering (Sec. 4.2.2), and finally on segmentation-

aware convolution (Sec. 4.2.3).

4.2.1 Embeddings

As noted earlier, any neural network architecture implicitly comprises hun-

dreds of hyperparameters—design parameters that control the complexity and

capacity of the network. For this reason, it is important to validate any major

choices that are not supported by prior work. Since the embeddings network

44

CHAPTER 4. EXPERIMENTS

is based on a standard architecture (VGG-16), the evaluation here will focus

on the dimensionality of the final embeddings, and the supervision technique.

Since the main interest is the quality of the embeddings in the context of

segmentation-aware masking and filtering, the evaluation of this section will

center on the simplest application in that context: sharpening the prediction

maps produced by DeepLab through bilateral filtering, as a post-processing

step. Specifically, the embeddings will be used to generate bilateral filtering

masks, which will replace each prediction with a weighted average of a local

9× 9 region from the prediction map.

As a baseline for the embeddings, the accuracy obtainable with RGB-based

bilateral filtering is shown in Table 4.1, at 66.97%. Note that the performance

boost from RGB-based bilateral filtering (≈ 0.6%) is itself a minor contribution

of this work, since the bilateral filtering is made possible through the proposed

implementation.

Next, Table 4.1 shows mean IOU performance across embeddings of var-

ious dimensions. The results show a large difference between 32-dimensional

embeddings and 64-dimensional embeddings, and slight improvements as the

dimensionality increases further. Although the best embedding is found at

256 dimensions, the remainder of this work will use the 64-dimensional em-

beddings, as they require substantially less memory (especially in im2dist),

and offer nearly the same performance. Compared to RGB, the learned 64-

dimensional embeddings are almost equal in quality (66.98% vs. 66.97%).

Training the embeddings with top-down supervision would be faster and

simpler than using the multi-layer supervision suggested earlier (in Sec. 3.2.1,

45

CHAPTER 4. EXPERIMENTS

motivated by Xie & Tu, 2015). However, Table 4.1 shows that the multi-layer

supervision yields a slight improvement in performance, bringing the accuracy

of the learned embedding to 67.00%. Since this strategy only affects training

time, this is likely a worthwhile investment.

Note that the learned embeddings are still not substantially better than

RGB (which had an accuracy of 66.97%). This attests to the strength of

colour as a region embedding. However, whereas the RGB vector is fixed, the

embeddings can be improved further, through fine-tuning within the larger

network where they are used. The results with segmentation-aware convolution

(in Sec. 4.2.3) make use of this fine-tuning process.

4.2.2 Segmentation-aware bilateral filtering

Although segmentation-aware bilateral filtering is only a special case of seg-

mentation-aware convolution, it is interesting to explore how much of an im-

provement in accuracy is possible by tuning the hyperparameters that define

how (and to what extent) the technique is applied. Experimentation on the

technique as a post-processing step (as considered here) is especially appealing,

because the effects of various modifications can be observed without requiring

new models to be trained. The main design parameter to consider in this

context is the number of times to apply the filter.

Once the embeddings and masks are computed, it is trivial to run the

masking process repeatedly, though this is limited by memory constraints.

Applying the process multiple times is expected to improve performance, by

strengthening the contribution from similar neighbours in the radius. This

46

CHAPTER 4. EXPERIMENTS

Table 4.1: PASCAL VOC 2012 validation results for the various considered
approaches, compared against the baseline. The baseline is shown at the top;
subsequent methods are grouped by the aspect they investigate. In order,
the table summarizes the independent effects of: embedding dimensionality,
supervision style, repeated application of the filter, segmentation-aware layers,
and the combination of segmentation-aware layers and bilateral filtering.

Method IOU (%)

Baseline (DeepLab with no modifications) 66.33
with 9× 9 RGB bilateral filter 66.97
with 32-dim 9× 9 seg.-aware bilateral filter 66.84
with 64-dim 9× 9 seg.-aware bilateral filter 66.98
with 128-dim 9× 9 seg.-aware bilateral filter 67.01
with 256-dim 9× 9 seg.-aware bilateral filter 67.02
with 64-dim 9× 9 filter and multi-layer supervision 67.00
with 64-dim 9× 9 segmentation-aware bilateral filter ×2 67.36
with 64-dim 9× 9 segmentation-aware bilateral filter ×4 67.68
with FC6 segmentation-aware 67.40
with all layers segmentation-aware 67.94
with all layers seg.-aware + 9× 9 seg.-aware bilateral filter 68.00
with all layers seg.-aware + 7× 7 seg.-aware bilateral filter ×2 68.57
with all layers seg.-aware + 5× 5 seg.-aware bilateral filter ×4 68.52

parameter also effectively allows information from a wider radius to contribute

to each prediction: after filtering with 9 × 9 filters, each new 9 × 9 region

effectively contains information from an 17 × 17 area in the original input.

Table 4.1 shows the results of applying a 9 × 9 filter once, twice, and four

times; four is the maximum possible number of times given a 12-gigabyte

(NVIDIA Tesla K-40) GPU. As expected, repeating the application of the

filter improves performance substantially.

47

CHAPTER 4. EXPERIMENTS

4.2.3 Segmentation-aware convolution

For segmentation-aware convolution, the main question is: which stages of the

network should be made segmentation-aware? Guided by the intuition that

foreground-background segmentation is only useful when the receptive field

of a neuron covers a relatively wide region, one might choose to only make

the higher convolution layers segmentation-aware. The FC6 layer is a good

candidate layer for this strategy, since it is the highest convolution layer in

the network (excluding layers with filters of size 1 × 1). On the other hand,

one can make every layer segmentation-aware, and allow learning to determine

the layer-wise usage of the technique. Table 4.1 shows the results from both

strategies: making FC6 segmentation-aware yields a substantial improvement

over the baseline (≈ 1.1%); making all layers segmentation-aware yields an

even stronger improvement (≈ 1.6%).

Finally, since segmentation-aware bilateral filtering and segmentation-aware

convolution are not mutually exclusive, one can combine the two techniques

for still better results. Table 4.1 shows the effect of sharpening the predictions

produced by the segmentation-aware network. As before, memory constraints

limit the application of this technique, to such an extent in this case that the

filter size must be decreased to 7 × 7 for two repeated applications, and to

5 × 5 for four repeated applications. The best performance is found in the

7× 7 case, at 68.57% (≈ 2.2% over the baseline).

It was hypothesized earlier that these techniques would especially provide

gains in accuracy near object boundaries. To see whether this is the case, one

can compute each method’s accuracy within “trimaps” that extend from the

48

CHAPTER 4. EXPERIMENTS

0 10 20 30 40
45

50

55

60

65

70

m
e
a
n
 I
O

U
 (

%
)

Trimap half−width (pixels)

+ seg.−aware + bilateral

+ seg.−aware

Baseline

Figure 4.2: Performance near object boundaries (“trimaps”). Example
trimaps are visualized (in white) for the image in the top left; the trimap of
half-width three is shown in the middle left, and the trimap of half-width ten
is shown on the bottom left. Note the thin black contour within each trimap is
the actual object boundary, which is marked “void” in PASCAL VOC and not
evaluated for accuracy (since precise boundaries are ambiguous). Mean IOU
performance of the baseline and two segmentation-aware variants are plotted
(right) for trimap half-widths 1-40.

objects’ boundaries. A trimap is a narrow band (of a specified half-width) that

surrounds a boundary on either side; measuring accuracy exclusively within

this band can help separate within-object accuracy from on-boundary accu-

racy (Chen et al., 2015). Figure 4.2 (left) shows visualizations of trimaps,

and (right) plots accuracies as a function of trimap width. The results show

that segmentation-aware convolution offers its main improvement slightly away

from the boundaries (i.e., beyond 10 pixels), while bilateral filtering offers its

largest improvement very near the boundary (i.e., within 5 pixels).

The best technique arrived at on the validation set (i.e., all layers segmentation-

aware, plus 7×7 segmentation-aware bilateral filtering applied twice) was sub-

49

CHAPTER 4. EXPERIMENTS

Table 4.2: PASCAL VOC 2012 test results for the baseline approach and the
final proposed segmentation-aware approach.

Method IOU (%)

Baseline (DeepLab with no modifications) 66.96
with all layers seg.-aware + 7× 7 seg.-aware bilateral filter ×2 69.01

mitted to the PASCAL VOC server for evaluation on the official test set. As

shown in Table 4.2, the proposed approach achieved approximately a 2.1%

gain in mean IOU accuracy over the baseline (achieving 69.01%, compared

with 66.96%).

Visualizations of results on the PASCAL VOC validation set are shown in

Figure 4.3. Qualitatively, the baseline results appear blurred and blob-like,

though the class detections are accurate. The results produced by the best

proposed approach fit the contours of the underlying objects slightly better,

and discard some extraneous off-object detections.

4.3 Discussion

Overall, the results attained from the segmentation-aware modifications show

a substantial improvement over the baseline CNN. In terms of training em-

beddings, it was shown that higher dimensionality on the final embedding

improves results slightly, though not far beyond the results achievable with

RGB embeddings. Multi-layer supervision was also found to improve the em-

beddings slightly, which suggests that training embeddings is more akin to

training a boundary detector (like Xie & Tu, 2015, which showed multi-layer

50

CHAPTER 4. EXPERIMENTS

supervision is critical) than training a semantic segmentation net (like Chen

et al., 2015, which only used top-down supervision). This suggests that per-

haps additional training strategies could be adopted from boundary detection

literature.

More importantly, the results showed that both bilateral filtering and

segmentation-aware convolution are effective ways of improving accuracy in

semantic segmentation. Furthermore, the two techniques can be combined to

improve performance further still. Overall, the segmentation-aware modifica-

tions achieved a 2.1% gain in accuracy over the baseline, as evaluated on the

standard PASCAL VOC semantic segmentation challenge. Other works have

attained similar-magnitude improvements with, for example, multi-scale con-

text aggregation (Yu & Koltun, 2016), learned de-convolution layers (Long et

al., 2014), and CRFs (Chen et al., 2015). The especially promising aspect of

the improvement presented in this work is that it is complementary to most

other currently-pursued approaches. That is, almost all semantic segmenta-

tion pipelines use convolution layers, and any convolution layer can be made

segmentation-aware, meaning that the improvements in this work could po-

tentially transfer to a wide variety of state-of-the-art semantic segmentation

pipelines.

51

CHAPTER 4. EXPERIMENTS

Figure 4.3: Visualizations of the results. These are colour-mapped semantic
segmentations for the PASCAL VOC 2012 validation set, produced by the
baseline (DeepLab), the proposed approach (using segmentation-aware convo-
lution and bilateral filtering), and finally the provided labels.

52

Chapter 5

Conclusion

This chapter summarizes the main contributions of the thesis (Sec. 5.1), and

lays out some interesting directions for future work (Sec. 5.2).

5.1 Thesis summary

This thesis presented segmentation-aware CNNs as the culmination of three

closely-related contributions. First, it was shown that convolutional layers can

be trained to produce class-invariant segmentation cues, providing dense em-

beddings of local foreground/background information. Second, it was shown

that efficient pairwise distance computation between the learned embeddings

provides a route to constructing a segmentation-aware bilateral filter. Third,

the bilateral filter was combined with convolutional filters, achieving a learn-

able variant of normalized convolution in the CNN.

The complete architecture is named a segmentation-aware CNN, because

it can adjust its behaviour on a per-pixel basis according to local segmenta-

tion cues. This technique directly addresses the issue of smooth predictions

in CNNs. Compared to the outputs of standard CNNs, segmentation-aware

53

CHAPTER 5. CONCLUSION

CNNs produce prediction maps with substantially better spatial accuracy.

Empirical results demonstrated that modifying a strong baseline seman-

tic segmentation CNN with segmentation-aware convolutions systematically

improves performance on a standard benchmark, as does segmentation-aware

bilateral filtering. The best results are obtained by combining the two tech-

niques.

The contributions are implemented efficiently in the popular Caffe deep-

learning framework, making it straightforward to augment existing dense pre-

diction techniques with segmentation-aware convolutions.

5.2 Future work

There are a variety of ways to expand on the current work, both in applications

and in the technical approach. This section will first outline some potentially

interesting applications and experiments enabled by the current work, then

describe some extensions to the core technical approach.

Many potential applications of segmentation-aware convolution are fairly

obvious: the success of the technique in semantic segmentation suggests that

it may yield improvements in other pixel-wise prediction tasks, such as optical

flow estimation, surface normal estimation, and depth estimation. Some of

these tasks may even be a better fit for the technique than semantic segmen-

tation. In particular, discarding information from the context is occasionally

counter-productive for object recognition (e.g., ignoring the pasture around a

cow may add difficulty to recognizing the cow); this is perhaps less frequently

the case in calculating, for example, surface normals. A segmentation-aware

54

CHAPTER 5. CONCLUSION

convnet may therefore use its masks to a greater extent in these other dense

prediction tasks, and potentially demonstrate an even clearer improvement

over standard CNN baselines.

Another promising direction for experimentation concerns finding the op-

timal use of the segmentation-aware bilateral filter. The bilateral filter was

primarily presented here as a special case of segmentation-aware convolution,

but it is a powerful technique in its own right. A useful advantage of the

technique is that it is parameter-free (given the embeddings). In this work,

the bilateral filter was only used experimentally to sharpen the final prediction

map produced by a CNN; an equally interesting direction would be to sharpen

the intermediate feature maps produced within the CNN. It is plausible that

every layer would benefit from sharper input feature maps. This might pro-

vide an additional route to countering the “smooth predictions” issue. Since

the bilateral filter in this work is differentiable, the network can be trained

end-to-end with this sharpening technique implemented throughout.

One extension to the technical approach, which has clear promise, is to

allow the mask scaling coefficient, λ in Eq. 3.3, to vary across filters within a

convolutional layer. This is likely a valuable point of flexibility, because the

filters within a layer are responsible for a wide variety of tasks, and these tasks

may understandably place different requirements on the presence of context.

By using only a single scaling coefficient per layer, the current implementa-

tion essentially takes the average of all these demands. Unfortunately, this

extension does not appear to be a trivial modification. As detailed earlier (in

Sec. 3.2.2), the proposed implementation involves im2col on the image, an

55

CHAPTER 5. CONCLUSION

im2dist on the embeddings, a pointwise product, and a matrix multiplication

with weights. A critical point in the efficiency of this implementation is that

only a single matrix multiplication is required, no matter how many convolu-

tion filters are involved. That is, convolution is achieved by the multiplication

of the H ·W ×K matrix of masked patches with a K × F matrix of weights,

where H, W are height and width, K is the size of the filter, and F is the

number of filters. Allowing a separate scaling coefficient for each filter requires

F separate versions of the H ·W ×K matrix, and F matrix multiplications.

Besides the additional computational cost, this quickly multiplies the memory

requirements beyond current hardware limits. For instance, F in the VGG-16

“conv4” layer is 512, meaning the memory requirements of that layer would

be multiplied by 512.

A second extension to the technical approach is to use segmentation-aware

bilateral filtering to generalize conditional random fields. As mentioned in

the introduction (Sec. 2.2.4), CRFs have recently been used in semantic seg-

mentation as a post-processing step, to sharpen the predictions produced by

the convnet. To achieve this, the CRF iteratively refines the label agreement

between pairs of similar pixels, primarily via repeated applications a wide bilat-

eral filter (Krähenbühl & Koltun, 2011). There exists some work on framing

the steps of a CRF as differentiable modules of a recurrent neural network

(Zheng et al., 2015); the contributions of this thesis could help to take that

work several steps further. In particular, there are two components of the

basic CRF, which are normally held fixed, that the current work could render

into learnable parameters.

56

CHAPTER 5. CONCLUSION

The first component of the CRF to replace is the similarity metric used

in the bilateral filter. As demonstrated earlier (in Sec. 3.1.2), the similarity

metric (normally distance in position and colour space) can be an arbitrary

embedding, learned through backpropagation. Assuming that the learned em-

beddings are superior to RGB in that context, carrying out this replacement

should improve the performance of the CRF. The second replaceable compo-

nent is the filter itself. It was shown (in Sec. 3.1.3) that segmentation-aware

bilateral filtering is merely a special case of segmentation-aware convolution,

in which the filter is all ones. Converting the bilateral filter in CRFs into

a learnable segmentation-aware convolution should provide an additional im-

provement in performance.

There are, however, technical challenges associated with these modifica-

tions. The foremost challenge arises from the width of the bilateral filter

typically used in CRFs, which sometimes extends to the full width of the im-

age (e.g., on the range of 300×300, while this work considered 9×9 filters and

smaller). Although achieving segmentation-aware convolution with a dense

filter of that size is likely infeasible, it would be interesting to investigate the

performance gains attainable with smaller filters.

57

References

Aurich, V., & Weule, J. (1995). Non-linear gaussian filters performing edge
preserving diffusion. In Proceedings of the DAGM Symposium (pp. 538–
545).

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford uni-
versity press.

Bromley, J., Guyon, I., LeCun, Y., Sackinger, E., & Shah, R. (1994). Signature
verification using a “siamese” time delay neural network. In Proceedings
of Neural Information Processing Systems.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2015).
Semantic image segmentation with deep convolutional nets and fully con-
nected CRFs. In International Conference on Learning Representations.

Dai, J., He, K., & Sun, J. (2015). Convolutional feature masking for joint
object and stuff segmentation. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition.

Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazırbaş, C., Golkov, V.,
. . . Brox, T. (2015). FlowNet: Learning optical flow with convolutional
networks. In Proceedings of IEEE International Conference on Computer
Vision.

Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map prediction from a
single image using a multi-scale deep network. In Proceedings of Neural
Information Processing Systems.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A.
(2010). The PASCAL Visual Object Classes (VOC) challenge. Interna-
tional Journal of Computer Vision, 88 (2), 303–338.

Everingham, M., Van-Gool, L., Williams, C. K. I., Winn, J., &
Zisserman, A. (2012). The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

Fowlkes, C., Martin, D., & Malik, J. (2003). Learning affinity functions
for image segmentation: Combining patch-based and gradient-based ap-

58

References

proaches. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition.

Frome, A., Singer, Y., Sha, F., & Malik, J. (2007). Learning globally-consistent
local distance functions for shape-based image retrieval and classifica-
tion. In Proceedings of IEEE International Conference on Computer
Vision.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics , 36 (4), 193–202.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hi-
erarchies for accurate object detection and semantic segmentation. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recog-
nition.

Han, X., Leung, T., Jia, Y., Sukthankar, R., & Berg, A. (2015). Match-
Net: Unifying feature and metric learning for patch-based matching.
In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition.

Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., & Malik, J. (2011). Seman-
tic contours from inverse detectors. In Proceedings of IEEE International
Conference on Computer Vision.

Harley, A. W., Derpanis, K. G., & Kokkinos, I. (2016). Learning dense
convolutional embeddings for semantic segmentation. In International
Conference on Learning Representations.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition.

Jampani, V., Kiefel, M., & Gehler, P. V. (2016). Learning sparse high dimen-
sional filters: Image filtering, dense CRFs and bilateral neural networks.
In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., . . .
Darrell, T. (2014). Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM international conference
on multimedia (pp. 675–678).

Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for
generating image descriptions. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition.

Knutsson, H., & Westin, C.-F. (1993). Normalized and differential convolution.
In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition.

59

References

Krähenbühl, P., & Koltun, V. (2011). Efficient inference in fully connected
CRFs with Gaussian edge potentials. In Proceedings of Neural Informa-
tion Processing Systems.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classifica-
tion with deep convolutional neural networks. In Proceedings of Neural
Information Processing Systems.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 ,
436–444.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE ,
86 (11), 2278–2324.

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2015). Deeply-
supervised nets. Proceedings of AAAI Conference on Artificial Intelli-
gence, 2 (3), 6.

Lee, J.-S. (1983). Digital image smoothing and the sigma filter. Computer
Vision, Graphics, and Image Processing , 24 (2), 255–269.

Leordeanu, M., Sukthankar, R., & Sminchisescu, C. (2012). Efficient closed-
form solution to generalized boundary detection. In Proceedings of Eu-
ropean Conference on Computer Vision (pp. 516–529).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., . . .
Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In
Proceedings of European Conference on Computer Vision (pp. 740–755).

Long, J., Shelhamer, E., & Darrell, T. (2014). Fully convolutional networks for
semantic segmentation. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition.

Maire, M., Arbeláez, P., Fowlkes, C., & Malik, J. (2008). Using contours to
detect and localize junctions in natural images. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted
Boltzmann machines. In Proceedings of International Conference on Ma-
chine Learning (pp. 807–814).

Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for
semantic segmentation. In Proceedings of IEEE International Conference
on Computer Vision.

Ott, P., & Everingham, M. (2009). Implicit color segmentation features for
pedestrian and object detection. In Proceedings of IEEE International
Conference on Computer Vision.

Papandreou, G., Chen, L.-C., Murphy, K., & Yuille, A. L. (2015). Weakly- and
semi-supervised learning of a a deep convolutional network for semantic
image segmentation. In Proceedings of IEEE International Conference

60

References

on Computer Vision.
Ren, X., & Malik, J. (2003). Learning a classification model for segmentation.

In Proceedings of IEEE International Conference on Computer Vision.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal

representations by error propagation. Nature, 323 , 533–536.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Fei-

Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 115 (3), 211-252.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview.
Neural Networks , 61 , 85–117.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22 (8), 888–
905.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning
Representations.

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., & Moreno-Noguer,
F. (2015). Discriminative learning of deep convolutional feature point
descriptors. In Proceedings of IEEE International Conference on Com-
puter Vision.

Smith, S. M., & Brady, J. M. (1997). SUSAN – A new approach to low level
image processing. International Journal of Computer Vision, 23 (1), 45–
78.

Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). On the
importance of initialization and momentum in deep learning. In Pro-
ceedings of International Conference on Machine Learning (Vol. 28, pp.
1139–1147).

Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color
images. In Proceedings of IEEE International Conference on Computer
Vision.

Trulls, E., Kokkinos, I., Sanfeliu, A., & Moreno-Noguer, F. (2013). Dense
segmentation-aware descriptors. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition.

Trulls, E., Tsogkas, S., Kokkinos, I., Sanfeliu, A., & Moreno-Noguer, F. (2014).
Segmentation-aware deformable part models. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition.

Wang, X., Fouhey, D., & Gupta, A. (2015). Designing deep networks for sur-
face normal estimation. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition.

Werbos, P. J. (1982). Applications of advances in nonlinear sensitivity analy-

61

References

sis. In System modeling and optimization: Proceedings of the 10th IFIP
conference (pp. 762–770). New York: Springer-Verlag.

Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition.

Yu, F., & Koltun, V. (2016). Multi-scale context aggregation by dilated
convolutions. In International Conference on Learning Representations.

Zagoruyko, S., & Komodakis, N. (2015). Learning to compare image patches
via convolutional neural networks. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition.

Žbontar, J., & LeCun, Y. (2014). Computing the stereo matching cost with
a convolutional neural network. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition.

Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D.,
. . . Torr, P. H. (2015). Conditional random fields as recurrent neural
networks. In Proceedings of IEEE International Conference on Computer
Vision.

62

	Introduction
	Motivation
	Contributions
	Outline of thesis

	Literature Review
	Background
	Neurons
	Learning
	Architectures

	Related work
	Metric learning
	Segmentation-aware descriptors
	Convolutional nets for semantic segmentation
	Conditional random fields

	Technical Approach
	Segmentation-aware convolutional nets
	Learning segmentation embeddings
	Segmentation-aware bilateral filtering
	Segmentation-aware convolution

	Implementation details
	Network architecture
	Efficient convolutional implementation details

	Summary

	Experiments
	Overview
	Datasets
	Metrics
	Training details

	Evaluation
	Embeddings
	Segmentation-aware bilateral filtering
	Segmentation-aware convolution

	Discussion

	Conclusion
	Thesis summary
	Future work

	References

